当前位置: 仪器信息网 > 行业主题 > >

呼出气检测

仪器信息网呼出气检测专题为您提供2024年最新呼出气检测价格报价、厂家品牌的相关信息, 包括呼出气检测参数、型号等,不管是国产,还是进口品牌的呼出气检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合呼出气检测相关的耗材配件、试剂标物,还有呼出气检测相关的最新资讯、资料,以及呼出气检测相关的解决方案。

呼出气检测相关的资讯

  • 天开园企业聚焦呼出气检测技术 “探测”身体预警信号
    不久之前,天开园企业万盈美(天津)健康科技有限公司发布了致力于呼出气领域的疾病筛查技术研究、助益生物医药产业发展、并在临床中实现重大突破的详细情况。  万盈美董事长马万里介绍,人类呼出的气体中包含300多种挥发性有机化合物(VOCs),这些物质来源于人体的新陈代谢,其浓度和种类可以反应人体的生理和病理状态,因此可以作为区分健康和疾病状态的生物标志物。随着对呼出气VOCs研究的深入,呼出气VOCs与疾病的关系逐渐明确,可以为疾病的诊断、病情监测以及药物疗效评估等方面提供有力支持。人类呼吸代谢组学数据库已经确定了近60种与呼出气VOCs相关的疾病,包括肺癌、阿尔茨海默病等。  随着我国在重大慢病防控、人口老龄化、医保支出压力方面的问题日趋严峻,对高效、准确、便捷、低成本的疾病筛查技术的需求越来越迫切。为了回应这样的时代命题,推动呼出气检测的临床转化,万盈美(天津)健康科技有限公司应运而生,并在天开园注册成立专注于呼出气分析技术的万盈美呼气智检(天津)数字医疗科技有限公司。  “我们公司主要聚焦国际领先的呼出气诊断技术研发,提供基于呼出气分析的疾病预警、临床试验CRO和药代动力学分析服务。”马万里介绍说。  公司发展至今,依托先进的呼出气检测设备和万盈美肺癌筛查模型建立了中心检测实验室,为体检机构、医疗单位、社区、企业、个体提供基于呼气代谢组学的LDT(实验室自建检测)肺癌早筛健康预警服务。公司还通过体检机构、互联网平台获取样本,并向终端用户提供肺癌预警信息。马万里说:“用户只需要获得气袋并独立完成采样,就会在3天内收到得到我们自有检测实验室提供的、有临床研究或科学研究成果支持的肺癌及其他肺部疾病的健康分析及预警信息。”  针对目前现有肺癌筛查体系对肺微小结节(  目前,万盈美正与多所高校、研究机构、三甲医院合作,共同开展技术研究和开发,不断产生核心专利,进行商业化推广,并不断取得突破。前不久,万盈美成功入选中国品牌创新发展工程。未来,万盈美将不断拓宽疾病早诊图谱和范围,从肺结节、肺癌逐步拓展至AD、心衰等多领域,同时拓宽检测服务边界,不断发挥呼出气检测的技术优势,以前瞻视角、科技创新,展现作为“国家队”的国际视野与责任担当。
  • 重磅:FDA授权呼出气质谱用于新冠检测
    2022年4月14日,美国食品和药品管理局(FDA)发布了一则新闻,为世界上第一个COVID-19诊断测试颁发了紧急授权,该测试可检测与新冠病毒感染相关的呼吸样本中的化合物。该测试可以在收集和分析患者标本的环境中进行,例如医生办公室,医院和移动测试站点,使用大约一件随身行李大小的仪器。该测试由合格的,训练有素的操作员在州法律许可或有授权的医疗保健提供者的监督下进行,可以在不到三分钟的时间内提供结果。FDA设备和放射健康中心主任Jeff Shuren博士说,“此次的授权是新冠诊断技术寻求不断创新的有一个例证。FDA将会继续支持开发新型的新冠病毒检测技术,目标是解决当前大流行的困境,并在下一次突发公共卫生事件中为美国树立更好的地位。”此次授权的是一家总部在美国德克萨斯州,刚成立四年的创业公司,员工不到50人,专注于便携式的新冠病毒,阿片类药物和大麻检测方案的公司。该公司的InspectIR COVID-19 呼出气检测仪在一项针对2,409人(包括有症状和无症状的人)的大型研究中得到了验证,研究表明该方法具有91.2%的灵敏度和99.3%的特异性。研究还显示,在包含4.2%阳性比例的人群中,该测试的阴性预测值为99.6%,这意味着在疾病流行率低的地区,收到阴性测试结果的人大概率是真阴性。在一项专注于奥密克戎变体的随访临床研究中,该检验的灵敏度与之相似。InspectIR COVID-19 呼出气检测仪基于气相色谱气质联用技术(GCMS)来分离和识别化学混合物,并迅速检测出呼出气体中与新冠病毒感染有关的五种挥发性有机化合物(VOCs)。当InspectIR COVID-19 呼出气检测仪检测到这些生物标志物时,会返回一个推定的(未经证实的)阳性检测结果,并需要通过进一步的分子检测来证实。阴性测试结果也同时需要结合患者最近的接触情况、病史以及是否存在符合新冠感染的临床症状和体征来考虑,该测试的结果不能排除是否感染新冠病毒,也不能作为治疗或患者管理决策的唯一依据,包括感染控制决策。继去年新加坡批准呼出气质谱用于新冠感染人群筛查之后,FDA此次的政策加码势必会极大推动呼出气质谱在此类公共安全事件中的大规模应用,未来几年内科研和商业市场一定会风起云涌。参考信息:https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-first-covid-19-diagnostic-test-using-breath-sampleshttps://inspect-ir.com/https://www.bloombergquint.com/coronavirus-outbreak/covid-breath-test-provisionally-approved-for-use-in-singapore
  • 大连化物所研制临床高灵敏高特异性呼出气氨实时监测仪
    近日,大连化物所仪器分析化学研究室质谱与快速检测研究中心(102组)李海洋研究员团队与大连医科大学附属第二医院冷松教授团队合作,基于我所自主研发的高分辨离子迁移谱技术,发展了一种面向床旁诊断的呼出气氨实时监测仪和新方法,实现了对周期性呼吸过程中呼出气氨的高灵敏和高特异性的实时监测。该方法可以有效减轻呼出气中高湿度、复杂背景,以及小分子氨的高吸附性残留对检测结果的干扰,为人体重要生物代谢标志物氨的检测提供了一种无创、实时、精准的新仪器和新方法。呼出气氨与体内氨基酸合成—代谢、尿素—氮动态平衡、血液酸碱平衡缓冲对等多种重要生理过程密切相关。呼出气中氨浓度为肝肾功能、雷氏综合征、尿素循环障碍、有机酸中毒和幽门螺杆菌感染等疾病的诊断提供了重要参考。因此,呼出气氨的快速、非侵入、准确定量监测具有重要的临床意义。在前期相关研究的基础上,本工作通过在漂气中加入改性剂丙酮来调控离子—分子反应,显著地提升了氨和试剂分子的峰—峰分离度,在上千种呼出气组分中实现痕量氨气的高特异性检测;发展了在线稀释和吹扫采样技术,解决了氨分子的吸附残留难题,实现了100%RH下呼出气氨的高灵敏检测;在宽的浓度范围(100至2400ppb)可以实现呼出气氨的准确定量检测,单次分析时间仅40ms。与目前血氨浓度检测方法相比,呼出气氨离子迁移谱检测仪具有无创检测、实时性强、选择性好、灵敏度高等优点,特别适用于透析疗效的实时监测和肝性脑病的早期识别,展示出床旁诊断的重要应用价值。目前,该仪器已在大连医科大学附属第二医院健康管理医学中心开展健康检测和评估。相关研究以“Breath-by-breath measurement of exhaled ammonia by acetone-modifier positive photoionization ion mobility spectrometry via online dilution and purging sampling”为题,发表在《药物分析学报》(The Journal of Pharmaceutical Analysis)上。该工作的第一作者是大连化物所与大连医科大学联合培养硕士研究生王露和102组蒋丹丹副研究员。该工作得到了国家自然科学基金、中科院科研仪器设备研制项目、大连化物所创新基金等项目的资助。
  • 重症早期预警——呼出气用SIFT-MS 实时快速检测
    编者注:傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。 第一讲:傅若农讲述气相色谱技术发展历史及趋势第二讲:傅若农:从三家公司GC产品更迭看气相技术发展第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状第四讲:傅若农:气相色谱固定液的前世今生第五讲:傅若农:气-固色谱的魅力第六讲:傅若农:PLOT气相色谱柱的诱惑力第七讲:傅若农:酒驾判官——顶空气相色谱的前世今生第八讲:傅若农:一扫而光——吹扫捕集-气相色谱的发展第九讲:傅若农:凌空一瞥洞察一切——神通广大的固相微萃取(SPME)第十讲:傅若农:悬“珠”济世——单液滴微萃取(SDME)的妙用第十一讲:傅若农:扭转乾坤——神奇的反应顶空气相色谱分析第十二讲:擒魔序曲——脂质组学研究中的样品处理第十三讲:离子液体柱——脂质组学中分离脂肪酸的气相色谱柱第十四讲:脂肪酸气相色谱分析的故事第十五讲:吹口气,知健康——GC-MS检测呼气疾病标记物   呼吸气检测相比其他通常医疗检测的最大优点是无损伤和安全性,由于它在临床诊断和明确的评估方面具有巨大的优势,所以呼吸气检测今天受到极大的重视,这一方法对一些病人成为每天控制重要指标的必要测试项目(就像检测血糖和尿液一样)。呼吸气检测有多种方法,表 1列出分析呼出气体的一些方法。表 1 用于分析呼出气体的一些方法  上次我们介绍了GC-MS分析人呼出气体中预示疾病的生物标记物。这里我们介绍用SIFT-MS快速实时分析呼出气体中预示疾病的生物标记物的方法。1. 用选择性离子流动管质谱(SIFT-MS)快速、实时、准确地分析呼吸气体中的疾病标记物  早期的质谱是采用低压电子电离源,用以测定分子量、元素组成以及探究物质的化学结构,后者是利用分子电离后的碎片组成来实现的。近年电离方法的发展是针对直接分析液体或固体样品而设计的,包括快原子轰击(FAB),基质辅助激光吸附/电离(MALDI),和电喷雾电离(ESI)方法。后面2个方法特别适合于分子量大的化合物的鉴定,ESI与液相色谱(HPLC)的结合更为有效。在气体样品电离的方法方面也得到重要的发展,包括化学电离(软电离)的各种变体,多使用正离子电离,以减少初始电离分子碎片的量,大气压电离是化学电离的一个特殊的方法。也开发出用于气体分析在漂移管中从H3O+离子进行质子转移的化学电离方法,叫做质子转移反应质谱(PTR-MS)。  使用电子电离质谱进行大气和呼吸气中微量组分的实时鉴定和定量分析,是一个具有挑战性的任务。因为在离子源中会浸入过多的气体如氮、氧和水蒸气,要解决这些问题,使用多种过滤膜,这些过滤膜只让极性的被测气体进入离子源,而排出大量的空气。但是这些过滤膜仍会阻挡其他一些痕迹量气体(尤其是烃类),所以要针对每种痕迹量气体小心校正过滤膜的穿透性,才能达到准确地定量结果。要不然为了避免不同化合物同时进行电离就只得使用GC-MS进行分析。  如果是能够直接、实时地分析大气中的痕迹量杂质,即解决环境科学,特别是呼吸气体中特殊气体的分析,开发扩大医疗诊断的领域,那就好了。尽管GC-MS可以分析空气和呼气中的10-12(ppb)和10-9(ppt)的痕迹量组分,但是需要收集大容量的样品到冷冻或吸附阱里。  显然,这就不是实时监测了。而且GC不适合监测像氨和甲醛一类小分子量物质。  David Smith等于1976年开发了选择性离子流动管质谱(SIFT-MS),它是一种可以进行定量分析的质谱方法,它开拓了使用选择性前体正离子进行化学电离的方法,此正离子可在一定的短暂反应时间里与空气或呼吸气体中痕迹量气体进行反应。这一技术是把快速流动管技术、化学电离和定量质谱分析很好的结合在一起,用以对一些空气和呼吸气体中痕迹量物质进行精确的定量分析,检测量可低达10-9浓度级别,分析时间只用几秒钟。  SIFT 的构思和发展始于1976年,是研究离子和中性物质反应的标准方法,开始时用于气相离子和中性物质反应的动力学数据,各国进行了大量的实验,积累了大量数据,奠定了离子和中性物质反应的基本概念。2.SIFT-MS 的原理和装置  SIFT-MS 的工作原理如图 1 所示:图 1 SIFT-MS 的工作原理示意图  在离子源中用微波放电或射频离子源来产生正离子,离子进入一个上游管中,其中有一个四极杆滤质器,用以过滤掉无用离子,留下首选的母离子,通常选择H3O+,NO+和O2+为母离子,母离子通过一个文丘里管(一般管径为1–2 mm)进入到反应流动管中,这里样品气用载气氦以一定速进入流动管,载气压力通常为100 Pa,在这里母离子与样品气反应,反应产物离子进入一个下游管,管长一般为30–100 cm,管末端的文丘里管(一般管径为0.3mm)进入到另一个四极杆滤质器对它们进行质量过滤。用电子倍增器检测,对选择出来的目标反应产物离子进行离子计数,进行定量分析。3.SIFT 中的反应速率常数  样品+载气注射到不锈钢流动管(内径通常为4-8 cm,内径以dt表示),用罗茨泵抽动,使管中总流速在40–80 m/s,以vg表示,它可以用载气流速,压力pg,温度Tg (K) 和dt进行精确计算,即:(1)  被加热的离子很快沿着流动管进行扩散,离子沿着流动管的平均速率为Vi这一速率决定着离子与反应气的反应时间 t,Vi要大于Vg,要进行精确测量,理论证明二者的关系为:(2)  反应气进样口进入流动管,其流速为Φ R。简单地处理,t是反应长度l(进样口到下游进样孔之间的距离)和Vi之比,但是l需要包括一个小的“末端校正”ε ,典型情况下ε 为2cm,这是考虑到反应气和载气的一定的混合距离。  为了确定反应的速率系数,需要知道载气中反应气分子的数密度值[A ],可以从载气和反应气的流速得到(3)  kb 是玻尔兹曼常数。  下面用一个例子解释如何确定速率常数的,我们选择H3O+为起始离子与丙酮作用,此反应用于呼吸气的分析,这是一个很简单的反应,H3O+的质子进入丙酮分子中:  在流动管中H3O+的原始数密度随时间而降低,Ni可以用下面的动力学公式描述:   式(5)中右面第1项表示原始离子(母离子)扩散到流动管壁的损失,以扩散系数 Di和Λ 来表征,Λ 表示扩散距离,与流动管的直径有关。第2项表示原始离子由于反应的损失,k 是反应(4)质子转移的速率系数,A是反应物(丙酮)的数密度。实际上原始离子H3O+和产物离子(CH3COCH3?H+)的计数率都可以用下游的质谱系统在丙酮蒸汽几个不同的流速下进行测定得到,在丙酮存在下H3O+的计数率I与没有丙酮时的的计数率I0相关,把公式(5)积分可得到:  k 的绝对值可从logI对[A]作图得到。  速率系数k是分析测定必须有的数据,见后面的叙述。4 .SIFT-MS 分析法  从公式(5)和(6)知道,如果反应的前体离子和反应物A的速率系数知道,当分子A流入载气里是,前体离子的计数率就开始降低,这样就可以测定[A],但是如果一个反应混合物气体同时进入载气里,那么前体离子计数率的降低是所有可反应气体造成的,就不能达到分析混合物的目的。但是,如果每一个反应气体和前体离子反应生成不同的产物离子。那么反应产物的信号就既可以定性又可以定量,所以SIFT-MS分析集中于用下游质谱仪测定前体和反应气体产物离子的计数率,所以它提供一个实时定量分析复杂混合物中的痕迹量气体,比如环境气体和呼吸气体。5 .呼吸气体分析实例  Turner等人采用SIFT-MS对30位健康志愿者(19位男性,11位女性)进行为期六个月呼出气中乙醇和乙醛的监测,每周8:45 到 13:00(午餐前)志愿者取样,对乙醇和乙醛即可用SIFT-MS进行测定,使用H3O+为前体离子,测得乙醇平均浓度为196 ppb。乙醛的平均浓度为24 ppb。测得正常人呼出气中乙醇浓度在0到1663ppb之间,平均值为450ppb,乙醛浓度在0到104ppb之间,平均值为41ppb。环境中乙醇的背景浓度为50ppb左右,但是几乎没有检测到环境中的乙醛。但是在测定前2 h要是吃了甜饮料/食品乙醇的浓度会增加。(Rapid Commun Mass Spectrom,2006,20(1):6l-68 王海东等,现代科学仪器,2013,(4):40-45)(1) 具体方法概述  SIFT-MS有两种不同的运行模式,一种是全扫描模式,即在一定m/z范围内得到通常的质谱图,用于鉴定前体、产物离子和他们相应的计数率,在线计算机立刻计算这些痕迹量气体在呼吸气中的分压,为此要有可鉴定的产物离子,而且它们还要包括在分析所需要的动力学数据库中,动力学数据库包括速率系数和前体离子/痕迹量气体化合物反应的产物离子。对各种类型的化合物(醇类、醛类、酮类、烃类等)和三种前体离子经过SIFT的详细研究,构建了数据库。  另一种是多离子检测模式,在这一模式下,下游分析用质谱仪用很快的切换方式对前体离子和反应产物离子的选择性m/z值进行处理,定量分析水蒸气和痕迹量目标化合物。这一模式可以更为精确地定量分析痕迹量目标化合物。  图 2是使用多离子检测模式,使用H3O+为前体离子的SIFT-MS进行测定,获得乙醇和甲醇浓度在三次呼出气体随时间变化的曲线。本研究是用这一模式测定肺泡空气中的乙醇和乙醛浓度,在测定呼吸气体的间隙同时测定周围空气中的乙醇和乙醛浓度,看它是否影响对呼吸气体中目标化合物的测定。图 2 SIFT-MS 定量分析呼吸气中乙醇和甲醇的浓度随时间的变化图  SIFT-MS 定量分析呼吸气中乙醇,浓度随时间的变化是使用前体离子、前体离子水化物和乙醇特征产物离子及水化物(C2H5OH2+,m/z 47)信号比进行计算,还要知道反应时间和样品及载气的流速。  乙醇可以很快地与所有三种前体离子(H3O+,NO+, O2+)反应,与H3O+是直接进行反应,得到m/z 47的质子化乙醇,如下面的反应式: (7)  此反应(7)是放热反应,决定于碰撞速率。  当含有水汽的呼吸气进入载气时,产物离子很快形成水合离子,含有一个水分子和两个水分子的质子化乙醇其m/z为65(C2H5OH2+?H2O)和83(C2H5OH2+?(H2O)2),他们必须要计算到乙醇的测定当中。乙醛的离子化也类似于乙醇,它们是CH3CHOH2+ m/z 45, CH3CHOH2+?H2O m/z 63,和CH3CHOH2+?(H2O)2 m/z 81,分析时要计算进去(2) 检测30个志愿者呼气结果  采用SIFT-MS对30位健康志愿者(19位男性,11位女性)进行为期六个月呼出气中乙醇和乙醛的监测,表2是在6个月期间测试30个志愿者呼气中乙醇含量的数据。对每一个志愿者每天测定他们的呼出气的乙醇浓度,是3次连续呼吸气的平均值,如图2中的数据,总数为478个平均值,测定了1434次呼气。每个志愿者呼气中的乙醇浓度平均值是为期半年积累的数据。连同测定的标准偏差(SD)数据见表2.按志愿者的年龄从上到下排列,也列出他(她)们的性别和身体质量指数(BMI)。个体之间乙醇浓度的散布很宽,所有志愿者的乙醇浓度在0 到 1663 ppb之间,平均值为196 ppb,SD 为 244 ppb,中间值为112 ppb。表 2 6个月期间测试30个志愿者呼气中乙醇含量的数据  *BMI =身体质量指数(Body Mass Index)(体重除以身高的平方)表 3 6个月期间测试30个志愿者呼气中乙醛含量的数据  30个志愿者呼气中乙醇浓度的散布见图3(a),是所有478次肺泡呼吸气中乙醇的浓度,这一分布接近于对数正态分布,符合预期的呼吸代谢的水平。图 3 30个志愿者6个月内呼吸气中乙醇和乙醛浓度测定的分布图  棒图纵坐标为样品数,a和 d 是针对所有样品,b和 e是志愿者在测试前2 h没有食用含糖食品或饮料的数据,c 和f是志愿者在测试前2 h吃了含糖食品或饮料的数据  根据这一文章作者们的研究指出吃了含糖食品或饮料会增加呼吸气中乙醇的浓度,这是由于蔗糖通过口腔菌群或肠道菌群的作用产生乙醇。他们研究这一现象,是否会显著影响呼吸气中乙醇浓度的测定,所以分别研究了在测定前两小时吃和没吃甜品志愿者的呼吸气中的乙醇浓度。图 3 中的(b)是志愿者在测试2h 前没有吃甜品的292呼吸气样品得到的结果,图 3 中的(c)是志愿者在测试2h 前没有吃甜品的186呼吸气样品得到的结果,考察呼气中乙醇浓度的增加是否实施由于蔗糖通过口腔菌群或肠道菌群的作用所产生乙醇。  以前的研究已经阐述过,环境空气中乙醇背景浓度对呼吸气中乙醇浓度的测定的影响,本研究说明背景乙醇浓度很容易检测出来(环境中的乙醛背景浓度测不出来)。小结 我这里引述的研究是2005年的工作,已经过去10年了,跟进的工作不多,可见还没有被人们认识,也涉及到仪器的昂贵,虽然已经有商品仪器,但是没有普及。看来进一步发展这一方法还需要医学和化学工作者结合,以及仪器的普及。
  • 艾立本人体呼出气检测质谱仪获批医疗器械注册证
    近日,艾立本科技旗下全资子公司立本医疗器械(成都)有限公司自主研发的“人体呼出气检测质谱仪(Breath-TOF MS 2000)”正式获得四川省药品监督管理局颁发的《中华人民共和国医疗器械注册证》(注册证编号【川械注准20242220009】)。  “人体呼出气检测质谱仪(Breath-TOF MS 2000)”作为艾立本科技开发的首个二类医疗器械,标志着艾立本在医疗领域所获的实质突破。  呼气检测是一种医学诊断方法,即通过测试人体呼出气中的挥发性有机物成分及含量进行疾病诊断,可以为肿瘤及感染性疾病的早期筛查提供一种全新的筛查及鉴别诊断解决方案。传统的疾病筛查方法存在医疗资源不足、依从性低、敏感性和特异性不理想等局限性。然而呼气检测在癌症早筛领域的应用却颇受关注,处于行业爆发前夜,具有便捷、快检、精准、无创、低成本的检测优势,具备推广至各级医院开展大规模检测筛查的基础。  人体呼出气检测质谱仪  立本医疗器械(成都)有限公司研发团队历经近二十年潜心研究,自主研发了多款高性能人体呼出气检测质谱仪,并获得“基于VOC代谢轮廓的肺癌分期检测系统”、“呼气中乳腺癌生物标志物及其在乳腺癌诊断中的应用”、“区分胃癌患者与健康个体的呼出气VOC标志物与检测系统”等多项专利。    人体呼出气检测质谱仪Breath-TOF MS 2000  人体呼出气检测质谱仪(Breath-TOF MS 2000)突破传统GC-MS毛细管色谱分离的技术限制,采用光子及其相应的复合全电离技术,通过激发有机物分子或无机气体外层价电子,实现对被测气体样品的实时、不分离检测,响应时间可低至0.2s,大大缩短了分析时间。全谱软电离,单一分子仅产生其对应的分子离子,谱图极易识别,可实现样品气体中的所有VOCs、无机气体的同时离子化,实现真正意义上的高通量快速分析。  优势亮点:具有高灵敏度、高分辨率的优势,检出限可达ppt级,痕量分析准确,单台仪器可实现数百种气体的同时定性定量检测,突破了呼出气诊断检测设备层面的瓶颈。在保证高准确率(准确率超过90% 漏检率10%以内)的前提下同时实现了低成本、高可及性、非侵入式。  华西医院健康管理中心开展肺癌早筛科研临床  目前立本医疗已经与四川大学华西医院、四川省肿瘤医院、西京医院等多家单位持续开展基于人体呼出气肺癌、胃癌、乳腺癌、糖尿病、麻醉药代谢等多种疾病早筛研究工作,已正式入驻四川大学华西医院,开展人体呼出气疾病诊断的临床研究。据仪器信息网的统计,基于TOF-MS质谱方法的人体呼出气体检测质谱是继GC-MS后的获批方法,2021年时湖南步锐生物有一款基于单光子电离的TOF-MS质谱产品 Breatha Scents A-3已经获得医疗器械注册证,不过当前已经没有还在有效期内的基于GC-MS呼出气检测质谱产品。
  • AGV呼出气体酒精含量探测器检定装置研制
    table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 600" tbody tr td width=" 19%" p style=" line-height: 1.75em " 成果名称 /p /td td width=" 80%" colspan=" 3" p style=" line-height: 1.75em " AGV呼出气体酒精含量探测器检定装置 /p /td /tr tr td width=" 19%" p style=" line-height: 1.75em " 联系人 /p /td td width=" 35%" p style=" line-height: 1.75em " 潘义 /p /td td width=" 16%" p style=" line-height: 1.75em " 联系邮箱 /p /td td width=" 28%" p style=" line-height: 1.75em " 9026427@qq.com /p /td /tr tr td width=" 19%" p style=" line-height: 1.75em " 单位名称 /p /td td width=" 80%" colspan=" 3" p style=" line-height: 1.75em " 四川中测标物科技有限公司 /p /td /tr tr td width=" 19%" p style=" line-height: 1.75em " 成果成熟度 /p /td td width=" 80%" colspan=" 3" p style=" line-height: 1.75em " □正在研发 □已有样机 □通过小试 □通过中试 ■可以量产 /p /td /tr tr td width=" 19%" p style=" line-height: 1.75em " 合作方式 /p /td td width=" 80%" colspan=" 3" p style=" line-height: 1.75em " □技术转让 □技术入股 □合作开发& nbsp ■其他 /p /td /tr tr td width=" 100%" colspan=" 4" p style=" line-height: 1.75em " strong 成果简介: /strong br/ & nbsp & nbsp & nbsp /p p style=" text-align:center" img src=" http://img1.17img.cn/17img/images/201603/insimg/fa275657-9b17-435f-aca9-b321d2e44db0.jpg" title=" 5-AGV呼出气体酒精含量探测器检定装置.png" width=" 350" height=" 233" border=" 0" hspace=" 0" vspace=" 0" style=" width: 350px height: 233px " / /p p style=" line-height: 1.75em " & nbsp & nbsp 特点: 本检定装置以国际标准《ISO 6145-8 气体分析-动态体积法制备校准混合气体 第9部分:饱和法》为理论基础,研制出连续动态产生饱和酒精气体的技术工艺,结合本单位的气体稀释配气相关技术专利,可制备浓度范围为(40~500)& amp #956 mol· mol-1的酒精气体,完全满足《JJG 657-2006 呼出气体酒精含量探测器检定规程》对检定装置的要求,更率先与国际权威标准接轨,依据国际法制计量技术委员会颁布的《OIML R126 Evidential Breath alcohol analyzers》最新版的要求,实现了出口酒精气体温度、湿度的准确控制。检定装置具有清晰友好的人机对话界面,简单易用。 br/ & nbsp & nbsp & nbsp 指标:浓度范围:(40-500)× 10 br/ & nbsp & nbsp & nbsp 扩展不确定度:Urel = 2%, k = 2 br/ & nbsp & nbsp & nbsp 浓度调节时间: & lt 15s br/ & nbsp & nbsp & nbsp 重复性:0.2% br/ & nbsp & nbsp & nbsp 酒精气体温度: 34℃± 0.5℃,相对湿度大于90% /p /td /tr tr td width=" 100%" colspan=" 4" p style=" line-height: 1.75em " strong 应用前景: /strong br/ & nbsp & nbsp & nbsp 呼出气体酒精含量检测仪标准装置是应用于保障呼出气体酒精浓度计量准确性与溯源可靠性的专业设备。近年来随着汽车保有量的迅速增长,饮酒驾驶也逐渐成为当前重要的道路交通危害来源。我国交通执法部门大量采用呼出气体酒精含量检测仪作为判断是否酒驾的执法工具,酒检仪的计量性能是否准确关系到执法的公正性和权威性。研发呼出气体酒精含量检测仪标准装置对保障社会公共及人民生命财产安全具有重要作用,也是经济可持续发展的重要保障。呼出气体酒精含量检测仪标准装置建立以后,可以作为社会公用计量标准开展各类呼出气体酒精含量检测仪的检定校准工作,为社会提供呼出气体酒精浓度检测的溯源服务;也可以作为气体酒精传感器及检测设备的计量性能测试平台,联合各生产企业及科研、计量测试单位开展研发试验,提高气体酒精传感器及检测设备的技术水平。 /p /td /tr tr td width=" 100%" colspan=" 4" p style=" line-height: 1.75em " strong 知识产权及项目获奖情况: /strong br/ & nbsp & nbsp & nbsp 实用新型专利1项 br/ & nbsp & nbsp & nbsp 专利名称:一种呼出气体酒精含量探测器检定装置 br/ & nbsp & nbsp & nbsp 专利号:ZL201320830646.3 /p /td /tr /tbody /table p br/ /p
  • 李海洋:质谱新方法实现单次呼出气中氢氰酸跟踪测量
    近日,大连化物所仪器分析化学研究室快速分析与检测研究组(102组)李海洋研究员团队基于自主研发的大气压负离子飞行时间质谱仪器,提出了一种检测呼出气中氢氰酸(HCN)的气流辅助光电离质谱方法。该方法显著提升了呼出气中HCN直接测量的灵敏度和时间分辨能力,可实时跟踪志愿者单次呼气中HCN浓度水平,有望为肺纤维化病人早期筛查提供有效手段。  HCN是化工生产和化学战剂中一种常见的有毒有害气体,具有高挥发性、高吸附性。人体呼出气中也含有痕量的HCN。临床发现,肺部囊性纤维化(CF)患者呼出气体中HCN浓度较高,这与患者被铜绿假单胞菌感染有关。因此,发展高灵敏的在线呼出气中HCN测量方法,有望实现CF疾病的快速筛查。由于HCN易溶于水、极易吸附于装置表面,直接测量高湿度呼出气中HCN面临灵敏度和响应速度的挑战。该团队在前期工作(Anal. Chem.,2014;Anal. Chem.,2016;Anal Chim Acta.,2020)的基础上,本工作中提出在质谱电离源内,采用氦气反吹方法,降低高湿度样品气对电离的影响,同时提高离子传输效率,极大增强了HCN检测的灵敏度。团队在采样系统中进一步增加动态吹扫,有效减小了HCN的吸附残留,提升了该方法的时间分辨。该方法将HCN的检测灵敏度相对空气反吹条件提升了150倍,检测限达到0.3ppbv,时间分辨达到0.5s。团队将该技术用于跟踪监测志愿者漱口前后单次呼出气中HCN轮廓变化,可以区分出单次呼出气中HCN显著的“尖峰”和“平台”区间,分别反映了口腔和肺泡释放源的浓度水平,表明了该方法的抗干扰能力和HCN定量的准确性。  上述成果以“Online Detection of HCN in Humid Exhaled Air by Gas Flow Assisted Negative Photoionization Mass Spectrometry”为题,发表在《分析化学》(Analytical Chemistry)上。该工作的第一作者是大连化物所102组博士研究生文宇轩。该工作得到了大连化物所创新基金等项目的支持。
  • 步锐科技:积极探索人体呼出气诊断帕金森
    很多人听说过,有些动物嗅觉灵敏,甚至可以闻出人体病变的气味,于是有不少人研究怎么通过气味诊断或预测疾病。  长期以来,疾病诊断中很少会使用到气味检测,而狗狗却一直在识别人类气味的变化发展。古希腊人谈到医生使用他们的嗅觉进行气味诊断,但这个想法大多时候都被忽视了。直到近代,1989 年发表在The Lancet杂志上的一篇文章,第一次证明了狗的嗅觉可以用来诊断疾病,甚至是检测出癌症。  2004年,一家英国慈善机构报道:狗可以嗅出人类尿液中膀胱癌。自此以后,研究人一直在研究如何利用狗来诊断其他癌症以及糖尿病、疟疾和 COVID-19 等疾病。例如,糖尿病警报犬被训练可以在主人的血糖水平过低或过高时闻出气味,用犬嗅辨疾病正变得越来越普遍,越来越容易被人们接受。  此前已有科研成果提示帕金森病患者可能存在特殊的气味。  帕金森(Parkinson’s diseasePD)是一种神经系统疾病,会导致运动症状例如震颤僵硬和行走困难以及包括抑郁和痴呆症在内的非运动症状,虽然无法治愈,但早期诊断和治疗可以提高患者的生活质量,缓解症状延长生存期,然而早期症状却难以察觉。因此一旦出现肢体震颤认知障碍等症状病情,一般已经发展到了难以治疗的晚期阶段。  过去几年里,中南大学湘雅医院动物实验中心主任的高常青和该院神经内科教授郭纪锋、唐北沙团队,联合国内另外3所三甲医院,开展了一项多中心、前瞻性、双盲临床试验,发现比利时牧羊犬能嗅辨帕金森病患者皮肤挥发的近似麝香的气味,为帕金森病的诊断提供了全新思路。  这一原创性研究成果以封面论文形式发表于《运动障碍》。这是世界上首次报道证实利用实验动物辅助诊断人类帕金森病。  在当时,医学界已经报道过犬只“闻”出主人身上的癌症等疾病的例子。高常青也对比利时牧羊犬的嗅觉和犬嗅辨人类疾病的相关医学案例做过研究。表示狗和人类的鼻子构造不一样,狗吸入气体进入气道后有个过滤的过程,过滤完才将气体传输到肺部。比利时牧羊犬最大特点是鼻子很长,鼻子长鼻腔就长,鼻腔上的嗅觉细胞也更多,嗅觉神经也会更丰富。与人类大约10cm²的嗅觉上皮相比,犬的嗅觉上皮面积在170cm²以上,是人类的17倍 犬的嗅觉受体超过2亿个,是人类的40倍。犬的嗅觉受体受到更丰富的神经支配,加上鼻子的特殊构造,利于它辨别吸进的气味,而排除不需要的气味。2011年高常青开始对犬进行训练。最初主要集中在犬嗅辨肺癌的研究上。2016年,有报道提示帕金森病患者可能存在特殊的气味。高常青便找到我国著名神经病学家、湘雅医院神经内科教授唐北沙,希望开展合作研究。唐北沙将高常青介绍给了自己的学生、主攻帕金森病等神经退行性疾病的郭纪锋。为了探讨帕金森病患者体味对疾病的诊断作用,中南大学湘雅医院牵头,联合中南大学湘雅三医院、南华大学附属第二医院、南京医科大学附属明基医院开展了一项多中心、前瞻性、双盲临床试验。研究结果显示,在第一组服药治疗患者中,当两只或全部三只嗅辨犬示警为阳性结果时,测试的灵敏度、特异度、阳性似然比和阴性似然比分别为91%、95%、19.16和0.10。同时,对未服药新发患者的灵敏度、特异度、阳性似然比和阴性似然比分别为89%、86%、6.6和0.13,甚至提示嗅辨犬可以嗅辨出早期的帕金森病患者。《中国科学报》记者在一次犬嗅辨现场看到,全程未参与整个准备过程的嗅辨犬能迅速定位放置帕金森病患者的样本的鉴别罐。比利时牧羊犬能迅速定位放置患者样本的鉴别罐,待训犬员确认。(图片来源网络)实验表明,犬嗅辨帕金森病的灵敏度和特异度均较高,通过对这一现象的临床转化,团队未来有可能开发具有临床应用前景的诊断与鉴别诊断方法。这项研究为帕金森病的临床诊断提供了一个新视角。目前,湘雅医院动物实验中心共有8只嗅辨犬。高常青团队正和不同的科室积极沟通,未来将努力通过进一步的犬嗅动物实验,为肿瘤、代谢性疾病等诊疗提供新线索。喜闻乐见的是,目前气味检测在国内已经开始了商业化的临床前期应用。步锐科技开发出了具有临床应用前景的非侵入性的、快速经济有效的气味检测方法。基于呼气代谢组学、质谱检测和人工智能算法研发出了不依赖于动物更适合临床诊断需求的无创精准、快速经济高通量的呼气检测平台型工具——人体呼出气质谱检测平台,通过对人体呼出气样本进行在线质谱谱图分析,3min实现肿瘤、感染性疾病等多病种的精准快速检测,未来还可延展探索单样本多病种的快速筛查诊断,助力医患群体。  关于深圳市步锐生物科技有限公司  成立于2018年12月,是一家集研发、生产、销售为一体的医疗高新技术企业,也是国内首家利用人体呼出气检测技术进行肿瘤和感染性疾病早筛的公司。步锐科技自主研发了基于“人体呼出气检测质谱仪”的疾病辅助分析平台,由硬件部分—单光子电离-飞行时间质谱仪(SPI-TOFMS)的和软件部分—人工智能技术共同组成。可通过对人体呼气VOCs组分进行全谱图分析,3min实现肿瘤、感染性疾病等多病种的精准快速检测。目前,公司已与国内近40家顶级医疗机构开展科学研究合作,采用公司自主研发的解决方案,在肺癌、肺结核和乳腺癌的快速筛查和伴随诊断中取得积极进展,相关技术和方法远远领先市场上的同类产品,快速成为了人体呼气检测技术领域的领航者。
  • 科技前沿 | 质谱技术应用于新冠患者呼出气体的快速筛查
    前言自2019年年底新型冠状病毒肺炎(COVID-19)疫情爆发后,基于呼出气体检测结果辅助筛查新冠肺炎的研究成果不断被应用,国外部分新型呼出气体检测仪也已经获得了权威机构的紧急授权。基于呼出气体分析的新冠检测技术早在2021年5月17日,新加坡卫生科学局(HSA)就为用于新冠检测的新型呼出气体检测仪“BreFence Go”颁布了临时授权,该仪器先通过采样器收集被测者的呼出气体,呼出气体再进入质子转移反应飞行时间质谱(PTR-TOFMS)进行检测筛查。在今年的4月14日,美国食品药品监督管理局(FDA)也为用于新冠检测的新型呼出气体检测仪“InspectIR COVID-19”颁布了紧急使用授权(EUA),该仪器先收集被测者的呼出气体,再采用气相色谱质谱联用法检测其中与新冠病毒感染有关的5种醛酮类VOCs,在3分钟内给出检测结果。呼出气体检测仪部分参数如下:谱育科技仪器介绍谱育科技是一家专注于重大科学仪器研发和产业化创新应用的国家高新技术企业,多年来致力于VOCs检测仪器的研发,目前已经拥有全面成熟的VOCs检测体系和专业科学的分析解决方案。其中TRACE 8000 化学电离-飞行时间质谱仪和EXPEC 3500 便携式气相色谱质谱联用仪等设备都在现场VOCs的检测中得到了充分应用。TRACE 8000化学电离-飞行时间质谱仪 TRACE 8000采用高效化学电离源及垂直引入反射式飞行时间质谱技术,是一款化学电离-飞行时间质谱仪(CI-TOFMS)。该设备具有分析速度快、灵敏度高、定性能力强、测量组分种类多等突出特点。 EXPEC 3500便携式气相色谱质谱联用仪EXPEC 3500便携式气相色谱-质谱联用仪是一款基于气相色谱质谱联用技术的便携式仪器,可装备于移动监测车,也可通过肩背或手提方式徒步到达现场进行检测。设备具有检测灵敏度强、测量准确度高、便携性能良好、抗震性能优异、软件智能便捷、仪器维护方便等优势。EXPEC 3500 便携式GC-MS检测醛酮类VOCs谱图1丙烯醛 2 丙酮 3 丙醛 4甲基丙烯醛 5丁醛 6 2-丁酮 7 丁烯醛 8戊醛 9己醛 10苯甲醛 11间甲基苯甲醛TRACE 8000 化学电离-飞行时间质谱仪和EXPEC 3500 便携式气相色谱质谱联用仪部分参数如下表:注:TRACE 8000 化学电离-飞行时间质谱仪和EXPEC 3500 便携式气相色谱质谱联用仪详细参数扫描二维码见彩页。EXPEC 3500 便携式气相色谱质谱联用仪
  • 质谱仪检测人体呼出气体 或可诊断疾病
    5月14日消息,据媒体报道,人的指纹世界上独一无二的,没有完全相同的指纹。瑞士一项研究成果表明,每个人在呼吸时呼出的化合物和人类的指纹一样独一无二,医生甚至可以根据这些化合物来诊断疾病。   据了解,在该项研究中,研究人员在为期9天的时间里,分别对11名志愿者进行了4次呼气测试,他们利用质谱仪对志愿者呼气中的化合物成分进行了分析。结果显示,每个人所呼出的气体中都含有水蒸气和二氧化碳,但其他成分却不尽相同,同时在4次呼吸检测中,每个人呼气的成分构成几乎都是独一无二并且基本保持不变的。   此外,在测试过程中,有一名志愿者呼气中的某项化学成分偏高,这引起了研究人员的注意,原来该志愿者一直在服用抗癫痫药物,于是研究人员又对服用相同药物的患者进行了呼气测试,并得出了相同的检测结果。
  • 抗击疫情,Vocus在行动 –人体呼出气体VOC分析进行快速新冠病毒早期筛查
    利用Vocus PTR-TOF,法国ircelyon和isa研究所的科研人员在里昂的croix rousse医院进行了疑似新冠患者的呼出气体分析,以期能实现对早期新冠病毒感染者的快速筛查。人体呼出气体分析是近年来的科研热点,因呼出气体中富含的特征vocs可能给临床诊断带来革命性的改变。呼出气体含有的内源性vocs跟人体的新陈代谢和生理状况都息息相关;同时,食物消化和药物代谢物也会在呼出气体中留下特定的印记。因其无损,简易性和可快速分析等优点,呼出气体组分研究被认为具有潜力成为病情诊断、药物动力学和个性化医疗的重要辅助手段。由于目标特征物的低浓度(一般ppt到ppb)、样品的高湿度和复杂基体效应,这也对采用的分析化学方法提出了很高的硬性要求。Vocus PTR-TOF 通过呼出气体进行新冠病毒患者早期诊断TOFWERK PTR-TOF 是一款具有极高灵敏度的在线vocs检测仪,可以同时分析多至上百种挥发性有机物。无需任何样品预处理,该仪器可对气态样品进行实时检测并给出分析结果。为配合呼出气体分析,vocus ptr-tof搭配了可加热控温的进样管,同时配备了一次性的止回呼气嘴咬,防止可能的相互感染和污染。可移动设计让这台vocus ptr-tof在急救病房和诊断分流点等地点自由部署并进行测量。全谱捕捉数百种vocs的分析能力大大提升了识别与新冠病毒或者其他病例相关的二次代谢物和特征物种的可能性。相对于基于棉签采样,耗时长达几十分钟的现行分析方法,vocus ptr-tof具有在一分钟内筛查一个乃至更多人的巨大应用分析潜力!法国里昂 Croix Rousse医院内配有呼出气体采样系统的Vocus PTR-TOF呼出气体中新冠病毒标志物筛查科研工作者们相信在人体呼出气体中存在跟新冠病毒或者因其引起的肺部感染密切相关的生物标记物,这将大大加速疑似患者和无症状患者的排查工作,为疫情控制提供了更多的时间和手段。基于这个目标,法国ircelyon和isa研究所的科研人员在位于里昂的croix rousse医院内部署了一台vocus ptr-tof。在里昂大学传染病研究中心(ciri,inserm)和croix rousse医院的icu和传染病部门的紧密合作下,研究人员正在分析诊断为阳性和阴性的志愿者们的呼出气体,数据分析也在同步进行中。该项目基金由auvergne rhones-alpes地区政府和法国政府共同提供。
  • 各个医院用呼出气检测幽门螺旋杆菌的方法“火”了——SIFT-MS 更简单,更快速,更实时,更普适
    p style=" text-align: left " img style=" width: 271px height: 295px float: left " title=" 808de9da-9a29-4722-8f5f-c991ffd7564e.jpg" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201511/insimg/e1f5fa4c-f85c-4485-b101-54bcb9b21652.jpg" width=" 271" height=" 295" / /p p style=" text-align: left " strong span style=" color: rgb(0, 112, 192) " /span /strong & nbsp strong span style=" color: rgb(0, 112, 192) " 编者注: /span /strong 傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。 /p p & nbsp /p p a style=" color: rgb(0, 112, 192) text-decoration: underline " title=" " href=" http://www.instrument.com.cn/news/20140623/134647.shtml" target=" _blank" strong span style=" color: rgb(0, 112, 192) " 第一讲:傅若农讲述气相色谱技术发展历史及趋势 /span /strong /a /p p a style=" color: rgb(0, 112, 192) text-decoration: underline " title=" " href=" http://www.instrument.com.cn/news/20140714/136528.shtml" target=" _blank" strong span style=" color: rgb(0, 112, 192) " 第二讲:傅若农:从三家公司GC产品更迭看气相技术发展 /span /strong /a /p p a style=" color: rgb(0, 112, 192) text-decoration: underline " title=" " href=" http://www.instrument.com.cn/news/20140811/138629.shtml" target=" _blank" strong span style=" color: rgb(0, 112, 192) " 第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状 /span /strong /a /p p a style=" color: rgb(0, 112, 192) text-decoration: underline " title=" " href=" http://www.instrument.com.cn/news/20140902/140376.shtml" target=" _blank" strong span style=" color: rgb(0, 112, 192) " 第四讲:傅若农:气相色谱固定液的前世今生 /span /strong /a /p p a style=" color: rgb(0, 112, 192) text-decoration: underline " title=" " href=" http://www.instrument.com.cn/news/20141009/143041.shtml" target=" _blank" strong span style=" color: rgb(0, 112, 192) " 第五讲:傅若农:气-固色谱的魅力 /span /strong /a /p p a style=" color: rgb(0, 112, 192) text-decoration: underline " title=" " href=" http://www.instrument.com.cn/news/20141104/145381.shtml" target=" _blank" strong span style=" color: rgb(0, 112, 192) " 第六讲:傅若农:PLOT气相色谱柱的诱惑力 /span /strong /a /p p a style=" color: rgb(0, 112, 192) text-decoration: underline " title=" " href=" http://www.instrument.com.cn/news/20141205/147891.shtml" target=" _blank" strong span style=" color: rgb(0, 112, 192) " 第七讲:傅若农:酒驾判官——顶空气相色谱的前世今生 /span /strong /a /p p a style=" color: rgb(0, 112, 192) text-decoration: underline " title=" " href=" http://www.instrument.com.cn/news/20150106/150406.shtml" target=" _blank" strong span style=" color: rgb(0, 112, 192) " 第八讲:傅若农:一扫而光——吹扫捕集-气相色谱的发展 /span /strong /a /p p a style=" color: rgb(0, 112, 192) text-decoration: underline " title=" " href=" http://www.instrument.com.cn/news/20150211/153795.shtml" target=" _blank" strong span style=" color: rgb(0, 112, 192) " 第九讲:傅若农:凌空一瞥洞察一切——神通广大的固相微萃取(SPME) /span /strong /a /p p a style=" color: rgb(0, 112, 192) text-decoration: underline " title=" " href=" http://www.instrument.com.cn/news/20150312/155171.shtml" target=" _blank" strong span style=" color: rgb(0, 112, 192) " 第十讲:傅若农:悬“珠”济世——单液滴微萃取(SDME)的妙用 /span /strong /a /p p a style=" color: rgb(0, 112, 192) text-decoration: underline " title=" " href=" http://www.instrument.com.cn/news/20150417/158106.shtml" target=" _blank" strong span style=" color: rgb(0, 112, 192) " 第十一讲:傅若农:扭转乾坤——神奇的反应顶空气相色谱分析 /span /strong /a /p p a style=" color: rgb(0, 112, 192) text-decoration: underline " title=" " href=" http://www.instrument.com.cn/news/20140714/136528.shtml" target=" _blank" strong span style=" color: rgb(0, 112, 192) " 第十二讲:擒魔序曲——脂质组学研究中的样品处理 /span /strong /a /p p a style=" color: rgb(0, 112, 192) text-decoration: underline " title=" " href=" http://www.instrument.com.cn/news/20150617/164595.shtml" target=" _blank" strong span style=" color: rgb(0, 112, 192) " 第十三讲:离子液体柱——脂质组学中分离脂肪酸的气相色谱柱 /span /strong /a /p p a style=" color: rgb(0, 112, 192) text-decoration: underline " title=" " href=" http://www.instrument.com.cn/news/20150716/167186.shtml" target=" _blank" strong span style=" color: rgb(0, 112, 192) " 第十四讲:脂肪酸气相色谱分析的故事 /span /strong /a /p p a style=" color: rgb(0, 112, 192) text-decoration: underline " title=" " href=" http://www.instrument.com.cn/news/20150820/170240.shtml" target=" _blank" strong span style=" color: rgb(0, 112, 192) " 第十五讲:吹口气,知健康——GC-MS检测呼气疾病标记物   /span /strong /a /p p a style=" color: rgb(0, 112, 192) text-decoration: underline " title=" " href=" http://www.instrument.com.cn/news/20150929/173804.shtml" target=" _self" strong span style=" color: rgb(0, 112, 192) " 第十六讲:重症早期预警——呼出气用SIFT-MS 实时快速检测 /span /strong /a /p p strong & nbsp & nbsp & nbsp & nbsp 前言 用GC/MS或SIFT-MS检测呼出气体的方法有推广的可能  /strong   /p p   前面我们讲述了用GC/MS或SIFT-MS检测呼出气体的方法,当然这两种方法使用起来比较麻烦,专业性强了一些,但是像现在医院使用的一些检测仪器,如核磁共振不也是非常广泛吗?而且像GC/MS或SIFT-MS都可以设计为专用设备,使用简化操作模式。比如现在十分流行的14C尿素呼气试验检测幽门螺旋杆菌(HP)的方法。 幽门螺旋杆菌(HP)的感染与多种上消化道疾病相关,因此临床检查HP的感染对多种上消化道疾病的治疗起着十分积极的指导作用。目前大多数医院检测HP感染的主要方法为快速尿素酶实验及胃粘膜Giemsa染色,但该两种方法为侵入性有创检测手段,对患者有一定的损伤 而14C尿素呼气实验(14C-UBT)为非侵人性无创检测手段,具有简便、快速、可靠等特点,正逐渐被临床应用(四川医学,2006,27 (8):798))。14C-UBT的原理: HP能生产大量的尿素酶,尿素酶可分解尿素生成氨和二氧化碳,人服用含14C标记的尿素后,可被HP生产的尿素酶分解为14C标记的CO2,并从肺呼出。收集呼气样本,用气体同位素质谱仪检测同位素标记14C的量即可判断是否感染HP。SIFT-MS 更简单,更快速,更实时,更普适。经过临床医生、色谱学者和仪器制造厂家的共同努力是可以把GC/MS或SIFT-MS用于临床检测的。 /p p    strong GC/MS或SIFT-MS检测呼出气体的方法的比较 /strong /p p   我在第15和16篇文章介绍了使用GC/MS和选择性离子流动管质谱(SIFT-MS)分析呼吸气体中疾病标记物的方法。GC/MS是十分成熟可靠的方法,应用极为广泛,为了比较这两种方法,这里介绍新西兰M. J. McEwan等人的研究工作,他们比较了这两种方法分析各种挥发性气体的效果(Rapid Commun Mass Spectrom, 2014, 28: 10–18)。 /p p   GC/MS是十分成熟的方法,积累了大量成熟技术和色谱及质谱数据,有7万个化合物在极性和非极性色谱柱上保留指数的数据库,以及有21万个化合物的电子轰击源质谱数据库,可以用于化合物的鉴定(NIST/EPA/NIH Mass Spectral Database (NIST11) and NIST Mass Spectral Search Program (version 2.0g). U.S. Dept. of Commerce, Standard Reference Data Program, Gaithersburg, MD, 2011)。 当然GC/MS也有一些必备的条件,直接气态进样或液态顶空进样挥发性有机物去掉还是有些困难,很多情况下需要进行预浓缩,顶空进样挥发性有机物主要使用吹扫捕集技术,用惰性气体把有机挥发性物质从水溶液中吹扫出来,再吸附在吸着剂上,经过浓缩,再经过热解析进样分析(就像我们在第15篇文章已经介绍了使用GC/MS 分析人体呼出气体的方法)。SIFT-MS方法实时、直接、快速,不像GC/MS那样成熟,不过比14C-UBT方法更简单一些,无需事前服用含14C标记的尿素。 /p p   SIFT-MS方法有过一些研究,证明这一方法可以准确、实时、快速地分析挥发性有机化合物(VOCs ),但是没有直接和其他方法进行过比较。McEwan等人详细地比较了SIFT-MS和GC/MS两个方法的检测数据。 /p p strong 1 分析用标样 /strong /p p   为了有效性使用常规法测定所要分析的25个VOC标样(最通用的方法是US EPA的TO-14A 和 TO-15),此标样是稀释在氮气中,每个化合物浓度为1ppm,见表1 /p p style=" text-align: center " 表1 比较所用标样中的化合物 /p p style=" text-align: center " & nbsp img title=" 11.jpg" src=" http://img1.17img.cn/17img/images/201511/insimg/c14b7004-319d-47e8-abb0-55503d58e360.jpg" / /p p    strong 第1组实验 /strong /p p   利用已经有的SIFT-MS数据库,只要知道相关的离子-分子动力学数据,不用任何校准就可以测定Tedlar样品袋中样品的浓度。为了测定SIFT-MS的响应值,把样品稀释:在样品袋中用1-L气密注射器注入1 L 零空气,用气密注射器把校准用标准气注入到零空气中,稀释气的浓度范围为1ppm(v) 到5ppb(v)。 /p p   使用表1中的25个标准化合物对GC/MS进行的校准,用气密注射器从标准气钢瓶中吸取一定容积的标样,与含水分的空气一起注入15-L的样品罐,形成一个10ppb浓度的测试样品。从一个含有1ppm浓度的一溴一氯甲烷、4-溴氟苯、氯苯-d5 和1,4-二氟苯的标样中吸取一定量的标样,以相同方式制备一个浓度为50ppb 的内标物,标定GC/MS系统使用US EPA TO-15的方法。吸取0.5 到50 ppb浓度的6个标样进行标定。用质谱评估日间重复性。 /p p    strong 第2组实验 /strong /p p   使用表1 中的另外一组17个VOCs,对SIFT-MS 和 GC/MS进行直接比较,这17个化合物见表 2. /p p style=" text-align: center " 表 2 直接比较用的17个化合物 /p p style=" text-align: center " img title=" 12.jpg" src=" http://img1.17img.cn/17img/images/201511/insimg/b07a077e-f5dc-4293-895b-f5ead5cdc664.jpg" / /p p   从这17个化合物中选择挥发性相近的几个物质,制备3组液体混合物。 /p p   使用10-& amp #956 L气密注射器往4个样品罐中液体上面加入不同量的顶空样品。用含湿零空气让样品罐造成 5 psig的正压。然后用SIFT-MS方法进行快速定量测定,确定其符合GC/MS系统所需的线性范围,在0.5 到 50 ppb之间。对SIFT-MS从动力学数据库导出的浓度还要做一些小的修正,使其分析物的浓度在校正混合物标样浓度的10%之内。还要对样品罐内正压力为 5 psig进行修正,因为分析物的压力为大气压力。另外7个化合物不在混合物里面,也用来检测两种仪器的背景信号水平。 /p p    strong 第3组实验 /strong /p p   第3组实验是用两组实际样品来比较GC/MS 和 SIFT-MS方法测定的结果,所选两组实际样品,一组是从被染料油污染土壤排出的气体,另一组是来自一个冰毒(甲基苯丙胺)实验室,经过净化的气体。在分析时环境样品或土壤中的蒸汽使用限流孔采样器,以180mL/min,在样品罐剩余压力为127 Torr时完成,充以零空气稀释使之成为正压,稀释因子约为2。 /p p strong 2 SIFT-MS方法和GC/MS测定 /strong /p p   在此研究中作者们使用便携式Voice200& amp #174 SIFT-MS 仪器 (Syft Technologies Ltd, Christchurch, New Zealand)(www.syft.com ),在此仪器上可以用湿空气在0.35 Torr下微波放电产生三种反应离子(H3O+, NO+ 和 O2+), 形成的反应离子在流动管前经四极杆质谱过滤,并和氦载气(0.6 Torr)一起进入流动管,这些离子沿着曲线管流动,通过一个锐孔进入流动管末端,这里正好是针孔透镜后面,然后用一个分流涡轮泵把离子泵入下游四极杆质谱,进行质谱选择并计量。为了无遗漏地分析所有的被分析物,每相隔10 ms进行三种反应离子的切换。为了避免样品由于吸附而损失,仪器的进样口进行了钝化处理,进样口与样品罐通过一个经Silonite& amp #174 钝化的Micro-QT?微型阀(Entech Instruments Inc.)连接,Tedlar样品袋用一段短的聚四氟乙烯管连接。反应离子与样品的反应时间为3.7 s。 /p p   GC/MS 分析是由R.J. Hill Laboratories Limited.完成的,这一实验室经ISO 17025标准认证,可以进行 US EPA TO-15方法的分析。使用 7890A 气相色谱仪和 5975C MSD进行分析,色谱柱为. HP-1 固定相的 60 m× 0.32 mm i.d. 毛细管柱,载气为氦气,流速 36 cm/ s,色谱柱箱起始温度35& amp #176 ,保持4 min,以4& amp #176 C/min升温到110℃,保持0.1 min,之后以15& amp #176 C/min升温到220℃保持5 min,总分析时间为36.2 min,4 min后进行质谱数据收集,从m/z 29到160,持续到10 min,另外的分析把质谱范围改变为m/z 34 到270。 /p p strong 3 结果 /strong /p p    strong 实验 1 /strong /p p   使用Voice200& amp #174 分析表 1 所列出的 25个化合物的结果见表3,所测定的结果是利用文献报道的速率系数和相关反应离子反应的转移比例而得到的。对于每个被分析物,可能研究三种不同试剂的离子反应,不过在25个或多个分析物基体中,一些产物离子可能具有相同的质量(异构体),因此异构体和试剂离子的离子产物不包括在分析结果中。 /p p   表3的结果表明,用试剂离子测定得到分析物浓度是基于现有数据库的动力学数据,86%结果是在35%的误差之内。一些异常值可能只是由于取样袋被污染造成的。其中一个例子是萘的结果,可能又由于从Tedlar袋吸附造成的损失,导致所有三种试剂离子结果都偏低。另外,丙酮和丁酮的结果偏低,如果用一个渗透管取样,丙酮在校正后的结果,误差在10%的范围内。 /p p   表3的右边的两列显示检测限(LOD)和定量限(LOQ)。 /p p   SIFT-MS仪器响应值浓度与标准值的对应关系如图1所示。用零空气稀释产生一系列的不同浓度样品进行测量,浓度在1 ppmv到5 ppbv之间,得到校准曲线,其相关系数& amp #8805 0.997。典型的关系如图1所示。图1(a)为烃化合物,(b)为的氯化烃。 /p p style=" text-align: center " img style=" width: 543px height: 409px " title=" 13.png" src=" http://img1.17img.cn/17img/images/201511/insimg/1692112e-4c17-47fa-92d4-0a6263d53955.jpg" width=" 824" height=" 594" / /p p style=" text-align: center " img style=" width: 538px height: 323px " title=" 14.png" src=" http://img1.17img.cn/17img/images/201511/insimg/b462a608-d60c-49ef-b52e-c5652521763f.jpg" width=" 914" height=" 595" / /p p style=" text-align: center " img style=" width: 536px height: 195px " title=" 15.png" src=" http://img1.17img.cn/17img/images/201511/insimg/b1109f97-4ff6-4907-ab67-b8722e3aae64.jpg" width=" 1000" height=" 322" / /p p style=" text-align: center " img style=" width: 299px height: 231px " title=" 20.png" src=" http://img1.17img.cn/17img/images/201511/insimg/94185f28-745a-4ff4-ad79-cfd1107519b8.jpg" width=" 579" height=" 447" / img style=" width: 293px height: 229px " title=" 21.png" src=" http://img1.17img.cn/17img/images/201511/insimg/e8971913-f28f-4753-8921-2f58075112d6.jpg" width=" 542" height=" 421" / /p p    strong 实验 2 SIFT-MS 和 GC/MS 方法测试挥发性混合物的比较 /strong /p p   样品罐中目标挥发物(从低浓度到中等浓度ppb/v)用SIFT-MS和GC/MS进行测试,列于表4。斜体的VOCs代表背景含量浓度,测试每个仪器和方法,但不在混合物中。总之,对17个VOCs两种方法是相符合的。偏差大于30%的只有高苯乙烯(SIFT-MS比GC/MS的结果高),丙酮和二硫化物在所有混合物样品中SIFT-MS的结果低于GC/MS。这些问题有待进一步研究。 /p p style=" text-align: center " 表 4 SIFT-MS和GC/MS 测试结果 /p p style=" text-align: center " img style=" width: 628px height: 363px " title=" 30.png" src=" http://img1.17img.cn/17img/images/201511/insimg/7c0249cc-ac7d-4926-aa16-ca2b440b3d40.jpg" width=" 759" height=" 437" / /p p   a 这些化合物不包括在混合物中,用于仪器背景信号的检测。 /p p   b C2-烷基苯包括乙苯和三个二甲苯位置异构体用于SIFT-MS的研究,这一实验只把乙苯加到混合物中。 /p p   c C3-烷基苯包括所有异构体用于SIFT-MS的研究,这一实验只把1,3,5-三甲苯加到混合物中。 /p p   d GC/MS没有测定乙腈 /p p    strong 实验3:对4个实际样品的测定 /strong /p p   4个实际样品测试结果的比较列于表5。第一个样品来自一个被燃油罐污染的土壤,样品取自油罐周围燃料流过和渗漏的地方。其中的挥发性有机化合物的比较结果在第1栏中,第2栏表示来自油流过污染土壤上方空气中的分析物浓度样,第3栏是来自土壤样品的分析结果。第二个样品是来自一个冰毒实验室中空气样品的分析结果。 /p p   结果说明对非污染样品如空气样品,所测定结果两种方法是很一致的,被污染的样品(土壤气体)中小分子的芳烃(苯,甲苯,C2-烷基苯)的结果很一致。但是在土壤样品中的另外一些化合物结果一致性差,结果不一致是因为土壤饱和吸收烃类化合物所致,这些烃类化合物造成SIFT-MS产物离子重叠,在这种情况下,SIFT-MS在样品化合物组分多时会受到干扰。而在冰毒实验室中空气样品的分析结果却很一致。 /p p   表 5 实际样品测试结果的比较 /p p style=" text-align: center " img style=" width: 598px height: 480px " title=" 40.png" src=" http://img1.17img.cn/17img/images/201511/insimg/4008f0f4-1301-498c-ae3e-5e7c270023b2.jpg" width=" 915" height=" 648" / /p p   a C2-烷基苯包括乙苯和三个二甲苯位置异构体用于SIFT-MS的研究, GC/MS 可测定这些异构体 /p p   b C3-烷基苯包括所有异构体用于SIFT-MS的研究,GC/MS 可测定这些异构体 /p p   c 没有GC/MS的数据,因为2-甲基丁烷有干扰。 /p p   d GC/MS没有数据 /p p strong 结论 /strong /p p   在一个符合USA EPA TO15要求的实验室进行SIFT-MS 和GC/MS方法的比较, SIFT-MS方法进行标准气体样品的测定,尽管没用这些样品实现对仪器进行校准,使用了文献中的动力学数据,对大多数化合物还是符合要求的。比较了17个化合物的测定,说明SIFT-MS方法可以取代GC/MS方法。对四个实际样品的比较,说明 SIFT-MS可用于实际样品的分析。 /p p   SIFT-MS方法是一个实时、快速分析痕迹量(ppt/v)的方法,无需事先进行样品吸附-解析,分离步骤。 /p p strong 后记 /strong /p p   既然各个医院都用呼出气快速检测幽门螺旋杆菌的方法来诊断胃病(胃癌),说明用呼出气快速筛查疾病是一种很好的方法,而且使用了同位素质谱技术。那么SIFT-MS检验疾病的方法也是可行的,SIFT-MS无需使用同位素检测试剂。如果医学、化学、仪器专家共同努力进一步发展这一方法还是有希望用于医疗检测的。 /p p /p
  • 呼气检测,癌症早筛的新蓝海
    人体呼出气体中含有上千种痕量级(ppbv~pptv)的可挥发性有机化合物(VOC),通过寻找与疾病代谢高度相关的呼出气生物标志物进行疾病的筛查和诊断,有助于重大疾病或癌症的早期发现和早期治疗,如肺癌、胃癌、结肠癌、乳腺癌、糖尿病、帕金森病等。 图片来源:Owlstonemedical.com呼吸气的来源呼出气VOC被分为内源性和外源性两大类。内源性 VOC 是由机体生理代谢过程,也可以是疾病感染的病理反应等所产生的挥发性代谢物,其通过血液循环和肺泡交换并呈现在肺泡气中,其能反应疾病(如肺癌等)的异常代谢情况。而外源性 VOC 主要由环境污染或食物等外部来源进入呼吸道内,在呼吸研究中这部分的气体需要将其排除分析干扰,一般存在于混合气中。呼吸气研究的可靠性呼吸气分析应避免环境VOC的污染,尽可能只采集肺泡气。人体的呼出混合气包括来自上呼吸道的150 ml死腔气和来自肺泡深处的350 ml肺泡气。由于肺泡气中外源性污染物浓度较低,其内源性VOC的浓度比混合呼出气高2~3倍,因此,通过控制对不同呼吸阶段的采样,不仅可以提高呼气分析的可靠性,还可以帮助确定呼气生物标志物的来源。那么如何确保采集到肺泡气,实现对呼吸过程进行控制采样呢?Sampling Case气体采样器 德祥旗下自研品牌英诺德INNOTEG仪器——Sampling Case-B呼吸气采样器内置二氧化碳传感器,可自动识别呼吸的各个阶段和呼吸周期,通过监控呼吸周期中二氧化碳浓度,有效识别不同的呼吸阶段,确保所采集的呼吸气完全来自肺泡。 图1:不同呼吸阶段的二氧化碳分压值图来源:Elsevier Science & Technology Journals(2004)所以,控制呼吸中的二氧化碳浓度是呼吸采样的关键。呼吸气检测作为一种非侵入性的分子生物标识物诊断技术,且样本容易获得,并可通过便携式仪器实现疾病的快速采样,具有安全、易操作、高敏感性、低干扰等优点,被认为是最具潜力的无创性癌症检测技术之一。呼吸气分析难点近年来,虽然呼吸与疾病相关研究受到全球越来越多的医疗机构和研究机构的关注,但在呼吸研究中仍然存在不少分析难点。01 浓度低呼出气中VOCs的浓度极低,依赖于前处理富集和分析设备的高分辨率、高精度、高灵敏度。02 侵入式采样有些疾病的诊断方法需要侵入性取样才能确诊,如恶性胸膜间皮瘤和肺部感染性疾病,这些诊断手段往往是有创的,不仅需要专门的实验室和技术,而且侵入式的采样方法会影响患者的安全性。03 杂质干扰重要的生物标记物往往因为浓度低,而被复杂的呼吸气基质干扰所淹没。目前大多数前处理方法均对呼吸混合气进行采样,混合气样本极其容易受到口腔、外部环境吸入等外源性污染物干扰。04 与容器表面相互作用大多数的前处理方法是将呼吸气收集到一次性Tedlar采样袋或者玻璃容器中,再富集到SPME fiber或者TD热脱附管里,这会导致呼吸气中与其表面相互作用或反应,结果受到干扰。英诺德INNOTEG高效解决方案针对以上难题,英诺德INNOTEG提出高效的解决方案,Sampling Case-B呼吸气体采样器和Needle Trap动态捕集针技术(也称NTD)的结合,可以解决上述难题。 图2:SC-B呼吸采样原理图SC-B采样前,设置CO2阈值用于区分呼吸周期的死腔气和肺泡期。一旦超过阈值(一般设定为4kpa),阀门将会自动打开,呼出的肺泡气将被自动预浓缩到Needle trap动态捕集针中,采样结束后通过GC-MS气相色谱质谱仪进行分析。Sampling case-B呼吸气采样器可直接在护理点进行肺泡气采样,无需任何额外的采样步骤。 图3:Sampling Case-B呼吸气体采样器和Needle Trap动态捕集针技术结合技术优势灵敏度高 只需要少量的少量(20-100ml)样品,即可达到仪器灵敏度,Needle trap技术将为pptV–ppbV浓度范围内的VOCs提供极好的结果。非侵入式取样 无需对患者进行有创的采样,有效,可靠的采样方式,在临床应用中有着巨大的潜力。快速、安全 由于Needle trap技术的小型化设计,仅需少量样品,采样时间短,对患者影响小,实现快速安全分析,如采集50ml肺泡气约3min内收集完。储存性能好 和其他技术相比,NTD在运输和储存过程中的化合物损失显著减少,样品的存储和运输简单、方便、安全。参考文献:[1] 呼出气分析与肺癌诊断的研究现状及进展,DOI:10.7507/1007-4848.202112078;[2] 呼出气挥发性有机物在肺部感染性疾病诊断中的研究进展,DOI:10.19982/j.issn.1000-6621.20210693;[3] Evaluation of needle trap micro-extraction and automatic alveolar sampling for point-of-care breath analysis;DOI: 10.1007/s00216-013-6781-9.如果你对上述产品或方案感兴趣,欢迎随时联系德祥科技/英诺德INNOTEG,可拨打热线400-006-9696或在线咨询。英诺德INNOTEG英诺德INNOTEG是德祥集团旗下自主研发品牌,专业从事科学仪器设备研发生产的高科技企业,是集实验室设备研发生产、方法开发、实验室仪器销售和技术服务为一体的专业厂家。多年以来,英诺德INNOTEG致力于研发高效的实验室创新设备。公司十分重视技术的研究和储备,一直保持高比例研发投入,创建了一支由博士、硕士和行业专家等构成的经验丰富,技术精湛的研发团队,在仪器分析技术领域开展了颇有成效的研究开发工作。此外,英诺德还与各大科研院所、高校合作,积极推进科技成果项目的产业化。英诺德INNOTEG凭借强大的研发能力,注重前瞻性技术研发,已推出多款科学仪器设备及实验室耗材产品。德祥科技德祥科技有限公司成立于1992年,总部位于中国香港特别行政区,分别在越南、广州、上海、北京设立分公司。主要服务于大中华区和亚太地区——在亚太地区有27个办事处和销售网点,5个维修中心和2个样机实验室。30多年来,德祥一直深耕于科学仪器行业,主营产品有实验室分析仪器、工业检测仪器及过程控制设备,致力于为新老客户提供更完善的解决方案。公司业务包含仪器代理,维修售后,实验室咨询与规划,CRO冻干工艺开发服务以及自主产品研发、生产、销售、售后。与高校、科研院所、政府机构、检验机构及知名企业保持密切合作,服务客户覆盖制药、医疗、商业实验室、工业、环保、石化、食品饮料和电子等各个行业及领域。2009至2021年间,德祥先后荣获了“最具影响力经销商”、“年度最佳代理商“、”年度最高销售奖“等殊荣。我们始终秉承诚信经营的理念,致力于成为优秀的科学仪器供应商,为此我们从未停止前进的脚步。我们始终相信,每一天都在使这个世界变得更美好!
  • 中国研究者首次用呼气检测阿尔茨海默症 无创早筛还有哪些方法
    该研究在社区中招募了1467例年龄65岁以上的老年人群,并完成认知评估和呼出气采集,发现多达66种VOCs成分在认知障碍组和认知正常组存在显著差异。阿尔茨海默症的早期筛查是全球科研团队都在攻克的世界性难题,目前仍然缺乏对于疾病早期诊断的客观筛查手段。日前,中国研究团队首次采用呼气检测的方法,尝试对早期的阿尔茨海默症进行检测。中南大学湘雅医院神经内科沈璐教授团队的相关研究成果在神经病学领域顶级期刊《阿尔茨海默症和痴呆症》(Alzheimers & Dementia)以论著形式在线发表。这篇题为《在社区队列中基于人体呼出气挥发性有机化合物建立认知障碍早期识别模型》的研究首次发现,通过检测人体呼出气中挥发性有机化合物(Volatile Organic Compounds,VOCs)可早期识别认知障碍患者,有望为老年人群提供更客观、简易的认知障碍筛查手段。该研究在社区中招募了1467例年龄65岁以上的老年人群,并完成认知评估和呼出气采集,发现多达66种VOCs成分在认知障碍组和认知正常组存在显著差异,包括苯甲醛、乙二醇单乙醚、乙酸异丙烯酯、丁二烯、甲苯、丁二烯电离产物、丙烯醛、环己烷、丙酸甲酯和甲硫醇。研究人员表示,这种全新的方法无创、客观、成本低,为早期识别认知障碍带来新的思路。随着全球老龄化进程的加剧和人类寿命的延长,阿尔茨海默病(AD)已成为继心脑血管疾病和恶性肿瘤之后第三位严重危害老年人群健康的重大疾病,也是老年人死亡的第四大病因。数据显示,我国60岁及以上老年人中约有1500万痴呆患者,对我国老年人的健康和生活质量都带来了很大影响。目前老年期痴呆的早期筛查方法主要采用认知评估量表如AD8、MMSE、画钟实验等,但评估结果容易受文化水平、方言等因素的影响。国内多个团队都在尝试使用无创的方式来早期筛查阿尔茨海默病。今年3月,复旦大学附属华山医院神经内科副主任、国家神经疾病医学中心认知障碍方向带头人郁金泰教授团队在检验医学领域排名第一的国际学术期刊Clinical Chemistry(《临床化学》)上发表文章,报告了一种新的检验早期阿尔茨海默症的潜在生物标志物——血浆神经胶质纤维酸性蛋白(GFAP)。上述研究通过对818例健康对照、不同临床阶段和亚型及各种不同痴呆和神经退行性疾病的大规模横断面和纵向人群分析研究发现,血浆GFAP从AD临床前阶段就已经显著升高,能够准确识别不同临床阶段AD和鉴别AD痴呆与非AD痴呆,且可用于预测AD临床进展。郁金泰指出:“为实现AD早期诊断,有必要建立大型队列,尤其是社区队列,以便识别临床前阶段的患者。”此外,GPT大模型技术的发展,也在未来阿尔茨海默病等疾病的无创早筛和管理方面展示出潜力,如搭建疾病管理平台,实现患者个体化病情评估、自动化分析报告、智能随访问答等功能。对此,在一场由天桥脑科学研究院(TCCI)和华山医院国家神经疾病医学中心、上海市精神卫生中心主办的AI如何攻克脑疾病的研讨会上,多位神经科学专家都表示,大模型在AD等疾病等诊疗与研究领域虽然有巨大的潜力,但仍然面临诸多挑战。郁金泰在会上表示:“高质量医疗数据的缺乏、数据安全性问题、回答实效性受训练数据影响等,都是限制AI对疾病诊断的因素。”但他同时认为,通过不断深化研究与实践,AI有望在AD领域发挥关键作用。上海交通大学计算机科学与工程系吴梦玥副教授认为,开发基于人机对话的问诊机器人、以及利用语音和语言特征构建症状与精神疾病知识图谱,是未来精神类疾病早诊早治的方向。“很多精神疾病的诊断主要依赖于面对面的问诊和交谈,理论上,模型也应该能够学会这个技能。”她表示,“通过深度交流,人机对话能够得到与医生所得到的同样精确的症状描述。”吴梦玥还介绍了如何将语音和语言特征作为可计算、可迁移的方式,通过患者的自我表达建立症状和疾病的知识图谱,为多种疾病检测提供新的思路。在美国,美国国立卫生研究院(NIH)也正在建立一个真实世界的阿尔茨海默病数据库,并计划每年投入5000万美元进行资助,以改善、支持和开展更多痴呆症研究项目。
  • 替代血氨检测,呼吸检测早期肝肾疾病获进展
    近年来,氨气被证实是肾脏、肝脏疾病的重要生物标志物,在临床中常被用来判断疾病的发病过程及药物的使用疗效。在国家大健康和精准医疗的政策指引下,实现呼出气中痕量氨气的快速精准检测,将有望替代传统滞后的血氨检测,成为肝肾疾病早期呼吸诊断、实时生理检测的新途径。  在以前的研究中,大多数氨气检测依赖于器件复杂的电化学传感设备,存在成本高、易受干扰等问题。近年来,金属有机骨架材料在氨气显色传感领域的应用,受到研究者们的高度关注。然而,由于水分子、氨分子在极性和配位能力方面的相似性,要实现高湿度下金属有机骨架材料对极低浓度氨气含量的显色传感,仍然十分困难。  近日,太原理工大学李立博联合山西白求恩医院姚佳,构筑了甲基功能化三羧酸的铜基金属有机骨架材料,实现了对肝肾病人呼出气中的氨气含量高灵敏检测。该成果以《甲基官能化的铜基金属有机骨架材料实现高湿度下氨气显色传感》为题,发表于《中国化学快报》英文版期刊。该研究得到了国家自然科学基金、山西省136振兴医疗工程(普外科)、山西省科技指导性专项项目、山西省基础研究项目的支持。  实时监测呼出气中氨气含量的主要挑战是如何在高湿度条件下找到氨气传感金属有机骨架材料的选择性和灵敏度之间的平衡。通过调控金属有机骨架材料中铜离子的特殊配位环境,利用其与氨气分子形成的分子识别相互作用,导致明显的颜色变化,从而为低浓度氨气传感提供了可行的途径。铜基金属有机骨架材料实现肝肾病人呼出气中氨气检测。研究团队供图  该工作在铜基金属有机骨架材料中精准引入疏水的甲基,构建了甲基功能化三羧酸的铜基金属有机骨架材料,通过甲基的引入有效改变了拓扑结构和电子云密度,使其能够在高湿度条件下表现出更强的氨气检测能力,对5ppm氨气具有优异的响应,从而表现出明显的颜色变化。通过密度泛函理论模拟,确定了氨气分子与甲基功能化三羧酸铜基金属有机骨架材料的相互作用强于水分子,为实验结果提供了理论依据。
  • 吹口气,知健康——GC-MS检测呼气疾病标记物
    p style=" TEXT-ALIGN: left" img style=" FLOAT: left" title=" 01570113923581_meitu_1.jpg" src=" http://img1.17img.cn/17img/images/201508/insimg/9c5158c1-78ff-476a-a0d9-a7249fcc74da.jpg" / strong span style=" COLOR: #00b0f0" 编者注: /span /strong 傅若农教授生于1930年,1953年毕业于北京大学化学系,而后一直在北京理工大学(原北京工业学院)从事教学与科研工作。1958年,傅若农教授开始带领学生初步进入吸附柱色谱和气相色谱的探索 1966到1976年文化大革命的后期,傅若农教授在干校劳动的间隙,系统地阅读并翻译了两本气相色谱启蒙书,从此进入其后半生一直从事的事业——色谱研究。傅若农教授是我国老一辈色谱研究专家,见证了我国气相色谱研究的发展,为我国培养了众多色谱研究人才。 /p p & nbsp /p p a style=" COLOR: #00b0f0 TEXT-DECORATION: underline" title=" " href=" http://www.instrument.com.cn/news/20140623/134647.shtml" target=" _self" span style=" COLOR: #00b0f0" strong span style=" COLOR: #0070c0" 第一讲:傅若农讲述气相色谱技术发展历史及趋势 /span /strong strong span style=" COLOR: #0070c0" /span /strong /span /a /p p a style=" COLOR: #00b0f0 TEXT-DECORATION: underline" title=" " href=" http://www.instrument.com.cn/news/20140714/136528.shtml" target=" _self" span style=" COLOR: #00b0f0" strong span style=" COLOR: #0070c0" 第二讲:傅若农:从三家公司GC产品更迭看气相技术发展 /span /strong strong span style=" COLOR: #0070c0" /span /strong /span /a /p p a style=" COLOR: #00b0f0 TEXT-DECORATION: underline" title=" " href=" http://www.instrument.com.cn/news/20140811/138629.shtml" target=" _self" span style=" COLOR: #00b0f0" strong span style=" COLOR: #0070c0" 第三讲:傅若农:从国产气相产品看国内气相发展脉络及现状 /span /strong strong span style=" COLOR: #0070c0" /span /strong /span /a /p p a style=" COLOR: #00b0f0 TEXT-DECORATION: underline" title=" " href=" http://www.instrument.com.cn/news/20140902/140376.shtml" target=" _self" span style=" COLOR: #00b0f0" strong span style=" COLOR: #0070c0" 第四讲:傅若农:气相色谱固定液的前世今生 /span /strong strong span style=" COLOR: #0070c0" /span /strong /span /a /p p a style=" COLOR: #00b0f0 TEXT-DECORATION: underline" title=" " href=" http://www.instrument.com.cn/news/20141009/143041.shtml" target=" _self" span style=" COLOR: #00b0f0" strong span style=" COLOR: #0070c0" 第五讲:傅若农:气-固色谱的魅力 /span /strong strong span style=" COLOR: #0070c0" /span /strong /span /a /p p a style=" COLOR: #00b0f0 TEXT-DECORATION: underline" title=" " href=" http://www.instrument.com.cn/news/20141104/145381.shtml" target=" _self" span style=" COLOR: #00b0f0" strong span style=" COLOR: #0070c0" 第六讲:傅若农:PLOT气相色谱柱的诱惑力 /span /strong strong span style=" COLOR: #0070c0" /span /strong /span /a /p p a style=" COLOR: #00b0f0 TEXT-DECORATION: underline" title=" " href=" http://www.instrument.com.cn/news/20141205/147891.shtml" target=" _self" span style=" COLOR: #00b0f0" strong span style=" COLOR: #0070c0" 第七讲:傅若农:酒驾判官——顶空气相色谱的前世今生 /span /strong strong span style=" COLOR: #0070c0" /span /strong /span /a /p p a style=" COLOR: #00b0f0 TEXT-DECORATION: underline" title=" " href=" http://www.instrument.com.cn/news/20150106/150406.shtml" target=" _self" span style=" COLOR: #00b0f0" strong span style=" COLOR: #0070c0" 第八讲:傅若农:一扫而光——吹扫捕集-气相色谱的发展 /span /strong strong span style=" COLOR: #0070c0" /span /strong /span /a /p p a style=" COLOR: #00b0f0 TEXT-DECORATION: underline" title=" " href=" http://www.instrument.com.cn/news/20150211/153795.shtml" target=" _self" span style=" COLOR: #00b0f0" strong span style=" COLOR: #0070c0" 第九讲:傅若农:凌空一瞥洞察一切——神通广大的固相微萃取(SPME) /span /strong strong span style=" COLOR: #0070c0" /span /strong /span /a /p p a style=" COLOR: #00b0f0 TEXT-DECORATION: underline" title=" " href=" http://www.instrument.com.cn/news/20150312/155171.shtml" target=" _self" span style=" COLOR: #00b0f0" strong span style=" COLOR: #0070c0" 第十讲:傅若农:悬“珠”济世——单液滴微萃取(SDME)的妙用 /span /strong strong span style=" COLOR: #0070c0" /span /strong /span /a /p p a style=" COLOR: #00b0f0 TEXT-DECORATION: underline" title=" " href=" http://www.instrument.com.cn/news/20150417/158106.shtml" target=" _self" span style=" COLOR: #00b0f0" strong span style=" COLOR: #0070c0" 第十一讲:傅若农:扭转乾坤——神奇的反应顶空气相色谱分析 /span /strong strong span style=" COLOR: #0070c0" /span /strong /span /a /p p a style=" COLOR: #00b0f0 TEXT-DECORATION: underline" title=" " href=" http://www.instrument.com.cn/news/20150519/160962.shtml" target=" _self" span style=" COLOR: #00b0f0" strong span style=" COLOR: #0070c0" 第十二讲:擒魔序曲——脂质组学研究中的样品处理 /span /strong strong span style=" COLOR: #0070c0" /span /strong /span /a /p p a style=" TEXT-DECORATION: underline" title=" " href=" http://www.instrument.com.cn/news/20150617/164595.shtml" target=" _self" span style=" COLOR: #00b0f0" strong span style=" COLOR: #0070c0" 第十三讲:离子液体柱——脂质组学中分离脂肪酸的气相色谱柱 /span /strong strong span style=" COLOR: #0070c0" /span /strong strong span style=" COLOR: #0070c0" /span /strong /span /a /p p a style=" TEXT-DECORATION: underline" title=" " href=" http://www.instrument.com.cn/news/20150716/167186.shtml" target=" _self" span style=" COLOR: #00b0f0" strong span style=" COLOR: #0070c0" 第十四讲:脂肪酸气相色谱分析的故事 /span /strong strong span style=" COLOR: #0070c0" /span /strong strong span style=" COLOR: #0070c0" /span /strong /span /a /p p & nbsp & nbsp & nbsp & nbsp 人体呼吸气体的测试是一种无损伤的检测方法,日益受到重视,它可以评估健康状态、检测疾病类型,呼吸气体的检测可以利用简单的分析仪器进行。古代希腊医生已经知道人类呼吸气体的气味可以用于疾病的诊断,糖尿病人的呼吸气味由于含有丙酮,具有恶臭,呼吸气具有尿骚味预示肾脏有毛病。肺脓肿病人的呼吸气具有下水道的气味,这是由于厌氧菌繁殖而形成的气味。而有肝病的病人呼出气体具有臭鱼烂虾气味。 /p p style=" TEXT-ALIGN: left"   当我们从口中呼出气体,有成千上万的分子排放到空气中,呼出气体样品常常是无机气体(如NO, CO2, 和 CO)、挥发性有机化合物(例如异戊二烯、乙烷、戊烷和丙酮)以及其他典型的非挥发性物质的混合物(例如:异前列素、过氧化亚硝酸盐、细胞激素等)。由于这些分子源于内源性和外源性物质,详细分析这些物质的组成,可以提供多种体内所发生的生理学过程的特征(即呼吸谱),以及摄取和吸收物质的途径。如果获取和分析得到的呼吸谱是正确的,那么他就可以为你提供一个当前的健康状态,以及可预示将来的可能的后果。 /p p style=" TEXT-ALIGN: left"   呼吸气检测相比其他通常医疗检测的最大优点是非侵害性和安全性,由于其在临床诊断和明确的评估方面具有巨大的优势,所以呼吸气检测今天受到极大的重视,这一方法成为一些病人每天控制重要指标的必要测试项目(就像测血糖和尿液一样)。 /p p style=" TEXT-ALIGN: left"   已经开发了多种方法可以检测呼出气体,可以把它们分为几大类: /p p style=" TEXT-ALIGN: left"   1. 基于气相色谱和质谱联用(GC-MS)(或其他类型的质谱方法) /p p style=" TEXT-ALIGN: left"   2. 化学传感器 /p p style=" TEXT-ALIGN: left"   3. 激光-吸收光谱 /p p style=" TEXT-ALIGN: left"   在表 1 中列出这些分析方法以及相关信息。 /p p style=" TEXT-ALIGN: left" 表 1 用于分析呼出气体的一些方法 /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 569px HEIGHT: 197px" title=" 1.jpg" src=" http://img1.17img.cn/17img/images/201508/insimg/e4ae96e5-f897-456e-9062-19d09d296e08.jpg" width=" 655" height=" 193" / /p p style=" TEXT-ALIGN: left" 文献: /p p style=" TEXT-ALIGN: left"   1 Cao W,et al, Crit Rev Anal Chem,2007, 37:3. /p p style=" TEXT-ALIGN: left"   1. Pleil J D, et al, Clin Chem, 1997, 43:723. /p p style=" TEXT-ALIGN: left"   2. Smith D, et al, Int Review Phys Chem, 1996,15:231 /p p style=" TEXT-ALIGN: left"   3. McCurdy M R, et al,J Breath Res, 2007,1 : 1. /p p style=" TEXT-ALIGN: left"   4. Pleil J D, et al, J Toxicol Environ Health, B, 2008,11: 613. /p p style=" TEXT-ALIGN: left"   5. Schubert J K, et al, G.F.E. Expert Rev Mol Diag, 2004, 4 : 619. /p p style=" TEXT-ALIGN: left"   6. Zayasu K, et al, Am J Respir Crit Care Med, 1997,156:1140. /p p style=" TEXT-ALIGN: left"   7. Hansel A, et al, Int J Mass Spectrom Ion Processes, 1995, 150: 609. /p p style=" TEXT-ALIGN: left"   8. Boschetti A, et al, Postharv Biol Technol,1999, 17:143. /p p style=" TEXT-ALIGN: left"   10 Huang H H, et al, Sens Actuators, B, 2004,101: 316. /p p style=" TEXT-ALIGN: left" strong 气相色谱分析呼吸气体 /strong /p p style=" TEXT-ALIGN: left"   使用最多的是气相色谱(GC)或者气相色谱与质谱、离子淌度谱(IMS)结合来分析人的呼出气体。用GC直接进行分析,把样品直接注入气相色谱仪的进样口即可,样品混合物经色谱柱分离成单一化合物(或几个化合物),用各种检测器检测其含量,人呼出气多为极性化合物,要用极性色谱柱进行分析。GC-FID是使用最多的模式,因为FID灵敏度高,线性范围宽,噪声低。GC和MS结合是现代分析检测的极为普遍的方法。下面举一个例子说明用GC-MS来对肺癌和其他肺病病人呼吸气进行测定。 /p p style=" TEXT-ALIGN: left"   呼吸气体可以鉴定出由于细胞膜脂质中脂肪酸被过氧化而产生的饱和烃和含氧化合物,用以鉴别肺癌患者。意大利 Diana Poli等(J Chromatogr B,2010,878:2643–2651)研究发现通过呼吸气体中含有的VOCs(脂肪族和芳香族烃)的类别可以区分非小细胞肺癌患者(非小细胞肺癌(Non-small-cell carcinoma )属于肺癌的一种,它包括鳞癌、腺癌、大细胞癌,与小细胞癌相比,其癌细胞生长分裂较慢,扩散转移相对较晚,非小细胞肺癌约占肺癌总敉的80-85% ,目前采用化疗的方式进行治疗 )、慢性阻塞性肺病(COPD)患者、非临床症状吸烟者和健康人,灵敏度达72.2%,特异性达93.6%。在此基础上研究者们进一步寻找呼出气体中的其他物质可以更灵敏地区分健康人和肺病患者,并早期检查出肺癌患者。 /p p style=" TEXT-ALIGN: left"   多种羰基化合物作为二级氧化产物,他们选择挥发性直链醛作为组织破坏的生物标记物,特别是饱和醛像己醛、庚醛和壬醛是n-3和n-6不饱和脂肪酸(PUFAs)的过氧化产物,它们是细胞膜磷脂的主要成分,同时因为挥发性醛不溶解在血液中,所以当它形成时就会进入到呼吸气体中。 /p p style=" TEXT-ALIGN: left"   在呼吸气体中这种物质的浓度在10?12M(pM)和10?9M(nM)之间,所以在测定时需要进行预浓缩。这一研究中使用固相微萃取(SPME)进行预浓缩,用纤维内衍生化方法可以很好地解决呼吸气体中挥发性化合物的浓缩,包括脂肪和芳香烃,以及羰基化合物。但是并非能把所有呼吸气中的各种化合物都直接萃取出来,这决定于吸附剂涂层和萃取化合物的物理化学性质。 /p p style=" TEXT-ALIGN: left"   这一研究的目的是使用SPME上进行衍生化方法结合气相色谱-质谱的方法检测人呼气的最后一部分气体(肺泡气),肺泡气参与肺中的气体交换。 /p p style=" TEXT-ALIGN: left" strong 1. 人体呼气取样 /strong /p p style=" TEXT-ALIGN: left"   取样如图1 所示: /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 284px HEIGHT: 280px" title=" 2.png" src=" http://img1.17img.cn/17img/images/201508/insimg/73c261c9-6342-4ddb-8b29-305dd7d51e26.jpg" width=" 352" height=" 366" / /p p style=" TEXT-ALIGN: center" img title=" 3.png" src=" http://img1.17img.cn/17img/images/201508/insimg/307031d7-8bfe-4c5b-8ec7-b2c5624f1cf6.jpg" width=" 284" height=" 425" / /p p style=" TEXT-ALIGN: left" 图1& nbsp & nbsp & nbsp 人体用Bio-VOC& amp #174 管呼气取样 /p p style=" TEXT-ALIGN: left" & nbsp & nbsp & nbsp 取样是让进行试验个体进行一次肺活量测试呼吸,以便得到最后150mL呼出气体。加入1& amp #956 L 10 sup ? /sup sup 5 /sup M内标物(IS)(丙醛, n-丁醛, n-戊醛, n-己醛, n-庚醛, n-辛醛,n-壬醛, 2-甲基戊醛),把Bio-VOC& amp #174 管在4℃下保存,在2 h内进行分析。Bio-VOC& amp #174 管在使用前要进行再生,即用氮气彻底吹拂干净。 /p p style=" TEXT-ALIGN: left" strong 2 SPME 进行样品衍生化 /strong /p p style=" TEXT-ALIGN: left"   SPME萃取头保存在图 2 的装置里。 /p p style=" TEXT-ALIGN: left"   醛类用65& amp #956 m PDMS/DVB萃取头进行萃取,新萃取头要先进行老和处理,在气相色谱仪进样口中,在250℃下在氢气气流里加热30 min,每次使用前在气化室里于280℃下加热 1 min,目的是除去可能有的污染物,然后把萃取头插入4ml 带有聚四氟乙烯盖的茶色样品瓶中,瓶内装有浓度为17 mg/mL 的1mL PFBHA(五氟苄基羟胺盐酸盐)水溶液,在室温和电磁搅拌下萃取10 min,然后把此萃取头放入Bio-VOC& amp #174 呼吸气进样装置中于室温下处理45min(进行萃取头上的衍生化), 之后在气相色谱仪的进样口中于280℃下进行热脱附。PFBHA试剂与醛类进行衍生化反应得到两种PFBHA-肟异构体(顺,反异构体)。 /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 416px HEIGHT: 263px" title=" 4.png" src=" http://img1.17img.cn/17img/images/201508/insimg/2be3e5b2-1340-448c-a51f-4586ba7b2969.jpg" width=" 453" height=" 310" / /p p style=" TEXT-ALIGN: left" 图 2& nbsp & nbsp SPME萃取头保存装置 /p p style=" TEXT-ALIGN: left" & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 保存管包括上管(A)和密封管(B),萃取头(C)必须旋紧在A管中 /p p style=" TEXT-ALIGN: left" & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 然后插入到下面的B管中,B管用带弹簧的聚四氟乙烯盖密封 /p p style=" TEXT-ALIGN: left" strong 3 气相色谱-质谱分析(GC-MS) /strong /p p style=" TEXT-ALIGN: left" & nbsp & nbsp & nbsp & nbsp & nbsp 使用HP 6890 气相色谱仪和HP 5973质谱选择性检测器进行分析。色谱柱使用HP-5MS(30m× 0.25mmID 0.50 & amp #956 m膜厚),氢气作载气,载气流速为1ml/min。 /p p style=" TEXT-ALIGN: left" 色谱条件:柱温:以8℃/min速度从100℃升温到150℃,然后再以30℃/min速度升温到250℃,然后保持1 min。整个分析时间为10.58 min。用选择离子检测(SIM) 进行定量分析。获取质谱碎片m/z181(间隔时间400ms),每个醛的鉴定离子为181,是五氟苄-肟的特征离子碎片。同时以纯化合物的保留时间进行确认。 /p p style=" TEXT-ALIGN: left" strong 4& nbsp 测试对象 /strong /p p style=" TEXT-ALIGN: left" & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 40个在接受肺切除治疗之前的非小细胞肺癌(NSCLC)I 或 II期患者,所有患者都进行了胸腹部CT扫描,做了脑CT,腹部超声检测或骨质的闪烁扫描,没有一个患者进行过抗癌治疗。 /p p style=" TEXT-ALIGN: left" & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 38个对照健康没有临床治疗的人员,他们没有肿瘤或临床肺病历史。 /p p style=" TEXT-ALIGN: left" 研究对象的特点见表 2。 /p p style=" TEXT-ALIGN: left" & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 吸烟是根据受试者自己讲述目前的吸烟情况,他们报告了吸烟的数量和吸烟的年数,在一年前就停止吸烟者定义为前-吸烟者(ex-smokers)。NSCLC的确认是根据组织学检查确定的,有23个肺腺癌(ADCs)患者,13个鳞状细胞癌(SCCs) 患者,和一个大细胞癌患者,但是所有这些患者都是临床手术前I 或 II期,最后病理学显示I期有29人(18个IA期11个临床IB),6个IIB,5个IIIA。见表2. /p p style=" TEXT-ALIGN: left" 表2. 测试对象特点 /p p style=" TEXT-ALIGN: center" img title=" 5.jpg" src=" http://img1.17img.cn/17img/images/201508/insimg/09890691-2141-4f44-970b-bbd4bcbd33c3.jpg" / /p p style=" TEXT-ALIGN: left" strong 5 测试结果探究 /strong /p p style=" TEXT-ALIGN: left" & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 肺癌的早期诊断可以提高存活率,呼吸气的检测可以探测出呼吸道肿瘤形成的信息,而且呼吸气体的检测无伤害、安全,有利于在临床实践中的应用。由于肺比其他器官更直接暴露于较高氧气浓度的环境中,所以更容易诱发呼吸道疾病。研究数据显示肺癌是由于脂质被氧化而引起,很少人知道在呼出气体中含有直链醛类,知道在呼出气中含有直链醛类和肺癌有关的人更少。有研究结果显示,在肺癌患者的其他生物样品(如尿样、血液/血浆以及凝缩的呼吸气)中含有醛类。在健康人、哮喘患者和慢性阻塞性肺病(COPD)患者的液态呼吸气体(EBC)中也检测到醛类,特别是丙二酰二醛。 /p p style=" TEXT-ALIGN: left" & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 呼吸气体分析需要娴熟的技术和昂贵的仪器,因为这些目标化合物来自脂质过氧化过程,含量很低(10 sup ? /sup sup 12 /sup M 到10 sup ? /sup sup 9 /sup M) ,所以需要严格的预浓缩步骤。使用SPME可以简化人呼出气体的分析,而且SPME已经在VOCs分析中有大量应用,而且SPME不会受到大量水分的影响,所以这一方法十分适合于人呼出气体的预浓缩。呼出气体中含有大量水汽,会影响预浓缩和某些化合物的GC-MS分析。不过SPME需要进行严格的操作参数的优化和认证,特别是对痕迹量化合物的情况。并非所有呼出气体的组分都可以轻易地被萃取,这就要选择SPME萃取头的选择性了,在许多情况下就需要进行事先的衍生化处理。 /p p style=" TEXT-ALIGN: left" & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp SPME萃取头上用PFHBA进行衍生化从生物样品中萃取醛类乙腈有所使用,本研究作者改进了这一方法,使用Bio-VOC& amp #174 能够检测到呼出气体中的痕迹量的醛类,可以无害地从呼吸道中抽取小气泡,除去己醛、庚醛和壬醛(它们是3n和16n不饱和脂肪酸被过氧化产生)外,本研究作者还研究了其他直链醛类,覆盖了整个丙醛(C3)到壬醛(C9),甲醛和乙醛没有包括,因为它们他们存在于户内和户外环境中,是烟草燃烧的产物,而且许多肺癌患者过去吸烟,或者现在还在吸烟。而且呼出气体中乙醛的含量还取决于乙醇的代谢。 /p p style=" TEXT-ALIGN: left" 检测对象的呼出气中的醛含量见表3 /p p style=" TEXT-ALIGN: left" 表3 不同人群呼出气体检测结果 /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 536px HEIGHT: 221px" title=" 6.png" src=" http://img1.17img.cn/17img/images/201508/insimg/8c5c169b-7177-4a9f-bd98-26787c3fb459.jpg" width=" 659" height=" 263" / /p p style=" TEXT-ALIGN: left" strong 6 测试中的问题 /strong /p p style=" TEXT-ALIGN: left" & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 呼出气体醛类的稳定性,醛是不稳定化合物,在呼出气体中的醛会随时间而降解,但是在SPME上吸附并衍生化的醛要稳定的多,见图3所示 /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 434px HEIGHT: 372px" title=" 7.png" src=" http://img1.17img.cn/17img/images/201508/insimg/6017e878-1352-44c4-8312-a7e6f23af89e.jpg" width=" 567" height=" 492" / /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 445px HEIGHT: 405px" title=" 8.png" src=" http://img1.17img.cn/17img/images/201508/insimg/f8ad4a39-89b4-4347-9971-c2fed8a0e18d.jpg" width=" 515" height=" 484" / /p p style=" TEXT-ALIGN: left" & nbsp 图 3& nbsp 呼出气体中醛类随时间降解图(propanal 丙醛,butanal 丁醛,pentanal 戊醛,hexanal己醛,Heptanal庚醛,& nbsp octanal辛醛) /p p style=" TEXT-ALIGN: left" 为了对比外源和内源醛含量,如图 4所示 /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 495px HEIGHT: 341px" title=" 9.png" src=" http://img1.17img.cn/17img/images/201508/insimg/ea38f46b-53ef-4901-b398-c6d336e70de4.jpg" width=" 687" height=" 488" / /p p style=" TEXT-ALIGN: center" img style=" WIDTH: 465px HEIGHT: 354px" title=" 10.png" src=" http://img1.17img.cn/17img/images/201508/insimg/cddaa414-9479-4894-a2f0-569187d430e8.jpg" width=" 590" height=" 470" / /p p style=" TEXT-ALIGN: left" 图 4& nbsp 内源和环境中醛类含量测定的对比(Exhaled Air 呼气,Environmant 环境) /p p style=" TEXT-ALIGN: left" strong 小结 /strong /p p style=" TEXT-ALIGN: left" & nbsp & nbsp & nbsp 把这一方法用于NSCLC早期患者和一组无临床症状人群,结果证明所择的醛类谱对区分无临床症状不吸烟人群和NSCLC早期患者有效,鉴别NSCLC早期患者成功率为90%。鉴别对照健康人群成功率为92.1%。吸烟或年龄影响不大。 /p p & nbsp /p
  • 拿下国内首张呼气检测NMPA证,步锐科技又连发7篇顶级期刊,自建GMP规模工厂
    4月10日,中南大学湘雅医院神经内科沈璐教授团队在神经病学领域顶级期刊《Alzheimers & Dementia》(阿尔茨海默病与痴呆)(IF=16.655)以论著形式在线发表了题为“A Detection Model for Cognitive Dysfunction Based on Volatile Organic Compounds from a Large Chinese Community Cohort”(基于中国大型社区队列挥发性有机化合物的认知功能障碍检测模型)的最新研究成果。该研究首次发现通过检测人体呼出气中挥发性有机化合物(volatile organic compounds,VOCs)可早期识别认知障碍患者,有望为老年人群提供更客观、简易的认知障碍筛查手段。据悉,提供此技术平台支持的是国内呼气检测技术领先企业步锐科技。继感染性疾病、代谢类疾病、癌症等之后,呼气代谢组学对疾病的诊断能力又拓展至神经系统性疾病,这在学术界和产业界引起相当高的兴趣。并且,阿尔茨海默病(Alzheimer's disease,AD)目前的早筛评估方式受文化水平、方言等影响,此次论文的发表,让AD早筛看到了“客观”、“规范”、“普适”的可能性。从肺病到AD,临床基础研究已发7篇期刊来自身体各个部位器官代谢产生的标记物(Biomarkers),部分会进入血液循环到达肺泡,其中部分代谢物(或其次级产物)可通过气血交换呼出体外。这个过程让我们呼出气中不仅包含氮气、氧气、二氧化碳和水蒸气这些广为人知的成分,还含有多达1,500种微量存在、可能反映身体各器官生理状态的生物信号小分子一一VOCs,其中200余种已被大量研究证实与多种人体疾病有关。呼气检测以其简单无创和低成本的特征,对比常规体液和影像检查,在日常健康体检和大规模疾病筛查领域具有绝对优势,未来可满足家庭、社区和特定单位等精准度要求不高的POCT健康检查和持续监控要求。同时,质谱技术作为化学物质定性分析的金标准,在小分子化合物的快速定性定量检测中具有其他技术不具备的明显优势,更适用于人体呼出气体中VOCs的检测分析。因此,呼气质谱检测成为探明疾病图谱更为可靠、精准、可持续的理想途径。目前,呼气质谱检测研究已探明的疾病谱较为广泛,已涉及数十种疾病,包括肿瘤、感染性疾病、呼吸系统和消化系统疾病,以及其他代谢显著变化的重大疾病,如慢性代谢、心血管、神经/精神疾病等。呼气质谱检验已探明的疾病图谱(图片来源:步锐科技)其实除了近期发布的有关认知障碍的呼气检测研究外,近年来多项有关呼气检测临床基础研究的期刊论文中,步锐科技的“人体呼出气检测质谱仪”连续以技术平台支持的身份出现。步锐科技近年支持的临床基础研究成果(信息来源:步锐科技)自2020年起,步锐科技与北大人民医院、北京731医院、北京海淀医院、中南大学湘雅医院、深圳三院、郑州大学附一院等大型三甲医院的相关科室主任合作,围绕肺癌、肺结核、食管癌、AD、新冠等诸多疾病开展的呼气检测临床基础研究,均取得积极的研究进展,其成果在各大期刊成功发表。其中,步锐科技“人体呼出气检测质谱仪”采用的“高压光子离子化飞行时间质谱法”在各项研究中表现积极,在针对各病种的样本检测和验证中,均表现出极高的敏感性、特异性和准确性,所得的相关临床基础研究数据印证了“人体呼出气检测质谱仪”在各疾病的诊断、早筛中的推动作用与市场潜力。市场唯一呼气检测质谱仍在迭代,挑战内源性VOCs和采样标准化2021年7月23日,步锐科技自主研发的“人体呼出气检测质谱仪”获得了国家二类医疗器械注册认证,这标志着我国首张呼气检测NMPA证的诞生。直至目前,我国也仅有这一款呼气检测质谱仪获得认证。在这样绝对市场竞争优势的情况下,步锐科技没有仅仅把发展重心放在产品销售和市场开拓上,而是继续潜心坚持学术研究,近年来收获也逐一显露。步锐科技布局丰富的临床基础研究,能够不断对该质谱仪的敏感性与特异性进行验证,以利于产品的更新迭代,并同时开拓更多适应症的检测场景。其次,受试者呼出气体样品的精准化、规范化采集也是目前在疾病诊断中待解决的应用难点。通过临床基础研究过程中对采样时间、呼气方式、样品存储、采集装置的反复测试和调整,有利于步锐科技探索出更适合的采集形式,进而制定统一的操作规范,确保检测操作的一致性、提升结果的准确性。更重要的是,疾病呼气代谢标志物的发现中,除了因疾病导致的VOCs变化外,年龄、性别、饮食、吸烟史、药物摄入、基础疾病和微生物等内源性VOCs也会在一定程度上影响结果。因此,将临床研究与基础研究有机结合的多中心、大规模呼出气临床队列研究,是寻找明确疾病相关生物标志物的基础。稳定检测、呼气样本的可靠,是该技术应用于临床的基础,而海量呼气样本的积累,目标疾病呼气标志物的发现和确定,多中心、大样本的临床验证,甚至于标志物的代谢通路确定,均是开发临床可用的呼气诊断产品或提升产品性能的必经之路。因此,步锐科技将临床研究贯穿呼气检测相关产品的全生命周期。一方面能够在产品性能、解决方案质量方面进行提升,另一方面,国际学术期刊的发表也能够帮助企业在未来的海外市场开拓中扫清诸多阻碍。中科院等近40家权威机构,8万+呼气样本,敏感性、特异性90%+截至目前,步锐科技与中国科学院、中国疾控中心、国家感染性疾病临床医学研究中心、中国人民解放军总院、陆军军医大学西南医院、中国医学科学院肿瘤医院、北京大学人民医院、北京大学肿瘤医院、首都医科大学附属胸科医院、江苏省肿瘤医院、中山大学附属肿瘤医院、中南大学湘雅第二医院等国内近40家大型医院和机构联合开展多病种呼气诊断与评估研究。经过多年来大样本、多中心的研究积累,步锐科技已建成逾8万例的呼气样本谱图库,覆盖肺结核、肺癌、乳腺癌、食道癌、前列腺癌、结直肠癌、胃癌胃溃疡,肝癌肝硬化肝炎、新冠肺炎、哮喘、慢阻肺、血液感染、AD和帕金森等十余种肿瘤、感染或其他类疾病领域。对比实验室常规方法气相色谱-质谱联用,步锐科技自主研发的高气压光电离-飞行时间质谱(HPPI-TOFMS)攻克了目前质谱技术操作繁琐、需预处理且极易样本损耗的短板,不受背景气影响,在高敏感性高特异性的基础上操作更加简便,使原本2-5 h的单样本检测仅需3min,实现了600样本/天的高通量,使临床价值和商业价值指数级上升。在肺结核、肺癌、食管癌等病种筛查验证中,该方法能够将敏感性与特异性稳定在90%以上,在医疗和科研机构的多病种全周期临床检测和研究中表现出绝对的优势。
  • 中国计量院成功助力西藏高海拔地区建立酒驾执法呼气酒精检测计量标准
    近日,中国计量科学研究院(以下简称“中国计量院”)技术专家赴西藏自治区计量测试所开展“高海拔下呼出气体酒精含量检测仪溯源性研究”项目专题技术指导。期间,专家组通过原理阐释、技术演示、规范操作等方式,面对面为西藏自治区计量测试所相关技术人员进行了深入细致的讲解辅导,有效带动和提升了该地区呼气酒精检测溯源的研究水平和实际能力。   近年来,中国计量院牵头制修订JJG 657-2019《呼出气体酒精含量检测仪》、JJF 1785-2019《呼出气体酒精含量检测仪型式评价大纲》等一系列技术文件,有效解决了高海拔地区呼气酒精检测溯源难题。今年,随着历时两年之久的高海拔地区呼气酒精检测试验圆满成功,中国计量院首次在西藏境内成功建立呼出气体酒精含量检测量值传递溯源体系,为在全国范围建立相应溯源体系奠定了基础。   中国计量院作为国家最高法定计量技术机构,高度关注安全和环保领域计量技术的研究发展,特别是围绕交通安全中的酒驾执法,成功研制出乙醇气体国家一级标准物质和系列检定校准装置。通过国际比对使我国在该项目国际互认的检测与校准能力(CMC)达到国际领先水平,提高了我国标准气体制备水平在国际上的地位和影响力,极大推动了国产酒检执法仪质量的全面提升和国产化进程。   据统计,国产酒检执法仪国内市场占有率从2006年的0.1%提高到现在的100%,使我国30万交警手中酒驾检测的标尺做到完全自主可控,并实现了从“零”出口到销往几十个国家的飞跃。
  • 日本东北大学与岛津制作所成功开发新冠病毒检测法—呼气组学解析系统
    次最新开发新冠病毒呼气检测法-基于呼气组学发展的未来医疗 News研究要点日本东北大学和岛津制作所成功开发了利用自然呼出气为样本的新冠病毒检测法“呼气组学”注1。“呼气组学”是分析呼出气体中的病毒、源于生物体的蛋白质、代谢产物的最先进技术。将来,此种技术不仅能应用于新冠,还能应用于个性化医疗、远程、居家健康检查、各种疾病的诊断、治疗、未病先防等,揭开呼气医疗的新篇章。 News研究概要目前亟需有助于新冠病毒快速且高灵敏、高准确度的诊断,发病期及症状的评估,重症化风险的判断,预后及并发症的预测与诊断的检测方法。 东北大学研究生院医学系研究科、老龄研究所基于和岛津的共同研究,投入开发了“针对新冠病毒防治对策的呼气组学解析系统”(图1)。该研究研发出了基于利用自然呼出气体(呼气)的非侵入式呼气组学解析法的检查系统,代替传统鼻、口(咽)取样的检查方法。 图1. 基于呼气组学的新冠传染防治项目 本解析法的优点除了采样简便,还有多样化的解析结果。此外,本方法除了对各种传染病有效,也能应用于心血管和肺部疾病、生活方式病、糖尿病等代谢性疾病、癌症等健康管理、未病先防等方面。呼气医疗未来还将在远程医疗等领域一展身手,我们以建立基于呼气医疗的未来医疗为目标(图2)。 图2.基于呼气医疗的个性化未来医疗 本研究获得了日本文部科学省针对新冠传染防治对策项目以及内阁官房新冠防治AI模拟试验项目的支持。News研究内容新冠疫情的恶化大大限制了社会经济活动,改变了人们的生活方式。为了维持社会经济活动、医疗能力并阻止感染扩大,针对新冠病毒快速且高灵敏、高准确度的诊断,发病期及症状的评估,重症化风险的判断,预后及并发症的预测与诊断是目前的紧要课题。 此次,日本东北大学研究生院医学系研究科、老龄研究所基于和岛津制作所的共同研究,在令和二年文部科学省一次补正预算(强化国立大学研究基础)新冠传染防治项目下研究出“针对新冠病毒防治对策的呼气组学解析系统”,并于2020年5月在日本东北大学医学部设立了“呼气组学研究中心”,开展新冠病毒诊断法的研究。 呼气组学是利用质谱仪注2检测气溶胶注3作为主要的精密检测方法,以“对受试者的非侵入性”、“所得信息的丰富性”见长(图1)。若使用日本东北大学开发的高性能气溶胶收集装置,受试者自己在安静状态下呼吸5分钟,即可得到1毫升左右的呼出气冷凝液注4。若居家即可收集呼气样本,就可以建立有助于在早期发现作为感染扩大主要原因的无症状感染者和轻症患者,以及有助于在早期预测及预防新冠发病和重症化的检查体系。 呼气组学不仅能检测是否感染新冠病毒,还能获得发病时间及症状的评估,重症化风险的判断,预后及并发症预测相关的信息。呼气组学也能应对新冠病毒以外的其他病毒,由于可同时测定多种病毒,所以对新冠疫情结束后的其他传染病防治也有作用。 News今后发展日本东北大学和岛津制作所将把呼气组学的应用范围拓展到传染病以外的疾病诊断、健康检查等医疗保健领域,以此发展未来的呼气医疗。此外,通过构建包括呼吸、环境和基因组(基因)等各种组学分析信息的数据库,呼气医疗不仅能诊断心血管、肺部疾病、生活方式病和糖尿病等代谢性疾病、癌症等,还能有助于居家健康管理和健康检查,通过远程医疗来推进开发有助于于未病先防和延年益寿的个性化医疗(图2)。 岛津制作所为了将与日本东北大学合作研发的检查系统推向社会实际应用,將致力于“研发可自动进行从预处理到质量分析、数据分析工程的完整系统”,“横向部署针对全国各地主要医院和检查机构的检查系统,并建设传染病防控网络”。 注1. 组学:从整体角度分析代谢物、蛋白质等生物分子的技术。样本形态无特别限制,例如鼻、咽拭子,唾液,血液,尿液、粪便等。环境组学可以分析灰尘和污垢(污水)。在呼气组学中,会收集呼出的气体,气溶胶注3中的病毒蛋白和基因组,源自受试者的炎症介质和能量代谢物,并实现全自动化的高速、超灵敏的组学分析。 注2. 质谱仪:一种通过将样品转换成离子并按尺寸(质量)筛分来鉴定和定量分析样品中所含成分的设备。通过进行适当的预处理,可以分析如蛋白质等各种生物分子,且可以一次分析多种成分。随着近年来的高速化和高灵敏度化,其应用范围也在扩大。 注3. 气溶胶:漂浮的微米级液体或固体微粒。 注4. 呼出气冷凝液:通过对呼出气体进行冷凝收集的液体样品。包含病毒蛋白, RNA基因组和生物代谢产物。
  • 步锐科技:呼气质谱检测临床应用处于行业爆发前夜
    呼气检测作为新兴的体外诊断POCT 领域的一种新技术,从NMPA批准上市算起,目前市场规模最大的幽门螺杆菌呼气检测的历史不足25年,市场发展潜力最大的炎症NO呼气检测的发展约10年。随着临床对呼气检测需求不断发展,基于质谱的呼气检测技术应运而生。在此背景下,仪器信息网特别策划建立“呼气质谱技术与疾病诊断”主题约稿,聚焦呼出气检测质谱技术在疾病诊断领域的最新应用,以增强业界质谱专家和技术人员、医疗诊断行业工作者之间的信息交流,同时向仪器用户提供质谱在医疗诊断领域更丰富的产品、技术解决方案。本期我们与深圳市步锐生物科技有限公司(以下简称:步锐科技)就呼气质谱检测技术的发展、现状、挑战以及未来的发展趋势等进行了深入的交流。步锐科技人体呼气中含有大量高浓度的氮气(78%)、氧气(16%)、二氧化碳(4~5%)、氢气(5%)、惰性气体(0.9%)和水蒸气。此外,还含有一氧化氮、一氧化二氮、氨、一氧化碳和硫化氢等少数低浓度(ppm~ppb)无机气体,丙酮、乙醇、异戊二烯、乙烷和戊烷等种类繁多的超低浓度(大多在ppb~ppt)挥发性有机化合物(VOCs),以及一些蛋白质、核酸、微生物和细胞颗粒或碎片等。这些呼气检测研究的目标物质,都是疾病生物标志物的潜在来源。但就检测便捷性和病种覆盖范围来说,当前呼气VOCs吸引了临床研究和产业技术界的最多关注。最新数据显示,目前呼气中含有的挥发性有机化合物(VOCs)已高达1488种(2021年),比2014年时新增了70%。而且随着研究将更精准的检测技术应用于更多病种和临床场景,这一数字预期还将不断增长。粗略统计,目前经过GC-MS鉴定与疾病相关的VOCs标记物超过200种,其中绝大部分相对分子量位于0~500之间。例如,多项研究发现,丁酮、1-丙醇和异戊二烯等170余种呼气VOCs标记物与肺癌有关;萘,庚酮,庚烷,苯和癸烷等化合物被发现是结核感染的可能标志物;目前,各类疾病发现的标志物均在数十种以内,其中,乳腺癌相关联的呼气VOCs也高达62种。随着研究的深入,以多种特征VOCs的成分和浓度差异组合作为疾病精细检测的“标记物组合”逐渐成为趋势,以单一的标记物指标异常简单判别疾病的传统操作或将成为过去。然而,目前疾病呼气VOC标记物的发现与关联病种、临床应用(如健康筛查,鉴别诊断,治疗评估等)和呼气检测分析方法等多种因素有关,不同病种常有交叠。标志物的确定还需要更多更对基础研究的进一步探索,从代谢通路的角度夯实呼气代谢组学的基础,通过多中心队列研究验证其可靠性。仪器信息网:: 针对呼气质谱检测与疾病诊断,目前共建立了哪些技术方法?不同的质谱技术分别拥有什么特点?步锐科技:质谱技术作为化学物质定性分析的金标准,在小分子化合物的快速定性定量检测中具有明显优势,适用于人体呼出气体中VOCs的检测分析。目前用于呼出气VOCs检测的主要技术包括:气相色谱(GC)和气相色谱-质谱联用(GC-MS),选择离子流动管质谱(SIFT-MS)、质子转移反应质谱(PTR-MS)、二次电喷雾电离质谱(SESI-MS)以及光电离质谱(PI-MS)等。其中,GC-MS是呼出气疾病诊断研究领域使用最为广泛的呼出气质谱检查技术,其具有很好的定性和定量能力,也是目前最为可靠的呼出气化合物检测分析方法。但由于呼出气组分的种类繁多、性质各异,通常需要使用不同类型的预分离色谱柱,结合痕量气相组分的预浓缩和富集方法进行分析,这极大增加了操作复杂性、样品分析时间和检测成本。这也成为GC-MS技术从科研向临床应用的转化的最大障碍。目前临床应用研究中,常采用呼出气检测质谱技术主要包括选择离子流动管质谱(SIFT-MS)、质子转移反应质谱(PTR-MS)、二次电喷雾电离质谱(SESI-MS)以及光电离质谱(PI-MS)等的直接质谱检测技术,他们可以支持呼出气的快速检测。其中,(1)SIFT-MS与PTR-MS主要利用试剂离子H3O+、NO+或O2+与有机物分子进行化学电离反应,目前研究最多、应用最广泛的PTR-MS通常以H3O+为试剂离子。可根据产物的谱图特征进行检测分析,适合用于能与试剂离子发生反应的样品分子检测,如质子亲和势高于H2O的VOCs。(2)SESI-MS技术主要依赖于电喷雾电离(ESI)带电粒子与中性气体样品分子之间的气相相互作用,其电离过程非常柔软,适合极性化合物检测,再联合高分辨质谱如Orbitrap,可得到分子量稍大些的化合物信息。其余的直接质谱检测技术则多以获得小分子代谢物信息为主。(3)PI-MS技术则是通过使电离能低于光子能量的待测物分子吸收单个VUV光子能量后直接离子化,其分子离子产率高、碎片化程度低,可用于非极性/弱极性到强极性化合物分析的电离,是一种高效的直接质谱电离技术。仪器信息网:在疾病诊断的应用场景下,对呼气质谱技术提出了哪些要求?当前的应用有什么困难点?步锐科技:呼气质谱检测技术作为新兴的呼气代谢组学的基础,近年在疾病诊断领域取得了巨大的发展,呼气疾病诊断技术呼之欲出。然而呼气作为代谢链路的最末端,其复杂程度也是前所未有的,因此呼气质谱从科学研究走向临床应用,在呼气质谱技术在临床研究有效的基础上,还亟需更好地解决如下问题:1)受试者呼出气样品采集的精准化与规范化。人体呼出气样本具有复杂且不稳定的特点。受试者呼吸的方式,采集的时间,采集的装置等都直接影响采集到样本中包含代谢化合物的浓度。采集后的存储同样也极具挑战,呼出气采集后会随着温度的变化,存储环境的不同而发生不同程度的物理变化。因此呼出气检测技术应用临床亟需探索确定稳定可靠的呼出气采集流程、呼气存储装置和方法。2)高覆盖、高灵敏、高通量、高稳定的质谱分析方法和仪器开发。呼出气组分复杂,约包含数百种VOCs,且属于痕量级,通常在ppm~ppt量级,对呼出气检测设备的检测灵敏度、电离覆盖度等提出了较高的要求。这部分的技术参数直接决定对应的检测技术的应用范围。此外,临床应用也对呼气检测技术的通量和稳定性有较高的要求。这部分的技术参数决定对应的检测技术能面临长期大量的临床需求。因此,呼出气分析方法的效率和可靠的质量控制方法也是各质谱技术向临床应用转化需要考虑和解决的技术问题。3)疾病呼气代谢标志物发现和多中心、大规模验证。人体呼出气中VOCs来自于两个方面:一方面是外源性VOCs,与我们所处的环境等相关;另一方面是内源性VOCs,除了因疾病导致的变化外,还一定程度上受到年龄、性别、吸烟、饮食、药物摄入、基础疾病、微生物等因素的影响。寻找具有普遍认可以及专家共识的明确疾病相关生物标志物,是质谱分析方法应用临床的生物学基础。其发现依赖于基础研究和临床研究的有机结合,而其验证则需要多中心、大规模呼出气临床队列研究。仪器信息网: 贵团队/贵司重点关注哪种呼气质谱技术?当前有哪些具有代表性的应用进展?步锐科技:我司深圳市步锐生物科技有限公司(以下简称:步锐科技)是国内最早布局呼出气VOCs检测的企业之一。步锐科技依托与中国科学院大连化学物理研究所李海洋研究员团队合作开发的高气压光电离-飞行时间质谱(HPPI-TOFMS)技术进行呼出气检测用于疾病诊断的探索与研究工作。团队基于10.6 eV的VUV-Kr灯开发了高气压光电离源,结合高效射频离子传输系统,在相对湿度100%条件下可以实现酮、醇、酸、含硫化合物、含氮化合物等痕量小分子挥发性有机代谢物的检测,是近年来用于人体呼出气研究的新技术。HPPI-TOFMS可以实现呼出气样本直接进样快速检测,省去吸附富集过程,无需样本分离纯化预处理,使得呼出气检测产品化及大规模进入临床应用成为可能。目前,步锐科技申报的人体呼出气检测质谱仪,已获得中国药品监督管理局(NMPA)审批的二类医疗器械注册认证(CFDA Ⅱ)(湘械注准20212221412),主要研究管线集中在感染性疾病和肿瘤领域,已经在结核病、肺癌、食管癌、阿尔茨海默症等病种中展开了多项前瞻性临床研究,在JAMA Network Open、Eclinicalmedicine、Alzheimer's & Dementia、J. Breath Res、Biosci Trends等期刊发表多篇高水平学术论文。此外,步锐科技自主开发的基于呼出气的肺结核诊断技术,在临床队列和肺结核入学筛查项目开展了大规模实践验证研究,均具有良好的准确度,灵敏度和特异性超过90%。仪器信息网:: 您如何看待当前呼气质谱检测技术在疾病诊断应用的发展现状?未来其在疾病诊断领域将有哪些热点应用?步锐科技:目前,呼气质谱检测研究已探明的疾病谱较为广泛,已涉及数十种疾病,包括肿瘤、感染性疾病、呼吸系统和消化系统疾病,以及其他代谢显著变化的重大疾病(慢性代谢/心血管/神经/精神疾病等),如肺癌、肺癌、乳腺癌、结直肠癌、胃癌、头颈癌、卵巢癌、前列腺癌、肾癌、膀胱癌和肝癌等恶性肿瘤,新冠肺炎、结核、铜绿菌感染、流感、曲霉菌感染、疟疾、幽门螺杆菌感染和肝炎等多种病毒、细菌、真菌和寄生虫感染病,以及食管炎、胃炎、胃溃疡、炎性肠病、肠应激、肝硬化、肝衰竭、糖尿病、心绞痛、阿兹海默病、帕金森症、精神分裂症和肌萎缩侧索硬化症等。呼气代谢研究广泛涉及健康筛查、鉴别诊断、治疗评估、预后管理及发展预测等临床全病程场景,其中以疾病筛查诊断最为热门。近年来,气相色谱质谱(GC-MS)、离子流动管质谱(SIFT-MS)、质子转移反应质谱(PTR-MS)、二次电喷雾电离质谱(SESI-MS)以及光电离质谱(PI-MS)等相对较新设备也在不断创新和改进,并不断投入到相关探索和验证研究中,相应的采样检测分析标准和流程也在不断规范和标准化。大量高水平研究论文的发表,更多呼气代谢研究平台和(产学研联合)实验室的构建,以及研究基金支持和厂商的积极参与,正在推动呼气质谱检测研究和产业发展渐入佳境。呼气检测以其简单无创和低成本的特征,对比常规体液和影像检查,在日常健康体检和大规模疾病筛查领域具有绝对优势,未来可满足家庭、社区和特定单位等精准度要求不高的POCT健康检查和持续监控要求。高精简且操作简便新型质谱可用于医疗和科研机构的多病种全周期临床检测和研究中。仪器信息网:当前呼气质谱检测技术在疾病诊断领域的发展处于哪个阶段?未来将如何发展?步锐科技:中国的呼气检测市场在全球范围内的发展较快且覆盖面较广,且聚集了国外几乎所有的呼气检测产品。以广谱VOC检测为基础的产品技术,在心脏移植和新冠检测等领域的产品已获FDA和EMA等各国药监部门批准临床应用/紧急授权外,并有大量企业和医疗卫生中心合作开展大量的临床应用研究。总体而言,目前出呼气检测临床应用正处于行业爆发的前夜,呼气检测技术在肺结核、新冠等呼吸道传染病领域的应用已得到广泛证实,在乳腺癌和肺癌等癌症早筛领域的应用也备受关注。步锐科技呼气结核辅助诊断产品即将完成注册临床前研究,目前阶段性结果符合预期。临床应用指日可待。而在其他疾病领域,呼气质谱检测正处于多病种全周期医学科研火热开展阶段。以步锐科技和英国Owlstone Medical为代表的国内外领先呼气质谱检测公司均以自身呼气代谢组学科研平台为基础,与合计近百家顶级医疗机构开展多病种科研合作和服务。因此,呼气检测技术在未来医疗领域将有广阔的临床应用,具有发展成为常规临床检测手段的潜力,将为未来精准快速医疗提供重要力量。
  • 当新鲜空气成为奢侈品?——浅谈GC-MS在呼吸气检测中的应用
    近日,一则“新德里空气污染严重,民众花30元吸氧15分钟”的新闻引起公众关注。看似略显荒谬,却也发人深省。据报道,印度新德里空气重度污染,多地PM2.5数值超过999,“爆表”程度相当于当地四千万人每人每天吸33.2根香烟,对呼吸道的损伤可见一斑。 近几年,雾霾话题总能常居“热搜”,一方面是环境问题严峻,另一方面,大家开始越来越重视自身健康。谈癌色变的今天,人们愈发意识到自己的健康与一呼一吸息息相关,开始大量购买防霾口罩,空气净化器、新风系统也成为家装必备。关注每口吸入空气的你又可知道:每一下呼出气也可以作为疾病初筛和诊断的依据?实施慢性呼吸系统疾病防治行动此前国务院印发《国务院关于实施健康中国行动的意见》明确指出:针对心脑血管疾病、癌症、慢性呼吸系统疾病、糖尿病四类慢性病需要加强防控。针对呼吸系统疾病提出实施慢性呼吸系统疾病防治行动,引导重点人群早期发现疾病,控制危险因素,预防疾病发生发展。对于呼吸系统的疾病,如何快速发现、及早治疗,也成为了相关研究需要突破的方向。 - 新型无创检测方法 -如今科学家们带给了我们一种新型的检测方法,只需要简单的呼吸就能够进行疾病初筛并提供诊断的依据。这就是今天我们要介绍的呼吸气检测,一种无创伤的、简便快捷的诊断方式,可作为诊断呼吸系统疾病(如:哮喘)的方法。对人体肺泡气中痕量的VOCs等小分子代谢物进行的代谢组学研究,目前已在肺癌、胃癌、结肠癌、乳腺癌、糖尿病等重大疾病的早期筛查和研究中有所应用,国外也有了相关应用的报道。英国癌症研究院(Cancer Research UK)和英国生物技术公司(Owlstone Medical)就“从癌症患者的呼吸中寻找潜在的生物标记物”开始了临床试验。呼出气中VOCs极低的浓度,对实验设备(前处理富集和质谱分析)的灵敏度提出了极大的考验。 具体方法首先,Owlstone Medical与呼吸组学领域专家合作开发的一种完全非侵入性的呼吸检测仪ReCIVA Breath Sampler(下图),通过软件控制采样泵开关时间,结合Breath Biopsy Cartridge(呼吸气吸附管),从而对测试者的呼出气组分进行有效富集。Owlstone Medical的呼吸气采样器ReCIVA Breath Sampler 收集完成后,研究人员通过MarkesTD100-xr热脱附仪对呼吸气VOCs解析进样,采用Thermo Scientific™ GC-Orbitrap/MS(高分辨静电场轨道阱气质联用仪)进行分析。通过Thermo Scientific™ TraceFinder4.1对数据自动进行解卷积和谱库检索处理,并结合高分辨过滤分值(HRF Score)与保留指数(RI)进一步确证质谱定性结果。赛默飞高分辨静电场轨道阱气质联用仪与热脱附仪联机图TraceFinder4.1的高分辨数据解卷积和谱库检索界面 呼吸气检测中,重要的生物标记物往往因为浓度低、质谱响应信号弱,而被复杂的呼吸气基质干扰所淹没。Orbitrap作为质谱检测器,以其高分辨率、高灵敏度著称,同时宽线性动态范围使得待测化合物即使处于极高或极低浓度时,也不会因为质量精度和离子比率的改变而导致定性错误。有了全流程的分析仪器,该实验基于吸烟相关的生物标记物数据库对不同吸烟状况人群(非吸烟者、吸烟者、戒烟者)的呼吸气进行了研究,发现二甲基呋喃、甲苯、乙苯等化合物在呼吸气中的含量与吸烟行为有极高的相关性。Orbitrap高分辨静电场轨道阱气质联用与呼吸气采样器、热脱附仪联用的一整套呼吸气分析系统,在极低浓度呼吸气生物标记物分析中展示出极大的优势。虽然呼吸活检仍处于临床试验阶段,但未来可期,呼吸癌症测试一旦成为现实,研究将影响数百万人的生活,通过早期癌症筛查,有望拯救数十万人的生命并节省超过15亿美元的相关医疗费用。一呼一吸之间,有我们对健康生活的追求,也会有我们对此的科学守护。 参考文献:BREATH BIOPSY: Combining Thermal Desorption-Gas Chromatography with High Resolution Mass Spectrometry for Improved Sensitivity and Selectivity in Untargeted Breath Analysis, Jasper Boschmans, Cristian Cojocariu, Paul Silcock, Billy Boyle, Alexander Makarov, Max Allsworth 色谱质谱明星产品前处理气相色谱离子色谱液相色谱气质联用液质联用AA/ICP/ICPMS软件 更多仪器配置和方案推荐色谱质谱全流程食品安全固废专项临床检测RoHS检测中药分析化药分析代谢组学
  • 检测呼吸的新技术问世 能替代GCMS
    据国外媒体报道,科学家研发出了一种新的技术,这种技术能够对人呼出的气体中特定化合物水平的微小变化进行检测,并发现那些预示着受试者未来可能患胃癌的高风险变化,这项研究日前在线发表在《消化道》(Gut)杂志上。   这项研究使科学家提出一种观点,认为这项技术(纳米阵列分析或纳米芯片分析,nanoarray analysis)不仅可以用于诊断胃癌,还能用于对患胃癌的高危人群进行监控。   胃癌是分阶段发生的,但目前还没有有效、可靠并且非侵入的方式对身体的变化进行早期的筛查。发达国家的多数患者在确诊时都已经为时太晚,无法挽救他们的生命。   此前的研究发现,纳米阵列分析能够用于诊断胃癌,但这些研究涉及的人数较少。也没有一项研究涉及对癌症发生前身体的变化进行检测。   参与这项新研究的科学家分别对484人进行了两次取样,获得了他们呼出气体的样本,取样时受试者禁食了12小时,并已经有至少3小时没有吸烟。   在这484人中,有99人已经被确诊患有胃癌,但尚未接受化疗和放疗治疗。   科学家还对这些受试者吸烟、饮酒的习惯进行了询问,并对病人进行了幽门螺旋杆菌的检测,这些因素都是已知的导致胃癌发生的风险因子。   科学家使用一种技术(气相色谱-质谱连用,GCMS)对其中一份样本中的挥发性有机化合物进行了检测。另一份样本则使用纳米阵列分析并结合模式识别的手段进行检测。   GCMS检测的结果显示,无论是否患有胃癌,受试者呼出的空气都有特殊的&ldquo 呼吸指纹&rdquo 。   在GCMS检测出的共130种挥发性有机化合物中,有8种的含量水平在胃癌患者与尚处于前癌症期(pre-cancerous)的人之间存在显著的差异。   不仅如此,纳米阵列分析还能准确的区分前癌症期的各个不同阶段,确定病人患胃癌的风险是高还是低。   即使存在其它的影响因素,比如年龄差异、饮酒与否、服用了抑制胃酸分泌的药物(质子泵抑制剂)等,这种检测方法仍然有效。   参与这项研究的科学家指出,GCMS技术无法用于筛查,因为这种技术非常昂贵,而且需要很长的时间进行处理分析,操作的专业性要求也很高。   科学家介绍说,与GCMS相反,纳米阵列分析不仅结果准确、灵敏度高,而且技术简单、价格便宜,能够替代GCMS。   科学家认为,通过准确的区分出病人患胃癌的风险是高还是低,能够避免进行不必要的内窥镜检查,还能对从前癌症期发展到癌症或者癌症复发进行监控。   一项涉及数千名病人(病人中既有胃癌患者,也有前胃癌期的受试者)的临床试验目前正在欧洲进行,以检测这种筛查方法的可靠性,科学家介绍说。   这些科学家认为&ldquo 这种测试方法吸引人的地方是它的非侵入性、使用简单(因此能灵活使用)、能够迅速的做出预测、不易受到干扰因素的影响,价格还可能会很便宜。&rdquo
  • “呼气”测新冠靠谱吗 ?
    无需再被棉签捅嗓子或鼻子,只需拿起吸管对着仪器吹口气,3分钟便可得知自己是否感染新冠——近日,美国食品和药物管理局首次为基于呼吸样本的新冠诊断测试授权紧急使用。该测试设备只有一件随身行李箱大小,可对呼出气体进行检测,比提取鼻咽拭子的PCR核酸检测更加方便、快速。“呼气”测新冠是何原理美药管局在新闻公报中说,该设备可在医生办公室、医院和移动测试站点等环境开展检测。一项包括新冠有症状感染者、无症状感染者等人群的共计2409人的研究显示,设备检测灵敏度为91.2%,特异性为99.3%。专门针对奥密克戎毒株的研究结果显示,设备检测灵敏度类似。北京大学环境科学与工程学院生物气溶胶实验室负责人要茂盛教授说,与现有的PCR核酸、抗原检测相比,新冠呼气检测可快速检测到早期感染、无症状感染等,减少等待时间;样品的获取简单、无创,大幅降低之前采集鼻咽拭子的不适感;单次检测成本也显著降低。要茂盛说,人体呼出气中含有大量和疾病相关的化合物标志物,所以通过检测呼出气中的标志物可快速诊断包括新冠肺炎在内的疾病。呼出气挥发性有机物过去曾用于癌症、糖尿病、慢阻肺等疾病研究。英国医学期刊《柳叶刀》发表的一篇研究显示,新冠感染者呼出的气体中包含醛类、酮类和醇类等物质,被新冠病毒感染后,这些挥发性有机物呈现特定组合。这次获批紧急使用的设备由美国InspectIR公司研发,预计每周约能生产100台,每台每天可评估约160个样品。美药管局设备和放射健康中心主任杰夫舒伦说,这次授权是新冠诊断检测快速创新的又一例证,该机构将持续支持新型新冠检测技术研发,以助力应对当前新冠大流行和未来可能出现的公共卫生紧急事件。不过,美药管局提示说,通过该新冠呼吸分析仪检测呈阳性的样本,还应通过核酸检测进一步确认。而阴性样本则需结合受试者的近期接触史、疾病史以及是否表现出新冠临床症状来判断。检测结果不应作为患者治疗或管理决策、感染控制的唯一依据。可作为核酸检测有益补充“呼气”测新冠已因其独特优势成为多国推广应用的辅助检测手段。去年5月,新加坡国立大学衍生企业Breathonix研发的一种呼气检测设备获得新加坡卫生科学局批准。企业称该设备能在一分钟内发现受检者是否感染新冠病毒,在新加坡开展的初期临床试验结果显示准确率超过90%。此外,以色列、印度尼西亚、荷兰等国家也已推出类似的新冠呼气检测。要茂盛介绍说,疫情暴发初期,其课题组就开发出了无创呼出气筛查系统,相关论文已发表在英国《呼吸研究杂志》上。模型测试显示该系统特异性和灵敏度均达95%以上。最近,该团队研发出了第二代设备,单次检测成本约为2元人民币,检测过程也降为30秒。团队正进一步用第二代产品对新冠患者及健康人群进行测试,优化提升检测效率和灵敏度。目前新冠疫情仍在世界多地持续,快速筛查对于遏制大流行、恢复正常社会生活至关重要。要茂盛认为,呼气检测效率高,可在某些场合有效弥补核酸检测的不足,如对密接者和高风险人群进行大规模快速初步筛查,特别适用于一些急需快速做出判断的场合。“在封闭小区、大楼以及疫情封控路口、急诊分流等,利用此类设备都可实现快速预筛查,降低防控成本,保障正常的交通、生活等。”要茂盛说。InspectIR联合创始人兼公司总裁约翰雷德蒙也表示,疫情中针对工作环境的快速集中检测需求日渐提升。如果在办公室放一台呼气检测设备,员工上班前就像“工作打卡”一样先去测试,3分钟拿到阴性结果再上班,可有效防止聚集性疫情。专家认为,呼气检测还能为核酸检测“查缺补漏”。常规核酸、抗原检测等难以有效避免抗原交叉反应等对检测结果的干扰,容易出现假阳性或假阴性情况。而该设备是针对性检测与新冠感染相关的挥发性有机物,灵敏度高,可在核酸检测阴性的人群中进一步筛查可疑人群,做到“双保险”。此外不具备核酸检测条件的场所也可用技术作为补充。
  • 告别“捅喉咙”“戳鼻孔” 中国科学家实现呼气测新冠
    10月8日,一篇在线发表于国际学术刊物《呼吸研究杂志》的论文表明,北京大学环境学院要茂盛教授团队与北京市朝阳区疾病预防与控制中心等团队合作,集成呼出气采样、气相色谱-离子迁移谱检测和机器学习模型,研发出了新冠感染的无创呼出气挥发性有机物组合指纹筛查系统,该系统已经申请了国家发明专利。 要茂盛向解释了该技术背后的原理:由于能量消耗方式的变化,新冠感染者呼出气体的化学成分会出现不同。实验表明,新冠患者和其他呼吸系统疾病患者呼出气中丙醇水平相比健康受试者显著升高,而新冠患者呼出气中丙酮水平相比其他呼吸系统感染患者和健康受试者显著降低。研究团队结合不同对照组的呼出气样品及其背景环境空气进行分析,识别出了12种关键内源性VOCs(挥发性有机物)标志物。这些标志物就是筛查识别新冠感染者独一无二的“指纹”,使其区别于健康人以及其他呼吸系统疾病的患者。  检测中无需任何检测试剂,被试者使用一次性呼吸袋,只要呼气30秒便可完成样品采集。获得呼出气样本后,系统结合支持向量、梯度加速和随机森林三种机器学习算法对12种关键VOCs标志物进行建模,最快能在5-10分钟内实现新冠患者快速筛查。基于现有数据模型,检测的特异性和灵敏度达到了95%以上。相比核酸检测,这种方法不仅简便省时,还十分经济。  “实验已经证明这种方法有效。检测不但快,而且足够灵敏。”要茂盛介绍说,“从实验到临床,需要的是更多的样本量。”此前参与研究的包括74例新冠患者,30例非新冠呼吸系统感染患者,以及87位医务工作人员和健康受试者。目前,新冠感染的无创呼出气筛查系统正计划扩大样本量,开展进一步优化与测试,以实现推广应用。  要茂盛补充说,新冠核酸检测有时会出现“假阴性”的问题。在疫情防控工作当中,假阴性(即实际感染新冠但检测为阴性)会带来巨大隐患,特别是在核酸假阴性条件下解除隔离的漏检风险。许多场所和场景都需要快速筛查,例如高层会议、海关入境、特殊航班、隔离酒店、收治医院等。在这些地方,无创呼出气筛查系统有望发挥额外辅助作用,填补核酸检测在时间和灵敏度方面的不足,做到“双保险”,降低新冠肺炎传播风险。  据国际媒体报道,2020年以来,新加坡、日本、印度尼西亚等国科研人员都曾开发“呼气测新冠”技术。对此,要茂盛指出,中国研究团队是最早取得此项成果的。  “新冠疫情爆发之初,我们就在开发这种技术。2020年6月,我们就以预印版的形式发表了研究成果,在国际范围内是最早的。”要茂盛强调说。
  • 确保锂电池安全,珀金埃尔默推出定性定量检测锂电池溢出气体分析仪
    从锂电池溢出气体到微反系统,定性定量检测系统的气体组分含量以及系统总的气体体积,在很多时候都是一件很难实现的任务:取样困难,取样时取样量占总体积的比列无从得知,这样即便对所取的气体进行了严格的定量测定,最终也无法和整个系统的气体总量关联起来。这个时候,一套真空进样系统就可以在这些场合大显身手了。在专业的气体分析色谱仪和气质联用仪的基础上,使用全自动控制的真空进样系统,就可以实锂电池溢出气体,微反系统气体的气体含量的测定,而且可以根据真空度的变化计算出系统的总体积以及标准的取样体积,从而可以进一步计算出电池溢出气体的总体积、微反系统生成或消耗的气体的总量,进而可以通过这些测量值判断电池的质量、微反系统的效率。珀金埃尔默推出专业气体分析仪——带有真空进样系统的气相色谱质谱联用仪,是市场上唯一一套能定性定量测定电池溢出气和微反装置中的氢气、氧气、甲烷、一氧化碳、二氧化碳等轻质杂质气体、气体总体积以及气体中其它挥发性组分。珀金埃尔默锂电溢出气体或微反气体分析仪轻质气分析仪包含两个分析通道:通道1 使用氮气作为载气来全量程分析氢气、氦气。通道2 用于分析氯气中的氧气、甲烷、一氧化碳、二氧化碳、碳二、硫化氢和COS等轻质杂质气体。气质联用仪可以定性定量分析气体中其它非永久性气体。真空进样系统:可以和轻质气分析仪联用,和气质联用仪联用,或者和这两者同时使用。#该系统具有以下特点:超越ASTM D1946用气相色谱法对重整气的分析规程标准要求。出厂设置即经确认验证,名符其实的“交钥匙”工程(气相色谱解决方案)。安装完成后立即可运行样品分析分析样品,获得快速且可靠的分析结果。材料超坚固且耐腐蚀,具备放空功能以杜绝操作失误带来的风险。专用色谱柱填料,确保分析的同时氯气被完全反吹放空,延长仪器使用寿命。24H/7D全天候全自动运行,也可以按设定时间表运行。真空进样系统可以用于极其微量气体的定性定量测定,对于1-5ml的系统可以进行连续多次测定。欲了解详情,请扫描二维码,获取资料《锂电溢出气体或微反气体分析仪:微量气体的定性定量检测》。扫描上方二维码即可下载右侧资料➡
  • 分析检测与传感技术专场看点在哪里?
    分场活动 | 分析检测与传感技术专场看点在哪里?随着智能制造和智能装备的快速发展,分析检测与传感器技术备受关注。感知是智能的基础,分析检测是智能的前提,高集成度的微纳传感器、高速高精度检测、大数据分析、故障检测与隔离、智能健康管理等都有着更加紧密的联系。分析检测与传感器技术论坛旨在进一步探讨科技时代背景下的传感、检测和数据分析的理论技术进展及其未来的发展方向。本次论坛邀请了众多在分析仪器行业内的院士及专家们前来参加。他们将给大家分享关于分析检测与传感器技术发展的技术及发展方向。中国仪器仪表学会分析仪器分会秘书长吴爱华主持中国工程院院士周立伟致辞河南省市场监督管理局党组成员王建防副局长致辞中科院大连化学物理研究所研究员关亚风来自中科院大连化学物理研究所的关亚风研究员远程为大家分享《弱光探测器件及在海洋原位传感器中的应用》主题报告,详细介绍到研制出以硅基光电二极管的弱光探测器组件PDA,其光谱响应范围3001150 nm,探测下限为10-5 lx/600 nm,响应线性范围6105,耐受振动、冲击和电磁辐射,具有十年以上使用寿命。用所研制的PDA替代光电倍增管PMT,用LED替代氙灯,研制出单/双通道荧光计模块、96孔板荧光扫描仪、手持黄曲霉毒素检测仪、和液相色谱用黄曲霉毒素荧光检测器。性能指标都与进口名牌产品(用脉冲氙灯和光电倍增管检测)相同,但成本、功耗等远低于进口产品。接着将PDA用于4500米级深海荧光传感器,包括叶绿素a、可溶性水中有色有机物(CDOM)和示踪剂荧光传感器,经多次海试证明,性能指标优于美国Environ Lab、Seabird等产品指标。上述PDA组件、单通道荧光检测模块和液相色谱用黄曲霉毒素荧光检测器都已经小批量生产。武汉大学教授黄卫华来自武汉大学的黄卫华教授为大家分享《柔性可拉伸电化学生物传感》主题报告,介绍到为了实现柔软、形变细胞/组织的精准测量,发展柔性可拉伸电化学传感器,并通过多种策略提升检测灵敏度、选择性以及抗污染等性能,在此基础上了实现了多种类型细胞、组织以及器官的实时监测。四川大学机械工程学院教授段忆翔来自四川大学机械工程学院的段忆翔教授为大家分享呼出气用于癌症早筛的高精度飞行时间质谱技术与仪器的研究》主题报告,介绍到呼出气中的挥发性有机化合物与疾病密切相关,并在重大疾病的早期诊断中具有巨大潜力。实验室通过对癌症患者呼出气中的痕量组分进行精确分析,致力于开发基于呼出气的非侵入式诊断模型及飞行时间质谱分析仪器。日本理研计器商贸(上海)有限公司董事长 石原纯久&副总经理 尹文礼来自日本理研计器商贸(上海)有限公司石原纯久董事长&尹文礼副总经理为大家分享《双量程气体传感器的应用介绍》主题报告,重点介绍了由日本理研计器开发的世界首款可同时检测气体ppm以及lel%浓度的双量程传感器。有研工程技术研究院有限公司智能传感功能材料国家重点实验室,传感所所长明安杰来自有研工程技术研究院有限公司智能传感功能材料国家重点实验室,传感所的明安杰所长为大家分享《集成纳米功能材料的红外气体传感器》主题报告,提到围绕高性能0000000【】热释电红外探测器及NDIR氮氧化物气敏传感开展研究,开发了晶圆级图形化的碳基红外增强吸收纳米材料,在中红外波段吸收率达到92%以上。开发了集成降噪结构、电流型读出电路的热释电探测器,探测率优于2.5×108。开发的NDIR氮氧化物气体传感器实现了0~50ppm量程稳定输出。应用于工业、汽车尾气检测等领域具有广阔市场前景。IO-Link中国技术工作组成员,穆尔电子技术经理 朱奕来自IO-Link中国技术工作组成员,穆尔电子技术经理朱奕为大家分享《IO-Link设备集成与功能扩展》主题报告。让大家深刻认识IO-LINK,从IO-LINK可降低成本、减少调试时间、实现创新的机器概念、提升机械生产率等重要特点展开详细介绍,并分享IO-LINK涉笔在工业4.0中的样子。相信未来,在大家的努力之下,我们的分析仪器行业会蓬勃发展。通过本次活动会为大家提供更多的机会,促进政、产、学、研、用的有效结合,为推动分析仪器行业的发展做贡献!
  • 征求意见 | 软包锂离子电池热失控析出气体成分检测方法征求意见1稿
    各相关单位:根据工业和信息化部下达的行业标准编制计划,软包锂离子电池热失控析出气体成分检测方法项目组起草组完成了电子行业标准《软包锂离子电池热失控析出气体成分检测方法》(2024-0323T-SJ)征求意见一稿的编制工作。为保证项目的进度和质量,现向各相关单位征求意见,请于2024年9月30日前将意见反馈至liurr@cesi.cn。工作组秘书处将择期组织召开标准征求意见稿讨论会,具体时间另行通知。根据工业和信息化部办公厅于2024年3月15日印发的《工业和信息化部办公厅关于印发2024年第一批行业标准制修订计划的通知》(公信厅科发【2024】18号),由中国电子技术标准化研究院(赛西,CESI)牵头并组织起草的行业标准《软包锂离子电池热失控析出气体成分检测方法》(计划号:2024-0323T-SJ)正式下达。工作组成员单位可直接联系秘书处报名并索要征求意见稿,非工作组成员单位如希望参与该标准制定并反馈意见,请先联系工作组秘书处加入工作组。工信部锂离子电池及类似产品标准工作组于2008年由部科技司批复成立,负责锂离子电池及类似产品的标准化工作。工作组目前由来自锂离子电池产、学、研、用等领域的350余家成员单位组成,工作组归口管理涵盖消费型、储能型、动力型锂离子电池及类似产品的国家标准和行业标准。工信部锂离子电池及类似产品标准工作组秘书处:刘 冉 冉电话:010-64102192邮箱:liurr@cesi.cn 锂/钠电池、电子产品、电动自行车相关法规政策、国标制定、强制认证、试验检测请联系:刘 云 柱电话:18010157845(微信同)邮箱:liuyz@cesi.cn
  • “吹口气测新冠”成为可能!中国科学家研发出快速筛查技术
    不用“捅喉咙”“戳鼻孔”,也不用等待24小时,只需在小袋子里呼气30秒,就可以在5—10分钟内得到新冠检测结果——凭借中国科学家的努力,这样的技术已经不是梦想。近日在线发表于国际学术刊物《呼吸研究杂志》的一篇论文表明,北京大学环境学院要茂盛教授团队与北京市朝阳区疾病预防与控制中心等团队合作,集成呼出气采样、气相色谱-离子迁移谱检测和机器学习模型,研发出了新冠感染的无创呼出气挥发性有机物组合指纹筛查系统,该系统已经申请了国家发明专利。要茂盛向科技日报记者解释了该技术背后的原理:由于能量消耗方式的变化,新冠感染者呼出气体的化学成分会出现不同。实验表明,新冠患者和其他呼吸系统疾病患者呼出气中丙醇水平相比健康受试者显著升高,而新冠患者呼出气中丙酮水平相比其他呼吸系统感染患者和健康受试者显著降低。研究团队结合不同对照组的呼出气样品及其背景环境空气进行分析,识别出了12种关键内源性VOCs(挥发性有机物)标志物。这些标志物就是筛查识别新冠感染者独一无二的“指纹”,使其区别于健康人以及其他呼吸系统疾病的患者。检测中无需任何检测试剂,被试者使用一次性呼吸袋,只要呼气30秒便可完成样品采集。获得呼出气样本后,系统结合支持向量、梯度加速和随机森林三种机器学习算法对12种关键VOCs标志物进行建模,最快能在5—10分钟内实现新冠患者快速筛查。基于现有数据模型,检测的特异性和灵敏度达到了95%以上。相比核酸检测,这种方法不仅简便省时,还十分经济。“实验已经证明这种方法有效。检测不但快,而且足够灵敏。”要茂盛介绍说,“从实验到临床,需要的是更多的样本量。”此前参与研究的包括74例新冠患者,30例非新冠呼吸系统感染患者,以及87位医务工作人员和健康受试者。目前,新冠感染的无创呼出气筛查系统正计划扩大样本量,开展进一步优化与测试,以实现推广应用。要茂盛补充说,新冠核酸检测有时会出现“假阴性”的问题。在疫情防控工作当中,假阴性(即实际感染新冠但检测为阴性)会带来巨大隐患,特别是在核酸假阴性条件下解除隔离的漏检风险。许多场所和场景都需要快速筛查,例如高层会议、海关入境、特殊航班、隔离酒店、收治医院等。在这些地方,无创呼出气筛查系统有望发挥额外辅助作用,填补核酸检测在时间和灵敏度方面的不足,做到“双保险”,降低新冠肺炎传播风险。据国际媒体报道,2020年以来,新加坡、日本、印度尼西亚等国科研人员都曾开发“呼气测新冠”技术。对此,要茂盛指出,中国研究团队是最早取得此项成果的。“新冠疫情暴发之初,我们就在开发这种技术。2020年6月,我们就以预印版的形式发表了研究成果,在国际范围内是最早的。”要茂盛强调说。
  • 岛津推出酒后驾车检测新解决方案
    据2008年世界卫生组织的事故调查显示,酒后驾驶已经被列为车祸致死的主要原因,大约50%~60%的交通事故与酒后驾驶有关。在中国,每年由于酒后驾车引发的交通事故达数万起;而造成死亡的事故中50%以上都与酒后驾车有关,酒后驾车的危害触目惊心,已经成为交通事故的第一大“杀手”。 2011年5月1日,《刑法修正案(八)》修改后的《道路交通安全法》正式实施,醉酒驾车将被追究刑事责任。 饮酒以后,酒精进入胃肠壁,被迅速吸收溶解于血液中,5分钟后即可在血液中检出酒精。酒精对人体有麻醉作用,使中枢神经活动逐渐变得迟钝,并延及背髓神经,造成头脑不清。 目前,欧美国家多使用红外线型呼气检测仪进行酒后驾车筛查。上海市于1998年开始使用呼气式酒精检测仪,上海市交警总队查处的酒后驾车案件大为增加。与血液酒精检测相比,呼气酒精检测有易被受检人接受、操作简单等特点,但也有很多因素影响检测结果的可靠性,结果不是很准确。 相比较呼气检测而言,顶空-气相色谱法作为酒后驾车的分析方法更为准确,是醉酒驾车判决依据。目前,我国交警部门在执法过程中,如果交警发现司机有酒后驾车的嫌疑,首先会呼气式酒精测试仪进行检测;当呼气检测结果达到或者超过醉酒驾驶标准时,就近送司机去医院进行抽血取样,血样再送至司法鉴定中心或相关部门实验室使用顶空-气相色谱法进行检测。 其实,顶空-气相色谱法的最早应用就是1964报道的测定血液中的乙醇浓度,经过多次改进后,这一方法已为世界各国所普遍采用,用来测试酒后驾车司机血液中的乙醇浓度。该方法分离效率高,检测灵敏度高;另外该方法还具有分析速度快(一般在3~4min就可以完成一个样品分析)、准确度较高、精密度高等显著优点。 鉴于顶空-气相色谱法具有以上特点,2009年,公安部发布了GA/T 842-2009 《血样酒精含量的检验方法》检测标准。该方法以叔丁醇为内标,顶空-气相色谱法分析血液中的酒精含量。 针对国内形势,岛津公司分析中心参照公安部GA/T842-2009标准,推出了以叔丁醇为内标,顶空-气相色谱法分析血液中的酒精含量的解决方案。该方法在5~160 mg/100mL浓度范围内线性良好,回收率在90%~110%之间,方法的检出限为0.38 mg/100mL。该方法能够完全满足20mg/100mL的酒后驾车限值和80mg/100mL的醉酒驾车限值检测的要求。 欲了解详情,请您点击下载岛津最新解决方案: 《顶空-气相色谱法测定血液中的酒精含量》 参考资料【相关法规及政策】 1. 酒驾判断标准1.1 瑞典1934年瑞典就允许警方必要的时候,可对嫌疑司机进行强制血液采样。瑞典于1941年规定:血液中酒精浓度(BAC)超过0.08%,视为轻罪;超过0.15%则监禁1~2个月。1957年降为0.05%,1990年降至0.02%,而0.10%为重度醉酒界值。1.2 英国英国1967年《道路交通法》,规定BAC界值为0.08%,同年警方配备呼醇筛检装置,1983年率先在欧洲使用筛检性随机呼气检测,规定呼出气体酒精浓度为35mg/100mL可定罪。根据规定:进行两次呼检,取其中较低的值来处理。1.3 澳大利亚澳大利亚全国实行BAC的界值为0.05%,20世纪80年代开始引用随机呼气乙醇检测,各地区对驾驶员的BAC界值有特殊规定,如首都直辖区和新南威尔士规定:持有学习驾照、临时驾照、25岁以下新手及驾龄少于3年、驾驶公共运输交通工具及运输车辆总重超过15吨者,BAC界值为0.02%;西部澳洲规定:实习期驾驶员的BAC界值为0.02%。1.4 美国美国1939年,印第安那州首次通过立法允许使用化学方法检测BAC,规定界值为0.08%,随即缅因州效仿。 1953年纽约第一个通过“暗示同意法”,即驾驶员获取驾照也就是暗示同意必要时可以提供检材进行乙醇检测。1969年美国法律规定BAC界值为0.10%。现在有许多州降低了BAC界值,到2004年3月已有45个州及哥伦比亚及波多黎各特区实行0.08%的BAC界值。1.5 中国国家质量监督检验检疫局于2004年5月31日颁布了GB 19522-2004《车辆驾驶人血液、呼气酒精含量阈值与检验》国家标准,该标准规定:车辆驾驶人员血液中的酒精含量大于或等于20mg/100mL、小于80mg/100mL为饮酒驾车;血液中的酒精含量大于或者等于80mg/100mL 为醉酒驾车。 关于岛津 岛津国际贸易(上海)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津国际贸易(上海)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以“为了人类和地球的健康”为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 四方光电标准呼吸模拟器,多重质控满足肺功能检查仪临床检测/计量校准要求
    肺功能检查仪进行检测校准的必要性    慢性呼吸系统疾病排在心脑血管病、癌症之后,成为我国居民慢性病致死的第三位死因。肺功能检查作为慢性气道等呼吸疾病诊断的金标准之一,是慢性阻塞性肺疾病防治和检查的关键。肺功能检查仪是检测肺脏吸入、呼出气体容量和速率,从而了解呼吸生理和呼吸功能是否正常的一种设备,主要由肺量计、气体分析器等部件组成。肺功能检查仪对于早期检出肺及气道的病变,诊断病变部位和评估疾病的严重程度具有重要的临床意义。    在钟南山院士、王辰院士等国内权威专家的推动下,“要像测量血压一样,测量肺功能”近年来得到社会各界的广泛关注和认可。2019年推出的《健康中国行动(2019—2030年)》明确提出将肺功能检查纳入40岁及以上人群常规体检内容。随着2020年国家基层呼吸系统疾病早期筛查干预能力提升项目在各地的实施落地,以及社区居民对呼吸系统慢性疾病早防早治意识的增强,不同原理类型的肺功能检查仪在全国各地基层医疗卫生机构得到了广泛配置及使用。    但肺功能检查仪的检测结果容易受多方面因素影响。比如不同肺功能检查仪的生产厂家采用的检测原理和设备结构不一样,会导致性能有较大差异,加上仪器设备在使用过程中因磨损或受环境因素而影响其正常使用,将出现检测结果的不准确。所以临床上常见发生同一个患者在不同医院所进行的肺功能测试结果有较大的偏差,给诊断造成很大影响。因此,对肺功能检查仪进行定期检测校准等质量控制、确保其测量的准确性极为重要。    肺功能检查仪检测校准的标准要求    校准是肺功能检查设备质控的关键措施,国际上美国胸腔协会(ATS)、欧洲呼吸协会(ERS) 、英国标准协会(BSI)分别发布的肺功能检查技术指南中,均提出了肺功能检查设备的技术性能标准和质控规范,我国也于2008年颁布了JJF 1213-2008 《肺功能检查仪校准规范》,解决肺功能检查仪的质量控制和量值溯源问题。    对肺功能检查仪肺量计的检测通常采用标准呼吸模拟器进行校准,要求必须能模拟人体器官肺的基本运动模式,标准规范主要参考美国胸腔协会(ATS)肺功能检测标准的内容。该标准对肺功能检查仪性能指标、测定方法、校准装置、BTPS修正、对FVC及PEF等指标检测的操作方法作了具体的要求和说明,并提供了24条标准波形检测肺功能检查仪的FVC指标,26条流量标准波形检测PEF指标。    (表:校准用设备性能表)    肺功能检查仪检测校准质控设备的选择    肺功能检查仪校准用标准呼吸模拟器必须能够精确模拟人体器官肺的运动模式,特别是模拟输出ATS推荐的标准波形,因此普通气体流量计计量标准和肺量计定标筒,不适合用于肺功能检查仪的量值传递。    四方光电呼吸模拟器是一款肺功能检查仪校准专用设备,由气缸、交流伺服电机、伺服电机控制器、专用控制卡和计算机组成。通过计算机控制软件驱动控制卡进而驱动伺服电机转动,推动活塞作往复运动,压出或者吸入气缸中的空气,从而模拟人的平静呼吸、深吸气、用力快速吹气等呼吸动作,为检验肺功能检查仪 VC、FVC、MVV 等测试指标提供了标准方法。    四方光电呼吸模拟器不但可精准输出ATS的24条标准FVC及26条PEF波形曲线,还可用于智能检测分析被校正肺功能检查仪的准确度和频率速度响应情况,有助于医生对肺功能检查仪所测定的病人肺功能状况的数据指标作准确判断。产品符合多重质控标准,满足临床检测/计量校准要求,可为《呼吸学科医疗服务能力指南(2018年版)》、《健康中国行动(2019—2030年)》的实施提供装备支撑。    ■ 设备标准质控    符合美国胸科学会发布的“肺活量测定的标准化”(2005)    符合ISO 23747:2015(ATS)    符合EN ISO 26782:2009    ■ 模拟波形质控    ATS标准24个容量-时间波形    ATS标准26个流量-时间波形    13项波形符合EN ISO 26782:2009附录C要求的标准波形    10项波形符合EN ISO 23747:2009附录C外形A要求的标准波形    用户还可自定义波形    ■ 使用过程质控    为所有类型的呼气曲线提供完整的BTPS模拟    根据ATS全面支持人体差异测试    全自动测试程序可由用户定义,如自定义容量、自定义流速、自定义运行次数    ■ 结果判读质控    所产生波形的参数均可完全溯源至国家标准    根据ATS评估测试结果并进行错误分析    四方光电标准呼吸模拟器应用领域及技术参数     计量院肺功能检查仪年检手段     科研单位呼吸模拟测试研究     肺功能检查仪企业溯源设备    关于四方光电    四方光电股份有限公司(以下简称“四方光电”)是一家从事智能气体传感器和高端气体分析仪器的科创板上市企业(股票代码688665)。公司2003年成立于武汉“光谷”,形成了包括光学(红外、紫外、光散射、激光拉曼)、超声波、MEMS金属氧化物半导体 (MOX)、电化学、陶瓷厚膜工艺高温固体电解质等原理的气体传感技术平台。这个平台为四方光电开发基于呼气分析的医疗器械应用提供和强有力的技术保障。    四方光电建设有省级企业技术中心和湖北省气体分析仪器仪表工程技术研究中心。同时公司积极融入国家技术创新体系,先后获得国家重大科学仪器设备开发专项、工信部物联网发展专项、工信部强基工程传感器“一条龙”、科技部科技助力经济2020重点专项、湖北省技术创新重大项目等多个项目的支持,被国内外行业权威机构列为中国气体传感器主要厂商和代表性企业,并荣获中国物联网产业联盟“最具影响力物联网传感企业奖”。     在健康医疗领域,四方光电超声波肺功能检查仪是一款用于肺通气功能和肺活量检查的高新技术产品,是检查哮喘、COPD、其它呼吸病患者以及评估吸烟者、慢性咳嗽和多痰者的肺功能的有力测定仪器。同时公司开发的肺功能检查仪定标筒、制氧机用氧气传感器、呼吸机用流量及气体成分传感器、监护仪用红外EtCO2传感器在国内外医疗机构及设备中得到广泛应用。未来,四方光电还将大力开拓基于呼吸监测的智能医疗健康板块,加大在呼吸机、麻醉机、监护仪等更广阔医疗器械开拓力度,推动提升肺功能检测仪在医疗机构、社区及家庭的配置率。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制