当前位置: 仪器信息网 > 行业主题 > >

冷原子检测

仪器信息网冷原子检测专题为您提供2024年最新冷原子检测价格报价、厂家品牌的相关信息, 包括冷原子检测参数、型号等,不管是国产,还是进口品牌的冷原子检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合冷原子检测相关的耗材配件、试剂标物,还有冷原子检测相关的最新资讯、资料,以及冷原子检测相关的解决方案。

冷原子检测相关的资讯

  • 超冷原子云制冷有望带来新的精密检测设备
    瑞士巴塞尔大学物理学家开发出一种新的制冷技术,用超冷原子气体作制冷剂,把一种膜振动冷却到绝对零度以上1摄氏度之内。这一技术可用于给量子机械系统制冷,有望让量子物理实验系统变得更大,并带来新的精密检测设备。相关论文发表在最近的《自然· 纳米技术》杂志上。   超冷原子气体是目前最冷的物质之一,是用激光束把原子陷落到一个真空室内,使它们运动得越来越慢,由此温度达到绝对零度以上不足百万分之一摄氏度。在这种温度下,原子服从量子物理法则:它们就像一个个小波包那样来回运动,能同时处在多个位置并互相叠加。目前已有许多技术利用了这些特征,如原子钟及其他精密检测仪器。   在新研究中,巴塞尔大学物理系教授菲利普· 图特莱恩领导的研究小组就是用这种超冷气体作为制冷剂,把一块1毫米见方的振动膜冷却到绝对零度以上不足1摄氏度。据物理学家组织网近日报道,该膜是一块50纳米厚的氮化硅膜,上下振动就像一面小鼓的鼓皮。这种机械振动是永远不会完全静止的,它表现了一种热振动,取决于膜的温度。   由于原子极微小,迄今造出的最大原子云也只有几十亿个超冷原子组成,比一粒沙子包含的粒子数还少,所以原子云制冷的力量极为有限。   &ldquo 这里的诀窍是,希望膜以何种模式振动,就把原子的全部制冷力量都集中到这种振动模式上。&rdquo 研究小组成员安德里亚· 乔克尔说,原子和膜之间的相互作用由激光束引起,&ldquo 激光对膜和原子产生了压力,膜的振动改变了光对原子的压力,反之亦然。&rdquo 激光能跨越几米远的距离传递制冷效应,所以原子云无需直接与膜接触。这种连接作用还可以通过两面镜子组成的光学共振器放大,膜在两面镜子之间,就像三明治。在本实验中,虽然薄膜包含的原子数是原子云的10亿倍,研究人员还是观察到了很强的制冷效应。   以往科学家只是理论上提出,可以用光来连接超冷原子和机械振荡。本研究是世界上首次在实验中实现了这一系统,并用它来给振荡物体制冷。研究人员指出,如果进一步改进该技术,还可能把膜振动制冷到量子力学基态。   对研究人员来说,用原子冷却膜只是第一步。图特莱恩说:&ldquo 与光致作用相结合,能很好地控制原子的量子性质,这为量子膜控开辟了新的可能。&rdquo 人们有可能用相对宏观的机械系统来做量子物理实验,以前所未有的精确度检测膜振动,反过来开发出针对微小力和质量的新型传感。
  • 汞检测利器|冷原子吸收光谱技术
    在日常生活中,汞与砷会以各种化学形态侵入到环境中,会污染空气,污染水质及土壤,同时也会造成食品污染,直接间接地对人体造成极大的伤害。检测技术中原子荧光检测技术则可以用来检测饮用水中汞和砷的含量,土壤中砷含量及食用大米中汞含量是否超出国家标准,用以保障人们的正常生活与身体健康。本文主要介绍对冷原子吸收光谱检测技术及原理,以期对相关人员有一定的参考意义。元素原子的原子化一般是在一定温度下完成的。汞是一种唯一在常温下就可以气化成为单原子状态的元素。在0-30℃,空气饱和蒸气浓度在2.54-35.6mg/Nm3之间,可以实现常温原子光谱测定。冷原子吸收测汞,在我们国家是在20世纪七十年代末期开始使用,这是环境汞检测划时代的进步。冷原子吸收测汞仪工作原理如下图所示:分析注意事项:保持室内温度,确保仪器光学系统不结水汽。保持室内温度相对稳定,提高灵敏度。如果在正常状态仪器灵敏度下降,可能是汞灯老化发黑,或者是光电转化原件老化,可以开机目测检查,及时更换。不能将消解后仍发热的样品进行分析,那样的话水汽进入洗手池会影响测定。 按不同消解方式,采用不同的汞还原办法:普通酸性氧化处理样液,可以取酸性氯化亚锡还原;处于强络合状态的消解液、有机汞,要用碱性氯化亚锡或碱性抗坏血酸还原,再测定。
  • 北京瑞多915W冷原子测汞仪中标四川省环境监测中心站标准化建设项目
    2010年10月28日,四川中意招标有限公司对四川省环境监测中心站环境监测站标准化建设采购项目进行国内公开招标,北京瑞多代理的俄罗斯LUMEX制造的RA-915W冷原子吸收测汞仪以极低的检出限、能直接测空气中的汞、仪器操作方便简单、价格合理、仪器质量稳定、公司售后服务优质,得到四川省环保及各领域广大客户的一致认可和好评,经过评委仔细评标,最后北京瑞多一举胜出,成为第4包8台冷原子吸收测汞仪的中标商,在此北京瑞多非常感谢四川省环保及各行业的领导、专家对北京瑞多的支持和信任,北京瑞多今后将继续努力,为广大客户提供更优、更好的产品以及周到的售后服务,以回报广大客户对北京瑞多的厚爱。   中标产品具体信息如下:   RA-915W冷原子吸收汞分析仪      仪器原理   RA-915W冷原子吸收汞分析仪基于汞原子蒸汽对254nm共振发射线的吸收来分析汞浓度。同时,采用了塞曼背景校正技术,有效地消除了背景物的干扰并提供了极高的灵敏度,摒弃了传统的金汞齐富集方式,使数据测量能够连续进行,真正实现连续监测大气低浓度样品。通过选用液体配件,轻松快速地完成基于还原方法的液体样品测量。   仪器特点   ▲ 采用世界领先的高频塞曼效应背景校正技术,灵敏度高,抗干扰   ▲ 符合符合国家标准“GB 7468-87 水质、总汞的测定 冷原子吸收分光光度法”   ▲ 属于国际认可的仪器和方法,符合美国EPA Method SW-846 7473(Combustion), EPA 245.1,245.2,245.5,& 245.7,& EPA Method 1631 Rev.E   ▲ 快速检测空气、液体中的汞含量   ▲ 主机内置汞校准池,测大气中的汞无需校准   ▲ 分析样品(包括背景干扰严重的复杂样品)不需要进行预先化学处理   ▲ 不需要金丝富集,没有昂贵的耗材,使用和分析成本低   ▲ 适合野外现场检测和实验室分析   ▲ 软件操作简单便捷   应用领域   ▲ 可应用于大气背景汞异常值的实时监测,还可用于快速查找汞污染源   在大气背景汞出现异常值时,可给出实时连续的监测数据,无需任何预浓缩和富集。仪器采用独特的光源纵向塞曼背景扣除,提高灵敏度,消除环境中其他因素的干扰。   工业区、城市交通区的大气汞含量往往高达几十个纳克每立方米,在垃圾填埋、焚烧厂附近更高达几百个纳克每立方米。      Time, s   上图为两台RA-915W在电池工厂同时监测的数据      Time, h   上图为工业区实时监测数据   (曲线间隔为仪器自动调零校准)   汞的监测数据被收集储存在内置数据记录器或者电脑里。根据已获得的数据可以计算出任意时间间隔(1 分钟、1 小时、1 天、1 个月等)的平均值。   该分析仪可以在独立模式下长期监测环境大气中汞异常值的含量,用来监测汞含量以反应当地和整个地区向大气中的汞排放量。   RA-915W较高的灵敏度和连续监测,还可方便的用于汞污染源的查找,据测试一幢三层的居民区楼房,可在半小时内找到汞污染源,排除安全隐患,为我们的生活环境提供安全保障。   技术人员检查汽车内的汞污染源   ▲ 可应用于地表水、地下水、工业废水中的汞的监测   附带RP-91附件可完成水中汞的检测,检出限符合地表水环境质量标准(GB 3838-2002)一类水源地汞的检出限要求。   可直接用于工业污水、废水的汞含量检测。   用于工业废水、河流水汞监测   技术指标   ▲ 大气中的汞检出限:10ng/m3   ▲ 检测范围:0-20000ng/m3   ▲ 液体中的汞检出限:0.01mg/L   ▲ 液体中的汞分辨率:0.01mg/L   ▲ 检测精度小于5%   ▲ 检测速度 气体样品1s,液体样品1~2min   ▲ 仪器连续工作平均时间 2500小时   ▲ 8个小时连续测量以后示值的漂移读数 0.5   ▲ 仪器外型尺寸:460×210×110mm   ▲ 仪器重量:小于10kg
  • Science | 超冷原子量子模拟研究取得重要进展
    中国科学技术大学潘建伟、苑震生等与德国海德堡大学、奥地利因斯布鲁克大学、意大利特伦托大学的研究人员合作,在超冷原子量子模拟研究中取得进展。科研人员使用超冷原子量子模拟器,对格点规范场理论中非平衡态过渡到平衡态的热化动力学进行了模拟,首次在实验上证实了规范对称性约束下量子多体热化导致的初态信息“丢失”,取得了利用量子模拟方法求解复杂物理问题的重要进展。相关研究成果发表在《科学》上。规范场理论是现代物理学的基础,如描述基本粒子相互作用的量子电动力学、标准模型等是满足特定群对称性的规范场理论,在粒子物理学、宇宙学以及凝聚态物理学等领域得到广泛应用。由于其求解复杂度高,规范场理论体系中仍有许多开放问题。其中,规范场理论描述的物理系统是否可以从远离平衡态经过演化达到热平衡备受关注。该问题的解决,有助于理解高能物理中重核碰撞的问题,也将为现代宇宙学中大爆炸早期物质的形成提供了物理解释。但是,使用经典计算机求解复杂的规范场理论是公认难题,量子模拟器为解决该问题提供了新路径。近年来,科学家尝试用离子阱、超冷原子气体、Rydberg原子阵列和超导量子比特等体系对格点规范场理论开展量子模拟研究。然而,由于格点规范理论中相互作用形式复杂,并要求物理系统始终处在局域规范对称性约束条件下,对格点规范场理论热化动力学的实验模拟造成了困难,因而还未在实验上实现。为解决量子模拟器中相干调控的粒子数太少和无法保证规范对称性约束的两个主要问题,中国科大科研人员开发了独特的自旋依赖超晶格、显微镜吸收成像、粒子数分辨探测等量子调控和测量技术,在超冷原子量子模拟器中提出并实现了光晶格中原子的深度制冷,解决了量子模拟器温度过高、缺陷过多的问题,实验制备了近百个原子级别的规模化量子模拟器【Science 369, 550 (2020)】;首次实现了利用大规模量子模拟器对格点规范场理论量子相变过程的实验模拟,验证了过程中的规范不变性【Nature 587, 392 (2020)】。在上述研究基础上,通过实验和理论结合,该团队将系统制备到远离平衡的初态,首次实验研究了规范对称性约束对量子多体系统热化动力学的影响,并观测到具有相同守恒量的不同初态热化到同一个平衡态的过程,验证了热化过程造成的量子多体系统初态信息的“丢失”,建立了规范场理论早期非平衡动力学与最终热平衡态之间的联系,在使用规模化的量子模拟器求解复杂物理问题的道路上取得了重要进展。未来,该团队将进一步使用量子模拟方法研究具有其他群对称性的、更高空间维度的规范场理论模型,以及真空衰变、动态拓扑量子相变等物理难题。《科学》杂志审稿人对此给予高度评价,认为该研究为超冷原子模拟格点规范场理论这一领域的发展做出了重要贡献,代表了量子模拟研究领域的前沿。研究工作得到科技部、国家自然科学基金委、中科院、教育部和安徽省等的支持。论文链接
  • 中国科大实现钙-41单原子灵敏检测
    中国科学技术大学教授卢征天、博士夏添等,利用原子阱痕量分析方法实现了对极稀有同位素钙-41的单原子灵敏检测,将该同位素丰度的检测极限压低至10-17(十亿亿分之一)量级,并演示了对骨头、岩石、海水等典型样品的钙-41同位素分析。该工作解决了地质、生物样品中钙-41同位素的探测难题,使得钙-41有望作为示踪定年同位素被应用于地球科学和考古学等领域。3月2日,相关研究成果以Atom-trap trace analysis of41Ca/Ca down to the 10-17level为题,在线发表在《自然-物理》(Nature Physics)上。   自然界岩石和生物骨质普遍含有丰富的钙元素,其同位素组成以稳定同位素钙-40为主,同时包含少量的放射性同位素钙-41。钙-41的半衰期为10万年,是碳-14半衰期的17倍,因此钙-41可以覆盖比碳-14更古老的定年范围。地球上的钙-41主要由地表浅层(几米深度)内的钙-40捕获宇宙射线中子而产生,其同位素丰度仅为10-16- 10-15量级,低于常用质谱仪所达到的探测极限。过去的半个世纪里,全球多家单位运用加速器质谱方法对钙-41的探测难题进行持续攻关,但受限于质量相近的钾-41的干扰,只能对自然界中丰度偏高(10-15)的样品做测量,阻碍了其实际应用。   本研究采用化学方法在岩石、骨头、海水样品中提取出约80毫克的金属钙,装入原子炉加热产生原子束流,再利用基于冷原子物理的冷却、聚焦、减速、磁光阱等各种激光操控方法将钙-41原子一个一个地从束流中俘获。研究通过测量被俘原子放出的荧光实现对单个钙-41原子的计数。本工作利用原子阱的超高选择性排除了其他同位素、元素及分子的干扰,在10-16同位素丰度水平实现了定量分析,测量精度达12%,并将探测极限压至10-17量级。进一步,科研人员计划与国内外科学家合作,共同探索钙-41定年在地球科学与考古学领域的应用。   研究工作得到科技部、国家自然科学基金、中科院和安徽省的支持。中科院地球环境研究所科研人员参与研究。图1.钙-41同位素由宇宙射线诱导产生,有望应用于冰川与古生物等自然界样品的定年研究图2.用于探测钙-41单原子的原子阱装图3.科研人员调试用于操控、俘获原子的激光系统
  • 原子荧光训练营-检测橡胶中的汞
    随着原子荧光技术的发展,原子荧光光谱仪的应用范围已经从地质行业逐步扩展到我们吃穿住行的各个方面不同样品中砷、汞等重金属的检测中。例如最近一条新闻说一个小孩子穿上新鞋后常出现夜啼不止并且身子红肿疼痛。经检测发现元凶是孩子新鞋的橡胶中重金属汞超标。而检测橡胶中汞的含量是原子荧光光谱仪的主要用途之一。金索坤作为原子荧光行业领跑者,在检测橡胶及其制品中汞含量积累丰富的经验,今天小编和您分享应用原子光谱仪检测橡胶中的重金属。首先,原子荧光光谱仪可以用来检测天然胶、乳生胶、混炼胶及硫化橡胶及其制品中汞的含量。然后就是怎么检。应用原子荧光光谱仪检测橡胶及其制品中的汞可以参照标准《SN/T 3520-2013橡胶及其制品中汞含量的测定 原子荧光光谱法》来执行。其过程可以简述为:将粉碎的样品至于微波消解罐内,加入硝酸和过氧化氢溶液,设定参数进行程序消解,待消解罐冷却至室温后打开,将消解后的溶液移入容量瓶,并用硝酸洗涤,加水定容。需要注意的是如果溶液有沉淀需要过滤。按照所使用的原子荧光光谱仪的推荐测试条件输入相关参数。预热,待原子荧光光谱仪稳定后,先测定标准系列溶液,后测定样品。这就是应用原子荧光法测定橡胶及其制品中汞含量的方法。最后,因为汞的吸附性强,所以在使用原子荧光光谱仪检测样品中的汞含量需要注意它的记忆效应问题,例如所有使用到的玻璃器皿都需要用硝酸浸泡、洗净、烘干后使用。金索坤从事原子荧光光谱仪的研发以及生产二十余载,推出SK-乐析 测汞型原子荧光光谱仪等新一代原子荧光产品,金索坤还会不断地推陈出新,用更加优质的原子荧光服务广大客户。 金索坤SK-2003A 便捷型原子荧光光谱仪/光度计
  • 【精彩案例】—— 冷冻食品异物检测
    Iglo提供方便、高质量的冷冻食品,包括鱼类、海产品、蔬菜和鸡肉,是欧洲的一个冷冻食品公司。 Iglo面临的挑战Iglo为欧洲西部、中部和东部的不同区域提供品牌冷冻食品。面向如此多不同类型的市场,其目标不仅只是满足健康、方便的需求,而且要符合欧洲食品安全局和全球食品安全倡议 (GFSI) 等国际食品安全标准和组织的规定。 然而Iglo采用的是传统的金属检测机,在非金属污染物方面的检测能力有限。 测试&调研 Iglo决定对X射线检测系统进行评估,以便提高其污染物检测能力。 评估的一个关键参数是设备经受恶劣环境和极端温度的能力。在检测过程中,鱼类和蔬菜温度保持在-18°C,并非所有的检测系统都能在这样低的温度下运行。此外,冷冻产品水分含量高,会影响金属检测机等传统检测技术的灵敏度,从而降低检测的准确性。 Iglo对八家供应商的异物检测设备进行测试,并选择了Eagle的X射线检测系统。 解决方案&业务价值 Eagle Pack 430满足并且超出了他们的预期,能够在寒冷、高湿度的环境中运行,且检测性能不受温度和水分含量的影响。 该系统采用了双能材料甄别(MDX)技术,检测出了测试包装中的玻璃碎片和各种非金属污染物。 MDX按照化学成分(原子数)甄别材料,能够检测并剔除难以检测到的无机污染物,例如玻璃、石头等。此外,Eagle提供现场支持和定制系统,可轻松地集成至现有产线。 目前,Iglo的德国工厂安装了四套 Eagle Pack 430系统以检测不同产品。使用Eagle X射线检测系统后,Iglo不仅可以检测多种污染物,更好地控制生产,而且提高了供应链的可追溯性和品牌总体竞争力。 “可根据不同产品轻松、快速地转换检测参数,提高了效率,使我们满足食品安全标准。” “Eagle的现场服务给我们留下了非常深刻的印象,帮助我们调试设备,能够完全满足我们的需求。”Reken工厂项目经理Arno Strotmann 更高的可追溯性欧洲食品安全局 (EFSA)规定:生产商必须能够对食品的生产、加工和配送阶段进行追踪,以免不安全的食品到达消费者手中。 Eagle TraceServer™ 软件可同时连接32台Eagle x射线设备,保存检测过程中产生的所有数据和图像,将其存储在中央数据库中,并可从数据库导出所需数据,轻松实现产品的可追溯性,为Iglo提供了尽职调查的能力。 想要了解更多Eagle鹰光™ 的产品,请进入网站https://www.instrument.com.cn/netshow/SH101016/Search.htm?sType=0&Keywords=Eagle,留下您的信息,我们的专业工程师将竭诚为您服务。
  • 原子荧光光谱仪的应用-保温杯中不锈钢的检测
    原子荧光光谱仪也叫做原子荧光光度计,因其操作简单性价比高等优势被广泛应用在各种行业砷、汞等重金属的检测中。其中就包括我们生活中常使用的保温杯中的不锈钢检测。保温杯与我们的生活密切相关,不锈钢中重金属是否达标可以直接影响我们的身体健康。国家制定了一系列不锈钢检测标准。原子荧光光谱仪作为检测砷、汞等重金属元素的主要仪器在不锈钢检测中发挥重要作用。专注研究原子荧光光谱仪的研发以及生产二十余载的金索坤在研究使用原子荧光光谱仪检测不锈钢中砷、汞等重金属积累了大量经验,今天金索坤的小编和您分享如何应用原子荧光光度计检测不锈钢中的砷。依照标准《GB/T 20127.2-2006 钢铁及合金 痕量元素的测定 第2部分氢化物发生-原子荧光光谱法测定砷含量》检测不锈钢中的砷的操作步骤可简化为:按标准取样后,取适量试料于100 mL烧杯中,加入盐酸、硝酸在低温炉上加热溶解。待完全溶解后冷却。加入硫酸磷酸混合酸,加热蒸发至出现白烟,冷却至室温后加水,低温加热至溶解。溶液移入容量瓶,加定容。取适量试液于容量瓶中,加入硫脲和抗坏血酸混合溶液,静置30分钟后加水定容。然后调节原子荧光光谱仪参数至最佳分析测试条件,制作标准曲线,检测样品原子荧光强度,最后得到样品中砷含量。在应用原子荧光光谱法检测不锈钢中砷时加入硫酸磷酸混合酸可以络合钨、钼、铌、钽等容易水解的元素,另外在原子荧光光谱法检测钢铁中抗坏血酸混合溶液将砷(V)还原为砷(I),并抑制镍、钴、铜等元素的干扰。随着原子荧光技术的提高,原子荧光光谱仪的应用范围已经由地质选矿、卫生防疫等领域逐渐扩展到食品以及保温杯等日常生活用品中。金索坤作为原子荧光行业领跑者会随着原子荧光光谱仪应用领域的逐渐扩展不断地推陈出新,用更加优质的原子荧光产品服务官大客户。 金索坤SK-乐析 原子荧光光谱仪/光度计
  • 原子荧光进入现场快速检测新时代
    仪器信息网讯 2015年2月3日,北京瑞利举行了便携式原子荧光光谱仪新品PAF-1100鉴定会。 新品鉴定会现场   便携式原子荧光光谱仪研制是北京瑞利承担的北京市科委装备制造重大项目及科技成果转化项目,开始于2011年7月。历时2年多的时间,北京瑞利原子荧光光谱仪研发团队推出了这款世界上首台真正用于现场快速检测的便携式原子荧光光谱仪PAF-1100。在今天举行的新品鉴定会上,鉴定委员会一致认为,PAF-1100技术达到了国际先进水平 属于国内外首创,多项技术具有自主知识产权。 便携式原子荧光光谱仪新品PAF-1100   PAF-1100的主要创新点包括:首次采用了氩气-空气双模式气路系统,实现了汞、镉等冷原子元素的无氩气测量 首创四象限对光技术,实现了空心阴极灯的高精度数字化对光 在原子荧光光谱仪上首次采用无线通讯技术和卫星定位技术,便于野外操作和污染源定位。该课题在完成过程中共申请了31项专利,其中14项为发明专利。未来,该项目中所突破的关键技术可以直接应用于实验室级别的原子荧光仪器。   北京瑞利总工程师兼研发部部长梁敬介绍,四象限对光技术来自于武器的激光制导技术,将该技术移植到原子荧光光谱仪器中,提高了仪器检测的灵敏度以及重复性。另外,梁敬说到,仪器小型化,不是简单地将实验室台式仪器的体积变小,相反,其系统较实验室型仪器更加复杂。如PAF-1100采用了低功耗进样和脉冲式自控低温点火原子化技术,显著减小了体积、降低了功耗,实现了原子荧光仪器的小型化。   新产品推出、通过鉴定,并不意味着研发工作全部完成了,PAF-1100尚存在部分技术问题需要解决。如,针对不同的应用领域,需要开发不同的分析方法,涉及到样品前处理方法等一系列的解决方案的开发。争取尽快将PAF-1100应用于环保水质检测之外的如食品安全等领域。此外,在功能扩展上,还可以将PAF-1100进行升级和液相色谱联用实现砷、汞等元素的形态分析,以较低成本满足国内形态分析方面的特殊需求。另外,目前PAF-1100的检出限As 0.06« ug/L、Hg« 0.006ug/L,精密度1.5%,线性r» 0.999,其性能指标稍弱于实验室型原子荧光光谱仪,所以也需要对相关技术进行持续改进,以进一步提高PAF-1100的性能。   PAF-1100瞄准了全国3100多个地级、县级市的应急监测体系的市场。目前主要应用领域包括环保水质,如自来水、污水、水文等的检测。预计未来三年PAF-1100年均销售量80台。 (撰稿人:刘丰秋)
  • 原子荧光光谱法检测再生水标准本月开始实施
    检测再生水的原子荧光光谱法本月正式开始实施。为了保证再生水达到标准,国家制定了一系列相关标准,其中这个月开始正式实施的《GB/T 39306-2020 再生水水质 总砷的测定 原子荧光光谱法》是专门为检测再生水中砷含量制定的标准,可见国家对再生水质的关注,同时也说明原子荧光光谱仪在再生水检测中发挥重要作用。使用原子荧光光谱仪检测再生水中砷的操作可以简述为:取适量水样于烧杯中,加入硝酸,盖上表面皿加热至微沸,冷却后移入容量瓶分别加入盐酸和硫脲和抗坏血酸混合溶液,加水定容静置半小时待测。同时做对比实验。检测时,按照所使用的原子荧光光谱仪推荐测试条件输入相关参数。预热,待仪器稳定后,先测定标准系列溶液,后测定样品溶液。通过以上操作就可以检测水样中砷的浓度。在依照《GB/T 39306-2020 再生水水质 总砷的测定 原子荧光光谱法》,使用原子荧光光谱仪检测水样中砷时,应注意采样容器应为聚乙烯瓶或聚丙烯瓶,样品采集后,应立即加入盐酸酸化,防止碳酸钙沉淀,当水样中悬浮物较多时,可用中速定量滤纸过滤,滤液贮于聚乙烯瓶内。另外在使用原子荧光光谱法时,所有使用到的玻璃器皿需要经硝酸浸泡。还有应为使用原子荧光光谱仪检测水样中砷时,还原剂的浓度、溶液的pH值、使用的原子荧光光谱仪型号等差异都会对检测结果产生影响,因此使用者需要根据原子荧光光谱仪型号选择适宜的测试条件,已达到检测结果。原子荧光光谱仪检出限低、稳定性好,在水质检测中发挥着越来越重要的检测中。金索坤作为原子荧光行业领跑者,为提高水质检测速度和稳定性推出SK-2003A便捷型原子荧光光谱仪、SK-盛析高效稳定性原子荧光光谱仪等产品,金索坤还会不断地推陈出新,用更加优质的原子荧光产品助力各种水质检测。金索坤SK-乐析 测汞型原子荧光光谱仪/光度计
  • 原子荧光光谱仪助力煤炭中重金属检测
    煤炭在开采和燃烧等活动中会产生含重金属污染物的细小颗粒,这些细小颗粒无通过降雨等作用回到地面,造成重金属的第二次污染。特别是今年天气较冷,国内北方开始陆续供暖,煤炭需求量增加。在这种情况下,加强对煤炭中重金属含量的检测显得更加重要。原子荧光光谱仪在检测煤炭中重金属含量发挥重要作用。可以检测煤炭中重金属的仪器很多,其中拥有我国自主知识产权的原子荧光光谱仪因其检出限低、稳定性好被广泛应用。例如在国家标准中《GB/T 39538-2020 煤中砷、硒、汞的测定 氢化物发生-原子荧光光谱法》中要求使用原子荧光光谱仪检测煤中的砷、汞、硒等元素。另外标准《SN/T 3521-2013进口煤炭中砷、汞含量的同时测定.氢化物发生-原子荧光光谱法》介绍了如何应用原子荧光光谱仪完成同时测定煤炭中的砷、汞元素。同时在环境标准《HJ 1133-2020 环境空气和废气 颗粒物中砷、硒、铋、锑的测定 原子荧光法》也要求使用原子荧光光谱仪检测空气颗粒物中重金属颗粒物的含量。可见原子荧光光谱仪在煤炭检测中得到广泛应。虽然许多地区都开始了“煤改气”“煤改电”但在煤北方依然是主要的供暖燃料。所以煤炭质量还会是影响今年空气质量的重要因素。原子荧光光谱仪作为检测煤炭中重金属含量的重要仪器,发挥重要作用。金索坤作为原子荧光行业领跑者会不断的推陈出新,研发出更加优质高效的原子荧光产品助力煤炭检测。 金索坤SK-2003A 便捷型原子荧光光谱仪/光度计
  • 原子荧光光度计助力口罩中重金属检测
    因疫情的影响人们逐渐习惯了口罩的生活。现在口罩已经成为人们出行的必备品,为了不让口罩过于单调,口罩被染成各种图案,甚至还出现口罩打印机。我们知道打印所用的墨都会有一定的重金属含量,那么这些口罩安全吗?原子荧光光度计作为检测重金属的主要仪器在口罩的检测中同样发挥着重要作用。今天金索坤的小编和您分享原子荧光光度计在口罩检测中的作用。口罩中的重金属都是哪来的?其中最主要的一部分就来自于口罩的彩印因为彩印用的油墨一般都会含有重金属成分;另外就是口罩纺织物的纤维也有可能含有重金属成分。因为口罩与人体十分密切,口罩的重金属元素可以直接经鼻腔、口腔进入人体,影响人体健康。因此其检测需要更加严格。因为目前还没有直接针对口罩染料中重金属检测的标准,因此口罩中重金属的检测依照的是《GB/T 17593.4-2006 纺织品 重金属的测定 第4部分砷、汞 原子荧光分光光度法》等纺织品检测标准。在检测前先将样品剪碎至于烧瓶,加酸在恒温水浴锅中震荡一小时,冷却后过滤,取滤液待测,同时做空白试验。检测砷时,取适量萃取液加入硫脲-抗坏血酸溶液待测,同时调整原子荧光光度计的相关参数至推荐测试条件。预热仪器,到原子荧光光度计稳定后测定标准系列溶液,然后测定样品含量。通过这样就可以检测出口罩中砷、汞的含量。有调查数据显示,市面上大部分的口罩都是合格的。但金索坤的小编也提醒大家购买口罩一定要到正规商店,否则买到的口罩不但起不到防护的作用,还可能影响身体健康。作为原子荧光光度计的生产厂家会不断地推陈出新,用更加优质的原子荧光产品为健康把关。 金索坤SK-2003A 便捷型原子荧光光谱仪/光度计
  • 吹扫捕集-气相色谱冷原子荧光光谱法 测定水中烷基汞解决方案
    吹扫捕集-气相色谱冷原子荧光光谱法测定水中烷基汞解决方案北分瑞利水质与土壤等环境中烷基汞由于生物富集的作用,其毒性远远高于无机汞,为了人类的身体健康,准确检测环境中的烷基汞含量就显得十分重要,然而由于环境中烷基汞的含量一般为超痕量,使得一般的分析仪器难以满足检测要求。吹扫捕集-气相色谱-冷原子荧光光谱法(PT-GC-AFD)由于进样量小、检出限低、灵敏度高、分析速度快及环境污染小等优点特别适合分析环境中超痕量的烷基汞。在《HJ 977-2018水质烷基汞的测定吹扫捕集-气相色谱-冷原子荧光光谱法》标准条件下测定样品中甲基汞、乙基汞的含量,使用峰面积进行计算。该方法在0.1-4ng/L的浓度范围内标准曲线的线性相关系数R在0.999以上,甲基汞的检出限为0.11pg,乙基汞检出限为0.16pg,具有较好的方法回收率和重复性。1 标准依据及测试原理测试结果符合2019年3月1日起实施的《HJ 977-2018水质烷基汞的测定吹扫捕集-气相色谱-冷原子荧光光谱法》。水样蒸馏后馏出液中的烷基汞经四丙基硼化钠衍生,生成挥发性的甲基丙基汞和乙基丙基汞,吹扫后被Tenax管捕集,热脱附出来的组分经气相色谱分离,再高温裂解为汞蒸气,用冷原子荧光检测器检测。2 仪器设备与测试条件仪器配置仪器品牌型 号气相色谱仪北分瑞利SP-3530配毛细注样器和小型冷原子荧光检测器吹扫捕集北分瑞利BFRL-APT30S北分瑞利小型冷原子荧光检测器专利证书测试条件吹扫捕集测试条件吹扫温度:常温;吹扫气体:氩气(99.999%);吹扫时间:30min;吹扫流量:80mL/min;干吹时间:5min;捕集管解析温度:250℃;解析时间:1min;解析流量:15mL/min;烘烤温度:280℃;烘烤时间:10min;烘烤流量:300mL/min。气相色谱仪测试条件载气:氩气(99.999%),流量15mL/min,恒流模式;柱温箱升温程序:起始温度90℃,保持1min,以5℃/min升至100℃,保持2min;进样口温度220℃;进样方式:不分流模式;AFD设置:灯电流25mA,负高压630V,裂解温度800℃,补充气流量65mL/min。3 测试结果测试谱图图 1 烷基汞测试谱图序号中文名称保留时间min检出限/pg1甲基丙基汞2.0330.112乙基丙基汞3.3680.163丙基丙基汞4.630——甲基汞乙基汞结论吹扫捕集-气相色谱-冷原子荧光光谱法(PT-GC-AFD)测定环境中烷基汞的分析方法,符合《HJ 977-2018水质烷基汞的测定吹扫捕集-气相色谱-冷原子荧光光谱法》。甲基汞和乙基汞的检出限分别为0.11pg和0.16pg,达到国际先进水平。PT-GC-AFD在安装AFD的同时还可以加装FID、ECD、TCD等多种气相色谱仪检测器,增加了仪器的通用性和适用范围,使仪器除了测量烷基汞之外,还可以轻松扩项进行多种样品的分析。北分瑞利公司拥有原子吸收分光光度计、原子荧光光谱仪、原子发射光谱仪、紫外/可见分光光度计、傅立叶变换红外光谱仪、气相色谱仪、液相色谱仪等光谱与色谱分析仪器,为各行业提供全套应用解决方案。
  • Science封面:AI与冷冻电镜揭示「原子级」NPC结构,生命科学突破
    近日,《Science》杂志以封面专题的形式发表了 5 篇论文,共同展现了通过 AI 技术来揭示人类和非洲爪蟾的核孔复合体(NPC)结构。开始正文之前,我们先来看一张图片,在下图中,很明显可以看出,图的右半部分所代表的信息更加丰富,结构也更清晰。而左半部分 2016 年的图,则结构较为单一,代表的信息比较少:其实上面展示的是核孔复合体(NPC)图像。核孔复合体,由约 1000 个蛋白质亚基组成,担负着真核生物细胞核与细胞质之间繁忙的运输大分子的任务,也是其连接胞质和细胞核的唯一双向通道。除了协调运输外,NPC 还组织必要的转录、mRNA 成熟、剪接体和核糖体组装等重要生命活动。NPC 强大的作用,已然成为疾病突变和宿主 - 病原体相互作用的关键点。得益于低分辨率下全核孔结构以及高分辨率下核孔组成结构技术的发展,细胞核孔受到越来越多的关注。然而,利用这些信息正确组装 30 多种不同蛋白质副本,并构建高分辨率的三维结构,一直是一项艰巨的挑战。近日,《Science》杂志以封面专题形式发表了 5 篇论文,其中 3 篇论文共同揭开了人类核孔复合体的近原子分辨率冷冻电镜结构,另外两项研究通过非洲爪蟾呈现了脊椎动物核孔复合体的单颗粒冷冻电镜图像。这篇封面文章将多项研究成果拼接在一起,形成的人类 NPC 图像接近原子级。论文地址:https://www.science.org/doi/pdf/10.1126/science.add2210这一研究成果建立在多项研究之上,包括数十年的生物化学重建、X 射线晶体学、质谱学、诱变和细胞生物学等。使用大幅度改进的冷冻电子断层扫描重建人类 NPC,并用人工智能技术精确建模组件。还有其他研究提高了单粒子冷冻电镜的分辨率,使脊椎动物 NPC 的二级结构元素和残基水平细节的可视化成为可能。分子组合丰富了我们对脊椎动物和人类 NPC 构建的理解——从旧的核支架到将各个部分连接在一起的连接蛋白,以及从核膜锚定到中央运输通道上方的细胞质丝。这里报告的研究成果,代表了实验结构生物学与人工智能的合作共赢,是人类探索生物微观世界的又一次胜利。另外,也证明了正在进行的分辨率革命,在我们寻求了解大分子组件的构造和设计原理方面,具有不可替代地作用。下图为 2022 年人类核孔复合体的横截面视图,新解析的成分包括对称核心(橙色)和细胞质细丝(黄色):五篇研究论文论文 1:《Architecture of the cytoplasmic face of the nuclear pore》论文地址:https://www.science.org/doi/10.1126/science.abm9129核孔复合体(NPC)是核质转运的唯一双向通道。尽管最近在阐明 NPC 对称核心结构方面取得了一些进展,但对于 mRNA 输出和核孔蛋白相关疾病的热点来说,不对称分布的细胞质表面仍然难以捉摸。加州理工学院等机构的研究者报告了通过结合生化重建、晶体结构测定、冷冻电子断层扫描重建和生理验证而获得的人类细胞质面的复合结构。虽然物种特异性基序在中央转运通道上方锚定了一个进化上保守、约 540 千道尔顿(kilodalton)异六聚体细胞质细丝核孔蛋白复合体,但 NUP358 五聚体束的附着取决于外套核孔蛋白复合体的双环排列。他们揭示的复合结构及其预测能力为阐明 mRNA 输出和核孔蛋白疾病的分子基提供了丰富的基础。人类 NPC 的细胞质面论文 2:《Architecture of the linker-scaffold in the nuclear pore》论文地址:https://www.science.org/doi/10.1126/science.abm9798尽管人们已经可以确定 NPC 对称核心中结构化支架核孔蛋白的排列,但它们通过多价非结构化接头核孔蛋白的内聚性仍然难以捉摸。通过结合生化重建、高分辨率结构测定、冷冻电子断层扫描重建和生理验证,加州理工学院的研究者阐明了进化上保守的接头支架结构,产生了人类 NPC 的约 64 兆道尔顿(megadalton)对称的近原子复合结构核。虽然接头通常起刚性作用,但 NPC 的接头支架为其中央转运通道的可逆收缩和扩张以及横向通道的出现提供了必要的可塑性和稳健性。他们的结果大大推进了 NPC 对称核心的结构表征,为未来的功能研究打下了基础。人类 NPC 对称核心的接头支架结构。论文 3:《AI-based structure prediction empowers integrative structural analysis of human nuclear pores》论文地址:https://www.science.org/doi/10.1126/science.abm9506虽然核孔复合体(NPC)介导核质转运,它们错综复杂的 120 兆道尔顿架构仍未完全得到了解。马克斯 普朗克生物物理研究所等机构的研究者报告了具有显式膜和多构象状态的人类 NPC 支架的 70 兆道尔顿模型。他们将基于 AI 的结构预测与原位和细胞冷冻电子断层扫描、综合建模相结合。结果表明,接头核孔蛋白在亚复合体内和亚复合体之间组织支架,以建立高阶结构。微秒长的分子动力学模拟表明,支架不需要稳定内外核膜融合,而是扩大中心孔。他们举例阐释了如何将基于 AI 的建模与原位结构生物学相结合,以了解跨空间组织级别的亚细胞结构。人类 NPC 支架架构的 70 兆道尔顿模型。论文 4:《Structure of the cytoplasmic ring of the Xenopus laevis nuclear pore complex》论文地址:https://www.science.org/doi/10.1126/science.abl8280西湖大学和清华大学以 3.7-4.7 埃(angstrom)的分辨率对非洲爪蟾 NPC 的细胞质环亚基进行单粒子冷冻电子显微镜重建。其中,Nup358 的氨基末端域的结构被解析为 3.0 埃,这有助于识别每个细胞质环亚基中的五个 Nup358 分子。研究者最终的细胞质环亚基模型包括五个 Nup358、两个 Nup205 和两个 Nup93 分子,以及两个先前表征的 Y 复合体。Nup160 的羧基末端片段充当每个 Y 复合体顶点的组织中心。结构分析揭示了 Nup93、Nup205 和 Nup358 如何促进和加强主要由两层 Y 复合体形成的细胞质环支架的组装。非洲爪蟾 NPC 双层细胞质环的 Cryo-EM 结构。论文 5:《Structure of cytoplasmic ring of nuclear pore complex by integrative cryo-EM and AlphaFold》论文地址:https://www.science.org/doi/10.1126/science.abm9326哈佛医学院等机构的研究者使用单粒子冷冻电子显微镜和 AlphaFold 预测,从非洲爪蟾卵母细胞中确定了近乎完整的 NPC 细胞质环结构。具体地,他们使用 AlphaFold 预测核孔蛋白的结构,并使用突出的二级结构密度作为指导来适应中等分辨率的地图。此外,某些分子相互作用通过使用 AlphaFold 的复杂预测进一步得到建立或确认。研究者确定了五份 Nup358 的结合模式,它是最大的 NPC 亚基,具有用于转运的 Phe-Gly 重复序列。他们预测 Nup358 包含一个卷曲螺旋结构域,可以提供活性以帮助它在一定条件下作为 NPC 形成的成核中心。非洲爪蟾 NPC 细胞质环的 Cryo-EM 结构。
  • 中国科大在超冷原子体系实现理想外尔半金属态
    外尔半金属(Weyl semimetal)是一类重要的拓扑物态,其能带中的外尔点结构具有许多奇异的性质:它是一种拓扑磁单极子,且总是成对出现,在其附近的低能激发的运动模式符合“外尔费米子”的方程,最早于1929年由德国科学家赫尔曼外尔提出。有且仅有两个外尔点的外尔半金属—理想外尔半金属,是外尔半金属“家族”中最为基础的一员,由其衍生的有相互作用关联相总是拓扑非平庸的。在凝聚态材料中,尽管近几年外尔半金属材料取得诸多重要进展,这种仅有两个外尔点的外尔半金属尚未实现。图一A:三维自旋轨道耦合装置示意图。B:实验构造的三维拉曼势结构,导致原子在格点之间的自旋翻转隧穿。超冷原子体系具有环境干净,高度可控等重要特性,通过超冷原子研究拓扑量子物态目前是量子模拟领域中一个活跃的方向,其中人工合成自旋轨道耦合是实现拓扑物相的一项重要技术。实现外尔半金属等高维拓扑物态的模拟,三维自旋轨道耦合是其必要条件。这意味着需要构建更加复杂的三维非阿贝尔规范势,一直是超冷原子量子模拟领域的重大挑战。在超冷原子自旋轨道耦合的研究方面,中国科大通过和北大合作一直处于研究前沿。2016年,实验团队就和北大理论组合作,提出并构建了二维拉曼耦合光晶格,实现了二维自旋轨道耦合拓扑量子气[Science 354,83-88, (2016)]。近期,北大的理论团队在原二维系统的基础上提出了三维自旋轨道耦合和理想外尔半金属的新型拉曼光晶格方案[Science Bulletin 65, 2080-2085 (2020)]。实现三维自旋轨道耦合和理想外尔半金属能带,实验上面临两个技术难题,一是怎样把二维形式的拉曼耦合拓展到三维结构;二是怎样利用传统的二维成像进行三维动量空间的探测。为此,联合研究团队设计了巧妙的光路,通过将光晶格“旋转”45°,并将相位锁定,准确构造出理论方案中三维结构的拉曼势,合成三维自旋轨道耦合(图一),同时通过调节实验参量合成了有且仅有两个外尔点的能带结构。图二 A:通过虚拟断层成像法重构三维自旋纹理,找到两个外尔点的位置。B:通过量子淬火动力学对外尔点位置的标定。在探测方面,研究团队借鉴了北大组和香港科技大学G.-B. Jo组合作提出的虚拟断层成像法[Nat. Phys. 15, 911 (2019)],并应用到当前的三维光晶格体系。利用体系的对称性,通过调节拉曼失谐等效得到z方向不同动量平面上的自旋纹理,再重构出三维动量空间的自旋纹理,找到外尔点;随后利用量子淬火动力学提取出该平面能带的拓扑特征,进而确定外尔点的位置。两种方法互相佐证,印证了理想外尔半金属能带的实现。实验中所使用的CCD(如图一)为牛津仪器ANDOR的iKon CCD相机,在动态模式下连续拍摄三张照片,通过对三张照片的处理得到原子的时间飞行吸收成像照片。图三iKon CCD相机iKon CCD相机真空密封,制冷温度可以低至 -100℃。采用BEX2-DD芯片抑制近红外干涉条纹,全波段量子效率达 90%,动态模式下具有微秒级时间分辨率。《科学》杂志的审稿人对这一工作给予高度评价,认为这项工作“为冷原子体系研究外尔物理中的新奇现象打开了新的方向”(...a very interesting work which opens a new direction of investigating exotic phenomena associated with the Weyl physics for ultracold atoms)“作为三维自旋轨道耦合在冷原子体系的首次实现,是领域中的重要进展,并为冷原子研究提供了新的工具”(...this is the first time that 3D spin-orbit coupling was ever achieved in a cold atom experiment. This, in itself represents a significant progress and an important addition to the cold atom toolbox.)“对理想外尔点的实现是非常有价值的结果,为固体系统提供了起到互补作用的研究方向”(Realizing ideal Weyl cones in cold atom systems is thus an extremely valuable objective and will provide an angle of attack that is complementary to solid-state systems.)在该研究工作的基础上,研究团队将进一步开展外尔半金属中更奇特的现象和物理过程的探索。本工作的技术方案也可以推广到费米子体系,开展强关联拓扑物理的研究。该成果有望极大推动量子模拟领域的发展。
  • 外国两实验室首次运用冷冻电镜观察到单个原子
    p   随着电子检测和图像处理技术的突破,近年来,电子冷冻显微镜(cryo-EM)已实现了对蛋白质结构更高精细度的图像分析。但是目前想获得蛋白质中高分辨率的单原子冷冻电镜图像还很困难。5月底英国剑桥医学研究委员会分子生物学实验室和德国马克斯· 普朗克生物物理化学研究所两个实验室分别在预印本网站bioRxiv发表论文报告了冷冻电镜产生了迄今为止最清晰的图像,并且首次识别出了蛋白质中的单个原子,巩固了冷冻电镜作为绘制蛋白质3D形状的主要工具的地位。 /p p   为了让冷冻电镜达到原子分辨率,两个团队研究了一种名为去铁蛋白的蛋白质。由于其稳定性,这种蛋白质已经成为冷冻电镜的试验台:该蛋白质结构之前的纪录分辨率为1.54× 10 sup -10 /sup 米。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/3bb0bc38-c960-48db-bcb5-b9b02f3a8c37.jpg" title=" 铁蛋白Pic.jpg" alt=" 铁蛋白Pic.jpg" / /p p style=" text-align: center " strong 去铁蛋白相关电镜图片 /strong /p p style=" text-align: right " span style=" font-size: 14px " strong 图片来源:论文 /strong span style=" background-color: rgb(255, 255, 255) color: rgb(19, 19, 19) font-family: " gill=" " sans=" " letter-spacing:=" " Single-particle cryo-EM at atomic resolution /span /span /p p   随后,研究小组通过技术改进,拍摄到了更清晰的去铁蛋白照片。领导了德国该项目研究的生物化学家和电子显微镜学家Stark研究小组得到了这种蛋白质的1.25× 10 sup -10 /sup 米结构,提高了所得图像的分辨率。英国团队获得的1.2× 10 sup -10 /sup 米结构非常完整,领导了该项目的结构生物学家Scheres说,他们可以分辨出蛋白质和周围水分子中的单个氢原子。 /p p   Scheres和同事Aricescu还测试了对一种名为GABAA受体的蛋白质的简化形式的改进。这种蛋白质位于神经元膜,是全身麻醉剂、焦虑药物和许多其他药物的靶标。去年,Aricescu团队使用冷冻电镜将该蛋白质定位到2.5× 10 sup -10 /sup 米。但使用新的试剂盒,研究人员获得了1.7× 10 sup -10 /sup 米分辨率。Aricescu说:“这就像在你的眼睛上剥去一层模糊的东西。在这个分辨率下,每0.5× 10 sup -10 /sup 米就打开了一个完整的宇宙。” /p p   原子分辨率图足够精确,可以在约为1.2× 10-10米的分辨率下清楚地分辨出蛋白质中单个原子的位置。这些结构对于理解酶是如何工作的,以及利用这些见解来识别能够阻止其活性的药物特别有用。 /p p   Scheres说,这些突破可能会巩固冷冻电镜作为大多数结构研究首选工具的地位。但Stark认为,X射线晶体学仍保留一些吸引力。如果一种蛋白质可以结晶,那么它就能在很短时间内相对高效地生成与数千种潜在药物相结合的结构,不过仍然需要数小时到数天的时间,才能为极高分辨率的低温电磁结构生成足够的数据。 /p p br/ /p p   相关论文: /p p span style=" background-color: rgb(255, 255, 255) color: rgb(19, 19, 19) font-family: " gill=" " sans=" " font-size:=" " letter-spacing:=" " /span /p p    a href=" https://www.biorxiv.org/content/10.1101/2020.05.22.110189v1.full-text" target=" _blank" Single-particle cryo-EM at atomic resolution /a /p p    a href=" https://www.biorxiv.org/content/10.1101/2020.05.21.106740v1.full-text" target=" _blank" Breaking the next Cryo-EM resolution barrier – Atomic resolution determination of proteins! /a /p
  • 科学家首次在超冷原子分子混合气中实现三原子分子的量子相干合成
    中国科学技术大学潘建伟、赵博等与中国科学院化学研究所白春礼小组合作,在超冷原子双原子分子混合气中首次实现三原子分子的相干合成。该研究中,科研人员在钾原子和钠钾基态分子的Feshbach共振附近利用射频场将原子和双原子分子相干地合成了超冷三原子分子,向基于超冷原子分子的量子模拟和超冷量子化学的研究迈出了重要一步。2月9日,相关研究成果发表在《自然》(Nature)上。   量子计算和量子模拟具有强大的并行计算和模拟能力,不仅能够解决经典计算机无法处理的计算难题,还能有效揭示复杂物理系统的规律,从而为新能源开发、新材料设计等提供指导。量子计算研究的终极目标是构建通用型量子计算机,但实现该目标需要制备大规模的量子纠缠并进行容错计算。当前量子计算的短期目标是发展专用型量子计算机,即专用量子模拟机,其能够某些特定问题上解决现有经典计算机无法解决的问题。例如,超冷原子分子量子模拟,利用高度可控的超冷量子气体来模拟复杂的难于计算的物理系统,可以对复杂系统进行精确的全方位的研究,因而在化学反应和新型材料设计中具有广泛应用前景。   超冷分子将为实现量子计算打开了新思路,并为量子模拟提供理想平台。但由于分子内部的振动转动能级复杂,通过直接冷却的方法来制备超冷分子十分困难。超冷原子技术的发展为制备超冷分子提供了新途径,可绕开直接冷却分子的困难,从超冷原子气中利用激光、电磁场等来合成分子。利用光从原子气中合成分子的研究可以追溯到20世纪80年代。激光冷却原子技术的出现使得光合成双原子分子得以快速发展,并在高精度光谱测量中取得了广泛应用。在光合成双原子分子成功后,科研人员开始思考能否利用量子调控技术从原子和双原子分子的混合气中合成三原子分子。在2006年发表的综述文章[Rev. Mod. Phys. 78,483, (2006)]中,美国国家标准局教授Paul Julienne等人回顾了光合成双原子分子过去二十年的发展历史,并指出从原子和双原子分子的混合气中合成三原子分子是未来合成分子领域的重要研究方向。由于光合成的双原子分子气存在密度低、温度高等缺点,无法用来研究三原子分子的合成。随着超冷原子气中Feshbach共振技术的发展,利用磁场或射频场合成分子成为制备超冷双原子分子的主要技术手段。从超冷原子中制备的双原子分子具有相空间密度高、温度低等优点,并且可以用激光将其相干地转移到振动转动的基态。自2008年美国科学院院士Deborah Jin和叶军的联合实验小组制备了铷钾超冷基态分子以来,多种碱金属原子的双原子分子先后在其他实验室中被制备出来,并被广泛应用于超冷化学和量子模拟研究中。   2015年,法国国家科学研究中心教授Olivier Dulieu等在理论上分析了从原子双原子分子混合气中合成三原子分子的可行性 [Phys. Rev. Lett. 115, 073201 (2015)]。 但由于三原子分子的相互作用复杂,无法精确计算,因而理论上无法预测三原子分子的束缚态的能量以及散射态和束缚态的耦合强度。中国科学技术大学研究小组在2019年首次观测到超低温下原子和双原子分子的Feshbach共振[Science 363, 261 (2019)]。在Feshbach共振附近,三原子分子束缚态的能量和散射态的能量趋于一致,同时散射态和束缚态之间的耦合被大幅度地共振增强。原子分子Feshbach共振的观测为合成三原子分子提供了新机遇。但由于原子和分子的Feshbach共振十分复杂,理论上难以理解,能否和如何利用Feshbach共振来合成三原子分子成为具有挑战性的问题。   该研究中,合作研究小组首次实现了利用射频场相干合成三原子分子。在实验中,科研人员从接近绝对零度的超冷原子混合气出发,制备了处于单一超精细态的钠钾基态分子。在钾原子和钠钾分子的Feshbach共振附近,通过射频场将原子分子的散射态和三原子分子的束缚态耦合在一起。在钠钾分子的射频损失谱上观测到射频合成三原子分子的信号,并测量了Feshbach共振附近三原子分子的束缚能。该工作为量子模拟和超冷化学的研究开辟了新道路。超冷三原子分子是模拟量子力学下三体问题的理想研究平台。三体问题十分复杂,即使经典的三体问题由于存在混沌效应也无法精确求解。在量子力学的约束下,三体问题变得更加难以捉摸。如何理解和描述量子力学下的三体问题是少体物理中的重要难题。此外,超冷三原子分子可以用来实现超高精度的光谱测量,为刻画复杂的三体相互作用势能面提供了重要基准。由于计算势能面需要高精度地求解多电子薛定谔方程,超冷三原子分子的势能面也为量子化学中的电子结构问题提供了重要信息。   研究工作得到科技部、国家自然科学基金委、中科院、安徽省、上海市等的支持。   论文链接
  • 冷原子研究取得突破-确定性制备近千个原子纠缠态
    p   量子纠缠态在量子信息、量子计算与精密测量等前沿科学问题中具有重大意义,它们的制备是量子物理的重要研究方向。根据量子力学的基本原理,干涉结果可以由每个粒子沿不同路径或内态的振幅相干叠加而得到。基于这种波动性质的干涉仪广泛应用于各式各样的精密测量物理系统中,增加干涉仪中使用的粒子/光子数可以提高干涉仪的信噪比。利用粒子之间的量子关联,可以实现超越经典极限的测量精度,这样的纠缠态目前已经在多种体系中实现。最好的指标是在冷原子系统中获得的,其对应的粒子数N可以达到甚至超过百万。而所谓的最大纠缠态NOON态和Dicke态可以实现接近海森堡极限的测量精度,但目前这种量子态只在离子、光子和核自旋体系上有成功的实验报道,最多对应了10个左右的粒子。 /p p   近期,国家重大科学研究计划量子调控研究项目“冷原子与偶极量子气体的性质与调控”清华大学尤力研究组取得了重大进展,成功制备了量子纠缠的双数态(Twin-Fock)原子玻色凝聚体(BEC)。这是一种原子在两个模式上具有同等粒子数的多体纠缠Dicke态。目前,该实验平台能在每40秒内确定性地制备一个由约10000个粒子组成的多体纠缠态,从非纠缠的初态到双数态凝聚体的转换效率高达96± 2%。该项研究首次验证了量子相变可以作为制备多体量子纠缠态的有效手段,研究论文于2017年2月10日发表于《Science》杂志上。 /p p /p p /p
  • 海光HGF-V系列原子荧光喜获2021检验检测认证认可行业年度风云榜
    日前,《质量与认证》杂志主办的“2021检验检测认证认可行业年度风云榜• 仪器设备十大新锐产品”评选结果重磅发布,海光公司HGF-V系列原子荧光光度计荣誉上榜,质量与认证、人民日报、今日头条、分析测试百科网、中国化工信息、食品工业科技、中国安全食品网、检测家、中国食品报、仪商汇等媒体平台陆续公开报道。 《质量与认证》杂志由国家市场监督管理总局主管,作为质量领域、检验检测认证认可行业较强影响力的全媒体平台,已连续多年成功举办“检验检测认证认可行业年度风云榜评选”活动,得到行业各相关方的高度认可。“仪器设备十大新锐产品”评选活动旨在履行专业媒体责任,为行业仪器设备采购和招标工作寻找、发现、推荐高科技创新产品,全力推进我国各级实验室能力建设。此次“仪器设备十大新锐产品”经网络用户投票及多位行业专家专业评选综合得出。此次海光HGF-V系列原子荧光榜上有名,是用户及专家对海光产品的高度认可。获奖主体HGF-V系列原子荧光光度计 HGF-V系列原子荧光光度计是海光公司近些年推出的新一代高性能原子荧光,主要用于食品、环保、疾控、地质及科研等领域的砷、汞、硒、锑等元素的痕量及超痕量检测,升级后可实现形态分析功能。产品亮点 该产品用于各领域砷、汞、硒、锑等十二种元素痕量、超痕量检测,采用高度一体化三维集成流路系统、微升级高性能顺序注射进样系统、免维护水冷式自溢流三级气液分离系统、双区独立温控屏蔽式石英炉原子化系统、革命性百万次免维护点火技术、多通道多灯位光源系统、高稳定度汞灯漂移校准系统等创新技术,解决了传统原子荧光痛点问题。专家点评 HGF-V系列产品是在传统之上进行的颠覆与创新,集成多项核心技术,更可靠、智能化、免维护,所形成的新一代技术平台,具有国际先进水平。
  • 环境型原子力显微镜和扫描电镜联用 助力检测橡胶样品
    设备: 日立环境型原子力显微镜 AFM5300E   日立扫描电子显微镜 SU3500背景及目的SEM是检测电子束扫描样品所生成的2次电子,背闪射电子,特征X射线等信号,得出样品结构,成分,结晶特性,元素分布等信息。另一方面,SPM是利用探针和样品表面的相互作用,表征高精度样品形貌及硬度和摩擦力,吸附力等敏感的力学物理特性及电流,电气阻抗,表层电位,压电特性,磁性等电磁物理特性。在这里我们介绍,包含氧化铅和硫磺的橡胶样品的SEM背闪射电子图像和X射线面分布像及利用SPM的形貌像(AFM像)和相位像(Phase像)的观察结果。1) Phase像根据样品表面的硬度和吸附力对比,利用共振悬臂的相位变化成像物理特性的方法。图1 SPM、SEM的检测信息和橡胶样品中的应用2) 观察结果图2 橡胶样品的SEM、SPM观察同一视野结构观察在背闪射电子像(BSE像)里重元素的对比度高,EDX元素分析得知这个区域含有铅元素和氧元素。SPM的Phase像观测中我们选用两类橡胶的弹性有较大差别的冷却温度-10℃,致使微区当中明显区分两种橡胶分布。SEM和SPM联系起来,表面的形貌和元素,结构,各种物理特性(力学特性和电磁特性)的面分析信息相结合,给基础研究,产品研发等提供更多观察及分析手段。 关于日立环境型原子力显微镜 AFM5300E,请点击:http://www.instrument.com.cn/netshow/SH102446/C244320.htm关于日立扫描电子显微镜 SU3500,请点击:http://www.instrument.com.cn/netshow/SH102446/C168115.htm 关于日立高新技术公司:日立高新技术公司,于2013年1月,融合了X射线和热分析等核心技术,成立了日立高新技术科学。以“光”“电子线”“X射线”“热”分析为核心技术,精工电子将本公司的全部股份转让给了株式会社日立高新,因此公司变为日立高新的子公司,同时公司名称变更为株式会社日立高新技术科学,扩大了科学计测仪器领域的解决方案。日立高新技术集团产品涵盖半导体制造、生命科学、电子零配件、液晶制造及工业电子材料,产品线更丰富的日立高新技术集团,将继续引领科学领域的核心技术。更多信息敬请关注:http://www.instrument.com.cn/netshow/SH102446/
  • 质检总局发布:原油中总汞含量的测定 塞曼校正冷原子吸收光谱法SN/T 4429.2-2016
    中华人民共和国国家质量监督检验检疫总局公告 国质检认[2016]131号 现将《原油中总汞含量的测定 塞曼校正冷原子吸收光谱法》等110项出入境检验检疫行业标准予以发布。生效日期为2016年10月1日。该标准采用LUMEX高频塞曼测汞仪分析原油中的汞含量。塞曼校正技术具有高灵敏、高选择性以及抗干扰性强等特点,能有效去除芳香族的伪数据等问题。标准编号:SN/T 4429.2-2016标准名称:原油中总汞含量的测定 塞曼校正冷原子吸收光谱法英文名称:Determination of total mercury in crude oil一Zeeman correction一 Cold atomic absorption spectrometry发布部门:国家质量监督检验检疫总局起草单位:中华人民共和国宁波出入境检验检疫局标准状态:现行发布日期:2016-03-09实施日期:2016-10-01标准格式:PDF标准简介:SN/T 4429的本部分规定了原油中总汞含量的塞曼校正冷原子吸收光谱测定方法。本部分适用于原油中总汞含量的测定,汞的最低测定限为2μg/kg。(来源:LUMEX公司)
  • 我国首次利用冷冻电镜技术获得生物大分子复合体全原子模型
    美国《国家科学院院刊》(Proceedings of the National Academy of Science, USA)1月10日在线发表了中国科学院生物物理研究所朱平研究组程凌鹏副研究员等人的研究论文——Atomic model of a cypovirus built from cryo-EM structure provides insight into the mechanism of mRNA capping。该发现对研究dsRNA病毒的mRNA加帽(Capping)机制有重要意义。这是我国首次利用冷冻电镜技术解析的生物大分子原子结构模型,也是目前已报道的国内最高分辨率的冷冻电镜三维重构结果。同时,这是世界上首次利用冷冻电镜的CCD图像(电荷耦合器件图像传感器,可将图像资料由光信号转换成电信号)获得的生物大分子复合体的全原子模型。   本工作是完全基于生物物理所生物成像技术实验室2010年4月建成并试运行的Titan Krios电镜及其附属设备完成的,用单颗粒图像处理技术获得了呼肠孤病毒科的质型多角体病毒近原子分辨率的三维结构(3.9埃),并独立构建了全原子模型。呼肠孤病毒科病毒是一类重要的双链RNA病毒,其感染宿主包括植物、无脊椎动物、脊椎动物和人类,其中的质型多角体病毒是其两个亚科之一。该研究解析了呼肠孤病毒科质型多角体病毒的近原子分辨率三维结构并构建了完整原子模型,确认了该病毒新生mRNA的流出通道,对研究双链RNA病毒的RNA加帽机制,新生mRNA的释放过程,以及呼肠孤病毒的蛋白衣壳的稳定性和进化具有重要意义。   中国科学院生物物理研究所在中国科学院蛋白质科学研究平台二期建设当中重点发展了生物大分子冷冻电镜三维重构研究平台,已经建成了具有世界先进水平的生物成像技术实验室,拥有目前最先进的300千伏Titan Krios场发射冷冻透射电子显微镜。该成果表明:我国独立开展的生物大分子冷冻电镜高分辨率研究工作达到了该领域的先进水平 和2010年10月孙飞研究组以封面形式发表于Structure的分子伴侣素结构等系列成果表明:中国科学院蛋白质科学研究平台生物成像技术实验室的成功建立,为进一步开展冷冻电子显微前沿研究奠定了坚实的基础,生物物理所生物成像技术实验室已跻身于达到近原子分辨率三维重构水平的极少数实验室行列。   本工作得到基金委国家自然科学基金、科技部国家重点基础研究973计划、以及中国科学院百人计划等项目资助,该文章链接为http://www.pnas.org/content/early/2011/01/05/1014995108。   该研究由中国科学院生物物理研究所生物大分子国家重点实验室朱平研究组和孙飞研究组、华南农业大学孙京臣副教授和中山大学张景强教授等合作完成。其中,生物物理研究所朱平研究组程凌鹏副研究员完成了冷冻电镜成像和结构解析等工作,黄晓星助理研究员协助完成了病毒纯化工作,孙飞研究组研究生张凯协助完成了原子模型构建工作,生物成像中心电子显微镜平台高级工程师季刚博士提供了电镜成像技术支持。      图片说明:质多角体病毒CPV的冷冻电镜图像(左上)和质型多角体病毒衣壳三维重构(中)。重构结果中彩色部分为组成该病毒的最基本的非对称结构单元。右图展示该非对称单元的放大图(右上)以及构建的原子模型(右下)。左下图展示的是部分氨基酸的三维重构电子密度图以及构建的原子模型,可以很清楚地看见氨基酸侧链。
  • 我国超冷原子量子模拟研究获重大突破
    最近,中国科学技术大学教授潘建伟及其同事陈帅等与清华大学翟荟小组合作,在超冷铷原子玻色气体中人工合成自旋&mdash 轨道耦合的基础上,首次在实验上成功确定自旋&mdash 轨道耦合玻色气体在有限温度下的相图,标志着我国在超冷原子量子模拟这一重要实验领域占据了一席之地。该实验成果以封面标题的形式发表在4月初出版的《自然&mdash 物理学》杂志上。   此次研究人员首先利用拉曼耦合技术,人工合成了自旋&mdash 轨道耦合的超冷铷原子玻色气体。通过改变系统温度,他们首次观察到了玻色&mdash 爱因斯坦凝聚体(BEC)的转变温度在自旋&mdash 轨道耦合影响下的变化 在实验上确定了磁性平面波相BEC到非磁性条纹相BEC在非零温度下的相变曲线 同时观察到在自旋&mdash 轨道耦合作用下,玻色气体磁性的产生与BEC转变温度的一致性。科学家在这些现象的基础上,比较完整地描绘出有限温度下自旋&mdash 轨道耦合玻色气体的相图。   该发现有助于更清楚地理解自旋&mdash 轨道耦合的玻色气体的基本特性,展现了超冷量子气体在相互作用效应和热力学效应的共同影响下所产生的丰富的物理内容,是超冷原子量子模拟的一项重要进展,充分显示出量子模拟的强大功能。
  • 《中国药典》2020年版岛津AA专辑 冷蒸气原子吸收法测定中药材中的汞
    中药是我国传统医学的重要组成部分,一直以其独特的疗效而闻名于世。然而,随着经济的发展,环境污染越来越严重,使得有些中药材在生长的过程中吸收了周围环境中的有害金属元素,这样不仅降低了中药质量而且直接影响用药者的安全。我国中国药典2020年版一部金银花、白芍等品种项下“重金属及有害元素”检查项规定汞不得过0.2 mg/kg。 本文参考《2321 铅、镉、砷、汞、铜测定法》采用微波消解,使用岛津原子吸收分光光度计+冷汞发生器(MVU-1)测定中药材中的汞含量。 岛津原子吸收分光光度计 冷汞发生器反应原理及方法讨论冷汞发生器流路如图1所示,一定量的样品加入到反应瓶中,再加入氯化氩锡溶液,在瞬间产生汞蒸气,图中模式旋塞和排气旋塞均处于实线位置,汞蒸气在泵的带动下在管路中循环,信号达到稳定后在253.7nm下测其吸光度。 图1 冷汞发生器流路图 过量的氯化亚锡与汞的的反应方程式:汞极不稳定,在保存过程中容易损失,导致汞损失可能的原因是:样品中各种还原剂、杂质、微生物会把汞离子转变为有机汞或金属汞而挥发,另外贮存容器容易吸附汞形成络合物也会导致汞的损失。所以为了防止汞的损失可加入酸和氧化剂作为稳定剂,加入的酸通常有硝酸、硫酸、盐酸等,加入的氧化剂有重铬酸钾、高锰酸钾等。本文选择硫酸和重铬酸钾作为稳定剂。 过量氧化剂会消耗氯化亚锡而影响汞的还原;在2%硫酸条件下考察不同浓度的重铬酸钾对测试灵敏度的影响: 重铬酸钾浓度对测试灵敏度的影响(5ppb汞标液)从测试结果可以看出,当重铬酸钾的浓度为0.05%时,有较好的灵敏度。 标准曲线的制备分别配制0、1、2、5μg/L的汞标液,上机测试结果表明,在0~5μg/L浓度范围内,浓度与吸光度有着良好的线性关系,相关系数为r=0.9992。 样品测试结果 检测限及加标回收率实验对样品空白连续测定11次,以3倍SD值除以曲线斜率算得检测限为0.013mg/kg。 称取金银花和白芍样品各0.5g,加入1mL 100μg/L的汞标液按同样的方法做前处理,最后定容至50ml,进行加标回收率实验,回收率数据如下表4所示: 回收率实验结果结论参考中国药典2020年版《2321 铅、镉、砷、汞、铜测定法》,采用微波消解冷蒸气原子吸收法测定中药材中的汞含量,实验结果表明汞在0~5ug/L浓度范围内有良好的线性关系,相关系数为0.9992,检测限为0.013mg/kg,加标回收率为95.5%~103.5%,该方法具有灵敏度高,测试快速的优点,可以满足药典中汞分析限值的要求。
  • 【重磅】冷冻电镜Cryo-EM解析出新冠病毒首个S蛋白的近原子分辨率结构
    电镜不仅可以揭示新冠病毒形态、扩增过程及传播途径,同时,使用冷冻电镜解析病毒的刺突糖蛋白(Spike glycoprotein, S蛋白)结构是助力疫苗与抗病毒药物研发的关键所在。2月15日,美国得克萨斯大学奥斯汀分校Jason S. McLellan教授团队和美国国立卫生研究院NIH联合在预印版网站bioRxiv上发表了首篇使用冷冻电镜解析新冠病毒S蛋白的研究文章。Jason Mclellan团队通过冷冻电镜Cryo-EM技术,解析了新冠病毒S蛋白三聚体的3.5埃的近原子分辨率结构,从生物物理及结构生物学的角度加深了我们对新冠病毒的认知。01为何2019-nCoV的传染性如此之强?作者使用了来自赛默飞旗下品牌Thermo Scientific的Titan Krios冷冻电镜,解析了新冠病毒刺突糖蛋白(简称S蛋白)三聚体预融合构象的近原子分辨率结构,其分辨率达3.5埃(10-10 m)。该研究中发现新冠病毒S蛋白三聚体的在多数时候其三个受体结合域(Receptor-binding domains,RBDs)中的一个发生了旋转,使得其更容易与细胞表面的受体相互作用。作者还借助于其他生物物理和负染电镜(Thermo Scientific Talos TEM)技术,发现 2019-nCoV S结合细胞表面受体血管紧缩素转化酶2(angiotensin-converting enzyme 2, ACE2)的亲和力高于SARS-CoV的 S蛋白。这两方面的数据说明了为何2019-nCoV的传染性较其他冠状病毒传染性更强。*新冠病毒S蛋白三聚体预融合构象的近原子分辨率结构作者进一步通过动力学实验检测确认新冠病毒、SARS病毒与宿主细胞受体ACE2亲和力的差异。令人震惊的是,2019-nCoV结合ACE2的亲和力是SARS病毒结合受体亲和力的10-20倍。该研究成果进一步阐释了新冠病毒能够迅速在人际间传播的原因。*新型冠状病毒相对SARS病毒对ACE2具有高亲和性02为何SARS-CoV的抗体对2019-nCoV无效?由于新型冠状病毒与SARS-CoV病毒之间的结构同源性,通过比较,研究者发现了2019-nCoV S蛋白与SARS-CoV S蛋白的结构差异。此外,他们还测试了三种研发用于结合SARS-CoV S蛋白的单克隆抗体,研究发现这些抗体并不能与2019-nCoV S蛋白RBD产生交叉反应,这说明SARS-CoV的抗体并不能用于2019-nCoV, 针对2019-nCoV必须重新设计抗体和疫苗。*2019-nCoV S与SARS-CoV S的结构对比总而言之,此文章利用冷冻电镜技术对新型冠状病毒的S蛋白进行了近原子分辨率的解析,为进一步精确地疫苗设计以及抗病毒药物的研发提供了重要的结构生物学基础,为发展新型冠状病毒的医疗对策提供了技术支持。后续如有相关疫苗或抗病毒药物的研究进展,冷晓镜会持续跟进报道。冷晓镜小课堂Q刺突糖蛋白(简称S蛋白)为何这么重要?冠状病毒的刺突糖蛋白(Spike glycoprotein, S glycoprotein)是Ⅰ型跨膜糖蛋白,也是病毒最大的结构蛋白,其包含了病毒的主要抗原决定簇,能够刺激机体产生中和抗体和介导免疫反应,通常包括由球状的受体结合亚基S1和棒状的融合亚基S2两部分。同时,S蛋白的S1亚基决定了受体细胞的表面受体的特异性,而S2亚基又决定了病毒进入细胞的融合过程的特性,可以说S蛋白的结构对于设计疫苗来产生抗体或者设计药物阻断病毒吸附与侵染具有重要作用。*美国疾病控制中心 (CDC) 创建的新冠病毒立体模型“ 作为冷冻电镜(cryo-EM)技术的开拓者,赛默飞世尔科技一直致力于该技术的研发和普及,在不断推出新产品的同时,还专门与客户合作开发了冷冻电镜免费在线学习工具https://em-learning.com,希望为广大生命科学工作者及相关行业提供更完备更易用的解决方案。目前,赛默飞世尔科技冷冻电镜产品家族包括旗舰级300 kV产品Krios G4,最新推出的200 kV产品Glacios,用于冷冻样品制备的Vitrobot和用于样品筛查的入门级产品Talos L120C G2,以及用于冷冻电子断层扫描(cryo-ET)细胞样品减薄的冷冻聚焦离子束Aquilos 2等。”
  • 重磅推出:低温强磁场原子力/共聚焦显微镜,mK级干式稀释制冷机内适用
    近期凝聚态物理各个领域有了进一步深入的发展,科学家对低于100mK的低温温区的量子光学,量子光学机制以及其他测量结果产生了大兴趣。 例如,量子共振器与量子点、钻石中单个自旋或者高度整洁的光学腔的耦合效应研究;单分子质量探测到单电子自旋的磁共振力研究;利用共振荧光光谱探测单个量子点、光电导率、 Kondo激子以及对自旋冷却与核化的研究;光学探测磁共振对磁学成像的研究等各种低温实验在近期变得可能。 目前,在干式稀释制冷机内实现以上各种低温实验包括自由光路共聚焦光学研究已经成为可能。德国attocube公司一直以来保持与科学家的亲密合作关系,不断为量子光学领域提供新的实验平台来保证科学家们进行具有突破性的研究。 图1 attoAFM/CFM低温强磁场原子力/共聚焦显微镜示意图 近期,德国attocube公司与莱顿(Leiden Cryogenics)公司以及瑞士Prof. Patrick Maletinsky课题组合作推出了mK干式稀释制冷机适用低温强磁场原子力/共聚焦显微镜(参见图1)。该系统在瑞士巴塞尔持续为量子传感器以及mK成像研究提供帮助。设备采用了进样的关键设计,为快速进行样品与探针的更换提供了保证。底部进样一般需要24-28小时,而进样更换样品只需8小时。该关键设计使得低温扫描探针显微镜实验变得更加具有时间效率。 图2 attoAFM III音叉式原子力显微镜在62mK时测量20nm高度微结构形貌(左);attoAFM/CFM原子力/共聚焦显微镜在60mK测试微结构形貌(右) 值得欣喜的是,经过在莱顿干式稀释制冷机系统内测试,attoAFM/CFM原子力/共聚焦显微镜能在低温环境下获得优良的形貌图(图2)。不仅限于莱顿干式稀释制冷机, attocube公司还在BluFors Cryogenics公司的干式稀释制冷机内进行测试并且获得良好结果(图3)。 图3 attoAFM I原子力显微镜在40mK时测量微结构形貌(左);attoAFM/CFM原子力/共聚焦显微镜在55mK测试微结构形貌(右) attoAFM/CFM低温强磁场原子力/共聚焦显微镜具有共聚焦显微镜功能,使用的attoCFM I外置光学头坐落在样品插杆的上方。虽然样品在磁场中心并且距离光学窗口有较长距离,但是该光学头允许设备进行正常的所有共聚焦光学实验。 attoCFM I光学头具有多路光学通道,具备容易调节与长期高度稳定等特点。相关产品链接无液氦低温强磁场共聚焦显微镜 http://www.instrument.com.cn/netshow/SH100980/C159541.htm低温强磁场光探测磁共振成像系统 http://www.instrument.com.cn/netshow/SH100980/C214789.htm
  • 冷冻电镜发展进入全原子动力学分析阶段
    p   “这是《自然》杂志首次发表系统性、优于3.6埃分辨率水平实验研究超大复合蛋白质机器的动力学过程和原理的论文,标志冷冻电镜的发展开始进入全原子动力学分析的新阶段。”1月20日,北京大学教授毛有东告诉科技日报记者。 /p p   本月,北京大学物理学院人工微结构和介观物理国家重点实验室、前沿交叉学科研究院定量生物学中心毛有东课题组在《自然》杂志上发表的论文表明,他们通过冷冻电子显微镜和机器学习技术的结合,解析了人源蛋白酶体26S在降解底物过程中的七种中间态构象的高分辨(2.8埃—3.6埃)精细原子结构,局部分辨率最高达到2.5埃。 /p p   毛有东介绍,这些三维结构展现了惊人的时空连续性,生动呈现了原子水平的蛋白酶体和底物相互作用的动态过程,首次实现了对三磷酸腺苷酶六聚马达分子内三磷酸腺苷水解全周步进循环完整过程的原子水平观测和三维建模,发现三种不同的三磷酸腺苷水解协同反应模式,及其如何调控蛋白酶体复杂多样的功能。 /p p   “论文解决了一系列长期悬而未决的重要科学问题,如三磷酸腺苷酶马达如何将化学能转化为机械能,进而实现了底物解折叠的协同动力学机制。”该论文的共同第一作者、原课题组博士后、现为中国科学院化学所研究员董原辰说。 /p p   论文的共同第一作者、课题组博士生张书文说,这些研究结果为几十年来对蛋白酶体功能的研究提供了宝贵的第一手原子结构和动力学信息,对于理解生物体内蛋白质的降解过程和一系列负责物质输运的三磷酸腺苷酶马达分子的一般工作原理具有极为重要的科学意义。 /p
  • 环境检测实验室原子荧光方案
    原子荧光光度计也被称为原子荧光光谱仪是为数不多的具有中国自主知识产权的分析仪器。由于灵敏度高,操作简单被广泛应用于水质、土壤、食品、化妆品、矿石等众多样品中砷、汞等元素的检测。其中随着国家对于环境保护的逐步重视,“水十条”、“土十条”以及“大气十条”陆续发布,原子荧光光度计成为了环境检测实验室检测重金属必不可少的分析仪器。根据环境检测实验室的测试需求,北京金索坤于2020年底推出了灵敏度高,稳定性好,检测效率高,操作便捷的测汞型SK-乐析原子荧光光度计产品,并且可后期灵活升级砷、汞元素形态分析检测。测汞型原子荧光光度计是在传统产品型号基础上提升了测汞性能,具有稳定性好、灵敏度高、测试效率高、操作便捷的特点,适用于大量测试样品中砷、汞元素测。 更稳定性的原子荧光光度计测汞型原子荧光光度计采用内部无管路模块化设计,替代传统的由管路连接反应块、气液分离等装置的传统结构,将原有的近3米左右的传输管路最大限度地减少至30厘米左右,降低汞元素的记忆效应,从而提高仪器的稳定性,RSD小于0.5%,远优于国标,保证测试的稳定性。此外,模块选用进口材质,可降低记忆效应的同时,面对高含量汞样品可以快速清洗,便于维护,节约耗材。 更灵敏度的原子荧光光度计测汞型原子荧光光谱仪相比常规型号具有更好的灵敏度,汞元素的检出限为0.001ng/mL,可对该浓度标准溶液进行实测检出。仪器内部采用升级原子化器芯,提高原子化效率从而提高测试灵敏度。此外新型传输室可以将氢化反应生成的待测元素气体、氩气及氢气混匀,为更好地原子化提供基础,从而提高仪器灵敏度,测汞更佳。 更高效的原子荧光光度计测汞型原子荧光光度计采用与ICP-MS相同的连续进样系统,无需载流,样品A-样品B连续进入测试,每个样品测试三次数据仅需30秒,大大提高检测效率,是传统型号测试效率的三倍。平均每小时可以测试120到150个样品。原子荧光主机可选配快速智能自动进样器,可在不停机过程中直接更换样品盘,节约插拔样品管时间,提高工作效率。 形态分析升级更灵活的原子荧光光度计除了砷、汞元素总量检测外,有时还需要进一步对其中有害人体健康的无机砷和有机汞进行检测。这时需要为原子荧光产品升级形态分析模组。由于金索坤原子荧光产品采用ICP-MS连续进样系统,无需转化进样方式可以与任何品牌液相色谱产品进行无缝对接,升级后进行无机砷、有机汞的检测。所以在拓展形态分析检测项目时方案更多样化,可以充分发挥现有分析仪器作用,用最经济的方式拓展检测项目。1、金索坤原子荧光产品增加形态分析模组进行升级无机砷、有机汞检测分析。2、对现有液相色谱增加金索坤原子荧光检测器及对接装置,从而升级进行无机砷、有机汞检测分析。下图为金索坤为液相色谱产品升级形态分析方案示例。北京金索坤作为专注原子荧光光度计产品研发生产的高新技术企业,在原子荧光技术领域不断探索乾坤,会继续推出优质原子荧光产品服务广大实验室用户,助力重金属检测工作。
  • 原子荧光形态分析仪在饲料检测中的应用
    饲料因为可直接影响动物源性食品安全,因而备受关注检测行业的关注。其中重金属超标是影响饲料安全的主要问题之一。原子荧光光度计因其有较高的灵敏度和稳定性在饲料检测中发挥重要作用。伴随着元素形态分析需求提高,原子荧光形态分析仪在饲料检测中发挥的作用越来越高。形态分析是一种仪器联机分析方法,实质是分离技术与检测技术的联用。其中因为原子荧光光度计具有分析灵敏度高、线性范围宽、仪器结构简单等优势,所以液相色谱与原子荧光联用技术发展很快。将原子荧光联用仪应用在饲料研究的例子有很多。例如在2018年出版的中国畜牧杂志中作者刘成新在《液相色谱-氢化物发生原子荧光光谱法测定饲料中汞的形态》一文中通过应用原子荧光形态分析仪检测无机汞、甲基汞以及乙基汞的实验得出结论:使用原子荧光形态分析法灵敏度高,精密度好,前处理过程简单,检测费用低,适用于饲料产品中汞的形态分析。此外原子荧光形态分析仪还可以饲料中有益成分,例如苯胂酸类药物能够刺激动物生长,改善禽肉质,常作为畜禽饲料添加剂。作者陈冬冬在《液相色谱-原子荧光》中利用原子荧光分析仪以饲料为研究对象建立苯胂酸类药物的检测方法并提出了今后苯胂酸类药物检测技术的发展方向。另外,硒也是一种较为特殊的元素,一方面它是人体必须元素之一,另一方面过量摄入硒会导致脱发脱甲等症状,而且有机硒更容易被吸收。中国农业科学院农业质量标准与检测技术研究所推出专利技术《一种测定痕量硒元素形态的方法及其检测富硒饲料的应用》,运用该方法能够较为准确的对提取出的硒元素进行含量测定,能有效分离并测定富硒饲料中常含有5种形态硒物质的含量,以此能够准确分析富硒饲料中的硒元素形态,有助于快速安全的对富硒饲料产品进行选择运用。由此可见原子荧光形态分析仪在饲料中汞、砷、硒等重金属元素形态分析中发挥重要作用。金索坤作为原子荧光行业领跑者是最早开始研究原子荧光形态分析技术的厂家之一,推出的SK-GQ70一体式形态分析模组连续流动的液相洗脱液可直接进入金索坤原子荧光连续流动进样系统,实现液相色谱模组与原子荧光主机无缝对接,从而提高检测灵敏度及精密度。金索坤会继续努力,助力饲料行业形态分析检测。 金索坤SK-2003A 便捷型原子荧光光谱仪/光度计
  • 原子荧光的应用-速冻饺子的检测
    冬季的各种节日总是离不开饺子这种美食。速冻饺子成为很多不会包饺子的年轻人首选。不过在选购这类食品时除了需要关注口味和保质日期等,还有一类需要关注的检测指标很容易被忽视—重金属含量。今天金索坤的小编和您分享速冻饺子都需要检测哪些重金属指标,其中有哪些与原子荧光光度计有关。首先,饺子皮的面粉需要依照《GB 1355》检测,所用到的动植物油需要依照《GB 2716》检。用到的馅,无论荤素,肉干还是鲜肉、冻肉都需要依照相应的检测标准检测,例如《GB 2733鲜、冻动物性水产品卫生标准》。另外饺子馅中用来调味的添加剂也需要符合《GB 2760食品添加剂使用卫生标准》,所用到的水,盐都需要依照相关标准。当然,饺子包好以后用到的包装材料同样需要依照相应的标准检测。其中重金属超标是影响我国食品安全的重要因素。因此砷、汞等重金属含量是速冻饺子检测的重要指标。原子荧光光度计因其有较高的灵敏度和稳定性在速冻饺子的选材、生产加工以及运输中发挥重要作用。在选材上,无论是面粉还是肉制品、水产品都可以依照《GB 5009.11-2014》、《GB 5009.17-2021》使用原子荧光光度计、原子荧光形态分析仪检测其中总砷总汞以及无机砷和甲基汞的含量。另外食品中硒、硒、锑、锗等元素也可以依照相关标准使用原子荧光光谱仪检测。在饺子加工生产过程中需要依照标准《GB 5009.76-2014 食品安全国家标准 食品添加剂中砷的测定》检测添加剂中的砷,使用到的水可依照《GB-T 5750-2006 生活饮用水标准检验方法》检测,其中砷、汞元素使用原子荧光法。加工好的成品速冻饺子需要成盒运输,参照标准《GB 31604.38-2016 食品安全国家标准 食品接触材料及制品 砷的测定和迁移量的测定》等可以使用原子荧光光度计检测其中的砷等重金属含量。这样看来,小小的速冻饺子从其选材到我们的餐桌,每一步都经过重重的检测。原子荧光光度计作为检测重金属的主要分析仪器,在速冻饺子加工生产过程中的检测发挥着重要作用。金索坤作为原子荧光行业领跑者,研究原子荧光技术二十余载,推出SK-2003A便捷型原子荧光光度计等系列产品助力食品检测。金索坤会再接再厉,用更加优质的原子荧光产品服务广大客户。 金索坤SK-2003A 便捷型原子荧光光谱仪/光度计
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制