当前位置: 仪器信息网 > 行业主题 > >

单一气体监测器

仪器信息网单一气体监测器专题为您提供2024年最新单一气体监测器价格报价、厂家品牌的相关信息, 包括单一气体监测器参数、型号等,不管是国产,还是进口品牌的单一气体监测器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合单一气体监测器相关的耗材配件、试剂标物,还有单一气体监测器相关的最新资讯、资料,以及单一气体监测器相关的解决方案。

单一气体监测器相关的资讯

  • 逸云天:新款MS104K-L便携式单一气体检测仪助力行业领先
    随着气体泄露事件的频发,社会对于安全的关注和担忧也与日俱增。在这个背景下,气体检测解决方案商逸云天推出了其旗下最新产品——MS104K-L便携式单一气体检测仪,以提供快速、准确的气体监测和报警功能,为构建更安全可靠的气体检测解决方案提供帮助。  逸云天是气体检测领域的专家,拥有17年的专注经验,并备受业界和客户的瞩目。公司的产品广泛应用于各个行业领域,例如消防、应急救援、受限空间、石油、化工、冶金、炼化、燃气、仓储、医药、环保、空气治理等领域。逸云天凭借卓越的技术实力和质量保证,赢得了客户的高度认可。  MS104K-L便携式单一气体检测仪是逸云天的最新创新产品,具备多项核心优势。首先,它采用了防护等级达到IP68的设计,能够在各种恶劣环境下安全运行。无论是面对雨淋、尘土还是腐蚀,它都能有效应对,确保设备正常工作。其次,MS104K-L配备了泵堵塞报警、语音报警、震动报警、声光报警等多重报警方式。如果泵吸式测量出现堵塞情况,它会立即发出警报,提醒用户进行设备维护和清洁,以确保检测结果的准确性。此外,MS104K-L还具备功能按键操作和一键校准的特点,使用非常方便。用户可轻松掌握操作,快速完成校准步骤,节省时间和精力。这些优势使得MS104K-L成为一款卓越的气体检测仪器,能够在各种环境中可靠地完成检测任务。  除了以上特点,MS104K-L便携式单一气体检测仪最大的特点是针对不同需求,支持多种检测方式,不仅可以检测一氧化碳、硫化氢、氧气、可燃气体、二氧化碳、VOC等单一气体,还可切换为扩散式、扩散+泵吸式等多种模式,满足不同场景的使用需求。此外,它还具备LED照明功能,为用户提供便利的光源,在昏暗环境下也能正常使用。甚至,MS104K-L还拥有大容量存储功能,标准容量不少于10万条,支持本机查看、删除或数据导出,并且存储时间间隔可以任意设置,方便用户对数据进行管理和分析。  值得一提的是,MS104K-L便携式单一气体检测仪特别配备了独特设计的天鹅颈采样探针。这款探针旨在满足在狭小空间或危险环境中进行气体采样的需求,可提供准确的浓度数据,并且长度可根据实际需求进行调整。这一创新对于需要在受限空间、管道或容器内部进行气体检测的场合尤为重要。  为了确保产品的安全性能,逸云天在设计MS104K-L便携式单一气体检测仪时充分考虑了多个因素。一方面,采用了特殊的气路设计,确保气体不会产生吸附和残留,从而实现快速响应的检测效果。另一方面,考虑到了防爆问题,采用了本质安全型设计,使得仪器能够稳定可靠地在危险环境中工作。同时,MS104K-L还具备高强度耐腐蚀防火聚碳酸酯和橡胶保护套,以及防摔耐磨防静电的特性。这些设计使得设备具备出色的抗跌落能力,有效保护设备在使用过程中免受损坏。  逸云天一直致力于推动气体检测技术的发展,为社会提供更安全、更可靠的气体监测解决方案。公司已通过ISO9001质量管理体系认证、ISO14001环境管理体系认证,并获得相关产品防爆合格证、CPA型式批准证书、CMC计量许可证、外观专利证书、软件著作权登记证书等认证。这些认证背后,是对产品质量与安全的高度关注,也是对客户承诺的体现。  逸云天的产品以其高质量、高稳定性广受用户好评。公司不仅在原材料选择以及设备工艺控制等环节严格把关,确保产品的质量稳定和检测精准,还非常重视售后服务。公司提供24小时在线咨询,以便及时解决用户的问题,确保用户获得全方位的支持与帮助。  新款MS104K-L便携式单一气体检测仪的推出,再次展现了逸云天在行业中的领先地位。未来,我们有理由相信,逸云天将继续保持技术创新,提供更好的产品和服务,为社会构建更安全、可靠的气体检测环境做出更大的贡献。“逸云天,气体检测的专业选择”。
  • 科尔康(Crowcon)个人便携式4合1气体监测器挑战恶劣环境
    作为Tetra便携式气体监测器系列的新成员,科尔康安检设备公司推出的轻型Tetra:3便携式4合1气体检测仪,集坚固设计、小巧和操作简便于一身。     Tetra:3便携式4合1气体检测仪能够应用于包括化工和建筑行业等条件苛刻的工业环境 它采用的单键式操作,简单方便,即使带手套也能够操作。这款仪器可以监测氧气、有毒和易燃气体,并配备一个顶端安装的背光LCD显示屏,可以同时显示所有检测气体读数以及电池电量。  虽然体积小,重量轻(不到300g),Tetra:3便携式4合1气体检测仪却极其坚固。它的防碰撞外壳采用橡胶包覆成型,可以在设备受到撞击和振动时提供额外保护,并达到IP67密封标准。  如果探测到危险,Tetra:3可以通过强大的95 dBA和极度明亮的红/蓝发光二级管提供声光报警,外加振动模式,发出迅速而有效的警告。报警分为两级,可以分别设置不同的音调。设备采用锂离子电池,一次冲电可连续工作18小时,并在需要校准时,提前30天发出校准提示。Tetra:3的标准配置包括一个不锈钢弹簧夹,可以将设备佩挂在胸前。
  • 英思科T40气体检测仪——现货促销
    联系电话: 15321363169 010-59483169T40气体检测仪,气体检测仪是英思科公司一款低成本的免维护型单气体检测仪,用于保护工作人员在极端环境下不受硫化氢或一氧化碳气体的危害。尽管体积小巧,但T40气体检测仪具有通常只能在大型多气体监测器中才具备的功能,包括:一个大屏幕液晶显示器、内部振动报警装置、听觉/视觉告警装置及简易的按键式操作。T40气体检测仪,气体检测仪采用坚固的工程塑料外壳和良好的保护设计,能使用在诸如沙漠或北极圈这类多变异常的气候环境中.【全国热销电话:13426283159 唐海红】仪器小巧轻便,能很容易地夹在皮带、衬衫口袋或安全帽上。T40气体检测仪,气体检测仪的超大LCD液晶显示屏能清晰地读出气体浓度、种类、峰值和高、低浓度报警水平。如果当前气体高、低浓度值超出预设限度值时,仪器以声光和振动报警提醒用户。T40气体检测仪,气体检测仪的产品概况:  可持续显示所检测气体的浓度  高低浓度声、光、振动报警  一节AA/5号碱性电池可持续运行500小时  超大液晶显示:PPM读数和电池寿命峰值保持  美国专利:一体化标定罩和单键自动标定  检测一氧化碳已获得中国煤安认证,型号为:CTB-999 T40气体检测仪,气体检测仪是英思科公司一款低成本的免维护型单气体检测仪,用于保护工作人员在极端环境下不受硫化氢或一氧化碳气体的危害。尽管体积小巧,但T40气体检测仪具有通常只能在大型多气体监测器中才具备的功能,包括:一个大屏幕液晶显示器、内部振动报警装置、听觉/视觉告警装置及简易的按键式操作。T40气体检测仪,气体检测仪,气体检测仪价格,T40单气体检测仪价格的技术参数:  壳 体:高可视度,耐冲击复合材料,带射频干扰(RFI)保护功能  尺 寸: 86 mm x 58 mm x 19 mm  重 量:98克  传感器:电化学原理  量程及分辨率: CO :0-999ppm, 1 ppm   H2S:0-500ppm,1 ppm  响应时间:CO15秒,H2S15秒  测量误差:± 5%F.S(实际值)  电源:可更换的&ldquo AA&rdquo 碱性电池(常规工作时间约为1,500 小时)  防护等级:IP54  温度范围: -20° C-50° C  湿度范围: 15 至 95% RH  告警装置: 可调节式低/高告警设定点  T40检测仪是美国英思科集团特推的一款单一气体检测仪,它是国外品牌在中国市场上价格较低、应用范围最广的、可以用在煤矿、油田、化工、物业、矿井、市政、工业上的气体检测仪。T40检测仪检测一氧化碳气体的型号CTB-999也已通过中国的煤安(MA)认证,这款产品现如今已被中国各大煤矿,化工,冶金,炼油,钢厂等领域所认可并投入使用,是迄今为止销量一路攀升的单气体检测仪。T40检测仪操作简单,使用维护方便,反应灵敏,且标定一步到位,为国内各行业客户解决了安全生产方面的难题! 联系电话: 15321363169 010-59483169
  • 被污染气体监测仪器的行业人士围观的,居然是!
    被围观的就是滨松的【量子级联激光器(QCL)】↓↓↓↓↓↓↓↓和滨松新型【InAsSb探测器】↓↓↓↓↓↓↓↓你看,小编是不是敲耿(tao)直(lu)!一丢丢都没有卖关子~(可爱.jpg) 图片来源:xz7.com这两个小玩意,其实是上周闪耀在第十五届中国国际环保展滨松展台的小明星,作为核心光源和探测器,从头到尾,重新诠释了更好的红外气体分析。红外气体分析在污染气体监控中的重要性就不多说了,随着国内“大气十条”的推进,对监测仪器性能要求变得更高、更严,这便直接转化成了对核心器件的要求,也变成了一个个新的难题。光源:监测精度要求更高,但一般的半导体激光器,如果在数百nm中有多个波长发生震动时,光谱带宽变宽,受到多种气体的干扰,测量精度易下降。中红外光源的激光器要达到“1成分=1波长”,需开发与被测对象气体相同数量的光源。开发成本大,商务风险高。探测器:常见污染气体主要集中在4μm~10μm,探测器波长范围需尽可能覆盖。反之,则会增加成本,光路设计变复杂,进而仪器体积增大,功耗上升;探测器须完全符合RoHS标准,传统高污染的碲镉汞(MCT)探测器彻底面临“下岗”;实时监测要求探测器具有更快上升时间,确保在更短时间内获得信号;小型化趋势要求探测器结构改善,避免制冷带来的高功耗、制冷系统体积大的问题。而本次在环保展中登台的量子级联激光器(QCL)和InAsSb探测器,就是目前我们解决问题的答案。滨松QCL采用的是DFB(分布式反馈激光器)结构,在内部设置了衍射光栅,可使光谱带宽处于非常窄的单一波长。虽然DFB-QCL很难实现量产,但滨松目前已拥有了充实的可定制化产品线。滨松QCL曾获得2016年日本激光学会产业“优秀奖”InAsSb探测器的新品——P13894系列在本次展会中再次与专业观众们见面。因相较市面同类产品,前所未有地将探测范围延至了11μm,实现了单个探测器对多种成分的分析能力,所以自诞生以来就光环加身;另外一个重要的point就是它持有“完全符合RoHS标准”这一门槛级的“上岗证”,成为新红外气体分析探测器的理想接班人;同时具有的非制冷、高灵敏度、更快上升时间等特性,也使它对于污染气体在线监测更具意义,并为仪器的小型化提供了可能。无论是探测器还是激光光源,都存在很多开发难题,而整体方案的提供对于仪器的开发者来讲,可以更有利于器件的相互评价,规避许多开发中由于器件出处不一而产生的技术磨合问题,缩短设备研发时间。当然,除了这两位突出的小明星外,我们在环保展中还呈现出了红外气体分析应用的探测方案“全景图”,针对不同的污染气体监测需求、成本考虑,从光源和探测器方面都呈现出了相应的技术支持能力。当然,除了红外气体分析的应用外,滨松在展会中还呈现了热门的大气(臭氧、二氧化硫等)、水质以及VOCs检测的相关产品。为水和空气治理的第一步——监测,提供核心的光电探测技术支持。水、空气、土壤都是生命源,滨松的技术可以为我们监测污染、促进治理,但想真正实现祖国环境保护愿景,还需要更多相关企业的社会责任意识觉醒,和我们每个人的努力。 滨松中国自身而言,目前所有展台均使用环保材质,减少涂料带来的空气污染和建材浪费。这也许是一个小的举动,但群体中每个个体的点滴善举终有一天可能成就环境问题的改善。“勿以善小而不为”,环境的守护不光靠我们的技术,更靠你的行动。
  • 激光痕量气体监测仪的新进展:性能和噪音分析
    激光痕量气体监测仪的新进展:性能和噪音分析(Recent progress in laser?based trace gas instruments: performance and noise analysis ,J. B. McManus M. S. Zahniser D. D. Nelson J. H. Shorter S. C. Herndon D. Jervis M. Agnese R. McGovern T. I. Yacovitch J. R. Roscioli, Appl. Phys. B (2015) 119:203–218)摘要我们用一些近来的数据回顾了使用中红外量子级联激光器,带间级联激光器和锑化二极管激光器的发展。这种监测仪主要用于高精度和高灵敏度测量大气中的痕量气体。在高性能软件的控制下,利用吸收光谱进行快速扫描,集成和高精度拟合。通过中红外波段,实现了出色的灵敏度。Aerodyne监测仪证明了在自然情况下痕量气体的测量精度达到1012级别,可实时测量CO2,CO,CH4,N2O和H2O的同位素。我们还描述信号处理方法,以识别和降低测量噪音。光谱信息分析的原理是将光谱加载到数组中并利用滤波片,傅立叶分析,多元拟合和成分分析进行处理。我们提供一个仪器噪音分析的实例,噪音是由电子信号与光干涉条纹混合形成。引言随着各种中红外单片固态激光器的问世,使用基于中红外激光仪器,对大气痕量气体的高精度测量已经成为常规,包括量子级联激光器(QCL),带间级联激光器(ICL)和基于锑化物的二极管激光器(TDL)。在3μm附近的波长范围内有缺口,但现在,设计人员有更多选择,在3μm附近的波长区域频率使用混合技术。在本文中,我们回顾Aerodyne Research,Inc.(下称ARI)公司使用中红外激光监测仪测量不同的痕量气体,并达到高灵敏度和/或高精度水平。这些仪器基于快速扫描和精确光谱拟合的直接吸收光谱,在高性能软件的控制下,在中红外波段,利用长光程,在减压情况下,通过热电冷却的激光和探测器实现出色的灵敏度。这里介绍了两种仪器:单激光仪器,光程长度最大为76 米;双激光仪器,光程长度最大为210 米。通过仔细选择波长,我们可以用单激光器同时测量多种气体。根据吸收率来说,仪器噪音在1 s的平均值为?5×106,可以测量1012级别大气中的气体]。这些仪器可以在多种环境中使用,包括实验室,偏远现场和移动平台(如卡车,轮船和飞机)。ARI公司仪器介绍及其性能一般来说,对于高浓度气体,几毫米的测量光程可能就足够了;但对于痕量气体来说,则需要数百米光程。Aerodyne气体监测仪仪器使用中红外快速频率扫描,直接吸收光谱并进行精确光谱拟合。仪器在减压池中利用较长吸收光程的新型红外激光源,对多种气态分子提供灵活而直接的高精度测量。光谱仪的基本配置比较简单:首先是激光源,然后是多反腔,最后是探测器。图1显示了这种装置。多反腔有确定的路径长度,符合标准的激光可以传输到检测器,对样品气体的测量基于比尔-兰伯特定律。在许多情况下,激光扫描气体出现多个吸收峰,从而测量多个不同气体。让两道或更多激光通过吸收室,或者使用单个检测器时分复用,可以测量更多的气体。Aerodyne监测仪尽可能使用反射光学元件,光学系统几乎没有色散。通过选择不同波段激光和激光驱动,选择峰值灵敏度不同的检测器来匹配,测量给定单一气体或一组气体。对于不同的测量目的,选择不同的吸收光程。一般多反腔的光程为7–76 米,一般使用宽带透镜;对于浓度非常低的气体,210米光程的窄带高反射率透镜可以提高灵敏度。仪器的优化在过去的几年中,我们持续对仪器进行了改进,比如使用了新型的电流驱动器,它提供了QCL高顺从电压情况下的低噪音电流。我们还设计了低噪音激光驱动和其他电子设备,降低整个系统的噪音。使得平均1s采样情况下,吸收噪音为?5×106,在均时100 s具有更高的精度,这相当于约5×10-7的最终吸收噪音。很多因素使得噪音超过检测器限度,特别是窄带电子噪音和光学干涉条纹。中红外激光微量气体仪器由Aerodyne Research,Inc.生产的操作软件“ TDLWintel”控制,让每条激光可以设置为时分复用。TDLWintel可控制监测仪的操作并实时处理数据。两种激光电流斜率由TDLWintel定义,然后对检测到的信号采样(16位A / D在?1-1.5 MHz下运行),同步求平均,基于HITRAN参数以及测得的温度和压力的曲线,与计算出的吸收值拟合,可以对多达16种气体混合比实时记录。数据可以以10 Hz采样频率记录,最大有效数据率由泵抽速和吸收池的大小决定。实验过程中一些情况,比如阀门开关或背景消减,也可由TDLWintel软件控制。我们展示了单激光(76米光程)和双激光监测仪(76米或者210米光程)的气体测量噪音结果(平均1s),分别在表1和表2中,测量噪音为以空气中的混合比表示,同时提供了噪音的不确定性。根据不同的吸收路径和测量情况,吸收噪音最佳的结果在1s内约为?5×106。仪器适用在各种环境中,无论是在实验室还是在野外实验中。野外现场包括偏远位置或在移动平台(例如轮船,卡车和飞机)上。我们在最近20年在许多野外现场使用过这些仪器。在过去的几年中,Aerodyne “移动实验室”已配备了多种气相仪器(单激光和双激光监测仪)以及测量颗粒物和较重的有机化合物配套仪器。如测量天然气中的甲烷排放,或者测量两种气体示踪物(例如,亚硝酸盐氧化物和乙炔),移动实验室可以直接开到附近,测量示踪气体以及甲烷。另外,通过测量乙烷(常见天然气的成分),我们可以区分来自天然气设施的甲烷和来自生物来源的甲烷。仪器的噪音分析 了解测量噪音源对于保持仪器性能水平至关重要,通常将重点放在最终的噪音源分析和讨论上,例如探测器噪音,激光噪音或散射噪音。其他噪音源,统称为“技术噪音”,可能来自光学和电子方面,并可能是噪音的主要来源。而在在短时间尺度上的噪音可能是更长的时间范围的漂移。不同的噪音源可能表现出不同的功率谱密度(PSD),例如检测器噪音,而Johnson噪音通常具有平坦的PSD(即白噪音),而激光噪音会表现出闪烁噪音(1 / f PSD)。噪音可能会在频谱中产生随机波动,或者它可能具有窄带频率。另一个复杂因素是信号处理算法对噪音信号的响应。对于Aerodyne,混合比噪音是对噪音信号,以及压力和温度变量中多元拟合的结果。了解和减少噪音的第一步是使用Allan–Werle方差工具分析混合比噪音图(方差作为平均时间的函数)以及功率谱,并将噪音划分类型。Allan-Werle方差工具是一种通用工具,可以评估短时噪音和平均时间极限。按类型划分噪音有助于指示其来源。三种常用噪音包括是暗噪音,轻噪音和成比例噪音。 “暗噪音”(即,在检测器被堵塞的情况下报告的混合比)包括检测器噪音,基本电子(Johnson)噪音以及其他多余的电子噪音。“轻噪音”(正常光照水平但吸收深度很小)包括所有暗噪音加激光噪音(1/f,即闪烁噪音和散射噪音),激光驱动电流噪音(产生幅度波动)和干涉条纹的变化。 “比例噪音”(吸收深度较大时看到的多余噪音)包括激光驱动电流噪音,压力和温度噪音以及峰值位置运动结合调谐率误差。频谱数组处理将频谱分解为许多部分,并显示出较多变量。通常应用于频谱数组的处理工具包括减去偏移量,平均值,拟合度,统计量度,变量[p],[q]或这两者的傅立叶变换,相关性,和主成分分析。尽管有很多处理的实例,但是很难提出一个通用的分析方法,帮助我们了解所看到的一切。即使我们“解剖”光谱并找到大的干涉条纹,这不一定意味着干涉条纹是多余噪音的来源,比如干涉条纹不动或它们的频率太高而无法影响拟合。为了确定,我们需要确定导致多余的噪音因素,该因素的短期波动应与混合比的波动匹配。我们通过一个噪音分析的例子说明了分析过程。结果表明,多余噪音是由两种波的混合,即光学干涉条纹和电子信号混合导致的,产生的低频成分,明显影响混合比的测定,而任一单一波则对结果几乎没有影响。结论 我们对当前Aerodyne Research,Inc.生产的微量气体激光测量仪器进行了综述。提供了一组气体,以及同位素比的测量结果。仪器在性能上的改进包括降低了电源和激光驱动噪音。另外,制造工序变得更加精简。目前吸收噪音在1s内达到?5×106。然而,为获得最佳性能,仍然需要对噪音做进一步的探索。本文中的实例显示,多余噪音是由两种波的混合,由光学干涉条纹和电子信号混合导致。仪器的相关优势1. 持续对仪器的改进及噪音的分析,测量痕量气体的精度更高,测量气体达到ppt级别,甚至在10Hz的频率仍然保持极高的精度;2. 一次同时测量多种气体,消除了多台仪器测量时气体产生的系统误差并大大提高效率;3. 仪器适用于多种环境,满足实验室测量,野外远程测量和移动测量需求。 欲了解该产品的更多特点,欢迎咨询联系澳作生态仪器有限公司
  • 应用案例 | 气体检测高精仪器用以农田环境气体排放监测
    项目内容:农田气体排放实验项目地点:宁波市鄞州区咸祥镇项目背景农业作为单一温室气体排放源,其排放的种类和量度对于全球气候变化的影响不容忽视。其中,氨和氧化亚氮作为农田排放的主要气体,它们对我国环境质量的影响深远。农业贡献了全球人为源氨排放的90%和氧化亚氮排放的60%。如果不合理控制氮肥的施用,将会加剧活性氮排放,引发诸多环境问题。如生物多样性丧失、富营养化和雾霾污染。因此,对农田气体排放进行实验研究,对于理解其排放机制、评估其环境影响以及制定相应的减排措施具有重要意义。为了更准确地进行测量,宁波海尔欣光电科技有限公司推出HT8700大气氨激光开路分析仪和HT8500大气氧化亚氮激光开路分析仪,为监测农田环境气体排放贡献力量。HT8700和HT8500的特点1.开放式光腔,超灵敏,响应快速① 中红外激光技术实现灵敏的大气氨本底浓度测量② 避免闭路仪器管道吸附问题造成的延迟,实现10Hz无损高频浓度输出③ 无需采样泵,无需采样管路及样品预处理,维护简单2.适应于各类现场部署的便携式设计① 强大的环境适应性和抗震性② 选用低热膨胀材料,减少结构形变和系统漂移③ 镜片加热设计,避免冷凝结露而导致信号丢失3.适合无电网区域和移动平台① 低功耗,能以太阳能电池板或蓄电池供电② 重量轻,便于在偏僻台站或小型车辆上部署和维护我们将对农田气体排放进行长期监测,收集大量数据,分析不同农田管理措施对气体排放的影响,助力我国实现碳中和目标,保护生态环境,促进可持续发展,为实现美丽中国和可持续发展目标奠定坚实基础。在科技创新的驱动下,我国环保事业将迈向新的高度。
  • 多组分检测:让煤气分析再简单一点
    煤的气化是我国煤化工工业的重要组成部分,特别是在石油资源日益紧张的条件下显得更加重要。煤气成分的检测分析是气化炉优化控制的前提,也是煤化工行业其他工序的重要参数。此外,高炉、转炉,焦炉以及玻璃,陶瓷等工业领域也经常需要进行煤气成分的检测。本文将详细介绍一种采用新型的电调制多组分红外气体分析方法,配合最新发展的MEMS 技术热导 TCD 气体传感器以及长寿命电化学 O2、H2S传感器开发的集成化多组分煤气分析仪Gasboard-3100的技术应用。希望对你从事煤气成分检测有所裨益。1红外线多组分气体分析上图为 ndir 红外气体分析原理图:以 CO2分析为例,红外光源发射出1-20um的红外光,通过一定长度的气室吸收后,经过一个4.26μm 波长的窄带滤光片后,由红外传感器监测透过4.26um 波长红外光的强度,以此表示 CO2气体的浓度,如果在探测器端放置一种具备四元的探测器,并配备四种不同波长的滤光片,如CO2、CO、CH4以及参考的滤光片,就可在一台仪器内完成对煤气成分中 CO2、CO、CH4的同时测量。煤气分析仪Gasboard-3100红外测量部分技术在一体化的四元探测器上安装有四个不同的滤光片(CO2、CO、CH4、参考),可实现对三种气体的同时测量(如下图)。 滤光片一体化四元红外探测器2MEMS 技术热导 tcd分析目前国内H2分析大都采用双铂丝热敏元件制成的热导元件,体积大精度低,传感器的死区(dead space)大。煤气分析仪Gasboard-3100采用了国际最新发展的基于MEMS技术的TCD气体传感器,只需要加上合适的电压就可以输出一个与浓度对应的毫伏级信号。3电化学氧气、硫化氢分析在煤气成分分析中,O2是一个安全参数,有些时候H2S 也是一个重要参数。煤气分析仪Gasboard-3100采用了一种长寿命(6年)的电化学 O2传感器和H2S 传感器,该传感器实际上是一种微型电流发生器,配合高精度的前置放大电路,直接输出与浓度对应的电压进入仪器测控系统。4多组分煤气分析仪特点煤气分析仪Gasboard-3100包括用于CO、CO2、CH4的 NDIR 红外气体探测器,测量 H2的TCD热到探测器,O2、H2S 探测器;ADUC842测控系统及软件; ICD、键盘、打印机、气泵、以及报警等外部装置。电调制红外光源传统的红外气体分析仪采用连续红外热辐射型光源,如镍锘丝、硅碳棒等红外加热元件,其发出红外光的波长在2~15μm之间,由于其热容量大,通常采用切光片对光源进行调制。因此需要一个同步电机带动切光片旋转,其缺点在于存在机械转动。抗振性差,攻耗大,不适合于便携设备。其次为保证调制的频率,还需要严格同步的电机以及驱动电路,使得系统复杂化,成本也大大增加。煤气分析仪Gasboard-3100采用了国际上最新研制的一种类金刚石镀膜红外光源。该光源采用导电不定型碳(CAC)多层镀膜技术,热容量很低,因此升降温速度很快,其调制频率最高可以达到200HZ,新型电调制光源的使用,使得红外气体分析技术在仪器体积、成本、性能等方面都有实质性的提高。气体干扰校正从原理上讲,CO,CO2,CH4之间由于采用了特征波长,彼此测量间没有相互干扰,但是由于受当前滤光片生产工艺的限制,滤光片具有一定的带宽,CO 与CO2,以及 CO2与参考通道之间具有一定的干扰,因此成分之间具有一定的干扰,如果不加以校准,测量的误差将达到10% 以上,很难达到工业应用的要求,如按照单一标准气体 CO2标定后,如果通入不含CO2的70%的 CO进入仪器,CO2读数将达到7%左右。为了消除红外分析气体之间的相互干扰,煤气分析仪Gasboard-3100设置了10点标定程序,采用计算机算法得到了气体干扰校正方法,通过该方法的使用,可使CO、CO2、CH4的精度达到2%以上。研究表明,采用以往单一组分红外气体分析仪组成的煤气分析系统,如果直接采用测量读数,将可能得到不准确的测量结果。同时,煤气成分中的CO、CH4、N2、O2对 H2的测量准确性影响不大,主要是CO2的影响。通过大量实践证明,CO2对H2的影响是线性的,每1%含量的CO2将降低 H2含量为0.08%, 如果没有 CO2数据的校准,当CO2含量达到40%,则H2的误差将超过3%。这也充分说明,要想得到准确的煤气成分分析结果,各组分必须同时测量。测量流量控制虽然红外以及电化学气体分析在一定程度上受测量流量影响较少,但是对于 TCD 热导H2分析来说,气体流量的稳定直接关系到 H2的测量精度。为了保证测量流量的稳定,煤气分析仪Gasboard-3100采用了微型的柱塞气泵,将测量气体压缩到0.2mPa, 通过气体稳压和稳流阀后进入气体分析仪,这样可以将整个气体的测量流量维持在1L/min。流量的稳定在一定程度上,也提高了红外以及电化学气体测量的精度和稳定性。通过以上技术的采用,多组分煤气分析仪可以实现以下组分和精度的测量(表1),并已经应用在包括高炉、转炉、煤气发生炉等工业现场,取得了良好的成绩。表1:多组分煤气分析仪技术参数结论(1)通过采用新型电调制红外光源,省却了以往红外气体分析仪器复杂和昂贵的电机调制系统,大大降低了系统成本和功耗。实现了CO、CO2、CH4的同时测量。(2)通过采用MEMS 技术的 TCD 热导,以及长寿命的 O2、H2S 电化学气体传感器与红外气体测量的组分,实现了煤气多组分的同时在线测量。(3)红外测量组分间由于受滤光片带宽的限制,存在一定的相互干扰,通过计算机校正算法可以将组分的测量精度提高到2%以上,这也说明,以往单一组分的红外气体分析仪直接用于煤气分析,很可能造成测量数据不准确。(4)TCD 热导 H2分析必须进行 CO2气体的校准,否则将可能造成超过3%的误差。因此如果仅仅采用单一H2分析仪而没有其他气体气体的校准,以往组合式的煤气成分监测系统很可能得不到准确的测量数据。
  • 英思科M40密闭空间四合一气体检测仪——现货促销
    英思科M40密闭空间四合一气体检测仪,大量现货供应。销售经理:闫海苹 联系电话: 15321363169 010-59483169现货M40-LEL多气体气体检测仪M40-四合一气体检测仪 美国英思科M40泵吸式四合一气体检测仪M40-LEL,O2气体检测器-M40-四合一气体检测器 英思科M40四合一泵吸式复合气体检测仪同时检测以下四种气体:可燃气体LEL、氧气O2、一氧化碳CO,硫化氢H2S。M40-LEL,O2气体检测器-M40-四合一气体检测器M40-LEL,O2气体检测器-M40-四合一气体检测器M40-LEL,O2气体检测器-M40-四合一气体检测器合气体检测仪经久耐用,其壳体抗冲击且抗电磁干扰,即使在恶劣的环境中也能保证良好的性能。可使用四个功能键进行简单、直观的操作,包括浏览数据、校零、标定等,其5秒关机延迟可防止错误关机。小巧和经济的价格更适合于个人保护使用。 英思科M40四合一泵吸式复合气体检测仪主要功能振动报警、可充电式锂离子电池、保留峰值读数,大液晶显示屏、长达50小时数据采集容量,可选配一体化SP40气泵,其远程采样可达15米。 M40-O2气体检测器 M40-O2气体检测仪密闭空间进入检测套件提供了所有必须的操作和维护,英思科M40四合一泵吸式复合气体检测仪仪器的部件,包括:M40检测仪、SP40采样泵、携带包、充电器、校正气体瓶、调节阀、过滤膜和采样管等。 M40-LEL,O2气体检测器-M40-四合一气体检测器 英思科M40四合一泵吸式复合气体检测英思科M40四合一泵吸式复合气体检测英思科M40四合一泵吸式复合气体检测英思科M40四合一泵吸式复合气体检测仪器管理台专门用于M40(及SP40)日常维护:包括自动充电、气体测试、校正、仪器检测等功能,并能自动打印检测数据M40-O2气体检测器 M40-O2气体检测仪.使电池操作、可携至任何场地。LEL, O2, H2S, CO 1-4 gases可任意选配且连续监测1-4种气体:可燃气体、O2、CO和H2S使用可充电锂离子电池持续运行18小时声、光及振动报警、保留峰值读数、大液晶显示屏保质期为一年可选配一体泵及数据采集功能M40-O2气体检测器 M40-O2气体检测仪销售经理:闫海苹 联系电话: 15321363169 010-59483169
  • 气体检测仪器仪表产业发展现状深度分析
    作为仪器仪表的一个重要分支,气体检测仪器仪表(也称“气体探测器”)应用领域广泛,覆盖了工业、农业、交通、科技、环保、国防、航天航空及日常生活等各方面。通常,工业过程气体监控分析仪器划归分析仪器领域,常见的气体检测仪器仪表通常小型化、便携或固定式、独立工作或联成网络,广泛适用于石油、化工、冶金、采矿、制药、半导体加工、喷涂包装等工业现场和家庭、商场、液化气站、煤气站、加油站等民用/商用需防火防爆、预防中毒、空气污染的场所,以及农业温室气体检测、沼气分析和沼气安全监控和环保应急事故、恐怖袭击、危险品储运等方面。  近年来,随着中国经济的高速发展,仪器仪表产业也得到了快速发展,自2004年产销首次突破千亿元大关,行业发展进入了快车道,2006年行业总产值突破两千亿元 2007年仪器仪表行业总产值达3078亿元,增长率高达28.5% 据仪器仪表行业协会统计,08年上半年仪器仪表行业总产值实现 1755.9亿元,同比增长23.8%,其中分析仪器、环境监测仪器仪表增长率高达32%。  科学技术的进步为气体检测仪器仪表行业的发展提供了条件,市场和政府政策的推动、人们安全意识的提高、相关法规法律的完善是气体检测行业发展的核心动力,这些推动使气体检测仪器仪表行业处于产业高速增长期。  从技术发展的角度看,根据使用传感器原理的不同,常见的气体检测仪器仪表各自有适用气体及应用领域,新技术新产品正在成为未来气体检测仪器仪表的主流。  未来一段时间,使用半导体和催化原理的气体检测仪器仪表依靠着价格优势仍会占据部分低端市场。电化学传感器及检测仪器,在精度要求高的低浓度毒性气体、有机蒸汽、酒精气体、氧气监测领域综合优势突出。红外气体传感器及仪器适用于监测各种易燃易爆、二氧化碳气体,具有精度高、选择性好、可靠性高、不中毒、不依赖于氧气、受环境干扰因素较小、寿命长等显著优点。这些优点将导致电化学、红外原理的气体检测仪器占领更广泛的行业高端市场,并在未来逐步成为市场主流。据不完全预测统计,未来几年国内每年各行业使用红外原理气体检测仪器仪表的需求量将达到170万台(套),市场容量约为68亿元 使用电化学原理的气体检测仪器仪表的需求量将达400万台(套),市场容量约为56亿元,前景广阔、增长迅速。  当前我国经济正处于高速增长期,国家对安全及环保的高度重视、相关政策和法规陆续出台,极大地刺激了气体仪器仪表行业市场容量的迅速扩大。  1)燃气行业  我国已建成了包括西气东输、陕京二线、忠武线、涩宁兰线以及冀宁联络线等在内的天然气输气干线。十一五期间,还要逐步完善全国油气管线网络,适时建设第二条西气东输管道及陆路进口油气管道。另外,中国还计划2010年使天然气在能源消费组合中的比重提高一倍,以减少对煤炭的依赖。据国家发改委公布的计划显示,2005年天然气在中国能源消费总量中所占比重为2.8%,2010年天然气在中国能源消费总量中所占比重应达到5.3%的目标水平。因此国家加大了对气田的开采和探寻力度,随之而来的是越来越多的国内气田投入生产。根据国家发改委网站公布的《能源发展“十一五”规划》,2010年天然气产量的目标将达920亿立方米,较07年产量增加逾50%。大量的天然气田开发和管道建设必将大大增加对天然气气体检测设备的需求,高性能的红外气体检测仪器仪表得到了难得的发展机遇。在气体的开采、处理、输送、使用环节,可燃气体检测仪器的需求将达到数十万台。  2)石油石化  从我国产业发展看,“十一五”期间,我国石油、化工业将遵照基地化、大型化、一体化的方向,优化发展基础化工原料,积极发展精细化工,淘汰高污染化工企业。据了解国家将在资源丰富和市场需求旺盛的地区建设若干个千万吨级炼油企业和百万吨级乙烯的炼化一体化基地,形成环渤海湾、环杭州湾、珠江三角洲等具有国际竞争力的炼化企业群。首批将建设四个国家级石油储备基地:宁波镇海、浙江舟山、山东青岛和辽宁大连 ,四个石油储备基地的总容量将达到1600万立方米。3年内,还将逐步形成20个左右的千万吨级原油加工基地。  在2008中国将会先期开始建设三大炼油工程,即:中国石油广西大炼油,总投资超百亿元,年加工原油1000万吨 中国石化青岛大炼油,总投资约125亿元,年炼油能力1000万吨 中国海油惠州大炼油 基建投资约人民币193亿元,年加工能力为1200万吨。国家还将采取园区化模式发展乙烯工业。近期即将上马七大乙烯工程, 2010年乙烯产能预计达到583万吨。这些近期开建或者规划的大型石油石化项目会大量使用相关的气体检测仪器仪表,尤其是高性能的、更具优势的红外光学类气体检测仪器。  国内石油石化产品需求保持稳步增长的同时,对石油石化产品的质量、品种等也将提出更多和更高的要求。组成原油的主要元素是碳、氢、硫、氮、氧,并且含硫、 氧、氮的化合物对石油产品有害, 在石油加工中需尽量除去。这就使生产加工过程中一氧化碳、二氧化硫、硫化氢等毒性气体和苯、醛、酮等有机蒸气大量产生,对生产安全、环境保护造成威胁。目前普遍采用气体检测分析的方法予以控制,在石油生产中对可燃气体的泄漏检测、对氢、氧等环境气体的监控也需要使用气体检测仪表。据估计平均每万吨成品油生产去需用气体检测仪器仪表约 40台(套),其中可燃气体20台(套),以目前成品油2.2亿吨的年产量计算,气体检测仪器仪表年需求量约在88万台(套)左右,其中可燃气体检测仪器约44万台(套)、毒性气体检测仪器约22万台(套)、其它有机蒸汽及气体分析设备等22万台(套)。而各类油气站,对可燃气体、一氧化碳、二氧化硫、硫化氢等毒性气体和苯、醛、酮等有机蒸气检测的气体检测器需求量也很大,主要用于安全防护,防止中毒与爆炸事故,平均每各油气站需用气体检测仪器仪表约 7.2台(套)。2007年国内加油站总数量已超过10万座,则此方面对可燃气体检测仪器仪表年需求量约在72万台(套)左右。综合以上数据按每套气体检测仪器仪表按2500元计算分析目前在整个石油石化行业气体检测仪器仪表的市场容量约为40亿左右。  3) 化工  随着石油资源的日益紧张,煤化工作为我国中长期能源发展战略的重点,必将在今后的长期发展中占据重要的地位。我国规划投资逾1万亿元大力发展煤化工产业,计划在全国打造七大煤化工产业区,分别是黄河中下游、蒙东、黑东、苏鲁豫皖、中原、云贵和新疆。与此同时化工企业向煤化工转型已成趋势,相继有双环科技、泸天化、云天化、柳化股份、湖北宜化纷纷涉足煤炭企业,向煤化工转移做准备。  在工业路线中无论是炼焦工业、煤气化-合成氨、煤基甲醇、煤制合成油、煤化工联产都对气体报警产品有广泛的需求,尤其是对二氧化硫、硫化氢、一氧化碳、氯气、氨气等气体传感器需求量非常大,初步计算,平均每万吨焦炭生产需用气体传感器约 22台(套),其中可燃气体10台(套)、毒性气体12台(套) 以目前焦炭2.6亿吨的年产量计算,需用可燃气体检测仪器26万台(套),毒性气体检测仪器超过31.2万台(套),合计年需求量约在57.2万台(套)左右,按每套气体检测仪器仪表2000元计算,目前在整个煤化工行业气体检测仪器仪表的市场容量将达11.44亿元。  精细化工、生物化工、专用化工、农用化工等大型化学制造工业园区对气体检测器也有广泛需求。在最新颁布的《危险化学品建设项目安全设施目录》明确规定须安装“压力、温度、液位、流量、组份等报警设施,可燃气体、有毒有害气体、氧气等检测和报警设施。 ”目前我国已在建的化工园区达60多家。依托长江水系的长江经济带和长江三角洲地区,形成了四川西部化工城、苏州工业园、上海化学工业区等化工园 依托珠江水系的珠江经济带和泛珠江三角洲地区,形成了茂名、惠州、珠海等化学工业园区。仅上述化学工业园区内,进驻的化工企业总计就超过7300家,生产领域覆盖了基础化学原料及合成材料、化学原料及化学制品制造、农药、专用化学品和橡胶制品等门类,对气体检测产品的需求是全方位的,几乎涵盖了所有气体种类,其中以有机蒸汽、可燃其它、含硫含氮毒气检测产品最多。随着国家安检总局对化工、危化品加工安全要求的不断严格,化工、危化品加工领域气体检测仪器仪表的用量也逐年增加,现在年市场容量约30万台(套),其中可燃气体约22.7万台(套),有机蒸汽和毒性气体约7.3万台(套)。按每套产品2000元计算将有6亿元以上的市场规模。  4)冶金行业  冶金行业对气体检测使用最多最广泛的主要集中在钢铁和铝生产方面。我国是全球第一大钢铁生产国。2006-2010年期间,我国钢铁产能将增长2.4亿吨,基本与“十五”期间增长的 2.6亿吨产能相当,企业产能规模增长迅速。2007年国内百万吨级产能规模的企业122家,千万吨级的企业有十三家,分别是鞍本集团、宝钢、新唐钢、武钢、马钢、沙钢、首钢、济钢、莱钢、华菱集团、包钢、太钢、安阳钢铁,其中鞍本集团产能2800万吨,宝钢集团达到2750万吨(不包括八一500万吨),新唐钢2600万吨,武钢1800万吨(不包括柳钢600万吨)。  按目前国内企业在建项目和兼并重组趋势,到2010 年,2000万吨以上规模企业将达到6家,其中鞍本集团和宝钢集团产能都将超过4000万吨,新唐钢集团规模将超过3000万吨,而首钢集团、山东钢铁集团、武钢集团规模也将在2500万吨以上。同时,未来还将有新的千万吨级企业出现。总之,2010年前我国钢铁工业仍处在规模扩张时期,而到2010年以后,我国钢铁工业发展方向将由数量级扩张向质量级提升方向发展。钢铁企业的快速发展和扩张,特别是新建钢铁生产项目对气体检测产品存在巨大的需求。  除了钢铁以外,铝业行业的不断发展导致相关企业对气体传感器的需求也不断增加。目前,我国已经形成了山东淄博、河南郑州、山西河津、河南中州、贵州贵阳、广西平果六大氧化铝基地,最近又批准了广西华银和晋北两个氧化铝基地,加上拟批准的两个氧化铝项目,全国最终将形成十大氧化铝基地。  在钢铁、炼铝行业广泛应用的是一氧化碳、二氧化硫、硫化氢、氮氧化物等气体传感器,主要是监测燃料燃烧状况,提高燃料利用率,节能降耗 监测废气状况,降低污染 同时也检测工业场所气体泄漏,保障生产安全、预防职业病。百万吨级产能规模的企业,平均每年需用气体检测仪器仪表约1100台(套),千万吨级钢铁企业年需求量约为4000台。 若以百万吨规模钢铁企业116家,千万吨级企业10家计算,冶金行业中仅钢铁企业毒性气体检测仪器年需求量就在16万台(套)以上。加上铝冶炼等冶金行业,由此推之,冶金行业年需求量应在26万台(套)以上。  综合以上数据按每套气体检测仪器仪表按2000元计算分析目前在整个冶金行业气体检测仪器仪表的市场容量约为5.2亿左右。  5)煤炭行业  支撑我国经济快速发展的能源产业重点之一的煤炭产业,对各种瓦斯传感器装备数量更为庞大。我国是世界最大煤矿安全仪器装备国,也是重要的煤矿安全仪器生产国之一。目前我国重点煤矿各种瓦斯传感器装备数量以百万计,但是安全问题仍然严峻,伤亡人数和财产损失空前巨大。因此国家对煤矿安全要求也愈加重视。根据国家发改委公布的《煤炭工业“十一五”发展规划》,2006年全国煤炭产量初步统计为23.25亿吨,其中国有重点煤矿11.25亿吨、地方国有煤矿 3.08亿吨、乡镇煤矿8.92亿吨。在煤矿行业中,年产百万吨的矿井的安全监控系统最少需要安装瓦斯传感器20个,且每年有30%的更换率。由此计算每年气体传感器的总需求量为116万个,有18亿元以上的市场规模。其中30%可能需要使用红外测量原理的气体检测设备,这不仅提高了煤矿瓦斯检测水平,而且对气体检测行业的升级也是一个极大的拉动。  6)环保保护  随着国家环保控制力度的不断加大,环保领域气体检测仪器仪表的用量也逐年增加,在锅炉烟气检测、大气质量检测等方面应用越来越多,环保领域气体传感器的用量逐年增加。环保领域主要使用的是毒性气体传感器,主要用于检测烟气、尾气、废气等环境污染气体。应用最多的是定电位电解式电化学气体传感器,对CO、H2S、 NH3、SO2、NOX、Cl2及其它化合物蒸气,如HCl、HCN等有毒气体的检测。其具体应用包括锅炉烟气检测、大气质量检测等方面应用,随着环境保护要求的提高,其需求量将迅速增加。在锅炉烟气检测方面,我国运行中的锅炉约有15000台,每台锅炉至少有两个烟道,烟气分析传感器至少需配备两台,仅此一项需求就在3万台以上。环境气体监测涉及的方面更为广泛,从环境大气监测到工业气体排放检查,都要使用气体传感器与分析检测仪器仪表。根据《环境空气质量检测规范》的规定,国家环境空气质量评价点的设置数量应按每25-30km2建成区面积设1个监测站,并且不少于8个点。由此计算环保检测领域每年的气体检测器需求大于10万台。年市场容量约10万台(套)。按每套产品5000元计算将有5亿元以上的市场规模。  7)航空航天、现代军事、防化反恐等需求量  我国航天事业发展迅猛,现代化强大海军的建设,潜艇与水面舰只,甚至航母都在发展计划之列 所有这些领域,都涉及串舱等密闭、半密闭空间毒性、爆炸性气体检测技术。国际局势的动荡,恐怖活动和生化战争时有可能发生,对于各种杀伤性毒气的监测在警用安全防护、防化反恐方面的需求也日益迫切。这些高精尖技术领域的气体传检测方面应用需要大量的气体检测仪器仪表,估计每年总需求量超过3万台(套),主要为毒性气体检测需求,会形成3亿元以上的市场规模。  8)室内空气质量控制  随着安全健康意识的增强,人们越来越迫切地对地下商城、地下车库、商务大厦、轨道交通等空间内的空气质量或中央空调自动换气进行控制。该领域主要是对二氧化碳气体浓度进行检测。由于二氧化碳气体化学性质极为稳定,一般的化学检测方法无法对它进行测量,但红外气体传感器却能很方便的对二氧化碳进行检测。  在农业大棚或孵化室中,动植物生长过程与二氧化碳气体浓度密切相关。二氧化碳气体浓度的多少直接影响着该农产品的产值,并且不同植物、动物生长过程中对二氧化碳浓度需求各不同,所以在种植、养殖过程中对二氧化碳定期的检测是必要的。该领域二氧化碳气体的检测,红外方法是最好的选择。  来自国家蔬菜工程技术研究中心的数据表明,我国设施园艺总面积已占世界的80%,其中设施蔬菜面积近3000万亩。大棚总数量近2000万个,其中我国大型连栋温室制造已形成产业,数量达150万个。大型连栋温室对气体检测的要求主要集中在检测二氧化碳气体。  据测算,上述领域先进的红外气体检测器需求量将达到30万台。按每台2000元计算可形成6亿元的产业规模。  9)其它用户需求  在制药、食品、农村沼气测量、市政管网、污水处理、城市管网、通讯电力、半导体制造等领域,气体检测仪器也有广泛的市场空间。  制冷、食品行业需要检测氨气的浓度,市政方面用于自来水处理和下水道污水处理的氯气、硫化氢气体需要检测,医疗卫生需要检测氧气。相关传感器的总计需求量每年约在10万台(套)以上。加上其它行业特殊气体检测(如半导体、电力等),综合来看,该领域毒性气体检测仪器仪表具有较大的市场规模。  地下城市管网是每个城市建设的重大项目之一,也是人们和谐生活的基础设施保障。在我国,地下管道、通讯电力管网常因沼气、燃气含量过高,引发爆炸事件,导致人员伤害、设施损毁。要实现安定和谐的城市生活,城市地下管网安全问题必须彻底解决。目前,我国只有少数城市由国外进口红外气体检测仪对城市地下管网进行检测。通常一个地级城市的市政管网(燃气、电信、电力)仅维护竖井会达到数百个,中心城市更是达到数千之多,均迫切需要成本适中、工作可靠的危险气体监测装置。可见地下水管道、市政管线维护领域是推广红外气体传感器的重要市场,前景广阔,可望达到数十万台套。  随着国家经济发展和能源短缺,迫使我国不得不从新能源和可再生能源上解决我国能源紧张的矛盾。2007年5月农业部颁布了《农业生物质能产业发展规划》,明确指出了沼气、生物液体燃料、秸秆能源是“十一五”期间的生物质能的重点发展对象。计划到2015年,农村户用沼气总数达到6000万户左右,年生产沼气233亿立方米左右,并逐步推进沼气产业化发展。到2015年,建成规模化养殖场、养殖小区沼气工程8000处,年产沼气6.7亿立方米。” 而在《全国农村沼气服务体系建设方案》中明确要求各级政府重点支持配备各种服务设备,包括沼气检测设备(甲烷检测仪)。按照“以项目村为依托建立乡村沼气服务网点,每个网点具备为 300-500个沼气农户服务的能力”的要求计算,2015年,农村6000万沼气用户需建成服务网点12-20万个,配用沼气检测仪器数量也达12万台以上,主要以红外气体检测仪器为主。  10)国家“十一五” 规划中还明确提出要振兴我国装备制造业,积极发展大型石油化工、煤化工设备、百万吨级大型乙烯、大型PTA装置  大力发展汽车、火车、船舶、飞机等运输设备和海洋石油工程装备、大型矿石和原油运输船、集装箱船、液化天然气船、高附加值船舶及配套设备。这些大型装备在制造和使用过程中大都需要对可能产生的易燃易爆、有毒有害气体进行监控检测。通常这些大型成套设备对红外气体检测仪器具有更迫切的需求,相关市场容量可达数万台套。  11)道路交通安全检测领域  来自公安部交管局的最新信息显示:截至2008年6月底,我国汽车保有量达6122万辆,且增速迅猛,给道路交通安全执法带来压力,导致道路交通事故发生率居高不下。在所有导致死亡的交通事故原因中,酒后驾驶排在超速行驶,不按规定让行和违法占道行驶之后居第四位,占事故发生总量的10%~15%。酒后交通事故导致的死亡人数平均每年以惊人的的速度上升。  判断一个人是否酒后驾驶,最简单可行的方法是现场检测驾驶人员的呼气中的酒精含量。该方法也是发达国家警察系统主要采用的检测方式。根据2008年12月20日,公安部发布了修订后的《道路交通安全违法行为处理程序规定》中明确提到,调整抽血检验程序,提高执法效率。规定对经呼吸测试达到或者超过醉酒临界值,当事人对测试结果有异议的才进行抽血检验,从而减少了执法环节,提高了执法效率,也为呼出气体酒精含量的检测有效性提供了法律依据。当前,采用电化学传感器的呼出气体酒精含量检测器是能够满足法规要求而又经济的唯一解决方案。  目前,全国各交警队正在普及推广呼出气体酒精含量检测器,使用量增长迅速。近5年来,机动车和驾驶员的数量每年分别以10%、15%以上的速度递增,交警的执法力度不断增加.2007年全国交警总人数在20万人以上,而相关报道表明,目前警用酒精检测仪装备配备率低于10%,国家计划在未来3年内在主要交警队普及呼出气体酒精含量检测器配备,以配备率达到60%计算,未来3年电化学呼出气体酒精含量检测器需求量也有 10万台以上。  12)民用燃气泄漏及一氧化碳检测  随着我国大气田的不断发现和西气东输工程的投入使用,燃气使用普及率大幅度提高。家庭燃气安全事故时有发生,燃气的安全使用却来越被重视,安装可燃气体报警器已成为多个城市的强制性要求。全国约9000万天然气及液化石油气用户,如果十分之一使用可燃气体报警器,总量即达900万台,按每台100元计算,则有9亿元的市场容量。  家庭、商业场所使用非电能烹饪、取暖,均可能不完全燃烧产生一氧化碳气体。一氧化碳是无色无味的气体,不易觉察,极易产生危险。全球范围历年因一氧化碳中毒事件造成大量人员伤亡。因此各国政府对民用一氧化碳检测极为重视。如:在2006年我国卫生部,中宣部、教育部、公安部、民政部、建设部、信息产业部、国家环境保护总局、中国气象局、国务院新闻办公室就联合制定了《非职业性一氧化碳中毒事件应急预案》 同年12月建设部联合十部委向各地下发了《关于加强非职业性一氧化碳中毒防范工作的通知》,要求,各地区、各有关部门要认真做好非职业性一氧化碳中毒防范工作。2007年教育部也根据自身教育系统内的特点下发了《教育部关于做好2007年秋冬季中小学幼儿园安全工作的预警通知》,要求有条件的学校要在学生宿舍安装一氧化碳报警装置。  另一个需要安装气体报警器的是使用燃气热水器特别是直排式燃气热水器的场所。由于燃气热水器使用不当或质量缺陷导致发生不完全燃烧,造成一氧化碳中毒现象时有发生。国家统计局中国行业企业信息发布中心发布的《2006年消费品市场重点调查报告》显示,仅2006年我国共生产燃气热水器即达到836.96万台。截止2006年底,我国颁发燃气热水器生产许可证企业153家,燃气热水器社会拥有量已在3,000万台以上,其中 50%以上是直排式。为了安全,国家技术监督局已发布强制性标准(GB6932-94),要求燃气热水器必须有防止不安全燃烧的保护装置,要求上述热水器 5年内安装完一氧化碳报警(控制)器,仅此每年就需要600万台。  从另一个角度看,我国家庭或公共场合使用燃气能源烹饪、取暖、洗浴非常普及并快速发展,全国超过13亿人口,按3亿个家庭计算,如果有百分之一的家庭使用也有300万的市场容量,加上公共场合的使用每年也有不小于350万的市场容量。  欧美等发达国家,由于冬季取暖大量使用壁挂炉,各国对一氧化碳检测也都极为重视。目前美国、英国和加拿大一些国家立法规定新建房屋和现有住宅必须安装一氧化碳报警器。目前,国外一氧化碳报警器已进入超市大量销售,年用量超百万台。  综合以上市场信息,可以预见,各种气体检测仪表伴随我国经济的快速发展也将迎来高速增长的时期。相对于近几年仪器仪表行业20%以上的市场增长速度。气体检测仪器仪表行业的速度更是达到惊人的30%。据测算,未来5年,上述领域对家庭商业应用的气体检测仪器需求量可达1000万台以上 工业可燃气体检测仪器的需求超过500万台,其中红外气体检测仪器的需求量将达到170万台(套)、市场容量约为68亿元 测量毒性气体的电化学仪器仪表需求量将达到 400万台(套)、市场容量约为56亿元,市场前景广阔,增长迅速。  广阔的市场需求极大的刺激了国内气体检测仪器仪表生产企业的创新和成长。国内民用气体检测器总产量从2000年的190万台增加到2008年310万台,工业用气体检测器总产量从2000年的17 万台增长至 2008年的96万台。据统计目前国内气体检测仪器仪表企业已有三百余家,其中年营业额超过2000万的气体检测仪器仪表企业不足二十家,相对实力较强的有河南汉威电子股份有限公司、济南长清计算机有限公司、北京科力恒有限公司、深圳特安电子有限公司、成都安可信电子有限公司等企业。  从以上数据看。国内气体检测仪表行业由于发展时间较短,民用、商用气体检测仪器技术门槛较低,法规要求不严,市场主要为国内企业占有,众多小规模企业瓜分了超过半数的市场份额。工业领域应用的气体检测仪器,高端市场主要为进口产品占据,大量低端市场份额由国内众多小规模企业占据。这些小企业通常自主创新能力较差,产品质量也不过硬,面临被规模较大企业洗牌的风险。  气体检测仪器仪表中,由于独立式气体检测仪器仪表的技术和资金门槛相对较低,生产此种气体检测仪器仪表的企业最多,很多企业只生产此类气体检测仪器仪表。目前该领域国内规模较大的厂家有河南汉威电子股份有限公司、深圳市豪恩实业有限公司等。河南汉威电子股份有限公司在技术和质量控制方面较为领先,外贸出口较多,特别是汉威电子在高端民用检测器市场具有相对优势,2008年国内市场占有率达到15%。  工业用气体检测仪器仪表由于技术和资金门槛较高,生产企业相对较少,一般实力和规模都相对较强。国内较为知名的企业是:河南汉威电子股份有限公司、北京科力恒有限公司、深圳特安电子有限公司、成都安可信电子有限公司、哈尔滨东方报警设备有限公司等几家公司。其中北京科力恒是一家美资公司,其在点型气体检测器方面技术领先,主要销往冶金领域。深圳特安电子有限公司公司较早从事气体检测行业,产品在业界具有较好的口碑,主要销售行业是石油、石化领域。河南汉威电子股份有限公司产品线完善、性价比高,销售领域涵盖石油、化工和冶金、采矿、燃气、交通安全等领域,在工业便携及其他检测器市场占有率分别约达到11%及9.8%。济南长清计算机有限公司在燃气领域具有较好的业绩。进口产品品牌众多,占据了大量高端市场,有着较高的市场占有率和良好的质量口碑,但普遍价格昂贵。  目前国内气体检测仪器仪表企业另一个突出的特点是产品线相对较短,应用领域有限,大多局限在工业安全、民用燃气安全领域,少数企业涉足环境保护、暖通空调、医疗和健康、农村能源沼气、温室暖房等某一领域,河南汉威依托自身的传感器技术、产业优势,在上述众多领域布局了系列产品,在道路交通安全用呼出气体酒精含量检测器、农村能源沼气领域,2008年产品市场占有率分别达到35%、55%。而暖通空调、医疗和健康、温室暖房领域的气体检测仪器几乎是进口产品一统天下。  气体检测仪器仪表行业的广阔前景、快速发展及较高利润水平,也吸引了相关工业仪器仪表巨头的高度关注。部分工业仪器仪表巨头迅速调整方向介入气体检测仪器仪表行业,市场竞争越来越激烈。可以预见国内一些小型的气体检测仪器仪表企业面临洗牌的危险,而规模相对较大的企业也需要加强研发和技术创新,扩大生产规模,提高市场占有率,并迅速建立核心气体传感器研发和生产能力,以便尽快做大作强,才有足够实力与跨国巨头竞争。  总之,作为朝阳行业的气体检测仪器仪表行业,具有广阔的市场潜力和发展空间,机遇和挑战并存,伴随我国经济的快速发展,也将迎来更大的繁荣。
  • 美国一仪器公司有毒气体检测仪亮相美剧
    凭借先进的技术和良好的品牌知名度,美国华瑞集团的产品ToxiRAE 3有毒气体检测仪精彩亮相美国福克斯电视台(Fox TV)的《别对我撒谎》(“Lie to me”)电视剧集。  《别对我撒谎》是美国的一部科学探案系列剧集,由蒂姆罗斯(Tim Roth)扮演剧中主人公卡尔莱特曼博士(Dr. Cal Lightman)。本剧的故事情节来源于行为学专家保罗.埃克曼博士(Dr. Paul Ekman)的真实研究。  今年年底前,观众可观看《别对我撒谎》全集。美国华瑞集团的产品已经多次出现在电视节目和电影中,包括哥伦比亚广播公司(CBS)著名电视系列剧《犯罪现场调查:迈阿密》 ("CSI: Miami")和好莱坞电影《极度恐慌》("Outbreak")。  美国华瑞集团生产的ToxiRAE 3有毒气体检测仪是一款功能全面的气体检测仪,体积小巧、性能可靠,具有突出的成本优势,可广泛应用于石油和天然气、制药、化工、钢铁等各种行业。  关于美国华瑞科学仪器公司  美国华瑞科学仪器公司(RAE Systems Inc.)位于美国加州“硅谷”中心,是美国华瑞集团的全球总部,是一家高科技、国际化上市公司。公司成立于1991年,是世界公认的光离子化(PID)技术领导者,以及气体检测产品、无线传感网络、放射性检测产品与呼吸防护产品制造商。经过二十年来的高效运作,美国华瑞集团不断发展壮大,已建立了全球性的研发中心、制造中心、销售服务网络和采购供应网络,并在欧洲、亚洲等地区拥有十余家全资或控股子公司。公司拥有国际领先的碘化铯(CsI)、碘化锂(LiI)、x、γ、中子射线检测技术,以及光离子化检测器、非色散红外检测器(NDIR)等多项国际和国内专利,并将其广泛应用于便携式、固定式气体检测仪、无线气体监测系统以及辐射检测仪中。
  • 气相色谱仪检测器的常见问题,有没有戳到你?
    在气相色谱分析中,待测组分经色谱柱分离后,通过检测器将各组分的浓度或质量转变成相应的电信号,经放大器放大后采集记录数据得到色谱图,然后根据色谱图中出峰时间、峰面积或峰高,对待测组分进行定性和定量分析。因此,检测器是检测样品中待测组分含量的部件,是气相色谱的重要组成部分。如何选择合适的检测器?气相色谱检测器是气相色谱分析法的重要部分,它所涉及的内容应包括两方面:一是检测器的正确选择和使用,二是其他有关条件的优化。一个好的气相色谱检测器,应该是这两方面均处于zui佳状态。①检测器的正确选择和使用建立气相色谱检测方法首先要针对不同样品和分析目的,正确选用不同的检测器,并使检测器的灵敏度、选择性、线性及线性范围和稳定性等性能得到充分的发挥,即处于zui佳状态。通常用单一检测器直接检测,必要时可衍生化后再检测,或用多检测器组合检测。检测器正确选用和性能达到zui佳,不仅得到的定性和定量信息准确、可靠,而且还可简化整个分析方法。反之,不仅得不到有关信息,浪费了时间和精力,而且可能损坏检测器。②其他条件的优化一个良好的检测方法除考虑检测器本身性能外,还应该检测到的色谱峰或信号不失真、不变形。因此,要求柱后至检测器峰不变宽、不吸附,以色谱峰宽度保持柱分离状态进入检测器为佳。还要求检测器产生的信号在放大或变换的过程中,或信号传输至记录器、数据处理系统过程中,或在数据处理过程中不失真。另外,为了充分发挥某些检测器的优异性能,还要求正确掌握某些化合物的衍生化方法等等。如何提高FID的灵敏度?因为FID硬件方面对灵敏度的影响,在色谱仪出厂时已经基本确定,对于操作者而言,已经不能改变。下面主要从操作方面介绍如何提高FID检测器的灵敏度。①氮气/氢气(N2/H2)流量比N2/H2流量比将明显影响灵敏度,各生产厂家的结构设计不同,N2/H2比zui佳值也不同,可用实验来确定,一般情况下,N2流量比H2流量大些,一般N2∶H2是1∶1.5或1∶1为宜。若喷嘴孔径为φ0.4mm的,载气流量可在20-30mL/min之间;若喷嘴孔径为φ0.6mm以上的,流量可在40-50 mL/min左右为佳。其中,毛细管色谱的尾吹气,除了减少组分的柱后扩散效应外,另一个主要作用是保证zui佳N2/H2比,用来保证zui佳灵敏度。②空气流量空气流量小于200mL/min时,流量大小对灵敏度有一定影响,一般大于250mL/min条件下,空气流量对检测器灵敏度太大的影响。③放大器输入电阻与输出电路衰减值放大器输入电阻与输出电路衰减示意图,见下图。放大器输入电阻的大小决定放大器的电流放大倍数,影响FID灵敏度,输入电阻大,灵敏度高,但噪音会增大,在调节放大器输入电阻大小时,要兼顾仪器的信噪比。放大器的输出电路衰减值,有1/10、1/25、1/50,各生产厂家不同,内衰减比例也不同,改变或调节内衰减,也可改变FID灵敏度。如瓦里安公司的FID检测器的灵敏度,可设定为9、10、11、12。数字愈大代表灵敏度愈佳,数值差1代表讯号以10倍增减。当然,前提是要保证放大器基线稳定。④进样口、色谱柱、气路和FID喷嘴的清洁度进样口、气路或FID喷嘴污染,都会导致FID检测器的灵敏度下降,因此在使用过程中需要保持进样口、色谱柱、FID 喷嘴和气路的清洁,定期更换进样垫,衬管和石英棉,同时对FID检测器进行清洗。当FID被污染了应如何清洗?下面提供四种清洗FID检测器的方法,但在清洗检测器前,需仔细阅读所用气相色谱对应的说明书,以确保不会造成检测器损坏:①当喷嘴只是轻微被污染时,可以略微加大载气流量,同时增大检测器的温度,点火后,走基线,此时不要进样。因为FID检测器所检测的对象,大多为有机化合物,喷嘴上的残留以有机物为主,有机物可以通过燃烧生成水(气态)和二氧化碳(气体)被赶走。② 若喷嘴污染较严重,但还未完全堵住时,可以用专用工具小心拆下,置于预先盛有乙醇或丙酮的玻璃烧杯中(溶剂需浸没喷嘴),于超声波中超声清洗。如果超声清洗后还不行,可以用通针小心插入喷嘴孔中,轻轻抽拉,再用洗耳球将乙醇或丙酮从喷嘴的底座挤进去,让溶剂从喷嘴喷出(这会形成一定的压力,可以将喷嘴孔壁的附着物清除)。然后,再次重复上述超声波清洗操作,用超声波清洗。③当喷嘴表面积碳(一层黑色物质),这也会影响灵敏度。可用细砂纸轻轻打磨表面除去。然后按照上述②的方法将喷嘴进行清洗。④如果检测器是因为积水造成的污染,先升高检测器的温度,运行一段时间,看能否恢复正常;如果积水过多,则需要将检测器拆下,先用脱脂棉擦干,然后按照上述②的方法将检测器处理一边即可恢复使用。⑤清洗后的各部件,要用镊子取,勿用手摸。烘干后装配时也要小心,否则会再度沾污。装入仪器后,先通载气半小时,再点火升高检测室温度,zui好先在120℃保持几小时之后,再升至工作温度。TCD,如何确定物质相对校正因子?采用TCD作为检测器时,确定物质相对校正因子通常有下面几种方式:①从文献上查找相对校正因子对于常规组分,通常可以在色谱相关书籍或文献上查到,如李浩春编写的《分析化学手册(第5分册)气相色谱分析》。对热导检测器(TCD)而言,常用的标准物为苯,所用载气为氦气。②实验测定相对校正因子对于某些比较特殊,在文献上查不到相对校正因子的物质或者为了更准确的测定某一物质的校正因子,通常采用实验测定的方法获得。但在用实验法测定物质的相对校正因子时,要注意配置标样的准确性,否则会出现试验测得校正因子与文献值相差甚大的情况。一些分析者测得的相对校正因子之所以与文献值不符, 并非操作参数的变动引起,而是由于测量误差造成,如标准物纯度不够、制样方法不当、室温下组分挥发、峰面积测量不准、得到的峰很不对称或分离不完全等。对于易挥发组分的分析, 制样的影响尤为显著。③利用规律对校正因子进行估算目前能对校正因子进行估算的,只有气相色谱用的热导检测器和氢火焰离子化检测器。当从文献中查不到适当数据,又没有已知准确含量的样品进行测定时,可按相关参考书上介绍的方法进行估算,如同系物在热导检测器上的相对摩尔响应值(RMR)与其分子中的碳数或摩尔质量呈线性关系。但该方法在实际操作中应用不多。采用TCD,产生负峰的原因有哪些?采用TCD检测器进行样品分析时,如果色谱峰出现负峰,先查阅一下色谱载气与所测气体的的导热系数,如果样品导热系数大于载气导热系数,色谱峰就会呈现为负峰。这时需要做的是按照色谱说明书上的说明将TCD检测器的极性更换一下即可。如果所测多组分样品时色谱峰有正峰也有负峰,这是因为所测多组分中,部分物质的导热系数大于色谱载气的导热系数,部分组分的导热系数小于色谱载气的导热系数,这时如果更换TCD检测器的极性的话,原来的负峰变为正峰,原来的正峰变为了负峰,还是不能彻底解决问题。如果出现这种情况,并且确实需要对样品的全组分进行定量分析的话,就选择色谱工作站上数据处理中的“负峰处理”即可。FPD运行中出现熄火?信号异常?当出现FPD检测器在运行过程中出现火焰熄灭、信号过高或过低等异常现象时,应以检测样品、气路系统、检测器温度控制系统、仪器设置、FPD检测器为主要检查对象,逐步排查可能存在的问题24小时客服如果您对以上色谱分析仪器感兴趣或有疑问,请点击联系网页右侧的在线客服,瑞利祥合——您全程贴心的分析仪器采购顾问.------责任编辑:瑞利祥合--分析仪器采购顾问版权所有(瑞利祥合)转载请注明出处
  • 2010年下半年上市仪器新产品:气体检测类
    气体检测仪是最常用的环境监测仪器之一,这类仪器主要是利用气体传感器来检测环境中存在气体的种类与含量,包括尾气检测仪、烟气分析仪、在线自动气体监测系统等仪器。本文对2010年下半年发布的气体检测类仪器新品进行盘点,以飨读者。  2010年下半年,德图仪器推出了testo 340四组分烟气分析仪与湿法脱硫出口SO2采样探针,美国VIG公司发布了10型在线总碳氢分析仪、在线总碳氢/甲烷/非甲烷分析仪与在线双通道总碳氢化合物分析仪,青岛高科技工业园雷博电子仪器厂推出了3040烟气综合测量系统。  testo 340四组分烟气分析仪 (新闻发布时间:2010年7月)  德图仪器国际贸易(上海)有限公司  该仪器具备以下特点:  (1)testo 340标配O2传感器,可任意选择3个有毒气体的传感器,如CO,COlow,NO,NOlow,NO2或SO2   (2)testo 340设计空间更加紧凑,相对于市面上其他4组分的烟气分析仪而言更小巧轻盈,手持十分方便   (3)独一无二的量程扩展功能使测量变得更轻松,遇到高浓度的烟气测量也能应对,尤其适用于各种工业烟气分析应用。  10型在线总碳氢分析仪(新闻发布时间:2010年7月)  美国VIG公司(北京兴东达泰科技有限公司代理)  该仪器具备以下特点:  (1)是基于微机设计来作为高精度、高灵敏度以及高稳定性的点加热总碳氢化合物气体分析仪   (2)使用1个FID检测器来连续测量在环境温度中的干燥气体   (3)在气态混合物里或者在周围环境中更广范围内的碳氢化合物的分析,FID通过现场加热来防止冷凝,并且提供可重复性,可信赖的性能。  除该仪器外,美国VIG公司还推出了另2款新品,分别为在线总碳氢/甲烷/非甲烷分析仪与在线双通道总碳氢化合物分析仪。  湿法脱硫出口SO2采样探针 (产品上市时间:2010年8月)  德图仪器国际贸易(上海)有限公司  该仪器具备以下特点:  (1)采用德图专利技术,可随时随地对高湿低硫环境下的SO2进行快速、便捷而精准的测量   (2)该探针长700mm,其标准探针长度及重量与普通探针基本一致,配备标准2.2m耐硫采样管,最高耐温+200℃   (3)整个测量系统无需使用交流电供电,测量便捷,响应快,并且能够保证测量精度。  3040烟气综合测量系统 (产品上市时间:2010年9月)  青岛高科技工业园雷博电子仪器厂  该仪器具备以下特点:  (1)采用国际先进的紫外差分吸收光谱法来测量固定污染源废气中的SO2、NO、NO2、NH3,有效的避免了各种气体之间的交叉干扰   (2)采用全程伴热技术,减少了气体污染物因水份吸收带来的损失   (3)不再衍用电化学传感器,无使用寿命限制   (4)是新一代烟气分析仪,尤其适用于烟气排放检测和燃烧器节能控制,在发电厂、炼油厂、燃烧器、冶金热处理、实验室等领域具有广泛的应用,同时适合在线检测仪器的比对验收。  其他新品相关报道:  安捷伦公司推出温室气体检测分析仪  关注环保——博纯推出脱硝后烟气气体分析应用中专利除氨器  亿通电子新推出GXH-3011一氧化碳检测仪  备注:以上新品均来自仪器信息网新品栏目以及资讯频道。 了解更多气体检测产品请访问仪器信息网尾气检测、烟气分析仪等仪器专场。
  • 密闭空间气体检测仪——现货供应
    联系电话: 15321363169 010-59483169现货M40-LEL多气体气体检测仪&mdash &mdash 本公司销售维修为一体,欢迎致电洽谈M40-四合一气体检测仪 美国英思科M40泵吸式四合一气体检测仪M40-LEL,O2气体检测器-M40-四合一气体检测器 英思科M40四合一泵吸式复合气体检测仪同时检测以下四种气体:可燃气体LEL、氧气O2、一氧化碳CO,硫化氢H2S。M40-LEL,O2气体检测器-M40-四合一气体检测器M40-LEL,O2气体检测器-M40-四合一气体检测器M40-LEL,O2气体检测器-M40-四合一气体检测器合气体检测仪经久耐用,其壳体抗冲击且抗电磁干扰,即使在恶劣的环境中也能保证良好的性能。可使用四个功能键进行简单、直观的操作,包括浏览数据、校零、标定等,其5秒关机延迟可防止错误关机。小巧和经济的价格更适合于个人保护使用。 英思科M40四合一泵吸式复合气体检测仪主要功能振动报警、可充电式锂离子电池、保留峰值读数,大液晶显示屏、长达50小时数据采集容量,可选配一体化SP40气泵,其远程采样可达15米。 M40-O2气体检测器 M40-O2气体检测仪密闭空间进入检测套件提供了所有必须的操作和维护,英思科M40四合一泵吸式复合气体检测仪仪器的部件,包括:M40检测仪、SP40采样泵、携带包、充电器、校正气体瓶、调节阀、过滤膜和采样管等。 M40-LEL,O2气体检测器-M40-四合一气体检测器 英思科M40四合一泵吸式复合气体检测英思科M40四合一泵吸式复合气体检测英思科M40四合一泵吸式复合气体检测英思科M40四合一泵吸式复合气体检测仪器管理台专门用于M40(及SP40)日常维护:包括自动充电、气体测试、校正、仪器检测等功能,并能自动打印检测数据M40-O2气体检测器 M40-O2气体检测仪.使电池操作、可携至任何场地。LEL, O2, H2S, CO 1-4 gases可任意选配且连续监测1-4种气体:可燃气体、O2、CO和H2S使用可充电锂离子电池持续运行18小时声、光及振动报警、保留峰值读数、大液晶显示屏保质期为一年可选配一体泵及数据采集功能M40-O2气体检测器 M40-O2气体检测仪 联系电话: 15321363169 010-59483169
  • 德州仪器推出新的电芯监测器和电池包监测器
    近日,德州仪器推出全新的汽车电芯监测器和电池包监测器。这些监测器提供更高精度的测量功能,可更大程度地增加电动汽车 (EV) 行驶时间并实现更安全的运行。   随着电动汽车越来越受到欢迎,先进的电池管理系统 (BMS) 有助于克服阻止电动汽车广泛普及的关键障碍。TI 重点关注克服复杂的系统设计挑战,并为此提供了品类丰富且先进的 BMS器件系列,助力汽车制造商打造更安全、更可靠的驾驶体验并提高电动汽车普及率。   BQ79718-Q1 电芯监测器和 BQ79731-Q1电池包监测器是 TI 丰富的BMS系列中的全新产品。BQ79731-Q1和BQ79718-Q1在测量电池电压、电流和温度方面提供了出色的准确度和精度,可有效确定车辆的真实续航里程、延长电池包的整体寿命并提高其安全性。   "汽车制造商的目标是尽可能延长电动汽车的续航里程,而准确的荷电状态估算对于实现这一目标至关重要。"TI BMS 总经理 Sam Wong 表示:"我们的全新器件大幅提升了电压和电流的测量精度,可让汽车制造商对准确预估电动汽车的真实续航里程充满信心。"   TI 将在 CES 2023 展示其 BMS 技术,包括全新的 BQ79718-Q1 电芯监测器和 BQ79731-Q1电池包监测器。   凭借出色的测量精度,有效延长续航里程   随着消费者们转向购买电动汽车,电池电压的测量准确度和精度对消费者的驾驶体验至关重要。即使细微的温度变化也能对电动汽车的续航里程产生重大影响;特别是寒冷的天气,对电池电压范围影响的幅度可高达 40%。这些变化会为电池电压和预期的电动汽车续航里程造成相当大的不确定性。   借助 BQ79718-Q1电芯监测器,汽车制造商可以进行高性能的电池电压测量(精度可达 1mV),从而更大限度地延长电动汽车的真实续航里程;借助 BQ79731-Q1电池包监测器,电池包电流测量的精度可达 0.05%。这些创新可在单节电池和电池包中准确测量电池荷电状态和运行状况,有效地反映真实的剩余里程并提升对电动汽车电池寿命的信心。   通过电池包电压和电流同步,提升对荷电状态的估算   此外,出色的电压和电流同步功能 (64µs) 可提供电池运行状况的实时快照,实现对电池包电源的瞬时监测。这一级别的同步可支持电化学阻抗跟踪分析,让您深入了解电池内核温度、电池老化和电池荷电状态。阅读技术文章"如何为高级 EV 电池管理系统设计智能电池接线盒"了解更多。   借助丰富的BMS系列产品,实现更高的安全性和性能   BQ79718-Q1 电芯监测器与之前市面上的任何电芯监测器相比,可提供符合汽车安全完整性等级 (ASIL) 要求的更出色的测量精度(主要路径、冗余路径和残余误差查找),方便汽车制造商对车辆电池包进行充电和放电。   BQ79718-Q1 电芯监测器和 BQ79731-Q1 电池包监测器均属于 TI 的高精度电池监控器和均衡器产品系列。此外,该系列还包括 BQ79600-Q1 SPI/UART 通信桥接器件,可使用单独的通信协议实现快速稳定的菊花链通信。   新品进一步丰富了TI 的BMS 系列产品。TI 的BMS 系列产品还包括用于无线 BMS 的 CC2662R-Q1 无线微控制器 (MCU)、TPSI3050-Q1 隔离式开关驱动器和 TPSI2140-Q1 隔离式开关器件。TI 还提供 BMS 设计套件,其中包括参考板、仿真器和汽车开放系统架构复杂器件驱动器。   TI 始终致力于推动汽车电气化发展,帮助汽车制造商优化车辆性能、加快开发速度,并创建更安全、更可靠且性价比更高的电动汽车。
  • 赛默飞世尔科技Odalog气体监测仪器招募业务合作伙伴
    中国上海,2013年10月19日 &mdash &mdash 近日,科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)宣布为其Odalog气体监测产品寻找在教育科研、环保、污水处理、水质分析、市政工程、石化工厂、地下采矿等领域的合作伙伴,共同推进2013年业务发展和长远合作计划。多年来,Odalog气体监测产品已凭借杰出的仪器性能深得世界范围内用户的信赖。赛默飞希望借此机会进一步扩大其市场影响力和品牌信赖度,使更多用户感受到赛默飞的先进技术和优质服务。 Odalog气体监测仪是一种专为废水/水处理/环保/化工行业设计的气体监测仪器,被行业内誉为恶劣环境下的气体监测专家。Odalog气体监测仪不但可用于手持式气体检测,而且其用于定点长期气体监测。测试的数据可直接显示屏读取,也可记录并存储在仪器内,记录时间间隔可以设置从1秒到1小时。存储的数据可以通过OdaLog标准的红外接口和相应的通信软件下载到计算机,以便日后分析时查看数据。可检测气体包括:H2S、O2、CO、CO2、NO、NO2、SO2、CL2、CH4、NH3、HCN、LEL。 OdaLog 7000 Mkll可根据组合需要监测单一气体或多气体,最多可监测6种气体。OdaLog Low Range监测仪是一款高灵敏度、低浓度,使用简单的手持H2S监测仪,其测量范围可以做到0.02-2.00ppm。OdaLogRTx是专门为废水环境而设计的硫化氢(H2S)气体探测器。其内建GSM数据机,除直读式硫化氢浓度监测外,也是市面上唯一可以进行远距离硫化氢监控的直读式记录器,可将监测结果无线传输至专用的网络伺服器,因此使用者无须亲至现场便可由远端以个人电脑进行数据分析管理。目前,该仪器已在教育科研、污水处理、管道或隧道气味监测、污水泵站、石化工厂、地下采矿、食品加工厂等各个领域得到广泛应用,获得众多世界知名研究机构、高标准的重点实验室、高等院校、知名企业客户的认可。 赛默飞希望与资质完善、诚实守信、遵守业务合作规则的企业强强联手,达成合作伙伴关系;并为其提供最佳的产品培训、应用支持和技术服务,共同完成&ldquo 使世界更健康、更清洁、更安全&rdquo 的使命。 如需了解更多有关赛默飞Odalog产品信息,请浏览:http://www.odalog.com。赛默飞Odalog产品联系人:彭先生 13816907295E-mail: kevin.peng@thermofisher.comTel:021-68654588-2295关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额130亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com 关于赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30多年,在中国的总部设于上海,并在北京、广州、香港、台湾、成都、沈阳、西安、南京、武汉等地设立了分公司,员工人数超过2400名。我们的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,现有5家工厂分别在上海、北京和苏州运营。我们在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国创新中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过400 名经过培训认证的、具有专业资格的工程师提供售后服务。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录网站:www.thermofisher.cn
  • 特价优惠——美国RAE,美国英思科;气体检测仪
    美国华瑞气体检测仪北京宏昌信科技有限公司 欢迎致电咨询:010-52745610 联系人:张经理www.hcxin.net促销产品:Pgm7340/pgm-7340PPB 泵吸式VOC检测仪Pgm7240/pgm-7240 PPB 泵吸式VOC检测仪Pgm7320/pgm-7320挥发性有机气体VOC检测仪Pgm7600/pgm-7600挥发性有机气体VOC检测仪Pgm7300/pgm-7300泵吸式VOC检测仪Pgm7200/pgm-7200泵吸式苯蒸汽检测仪Pgm3000/pgm-3000密闭空间复合气体检测仪pgm7800/pgm-7800密闭空间复合气体检测仪pgm7840/pgm-7840五合一气体检测仪pgm50q/pgm-50q四合一密闭空建、pgm50/pgm-50复合气体检测仪pgm54/pgm-54五合一气体检测仪/二氧化碳检测仪pgm2400/pgm-2400四合一气体检测仪pgm2000/pgm-2000四合一密闭空间检测仪pgm1600/pgm-1600可燃气体检测仪pgm1700/pgm-1700氧气/一氧化碳/硫化氢检测仪pgm1100/pgm-1100氧气检测仪(O2)pgm1110/pgm-1110一氧化碳检测仪(CO)pgm1120/8pgm-1120硫化氢检测仪(H2S)pgm1190/pgm-1190氯气检测仪(CL2)pgm1130/pgm-1130二氧化硫检测仪(SO2)pgm1140/pgm-1140一氧化氮检测仪(NO)pgm1150/pgm-1150二氧化氮检测仪(NO2)pgm1170/pgm-1170氰化氢检测仪(HCN)pgm1187/pgm-1187二氧化氯检测仪(CLO2)pgm1189/pgm-1189氯气检测仪(CL2)pgm1191/pgm-1191氨气检测仪(NH3)pgm1192/pgm-1192磷化氢检测仪(PH3)sp1102/sp-1102可燃气体检测器sp1104/sp-1104有毒气体检测器sp2102/sp-2102可燃气体检测仪sp2104/sp-2104有毒气体检测仪sp3104/sp-3104有毒气体检测仪sp3101/sp-3101氧气检测仪sp4101/sp-4101氧气检测器sp4102/sp-4102可燃气体检测器sp4104/sp-4104有毒气检测器sp1003/sp-1003控制器T40-CO气体检测器T40-H2S气体检测器T82单气体报警器GasBadge Pro气体检测仪M40-LEL气体检测器M40-O2气体检测器M40-LEL,H2S气体检测器M40-LEL,O2气体检测器M40-LEL,O2,CO气体检测器M40-LEL,O2,H2S气体检测器M40-LEL,O2,CO,H2S气体检测器LTX312-LEL,O2,CO气体检测仪MDU420-甲烷气体检测仪CDU440-CO2 气体检测仪iTRANS? -可燃气体(在线)iTRANS? -可燃气体(远程)iTRANS-可燃气体(双传感器)TLV FALCON有机气体TVOC检测仪TLV PANTHER气体检测仪GasBadge Pro二氧化硫(SO2)气体检测仪GasBadge Pro一氧化碳(CO)气体检测仪ITX 可燃气和甲醇二合一气体检测仪iTX多气体检测仪
  • 科技部国际司有害气体监测等国际项目寻合作
    仪器信息网讯 仪器信息网摘取了近日由科学技术部国际合作司发布的部分与科学仪器相关的合作请求信息,供业内企业参考。  项目一:高灵敏度稀土元素检测器(项目档案编号:2013-281-英国-155  项目描述:东京大学副教授Susumu Imashuku开发了一种检测和分析稀土元素的新颖的、高灵敏度检测器。该检测器采用了电晶体和低真空条件下的电池,在通过阴极射线发光的同时生成X光线,能检测传统X光所不能检测的多个稀土元素。  该检测器使用简捷,其高灵敏性弥补了传统便携检测器所不能检测的元素,在对稀土进行破碎后即可使用。  该装置原型已经产出,其基本分析性能也获确认。东京大学寻求商业合作伙伴(许可)。  仪器信息网提醒:虽然透露的信息不多,但基本可判断其原理为XRF,目前钢研纳克已拥有成型产品。  项目二:低浓度有害气体监测项目(项目档案编号:2013-272-英国-146)  牛津大学材料系的研究人员正在开发一种对低浓度有害气体进行超敏感监测的新方法。通过在一层绝缘衬底上生成金属纳米粒子二维数组,该方法在监测过程中会达到一个被称之为渗透阈值的关键点,从而大大提高了监测的灵敏性。  该方法可直接应用于对环境领域中的有害气体监测,研究小组已展示了其对湿度和乙醇的概念验证效果。另两个潜在应用领域目前正在研究之中 &mdash &mdash 地雷的爆炸监测和低浓度生物标志物的人类呼吸监测。  该技术是专利申请对象,牛津大学寻求商业合作伙伴(许可)。  仪器信息网提醒:有害气体监测是当前国内的大热门。作为市场前瞻人士,我们不能只被PM2.5监测吸引眼球,事实上,室外、室内的空气监测同样重要,而该项目中,&ldquo 人类呼吸监测&rdquo 的描述,给了我们很多关于诊断的想象空间。  有兴趣的合作者可电话:010-68515508 传真:010-68515808 68527069  E-mail:irs@cstec.org.cn wanglei@cstec.org.cn yanxh@cstec.org.cn  地址:北京市西城区三里河路54号中国科学技术交流中心303 邮编:100045
  • 四合一气体检测仪:多气体同步监测,安全尽在掌握
    在我们生活和工作的众多场景中,气体安全至关重要。无论是在充满复杂气体环境的工业车间,深邃的矿井巷道,还是可能存在燃气泄漏隐患的家庭厨房,都离不开一个可靠的守护者——四合一气体检测仪。  四合一气体检测仪是一种高效、便捷的安全监测设备,能够同时检测并显示四种不同的有害气体浓度,通常包括可燃气体(如甲烷、丙烷等)、有毒气体(如一氧化碳、硫化氢等)、氧气浓度以及可能存在的其他特定有毒气体(如二氧化氮、氯气等),具体检测气体种类会根据不同型号和应用场景有所差异。这种设备在化工、石油、天然气、冶金、消防、环保、地下管道维护等多个领域具有广泛的应用,是保障人员安全、预防事故发生的重要工具。  这款检测仪凭借其先进的传感器技术和精准的数据分析系统,能够迅速而准确地检测出常见的四种气体,包括可燃气体、一氧化碳、硫化氢和氧气。对于可燃气体,它能在第一时间感知到浓度的细微变化,哪怕是极其微量的泄漏也逃不过它的“法眼”。当一氧化碳这种无色无味却极具危险性的气体出现时,四合一气体检测仪会立即发出警报,为人们争取到宝贵的应对时间。硫化氢作为一种具有强烈刺激性气味的有毒气体,它也能精确地进行监测和预警。而氧气浓度的监测更是关键,无论是在高海拔地区还是封闭空间内,氧气含量的变化都可能对人体健康造成重大影响,四合一气体检测仪能够确保我们始终处于合适的氧气环境中。  在实际应用中,它的便捷性和高效性也令人称赞。其操作简单易懂,无论是专业的技术人员还是普通的工作人员都能轻松上手。它具有清晰直观的显示屏,能够实时显示各种气体的浓度数值,让使用者一目了然。同时,它还具备声光报警功能,一旦检测到气体浓度超出安全范围,就会立即发出强烈的声光信号,及时提醒周围的人员采取相应的安全措施。  在矿井作业中,四合一气体检测仪为矿工们的生命安全提供了坚实的保障。矿井下的气体环境复杂多变,稍有不慎就可能引发重大安全事故。有了它,矿工们可以随时了解周围气体环境的状况,安心工作。在工业生产线上,它能有效预防因气体泄漏导致的火灾、爆炸等事故,降低企业的安全风险和经济损失。  总体而言,四合一气体检测仪以其卓越的多气体同步监测功能,为我们的生产和生活带来了可靠的安全保障。让我们在面对各种复杂的气体环境时,都能做到心中有数,安全尽在掌握,它无疑是我们在气体安全领域不可或缺的得力助手。随着科技的进步和需求的不断增长,未来气体检测仪将更加智能化、网络化,为各行各业的安全生产提供更加全面、高效的解决方案。
  • 盘点那些年我们用过的检测器(二) ——细说示差检测器
    液相色谱检测器种类较多,如何选择合适的检测器?以及为什么这样选择?之前的推文中我们陆续盘点了UV、DAD、ELSD等检测器,今天再跟大家聊一聊示差检测器。盘点那些年我们用过的液相检测器(一)一、RI 示差折光检测器原理简介关注我们RID是一种偏转式或者斯涅尔式折射率检测器。斯涅尔定律指出,平行光束沿着一个大于零的入射角通过一个将两种具有不同折射率的介质分开的电介质界面时,其折射率将与两种介质的折射率差幅成函数关系。二、示差检测器结构关注我们示差折光检测器结构示意图1、钨灯 2、聚光透镜 3、狭缝 4、准直镜 5、狭缝 6、检测池 7、反光镜 8、零位玻璃 9、光敏接收元件低功率、长寿命的钨灯发射出的光线经过准直透镜和狭缝后,通过参比池(参照池)和样品池(样本池),经平面镜反射回来后,再次通过光学单元,最后通过透镜聚焦到一对光传感二极管上(光传感器)。在测试期间,参比池和样品池中充满流动相。参比池随后与流路隔开,流动相仅流过样品池。如果两个池中介质的折射率没有差异,光线在通过它们时将不会发生折射。1 光束2 样本池3 参照池4 光轴(NsNr)5 光轴(Ns=Nr)6(4)和(5)在光传感器处的间距7 光传感器Ns:样本池中流动相的折射率Nr:参照池中流动相的折射率光线照射到一对光电二极管上,其中每个光电二极管都将给出一个电信号。随后这些信号会被放大,从而测得两个信号之间的差异。如果是零折射,这些信号之间的差异应该为零伏。借助一个电控机械联动装置,用户可以通过光路中的折射透镜来优化光电二极管的零偏转输出。还可以通过额外电路轻松地将信号输出校正为电子零点。1 光传感器A2 光传感器B3 光束当流动相的折射率发生变化时,通过样品池和参比池之间界面的光将被折射,从而使一个光电二极管上的光强增大,另一个电二极管上的光强减小。这种差异产生具有振幅和极性的信号,此信号被放大后,可以驱动图表记录仪。三、应用举例关注我们示差折光检测器是一种通用型检测器,只要被测组分与洗脱液的折光指数有差别就可使用。生命科学中常遇到各类糖类化合物,没有紫外吸收,一般常用示差折光检测器,她的通用性比UVD广,但灵敏度要低,对温度变化敏感,并与梯度洗脱不相容,因而限制了它的使用。应用一:麦芽糖、果糖、葡萄糖、异麦芽糖、麦芽三糖色谱条件色谱柱:月旭Xtimate NH2(4.6×300,5μm)。流动相:乙腈:水=75:25;检测器:RID;柱温:30℃;流速:1.0mL/min;进样量:50μL。色谱图应用二:磷酸果糖二钠、蔗糖、葡萄糖、果糖色谱条件色谱柱:月旭Xtimate sugar-Ca(7.8×300mm,8μm)。流动相:纯水;检测器:RID;温度:柱温75℃,检测器40℃;流速:0.2mL/min;进样量:10μL。色谱图四、示差检测器维护关注我们要想获得良好的实验结果,使用RID的三大法宝:第一、脱气;第二、平衡好流动相;第三、保持恒温恒压。在实际工作中我们会遇到很多典型的问题,接下来我们一起来分析一下这些问题如何破。五、使用注意事项关注我们1、正确放置溶剂瓶和废液瓶。要把溶剂瓶放在比示差监测器和溶剂泵还要高的位置,检测器出口留足够长的废液管通到下方的废液瓶,这样可以使样品池有一定背压,有利于检测信号的稳定。2、循环使用流动相。建议循环使用流动相。在没有进行分析时,打开循环阀,让流动相进行循环,这样泵就可以连续运行不必停止,一直到进行下一个分析。这样操作不仅可以节省流动相,而且检测器可以连续稳定的运行,随时进行样品分析。3、示差折光检测器不能用做梯度洗脱。由于介质的改变和压力的波动都会影响基线的稳定性,所以使用示差折光检测器时不能进行梯度洗脱。4、保证检测器的温度恒定。光学系统和流动相的温度对基线的稳定性影响很大。示差折光检测器可在比室温高5℃到55℃的范围内控温。建议将温度设为比室温高5℃,并确保柱温箱的温度与检测器保持一致。温度不宜过高,因为介质的折光指数随温度升高而降低,温度过高会使灵敏度降低。5、不可让流通池承受过大的压力。示差折光检测器流通池的反压约为1000psi,如果还要在系统里连接其他检测器。即示差折光检测器在流路系统里必须放在最后,以防压力增大时损坏流通池。6、某些溶剂随长时间存放而改变会造成基线的漂移。例如乙腈/水的混合物中乙腈的含量会降低,四氢呋喃会变成过氧化物,在吸湿性有机溶剂中的水量会增加,而保存在参比流通池中的溶剂如四氢呋喃会产生气体。因此,流动相最好做到临用现配或在有效期内使用。对于含有有机溶剂的流动相一般有效期3天,对于不含有机溶剂的流动相如纯盐或者纯水则根据室温情况,可临用现配或是配置好4℃冷藏,取用前先放置至室温。7、避免流动相和特定的色谱柱反应。某些流动相和特定的色谱柱反应,会产生长时间的噪声,例如乙腈/水流动相和氨丙基键合固定相在一起会出现这一现象。要判断长时间的噪声是否是由流动相/色谱柱的反应而产生,应该使用限流毛细管代替色谱柱,考查示差折光检测器的性能。
  • 谈恶臭气体检测:主动出击 把握先机——访河北工业大学张思祥教授
    p  说起大气监测,公众首先想起的是PMsub2.5/sub,环境监测从业人员可能会想到二氧化硫、氮氧化物、臭氧、一氧化碳、挥发性有机物等等,但是关注恶臭监测的人员还相对较少。而据不完全统计,在我国环境投诉中,恶臭投诉约占30%~40%,其数量仅次于噪声居第二位。/pp  在投诉率如此高的情况下,为什么恶臭监测没有得到大家的重视?我国的恶臭监测现状如何?恶臭监测的未来需求在哪?还有哪些工作需要开展?近日,仪器信息网编辑专门采访了河北工业大学张思祥教授,张教授是国家重大科学仪器设备开发专项“恶臭自动在线监测预警仪器开发及应用示范”中仪器研发的主要负责人,主要开发基于传感器原理的在线恶臭监测仪器。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201602/insimg/38308eda-7e5e-4029-967f-e4a8c8826889.jpg" title="张思祥教授.jpg"//pp style="text-align: center "strong河北工业大学 张思祥教授/strong/pp  strong发现需求 专注于恶臭在线仪器开发/strong/pp  谈到为什么选择了做恶臭监测仪器开发,张教授如是说:“求学期间,我学习的是光学仪器和分析仪器专业。1999年在河北工业大学参加工作,接到的第一个任务就是研发水质COD分析仪,研发的仪器后来成功地实现了产业化。自此以后开始关注环境监测类仪器,我们与天津环科院国家环境保护恶臭污染控制重点实验室一直有合作,后来发现我国的恶臭气体检测还有很多薄弱环节,因此开始计划对此领域进行系统研究。”/pp  目前,我国的恶臭检测主要依赖人工嗅辨,需要人员多、耗时长、对测试环境条件要求高。而我国恶臭投诉在不断增多,人工嗅辨技术已远远不能满足实际应用的需求。除人工嗅辨外,基于传感器阵列的恶臭在线监测系统是国际上比较成熟的一种恶臭在线监测技术。但在我国,这种技术的发展还不能满足实际应用。/pp  首先是传感器的选择。气体传感器主要有金属氧化物传感器、电化学传感器和PID传感器三种,单一传感器只能检测特定类的气体且对气体的选择性都较差。而恶臭气体含硫化氢、氨气、挥发性有机物等4000多种成分,单一传感器无法满足检测需求,故一般都采取传感器阵列。/pp  传感器阵列采取的是将不同传感器集成到一个模块上或者在一个芯片上沉积不同的传感器材料,故基于传感器阵列的恶臭在线监测仪器开发的首要任务就是开发出合适我国的传感器组合,满足恶臭气体种类和浓度的检测需求。虽然气体传感器种类众多,在食品、医药、安全等领域应用广泛,但恶臭气体的一大特点是气体组分未知,这就对传感器的选择和组合造成了很大困难。/pp  其次是恶臭气体组分分析问题。传感器对气体的选择性较差,在混合气检测中,很难检测出气体组分。张教授就想到了色谱分离,将恶臭气体先进行分离再检测。经过慎重考虑,张教授最终选择了微流控技术,一是微流控技术可以做成固态元件,二是可以与热导检测器、PID检测器或电化学传感器等集成到一个芯片上,从而便于将来进行在线和小型化设计。/pp  微流控芯片大部分是做液体分离,为了实现气体分离,张教授团队主要进行了两种设计。一种是填充式,即在微流控芯片的沟道里填充吸附性物质,如经过修饰处理的硅藻土,利用吸附脱附原理实现气体分离。另外一种是表面涂覆,涂覆之后利用毛细原理对气体进行溶解和析出的分离。目前已经可以实现100ppb范围内的气体分离,基本达到当初预期的指标。/pp  strong不断深入 建立恶臭在线监测预警系统/strong/pp  虽然微流控芯片与传感器阵列的组合可以实现恶臭气体成分和浓度的检测,但是张教授认为恶臭在线检测系统要想满足实际应用需求,如与现行的国家标准方法相对应、接到投诉后如何快速锁定污染源等,还需要进一步的研究。/pp  首先是低嗅阈值气体传感器的开发。有些恶臭气体的嗅阈值非常低,达到亚ppb级别,但目前气相色谱上常用传感器对此类的检测还存在问题。由于张教授所在单位河北工业大学在新材料方面有很多研究,故张教授想在此基础上,对传感器材质进行一些研究。如碳化硼材料对气体的吸附、富集和析出性能良好,可以考虑其在恶臭气体的吸附和富集方面的应用 石墨烯也是一种新型材料,可以研究一下其在提高气体传感器的气敏性和精度方面的作用。/pp  其次是气体辨别模型的建立。虽然经过了前端的分离,但是由于气体组分过于复杂, 传感器对特定恶臭气体的检测,仍可能会受到其它气体的干扰。此时就需要增加一种传感器,通过信息融合和数据分析(如模式识别、神经网络分析等)来排除干扰,即通过建立模型来实现气体辨别。/pp  检测结果与国家标准的对接也是一个值得研究的课题。按照现行国家标准,恶臭检测的最终结果应该为恶臭等级,而此系统的分析结果为恶臭成分和浓度。因此需要建立一个恶臭成分浓度与恶臭等级对应的模型,包括单一物质,物质浓度与恶臭等级的关系 两种或者多种物质混合之后,物质浓度和混合比例与恶臭等级的关系。最终的目标是需要建立一个仪器检测代替人工方法的标准来进行恶臭评价。/pp  还有一个工作就是恶臭的溯源。一个是恶臭来源区域判断,如果检测到恶臭浓度超标,需要能根据风力、风向、大气压以及恶臭浓度的梯度变化等相关参数,来推断恶臭可能的排放来源。另一个就是建立恶臭气体指纹,根据工厂的生产情况调查其恶臭气体的基本组分,当检测到恶臭气体时,根据气体成分可以快速初判出污染源。/pp  strong把握时机 促进国产仪器发展/strong/pp  仪器开发的最终目的是实现应用,对于恶臭仪器的产业化和我国恶臭监测市场发展,张教授也谈了自己的看法。/pp  恶臭仪器产业化应尽早。我国PMsub2.5/sub监测最初受到关注是某国公布了监测结果,之后我国政府公布的监测数据受到很多的质疑,这是因为先入为主。因此我国应该尽早发展自己的比较权威的仪器,并将监测数据发布,从而掌握主动权。而且从仪器使用上来说,用户习惯一种仪器之后,再接受新的仪器就需要一个过程,这也需要我国厂商应尽早推出有自主知识产权的仪器。/pp  从国产仪器产业发展角度来看,目前我国的恶臭监测还不适宜大规模推广。全球范围内,法国和韩国的恶臭监测技术发展较早,而我国的恶臭监测仪器还不成熟。如果国家现在推广恶臭监测的话,那么市场上的仪器肯定是国外厂商为主,对国产仪器发展将是一个很大的打击。/pp  从推广形式来看,恶臭监测可以考虑与挥发性有机物监测结合来推广。目前VOCs监测已经受到了国家的重视并开始布局,而恶臭气体包括氨气、硫化氢和多种VOCs,因此可以在某些应用上将恶臭监测和VOCs监测统筹考虑。而且可以根据不同的应用场合开发特定的恶臭监测仪器,如用于公共卫生间的以硫化氢和氨气检测为主的恶臭监测仪。/pp  在采访最后,张教授表示,非常愿意与企业合作,实现恶臭在线监测预警仪器的产业化,为我国的恶臭监测尽一份力。/pp  strongspan style="font-family: 楷体,楷体_GB2312,SimKai "后记:/span/strongspan style="font-family: 楷体,楷体_GB2312,SimKai "以前我国的环境治理以减少污染物的排放为约束性指标,而环保“十三五”规划以改善环境质量为核心,更加注重公众认同感,从雾霾、黑臭水体等词语的频繁出现即可略见一二。就譬如恶臭问题是与公众感受直接相关的环境问题,可能因其局域性、瞬时性和阵发性而没有受到广泛关注,但是在特定区域已成为困扰居民的严重环境问题。/span/ppspan style="font-family: 楷体,楷体_GB2312,SimKai "  随着环境治理的不断深入,恶臭受到关注仅是一个早晚的问题,而恶臭监测预警系统可以为恶臭治理提供很好的监管依据。故我国恶臭监测系统需要更多像张思祥教授这样的专家以及仪器厂商的努力,加强技术储备,从而在未来的恶臭问题中把握先机,掌握主动权。/span/pp style="text-align: right "span style="font-family: 楷体,楷体_GB2312,SimKai "  采访编辑:李学雷/span/pp style="text-align: right "span style="font-family: 楷体,楷体_GB2312,SimKai "/span/pp  strongspan style="font-family: 楷体,楷体_GB2312,SimKai "附录:张思祥教授个人简介/span/strong/pp style="text-align: left "span style="font-family: 楷体,楷体_GB2312,SimKai "  河北工业大学机械工程学院教授,机械工程学科博士生导师,河北工业大学国家大学科技园管理中心主任,全国高校互换性委员会常务理事, 中国仪器仪表学会分析仪器学会常务理事。主要教育经历:1993/09-1996/06,天津大学,精密仪器与光电子工程学院,获得博士学位 2010/10—2011/05,美国克莱姆森大学 访问学者 1990/09-1993/06,浙江大学,光学与电子科学仪器系,获得硕士学位 1978/09-1982/06,天津大学,精密仪器系,获得学士学位/span/pp style="text-align: left "span style="font-family: 楷体,楷体_GB2312,SimKai "  主要从事机械几何量测量理论与技术、光电检测方法、计算机图象处理技术研究。主持和完成国家重大科学仪器设备开发专项、国家自然科学基金重点项目、河北省自然科学基金、天津市自然科学基金、河北省高教委博士科研资助基金、国家“十五”科技攻关重大项目子项、总装备部预研项目等国家、省部级纵向课题。完成“污水COD在线检测设备开发研制”等十余项企事业委托的横向课题。在国际、国内重要学术会议和学术刊物上发表学术论文100多篇。获得河北省科技进步二等奖、天津市科技进步三等奖各一项,各项专利30余项。目前有国家重大科学仪器设备开发专项、总装备部预研项目、企业委托项目在研。/spanbr//p
  • 气相色谱检测器选择指南
    p style="line-height: 1.5em " strong气相色谱检测器/strong(Gas chromatographic detector)是检验色谱柱后流出物质的成分及浓度变化的装置,它可以将这种变化转化为电信号,是气相色谱分析中不可或缺的部分。经过检测器将各组分的成分及浓度转化为电信号并经由放大器放大,最终由记录仪或微处理机得到色谱图,就可以对被测试的组分进行定性和定量的分析了。气相色谱检测器相当于气相色谱的“眼睛”,选择合适的检测器对于应用气相色谱检测目标物质至关重要,仪器信息网编辑对气相色谱检测器相关的分类、性能指标以及常用检测器进行了整理,方便大家在选择检测器时进行参考。/pp style="line-height: 1.5em text-align: center "strong style="text-align: center "span style="font-size: 20px color: rgb(31, 73, 125) "检测器分类/span/strong/pp style="line-height: 1.5em "  气相色谱检测器种类繁多,有多种分类:/pp style="line-height: 1.5em "  1、根据对被检测样品的响应范围可以被分为:/pp style="line-height: 1.5em "  strong通用型检测器:/strong对绝大多数检测无知均有响应,如:TCD、PID /pp style="line-height: 1.5em " strong 选择型检测器:/strong对某一类物质有响应,对其他物质的无响应或很小,如:FPD。/pp style="line-height: 1.5em "  2、根据检测器的检测方式不同可以分为:/pp style="line-height: 1.5em "  strong浓度型检测器:/strong测量的是载气中某组分浓度瞬间的变化,即检测器的响应值和组分的浓度成正比,如TCD、PID /pp style="line-height: 1.5em "  strong质量型检测器:/strong测量载气中某组分单位时间内进入检测器的含量变化,即检测器的响应值和单位时间内进入检测器某组分的质量成正比。如FID、FPD。/pp style="line-height: 1.5em "  3、根据信号记录方式不同进行分类/pp style="line-height: 1.5em " strong 微分型检测器:/strong微分型检测器的响应与流出组分的浓度或质量成正比,绘出的色谱峰是一系列的峰。/pp style="line-height: 1.5em "  strong积分型检测器:/strong测量各组分积累的总和,响应值与组分的总质量成正比,色谱图为台阶形曲线,阶高代表组分的总量。/pp style="line-height: 1.5em "  4、根据样品是否被破坏可以分为:/pp style="line-height: 1.5em "  strong破坏性检测器:/strong组分在检测过程中,其分子形式被破坏,例如:FID、NPD、FPD /pp style="line-height: 1.5em "  strong非破坏性检测器/strong:组分在检测过程中,保持其分子结构,例如:TCD、PID、ECD。span style="text-align: center " /span/pp style="line-height: 1.5em text-align: center "strong style="color: rgb(31, 73, 125) text-align: center "span style="font-size: 20px "性能指标/span/strong/pp style="line-height: 1.5em "  气相色谱检测器一般需满足以下要求:通用性强,能检测多种化合物或选择性强,只对特定类别化合物或含有特殊基团的化合物有特别高的灵敏度。响应值与组分浓度间线性范围宽,即可做常量分析,又可做微量、痕量分析。稳定性好,色谱操作条件波动造成的影响小,表现为噪声低、漂移小。检测器体积小、响应时间快。/pp style="line-height: 1.5em "  根据以上要求,气相色谱检测器的主要性能指标有以下几个方面:/pp style="line-height: 1.5em "  strong1. 灵敏度/strong/pp style="line-height: 1.5em "  灵敏度是单位样品量(或浓度)通过检测器时所产生的相应(信号)值的大小,灵敏度高意味着对同样的样品量其检测器输出的响应值高,同一个检测器对不同组分,灵敏度是不同的,浓度型检测器与质量型检测器灵敏度的表示方法与计算方法亦各不相同。/pp style="line-height: 1.5em "  strong2. 检出限/strong/pp style="line-height: 1.5em "  检出限为检测器的最小检测量,最小检测量是要使待测组分所产生的信号恰好能在色谱图上与噪声鉴别开来时,所需引入到色谱柱的最小物质量或最小浓度。因此,最小检测量与检测器的性能、柱效率和操作条件有关。如果峰形窄,样品浓度越集中,最小检测量就越小。/pp style="line-height: 1.5em "  strong3. 线性范围/strong/pp style="line-height: 1.5em "  定量分析时要求检测器的输出信号与进样量之间呈线性关系,检测器的线性范围为在检测器呈线性时最大和最小进样量之比,或叫最大允许进样量(浓度)与最小检测量(浓度)之比。比值越大,表示线性范围越宽,越有利于准确定量。不同类型检测器的线性范围差别也很大。如氢焰检测器的线性范围可达107,热导检测器则在104左右。由于线性范围很宽,在绘制检测器线性范围图时一般采用双对数坐标纸。/pp style="line-height: 1.5em "  strong4. 噪音和漂移/strong/pp style="line-height: 1.5em "  噪声就是零电位(又称基流)的波动,反映在色谱图上就是由于各种原因引起的基线波动,称基线噪声。噪声分为短期噪声和长期噪声两类,有时候短期噪声会重叠在长期噪音上。仪器的温度波动,电源电压波动,载气流速的变化等,都可能产生噪音。基线随时间单方向的缓慢变化,称基线漂移。/pp style="line-height: 1.5em "  strong5. 响应时间/strong/pp style="line-height: 1.5em "  检测器的响应时间是指进入检测器的一个给定组分的输出信号达到其真值的90%时所需的时间。检测器的响应时间如果不够快,则色谱峰会失真,影响定量分析的准确性。但是,绝大多数检测器的响应时间不是一个限制因素,而系统的响应,特别是记录仪的局限性却是限制因素 。/pp style="line-height: 1.5em text-align: center "strong style="color: rgb(31, 73, 125) font-size: 20px text-align: center "常用检测器/strong/pp style="line-height: 1.5em " 在日常应用中,主要会用到的气相色谱检测器主要有FID、ECD、TCD、FPD、NPD、MSD等,针对这些检测器,梳理一下它们的优缺点和应用范围。/pp style="text-align: center line-height: 1.5em "span style="color: rgb(31, 73, 125) "strongspan style="font-size: 20px "常见气相色谱检测器汇总/span/strong/span/pp style="line-height: 1.5em "strongspan style="font-size: 20px color: rgb(79, 97, 40) "/span/strong/ptable style="border-collapse:collapse " data-sort="sortDisabled"tbodytr class="firstRow"td style="border: 1px solid windowtext word-break: break-all " valign="middle" rowspan="1" colspan="2" align="center"p style="line-height: 1.5em "检测器/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" rowspan="2" colspan="1" align="center"p style="line-height: 1.5em "工作原理/p/tdtd style="border: 1px solid windowtext " width="145" valign="middle" rowspan="2" colspan="1" align="center"p style="line-height: 1.5em "应用范围/p/td/trtrtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "中文名称/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "英文缩写/p/td/trtrtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "火焰离子化检测器br//p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "FID/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "火焰电离/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "有机化合物/p/td/trtrtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "电子俘获检测器/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "ECD/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "化学电离/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "电负性化合物/p/td/trtrtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "热导检测器/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "TCD/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "热导系数差异/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "所有化合物/p/td/trtrtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "火焰光度检测器/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "FPD/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "分子发射/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "磷、硫化合物/p/td/trtrtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "氮磷检测器/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "NPD/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "热表面电离/p/tdtd style="border: 1px solid windowtext word-break: break-all " width="145" valign="middle" align="center"p style="line-height: 1.5em "氮、磷化合物/p/td/tr/tbody/tablep style="line-height: 1.5em "span style="font-size: 18px color: rgb(31, 73, 125) "strongFID——火焰离子化检测器/strong/spanbr/  FID是多用途的破坏性质量型通用检测器,灵敏度高,线性范围宽,广泛应用于有机物的常量和微量检测。F其主要原理为,氢气和空气燃烧生成火焰,当有机化合物进入火焰时,由于离子化反应,生成比基流高几个数量级的离子,在电场作用下,这些带正电荷的离子和电子分别向负极和正极移动,形成离子流,此离子流经放大器放大后,可被检测。/pp style="text-align: center line-height: 1.5em "img src="http://img1.17img.cn/17img/images/201807/noimg/e368385d-2632-45d8-9d34-f6dcefd84528.jpg" title="201506242255_551533_2984502_3.jpg"//pp style="text-align: left line-height: 1.5em "  span style="color: rgb(0, 0, 0) "火焰离子化检测对电离势低于Hsub2/sub的有机物产生响应,而对无机物、永久气体和水基本上无响应,所以strong火焰离子化检测器只能分析有机物/strong(含碳化合物),不适于分析惰性气体、空气、水、CO、COsub2/sub、CSsub2/sub、NO、SOsub2/sub及Hsub2/subS等。/span/pp style="text-align: left line-height: 1.5em "span style="color: rgb(0, 0, 0) " FID特别适合于strong有机化合物的常量到微量分析/strong,是目前环保领域中,空气和水中痕量有机化合物检测的最好手段。抗污染能力强,检测器寿命长,日常维护保养量也少,一般讲FID检测限操作在大于1× 10sup-10/supg/s时,操作条件无须特别注意均能正常工作,也不会对检测器本身造成致命的损失。由于FID响应有一定的规律性,在复杂的混合物多组分的定量分析时,特别对于一般的常规分析,可以不用纯化合物校正,简化了操作,提高了工作效率。/span/pp style="line-height: 1.5em "span style="color: rgb(31, 73, 125) "strongspan style="font-size: 18px "ECD——电子捕获检测器/span/strong/span/pp style="line-height: 1.5em "  span style="color: rgb(0, 0, 0) "电子捕获检测器是一种高选择性检测器,在分析痕量电负性有机化合物上有很好的应用。它仅对strong那些能俘获电子的化合物/strong,如卤代烃、含N、O和S等杂原子的化合物有响应。由于它灵敏度高、选择性好,多年来已广泛用于环境样品中痕量农药、多氯联苯等的分析。ECD是气相电离检测器之一,但它的信号不同于FID等其他电离检测器,FID等信号是基流的增加,ECD信号是高背景基流的减小。ECD的不足之处是strong线性范围较小/strong,通常仅102-104。/span/pp style="text-align: center line-height: 1.5em " img src="http://img1.17img.cn/17img/images/201807/noimg/4dcdf2d1-8cb9-4e96-b3f9-a09ced241d86.jpg" title="2015062422302130_01_2984502_3.jpg" style="text-align: center "//pp style="line-height: 1.5em "span style="color: rgb(31, 73, 125) "strongspan style="font-size: 18px "/span/strong/span/pp style="line-height: 1.5em " ECD是浓度型选择性检测器,对电负性的组分能给出极显著的响应信号。用于分析卤素化合物、一些金属螯合物和甾族化合物。其主要原理为检测室内的放射源放出β-射线(初级电子),与通过检测室的载气碰撞产生次级电子和正离子,在电场作用下,分别向与自己极性相反的电极运动,形成基流,当具有负电性的组分(即能捕获电子的组分)进入检测室后,捕获了检测室内的电子,变成带负电荷的离子,由于电子被组分捕获,使得检测室基流减少,产生色谱峰信号。/pp style="line-height: 1.5em "  由于ECD在常用的几种检测器中灵敏度最高,再加上ECD结构、供电方式和所有操作条件都对ECD主要性能产生影响。可以说,ECD选用在所有常用检测器中也是比较困难的,遇到使用中问题也最多。br//pp style="line-height: 1.5em "  选择性:从选择性看,ECD特别适合于环境监测和生物样品的复杂多组分和多干扰物分析,但有些干扰物和待定性定量分析的组分有着近似的灵敏度(几乎无选择性),特别做痕量分析时,还应对样品进行必要的预处理,或改善柱分离以防止出现定性错误。/pp style="line-height: 1.5em "  灵敏度:ECD分析对电负性样品具有较高的灵敏度,如四氯化碳最小检测量可达到1× 10sup-15/supg。/pp style="line-height: 1.5em "  线性范围:传统的认为ECD线性范围较窄,但由于ECD的不断完善,线性范围已优于104,可基本满足分析的需求。同时,针对高浓度样品,可以通过稀释样品后再使用ECD进行分析。/pp style="line-height: 1.5em "  操作性:ECD几乎对所有操作条件敏感,其对干扰物和目标物都具有高灵敏度的特性使得ECD的操作难度较大,有很小浓度的敏感物就可能造成对分析的干扰。/pp style="line-height: 1.5em "  因此,在使用ECD进行样品分析时,应当了解被分析样品的特点和待定性定量的组分的物理性质,确定选用ECD是否分析合适。/pp style="line-height: 1.5em "span style="color: rgb(31, 73, 125) "strongspan style="font-size: 18px "TCD——热导检测器/span/strong/span/pp style="line-height: 1.5em "span style="font-size: 16px color: rgb(0, 0, 0) " 热导检测器是一种通用的非破坏性浓度型检测器,理论上可应用于任何组分的检测,但因其灵敏度较低,故一般用于常量分析。其基于不同组分与载气有不同的热导率的原理而工作。热导检测器的热敏元件为热丝,如镀金钨丝、铂金丝等。当被测组分与载气一起进入热导池时,由于混合气的热导率与纯载气不同(通常是低于载气的热导率),热丝传向池壁的热量也发生变化,致使热丝温度发生改变,其电阻也随之改变,进而使电桥输出端产生不平衡电位而作为信号输出,记录该信号从而得到色谱峰。/span/pp style="text-align: center line-height: 1.5em "span style="font-size: 16px color: rgb(0, 0, 0) "img src="http://img1.17img.cn/17img/images/201807/noimg/9cfa17ce-9f01-4263-b262-27853bbe7e3f.jpg" title="2015062422242303_01_2984502_3.jpg"//span/pp style="line-height: 1.5em "span style="color: rgb(31, 73, 125) "strongspan style="font-size: 18px "/span/strong/span/pp style="line-height: 1.5em " TCD通用性强,性能稳定,线性范围最大,定量精度高,操作维修简单,廉价易于推广普及,strong适合常量和半微量分析/strong,特别适合strong永久气体/strong或组分少且比较纯净的样品分析。/pp style="line-height: 1.5em "  对于环境监测和食品农药残留等样品进行痕量分析,TCD适用性不强,其主要原因有:检测限大(常规 10-6g/mL) 样品选择性差,即对非检测组分抗干扰能力差 虽然可在高灵敏度下运行,但易被污染,基线稳定性变差。/pp style="line-height: 1.5em "span style="color: rgb(31, 73, 125) "strongspan style="font-size: 18px "FPD——火焰光度检测器/span/strong/span/pp style="line-height: 1.5em " FPD为质量型选择性检测器,主要用于测定含硫、磷化合物。使用中通入的氢气量必须多于通常燃烧所需要的氢气量,即在富氢情况下燃烧得到火焰。广泛应用于石油产品中微量硫化合物及农药中有机磷化合物的分析。其主要原理为组分在富氢火焰中燃烧时组分不同程度地变为碎片或分子,其外层电子由于互相碰撞而被激发,当电子由激发态返回低能态或基态时,发射出特征波长的光谱,这种特征光谱通过经选择滤光片后被测量。如硫在火焰中产生350-430nm的光谱,磷产生480-600nm的光谱,其中394nm和526nm分别为含硫和含磷化合物的特征波长。/pp style="text-align: center line-height: 1.5em "img src="http://img1.17img.cn/17img/images/201807/noimg/76c52176-d151-497d-be84-393c102e715c.jpg" title="2015062422290693_01_2984502_3.jpg"//pp style="line-height: 1.5em " FPD是一种高灵敏度、高选择性的检测器,对含P和S特别敏感,主要用于strong含P和S的有机化合物和气体硫化物中P和S的微量和痕量分析/strong,如有机磷农药、水质污染中的硫醇、天然气中含硫化物的气体等。/pp style="line-height: 1.5em "  FPD火焰是富氢焰,空气的供量只够与70%的氢燃烧反应,所以火焰温度较低以便生成激发态的P、S化合物碎片。FPD基线稳定,噪声也比较小,信噪比高。氮气(载气)、氢气和空气流速的变化直接影响FPD的灵敏度、信噪比、选择性和线性范围。氮气流速在一定范围变化时,对P的检测无影响。对S的检测,表现出峰高与峰面积随氮气流量增加而增大,继续增加时,峰高和峰面积逐渐下降。这是因为作为稀释剂的氮气流量增加时,火焰温度降低,有利于S的响应,超过最佳值后,则不利于S的响应。无论S还是P的测定,都有各自最佳的氮气和空气的比值,并随FPD的结构差异而不同,测P比测S需要更大的氢气流速。/pp style="line-height: 1.5em "strongspan style="font-size: 18px color: rgb(31, 73, 125) "NPD——氮磷检测器/span/strongbr//pp style="line-height: 1.5em "  span style="font-family: 宋体, SimSun font-size: 16px "NPD是一种质量型检测器。/spanspan style="font-family: 宋体, SimSun "NPD工作原理是将一种涂有碱金属盐如Na/spansub style="font-family: 宋体, SimSun "2/subspan style="font-family: 宋体, SimSun "SiO/spansub style="font-family: 宋体, SimSun "3/subspan style="font-family: 宋体, SimSun "、Rb/spansub style="font-family: 宋体, SimSun "2/subspan style="font-family: 宋体, SimSun "SiO/spansub style="font-family: 宋体, SimSun "3/subspan style="font-family: 宋体, SimSun "类化合物的陶瓷珠,放置在燃烧的氢火焰和收集极之间,当氮、磷化合物先在气相边界层中热化学分解,产生电负性的基团。试样蒸气和氢气流通过碱金属盐表面时,该电负性基团再与气相的铷原子(Rb)进行化学电离反应,生成Rb+和负离子,负离子在收集极释放出一个电子,并与氢原子反应,失去电子的碱金属形成盐再沉积到陶瓷珠的表面上,从而获得信号响应。/span/pp style="text-align: center line-height: 1.5em "img src="http://img1.17img.cn/17img/images/201807/noimg/4fe5acfc-2693-4772-8c2a-8d5c225f7ac7.jpg" title="2015062422312688_01_2984502_3.jpg"//pp style="line-height: 1.5em " NPD结构简单,成本较低,灵敏度、选择性和线性范围均较好,对含N和P的化合物选择性好、灵敏度高,适合做样品中strong含N和P的微量和痕量分析/strong。NPD灵敏度大小和化合物的分子结构有关,如检测含N化合物时,对易分解成氰基(CN)的灵敏度最高,其它结构尤其是硝酸酯和酰胺类响应小。/pp style="line-height: 1.5em "  NPD铷珠的寿命不是无限的,在一般使用条件下,寿命可保证2年以上。但在操作中,铷珠的退化速度不是均匀的,通常使用初期退化快,后期退化慢。实验表明:前50 h灵敏度可能下降20%,而后1300h,每经过250 h,灵敏度下降20%左右。这也就是为什么新的铷珠开始使用前,为获得高稳定性,必须对其进行老化处理的原因,当做半定量,且灵敏度要求不高时,老化时间不宜太长。/pp style="line-height: 1.5em "  NPD的检测器控温和控温精度、气体的流量稳定性、待分析组分分子结构等因素,均对铷珠最佳工作状态有影响,即很难保证性能恒定不变。为保证选择性和灵敏度不变,根据情况需不定时的调整NPD各条件参数。/pp style="line-height: 1.5em "br//pp style="line-height: 1.5em " 气相色谱检测器是气相色谱分析法的重要部分,它所涉及的内容应包括两方面:一是检测器的正确选择和使用,二是其他有关条件的优化。一个好的气相色谱检测器,应该是这两方面均处于最佳状态。br/ 建立气相色谱检测方法首先要针对不同样品和分析目的,正确选用不同的检测器,并使检测器的灵敏度、选择性、线性及线性范围和稳定性等性能得到充分的发挥,即处于最佳状态。br/通常用单一检测器直接检测,必要时可衍生化后再检测,或用多检测器组合检测。检测器正确选用和性能达到最佳,不仅得到的定性和定量信息准确、可靠,而且还可简化整个分析方法。反之,不仅得不到有关信息,浪费了时间和精力,而且可能损坏检测器。br/ 一个良好的检测方法除考虑检测器本身性能外,还应该检测到的色谱峰或信号不失真、不变形。因此,要求柱后至检测器峰不变宽、不吸附,以色谱峰宽度保持柱分离状态进入检测器为佳。还要求检测器产生的信号在放大或变换的过程中,或信号传输至记录器、数据处理系统过程中,或在数据处理过程中不失真。另外,为了充分发挥某些检测器的优异性能,还要求正确掌握某些化合物的衍生化方法等等。/pp style="line-height: 1.5em "br//ppbr//p
  • 恶臭气体在线监测仪器研制
    table border="1" cellspacing="0" cellpadding="0" width="600"tbodytrtd width="144"p style="line-height: 1.75em "成果名称/p/tdtd width="504" colspan="3"p style="line-height: 1.75em "恶臭气体在线监测仪器/p/td/trtrtd width="144"p style="line-height: 1.75em "联系人/p/tdtd width="156"p style="line-height: 1.75em "张思祥/p/tdtd width="161"p style="line-height: 1.75em "联系邮箱/p/tdtd width="187"p style="line-height: 1.75em "zhangsx@hebut.edu.cn/p/td/trtrtd width="144"p style="line-height: 1.75em "单位名称/p/tdtd width="504" colspan="3"河北工业大学/td/trtrtd width="144"p style="line-height: 1.75em "成果成熟度/p/tdtd width="504" colspan="3"p style="line-height: 1.75em "□正在研发 □已有样机 √通过小试 √通过中试 □可以量产/p/td/trtrtd width="144"p style="line-height: 1.75em "合作方式/p/tdtd width="504" colspan="3"p style="line-height: 1.75em "√技术转让 □技术入股 √合作开发 √其他/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong成果简介: /strongbr/ 通过对现有试验室色谱分析仪器性能的研究,研发出在线式的基于微流控芯片技术的在线恶臭气体检测仪器。仪器的检测限可达到ppb浓度等级。可针对不同的恶臭气体进行定量与定性分析,分析物质可以达到10种以上,分析时间根据物质种类的不同可以控制在10-20分钟之内。可以应用到工厂生产排放饿气体浓度实时检测,也可以针对公共场合的环境质量检测。可以进行在线监测与便携式仪器的检测应用。 br/ strong核心器件:/strong微流控芯片气体传感器,PID模块检测,自动进样模块 br/ strong性能指标:/strongppb浓度检测,实时分析,快速检测时间10-20分钟 br/ strong关键技术/strong:微流控芯片的集成技术/ppbr//p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong应用前景: /strongbr/ 主要应用于在线式气体检测与便携式的气体浓度分析。/ppbr//p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong知识产权及项目获奖情况: /strongbr/ strong专利:/strongstrong /strong/pol class=" list-paddingleft-2"lip style="line-height: 1.75em "一种用于气体分离的填充式微流控芯片. 中国. 发明专利. 申请公开,申请公布号: CN 104084248 A /p/li/olp style="line-height: 1.75em "2. 基于微流控芯片的恶臭气体检测装置. 中国. 发明专利. 申请公开,申请公布号: CN 103940939 A./pp style="text-align: left line-height: 1.75em "3. 一种PID传感器气室. 中国. 实用新型专利. 授权,授权公开号:CN 203811576 U./pp style="text-align: left line-height: 1.75em "4.一种多用途光离子化传感器气室. 中国. 实用新型专利. 授权,授权公开号:CN 203838131 U./pp style="text-align:left "br//p/td/tr/tbody/tablepbr//p
  • 众瑞仪器助力“温室气体排放”监测
    导语2022年3月10日生态环境部办公厅印发《关于做好2022年企业温室气体排放报告管理相关重点工作的通知》。《通知》中对2022年企业温室气体排放报告管理有关重点工作内容与时间节点做了详细安排。为保证各设区的市级生态环境主管部门对重点排污行业的日常监管执行工作有序进行。青岛众瑞本期为大家推出碳监测仪与温室气体检测仪。
  • 一文解读气体传感器原理、分类、用途
    所谓气体传感器,是指用于探测在一定区域范围内是否存在特定气体和/或能连续测量气体成分浓度的传感器。在煤矿、石油、化工、市政、医疗、交通运输、家庭等安全防护方面,气体传感器常用于探测可燃、易燃、有毒气体的浓度或其存在与否,或氧气的消耗量等。气体传感器主要用于针对某种特定气体进行检测,测量该气体在传感器附近是否存在,或在传感器附近空气中的含量。因此,在安全系统中,气体传感器通常都是不可或缺的。从工作原理、特性分析到测量技术,从所用材料到制造工艺,从检测对象到应用领域,都可以构成独立的分类标准,衍生出一个个纷繁庞杂的分类体系,尤其在分类标准的问题上目前还没有统一,要对其进行严格的系统分类难度颇大。气体传感器的分类从检测气体种类上,通常分为可燃气体传感器(常采用催化燃烧式、红外、热导、半导体式)、有毒气体传感器(一般采用电化学、金属半导 体、光离子化、火焰离子化式)、有害气体传感器(常采用红外、紫外等)、氧气(常采用顺磁式、氧化锆式)等其它类传感器。从使用方法上,通常分为便携式气体传感器和固定式气体传感器。从获得气体样品的方式上,通常分为扩散式气体传感器(即传感器直接安装在被测对象环境中,实测气体通过自然扩散与传感器检测元件直接接触)、吸入式气体传感器(是指通过使 用吸气泵等手段,将待测气体引入传感器检测元件中进行检测。根据对被测气体是否稀释,又可细分为完全吸入式和稀释式等)。从分析气体组成上,通常分为单一式气体传感器(仅对特定气体进行检测)和复合式气体传感器(对多种气体成分进行同时检测)。按传感器检测原理,通常分为热学式气体传感器、电化学式气体传感器、磁学式气体传感器、光学式气体传感器、半导体式气体传感器、气相色谱式气体传感器等。先来了解一下气体传感器的特性:1、稳定性稳定性是指传感器在整个工作时间内基本响应的稳定性,取决于零点漂移和区间漂移。零点漂移是指在没有目标气体时,整个工作时间内传感器输出响应的变化。区间漂移是指传感器连续置于目标气体中的输出响应变化,表现为传感器输出信号在工作时间内的降低。理想情况下,一个传感器在连续工作条件下,每年零点漂移小于10%。2、灵敏度灵敏度是指传感器输出变化量与被测输入变化量之比,主要依赖于传感器结构所使用的技术。大多数气体传感器的设计原理都采用生物化学、电化学、物理和光学。首先要考虑的是选择一种敏感技术,它对目标气体的阀限制或爆炸限的百分比的检测要有足够的灵敏性。3、选择性选择性也被称为交叉灵敏度。可以通过测量由某一种浓度的干扰气体所产生的传感器响应来确定。这个响应等价于一定浓度的目标气体所产生的传感器响应。这种特性在追踪多种气体的应用中是非常重要的,因为交叉灵敏度会降低测量的重复性和可靠性,理想传感器应具有高灵敏度和高选择性。4、抗腐蚀性抗腐蚀性是指传感器暴露于高体积分数目标气体中的能力。在气体大量泄漏时,探头应能够承受期望气体体积分数10~20倍。在返回正常工作条件下,传感器漂移和零点校正值应尽可能小。气体传感器的基本特征,即灵敏度、选择性以及稳定性等,主要通过材料的选择来确定。选择适当的材料和开发新材料,使气体传感器的敏感特性达到优。接下来是关于不同气体传感器的检测原理、特点和用途:一、半导体式气体传感器根据由金属氧化物或金属半导体氧化物材料制成的检测元件,与气体相互作用时产生表面吸附或反应,引起载流子运动为特征的电导率或伏安特性或表面电位变化而进行气体浓度测量的。从作用机理上可分为表面控制型(采用气体吸附于半导体表面而产生电导率变化的敏感元件)、表面电位型(采用 半导体吸附气体后产生表面电位或界面电位变化的气体敏感元件)、体积控制型(基于半导体与气体发生反应时体积发生变化,从而产生电导率变化的工作原理) 等。可以检测百分比浓度的可燃气体,也可检测ppm级的有毒有害气体。优点:结构简单、价格低廉、检测灵敏度高、反应速度快等。不足:测量线性 范围较小,受背景气体干扰较大,易受环境温度影响等。二、固体电解质气体传感器固体电解质是一种具有与电解质水溶液相同的离子导电特性的固态物质,当用作气体传感器时,它是一种电池。它无需使气体经过透气膜溶于电解液中,可以避免溶液蒸发和电极消耗等问题。由于这种传感器电导率高,灵敏度和选择性好,几乎在石化、环保、矿业、食品等各个领域都得到了广泛的应用,其重要性仅次于金属—氧化物一半导体气体传感器。这种传感器介于半导体气体传感器和电化学气体传感器之间,选择性、灵敏度高于半导体气体传感器,寿命长于电化学气体传感器,因此得到广泛应用。这种传感器的不足之处是响应时间过长。三、催化燃烧式气体传感器这种传感器实际上是基于铂电阻温度传感器的一种气体传感器,即在铂电阻表面制备耐高温催化剂层,在一定温度下,可燃气体在表面催化燃烧,因此铂电阻温度升高,导致电阻的阻值变化。由于催化燃烧式气体传感器铂电阻外通常由多孔陶瓷构成陶瓷珠包裹,因此这种传感器通常也被称为催化珠气体传感器。理论上这种传感器可以检测所有可以燃烧的气体,但实际应用中有很多例外。这种传感器通常可以用于检测空气中的甲烷、LPG、丙酮等可燃气体。四、电化学气体传感器电化学气体传感器是把测量对象气体在电极处氧化或还原而测电流,得出对象气体浓度的探测器。包含原电池型气体传感器、恒定电位电解池型气体传感器、浓差电池型气体传感器和极限电流型气体传感器。1、原电池型气体传感器(也称:加伏尼电池型气体传感器,也有称燃料电池型气体传感器,也有称自发电池型气体传感器),他们的原理行同我们用的干电池,只是,电池的碳锰电极被气体电极替代了。以氧气传感器为例,氧在阴极被还原,电子通过电流表流到阳极,在那里铅金属被氧化。电流的大小与氧气的浓度直接相关。这种传感器可以有效地检测氧气、二氧化硫等。2、恒定电位电解池型气体传感器,这种传感器用于检测还原性气体非常有效,它的原理与原电池型传感器不一样,它的电化学反应是在电流强制下发生的,是一种真正的库仑分析(根据电解过程中消耗的电量,由法拉第定律来确定被测物质含量)传感器。这种传感器用于:一氧化碳、硫化氢、氢气、氨气、肼、等气体的检测之中,是目前有毒有害气体检测的主流传感器。3、浓差电池型气体传感器,具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器实例就是汽车用氧气传感器、固体电解质型二氧化碳传感器。4、极限电流型气体传感器,有一种测量氧气浓度的传感器利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧浓度检测。主要优点:体积小,功耗小,线性和重复性较好,分辨率一般可以达到0.1ppm,寿命较长。主要不足:易受干扰,灵敏度受温度变化影响较大。五、PID——光离子化气体传感器PID由紫外光源和气室构成。紫外发光原理与日光灯管相同,只是频率高,能量大。被测气体到达气室后,被紫外灯发射的紫外光电离产生电荷流,气体浓度和电荷流的大小正相关,测量电荷流即可测得气体浓度。可以检测从10ppb到较高浓度的10000ppm的挥发性有机物和其他有毒气体。许多有害物质都含有挥发性有机化合物,PID对挥发性有机化合物灵敏度很高。六、热学式气体传感器热学式气体传感器主要有热导式和热化学式两大类。热导式是利用气体的热导率,通过对其中热敏元件电阻的变化来测量一种或几种气体组分浓度的。其在工业界的应用已有几十年的历史,其仪表类型较多,能分析的气体也较广泛。热化学式是基于被分析气体化学反应的热效应,其中广泛应用的是气体的氧化反应(即燃烧),其典型为催化燃烧式气体传感器,其主要工作原理是在一定温度下,一些金属氧化物半导体材料的电导率会跟随环境气体的成份变化而变化。其关键部件为涂有燃烧催化剂的惠斯通电桥,主要用于检测可燃气体,如煤气发生站、制气厂用来分析空气中的CO、H2 、C2H2等可燃气体,采煤矿井用于分析坑道中的CH4含量,石油开采船只分析现场漏泄的甲烷含量,燃料及化工原料保管仓库或原料车间分析空气中的石油蒸 气、酒精乙醚蒸气等。七、红外气体传感器一个完整的红外气体传感器由红外光源、光学腔体、红外探测器和信号调理电路构成。这种传感器利用气体对特定频率的红外光谱的吸收作用制成。红外光从发射端射向接收端,当有气体时,对红外光产生吸收,接收到的红外光就会减少,从而检测出气体含量。目前较先进的红外式采用双波长、双接收器,使检测更准确、可靠。优点:选择性好,只检测特定波长的气体,可以根据气体定制;采用光学检测方式,不易受有害气体的影响而中毒、老化;响应速度快、稳定性好;利用物理特性,没有化学反应,防爆性好;信噪比高,抗干扰能力强;使用寿命长;测量精度高。缺点:测量范围窄;怕灰尘、潮湿,现场环境要好,需要定期对反射镜面上的灰尘进行清洁维护;现场有气流时无法检测;价格较高。八、磁学式气体分析传感器在磁学式气体分析传感器中,常见的是利用氧气的高磁化特性来测量氧气浓度的磁性氧量分析传感器,利用的是空气中的氧气可以被强磁场吸引的原理。其氧量的测量范围宽,是一种十分有效的氧量测量传感器。常用的有热磁对流式氧量分析传感器(按构成方式不同,又可细分为测速热磁式、压力平衡热磁式)和磁力机械式氧量分析传感器。主要用途:用于氧气的检测,选择性极好,是磁性氧气分析仪的核心。其典型应用场合有化肥生 产、深冷空气分离、火电站燃烧系统、天然气制乙炔等工业生产中氧的控制和连锁,废气、尾气、烟气等排放的环保监测等。九、气相色谱式分析仪基于色谱分离技术和检测技术,分离并测定气样中各组分浓度,因此是全分析传感器。在发电厂锅炉试验中,已有应用。工作时,从进样装置定期采取一定容积的气样,在流量一定的纯净载气(即流动相)携带下,流经色谱柱,色谱柱中装有称为固定相的固体或液体,利用固定相对气样各组分的吸收或溶解能力的不同,使各组分在两相中反复进行分配,从而使各组分分离,并按时间先后流出色谱柱进入检测器进行定量测定。根据检测原理,气相色谱式分析仪又细分为浓度型检测器和质量型检测器两种。浓度型检测器测量的是气体中某组分浓度瞬间的变化,即检测器的响应值和组分的浓度成正比。质量型检测器测量的是气体中某组分进入检测器的速度变化,即检测器的响应值和单位时间进入检测器某组分的量成正比。常用的检测器有TCD热导检测器、FLD氢火焰离子化检测器、HCD电子捕获检测器、FPD火焰光度检测器等。优点:灵敏度高,适合于微量和痕量分析,能分析复杂的多相分气体。不足:定期取样不能实现连续进样分析,系统较为复杂,多用于 试验室分析用,不太适合工业现场气体监测。十、其他气体传感器1.超声波气体探测器这种气体探测器比较特殊,其原理是当气体通过很小的泄漏孔从高压端向低压端泄漏时,就会形成湍流,产生振动。典型的湍流气流会在差压高于0.2MPa时变成因素,超过0.2MPa就会产生超声波。湍流分子互相碰撞产生热能和振动。热能快速分散,但振动会被传送到相当远的距离。超声波探测器就是通过接收超声波判断是否有空气泄漏。这类探测器通常用于石油和天然气平台、发电厂燃气轮机、压缩机以及其它户外管道。2.磁氧分析仪这种气体分析仪是基于氧气的磁化率远大于其他气体磁化率这一物理现象,测量混合气体中氧气的一种物理气体分析设备。这种设备适合自动检测各种工业气体中的氧气含量,只能用于氧气检测,选择性极好。
  • 上海出租车安装车载空气质量监测器
    p  日前,上海在出租车上安装车载空气质量监测器,这在全国属首创。据介绍,此举使得行驶中的出租车,好像变成了一个个移动监测站。这项全新的车载空气质量监测技术目前尚处于起步阶段,已在30辆出租车上投入使用,今后有望扩大至200辆出租车上。/pp  据悉,这种车载空气质量监测器由同济大学教授谭洪卫团队创新研发,它藏身在出租车顶灯的灯箱里。相应的数据也已经与环保部门进行对接,由专业机构进行研究。/pp  这套设备由两个取样口、传感器、GPS通讯模块等组成,主要针对PM2.5和PM10两种空气固体悬浮物进行实时监测,每秒钟都有数据传输到后台。/pp  记者获悉,根据长时间检测发现,汽车尾气直接产生PM2.5的量并不多,更多的是PM2.5的“催化剂”和“原材料”氮氧化物气体和挥发性有机气体。也就是说,车载监测点并不直接处于污染源中,所以对日常采集的数据并没有影响。/pp  同时,课题组攻克了多项技术难关,以提升移动监测的精度。比如和国控站的数据进行动态校合比对。藏身于出租车顶灯里的设备,也能克服各种外部因素的干扰。/pp  目前PM2.5监测数据主要来源于生态环境部门设立的环境质量监测站,但站位数量较少。上海有10个国控站、16个市控区级监测站。虽然设备精密,但监测的是较大区域内空气质量的平均状况,设备通常装在离地面大约15到20米高的楼顶。/pp  相对而言,出租车顶灯的监测高度与行人呼吸范围相近,尤其对于特定区域,比如工地、居民区等,可以获得更高密度的数据来反映局部空气质量情况,与固定监测站形成有效的点面结合,实现有效互补。/pp  据课题组相关人员介绍,通过一年多的数据累计和可视化分析,对于上海的PM2.5分布特点有了更进一步的认知。比如,PM2.5浓度最低的时刻大多在下午、空间上“城郊一体、东优于西”等。/pp  课题组数据分析团队表示,人们的个体感受往往和手机上查到的数字并不一致,实际上就是家门口这个微观环境和整个上海市的宏观情况的差异。而要对城市大气环境进行精细化管理,进行空间上更加密集的研究是很有必要的,在汽车上安装车载空气质量监测器便成为适时之举。/pp  有关人士表示,要真正将这项空气质量移动监测手段推广应用还有一段路要走。一方面,目前上海试点的出租车仅30台,虽然每天都能覆盖180多个街镇,但仍需要有更多的载体来扩大数据采集量和密度。同时,如何与现有的固定监测站有效对接融合,为大气污染防治和改善空气质量作出实际应用,也需要进行进一步研究,得出更为科学的结论。  /p
  • 湖北锐意推出碳通量气体检测、发动机排放检测及燃气热值分析等高端气体分析仪器
    9月28日,中国人民银行宣布为贯彻落实国务院常务会议关于支持经济社会发展薄弱领域设备更新改造的决策部署,设立了2000亿元以上设备更新改造专项再贷款,政策面向教育、实训基地、节能降碳改造升级、新型基础设施等十大领域。四方光电股份有限公司(688665.SH)旗下全资子公司湖北锐意自控系统有限公司(以下简称“湖北锐意”)是一家专业提供气体成分及流量测量方案的高新技术企业,基于四方光电核心气体传感技术平台的优势,开发了系列非分光红外(NDIR)、非分光紫外(NDUV)、紫外差分吸收光谱(UV-DOAS)、激光拉曼(LRD)、超声波(Ultrasonic)、热导(TCD)、光散射探测(LSD)等技术原理的气体成分流量仪器仪表,产品广泛应用于环境监测、冶金、煤化工、生物质能源等各个行业。湖北锐意针对国家政策以及当前研究热点问题,选择碳通量气体检测、发动机排放检测及燃气热值分析三个重点方向,推荐以下行业解决方案。一、碳通量气体检测解决方案实现“碳达峰”“碳中和”是国家做出的重大战略决策。通过监测数据可以预测未来的气候变化趋势和评价生态系统碳循环对全球变化的响应与适应特征,为“双碳”目标的达成提供参考数据,为现代地球系统科学、生态与环境科学关注的重大科学问题提供研究依据。碳通量在线监测网络主要包含土壤温室气体通量测量和大气环境涡度协方差测量系统两种方法。湖北锐意依托气体分析传感器平台优势,分别开发了土壤碳通量分析仪与大气环境涡度协方差测量系统。(一)土壤碳通量分析仪土壤生态系统中的碳元素主要是通过土壤呼吸来实现碳循环,对土壤呼吸过程中CO2释放量的准确监测是评价生态系统中碳汇过程的关键。通量测定法是最为常用的测定方法,即直接测定土壤和大气间的CO2交换量,也是评价土壤生态系统碳循环过程的关键。国家正在积极推动“双碳”政策,碳监测为碳计量提供准确的基础数据。垃圾填埋场、污水处理厂和煤矿等区域的无组织碳排放是碳监测的难点之一。土壤碳通量分析仪利用非分光红外气体分析技术(NDIR)测量CO2浓度、可调谐半导体激光吸收光谱技术(TDLAS)测量CH4、N2O浓度。仪器外形小巧便携,方便获取多个不同点位的数据,完成不同空间与高度限值的测量要求,支持长期、连续、准确的测量。主要应用于土壤碳通量监测、森林碳通量监测、温室气体排放监测、空气质量监测、城市污染气体排放监测、固定污染源排放监测;高校关于环境科学、农业学与林业学相关研究等。(据测量场景不同可选配多款型号气体测量室)土壤碳通量分析仪技术参数(二)大气环境涡度协方差测量系统涡度协方差(又称涡动相关法)技术是测量和计算大气边界层内垂直湍流通量的重要大气测量技术。大气环境涡度协方差测量系统结合多款气体分析仪与超声风速仪,模块化设计,外形小巧,安装灵活。相互无干扰,专为高空监测而设计。通过对微气象中的三维风速与气体浓度进行精确测量,完成对生态系统与大气之前湍流交换的监测,即时收集流动畸变数据。适用于边界层气象研究、生态系统温室气体含量监测、野外大气监测、碳水循环研究、空气通量研究、遥感数据验证等。图左:开路式(CO2/H2O)气体分析仪图中:开路式(CH4)气体分析仪图右:三维超声风速仪大气环境涡度协方差测量系统技术参数二、发动机排放检测解决方案内燃机工业是我国重要基础产业,也是节能减排的重点领域。近年来,我国已经颁布和实施了GB 18352.6-2016(轻型车国六)、GB 17691-2018(重型车国六)和GB 20891-2014的2020年修改单(非道路移动机械国四)等移动源新生产车排放法规以及GB 18285-2018(汽油车)、GB 3847-2018(柴油车)和GB 36886-2018(非道路移动机械)等在用车排放法规。其中引领内燃机行业技术发展的是新生产车排放法规,该法规体系中要求的高精度发动机排放检测设备,主要包括全流稀释排放测试系统和便携式排放测试系统,目前都是主要依赖国外进口产品。由于设备构成十分复杂且涉及多项高精度测量技术,进口设备往往十分昂贵,全流稀释排放测试系统单套价格通常会达到数百万元甚至是千万元以上,便携式排放测试系统单套价格也通常会达到百万元以上。进口设备不仅价格贵,还存在供货周期长、使用成本高等问题,显然不能完全满足我国作为内燃机产销第一大国的实际需求。湖北锐意依托气体成分流量仪器仪表研发平台基础优势,结合近20年发动机排放分析仪研发经验,吸收国际先进应用经验,对关键技术进行攻关突破,战略性加大投入,成功研发了全流稀释排放测试系统、便携式排放测试系统以及非常规气体分析仪等全系列产品,具有技术先进、功能齐全、测量准确、性能稳定、兼容性强和高效服务等特点,可满足科研机构、制造企业和检测机构等国内外用户的各种应用需求。(一)全流稀释排放测试系统基于全流稀释排放测试系统的实验室标准工况排放测试是我国移动源排放法规体系中被广泛采用的标准方法,湖北锐意针对性开发了Gasboard-9802发动机排放全流稀释定容采样系统(CVS)及其配套的Gasboard-9801发动机排放测试系统。Gasboard-9801发动机排放测试系统结合高精度氢火焰离子化检测技术(HFID)、紫外差分吸收光谱技术(UV-DOAS)、非分光红外技术(NDIR)、长寿命电化学传感器技术(ECD)与凝结核粒子计数技术(CPC),同时测量发动机排气中THC、NOx、CO、CO2、O2等气体体积浓度及颗粒物数量浓度,其超低量程同时具备准确性高和响应速度快的特点,完全满足排放法规技术要求以及实际应用需求。Gasboard-9802发动机排放全流稀释定容采样系统(CVS)具有功能齐全、准确性高和自动化程度高等特点,适用于轻型车、重型车和非道路移动机械等各种移动源国家排放法规,可满足各种工况下不同排量和不同燃料类型内燃机的法规排放测试试验需求。目前,湖北锐意的全流稀释排放测试系统设备已经逐步成功应用于科研机构、发动机制造企业、轻型汽车制造企业、摩托车制造企业及相关检测机构等。Gasboard-9801发动机排放测试系统技术参数应用案例1、 武汉某知名高校醇氢发动机排放测试研究项目2、 常州某大型发动机制造企业实验室排放气体检测项目(二)便携式排放测试系统基于便携式排放测试系统的实际工况车载排放测试是一种更能反映移动源真实排放水平的排放测试方法,已经被我国轻型车、重型车和非道路移动机械排放法规引入作为标准方法的重要补充,正在法规检测和市场监督抽查等应用场景中发挥越来越重要的作用。湖北锐意针对性开发了符合法规要求的Gasboard-9805便携式排放测试系统(PEMS)。该系统采用全自主的核心传感器分析技术,可实现排放物CO、CO2、NO、NO2、THC和PN浓度测量,以及排气流量、GPS数据、环境温湿度、大气压力的测量,并具备测试过程引导、自动计算排放总量、导出测试报告等功能。依托自主搭建的排气质量流量标定系统和颗粒物PN分析仪标定系统等关键标定平台,为便携式排放测试系统的溯源标定和质量检验提供了保障。目前,湖北锐意便携式排放测试系统已经成功应用于科研机构、机动车和非道路移动机械制造企业及相关检测机构等。Gasboard-9805便携式排放测试系统技术参数应用案例1、浙江某大型农用机械制造企业车载排放测试项目(三)非常规气体分析仪发动机尾气中NH3和N2O等非常规气体污染物排放已经成为当前国际研究热点和排放法规检测项目。湖北锐意分别采用高温紫外差分吸收光谱技术(UV-DOAS)和可调谐半导体激光吸收光谱技术(TDLAS)成功开发了发动机原排直采NH3分析仪和N2O分析仪,已应用于新能源发动机研发工作。NH3和N2O分析仪技术参数(四)在用车排放检测系统湖北锐意基于双光束红外(NDIR)、微流红外(NDIR)、非分光紫外(UV-DOAS)等核心气体传感技术,自主研发了包括气体传感器平台、尾气分析仪、透射式烟度计、振动式发动机转速表的在用车排放检测整体解决方案。产品具有高精度、稳定性好,抗干扰能力强等特点,满足: GB 18285-2018,GB 3847-2018,GB 7258-2017,GB 7258-2017,GB 20891-2014等国标以及JJF 1375,JJG 688-2017,HJ 1014-2020等技术要求。产品广泛应用于机动车检测机构、汽车制造厂、汽车修理厂、科研机构、环保执法部门等。三、燃气热值分析解决方案天然气、沼气以及工业生产中可燃气体的高效利用对节能减排具有十分重要的意义。准确测量可燃气体成分及热值并自动优化控制燃烧过程是提高燃烧效率和控制排放污染的重要途经。天然气等碳氢燃料的气体成分分析主要依赖气相色谱法,但该方法的响应时间达90s以上,往往不能满足大多数场合的实时控制应用需求。湖北锐意在气体分析传感器平台优势基础上吸收国际先进的产品设计理念和应用经验,并结合国内应用需求,自主研发了以光谱吸收技术原理为主的一系列气体成分及热值在线测量设备,具有精度高、响应快、功能齐全等特点,可满足石油天然气、沼气、污水气体系统、垃圾填埋、玻璃陶瓷、化工、电厂和内燃机等领域应用。(一)激光拉曼光谱气体分析仪激光拉曼光谱法可以使用一个激光光源同时探测除惰性气体之外的所有气体分子,是一种非常有潜力的过程气体成分在线监测技术。但激光拉曼光谱法的特征信号较弱,一定程度上限制了该技术在气体检测领域的广泛应用。2012年四方光电牵头承担 “激光拉曼光谱气体分析仪的研发与应用”国家重大科学仪器设备开发专项,解决了检测信号弱等诸多难题,成功开发了LRGA-6000激光拉曼光谱气体分析仪。设备融合10项授权发明专利,通过对仪器的发生装置、收集装置、探测装置等核心硬件进行激光功率增加、气体压力提高、作用光程增长、散射光大范围收集等技术创新,以及采用基于Ar基底自动扣除、基于标定气体干扰自动修正等激光拉曼特有的软件算法,消除环境温度、压力、干扰气体等对被测气体的影响,实现了对低密度过程气体的高精度监测,已广泛应用于天然气、乙烯裂解气、生物质燃气、变压器油溶解气、煤化工等各大领域。在热值监测领域,激光拉曼光谱技术具有突出优势。以往旧式热值仪往往只能监测总碳氢化合物的热值总量且易受水分影响,而湖北锐意激光拉曼光谱气体分析仪可以分别监测显示各组分热值,采用的特征指纹谱技术具有极强的抗干扰能力。在气体监测领域可取代气相色谱(GC)与质谱(MS):LRGA-6000激光拉曼光谱气体分析仪技术参数LRGA-3100激光拉曼光谱气体分析仪技术参数应用案例1、武汉某大型轧钢厂加热炉热值监测项目2、 非洲某大型天然气开采监测项目(二)煤气分析仪(便携型)湖北锐意煤气分析仪可同时监测8种气体浓度并自动计算显示煤气/天然气热值,且多组分同时测量无交叉干扰。据以往用户使用案例的监测结果统计来看,湖北锐意煤气分析仪在热值监测方面平均为用户节省约10%的燃烧热能,此数据反应到庞大的工业产量基数上,为用户企业节省了十分可观的燃料成本。湖北锐意红外气体分析技术包含公司授权专利12项。其中消除交叉气体干扰技术集成非分光红外气体传感器(针对CO、CO2、CH4和CnHm检测)、热导H2传感器以及电化学O2传感器,并通过软件进行修正得到准确的八组分浓度数据并计算热值。基于该技术开发的煤气分析仪能够与昂贵的在线气相色谱仪作用相当,省却了载气等长期耗材,并具备热值分析功能。主要应用于煤化工、钢铁冶金等领域的煤气成分及热值测量、高校科研院所的气体取样分析以及新能源行业的气体成分测量等。Gasboard-3100P煤气分析仪技术参数应用案例1、抚顺某石油化工研究院生物质原料热解实验室检测项目(三)便携红外天然气热值分析仪天然气作为一种新型清洁燃料也是一种混合气体,不同气源生产的天然气组分会有所不同,在天然气用作燃料时,因组分不同导致其热值出现差异。目前无论是工业还是民用,都对天然气具有依赖性。对燃烧过程中气体浓度及热值的连续监测,可精确了解天然气的燃烧效率,对于降低企业生产成本、改善大气环境、实现可持续经济发展等具有积极作用。湖北锐意便携式红外天然气热值分析仪可同时测量多种气体浓度,并自动计算天然气热值,可取代燃烧法热值仪。相较于适用于高校与职业院校教学科研/实验实训、燃气具生产企业、燃气计量检测部门、节能监测部门、环保和配气等行业、天然气公司、液化气厂、液化气站等。Gasboard-3110P便携式红外天然气热值分析仪技术参数
  • 湖北锐意推出碳通量气体检测、发动机排放检测及燃气热值分析等高端气体分析仪器
    9月28日,中国人民银行宣布为贯彻落实国务院常务会议关于支持经济社会发展薄弱领域设备更新改造的决策部署,设立了2000亿元以上设备更新改造专项再贷款,政策面向教育、实训基地、节能降碳改造升级、新型基础设施等十大领域。四方光电股份有限公司(688665.SH)旗下全资子公司湖北锐意自控系统有限公司(以下简称“湖北锐意”)是一家专业提供气体成分及流量测量方案的高新技术企业,基于四方光电核心气体传感技术平台的优势,开发了系列非分光红外(NDIR)、非分光紫外(NDUV)、紫外差分吸收光谱(UV-DOAS)、激光拉曼(LRD)、超声波(Ultrasonic)、热导(TCD)、光散射探测(LSD)等技术原理的气体成分流量仪器仪表,产品广泛应用于环境监测、冶金、煤化工、生物质能源等各个行业。湖北锐意针对国家政策以及当前研究热点问题,选择碳通量气体检测、发动机排放检测及燃气热值分析三个重点方向,推荐以下行业解决方案。一、碳通量气体检测解决方案实现“碳达峰”“碳中和”是国家做出的重大战略决策。通过监测数据可以预测未来的气候变化趋势和评价生态系统碳循环对全球变化的响应与适应特征,为“双碳”目标的达成提供参考数据,为现代地球系统科学、生态与环境科学关注的重大科学问题提供研究依据。碳通量在线监测网络主要包含土壤温室气体通量测量和大气环境涡度协方差测量系统两种方法。湖北锐意依托气体分析传感器平台优势,分别开发了土壤碳通量分析仪与大气环境涡度协方差测量系统。(一)土壤碳通量分析仪土壤生态系统中的碳元素主要是通过土壤呼吸来实现碳循环,对土壤呼吸过程中CO2释放量的准确监测是评价生态系统中碳汇过程的关键。通量测定法是最为常用的测定方法,即直接测定土壤和大气间的CO2交换量,也是评价土壤生态系统碳循环过程的关键。国家正在积极推动“双碳”政策,碳监测为碳计量提供准确的基础数据。垃圾填埋场、污水处理厂和煤矿等区域的无组织碳排放是碳监测的难点之一。土壤碳通量分析仪利用非分光红外气体分析技术(NDIR)测量CO2浓度、可调谐半导体激光吸收光谱技术(TDLAS)测量CH4、N2O浓度。仪器外形小巧便携,方便获取多个不同点位的数据,完成不同空间与高度限值的测量要求,支持长期、连续、准确的测量。主要应用于土壤碳通量监测、森林碳通量监测、温室气体排放监测、空气质量监测、城市污染气体排放监测、固定污染源排放监测;高校关于环境科学、农业学与林业学相关研究等。(据测量场景不同可选配多款型号气体测量室)土壤碳通量分析仪技术参数(二)大气环境涡度协方差测量系统涡度协方差(又称涡动相关法)技术是测量和计算大气边界层内垂直湍流通量的重要大气测量技术。大气环境涡度协方差测量系统结合多款气体分析仪与超声风速仪,模块化设计,外形小巧,安装灵活。相互无干扰,专为高空监测而设计。通过对微气象中的三维风速与气体浓度进行精确测量,完成对生态系统与大气之前湍流交换的监测,即时收集流动畸变数据。适用于边界层气象研究、生态系统温室气体含量监测、野外大气监测、碳水循环研究、空气通量研究、遥感数据验证等。图左:开路式(CO2/H2O)气体分析仪图中:开路式(CH4)气体分析仪图右:三维超声风速仪大气环境涡度协方差测量系统技术参数二、发动机排放检测解决方案内燃机工业是我国重要基础产业,也是节能减排的重点领域。近年来,我国已经颁布和实施了GB 18352.6-2016(轻型车国六)、GB 17691-2018(重型车国六)和GB 20891-2014的2020年修改单(非道路移动机械国四)等移动源新生产车排放法规以及GB 18285-2018(汽油车)、GB 3847-2018(柴油车)和GB 36886-2018(非道路移动机械)等在用车排放法规。其中引领内燃机行业技术发展的是新生产车排放法规,该法规体系中要求的高精度发动机排放检测设备,主要包括全流稀释排放测试系统和便携式排放测试系统,目前都是主要依赖国外进口产品。由于设备构成十分复杂且涉及多项高精度测量技术,进口设备往往十分昂贵,全流稀释排放测试系统单套价格通常会达到数百万元甚至是千万元以上,便携式排放测试系统单套价格也通常会达到百万元以上。进口设备不仅价格贵,还存在供货周期长、使用成本高等问题,显然不能完全满足我国作为内燃机产销第一大国的实际需求。湖北锐意依托气体成分流量仪器仪表研发平台基础优势,结合近20年发动机排放分析仪研发经验,吸收国际先进应用经验,对关键技术进行攻关突破,战略性加大投入,成功研发了全流稀释排放测试系统、便携式排放测试系统以及非常规气体分析仪等全系列产品,具有技术先进、功能齐全、测量准确、性能稳定、兼容性强和高效服务等特点,可满足科研机构、制造企业和检测机构等国内外用户的各种应用需求。(一)全流稀释排放测试系统基于全流稀释排放测试系统的实验室标准工况排放测试是我国移动源排放法规体系中被广泛采用的标准方法,湖北锐意针对性开发了Gasboard-9802发动机排放全流稀释定容采样系统(CVS)及其配套的Gasboard-9801发动机排放测试系统。Gasboard-9801发动机排放测试系统结合高精度氢火焰离子化检测技术(HFID)、紫外差分吸收光谱技术(UV-DOAS)、非分光红外技术(NDIR)、长寿命电化学传感器技术(ECD)与凝结核粒子计数技术(CPC),同时测量发动机排气中THC、NOx、CO、CO2、O2等气体体积浓度及颗粒物数量浓度,其超低量程同时具备准确性高和响应速度快的特点,完全满足排放法规技术要求以及实际应用需求。Gasboard-9802发动机排放全流稀释定容采样系统(CVS)具有功能齐全、准确性高和自动化程度高等特点,适用于轻型车、重型车和非道路移动机械等各种移动源国家排放法规,可满足各种工况下不同排量和不同燃料类型内燃机的法规排放测试试验需求。目前,湖北锐意的全流稀释排放测试系统设备已经逐步成功应用于科研机构、发动机制造企业、轻型汽车制造企业、摩托车制造企业及相关检测机构等。Gasboard-9801发动机排放测试系统技术参数应用案例1、 武汉某知名高校醇氢发动机排放测试研究项目2、 常州某大型发动机制造企业实验室排放气体检测项目(二)便携式排放测试系统基于便携式排放测试系统的实际工况车载排放测试是一种更能反映移动源真实排放水平的排放测试方法,已经被我国轻型车、重型车和非道路移动机械排放法规引入作为标准方法的重要补充,正在法规检测和市场监督抽查等应用场景中发挥越来越重要的作用。湖北锐意针对性开发了符合法规要求的Gasboard-9805便携式排放测试系统(PEMS)。该系统采用全自主的核心传感器分析技术,可实现排放物CO、CO2、NO、NO2、THC和PN浓度测量,以及排气流量、GPS数据、环境温湿度、大气压力的测量,并具备测试过程引导、自动计算排放总量、导出测试报告等功能。依托自主搭建的排气质量流量标定系统和颗粒物PN分析仪标定系统等关键标定平台,为便携式排放测试系统的溯源标定和质量检验提供了保障。目前,湖北锐意便携式排放测试系统已经成功应用于科研机构、机动车和非道路移动机械制造企业及相关检测机构等。Gasboard-9805便携式排放测试系统技术参数应用案例1、浙江某大型农用机械制造企业车载排放测试项目(三)非常规气体分析仪发动机尾气中NH3和N2O等非常规气体污染物排放已经成为当前国际研究热点和排放法规检测项目。湖北锐意分别采用高温紫外差分吸收光谱技术(UV-DOAS)和可调谐半导体激光吸收光谱技术(TDLAS)成功开发了发动机原排直采NH3分析仪和N2O分析仪,已应用于新能源发动机研发工作。NH3和N2O分析仪技术参数(四)在用车排放检测系统湖北锐意基于双光束红外(NDIR)、微流红外(NDIR)、非分光紫外(UV-DOAS)等核心气体传感技术,自主研发了包括气体传感器平台、尾气分析仪、透射式烟度计、振动式发动机转速表的在用车排放检测整体解决方案。产品具有高精度、稳定性好,抗干扰能力强等特点,满足: GB 18285-2018,GB 3847-2018,GB 7258-2017,GB 7258-2017,GB 20891-2014等国标以及JJF 1375,JJG 688-2017,HJ 1014-2020等技术要求。产品广泛应用于机动车检测机构、汽车制造厂、汽车修理厂、科研机构、环保执法部门等。三、燃气热值分析解决方案天然气、沼气以及工业生产中可燃气体的高效利用对节能减排具有十分重要的意义。准确测量可燃气体成分及热值并自动优化控制燃烧过程是提高燃烧效率和控制排放污染的重要途经。天然气等碳氢燃料的气体成分分析主要依赖气相色谱法,但该方法的响应时间达90s以上,往往不能满足大多数场合的实时控制应用需求。湖北锐意在气体分析传感器平台优势基础上吸收国际先进的产品设计理念和应用经验,并结合国内应用需求,自主研发了以光谱吸收技术原理为主的一系列气体成分及热值在线测量设备,具有精度高、响应快、功能齐全等特点,可满足石油天然气、沼气、污水气体系统、垃圾填埋、玻璃陶瓷、化工、电厂和内燃机等领域应用。(一)激光拉曼光谱气体分析仪激光拉曼光谱法可以使用一个激光光源同时探测除惰性气体之外的所有气体分子,是一种非常有潜力的过程气体成分在线监测技术。但激光拉曼光谱法的特征信号较弱,一定程度上限制了该技术在气体检测领域的广泛应用。2012年四方光电牵头承担 “激光拉曼光谱气体分析仪的研发与应用”国家重大科学仪器设备开发专项,解决了检测信号弱等诸多难题,成功开发了LRGA-6000激光拉曼光谱气体分析仪。设备融合10项授权发明专利,通过对仪器的发生装置、收集装置、探测装置等核心硬件进行激光功率增加、气体压力提高、作用光程增长、散射光大范围收集等技术创新,以及采用基于Ar基底自动扣除、基于标定气体干扰自动修正等激光拉曼特有的软件算法,消除环境温度、压力、干扰气体等对被测气体的影响,实现了对低密度过程气体的高精度监测,已广泛应用于天然气、乙烯裂解气、生物质燃气、变压器油溶解气、煤化工等各大领域。在热值监测领域,激光拉曼光谱技术具有突出优势。以往旧式热值仪往往只能监测总碳氢化合物的热值总量且易受水分影响,而湖北锐意激光拉曼光谱气体分析仪可以分别监测显示各组分热值,采用的特征指纹谱技术具有极强的抗干扰能力。在气体监测领域可取代气相色谱(GC)与质谱(MS):LRGA-6000激光拉曼光谱气体分析仪技术参数LRGA-3100激光拉曼光谱气体分析仪技术参数应用案例1、武汉某大型轧钢厂加热炉热值监测项目2、 非洲某大型天然气开采监测项目(二)煤气分析仪(便携型)湖北锐意煤气分析仪可同时监测8种气体浓度并自动计算显示煤气/天然气热值,且多组分同时测量无交叉干扰。据以往用户使用案例的监测结果统计来看,湖北锐意煤气分析仪在热值监测方面平均为用户节省约10%的燃烧热能,此数据反应到庞大的工业产量基数上,为用户企业节省了十分可观的燃料成本。湖北锐意红外气体分析技术包含公司授权专利12项。其中消除交叉气体干扰技术集成非分光红外气体传感器(针对CO、CO2、CH4和CnHm检测)、热导H2传感器以及电化学O2传感器,并通过软件进行修正得到准确的八组分浓度数据并计算热值。基于该技术开发的煤气分析仪能够与昂贵的在线气相色谱仪作用相当,省却了载气等长期耗材,并具备热值分析功能。主要应用于煤化工、钢铁冶金等领域的煤气成分及热值测量、高校科研院所的气体取样分析以及新能源行业的气体成分测量等。Gasboard-3100P煤气分析仪技术参数应用案例1、抚顺某石油化工研究院生物质原料热解实验室检测项目(三)便携红外天然气热值分析仪天然气作为一种新型清洁燃料也是一种混合气体,不同气源生产的天然气组分会有所不同,在天然气用作燃料时,因组分不同导致其热值出现差异。目前无论是工业还是民用,都对天然气具有依赖性。对燃烧过程中气体浓度及热值的连续监测,可精确了解天然气的燃烧效率,对于降低企业生产成本、改善大气环境、实现可持续经济发展等具有积极作用。湖北锐意便携式红外天然气热值分析仪可同时测量多种气体浓度,并自动计算天然气热值,可取代燃烧法热值仪。相较于适用于高校与职业院校教学科研/实验实训、燃气具生产企业、燃气计量检测部门、节能监测部门、环保和配气等行业、天然气公司、液化气厂、液化气站等。Gasboard-3110P便携式红外天然气热值分析仪技术参数
  • 制备型OEM检测器是一种按照客户需求定制生产的检测设备
    制备型OEM检测器是一种按照客户需求定制生产的检测设备。它通常由原始设备制造商根据客户的要求进行设计、制造和集成,并配备相应的传感器、控制电路和数据处理系统等组件。该仪器可以用于检测各种物质或参数,如气体浓度、温度、湿度、压力等。   制备型OEM检测器的工作原理通常基于传感器技术。传感器是检测器的核心组件,通过感知目标物质或参数的变化并将其转化为电信号,从而实现检测和测量。常见的传感器类型包括化学传感器、光学传感器、电化学传感器等,具体选择取决于所需检测的物质特性和应用环境。   该仪器具有许多优点和应用价值。首先,由于其可定制化的设计,可以满足不同领域和应用的特殊需求。客户可以根据自己的要求选择适当的传感器类型、测量范围、输出信号等参数,以实现精确和可靠的检测结果。   其次,制备型OEM检测器通常具有较小的体积和便携性,方便携带和使用。这使得它们广泛应用于移动检测、户外环境监测、个人安全保护等场景。例如,在环境保护领域,该仪器可以用于检测空气质量、水质污染等 在工业领域,可以用于监测生产过程中的气体浓度、温度等参数。   此外,该仪器还具有高度的可靠性和稳定性。由于其经过原始设备制造商的严格质量控制和测试,因此可以确保检测结果的准确性和一致性。这对于一些对检测结果要求较高的应用,如医疗诊断、生命科学研究等,尤为重要。   总结起来,制备型OEM检测器是一种定制化、高精度的检测设备,通过传感器技术实现对特定物质或参数的检测和测量。其具有可定制性强、体积小、便携性好、可靠性高等优点,广泛应用于环境监测、工业控制、医疗诊断等领域。随着科技的不断进步,制备型OEM检测器在更多领域的应用前景将会更加广阔。
  • 2011年上半年上市仪器新品:气体检测仪
    气体检测仪主要用来检测气体环境中存在的CO、SO2、HCL、NOX、H2S、甲醛、氨气、O2、H2、CO2 、CH4、SO2、N2O、微生物、颗粒物等物质的种类与含量,包括尾气检测仪、烟气分析仪、在线自动气体监测系统、粉尘测定仪等种类。  目前市场主流的气体检测仪供应商既有四方光电、武汉天虹、上海秀中、聚光科技、上海宝英、中科天融、北京华云等国产厂商,也有捷锐、仕富梅、德图仪器、赛默飞世尔科技、TSI、豪迈等国外公司。  2011年上半年,共有5台气体检测仪在仪器信息网上发布。英国仕富梅集团有限公司推出了DF-760E氧分析仪,澳大利亚Ecotech公司UoW FTIR 多要素温室气体分析仪在中国上市,武汉四方光电科技有限公司发布了GASBOARD-3000在线红外烟气分析仪,而青岛高科技工业园雷博电子仪器厂的7010-TDLAS气体监控系统、1060恶臭气体检测仪两款新品也相继上市。  各类产品更多详细内容见如下各分类,排名不分先后。  英国仕富梅集团有限公司 DF-760E氧分析仪(上市时间:2011年1月)  DF-760E氧分析仪可单独测量,或是与Delta F NanoTrace氧分析仪组合在同一个的19”机架上进行测量。  仪器特点:  1.采用了基于高精度、高性能TDLAS湿度分析的行业标准O2分析技术,对O2和湿度分析水平能达到ppt级,且分析速度快;  2.分析过程不会消耗阳极、没有漂移,不需频繁的校准。武汉四方光电科技有限公司 GASBOARD-3000在线红外烟气分析仪(上市时间:2011年1月)  基于气体对红外光吸收的郎伯--比尔吸收定律,采用最新的NDIR技术,该仪器实现烟气成分中不同浓度SO2、NO、CO、CO2、O2气体的高精度连续检测。适用于锅炉、窑炉尾气污染物成分及燃烧效率监控,水泥生产线工艺及安全监控,以及CEMS系统配套。  仪器特点:  1.采用国际先进的微流红外气体分析技术,实现低浓度烟气测试;  2.采用水分修正技术,消除了气态水对SO2、NO的干扰;  3.采用恒温及温度修正技术,消除了环境温度的影响,采用自动校准技术,减少了人工维护成本。青岛高科技工业园雷博电子仪器厂 7010-TDLAS气体监控系统(化工园区无组织排放源监控系统)(上市时间:2011年1月)  7010-TDLAS气体监控系统较好地解决了传统采样气体分析系统的不足,满足了高炉炼铁过程中连续实时分析过程气体浓度的需要。  仪器特点:  1.综合利用激光可调制(TDLAS)、紫外差分吸收光谱(DOAS)等激光光学及光谱学气体检测技术、GIS/GPS技术、无线通讯技术、计算机网络等先进技术;  2.可扩充性:设计上采用规范的数据和通讯接口,满足将来其它工业园区业务升级的需要;  3.兼容性:保护用户的已有投资,确保系统向上和向下两个方向的兼容性。青岛高科技工业园雷博电子仪器厂 1060恶臭气体检测仪(上市时间:2011年1月)  1060恶臭气体检测仪基于氨气、三甲氨、硫化氢、甲硫醇、甲硫醚、二甲二硫、二硫化碳、苯乙烯等恶臭气体在185-360nm紫外区域的强吸收特征光谱,选用进口的高分辨率的微型光谱仪,结合嵌入式单板机控制技术由雷博光电精心设计的高分辨率低探测限的恶臭气体监测仪,可以连续监测工矿企业的无组织排放源排放的上述气体的实时浓度。  仪器特点:  1.采用董氏吸收池,光路长达20-30m,大大提高检测分辨率;  2.检测项目多,可根据顾客要求添加标准分子谱图,增加监测项目;  3.结构设计合理,即可作为便携式仪器使用,也可自动在线连续监测。澳大利亚Ecotech公司 UoW FTIR 多要素温室气体分析仪(上市时间:2011年6月)(代理商:北京赛克玛环保仪器有限公司)  UoW FTIR 多要素温室气体分析仪采用多光程——傅里叶红外变换(FTIR)光谱测量解析技术和高性能红外检测元器件,结合了完善的控制软件系统,可实现多种功能。  仪器特点:  1.同时在线测量多种温室气体的浓度和同位素丰度,应用方式广泛、多样;  2.全自动运行,可遥控,维护成本低、消耗量少,适于长期连续观测;  3.也可根据用户需求,改变地相应的配置,测量其他种类的痕量气体。  此外,美国英思科公司于2011年6月推出一款用于便携式气体检测仪的即插即用式自动管理系统,它具备自动处理标定、通气测试、仪器固件升级以及设置报警限值等功能。   了解更多气体检测仪,请浏览仪器信息网气体检测仪栏目。  了解更多新品,请访问仪器信息网新品栏目。  关于申报新品   凡是“网上仪器展厂商”都可以随时免费申报最新上市的仪器,所有经审批通过的新品将在仪器信息网“新品栏目”、“网上仪器展”、“仪器信息网首页”等进行多方位展示 一些申报材料齐全、有特色的新品还将被推荐到《仪器快讯》杂志上进行刊登 越早申报的新品,将获得更多的展示机会。
  • 全国温室气体自愿减排交易市场正式启动:温室气体监测仪器厂商的机遇与挑战
    2024年1月22日,全国温室气体自愿减排交易市场正式启动,这标志着新全国温室气体自愿减排项目体系(新CCER项目体系)的建设迈出了重要一步。这一举措将对温室气体监测仪器厂商产生深远影响。 温室气体监测的背景和现状随着气候问题日益严峻,自愿减排量对于企业实现其气候和环境目标具有重要意义。企业在制定发展战略时,需要购买高质量的CCER等碳信用来抵销难以减排的部分排放,这将成为企业实现其气候和环境目标的必要手段。然而,碳信用的质量问题一直备受争议,因此高质量的碳信用监测和认证变得尤为重要。对温室气体监测仪器厂商的影响 全国温室气体自愿减排交易市场的启动将对温室气体监测仪器厂商产生积极影响。首先,随着自愿减排交易市场的正式启动,对高质量碳信用的需求将大幅增加。企业将更加重视碳信用的质量,因此对于温室气体监测厂商来说,提供高质量的监测和认证服务将成为市场需求的重要方向。其次,新CCER项目体系的建设将促使温室气体监测仪器厂商加强自身的监测技术和认证标准。为了满足市场对高质量碳信用的需求,仪器厂商需要不断提升监测技术水平,确保监测数据的准确性和可信度。同时,仪器厂商还需要建立严格的认证标准和流程,以确保所提供的碳信用符合高质量的要求。 宁波海尔欣光电科技有限公司宁波海尔欣光电科技有限公司成立于 2014 年,专注量子级联(QC Laser-based)激光产品多领域应用服务,是集研发、生产、销售于一体的高科技公司。其“昕甬智测"品牌产品覆盖气体检测系统整机、数据服务平台、终端用户应用解决方案,广泛应用于光谱科研、生态气象、工业碳中和等领域,已为全球 200+客户提供了解决方案,并受到英国、加拿大、荷兰等国家用户的高度认可。未来,随着全国温室气体自愿减排交易市场的不断发展,海尔欣昕甬智测将面临更多的机遇和挑战。我们将不断提升自身的技术实力和服务水平,以适应市场的需求变化,为企业和社会提供更加可靠的碳信用监测和认证服务。同时,我们也会积极参与行业标准的制定和完善,推动整个行业向着更加规范和高效的方向发展。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制