当前位置: 仪器信息网 > 行业主题 > >

金属材料检测

仪器信息网金属材料检测专题为您提供2024年最新金属材料检测价格报价、厂家品牌的相关信息, 包括金属材料检测参数、型号等,不管是国产,还是进口品牌的金属材料检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合金属材料检测相关的耗材配件、试剂标物,还有金属材料检测相关的最新资讯、资料,以及金属材料检测相关的解决方案。

金属材料检测相关的资讯

  • 金属材料检测或试验标准汇总
    p    span style=" color: rgb(0, 112, 192) " strong 金属材料化学成分分析 /strong /span /p p   GB/T 222—2006钢的成品化学成分允许偏差 /p p   GB/T 223.X系列钢铁及合金X含量的测定 /p p   GB/T 4336—2002碳素钢和中低合金钢火花源原子发射光谱分析方法(常规法) /p p   GB/T 4698.X系列海绵钛、钛及钛合金化学分析方法X量的测定 /p p   GB/T 5121.X系列铜及铜合金化学分析方法第X部分:X含量的测定 /p p   GB/T 5678—1985铸造合金光谱分析取样方法 /p p   GBT 6987.X系列铝及铝合金化学分析方法& amp #823& amp #823 /p p   GB/T 7999—2007铝及铝合金光电直读发射光谱分析方法 /p p   GB/T 11170—2008不锈钢多元素含量的测定火花放电原子发射光谱法(常规法) /p p   GB/T 11261—2006钢铁氧含量的测定脉冲加热惰气熔融-红外线测定方法 /p p   GB/T 13748.X系列镁及镁合金化学分析方法第X部分X含量测定& amp #823& amp #823 /p p    span style=" color: rgb(0, 112, 192) " strong 金属材料物理冶金试验方法 /strong /span /p p   GB/T 224—2008钢的脱碳层深度测定法 /p p   GB/T 225—2006钢淬透性的末端淬火试验方法(Jominy 试验) /p p   GB/T 226—2015钢的低倍组织及缺陷酸蚀检验法 /p p   GB/T 227—1991工具钢淬透性试验方法 /p p   GB/T 1954—2008铬镍奥氏体不锈钢焊缝铁素体含量测量方法 /p p   GB/T 1979—2001结构钢低倍组织缺陷评级图 /p p   GB/T 1814—1979钢材断口检验法 /p p   GB/T 2971—1982碳素钢和低合金钢断口检验方法 /p p   GB/T 3246.1—2012变形铝及铝合金制品组织检验方法第1部分显微组织检验方法 /p p   GB/T 3246.2—2012变形铝及铝合金制品组织检验方法第2部分低倍组织检验方法 /p p   GB/T 3488—1983硬质合金显微组织的金相测定 /p p   GB/T 3489—1983硬质合金孔隙度和非化合碳的金相测定 /p p   GB/T 4236—1984钢的硫印检验方法 /p p   GB/T 4296—2004变形镁合金显微组织检验方法 /p p   GB/T 4297—2004变形镁合金低倍组织检验方法 /p p   GB/T 4334—2008金属和合金的腐蚀不锈钢晶间腐蚀试验方法 /p p   GBT 4335—2013低碳钢冷轧薄板铁素体晶粒度测定法 /p p   GB/T 4334.6—2015不锈钢5%硫酸腐蚀试验方法 /p p   GB/T 4462—1984高速工具钢大块碳化物评级图 /p p   GB/T 5058—1985钢的等温转变曲线图的测定方法(磁性法) /p p   GB/T 5168—2008α-β钛合金高低倍组织检验方法 /p p   GB/T 5617—2005钢的感应淬火或火焰淬火后有效硬化层深度的测定 /p p   GB/T 8359—1987高速钢中碳化物相的定量分析X射线衍射仪法 /p p   GB/T 8362—1987钢中残余奥氏体定量测定X射线衍射仪法 /p p   GB/T 9450—2005钢件渗碳淬火硬化层深度的测定和校核 /p p   GB/T 9451—2005钢件薄表面总硬化层深度或有效硬化层深度的测定 /p p   GB/T 10561—2005钢中非金属夹杂物含量的测定标准评级图显微检验法 /p p   GB/T 10851—1989铸造铝合金针孔 /p p   GB/T 10852—1989铸造铝铜合金晶粒度 /p p   GB/T 11354—2005钢铁零件渗氮层深度测定和金相组织检验 /p p   GB/T 13298—2015金属显微组织检验方法 /p p   GB/T 13299—1991钢的显微组织检验方法 /p p   GB/T 13302—1991钢中石墨碳显微评定方法 /p p   GB/T 13305—2008不锈钢中α-相面积含量金相测定法 /p p   GB/T 13320—2007钢质模锻件金相组织评级图及评定方法 /p p   GB/T 13825—2008金属覆盖层黑色金属材料热镀锌单位面积称量法 /p p   GB/T 13912—2002金属覆盖层钢铁制件热浸镀层技术要求及试验方法 /p p   GB/T 14979—1994钢的共晶碳化物不均匀度评定法 /p p   GB/T 15711—1995钢材塔形发纹酸浸检验方法 /p p   GB/T 30823—2014测定工业淬火油冷却性能的镍合金探头试验方法 /p p   GB/T 14999.1—2012高温合金试验方法第1部分:纵向低倍组织及缺陷酸浸检验 /p p   GB/T 14999.2—2012高温合金试验方法第2部分:横向低倍组织及缺陷酸浸检验 /p p   GB/T 14999.3—2012高温合金试验方法第3部分:棒材纵向断口检验 /p p   GB/T 14999.4—2012高温合金试验方法第4部分:轧制高温合金条带晶粒组织和一次碳化物分布测定 /p p   YB/T 4002—2013连铸钢方坯低倍组织缺陷评级图 /p p    strong span style=" color: rgb(0, 112, 192) " 金属材料力学性能试验方法 /span /strong /p p   GB/T 228.1—2010金属材料拉伸试验第一部分:室温试验方法 /p p   GB/T 228.2—2015金属材料拉伸试验第2部分:高温试验方法 /p p   GB/T 229—2007金属材料夏比摆锤冲击试验方法 /p p   GB/T 230.1—2009金属材料洛氏硬度试验第1部分:试验方法(A、B、C、D、E、F、G、H、K、N、T标尺) /p p   GB/T 231.1—2009金属材料布氏硬度试验第1部分:试验方法 /p p   GB/T 232—1999金属材料弯曲试验方法 /p p   GB/T 233—2000金属材料顶锻试验方法 /p p   GB/T 235—2013金属材料薄板和薄带反复弯曲试验方法 /p p   GB/T 238—2013金属材料线材反复弯曲试验方法 /p p   GB/T 239.1—2012金属材料线材第1部分:单向扭转试验方法 /p p   GB/T 239.2—2012金属材料线材第2部分:双向扭转试验方法 /p p   GB/T 241—2007金属管液压试验方法 /p p   GB/T 242—2007金属管扩口试验方法 /p p   GB/T 244—2008金属管弯曲试验方法 /p p   GB/T 245—2008金属管卷边试验方法 /p p   GB/T 246—2007金属管压扁试验方法 /p p   GB/T 1172—1999黑色金属硬度及强度换算值 /p p   GB/T 2038—1991金属材料延性断裂韧度JIC试验方法 /p p   GB/T 2039—2012金属材料单轴拉伸蠕变试验方法 /p p   GB/T 2107—1980金属高温旋转弯曲疲劳试验方法 /p p   GB/T 2358—1994金属材料裂纹尖端张开位移试验方法 /p p   GB/T 2975—1998钢及钢产品力学性能试验取样位置及试样制备 /p p   GB/T 3075—2008金属材料疲劳试验轴向力控制方法 /p p   GB/T 3250—2007铝及铝合金铆钉线与铆钉剪切试验方法及铆钉线铆接试验方法 /p p   GB/T 3251—2006铝及铝合金管材压缩试验方法 /p p   GB/T 3252—1982铝及铝合金铆钉线与铆钉剪切试验方法 /p p   GB/T 3771—1983铜合金硬度和强度换算值 /p p   GB/T 4156—2007金属材料薄板和薄带埃里克森杯突试验 /p p   GB/T 4158—1984金属艾氏冲击试验方法 /p p   GB/T 4160—2004钢的应变时效敏感性试验方法(夏比冲击法) /p p   GB/T 4161—2007金属材料平面应变断裂韧度KIC试验方法 /p p   GB/T 4337—2008金属材料疲劳试验旋转弯曲方法 /p p   GB/T 4338—2006金属材料高温拉伸试验方法 /p p   GB/T 4340.1—2009金属材料维氏硬度试验第1部分:试验方法 /p p   GB/T 4340.2—2012金属材料维氏硬度试验第2部分:硬度计的检验与校准 /p p   GB/T 4340.3—2012金属材料维氏硬度试验第3部分:标准硬度块的标定 /p p   GB/T 4341.1—2014金属材料肖氏硬度试验第1部分:试验方法 /p p   GB/T 5027—2007金属材料薄板和薄带塑性应变比(r值)的测定 /p p   GB/T 5028—2008金属材料薄板和薄带拉伸应变硬化指数(n值)的测定 /p p   GB/T 5482—2007金属材料动态撕裂试验方法 /p p   GB/T 6398—2000金属材料疲劳裂纹扩展速率试验方法 /p p   GB/T 6400—2007金属材料线材和铆钉剪切试验方法 /p p   GB/T 7314—2005金属材料室温压缩试验方法 /p p   GB/T 7732—2008金属材料表面裂纹拉伸试样断裂韧度试验方法 /p p   GB/T 7733—1987金属旋转弯曲腐蚀疲劳试验方法 /p p   GB/T 10120—2013金属材料拉伸应力松弛试验方法 /p p   GB/T 10128—2007金属材料室温扭转试验方法 /p p   GB/T 10622—1989金属材料滚动接触疲劳试验方法 /p p   GB/T 10623—2008金属材料力学性能试验术语 /p p   GB/T 12347—2008钢丝绳弯曲疲劳试验方法 /p p   GB/T 12443—2007金属材料扭应力疲劳试验方法 /p p   GB/T 12444—2006金属材料磨损试验方法试环-试块滑动磨损试验 /p p   GB/T 12778—2008金属夏比冲击断口测定方法 /p p   GB/T 13239—2006金属材料低温拉伸试验方法 /p p   GB/T 13329—2006金属材料低温拉伸试验方法 /p p   GB/T 14452—1993金属弯曲力学性能试验方法 /p p   GB/T 15248—2008金属材料轴向等幅低循环疲劳试验方法 /p p   GB/T 15824—2008热作模具钢热疲劳试验方法 /p p   GB/T 16865—2013 变形铝、镁及其合金加工制品拉伸试验用试样及方法 /p p   GB/T 17104—1997金属管管环拉伸试验方法 /p p   GB/T 17394.1—2014金属材料里氏硬度试验第1部分试验方法 /p p   GB/T 17394.2—2012金属材料里氏硬度试验第2部分:硬度计的检验与校准 /p p   GB/T 17394.3—2012金属材料里氏硬度试验第3部分:标准硬度块的标定 /p p   GB/T 17394.4—2014金属材料里氏硬度试验第4部分硬度值换算表 /p p   GB/T 17600.1—1998钢的伸长率换算第1部分:碳素钢和低合金钢 /p p   GB/T 17600.2—1998钢的伸长率换算第2部分奥氏体钢 /p p   GB/T 26077—2010金属材料疲劳试验轴向应变控制方法 /p p   GB/T 22315—2008金属材料弹性模量和泊松比试验方法 /p p    strong span style=" color: rgb(0, 112, 192) " 金属材料无损检测方法 /span /strong /p p   GB/T 1786—2008锻制圆饼超声波检验方法 /p p   GB/T 2970—2004厚钢板超声波检验方法 /p p   GB/T 3310—1999铜合金棒材超声波探伤方法 /p p   GB/T 4162—2008锻轧钢棒超声检测方法 /p p   GB/T 5097—2005无损检测渗透检测和磁粉检测观察条件 /p p   GB/T 5126—2001铝及铝合金冷拉薄壁管材涡流探伤方法 /p p   GB/T 5193—2007钛及钛合金加工产品超声波探伤方法 /p p   GB/T 5248—2008铜及铜合金无缝管涡流探伤方法 /p p   GB/T 5616—2014无损检测应用导则 /p p   GB/T 5777—2008无缝钢管超声波探伤检验方法 /p p   GB/T 6402—2008钢锻件超声检测方法 /p p   GB/T 6519—2013变形铝、镁合金产品超声波检验方法 /p p   GB/T 7233.1—2009超声波检验第1部分:一般用途铸钢件 /p p   GB/T 7233.2—2010铸钢件超声检测第2部分:高承压铸钢件 /p p   GB/T 7734—2004复合钢板超声波检验 /p p   GB/T 7735—2004钢管涡流探伤检验方法 /p p   GB/T 7736—2008钢的低倍缺陷超声波检验法 /p p   GB/T 8361—2001冷拉圆钢表面超声波探伤方法 /p p   GB/T 8651—2002金属板材超声波探伤方法 /p p   GB/T 8652—1988变形高强度钢超声波检验方法 /p p   GB/T 9443—2007铸钢件渗透检测 /p p   GB/T 9445—2015无损检测人员资格鉴定与认证 /p p   GB/T 10121—2008钢材塔形发纹磁粉检验方法 /p p   GB/T 11259—2015无损检测超声检测用钢参考试块的制作和控制方法 /p p   GB/T 11260—2008圆钢涡流探伤方法 /p p   GB/T 11343—2008无损检测接触式超声斜射检测方法 /p p   GB/T 11345—2013焊缝无损检测超声检测技术、检测等级和评定 /p p   GB/T 11346—1989铝合金铸件X射线照相检验针孔(圆形)分级 /p p   GB/T 12604.1—2005无损检测术语超声检测 /p p   GB/T 12604.2—2005无损检测术语射线照相检测 /p p   GB/T 12604.3—2005无损检测术语渗透检测 /p p   GB/T 12604.5—2008无损检测术语磁粉检测 /p p   GB/T 12604.6—2008无损检测术语涡流检测 /p p   GB/T 12604.7—2014无损检测术语泄漏检测 /p p   GB/T 12604.8—1995无损检测术语中子检测 /p p   GB/T 12604.9—2008无损检测术语红外检测 /p p   GB/T 12604.10—2011无损检测术语磁记忆检测 /p p   GB/T 12604.11—2015无损检测术语X射线数字成像检测 /p p   GB/T 12605—2007无损检测金属管道熔化焊环向对接接头射线照相检测 /p p   GB/T 12966—2008铝合金电导率涡流测试方法 /p p   GB/T 12969.1—2007钛及钛合金管材超声波探伤方法 /p p   GB/T 12969.2—2007钛及钛合金管材涡流探伤方法 /p p   GB/T14480.1—2015无损检测仪器涡流检测设备第1部分:仪器性能和检验 /p p   GB/T 14480.2—2015无损检测仪器涡流检测设备第2部分:探头性能和检验 /p p   GB/T 14480.3—2008无损检测涡流检测设备第3部分系统性能和检验 /p p   GB/T 15822.1—2005无损检测磁粉检测第1部分:总则 /p p   GB/T 15822.2—2005无损检测磁粉检测第2部分检测介质 /p p   GB/T 15822.3—2005无损检测磁粉检测第3部分设备 /p p   GB/T 18694—2002无损检测超声检验探头及其声场的表征 /p p   GB/T 18851.1—2005无损检测渗透检测第1部分总则 /p p   GB/T 18851.2—2008无损检测渗透检测第2部分:渗透材料的检验 /p p   GB/T 18851.3—2008无损检测渗透检测第3部分:参考试块 /p p   GB/T 18851.4—2005无损检测渗透检测第4部分设备 /p p   GB/T 18851.5—2005无损检测渗透检测第5部分验证方法 /p p   GB/T 19799.1—2005无损检测超声检测1号校准试块 /p p   GB/T 19799.2—2005无损检测超声检测2号校准试块 /p p   GB/T 23911—2009无损检测渗透检测用试块 /p p    strong span style=" color: rgb(0, 112, 192) " 金属材料腐蚀试验方法 /span /strong /p p   GB/T 1838—2008电镀锡钢板镀锡量试验方法 /p p   GB/T 1839—2008钢产品镀锌层质量试验方法 /p p   GB/T 10123—2001金属和合金的腐蚀基本术语和定义 /p p   GB/T 13303—1991钢的抗氧化性能测定方法 /p p   GBT 15970.X系列金属和合金的腐蚀应力腐蚀试验第X部分 /p p br/ /p
  • 我国首个国产自研飞机金属材料检测实验室在疆投运
    2月4日,我国首个国产自研飞机金属材料检测实验室在位于乌鲁木齐市的南航技术分公司新疆基地正式投运。这不仅是民航业内首次在该领域使用国产自研高精尖检测仪器,同时也打破西方长期以来技术垄断,提升航班运行安全。  该实验室采用国产第三代国仪钨灯丝扫描电镜设备,在不拆解核心机械部件情况下,可以把飞机内部微小颗粒和碎屑进行30万倍电子放大,快速了解飞机健康状况。工程师正在操作仪器检查金属微粒。张洁 摄  南航技术分公司新疆基地技术培训室工程师吕首杰介绍:“该实验室通过对飞机‘血液’内细微金属颗粒尺寸、形状及表面特征形貌进行分析,从而确定磨损、剪切、断裂等成因,并使用能谱仪分析合金各类金属组成比例,判断碎屑具体来源,综合检测结果,快速了解飞机健康状况”。  实验室建立之前,飞机金属碎屑要运送到广州、北京等地进行检测,整个过程耗时2天,不仅耗时长,而且也限制着航班正常运行。随着实验室投运,工程师在3个小时内就能获取详细检测报告,旅客出行更加便捷可靠。  除了金属检测实验室,针对飞机健康监控,南航还有多种“黑科技”。比如基于大数据的南航“天瞳”系统,工程师在地面就可以对飞机进行实时跟踪,获得各系统状态多种参数,针对不同参数给出方案,提高维护效率,并通过大量历史数据进行分析预判,找出关键部件的发展趋势,提前发现问题,进行预防性维护。再比如运用AI人工智能设备,维护人员定期对飞机进行孔探检查,使用内窥镜探测飞机内部结构,判断内部扇叶等结构是否存在问题,并借助人工智能设备自动判断测量损伤,减少人工孔探的误差。
  • 常州非金属材料防火检测实验室获国家认证
    常州非金属材料防火检测实验室获国家认证 全省唯一   记者昨天(13日)从戚墅堰区发改局了解到,常州金标轨道交通技术服务有限公司的非金属材料防火检测实验室,已正式通过中国合格评定国家认可委员会(CNAS)的认可评审。   该实验室的质量管理体系和检测技术能力得到了国家权威机构的认可,其出具的相关检测报告同时也得到了与CNAS签署互认协议的国家和地区认可机构的承认。   常州金标轨道交通技术服务有限公司成立于2011年,由南德意志集团、常州西南交通大学轨道交通研究院和常州市生产力促进中心投资成立,是专业从事检测服务的第三方实验室,主要从事对轨道交通车辆及部件有特殊安全要求的产品进行检测,并出具检测报告等工作。经过近2年的建设,该公司拥有国内外主要阻燃检测设备30多台套,出具的检测报告在国际实验室认可合作组织(ILAC)和亚洲与太平洋实验室认可合作组织(APLAC)成员内获得互认。   这也是江苏省目前在非金属材料阻燃检测方面首获认可的唯一实验室。
  • 飞纳用户专访 - CTI 华测检测谈金属材料失效分析
    华测检测认证集团股份有限公司成立于 2003 年,总部位于深圳,是第三方检测与认证服务的开拓者和领先者,中国检测认证行业首家上市公司(股票代码:300012),为全球客户提供一站式测试、检验、认证、计量、审核、培训及技术服务,致力于在政府、企业和消费者之间传递信任,以“为品质生活传递信任”为使命,全面保障品质与安全,推动合规与创新,实现更健康、更安全、更环保的高质量发展。华测检测认证集团股份有限公司中心材料实验室能够为工业材料领域提供全方位的材料检测、无损检测、失效分析、质量评定和安全评估等服务,适用于金属、高分子等各类原材料以及紧固件、机械零部件、塑料、橡胶等各类成品。近日,我们有幸采访到 CTI 华测检测杭州中心材料实验室,主要负责金属失效分析的温洪波工程师,结合在测试分析中的实际案例,为我们分享了金属材料失效分析的思路和方法,我们一起来看看吧。 失效分析工程师 温洪波Q1. 飞纳电镜 :目前造成金属件失效的主要原因有哪些? 温工 :通常原材料问题、后续加工工艺和热处理不当、金属件工作时受力状况及其工作环境等,都会造成金属件的失效。比如原材料内生和铸造过程中产生的不同类型的夹杂物;工艺不当时会产生裂纹、折叠、过烧等缺陷,以及机加工表面粗糙度较大造成应力集中、热处理不当造成的金相异常、内应力过大、电镀涂层造成的氢脆等;由接触应力导致的磨损、剥落等,这些都是常见的失效方式。Q2. 飞纳电镜 :您在进行失效分析时的一般流程是怎样的呢? 温工 :通常当我们对金属件进行失效分析时,会进行宏观观察、微观检测、化学成分定量检测、金相组织观察以及显微硬度检测等,并结合综合受力状态进行综合分析并得出失效结论。其中作为失效分析必不可少的一个环节,想要确定断裂机制、裂纹局部扩展途径、确认裂纹源以及对异常点进行成分定性分析时,就必须借助扫描电镜来进行微观层面的检测。Q3. 飞纳电镜 :有没有常见的金属材料失效分析的案例分享呢? 温工 :比如外球笼螺纹在装配过程中锁紧螺母时发生断裂,如果客户想要对失效产品进行相应的改进,就必须要找出断裂的微观机制,进而找出产品失效原因。宏观分析图 1 为外球笼螺纹处断裂示意图,在第 2 螺纹处发生断裂,断口匹配不太紧密,存在少量变形。图 2 为其断口宏观形貌,整个断口分为两个区域。区域 A 较光亮,存在发亮的小刻面,为脆性断裂;区域 B 较粗糙,呈现暗黑色,有断后磨损所致的光亮地带,扩展方向如图中黄色箭头所示,图中红色方框为终断区,存在 45° 的剪切唇,因此区域 B 为塑性断裂。根据断口细小的弧形纹路及 A、B 区域断裂特征判断,外球笼在断裂时受扭转力作用,断裂起始于 A 区域。图 1 外球笼螺纹处断裂示意图图 2 断口宏观形貌微观分析在这个失效分析案例中,我们对处理好的样品进行微观机制的探究时,使用飞纳大仓室扫描电镜 Phenom XL G2 可以快速地对断口进行微观形貌观察,以及对断口异常区域进行能谱分析。对外球笼螺纹处断口的 A 区域、B 区域进行微观分析,区域 A 微观形貌为河流花样,为典型的解理形貌。区域 B 微观形貌主要由韧窝 + 珠光体片组成。区域 A - 断裂起始区区域 B - 心部扩展区区域 B - 边缘扩展区区域 B - 终断区再结合失效件的成分分析、金相分析和硬度分析结果,可以综合判断出外球笼螺纹处内部存在孔洞及裂缝,因而产生严重的应力集中,造成锁紧螺母时发生断裂。CTI 华测检测向客户提供详细的分析报告Q4. 飞纳电镜 :目前使用下来,您觉得飞纳电镜怎么样? 温工 :飞纳电镜是我们进行微观层面失效分析的有力工具,对于我们快速判断裂纹机制,寻找裂纹源非常重要。这台设备抽真空不到 30 秒,并且操作很简单,可以自动消磁/消像散,Revisit 样品位置一键回溯、自由切换低真空模式等,对各类样品的检测都非常便捷,基本上只需要几分钟就可以完成一个样品的微观测试。Q5. 飞纳电镜 :当初为什么会选择飞纳电镜呢? 温工 :像我们这样综合性的第三方检测机构,平时接收的样品量很大,种类多样,飞纳电镜对于我们而言,不仅是帮助我们完成了微观形貌和成分的测试,更大的价值是这台扫描电镜提高了我们的检测效率,因其操作简便,缩短了我们的培训时间,节省了我们学习成本,对我们帮助很大。目前 CTI 华测检测杭州中心材料实验室的金属失效分析服务可以涵盖汽车零部件、精密零部件、模具制造、铸锻焊、热处理、表面防护等多类金属相关行业,同时包括机械性能、化学成分分析、金相分析等丰富的金属材料检测服务,欢迎大家问询和参观。
  • 中国金属材料产品质量分析检测大会,南京滨正红仪器赞助参展
    南京滨正红仪器有限公司专业研发、生产、销售痕量、超痕量分析器皿。产品质量可与国外品牌相媲美。为促进我国金属材料领域产品质量技术进步,优化制造流程与产品的过程控制,推动关键技术、核心装备和重大产品创新,促进在相关领域的产业化应用,发挥科研院所、高等院校资源与技术优势,搭建产、学、研、用技术对接与合作平台。在中国有色金属学会的指导下,由广东省工业分析检测中心(广东省科学院)、国家钢铁材料测试中心(钢铁研究总院)、国家轻金属质量监督检验中心(中国铝业郑州有色金属研究院有限公司)、轻质高强结构材料国防科技重点实验室(中南大学)联合主办,北方中冶(北京)工程咨询有限公司承办的“中国金属材料产品质量分析检测大会”已于 2019 年 6 月 19 日-21 日在广东省广州市隆重召开 大会现在南京滨正红展示多了个实验室新品,深受广大实验者老师的青睐!多功能电热板消解仪,耐腐蚀,四氟柱脚,分体式设计电源线套有PFA管畅销产品:特制特氟龙消解器皿,微波罐,消解瓶,消化罐,烧杯,坩埚南京滨正红真诚希望能与每位老师的合作共赢!
  • 新型金属材料光电磁检测仪器产业化项目通过验收
    3月31日,由中国钢研科技集团有限公司(简称中国钢研)纳克分析仪器有限公司承担的新型金属材料光电电磁检测仪器高技术产业化示范工程项目验收会在永丰高技术产业基地召开。   参加验收会的有北京市发改委领导、五位行业专家以及公司负责人等。与会专家在听取了项目实施情况的详细汇报后认真查阅了项目验收报告,并在现场参观了生产线的产品生产以及研发情况之后,对项目的实施情况给与了较高的评价:该项目成功研制了世界首台商品化金属原位分析仪,国内首台应用于火车车轮在役电磁超声探伤仪,国内首台动态冲击试验机并实现了产业化生产,其中的金属原位分析仪获得国家发明二等奖,项目建设和研发过程中取得多项专利、发表多篇论文。项目圆满完成了申报书中的各项目标,为促进国产高技术检测仪器具有很好的示范作用。   中国钢研利用自身在分析检测仪器技术方面的研发优势和很强的转化能力,借助国家支持,目前在金属材料分析检测技术和仪器研发生产方面取得很大发展,已经成为我国测试仪器研发和产业化的成功案例之一。
  • 线上开讲:我国金属材料常规力学性能检测技术的现状及发展
    力学性能试验是对材料的各种力学性能指标进行测定的一门试验学科。试验所获得的强度、韧性和变形等性能参数,对于工程设计应用和材料研究都具有很重要的参考价值,很多场合直接以试验结果为使用依据。现阶段,材料力学性能检测试验机已被广泛应用于钢铁、造船、电气、机械制造、钢构、航空航天、港口机械、建筑、大学科研院所、质量监督检验第三方检测机构等。在我国各种类型的材料试验室里,试验机数量庞大,种类齐全、高中低档皆有。8月16日,中国仪器仪表学会试验机分会副秘书长乐金涛将于第二届试验机与试验技术网络研讨会期间分享报告,介绍我国金属材料常规力学性能检测技术的现状及发展,以期帮助大家深入了解我国试验机技术发展态势。关于第二届试验机与试验技术网络研讨会为帮助业内人士了解试验技术发展现状、掌握前沿动态、学习相关应用知识,仪器信息网携手中国仪器仪表行业协会试验仪器分会于2023年8月16日组织召开第二届“试验机与试验技术”网络研讨会,搭建产、学、研、用沟通平台,邀请领域内科研与应用专家围绕试验机行业发展、试验技术研究、试验技术应用等分享报告,欢迎大家参会交流。会议详情链接:https://www.instrument.com.cn/webinar/meetings/testingmachine2023
  • 金属材料检测“国家队”钢研纳克创业板上市
    p    strong 仪器信息网讯 /strong 2019年11月1日,钢研纳克检测技术有限公司举行了敲钟仪式,在深交所创业板上市,股票简称:钢研纳克,证券代码为“300797”。中国钢研科技集团有限公司领导,中国钢研干勇院士、王海舟院士,钢研纳克高管,以及各方代表、嘉宾出席挂牌敲钟仪式,共同见证了钢研纳克敲响开市宝钟的重要时刻。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/f2f566e8-e0a8-4999-ba0e-b11119f85d9d.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/d82ccb7b-fc4d-4500-8590-e576ae71456b.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center " 敲钟仪式 br/ /p p   钢研纳克成立于2001年3月,于2017年12月整体变更为股份有限公司。公司控股股东为中国钢研科技集团有限公司,实际控制人为国务院国资委。钢研纳克是专业从事金属材料检测技术的研究、开发和应用的创新型企业。目前公司提供的主要服务或产品包括第三方检测服务、检测分析仪器、标准物质/标准样品、能力验证服务、腐蚀防护工程与产品,以及其他检测延伸服务。 /p p   钢研纳克此次创业板上市,公开发行股票数量不超过6205万股,占发行后公司总股本的比例不低于25%,新股募集资金总额2.79亿元,自今日起开始上市交易。 /p p   钢研纳克2019年1-9月实现营业收入37,674.61万元,较上年同期增长14.45% 实现归属于发行人股东的净利润5,178.25万元,较上年同期增长47.64% 实现扣除非经常性损益后归属于发行人股东的净利润4,170.48万元,较上年同期增长 52.42%。2019年1-9月,营业利润、利润总额、归属于发行人股东的净利润和扣除非经常性损益后归属于发行人股东的净利润均呈现较大增幅,其主要因素包括:公司第三方检测服务增长 研发费用与2018年1-9月基本持平,已维持较大的基数。 /p p   上市敲钟的前一天,钢研纳克组织召开了“新材料产业高质量发展学术报告会”。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/0c45f692-f22c-46b7-b65b-397b5d2a66f5.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: center " 特邀报告:制造强国基础要素及基础能力提升 /p p style=" text-align: center " 报告人:中国工程院院士 干勇 /p p   干勇院士在报告中介绍了我国新材料行业发展现状、与国际先进水平的差距,以及中国制造业迈向中高端所面临的问题,并介绍了我国新材料领域未来发展方向和目标等发展战略。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/f98d63e0-a808-4352-91f3-7f3505200428.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p style=" text-align: center " 特邀报告:新材料产业高质量发展的质量基础支撑战略 /p p style=" text-align: center " 报告人:中国工程院院士 王海舟 /p p   王海舟院士报告中分享了我国新材料产业高质量发展的质量基础支撑战略,全方位分析了新材料领域标准化体系建设的现状以及未来发展方向。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/e3af6723-9cd4-470b-b323-055a859949a7.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p style=" text-align: center " 报告:聚焦需求,创新驱动发展——钢研纳克创新之路 /p p style=" text-align: center " 报告人:钢研纳克检测技术股份有限公司 董事长 高宏斌 /p p   高宏斌在报告中回顾了钢研纳克的发展历程,并对未来进行了展望。钢研纳克的发展可分为三个阶段:第一阶段,肩负使命、铸就辉煌(1952-2001年),钢研纳克成为了国内金属材料检测领域业务门类最齐全、综合实力最强的测试表征研究机构之一 第二阶段,不忘初心、开拓进取(2001-2019年),钢研纳克以需求为引领不断创新,仪器核心技术不断取得突破,金属原位分析仪等国际首创仪器问世 加大科技投入,已拥有专利198项 同时,钢研纳克也不断向新领域迈进,创建中国能力验证体系、建立中国材料与试验标准体系等 第三阶段,继往开来、砥砺前行(2019年~),今天钢研纳克在创业板上市,开启了新的征程,向着5-10年成为具有国际影响力的材料表征评价认证的权威机构和综合解决方案提供者、15年时间成为测试仪器装备领域有影响力的国际竞争参与者的目标前行。 /p p br/ /p
  • 创业板IPO|金属材料检测商钢研纳克明日首发上会
    p    strong 仪器信息网讯 /strong 证监会12日消息,钢研纳克检测技术股份有限公司(以下简称“钢研纳克”)明日(9月19日)首发上会。 br/ /p p   钢研纳克拟于深交所创业板上市,计划公开发行新股不超过6205万股,拟募集资金2.58亿元,分别用于钢研纳克江苏检测技术研究院有限公司分析检测、仪器生产项目、成都检测实验室建设项目、材料评价创新能力建设项目、营销与服务云平台项目。 /p p    strong 关于钢研纳克 /strong /p p style=" text-align: left text-indent: 2em " img style=" max-width: 100% max-height: 100% width: 200px height: 81px " src=" https://img1.17img.cn/17img/images/201909/uepic/da60f272-6369-4b68-b03a-bd4b67abcb78.jpg" title=" 00.jpg" alt=" 00.jpg" width=" 200" height=" 81" border=" 0" vspace=" 0" / /p p   钢研纳克是专业从事金属材料检测技术的研究、开发和应用的创新型企业。 /p p   目前公司提供的主要服务或产品包括第三方检测服务、检测分析仪器、标准物质/标准样品、能力验证服务、腐蚀防护工程与产品,以及其他检测延伸服务。公司服务和产品主要应用于钢铁、冶金、有色、机械、航空航天、高铁、核电、汽车、新材料、环境、食品、石化等领域。 /p p   钢研纳克控股股东为中国钢研。中国钢研是国务院国资委直接管辖的中央企业,是我国冶金行业大型综合性研究开发和高新技术产业化机构,是国家首批103家创新型企业试点单位之一,是我国金属新材料研发基地、冶金行业重大关键与共性技术的创新基地。 /p p   国务院国资委持有中国钢研100%股权。公司实际控制人为国务院国资委。 /p p   钢研纳克拟于深交所创业板上市,保荐机构为安信证券。钢研纳克计划公开发行新股不超过6205万股,拟募集资金2.58亿元,其中1.68亿元用于钢研纳克江苏检测技术研究院有限公司分析检测、仪器生产项目、4000万元用于成都检测实验室建设项目、2000万元用于材料评价创新能力建设项目、3000万元用于营销与服务云平台项目。 /p p style=" text-align: center " img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201909/uepic/52df56da-1a76-49d8-8559-032077678947.jpg" title=" 1.jpg" alt=" 1.jpg" / /p
  • 溯源新型金属材料全球顶尖实验室
    传统的金属材料历史源远流长。在我国古代,一种新型金属材料的出现往往是一个新时代开启的标志,如石器时代后,出现了铜器时代、铁器时代。   在当代社会,金属材料不仅在日常生活中随处可见,先进金属材料更是汽车、军事、航空航天、3D打印等高端领域中扮演着极其重   目前全球新型金属材料的研究,特种金属功能材料和高端金属结构材料是两大主流方向。我国新材料产业&ldquo 十二五&rdquo 规划也将这两种材料作为重点发展方向。   总体而言,金属材料领域全球范围内研究实力较为均匀。美国、欧洲并驾齐驱,其中美国在军事、航空航天领域更为出色,德国、英国等欧洲国家作为老牌工业强国,同样掌握着话语权。此外,欧洲还在3D打印领域占据先机。   中国、日韩等亚太地区则迎头赶上。目前,我国的3D打印钛合金大型零件研究已经走在世界最前沿,日本则在核电用钢的研究方面一枝独秀。   美国实验室   美国是传统的军事、航空航天和汽车工业强国,其在金属材料的研究优势也主要体现在这几个领域。   在国家实验室方面,除了世界鼎鼎有名的橡树岭国家实验室、劳伦斯伯克利国家实验室、阿贡国家实验室、国家航空航天局(NASA)设有专门的研究金属材料团队之外,还有一些并不耳熟能详但是在高端金属研究领域极具地位的研究所,其中包括美国金属加工技术国家中心(NCEMT)、美国国家增材制造创新研究所。   其中,美国国家增材制造创新研究所成立于2012年10月,是美国为了巩固其在3D打印领域的优势而成立的。目前该研究所至少拥有85家公司、13所研究型大学、9个社区学院和18个非营利机构,成员组织机构庞大。   美国大学对金属材料的研究以基础研究为主,主要分成两大类:一类是麻省理工学院、西北大学、加州大学圣芭芭拉分校、伊利诺伊大学香槟分校、斯坦福大学、康奈尔大学、哈佛大学、宾夕法尼亚大学等传统的材料科学工程研究顶尖院校,这些著名高校在金属材料这个分支的研究实力都比较强。   日前,来自麻省理工学院的材料工程系的迈克尔· 戴姆克维兹教授和研究生徐国强在一项金属特性实验中意外发现受损的金属也具有自我修复的功能,并通过计算机模型重现了这一修复机制。这一发现,意味着可以自我修复的金属材料的面世已经指日可待。   另一类是康涅狄格大学、密歇根理工大学、田纳西大学、奥本大学、新墨西哥矿业技术学院、密苏里大学-罗拉分校、普渡大学、凯斯西储大学、密歇根州立大学、伍斯特理工学院等一些材料科学总体排名略差的大学,但这些学校在金属材料领域的研究并不比MIT等名校逊色。   在公司研究室方面,最为典型的代表无疑是波音公司和通用电气公司。其中,通用电气全球研发中心下面专门设有一个增材制造实验室,团队有600名工程师,其目标则是在2020年之前制造出10万个增材零件,利用增材制造的产品让每个飞机引擎减少1000磅。目前,通用电气公司使用了超过300件的3D打印器材。   欧日韩实验室   欧洲作为现代工业革命的发源地,在金属材料的研究和发展方面一直走在世界前沿。   大学实验室方面,英国的曼彻斯特大学冶金系、伯明翰大学冶金和材料分校、剑桥大学材料科学和冶金系、诺丁汉大学和巴斯大学等都是在全球范围较早进行金属材料研究的院校。   在德国大学中,埃尔兰根-纽伦堡大学和拜罗伊特大学金属材料系是这一领域最杰出的代表。其中,埃尔兰根-纽伦堡大学是一所建立于1742年的综合性大学,该校材料学科是第一批进入德国优势学科建设领域,设有金属材料加工研究所、特种金属材料研究所、金属科学与技术研究所等。   此外,奥地里莱奥本大学物理冶金和材料测试系、瑞典皇家技术学院材料科学与工程系、俄罗斯莫斯科国立钢铁合金学院冶金系、芬兰赫尔辛基理工大学物理冶金和材料科学实验室等在金属材料的研究上也比较突出。   日本在金属材料方面的研究优势则主要体现在汽车工业和核电用钢方面。东京大学材料科学与冶金系、大阪大学工程系、京都大学钢铁研究所、日本东北大学等在金属材料方面的研究比较出色。   其中,日本东北大学的金属材料学世界排名第一,附属的金属材料研究所始建于1916年4月,该研究所先后有两位金属材料领域的科学家获得诺贝尔奖,分别是1987年开发扫描隧道显微镜的海因里奇· 罗雷尔和2007年发现巨磁电阻效应皮特· 克鲁伯格。   在国家实验室方面,德国的马普协会和弗劳恩霍夫协会、法国国家科学研究中心、瑞典金属研究所、荷兰金属研究所、英国国家物理实验室以及日本国立材料研究所等金属材料研究都比较出名。   公司实验室方面,作为汽车工业大国的德国、日本和韩国,大众、宝马、奔驰、保时捷、丰田、本田、日产、现代等汽车公司都有自己的材料实验室,这些公司对金属零部件各项指标检测和质量认证要求近乎苛刻。   当然还有空中客车公司。这是在超大型客机的研发上目前唯一能和美国波音公司竞争的企业。   中国实验室   中国对传统金属材料的研发已有数千年历史,在新型金属材料方面自然没有被落下。在国内,金属材料研究领域最权威的机构是中科院金属所。   中科院金属所主要的六大科研机构全面覆盖新型金属材料,包括沈阳材料科学国家(联合)实验室、金属腐蚀与防护国家重点实验室、沈阳先进材料研究发展中心、材料环境腐蚀研究中心、国家金属腐蚀控制工程技术研究中心、高性能均质合金国家工程研究中心。   大学实验室方面,目前在国内研究新型金属材料的高校主要的有清华大学、上海交通大学、西北工业大学和华南理工大学。其中,华南理工大学国家金属材料近净成形工程技术研究中心和国家人体组织功能重建工程技术研究中心都属于国家工程技术研究中心。   公司实验室方面,钢铁科技领域的安泰科技、稀土研发领域的包钢稀土、半导体研发领域的路明科技以及高品质特殊钢领域的中联重科研发能力具有代表性。
  • 上海材料研究所金属材料硬度试验培训
    上海材料研究所将开展金属材料硬度试验国家标准方法培训   金属材料的力学性能检验是保证产品质量的重要手段之一。GB/T 230.1-2009《金属材料洛氏硬度试验 第1部分:试验方法(A、B、C、D、E、F、G、H、K、N、T标尺) 》、GB/T 231.1-2009《金属材料布氏硬度试验第1部分:试验方法》、GB/T 4340.1-2009《金属材料维氏硬度试验第1部分:试验方法》将于2010年4月1日实施。为帮助本专业人员对新标准的各项技术规定有全面系统的理解,指导试验人员正确进行试验操作,更好地实施新的国家标准试验方法,中国机械工程学会理化检验分会、国家金属材料质量监督检验中心、上海材料研究所检测中心将联合举办上述三项标准的宣贯培训。   时间:2010年3月18日, 9:00~16:00   地点:香槐园宾馆(上海材料研究所对面)七楼会议室,邯郸路80号   主讲人:王滨(标准主要起草人之一)   联系人:金永祥,电话:021-65556775-251   注:会议提供免费午餐。   中国机械工程学会理化检验分会   国家金属材料质量监督检验中心   上海材料研究所检测中心   2010.3.6 文档下载:www.jiangwenco.com/UploadFiles/20103914210.pdf
  • 考试重点:国家工程实验室(National Engineering Laboratory)如何做金属材料检测?
    内燃机是机械行业中的一个重要细分领域,其已经成为汽车、农业机械、工程机械、船舶、内燃机车、地质和石油钻机、军用、通用设备、移动和备用电站等装备的主要配套动力,对我国工业、农业、交通运输和国防建设以及人民生活都有十分重大的影响。21世纪是科学技术和生产力高度发展的时代,也是充满挑战和机遇的时代,无论是我国还是世界各国工业也都面临着全球环境污染和石油资源匮乏等问题。这对内燃机的动力性能、经济性能、控制废气排放和噪声污染提出了更高的要求。  材料是内燃机设计、品质、质量及竞争力的基础,内燃机技术的发展在很大程度上取决于材料的发展。内燃机发展趋势为:高效、节能、环保,这就要求内燃机生产企业对其零部件材料进行更为严格的把控,这不仅体现在检测手段具有更高的精确度和稳定性,同时材料发展的多样化和多元化也让检测手段必须具备高效性和全面性的特点。  全球最大的独立柴油发动机生产基地以及中国产品型号最齐全的内燃机制造基地——广西玉柴机器集团有限公司始建于1951年,是中国柴油发动机行业名副其实的龙头企业,玉柴以“绿色发展、和谐共赢”为经营思想,通过不断的自主研发和创新,不断缔造着柴油发动机行业神话,同时也一次次打破欧美在柴油发动机核心领域长期垄断的地位。  卓越的产品来自于不断的自主研发创新,同时也来自于对产品每个细节的严格把控,2011年11月,代表我国内燃机行业最高水平的高效节能环保内燃机国家工程实验室(National Engineering Laboratory)正式落户玉柴集团,在其内燃机技术发展中起到了关键性作用。长期以来,实验室致力于成为国内最高标准、最高水平的研发机构,集中解决行业在节能减排、降噪、轻量化、控制技术等方面的共性关键技术,引领全行业的技术进步,提升中国内燃机整体技术水平。一直以来,实验室通过层层筛选严格把控,选购世界一流的试验及检测设备,使其具备先进智能的全面测试手段,满足我国国内目前各种发动机新产品、新技术开发流程试验要求,已经达到国际级研发中心的标准。  2019年,全球首创CMOS全谱直读光谱仪—英国阿朗科技公司 (ARUN™ )ARTUS 10经过层层测试选拔,入驻玉柴内燃机国家工程实验室。汽缸体、活塞及活塞环、曲轴和连杆等关键部位的材料质量直接影响着内燃机性能,实验室对这些部位的材料质量控制十分重视, ARTUS 10 采用CMOS作为检测器,突破了传统CCD检测器的局限性,检测下限可达1PPM,在这种高端精密的金属材料检测需求上具有显著优势。1、气缸体  气缸体作为柴油机中最重要的部件之一,材料应具有良好的综合性能,即良好的强韧性、导热性、耐磨性、耐蚀性、加工工艺性能和经济性。灰铸铁和球墨铸铁由于具有良好的铸造工艺性能和机械性能,优越的耐磨性、减振性和导热性被广泛应用于柴油机气缸体中。ARTUS 10通过先进的脉冲合成光源和高能预燃技术,让光谱仪对于铸铁材料中C元素检测具有极高的精准度(检出限接近1ppm)和稳定性(相对标准偏差2、活塞及活塞环  活塞及活塞环位于发动机的心脏,其工作质量的优劣直接影响发动机的性能,现代柴油机的活塞多采用铝合金材料,其主要优点是质量轻、导热性能好。在铝合金检测中不仅仅需要关注合金元素Mg,Cu、Si的常规测量,同时也对一些添加元素如Be、B及稀土元素提出了更高的检测需求。ARTUS 10通过大焦距双光室结构设计和高刻线光栅极好地实现了铝合金非金属(近紫外波段)元素的稳定测量,让测试结果更为可靠。3、曲轴和连杆  曲轴和连杆是柴油机的脊梁,其各个组成部件材料具有多样性的特点,从低碳合金钢、碳钢到铜合金、镍合金,这就要求光谱仪能够同时满足不同基体材料的测量,ARTUS 10采用全新多块高分辨率CMOS作为检测器和独创的智能分析软件,能实现Fe、Al、Cu、Mg、Zn、Ni等十余种基体的快速测量。ARTUS 10 –卓越的检测性能源自1. 精准稳定的测试结果数字脉冲合成光源、光室恒温系统设计以及采用先进CMOS检测器让ARTUS 10在合金元素分析、微量元素和痕量元素控制方面具有极佳的分辨率和稳定性。完美的光学设计带来了卓越的紫外波段元素分析性能,ARTUS 10能显著提高C、N、P、S测试结果的可靠性。2. 高效全谱测量动态CMOS检测器的创新使用让ARTUS 10实现130nm至870nm的波长范围内全元素精准分析。在元素选择上具有极大的灵活性,扩展灵活方便,能使操作适合未来需要。3.人性化设计理念一键激发按钮让激发快速准确;独特氩气流气路设计使得氩气快速填充的同时让氩气消耗降至最低;实时监测模块设计让操作者准确方便地监测仪器各个模块的运行状态;丰富异形夹具设计满足线材、棒材、薄膜及各类不规则样品的高效测量;智能分析软件和可视化界面让分析结果快速精确的同时更方便使用者的操作。  除了ARTUS 10 在测试中的优异表现之外,英国阿朗科技公司的技术背景也是玉柴内燃机国家工程实验室做出选择的一个重要因素,英国阿朗科技公司成立于20世纪80年代初,成立之初即研发发布了世界上第一台基于CCD技术的直读光谱仪,开拓了直读光谱仪全谱化、小型化、易用化的先驱。阿朗公司至今已服务于金属元素成分分析行业近40年。40年间ARUN™ 公司共推出10多款产品,覆盖现场及实验室金属材料的检测领域,全球用户总数量近20000家 。2018年10月,英国ARUN™ 全新CMOS 检测器的ARTUS 10 直读光谱仪重磅上市,创造性地采用CMOS作为检测器,检测下限可达1 ppm,突破了传统CCD检测器的局限性,实现科研级直读光谱仪的小型化,智能化,是直读光谱仪行业一个划时代的里程碑。ARUN 产品简史1989年发布全球第一台全谱CCD直读光谱仪(ARUN Analoy1401),推出当年便在全世界热销上千台;1992年发布全球第一台便携式CCD直读光谱仪(ARUN M1650);1995年阿朗品牌进入中国;1999年发布里程碑式全谱CCD直读光谱仪(ARUN M2500);2002年发布全球第一台4光室 CCD 全谱直读光谱仪(ARUN POLY S);2015年发布最新一代高性能双光室CCD全谱直读光谱仪(ARTUS 8);2016年中国最大上市分析仪器企业聚光科技与老牌光谱仪公司英国阿朗强强联合,聚光科技入股英国阿朗科技公司;2018年经过38个月的研发测试,发布全球第一台采用CMOS技术的直读光谱仪(ARTUS 10);
  • 钢硏纳克抓机遇“重新”布局金属材料检测业务——访钢研纳克检测技术有限公司副总经理陈吉文博士
    2001年,北京纳克分析仪器有限公司注册成立。   2011年,国家钢铁材料测试中心、国家钢铁产品质量监督检验中心、钢铁研究总院分析测试研究所、国家冶金工业钢材无损检测中心、钢铁研究总院分析测试培训中心、钢铁研究总院青岛海洋腐蚀研究所业务并入北京纳克分析仪器有限公司。   2012年,业务合并后,北京纳克分析仪器有限公司正式更名为钢研纳克检测技术有限公司(以下简称“钢研纳克”)。   目前钢研纳克主体业务涉及第三方检测服务(含金属材料化学成份检测、力学性能检测、材料失效分析、无损检测、计量校准)、分析测试仪器、无损检测仪器与装备的研制和销售、腐蚀防护产品及相关工程、标准物质/样品、检测能力验证等领域。   那么钢研纳克的业务整合究竟是出于怎样的战略思考?在此战略下,钢研纳克的分析仪器业务又有着怎样的发展规划?近日,仪器信息网编辑特别采访了钢研纳克检测技术有限公司副总经理陈吉文博士,请他为我们一一作了解答。钢研纳克检测技术有限公司营销中心市场部经理赵云更先生陪同接受采访。 钢研纳克检测技术有限公司副总经理 陈吉文博士 依托自身优势 提供全方位的金属材料检测解决方案   陈吉文博士介绍说:“任何企业的发展都离不开它的历史,钢研纳克脱胎于钢铁研究总院(现中国钢研科技集团公司)分析测试研究所,一直以来对黑色金属材料检测有着深入的研究和技术积累。此次业务合并之后,和之前相比除了分析仪器、标准物质业务外,我们还纳入了第三方检测业务、防腐产品与工程、检测能力验证等几个业务单元。这些业务在国际上一般都由不同的公司来做,将所有的业务都组合起来的模式目前并没有可借鉴的例子,但我们根据自身多年来的技术积累,以及公司业务发展的需要,打算做第一个吃螃蟹的人。”   “目前,我们的第三方检测业务板块主要由国家钢铁材料测试中心、国家钢铁产品质量监督检验中心构成。国家钢铁材料测试中心是科技部成立的为公众服务的第三方检测机构,国家钢铁产品质量监督检验中心是国家认监委授权、为国家质量监督检验检疫总局提供服务的第三方质量监督检验机构。我们能提供的检测服务包含金属材料化学成份检测、力学性能检测、材料失效分析、无损检测、计量校准等领域。”   “钢硏纳克的全资子公司青岛钢研纳克检测防护技术有限公司是国家海水腐蚀试验网站组长单位和国家大气腐蚀网站重点站、国际标准化组织金属腐蚀委员会(ISO/TC156)在国内的归口单位,主要负责防腐产品与工程业务。研究开发的阴极保护技术和产品、船舶及海洋平台电解防污技术和产品等在许多领域发挥了重要作用。”   “钢硏纳克标准物质业务主要以冶金及金属材料为核心领域,目前我们已经研制各类标准物质/标准样品1000余种,涵盖了全部黑色、部分有色领域的光谱、化学、气体分析用标准物质/标准样品、力学标准样品、标准溶液及消耗品。经过60年的发展,钢研纳克标准物质/标准样品在国内、国际市场上更具影响力和竞争力,销售额多年来一直处于国内行业之首。现已发展成为国内冶金及金属材料领域最大的标准物质/标准样品进出口基地。”   “现在大多数企业都是按照应用行业进行横向的扩展,而我们的目标是依托自身的优势,围绕金属材料检测进行纵向的多元化,努力为金属材料的研究者、生产者、以及使用者提供全方位的整体解决方案。如果客户仅想委托检测,我们可以帮他们出具相应的检测数据 如果客户想自己筹建实验室,那我们现在已经可以做到交钥匙工程,比如筹建不锈钢检测实验室,到底需要配置哪些仪器才能支撑不锈钢的检测,以及提供标准物质、进行人员培训、认证咨询、开发分析方法、进行比对实验等,这种类型的项目我们已经承接了好几家。为客户提供增值服务,帮助用户解决分析测试当中遇到的各种难题,这也是我们未来发展的一个核心竞争力。” 开发新仪器 丰富金属材料分析仪器产品线   未来,钢研纳克的业务发展要围绕金属材料检测进行纵向的多元化,而分析仪器作为钢研纳克业务的重要组成部分将如何发展?采访中陈吉文博士就钢研纳克的仪器业务发展情况作了重点介绍。   陈吉文博士谈到:“钢研纳克分析仪器业务的发展可以追溯到上个世纪80年代末,从最初代理国外产品,到逐步研发自己的产品,截至目前,钢研纳克公司自主生产的产品已经覆盖了光谱仪器、气体分析仪器、材料试验机、无损探伤等多种金属材料分析仪器。目前我们的仪器业务发展规划:一方面是积极拓展新的产品类别,全面布局金属材料分析仪器产品线;另一方面是根据用户需求,通过技术改进,以及同用户及其他科研单位合作开发应用方法等方式不断拓宽原有产品的应用领域和提升市场占有率。”   通过技术改进、开发分析方法 拓宽原有产品的应用领域   “火花直读光谱仪作为钢研纳克的主打产品,自2007年推出以来,销售量连年递增,近三年其业务量连续每年都在以100%-120%的速度增长。在仪器销售的过程中,我们也积极收集用户在使用当中反馈的意见,不断进行技术研发和改进。2011年,我们推出了Lab Spark 1000新型火花直读光谱仪,2012年,钢研纳克又推出Labspark5000型CCD光谱新品。在形成全系列的产品后,这样用户的选择空间更大,针对用户不同的技术和应用需求,我们可以提供不同的仪器。”   陈吉文博士介绍说:“2005年钢硏纳克通过技术攻关推出了世界首创的金属原位分析仪,近期,我们同宝山钢铁股份有限公司合作开发了‘激光诱导烧蚀光谱金属原位分析仪’。在双方的共同努力下,该仪器可应用于钢铁材料大尺度的成分、偏析、夹杂等统计分布信息的高分辨分析、高级汽车钢板表面缺陷的分析与质量控制、各种镀层和表面处理材料的深度分布分析等领域。”   “此外,2009年钢硏纳克推出了全新概念的气体分析仪——脉冲熔融飞行时间质谱,该仪器具有检测限低( 全谱ICP发射光谱仪   对于钢硏纳克ICP光谱仪的研发情况,陈吉文博士介绍说:“在2006年,公司有了研发ICP发射光谱仪的想法,我们首先从系统方法入手,解决了ICP发射光谱仪器应用于冶金材料分析的应用方法研究。这一阶段使我们积累了大量的应用人才,积累了对这一技术的了解,以及在这方面的应用经验。2009年,我们推出了单道扫描型ICP原子发射光谱仪Plasma1000,该类型仪器在某些行业的应用中,对于一定波段的分辨率要求非常高的时候具有很大的优势。但有一个缺点是分析速度比较慢,因此在完成了Plasma1000项目以后,我们紧接着就成立了相应的课题组,开始研发全谱的高分辨ICP光谱仪。”   “目前,我们已经成功的推出了两款全谱ICP发射光谱仪样机,技术方面的问题已经全部攻克了。这两款全谱ICP发射光谱仪采用的是完全不同的技术路线。接近于商品化水平的产品样机将于年内完成,如果顺利预计明年上半年就会推向市场。”   “在产品研发过程中,我们邀请了国内冶金、环保、食品、矿产等领域顶尖的用户参与到我们ICP发射光谱仪的研制当中。我们推出的ICP和其他通用型的ICP不同,我们会更注重它在金属行业应用的特点,例如引入激光烧蚀技术、更加注重在短波段的响应、并对谱线的选择以及干扰校正等都做了特别的设计等。”   谈到对于国产ICP光谱仪的市场前景,陈吉文博士表示:“据我们统计,目前国内ICP光谱仪每年的更新台数在1200台,国产仪器的年销售量最多不过200台。这种状况和2005年时光电直读光谱仪的市场情况一样,以前90%甚至95%都是进口仪器,但短短的几年,尤其在最近三、四年,进口的光电直读光谱仪市场占有率已经降到了百分之六七十。目前国内开发ICP光谱仪的厂商也不少,这说明国产仪器在用户当中是有市场的,并且大家投入的一点一滴最终都会促进国产仪器的发展,所以我们对于国产ICP光谱仪的市场前景还是充满信心的。”   (2)以用户金属材料分析需求为基础,研发手持式X射线荧光光谱仪   2012年6月,在第十一届中国国际铸造博览会上,钢研纳克展出了最新研制的手持式X射线荧光光谱仪,目前国内X射线荧光光谱仪的市场竞争已经十分激烈,钢研纳克为何还要选择进入这一市场呢? 手持式X射线荧光光谱仪   陈吉文博士介绍说:“钢硏纳克选择研发某种仪器,主要有三个评判原则:一是从技术的前沿性方面进行判断,我们有一个技术委员会,由来自不同行业的专家组成,王海舟院士是我们技术委员会的首席科学家,由委员会集体决策是否立项,另外市场和销售人员也会搜集一些最新信息作为参考意见 第二就是基于钢研纳克的整体发展理念——紧跟用户需求,客户的需求是实实在在的,这是从用户处判断 最后,在某一领域有一定的技术优势。”   “其实并不是我们主动去开发手持式X射线荧光光谱仪,而是我们的客户有需求,虽然现在市场上有很多厂商都可以提供此类仪器,但是在金属材料检测中还有许多问题有待提高,或者售后服务、仪器价格等离用户的期望值太远。目前我们的竞争优势是在仪器研发的后端,其实研发仪器到终端应用还有很长的路要走,摸索最优的分析条件、建立方法、建立标准、以及最后的定义数学模型都需要对分析应用有深入的理解,而我们对于金属材料、尤其是钢铁材料应用的理解是其他企业所无法匹敌的。因此在许多用户提出要求后,我们就开始立项研发了。”   “在仪器研发过程中,我们参考了用户的很多意见。目前市场上X射线荧光光谱仪的能量分辨率在175-185eV,我们要做到130-145eV。在检测器技术、谱图解析技术、以及定量化技术等方面也有所改进。此外,便携式仪器和实验室仪器不一样,不能做太多的校正,因此我们会根据过去在金属分析方面的经验做一些专家型的固判软件,帮助用户去判断如果出现了干扰性的元素和谱图该如何判别,同时我们还开发了一套专业的软件去解谱。”   最后,陈吉文博士表示:“如果想要更好的服务于一个行业,需要对于一个行业从标准到方法、以及客户的实际需求有深刻的理解才能实现,我们将依托钢铁研究总院强大的技术背景和多年累积下来的经验,凭借刻苦钻研的精神,集中精力将金属材料检测这个行业相应的解决方案做的更丰富和全面,为用户提供更好的产品和服务。” 采访现场   采访编辑:秦丽娟   附录1:陈吉文博士个人简历   1971年12月出生,博士学历,教授级高级工程师。钢研纳克检测技术有限公司副总经理,全国仪器分析标准化技术委员会委员,2008年获国家技术发明奖二等奖,2009年获茅以升青年科技奖,2011年获中国青年科技奖。   陈吉文同志是冶金分析领域的青年学科带头人之一。在材料分析测试新方法的研究、材料大型科学测试仪器的研制、科学仪器产业化等领域取得重要成果,对冶金分析技术发展起了推动作用。近5年来,他先后承担和参与10余项国家级科研项目,在材料分析测试技术和仪器开发方面取得了重要的成果。他曾获国家技术发明二等奖一项、中国分析测试协会一等奖一项,北京市科学技术奖二等奖一项,在国内外刊物上发表学术论文10余篇,申请专利10余项,并培养了一批该专业的人才。   在材料分析测试新方法的研究方面,他作为主要研究人员,在国际上首创了金属原位统计分布分析新方法和金属原位分析仪,解决了材料较大尺度范围内不同元素成分分布和状态定量分析的技术难题,并成功应用于“新一代钢铁材料”、“高效连铸连轧”、“新型海军舰船用钢”等一批国家重大研究项目,获得2008年国家技术发明二等奖。   在材料分析仪器研制方面,他组织并承担了“发射光谱改造为夹杂物分析仪”、“火花光谱改造为激光光谱仪”、“直流辉光光谱仪改造为射频辉光光谱仪”、“火花光谱仪改造为油液金属分析仪”等多项科技部科学仪器升级改造项目,并研制出一批具有自主知识产权的新产品。   在材料大型科学测试仪器的研制方面,他通过“十五”国家科技攻关计划重大项目和国家发改委新型材料分析测试仪器产业化项目,实现了金属原位分析仪、火花光谱仪、氧氮分析仪、碳硫分析仪和动态冲击试验机等大型科学仪器的产业化。   附录2:钢硏纳克检测技术有限公司   http://ncs.instrument.com.cn/
  • 易县轨道无损检测协会发布《金属材料超声检测用耦合剂性能检测方法》团体标准公开征求意见稿
    各位专家及有关单位:由易县轨道无损检测协会归口管理,易县轨道无损检测协会等相关单位共同起草的《金属材料超声检测用耦合剂性能检测方法》团体标准已完成征求意见稿。为保证团体标准的科学性、实用性及可操作性,现公开征求意见。请有关单位及专家认真审阅标准文本,对上述标准的征求意见稿(见附件)进行审查和把关,提出宝贵意见和建议,并将意见反馈表(见附件5)于2023年7月20日前以邮件的形式反馈至协会标准化处标准制定组,逾期未回复按无异议处理。联系人:刘永麒 联系电话:13693293668电子邮箱:jhhy202283@163.com 易县轨道无损检测协会2023年6月19日金属材料超声检测用耦合剂性能检测方法--征求意见稿.pdf附件5团体标准征求意见稿反馈表.doc
  • 金属材料元素分析仪器的基本使用
    金属材料元素分析仪器的基本使用 金属材料元素分析仪器可检测普碳钢、低合金钢、高合金钢、生铸铁、钢、铁、有色金属、金属材料、球铁、合金铸铁等多种材料中的Si、Mn、P、Cr、Ni、Mo、Cu、Ti等多种元素。每个元素可储存99条工作曲线,品牌电脑微机控制,全中文菜单式操作。可以满足冶金、机械、化工等行业在炉前、成品、来料化验等方面对材料多元素分析的需要。 金属材料元素分析仪器产品专利号:ZL2008 2 0041074.X 一、仪器的联接与通电 用电源线将主机电源插座与市电连接,并将仪器可靠接地,(否则易受干扰,引起数据波动);检查排液胶管安装是否牢固(不要将放液胶管的出口端没入废液中,以免放液不畅),并向比色杯中注入蒸馏水(参比液),打开仪器电源开关,打开电脑电源,运行QL-1000A应用程序,波长初始化调整。 二、零点输入和满度调整 仪器在日常使用中,需进行调整零点及满度的工作,一般零点不需经常调整,每次开机后调整一次即可。 零点输入:将灵敏度档位切换到档位0,稍等片刻,零点的值将等于满度值,然后将档位切换到档位1。 满度调整:按调满按扭,自动调满。 金属材料元素分析仪器的详细请参考http://www.jqilin.com 南京麒麟分析仪器有限公司技术部
  • 国家认监委对国家金属材料质量监督检验中心授权
    国家认监委日前下发通知,对国家金属材料质量监督检验中心授权。  国家认监委批准国家金属材料质量监督检验中心在授权的检验产品范围内,开展产品质量监督检验业务,业务工作受国家质检总局和国家认监委的监督和指导。检测报告允许使用“CMA”标志。国家金属材料质量监督检验中心的法律责任由你所承担。主要检验产品为金属材料,授权证书编号为:(2009)国认监认字(388)号。  国家认监委要求国家金属材料质量监督检验中心不断提高管理水平和技术能力,保证出具的检验数据公正、科学、准确。(国家认监委办公室、实验室部)
  • 助力电力安全,朗铎科技出席贵州电力2017年金属材料技术监督交流会
    2017年8月29至30日,贵州电力2017年金属材料技术监督交流会在贵阳成功召开。会议主要针对电厂技术监督工作进行总结,宣读了技术监督新标准。并对目前的新材料、新设备的运用进行了介绍,朗铎科技受邀出席本次会议。 朗铎科技贵州区域销售经理在会上做了题为《赛默飞世尔尼通手持式合金分析仪电力行业应用解决方案》的精彩报告,与会人员对赛默飞世尔尼通手持式合金分析仪的性能、科研突破及其在电力无损检测中的实用性、便携性表示了充分的肯定和赞许。几位参会老师亲自操作体验并感慨道:“第一次体验这么快捷又精准的分析仪,我们拿到现场使用也会非常方便!”电力行业的金属监督检验工作至关重要,其涉及到大量相关金属部件的材料鉴别工作,电厂钢种类繁多,耗钢量大,使用条件各异,对设备用钢提出了更高的要求,正确选用重要部件金属材料对安全生产尤为重要。传统的化学方法检验无法适应设备使用现场的材料监督检验需求。 赛默飞世尔尼通手持式合金分析仪具有携带方便、分析快速精准、无损检测等特点,可以对各类金属材料的成分及牌号进行快速无损检测,解决了电力行业中金属材料的错用,误用情况。可在电力行业机组设计、制造、安装、检修、改造等环节中对所需的金属材料进行全面检测分析,并迅速做出精准判断,大幅提升企业的工作效率,降低分析成本,保证电力设备的安全运行。朗铎科技愿与业界人士携手共同致力于中国电力行业的发展,继续倾己之力,为广大电力用户提供更优质、更完善的系统解决方案,为我国电力行业的发展提供不竭动力!
  • 文天精策原位拉伸试验机冷热台助力超低温金属材料研究
    文天精策原位拉伸试验机冷热台助力超低温金属材料研究随着现代各行业的飞速发展,越来越多的金属材料需要在低温环境中使用,如低温压力容器、桥梁、建筑材料等,因此对于这些材料的各项力学性能的准确测量也就显得至关重要,尤其是试样的屈服强度、抗拉强度、延伸率和面缩率等拉伸性能指标。如:液体火箭发动机的结构材料除了承受高温冲击外,由于液氢(沸点-253℃)、液氧(沸点-183℃)等低温贮存推进剂的存在,还有超低温(-100℃以下)环境要求,故液体火箭发动机理想的结构材料需要具备优良的低温力学性能;用于低温手术的医疗器械,使用液氮对患者的局部肉体进行低温瞬时低温冷冻,使得肉体固化后进行快速和无痛手术。文天精策仪器科技原位拉伸试验机冷热台,作为可适配多数拉伸试验机的低温试验平台,通过准确控温,实现不同环境温度下材料的力学性能测试,从而准确的考察不同变形温度下材料的力学性能,为其在复杂环境温度下的服役,提供数据支撑。原位拉伸试验机冷热台降温过程超低温单向拉伸试验对金属材料而言,其服役温度显著影响其力学性能。部分金属在超低温(77 K)条件下时,其断裂强度、延伸率等会显著提升。并且相比高温成形工艺会造成材料的氧化的缺点,低温下的成形工艺则不存在这样的问题,这为金属材料成形工艺的成形能力提升,提供了新的途径。Ÿ 材料的硬化、脆化Ÿ 材料的塑性变形能力改变Ÿ 材料的应变分布演化更加均匀Ÿ 材料的塑性变形机制发生变化超低温单向拉伸试验检测试样在单向应力状态下,温度对其力学性能与变形机制的影响。降温程序控制过程295 K与77 K下纯铜的单向拉伸应力-应变曲线研究内容及关键点:Ÿ 原位拉伸试验机冷热台的温控算法可准确控制变形所需温度;Ÿ 原位拉伸试验机冷热台可适配大多数万*能试验机实现低温拉伸试验,准确测试材料的低温力学性能;Ÿ 原位拉伸试验机冷热台的氮气回流除雾技术与可视窗口,可结合DIC测试技术实现超低温变形过程中应变的实时监测;Ÿ 通过设置拉伸试验机参数,可实现变温单向拉伸试验,测试复杂温度环境下材料的力学性能。试验表明:文天精策仪器科技研发的原位拉伸试验机冷热台,可与各种万*能试验机适配,在试验过程中通过文天精策原位拉伸试验机冷热台中的温控程序,实现实时控温,进行不同变形温度下的单向拉伸试验力学性能测试。并且,通过设置拉伸过程中的实验参数,完成试样在复杂变温环境下的力学性能测试,指导在复杂温况下材料的服役。
  • 国家新材料测试评价平台先进无机非金属材料行业中心启动大会通知
    p   国家新材料测试评价平台先进无机非金属材料行业中心启动大会 /p p   时间:2019.10.25 /p p   地点:国家会议中心E236AB /p p   主办方:中国建材检验认证集团股份有限公司 /p p   为加快国家新材料测试评价平台先进无机非金属材料行业中心建设工作,共商合作共赢模式与机制,推动无机非金属新材料领域测试评价技术创新与工程应用,中国建材检验认证集团股份有限公司拟于近期组织召开“国家新材料测试评价平台先进无机非金属材料行业中心启动大会”,特邀贵单位参加。 /p p   主要活动: /p p   上午会议主要日程: /p p   1、中国建材检验认证集团股份有限公司领导致辞 /p p   2、工信部领导解读国家新材料测试评价平台建设方案、政策 /p p   3、新材料产业发展规划(院士、专家报告) /p p   4、新材料检测、标准与评价(院士、专家报告) /p p   5、先进无机非金属材料行业中心建设进展报告 /p p   6、无机非金属材料测试评价新技术报告。 /p p   下午会议主要日程: /p p   1、先进无机非金属材料行业中心理事会和专家委员会筹建情况介绍 /p p   2、选举理事长、副理事长单位 /p p   3、宣读理事会、理事、专家委员会成员名单、颁发证书,颁发先进无机非金属材料行业中心共建单位牌匾 /p p   4、讨论通过先进无机非金属材料行业中心章程、管理办法 /p p   5、先进无机非金属材料行业中心网站介绍 /p p   6、先进无机非金属材料行业中心建设工作研讨 /p p   7、总结发言。 /p p style=" text-align: center " img style=" max-width: 100% max-height: 100% width: 163px height: 163px " src=" https://img1.17img.cn/17img/images/201910/uepic/91a263ae-23b9-4015-9718-c4bd850b3f8b.jpg" title=" bceia-仪器信息网报名渠道.png" alt=" bceia-仪器信息网报名渠道.png" width=" 163" height=" 163" / /p p style=" text-align: center " 扫码报名 /p
  • 关于举办“金属材料拉伸试验方法培训班”的通知
    GB/T 228.1-2010《金属材料 拉伸试验 第1部分:室温试验方法》国家标准已由国家标准化管理委员会正式发布,并于2011.12.1实施。新标准对于试验速率的控制、试验结果的数值修约等要求作了较大修改,增加了拉伸试验测量不确定度的评定、计算机控制拉伸试验机使用建议、考虑试验机刚度后估算的横梁位移速率等内容。 为确保各材料实验室有效实施新的拉伸试验方法标准、出具准确可靠的检测结果,长春中机检测培训中心将于2013年6月举办&ldquo 金属材料拉伸试验方法培训班&rdquo 。具体安排如下: 1、培训时间、地点 培训时间:2013年6月19日-22日,培训地点:长春市 2、主办单位 主办单位长春中机检测培训中心,协办单位国家试验机质量监督检验中心。长春中机检测培训中心是通过全国分析检测人员能力培训委员会(NTC)资质认定的培训机构,培训师资由全国分析检测人员培训委员会(NTC)培训大纲编写组专家、多项试验机国家标准主要起草人等教授、高级工程师组成。 3、培训内容 1)试验机结构原理及维护校准 金属材料拉伸试验相关试验设备及装置(电子万能试验机、液压万能试验机、电液伺服万能试验机等)的基本结构、维护保养、日常检查方法、检测/校准项目及相关要求。 2) 试验机操作技术 电子万能试验机、液压万能试验机、电液伺服试验机及引伸计、高温炉和环境箱的操作技术和使用注意事项。 3)金属材料拉伸试验技术基础 金属材料拉伸试验的分类、特点,拉伸试验技术的相关术语。 4)标准方法与应用 金属材料室温拉伸(GB/T228.1-2010)标准最新变化、试验参数设置、试验方法、试验机和引伸计的使用,结果不确定度评定和数据处理方法。高温拉伸(GB/T4338-2006)、弹性模量和泊松比(GB/T22315-2008)、薄板塑性应变比(GB/T5027-1999)、拉伸应变硬化指数 (GB/T5027-1999) 标准试验方法,试验要求及试验技术。 5)实操指导 在长春中机检测培训中心力学实验室按照GB/T228.1-2010新标准的要求进行现场演示试验和实操指导。 4、培训证书 本培训班考核合格者将由全国分析检测人员能力培训委员会(NTC)发放相应技术的《分析检测人员技术能力证书》。全国分析检测人员能力培训委员会是由科技部、国家认监委等部门共同推动下于2008年成立的,负责对全国分析检测人员技术能力的培训管理与考核工作。该能力证书可作为实验室认可、实验室资质认定以及其他各种认证认可中检测人员的技术能力证明。 5、培训班联系方式 联系电话:0431-87963561、85154488 传真:0431-87963560 邮箱:sactc122@163.com 联系人:李金明 朱庆坤
  • 上海衡翼非破坏性金属材料力学试验机新品上市
    往往在现实生活中很多不可能的事,如今上海衡翼精密仪器限公司就做到了,上海衡翼打破了金属破坏性能的力学试验,在过去做力学试验时,只有把样品破坏以后才能分析出材料的力学性能,浪费了很多材料,给企业、国家带来巨大的经济损失。根据现状,上海衡翼精密仪器有限公司研发了一款新型的非破坏金属材料力学性能试验机。 非破坏金属材料力学性能试验机的特点是:在不损坏材料、样品的情况下,就能测出材料、样品的力学性能,为企业节省了大量材料、样品,从而给企业带来了巨大的经济收入。 衡翼非破坏金属材料力学性能试验机顺利交付到上海交通大学实验室,并安装调试完毕,并且得到了饶教授的赞赏!现在已有很多大学、科研单位陆续来我司咨询并订购。 非破坏金属材料力学性能试验机的主要技术指标: A.采用直接加压方式,电机轴与加压头同轴设计 B.位移传感器采用高精度位移传感器,量程约10毫米,测量误差小于正负1微米。位移传感器偏心安装装在刚性良好的下板上,与电机轴偏心小于50毫米,在加、卸载过程中,直接与被测表面接触,监测压头的位移情况。 C.采用双磁吸式底座,单侧磁吸的吸力大于30kg. D.加载方式可以采用载荷—时间控制或位移-时间控制,可以设置单次循环加卸载,也可以设置多次循环加载-卸载。加卸载过程中的载荷—位移数据以excel格式存储于电脑中,可以由其他软件读取。
  • 陶春虎主任:金属材料的超高周疲劳及其实验研究
    仪器信息网讯 为提高广大试验机用户的应用水平,并促进用专家、用户、厂商之间的相互交流,2012年5月16日,在CISILE 2012召开期间,由中国仪器仪表行业协会试验机分会与仪器信息网主办、北京材料分析测试服务联盟与我要测网协办的“第一届中国试验机技术论坛”在中国国际展览中心综合楼二楼204会议室成功举办。   如下为中航工业航材院航空材料检测研究中心陶春虎主任所作报告的精彩内容: 中航工业航材院航空材料检测研究中心陶春虎主任 报告题目:金属材料的超高周疲劳及其实验研究   陶春虎教授首先在报告中介绍到,按疲劳强度设计的许多零部件在远小于疲劳极限107的应力下仍会发生疲劳破坏,这使得基于传统疲劳极限设计的零件,尤其是高速转动件很不安全,因此超高周疲劳损伤问题已经引起人们的广泛关注。工程上的疲劳分为低周疲劳、高周疲劳和超高周疲劳,而超高周疲劳则涉及失效特征、试验方法和试验设备、失效机理等方面。   随后,陶春虎教授对金属材料的超高周疲劳特征和疲劳失效机理进行了分析与总结,并指出,金属材料超高周疲劳失效基本特征是裂纹起源。一般情况下,传统高周疲劳的裂纹基本从表面萌生,除非试样亚表面存在较大的缺陷或试样表面经过了改性处理;而超周疲劳的裂纹则通常在试样亚表面萌生。其中,“鱼眼”特征的断口一般分为三个区域:光学黑区、平滑区域和粗糙区域。其中,光学黑区的形成相当于具备了试样表面能够形成累积疲劳损伤而发生常规疲劳损伤的条件。然后,陶春虎教授借用王仁智提出的理论和实验阐述了常规疲劳裂纹萌生与亚表面的过程,并分别就加载频率、加载方式和环境对金属材料超高周疲劳及试验机研究进行了详细介绍。   最后,陶春虎教授提出,超高周疲劳研究亟待解决的主要问题主要有:考虑到试验周期、实验频率的影响以及与实际 服役环境的一致性,应当研制具有1kHz-3kHz、能够实现弯曲加载的超高周疲劳试验机;整理和积累各种合金的疲劳实验数据,组建数据库,与传统高周疲劳实验数据进行对比分析,建立试验标准和适应于工程应用的数据处理和修正规范;明确裂纹萌生机理特别是超高疲劳过程裂纹由表面转入亚表面的转移和竞争机制,并尝试借助断口定量分析的手段裂纹早期扩展机制。 会议现场
  • 四川赛恩思仪器与德昌亚王金属材料达成合作
    近日,四川赛恩思仪器生产的HCS-808型高频红外碳硫仪在德昌亚王金属材料有限责任公司安装调试完毕。测定样品硅铁、硅铬合金的碳硫含量数据准确,获得客户的认可。 德昌亚王金属材料是亚王能源集团位于凉山州德昌县“攀西战略资源创新开发实验区德昌集中发展区”的全资控股公司。公司年产高纯度工业硅3万余吨,年产值4亿元,是目前凉山州大型的工业硅生产企业。 金属硅是冶金、铸造、机械制造等行业的重要原料,碳、硫、磷等杂质元素会决定其品质。通过高频红外碳硫仪测定金属硅中的碳、硫含量,检出限低,操作快速、简便。四川赛恩思仪器研发生产的HCS系列高频红外碳硫仪分析,具有多项技术专利,其中智能休眠、自我保护、高频辐射屏蔽、快速分析等多项专利技术运用在高频红外碳硫分析仪。仪器研发销售二十多年以来,海内外合作客户逾千家。此外,为满足客户的生产需求,四川赛恩思仪器相继推出了真空直读光谱仪、氧氮氢分析仪等多元素分析检测仪器。四川赛恩思仪器有限公司诚邀全国各地经销商和使用方来函、洽谈咨询;欢迎有识之士加入四川赛恩思仪器有限公司。
  • 金属材料还能自发改变颜色?最新研究来了!
    颜色是商品外观设计的重要属性。彩色的电子产品金属外壳不仅满足了人们的审美需求,也增加了商品的附加价值。电化学沉积是目前广泛应用的金属合金表面着色技术,其颜色来自于由表面氧化层厚度决定的可见光干涉。由于该氧化层的厚度在产品的使用过程中不会改变,因此,该技术实现的产品颜色在使用过程中是固定的。  近期,中国科学院物理研究所/北京凝聚态物理国家研究中心极端条件物理实验室的博士研究生王朋飞在导师、特聘研究员孙永昊和研究员白海洋的共同指导下,与来自物理所、中国科学院大学、钱学森空间技术实验室和杨伊万格利斯达浦金野大学的科研人员合作,发现了一种可以在自然条件下自发改变颜色的金属材料。这种金属材料的表面颜色几乎每周一变。该材料色泽均匀明亮、其表面在磨损后可自行修复重现颜色,且在紫外光下具有荧光效果。  这种金属材料的可自发改变颜色特性来自该合金在室温条件下持续且不中断的自发氧化。这是一种由稀土元素铈作为主要组元的非晶合金。它由于具有铈的化学活性,因此在室温下具有高的氧化速率,由于非晶结构中均匀的缺陷分布,所以避免了如多晶合金中因局域缺陷位置快速氧化带来的锈斑,使得非晶合金的表面氧化层厚度均匀。研究人员通过在铈基非晶合金中掺杂钇,可加快该金属材料在自然条件下的变色,实现了对其变色速率的调节。图1. 不同钇元素掺杂的彩色金属玻璃宏观光学照片和光致发光现象图2.(a)无、(b)有钇元素彩色金属玻璃颜色随时间变化规律图3.高纯铈、非晶态铈基合金与同成分晶态铈合金的氧化动力学行为;非晶态铈基合金与同成分晶态铈合金经氧化后的光学照片  中科院院士、物理所研究员汪卫华带领的非晶合金团队在稀土基非晶合金的研究中具有丰富的经验,主要研究成果曾多次发表在Phys. Rev. Lett.、Nat. Communs.等上,相关工作曾入选中国科学十大进展。可以自发改变颜色的金属材料的发现为稀土基非晶合金在功能材料的应用上添砖加瓦。该研究成果不仅说明了稀土基非晶合金在外观应用上的独特优势,也发现非晶合金可作为某些功能材料的前驱体,无论是在应用还是在基础研究上均具有潜力。  研究工作获得国家自然科学基金等的支持。相关研究成果发表在Journal of Alloys and Compounds上。论文链接:https://linkinghub.elsevier.com/retrieve/pii/S0925838821015486
  • 西工大“金属材料快速凝固系统”仪器专项通过中期检查
    2月9至11日,国家自然科学基金委员会工程与材料科学部组织专家,对西北工业大学魏炳波院士主持的国家重大科研仪器设备研制专项项目“基于静电悬浮的金属材料快速凝固实验系统”进行了中期检查。专家组认为,该项目按照计划任务时间节点和目标完成了预定的中期研制任务,取得了显著的阶段研究成果。  国家自然科学基金委员会副主任姚建年院士和高瑞平教授,综合计划局温明章副局长,工程与材料科学部车成卫副主任,王之中处长和郑雁军处长等参加了会议。由王光谦院士、马伟明院士、郭东明院士、沈保根院士、谭建荣院士、金红光院士、宣益民院士等组成的16位专家对项目进展情况、经费使用情况和下一步进展安排进行了全面检查。  学校校领导张炜、魏炳波、宋保维、张卫红,科技管理部、理学院等单位负责同志以及项目组全体成员出席了会议。会议在陕西宾馆召开,由国家自然科学基金委员会工程与材料科学部车成卫副主任主持。  张炜首先致辞欢迎并感谢各位专家领导的指导。他指出,该项目在基金委的支持下,在各位专家领导的指导下进展顺利,各项指标均达到了预期目标,项目组成员艰苦奋斗,在科学研究和技术革新上寻找源头创新,取得了一批卓越的阶段性成果,培养了一批优秀的学术骨干。学校将一如既往地支持基础研究、鼓励源头创新、为该项目的顺利完成做好保障工作。  姚建年副主任代表基金委讲话,首先感谢西工大多年来对基金委工作的支持,也祝贺西工大获得基金委自然科学基金管理先进单位的称号。他强调国家重大科研仪器设备研制专项着眼于科学研究与工程技术的源头创新,希望该项目能够做成一个有代表性的高水平项目。  高瑞平副主任在最后的总结讲话中详细介绍了国家重大科研仪器设备研制专项的评审和管理过程。她认为,该项目能够立项就已经代表项目组具有相当水平 项目执行3年以来,基金委全程跟踪,专家组指导有方,监理组督导到位,希望学校能够在后期执行的过程给予充分保障,基金委也会在项目运行的后一阶段加强管理,并进一步研究考虑在项目结题以后的作用发挥上继续给予支持。  在专家组组长沈保根院士的主持下,项目负责人魏炳波院士从“立项目标和研制任务、中期计划任务完成情况、研制国际合作交流、前三年经费使用情况、后续工作安排与计划调整”5方面做了中期进展报告。项目组主要成员王海鹏教授就该项目的真空系统研制过程做了详细汇报,并播放了研制过程视频。胡亮副教授针对该项目关键科学问题的阶段研究做了汇报。  专家组认真听取了汇报、观看了现场视频、审查了财务支出情况、进行了热烈的讨论,在充分质疑和研讨基础上给项目组提出建议和下一阶段的工作意见。专家组一致同意该项目通过中期检查并认为,项目按期完成了实验系统的总体设计,优化布局各子系统设计方案,并通过外协单位完成加工主要部件。  2013年12月,由魏炳波院士主持申报的“基于静电悬浮的金属材料快速凝固实验系统”,正式获批国家重大科研仪器设备研制专项项目。该实验系统是材料科学和空间科学领域新型先进科学仪器,是国家开展超常凝固研究和空间模拟研究科学技术水平的重要标志之一。该项目也是西北工业大学获得资助的首个国家重大科研仪器设备研制专项项目。  项目实施3年多以来,在静电悬浮的优化设计方面,实现了悬浮能力和悬浮稳定性进一步提高 在快速凝固子系统的优化设计方面,实现了快速凝固过程的动态检测和难熔合金的静电悬浮深过冷与快速凝固。
  • 江阴金属材料创新研究院携手 HORIBA,共建国际合作实验室
    11月2日,2019中国(江阴)金属新材料产业创新论坛隆重开幕,来自国内外金属新材料领域的专家学者齐聚一堂。作为此次共建国际合作实验室的合作方,HORIBA集团科学仪器事业部(以下简称“HORIBA”)总经理濮玉梅女士受邀参加本次论坛。期间,江阴金属材料创新研究院与HORIBA集团完成了合作实验室签约仪式。国际合作实验室签约仪式江阴金属材料创新研究院是江阴高新区重点引进的新型研发机构,依托江阴扎实的工业基础,以东北大学和中科院金属研究所深厚的技术背景为支撑,以先进钢铁材料、特种有色金属材料、先进功能材料为主要发展方向,旨在促进高校、院所、企业间的深度协作和产业创新,努力打造海内外先进的金属材料研发中心,推动江阴及长三角地区的高端装备走向世界。论坛开幕式上,无锡市委常委、江阴市委书记陈金虎致开幕辞,希望以本次论坛为契机,全面加强与高校院所、专家学者、业内企业广泛合作,使江阴成为金属新材料产业发展的领跑者。HORIBA作为业内龙头企业参与共建实验室,希望为全国金属新材料产业的高质量发展贡献力量。现场启动仪式启动仪式结束后,HORIBA集团科学仪器事业部代表郭云昌博士与江阴金属材料创新研究院代表进行了项目签约仪式,国际合作实验室正式成立。仪式结束后,论坛继续进行,来自中国工程院、乌克兰工程科学院等各方专家学者就推进金属新材料产业集群创新发展进行了深入交流。(右)江阴金属材料创新研究院副董事长汪涛先生(左)HORIBA集团科学仪器事业部代表郭云昌博士会后,HORIBA集团代表受邀参观本次合作实验室,交流探讨了关于实验室创办思路及未来发展方向。本次与江阴金属材料创新研究院共建国际合作实验室的正式签约,表明HORIBA在推动产学研协同发展方面更进一步。未来,HORIBA还将努力进取,积开拓,争取有更大的作为。江阴金属材料创新研究院常务副院长刘伟先生(右)向 HORIBA 集团科学仪器事业部总经理濮玉梅女士(左)介绍合作实验室 HORIBA科学仪器事业部HORIBA Scientific 致力于为科研及工业用户提供先进的检测和分析工具及解决方案,如:光学光谱、分子光谱、元素分析、材料表征及表面分析等先进检测技术,旗下Jobin Yvon光谱技术品牌创立于1819年,距今已有200年历史。如今,HORIBA 的高品质科学仪器已经成为全球科研、各行业研发及质量控制的选择,之后我们也将持续专注科研领域,致力于为全球用户提供更好的服务。
  • 弗尔德仪器成功参加第三届全国有色金属材料制备大会
    有色金属结构材料是材料领域的一个极其重要的组成部分,大力发展有色金属新材料产业,加速有色金属结构材料的研究与开发,对促进国民经济的可持续发展具有极其重要的战略意义。为继续推进我国有色金属材料的学术繁荣、技术创新、产业发展,满足结构材料向高性能化、复合化、结构功能一体化发展的需求,促进有色金属材料各项新技术、新工艺和新产品的研究、开发与应用,加强产、学、研、用深度结合,交流有色金属材料领域近年来具有创新性的科技成果、应用成果;中国有色金属学会、广东省科学院等单位于2017 年3 月29-31日在广东省广州市共同举办“第三届全国有色金属结构材料制备/加工及应用技术交流会”。3月29日弗尔德仪器携旗下4大品牌现身有色金属大会。弗尔德仪器总经理董亮先生在会上首先介绍了Retsch Technology(莱驰科技)的干湿两用多功能粒度粒形分析仪Camsizer X2在金属材料检测领域的应用。Camsizer X2采用动态图像法,可以同时并实时测量大的或小的颗粒并记录所有关于颗粒大小、形状、透明度、球形度等信息,比激光法精度更高,进样量大,能给出量化的结果,检测速度快,是非常好的一种全新的分析方法。CAMSIZER X2的专利测量技术——两个数字采样镜头能够实时记录颗粒的大小和形状,并自动优化,这样可以在600nm至8mm的范围内精确的分析样品,并在整个测量范围内无需人工调节和校正。德国Retsch(莱驰)的高能球磨仪Emax非常适合于纳米研磨及合金制备:2000转/分的高速设计在球磨仪中无可匹敌,相应的研磨罐设计保证了能量有效输出。在冲击力、摩擦力和循环往复运动的协同作用下,超精细研磨时间大大缩短。由于创新高效的水冷系统散热快速,长时间的高速研磨也不用担心样品温度过热。 Carbolite Gero(卡博莱特 盖罗)的HTK金属炉特别适用于金属粉末注射成型(MIM),无碳气氛,烧结,镀金属等等。金属炉可提供精确定义的高纯度气氛环境(6N或更好),可达最高真空度。矩形炉体,前开门设计使加样和取样非常方便。HTK提供6种不同的尺寸供选择。最小体积8L,25L通常用于实验室开发和研究。80L,220L,400L或600L主要用于生产系统试验或大型生产。 除此之外,弗尔德仪器旗下的德国ELTRA(埃尔特)元素分析仪也特别适合这个行业。元素分析仪被用来精确测量给定样品里的元素含量,一般常见于研发及质量控制实验室。金属材料中的C浓度和表面碳含量以及O,H,N的水平是非常重要, ELTRA分析仪以其精确性,稳定性和灵活性而闻名。 弗尔德仪器作为进口研磨仪、粒度仪、马弗炉气氛炉及元素分析仪的厂家,在有色金属材料制备领域有着极大的优势。德国Retsch(莱驰)粉碎、研磨、筛分设备,德国Retsch Technology(莱驰科技)多功能粒度粒形分析仪,Carbolite Gero(卡博莱特 盖罗)烘箱、高温烘箱、箱式马弗炉、灰化炉、管式马弗炉、气氛马弗炉、真空马弗炉、高温马弗炉及工业定制炉,Eltra(埃尔特)碳/氢/氧/氮/硫元素分析仪。弗尔德仪器在有色金属材料制备领域中为您提供完美的全方位解决方案。
  • 金属所张哲峰团队:金属材料拉伸与疲劳性能预测研究取得新进展
    拉伸性能与疲劳性能是金属材料工程应用的关键指标,建立二者之间定量关系,实现金属材料不同力学性能之间关系的定量预测是金属结构材料领域重要研究目标之一。由于目前相关理论不够完善,基于微观变形与损伤机制的拉伸性能与疲劳性能定量预测模型并未建立起来。因此,虽有大量实验数据表明金属材料拉伸强度与塑性之间存在明确的倒置关系,拉伸强度与疲劳强度之间存在特定的关系,但至今仍缺乏定量模型来描述上述定量关系。因此,建立金属材料拉伸性能与疲劳性能定量预测具有重要科学意义。金属研究所张哲峰团队长期坚持材料疲劳与断裂基础理论研究,团队成员张振军项目研究员前期在缺陷与金属材料加工硬化关系方面进行了系统性研究,包括四类典型缺陷:1)零维缺陷:发现过饱和空位可提升合金的加工硬化能力;2)一维缺陷:在位错主导塑性形变的合金中实现了加工硬化能力回升;3)二维缺陷:在FeMnCAl系TWIP钢中实现随孪晶密度增加应变速率敏感性由负到正的转变;4)三维缺陷:在TWIP钢等强加工硬化材料中建立了微孔致颈缩判据。近来,在加工硬化微观机制研究基础上,张振军项目研究员提出了新的位错湮灭模型,并通过考虑初始组织状态与合金成分对加工硬化的影响,建立了单相金属材料普适性硬化模型-指数硬化(ESH:Exponential Strain-Hardening)模型,并据此首次推导出单相金属材料拉伸应力(σ)-应变(ε)定量关系:其中硬化指数n为位错湮灭距离(ye)的表达式反映合金成分的影响。η为初始缺陷对屈服强度(σy)非位错性贡献的比例,反映微观组织的影响;ΘⅡ为第二阶段硬化率,对同一金属合金体系为常数。该ESH模型得到了6种合金成分、100余种不同微观组织状态单相铜铝合金的实验验证,如图1所示。该ESH模型阐明了单相金属材料形变过程中一些重要规律:1)用一个参数(n)统一了五阶段加工硬化规律;2)揭示了极限强度、临界强度、真抗拉强度与成分及变形机制之间关系;3)首次推导出"屈服强度-抗拉强度-均匀延伸率"之间定量关系(公式(2-4),图2a-2c);4)定量揭示了拉伸强度-塑性同步提升的两个基本原则,即成分优化(提升位错滑移平面性)与组织优化(降低初始高能缺陷),在铜合金、镍基合金、TWIP钢、高氮钢、316L不锈钢等单相合金中均得到了系统性实验验证;5)实现了单相铜铝合金拉伸强度、塑性及拉伸应力-应变曲线的定量预测,如图2d-2f所示: 上述研究成果最近以2篇论文连载方式发表在Acta Mater 231 (2022) 117866和231 (2022) 117877上。基于该ESH模型,博士生曲展在张振军项目研究员的指导下,进一步揭示了三类变形铝合金(2xxx、6xxx、7xxx)拉伸强度和塑性随时效时间变化的共性转变规律与机制,建立了三类铝合金加工硬化指数与时效过程中析出相性质及几何特征之间的定量关系,提出了变形铝合金时效过程对加工硬化能力提升的析出相控制原理(J Mater Sci Technol 122 (2022) 54-67)。为了建立金属结构材料拉伸性能与疲劳性能之间定量关系,该团队成员刘睿博士在对铜铝单相合金拉伸性能与高周疲劳强度系统性研究的基础上,从疲劳损伤过程弹性变形与应变局部化两方面入手,通过引入合金成分、微观组织与宏观缺陷参数,建立了金属结构材料高周疲劳强度预测模型:其中参数C代表合金成分(或弹性模量)对疲劳强度的影响,强度σy和σb为微观组织对疲劳强度的影响,参数ω反映了宏观缺陷对疲劳强度的影响,如图3(a)所示;该高周疲劳强度预测模型得到了钢铁材料、铝合金、铜合金、钛合金、镁合金等20余种典型工程结构材料系统性疲劳实验验证,如图3(b)所示。该研究成果也以2篇论文连载方式发表在J Mater Sci Technol 70 (2021) 233-249和70 (2021) 250-267上。在疲劳裂纹扩展预测模型方面,最近李鹤飞博士在团队成员张鹏研究员的指导下,针对高强钢强度-韧性匹配关系,通过断裂力学理论分析,建立了以静态力学性能预测其疲劳裂纹扩展速率模型:其中σb为拉伸强度,KIC为断裂韧性,E为弹性模量,R为应力比,α为扩展速率常数。同时,为了指导关键构件材料强度-韧性优化提高疲劳裂纹扩展阻力,建立了高强度金属材料等效疲劳裂纹扩展速率模型(如图4(a)所示)。通过选择高强度金属材料强度-韧性之间匹配关系,可快速预测和降低其疲劳裂纹扩展寿命(如图4(b)所示),进而可以指导关键构件材料抗疲劳损伤容限设计。上述关于疲劳裂纹扩展速率预测模型在多种高强铝合金、钛合金及高强钢材料中得到了验证。该研究成果发表在J Mater Sci Technol 100 (2022) 46-50上。将上述金属材料拉伸性能和疲劳性能定量预测模型联合起来,可以实现通过测试金属结构材料少数组织状态的拉伸性能快速预测和优化其疲劳性能的功能,为金属结构材料疲劳性能预测与优化软件研发奠定理论基础,也为金属结构材料及工程构件抗疲劳设计与制造提供理论支撑。上述研究工作得到了国家自然科学基金重大项目(51790482)、重点项目(51331007、52130002)、面上项目(51771208、51871223)项目、中国科学院王宽诚率先人才计划"卢嘉锡国际合作团队"(GJTD-2020-09)、"青年促进会"项目(2018182、2021192)及辽宁省"兴辽计划"创新团队项目(XLYC1808027)的资助。相关成果列表及链接:1. Zhang ZJ*, Qu Z, Xu L, Liu R, Zhang P, Zhang ZF*, Langdon TG. A general physics-based hardening law for single phase metals. Acta Mater 231 (2022) 117877https://www.sciencedirect.com/science/article/pii/S1359645422002531#sec00202. Zhang ZJ*, Qu Z, Xu L, Liu R, Zhang P, Zhang ZF*, Langdon TG. Relationship between strength and uniform elongation of metals based on an exponential hardening law. Acta Mater 231 (2022) 117866.https://www.sciencedirect.com/science/article/pii/S135964542200252X3. Qu Z, Zhang ZJ*, Yan JX, Gong BS, Lu SL, Zhang ZF*, Langdon TG. Examining the effect of the aging state on strength and plasticity of wrought aluminum alloys. J Mater Sci Technol 122 (2022) 54-67.https://www.sciencedirect.com/science/article/pii/S1005030222001967?via%3Dihub4. Liu R, Zhang P*, Zhang ZJ, Wang B, Zhang ZF*. A practical model for efficient anti-fatigue design and selection of metallic materials: I. Model building and fatigue strength prediction. J Mater Sci Technol 70 (2021) 233-249.https://www.sciencedirect.com/science/article/pii/S1005030220307441?via%3Dihub5. Liu R, Zhang P*, Zhang ZJ, Wang B, Zhang ZF*. A practical model for efficient anti-fatigue design and selection of metallic materials: II. Parameter analysis and fatigue strength improvement. J Mater Sci Technol 70 (2021) 250-267.https://www.sciencedirect.com/science/article/pii/S100503022030743X?via%3Dihub6. Li HF, Zhang P*, Wang B, Zhang ZF*. Predictive fatigue crack growth law of high-strength steels. J Mater Sci Technol 100 (2022) 46-50.https://www.sciencedirect.com/science/article/abs/pii/S1005030221005053?via%3Dihub7. 张振军、张哲峰、张鹏、王强;一种金属材料拉伸性能的预测方法, 2021-7-6, ZL201711234799.0,发明。已授权8. 张哲峰、刘睿、张鹏、张振军、田艳中、王斌、庞建超;一种金属材料疲劳强度的预测方法,2021-8-10,ZL201711235841.0,发明。已授权9. 张鹏、李鹤飞、段启强、张哲峰;一种预测高强钢疲劳裂纹扩展性能的方法,2021-3-26,ZL201910030260.6,发明。已授权图1 ESH模型的建立与实验验证:(a-b) 模型推导过程;(c-d) 强度与塑性验证图2 ESH模型的应用:(a)建立"屈服强度-抗拉强度-均匀延伸率"之间定量关系;(b)实现拉伸性能及拉伸应力-应变曲线定量预测图3 高周疲劳强度预测模型的建立与验证:(a) 模型建立过程;(b,c) 系统性实验验证图4 (a)等疲劳裂纹扩展速率模型图 (b)工程材料强度-韧性与疲劳裂纹扩展速率关系
  • CIS标准《金属材料分析用激光诱导击穿光谱仪》拟立项
    按照国家标准化工作管理规范,中国仪器仪表学会制定满足市场急需、反映先进专业技术水平、具有我国自主知识产权的团体标准。近日,中国仪器仪表学会发布了“拟立项(金属材料分析用激光诱导击穿光谱仪)CIS标准的公示通告”。申请项目名称:金属材料分析用激光诱导击穿光谱仪项目申报单位:杭州谱育科技发展有限公司激光诱导击穿光谱法(Laser-induced breakdown spectroscopy;LIBS):通过激光烧蚀待分析物质形成等离子体,其中处于激发态的原子、离子或分子向低能级或基态跃迁时,向外发射特定能量的光子,形成特征光谱,进而获得待分析物质的化学成分或其他特性。激光诱导击穿光谱技术以其无须对块状固体样品预处理,快速、无损、可进行多形态分析以及无辐射危害等特点成为近年来研究的热点,可应用于金属材料化学成分分析、煤炭分析、生物样品分析等领域。但当前在金属材料分析领域分析用的激光诱导击穿光谱仪没有明确的标准来规范此类产品性能和使用安全性等重要参数,导致设备性能良莠不齐,致使不同厂商仪器的性能无法进行比较,仪器用户在采购、比较仪器时缺乏科学依据。目前现行的标准中,GB/T 38257-2019规定了激光诱导击穿光谱法的术语和定义、基本原理、试验条件、设备及装置、样品、试验步骤、数据处理和试验报告。为了规范激光诱导击穿光谱仪自身性能的测定方法,统一有关专业术语,制定仪器性能检测的依据,使检测机构、仪器用户及生产厂家在检校激光诱导击穿光谱仪时有统一的标准方法,杭州谱育科技发展有限公司申报制定团体标准《金属材料分析用激光诱导击穿光谱仪》。该标准的制定将助力我国激光诱导击穿光谱及其在金属行业的发展及应用。据查询目前国际上没有相同的国际标准。制定该标准目前不存在知识产权方面的问题。
  • 英斯特朗与客户联合举办高性能金属材料测试专题研讨会
    高性能金属材料将促进未来装备制造、航空航天、汽车工业、新能源、石油化工、国防安全等战略性支柱行业的发展。越来越多的材料研发和质量管理工作者对原材料及成品的性能提出了更高的要求。在对高性能金属材料进行力学性能测试时,最重要的其实是基于对测试标准的正确理解,从而得出的试验数据才最能真实有效的反映材料本身的性能是否达到要求。 2016年7月,国际标准委员会对金属材料测试标准 ISO 6892-1进行了更新。 10月,英斯特朗针对此项测试标准的更新,分别在徐州质检国家网架及钢结构产品质量监督检验中心和武汉理工大学理学院举办高性能金属材料测试应用专题研讨会。会议特邀来自美国英斯特朗全球金属材料测试应用经理,同时也是ISO标准委员会成员的Matthew Spiret 先生,针对 ISO 6892-1:2016中的方法A1和A2进行了深度解析,并对执行该标准时可能遇到的挑战给出了相对应的解决方案。另外,两场会议除了由Matthew Spiret现场主讲外,我们也特别邀请了来自中国科学院金属研究所副研究员姚戈先生、武汉理工大学刘记立老师以及武汉大学尹颢老师,在会上分享了他们在金属材料断裂疲劳测试、形状记忆合金等领域的研究成果及测试应用方面的丰富经验。 来自徐州卡特彼勒、歌博铸造、霍斯利机械、罗特艾德、中国矿业大学、徐州矿业集团、徐工集团研究院、武汉大学、武汉理工大学、华中科技大学、东风商用车、康明斯、神龙汽车、武汉锅炉、武汉钢铁等与金属测试密切相关的客户出席了研讨会,并在现场进行了充分的交流探讨,对ISO标准更新的内容有了更加全面深入的理解。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制