当前位置: 仪器信息网 > 行业主题 > >

中间体检测

仪器信息网中间体检测专题为您提供2024年最新中间体检测价格报价、厂家品牌的相关信息, 包括中间体检测参数、型号等,不管是国产,还是进口品牌的中间体检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合中间体检测相关的耗材配件、试剂标物,还有中间体检测相关的最新资讯、资料,以及中间体检测相关的解决方案。

中间体检测相关的资讯

  • 注射剂中间体质量标准制定策略
    药物成品之前的都是中间体。根据产品特点及工艺情况,综合确定关键中间体,关键中间体需要制定质量标准,并检验控制。对于注射剂而言,关键中间体一般是指在配液罐中完成调配的药液。对于注射剂产品,一般会将性状、含量、pH值列为中间体检查项,参考成品的质量标准,将含量和pH值的限度收一收。但光是这样做就有些粗糙了,我们应该根据剂型的特点,产品的特点,有目的地设定中间体检查项,更好地做好产品的质量控制。一、性状对于无色溶液,一般简单地规定“无色澄明液体”即可。但对于有色溶液,特别是灭菌后颜色会加深的产品,建议中间体增加溶液颜色检查项。这样一旦成品颜色比正常情况要深,便于分析是配液工序还是灭菌工序发生的异常。有些冻干产品,随着药液储存时间的延长,溶液颜色也逐渐加深,而一旦冻干开始,颜色即不再变化。这类产品更应建立溶液颜色检查项,并以此检查项确定配液灌装工序的储存时限。基于中间体检查需要简单、快速的特点,一般对比色号即可,不建议使用溶液颜色测定仪。二、含量可以认为,制剂成品的含量控制限度即是药物可以在人体内起效的限度,低于这个限度,药效降低。而制定中间体含量标准的目的就是要保证含量在药品有效期内符合其质量标准。对于非常稳定的品种而言,假如成品的含量限度是90.0%-110.0%,那么中间体含量限度定在95.0%-105.0%即可;假如成品的含量限度是95.0%-105.0%,中间体含量限度可定在97.0%-103.0%。由于含量在效期内基本不会发生变化,中控范围只需能够包容检测方法产生的系统误差。对于储存期间含量逐渐下降的品种,中控含量限度除了要包容方法的误差外,还要包容含量降低的幅度。假如成品的含量限度是90.0%-110.0%,含量在效期内预期降低6%,检测误差不会超过2%,则中控限度应定为98.0%-102.0%。对于冻干产品,由于其标示量和水针不同,影响产品含量的还包括装量。灌装机总是有精度误差的,因此在制定中控含量标准时,还应考虑这一因素。下面用一张图表示某冻干产品制定中控含量限度的思路。 对于其他特殊情况,如采用半透性包材包装的注射剂,也应根据其特点制定做相应的调整。此外,由于尚未灌装的药液不存在标示量这一概念,注射剂的中控含量采用浓度表示(如4.8-5.2mg/ml)较为规范。为了方便理解,企业可以在内部文件中注明浓度对应的百分比。如4.8-5.2mg/ml(96.0-104.0%)。三、pH值大多数的注射剂都对pH值非常敏感,一般不能将成品的pH值标准简单收紧作为中控pH值范围。如硫酸阿托品注射液,中国药典规定pH3.5-5.5,但pH低于4时水解速度明显下降;又如氨茶碱注射液,USP规定pH8.0-9.0,但事实上pH低于8.5原料根本无法溶解。因此,一般以药物最适的pH值范围作为中控范围,同时注意不要触及成品pH值的上下限。四、渗透压摩尔浓度因为渗透压的检测方法非常简单快捷,所以建议成品有渗透压检测项的也在中间体制定,有时投料出现偏差能及时发现。所有的输液产品都会规定渗透压检查项,水针品种用法中包含有静脉推注给药方式的要进行渗透压检测。需要注意的是,有的产品,虽然给药方式是静脉推注,但并不等渗。如地西泮注射液和托拉塞米注射液,限于API溶解性或稳定性的原因,处方中加入了较大量的有机溶剂,形成高渗溶液。这类产品建议也增加渗透压检查项,对产品质量形成更有效的控制。五、有关物质一般终端灭菌的注射剂不需在中间体进行有关物质检测。对于极不稳定的某些产品,如易水解的冻干制剂,可在中控中加有关物质项。并以此验证配液和灌装的试产。六、抗氧剂按照要求,制剂产品放行标准应包括所含的抗氧剂的含量测试,以保证有足够的抗氧剂保留在制剂中,能在整个货架期和所拟的使用期间一直对制剂起到保护作用。 依据上述理念,亚硫酸盐这类属于还原剂的抗氧剂的含量还是非常有必要定在中控标准中的,因为配液及药液在配液罐放置过程中,亚硫酸盐即在被消耗。而依地酸二钠的含量不会发生变化,因此无需进行控制。EMA在《药品注册上市许可申请材料中对辅料的要求》(Guideline on Excipients in the dossier for application for marketing authorisation of a medicinal product)中也指出抗氧剂应提供药品生产过程中的控制方法,但不适用于增效剂,如依地酸二钠。七、微生物负载对于注射剂的微生物负载,国内的GMP有很明确的规定,即:对于除菌过滤前非最终灭菌产品微生物的限度标准一般为:10CFU/100ml对于最终灭菌的无菌产品微生物的限度标准一般为:100CFU/100ml但对于微生物负载的取样位置,各企业却有不同的做法。有的企业会在配液罐中取,有的企业会在药液过0.45μm滤芯后取。后一种做法的依据是:GMP中规定最后一步除菌过滤前,料液的微生物含量应不大于 10CFU/100ml。但其实这样做是有些违背GMP理念的。在欧盟《药品、活性物质、辅料和内包材灭菌指南》中,有如下描述:In most situations, a limit of NMT 10 CFU/100 ml (TAMC) would be acceptable for bioburden testing. If a pre-filter is added as a precaution only and not because the unfiltered bulk solution has a higher bioburden, this limit is applicable also before the pre-filter and is strongly recommended from a GMP point of view. A bioburden limit of higher than 10CFU/100 ml before pre-filtration may be acceptable if this is due to starting material known to have inherent microbial contamination. In such cases, it should be demonstrated that the first filter is capable of achieving a bioburden of NMT 10 CFU/100 ml prior to the last filtration. Bioburden should be tested in a bulk sample of 100 ml in order to ensure the sensitivity of the method. Other testing regimes to control bioburden at the defined level should be justified.翻译如下:大多数情况下不超过10 CFU/100 ml(TAMC)的限度对于生物负载测试是可接受的。如果仅作为预防措施添加预过滤器而不是因为未过滤溶液具有更高的生物负载,则此限度也适用于预过滤器,并且从GMP的角度强烈推荐。如果由于已知具有固有微生物污染的起始物料,则预过滤前的生物负载限度高10CFU/ 100ml是可接受的。在这种情况下,应该证明第一个过滤器能够在最后一次过滤之前达到不超过10CFU/100ml的生物负载。生物负载应在100ml的样品中进行测试,以确保该方法的灵敏度。其他在特定浓度控制生物负载的测试方案应该是合理的。 显然,欧盟是建议在配液罐中取样进行微生物负载检测的。GMP的一个核心理念即是“可控”。要知道即使药液微生物负载很大了,经过预过滤滤芯后也会有几个数量级的下降。数据虽然好看了,但焉知预过滤前未知的微生物负载会不会导致细菌内毒素的失控?有的营养性药物,浓度大,确实适合微生物生长,但如果确知微生物的种类,在可控的前提下进行预过滤,是可以接受的。八、细菌内毒素建议在配液罐中取药液进行检测,与中控含量检测同步进行。九、可见异物、不溶性微粒这两个检查项可以取药液过滤后的样品,取滤芯后或灌装初始样品,各企业可以按照自己的习惯进行管理。不溶性微粒的中控标准制定必然是1ml药液含有多少微粒,而制剂成品的标准是每支样品中含有多少微粒。应注意换算关系,确保中控标准严于成品标准。
  • 【瑞士步琦】近红外快速检测药物原料与中间体
    近红外快速检测药物原料与中间体近红外应用”1简介维生素 C 也被称为抗坏血酸,是一种对人体至关重要的营养物质,不仅支持免疫系统的正常运作,还帮助伤口愈合并促进铁的吸收。虽然许多水果和蔬菜,如柑橘类果实、草莓和西兰花,都是维生素 C 的天然来源,但目前已经开发出了将这种重要维生素在实验室中大规模生产的方法。本文将介绍两种主要的维生素 C 工业制备方法——传统的雷施勒法和改良的双阶段发酵法。2雷施勒法:经典方法的现代应用1930 年代,瑞士化学家 Tadeus Reichstein 开发了一种结合有机化学合成和微生物工程的方法来生产维生素 C。这个过程始于一种称为山梨醇的糖醇,通过以下步骤转化为维生素 C:首先在微生物的帮助下,山梨醇被转化为山梨酸,然后山梨酸经过一系列化学反应,最终转化为2-酮-L-古龙酸(2-KLG),最后通过催化加氢,2-KLG 被还原成为抗坏血酸。这种方法不仅高效,而且能够以相对低成本在全球范围内生产和供应维生素 C,满足各种商业和健康需求。3双阶段发酵法:生物技术的力量随着科技进步,双阶段发酵法应运而生,这是一种更环保且依赖生物过程的生产方法。这种技术利用两种不同的微生物,将山梨醇转化为维生素 C:山梨醇通过特定的细菌转化为山梨酸,再利用另一种微生物通过发酵过程将山梨酸转化为 2-KLG,最后 2-KLG 经由化学或生物催化剂还原成维生素 C。这种方法强调了生物转化的效率和环保性,减少了对传统化学试剂的依赖,同时保持了高产率和产品质量。无论哪种制备方式,山梨醇和古龙酸都是重要的原料及中间产物,因此对其含量的准确测定关系到最终产品的收率和质量。原料山梨醇因体系简单,仅需测定其水分就能推断出山梨醇的含量,而中间体古龙酸就需要对水分和有效成分含量同步检测。常规测定中间产物中古龙酸含量的方法有高效液相色谱、紫外可见分光、比色法以及酶联免疫吸附测定等方法,但以上常规方法均需要对样品进行处理且需消耗一定试剂或耗材,同时伴随长短不一的等待时间。近红外光谱法能够对同一种样品的多个指标同时进行快速测定,既不需要复杂的前处理步骤,又不用漫长的等待流程。下面就介绍使用步琦近红外光谱仪测定山梨醇和古龙酸的案例。4实验内容分别准备山梨醇样品 60 个和古龙酸样品 59 个,已知山梨醇样品水分和古龙酸样品中水分和古龙酸含量,并用 BUCHI ProxiMate 测量上述样品的近红外光谱,随后使用软件 AutoCal 自动建模,所得模型如下:▲ 图1 山梨醇水分模型▲ 图2 古龙酸水分模型▲ 图3 古龙酸含量模型上述模型评价指标如下表:_山梨醇古龙酸属性水分水分古龙酸范围25.6-27.71.66-6.3685.65-94.17SEC0.3600.0900.441SECV0.4480.1170.5874结论▲ BUCHI ProxiMate 近红外光谱仪上述案例中使用的是BUCHI 的 ProxiMate 近红外光谱仪,具有 IP69 的高防护等级及 FDA 认证的外壳设计,能够胜任各种复杂条件下的测量工作,固定阵列光栅也无惧振动环境的干扰,上下两种照射方式及各式检测附件能够满足多种样品状态的测量需求。如果您对 BUCHI 近红外产品及应用或是其它仪器感兴趣,欢迎通过下面联系方式咨询。
  • 拉曼光谱新应用:原位光谱观测多种关键反应中间体
    在 BBC 纪录片《蓝色星球》第二季中,担任解说员的“世界自然纪录片之父”大卫爱登堡(David Attenborough)为了探究二氧化碳对海洋的危害,拜访了一位科学家。▲图 | 大卫爱登堡(左一)和一位海洋科学家(来源:见水印)后者把稀释的酸倒向水中,结果贝壳开始“消失”。贝壳由碳酸钙构成,而酸会溶解它们。构成珊瑚礁的材质,和贝壳是一样的。科学家认为,在 21 世纪之前,珊瑚礁有可能会消失。背后的“罪魁祸首”便是二氧化碳,它们溶解在海水中会变成碳酸。空气中的二氧化碳越多,海水酸性就越强,“死去”的珊瑚礁就越多。有证据显示,燃烧矿物燃料是造成二氧化碳浓度上升的主要原因。因此,全球许多国家都在致力于碳中和。实现“双碳”目标(2030 年前碳达峰、2060 年前碳中和)是中国为应对全球气候变化做出的重大战略决策和庄严承诺,也是构建人类命运共同体和促进人与自然和谐共生的必然选择。其中的战略路径选择之一,是实现碳化工与碳利用产业结构重构,比如利用风能、水能、太阳能等可再生能源,将CO2电催化成为高附加值的化工产品和化学燃料。目前,在用于CO2还原反应的各类催化剂中,铜(Cu)基材料是最具潜力的催化剂,因为其能直接将CO2电催化还原为多种高碳氧和碳氢化合物。此外,人们还可通过调整铜催化剂的形貌、晶面、孔径、颗粒间距离、次表面原子和晶界等参数,来实现特定的催化反应活性和选择性。因此,在实际的电化学反应条件下,原位研究铜表面上CO2的电催化反应、及其反应中间体是非常重要的,这有助于我们更深入地了解 CO2电催化反应机理,并借此设计出更合理、高效的催化剂。尽管目前许多原位表征测试技术,比如表面增强拉曼光谱(SERS,Surface-Enhanced Raman Scattering)、表面增强红外吸收光谱(SEIRAS,Surface-enhanced infrared absorption spectroscopy)、衰减全反射傅里叶变换红外光谱(ATR-FTIR,Attenuated total reflectance-Fourier transform infrared)、X射线吸收光谱、和X射线光电子光谱等,在研究CO2电催化还原反应中取得了快速的发展。但是,如何全面识别其众多表面反应中间体、理解其表面吸附物种之间的相互作用,仍然是一个巨大的挑战。基于此,南京工业大学材料化学工程国家重点实验室邵锋团队及其合作者针对上述挑战,结合运用电化学-壳层隔绝纳米粒子增强拉曼光谱 (EC-SHINERS,electrochemical shell-isolated nanoparticle-enhanced Raman spectroscopy)技术、以及从头算分子动力学(ab initio molecular dynamics,AIMD)模拟,对铜表面的一氧化碳电催化反应过程进行系统而深入的研究,首次用全光谱(40-4000cm-1)观测了多种关键反应中间体,指认了中间体的特征拉曼峰,提出了表面吸附物种相互作用机理,并通过同位素标记实验进一步获得证实。▲图 | 大卫爱登堡(左一)和一位海洋科学家(来源:见水印)概括来说,本研究主要关注CO2电催化还原反应中间体和机理的基础研究,以期指导新型高效铜催化剂的设计与制备。▲图 | EC-SHINERS 技术示意图、(FDTD,Finite-difference Time-domain)以及 AIMD 模拟示意图(来源:PNAS)近日,相关论文以《原位光谱电化学探测铜单晶表面一氧化碳氧化还原过程》(In situ spectroelectrochemical probing of CO redox landscape on copper single-crystal surfaces)为题,发表在 PNAS 上[1]。邵锋教授(南京工业大学)担任第一兼通讯作者,李景国博士(瑞典乌普萨拉大学)和兰晶岗博士(瑞士洛桑联邦理工大学)担任共同通讯作者。▲图 | 相关论文(来源:PNAS)邵锋表示:“(投稿期间)印象最深的一个插曲,是在我们的返回第一轮审稿意见大概两个月后,编辑给我发来邮件说其中的一个审稿人失去联系了,准备再重新找一个新的审稿人开启新一轮的审稿。”而当时正是俄乌冲突发生最激烈的时候,并且欧美也开始了各类制裁和限制俄国和俄裔人士的风潮。课题组担心其中之一的审稿人可能是俄国或俄裔科学家,因此,或多或少会受到了一点影响,也耽误了审稿的进程。“因此我们的论文从投稿到接收,确实经历耗时很久。虽然虚惊一场,好在最后还是得到了编辑的肯定,最终论文被接收了!”邵锋说。同时审稿人表示,论文的光谱实验部分非常令人兴奋,包含大量有价值的信息,对研究反应机理非常有帮助。此外,理论计算部分质量也很高,预测了各种可能中间体的特征振动图谱,并能与实验结果很好地吻合。其还称,这是一项非常扎实的工作,进行了大量的控制实验和对比实验,同时结合了 AIMD 计算,故论文的论证路线和数据分析令人信服。此外,审稿人也提出了非常重要的建议:即对于特征拉曼峰的归属指认,如何排除其他接近的拉曼峰的重叠与干扰?例如,课题组首次观测并指认了 1220 和 1370cm-1 处的拉曼峰,为 CO-CO 耦合后迅速夺取表面水分子的质子而形成的*HOCCOH 中间体的特征峰。然而,这些峰的位置与反应过程中共存的 *HCO3–/*COOH /*CO32–/*CO2– 等表面中间体的拉曼峰十分接近。因此,该团队需要进行严格的对比实验,来排除可能的重叠与干扰。通过控制实验和理论计算相结合,课题组对这些中间体的特征拉曼峰进行了明确归属,并由此提出了相应的电催化反应机理和路径。研究中的第一步是对原位检测技术的选择。鉴于其具有明确的表面状态以及光电性质,铜单晶表面被用作电催化反应基底。常用的 SERS 技术很难应用于单晶界面研究,而基于红外的光谱技术又难以提供低波数范围(至-0.8 V);2. 不同反应氛围(CO 与 Ar 饱和溶液);3. 不同反应阳离子(CsOH、KOH 与 LiOH);4. 不同反应晶面(Cu(100)、(111)与(110)晶面5. 不同反应 pH 值(CsOH、CsHCO3 与 CsCl 溶液);6. 不同同位素标记(13CO 与 D2O 溶液);7. 不同中间体的稳定性(*OCCO、 *HOCCO, 和*HOCCOH物种)。8. 不同特征峰的重叠(*HCO3–/*COOH /*CO32–/*CO2– )等。值得注意的是,课题组的 AIMD 的计算还表明,溶剂水分子不太可能与铜表面吸附的一氧化碳形成氢键,这意味着 *CO 在较低的过电位下,难以直接从溶剂水分子里得到质子进而形成 *COH/*CHO。与此同时,之前文献报道的 *OCCO 和 *HOCCO 作为 C-C 耦合的关键中间体,它们在铜表面依旧拥有较高的反应活性而发生进一步的反应,最终形成 *HOCCOH 中间体。其中,吸附于铜表面的水分子可以作为质子源参与反应,同时还能留下 Cu-OHad 这一表面吸附物种。下一步,该团队计划开展基于新材料的 CO2捕获富集、催化转化与产物分离耦合的过程研究,以提高传统反应过程的资源和能源利用率为目标,助力“双碳”目标的高质量实现。参考资料:1.Shao, F., Wong, J. K., Low, Q. H., Iannuzzi, M., Li, J., & Lan, J. (2022). In situ spectroelectrochemical probing of CO redox landscape on copper single-crystal surfaces. Proceedings of the National Academy of Sciences, 119(29), e2118166119.
  • 爆炸级反应安全化!炸药中间体苦味胺的连续合成
    苦味胺作为关键中间体用于合成DATB、TATB等高能材料,在染料行业被用于制备2,4,6-三硝基苯肼的前体。Scheme1: 对硝基苯胺一步硝化法制苦味胺&bull 先前苦味胺的合成主要是通过邻/对位硝基苯胺的再硝化得到(scheme1),但是硝酸会氧化氨基导致收率下降。有报道称,苦味胺可通过苦味酸和尿素(摩尔比1:3)在173℃@36hr 条件下合成得到,但收率仅有88%。这条路线的风险主要是高温和较长反应时间带来的潜在过程安全风险。截至目前,文献中报道大规模生产苦味胺的工艺具有很大的安全风险且难以放大。&bull 微反应器为此反应提供了机会,在微反应器中,极佳的传热和传质效率可以大大缩短反应的停留时间,在任何时间点上都只有很少量的原料、中间体和产物,对于高能材料而言可显著提升反应的安全性。来自印度的Ankit Kumar Mittal等人开发了一种从对硝基甲醚到苦味胺的连续合成路线(scheme2)。Scheme2: 对硝基苯甲醚两步法制苦味胺&bull 首先进行了step-1的条件筛选和优化,分别优化了不同的温度、停留时间和硝酸用量(Table1):Table1: step1连续合成条件筛选和优化 &bull 根据实验结果,选择硝酸用量2.5e.q.,温度80℃,停留时间2.5min,此条件下中间体TNAN含量最高且杂质苦味酸含量相对较少。&bull Step-1放大至16ml盘管中生产,15min可以得到6.27gTNAN,相当于25g/hr的产量,分离收率90%,纯度99%。&bull 同时做了step-1的连续流和釜式工艺的结果对比,釜式75min仅能达到25%收率,而连续流2.5min就可以达到90%的收率(Table2):Table2: step-1釜式和连续流工艺对比&bull 随后进行了step-2的条件筛选和优化,NH3 用量5.e.q.,温度70℃,停留时间30s,苦味胺纯度100%(Table3):Table3: step-1连续合成条件筛选和优化 &bull Step-2放大由于受到设备(10ml盘管)自身参数的限制,选择了60℃和1min的停留时间,15分钟可以拿到6.68g产品,相当于26g/hr的产能,纯度99%。Scheme3: step-2放大&bull 总结:&bull 1. 使用微反应器成功开发了苦味胺的连续合成工艺,产能26g/hr&bull 2. 两步的条件都很温和,可以在优化后的条件下成功放大&bull 3. 该工艺可以安全、经济地进行苦味胺的工业化生产&bull 4. 后续结合自动监控装置可以更有效地保障工艺的安全性和稳定性参考文献:An Asian Journal Volume 18 Issue 2 Pages e202201028Journal---------------------------------------------------------------------------------------------------------------------集萃微反应创新中心: 打造微通道反应器定制开发、绿色合成工艺研发、化工连续化与自动化生产技术、化工在线检测与在线数据处理平台;提供连续化、自动化、智能化生产技术、化工高效分离技术、副产物的高效回收与综合利用、在线检测与大数据收集等,实现化学合成生产过程 “连续化、微型化、信息化、智能化”。如您有连续流工艺开发、转化方面的需求,欢迎联系我们!
  • 重要科研用试剂核心中间体研发 申报指南
    关于发布“十一五”国家科技支撑计划重点项目“重要科研用试剂核心中间体研发与产业化应用示范”课题申报指南的通知 各有关单位:   为贯彻落实《国家中长期科学和技术发展规划纲要(2006-2020年)》,满足我国科学研究对试剂需求日益增长的需要,科技部在认真总结前期工作的经验、成果并广泛征求各有关部门(单位)、地方对科研用试剂提出的需求的基础上,决定启动“十一五”国家科技支撑计划重点项目“重要科研用试剂核心中间体研发与产业化应用示范”。通过本项目的实施,将进一步完善产学研相结合的机制,在政府的引导下构建更加完善的科研用试剂产学研用联盟 发挥和提升我国科研用试剂的自主创新及产业化的能力,进一步推动我国科研用试剂行业的稳步发展,为科研提供更有力的支撑。   为充分调动各方的积极性,促进科技资源优化配置,公平、公开、公正地选择课题承担单位,科技部对本项目的课题采取公开申报,择优委托的方式选择课题承担单位,现将项目课题申报指南发给你们,请按照指南要求,做好组织申报工作。   联系人:王建伦 010-58881698       wangjl@most.cn   附件:“十一五”国家科技支撑计划重点项目“重要科研用试剂核心中间体研发与产业化应用示范”课题申报指南   科技部科研条件与财务司   二〇〇九年六月二十三日
  • ​【诺华新案例】重氮-叠氮-环合,三步全连续制备药物中间体
    欢迎您关注“康宁反应器技术”微信公众号,点击图片报名一、早期药物发现一个自身免疫性疾病的治疗药物发现项目中,2H-吲唑类化合物被鉴定为高效的选择性TLR 7/8拮抗剂。在先导化合物发现阶段,化合物12被确定可进一步进行体内药效实验研究。图1. 微克级样品的合成路线药物的早期发现使得化合物12和作为关键中间体的化合物5(2H-吲唑)的需求迅速增加。项目团队认识到,该微克级的合成路线可能会在进一步批量放大中产生问题。分离不稳定、潜在危险的叠氮化物中间体4及其在热环化为2H-吲唑5的工艺过程中有安全性的隐患。【考虑到连续工艺在处理高活性、不稳定化合物方面具有的优势,从间歇反应切换到连续流工艺的多个驱动因素中,安全性是最重要的一个因素。在需要快速合成化合物的早期临床前阶段,流动化学作为一种新技术可以大大加快开发过程。】二、连续流工艺探讨针对100克及以上规模的合成,团队启动了流动化学的工艺研究,其主要目标是保持反应体积尽可能小,精确控制反应条件,并避免在任何时间内反应混合物中危险且不稳定中间体的积累。1. 间歇式工艺的连续流技术评估图2. 2H-吲唑类化合物5a的三步合成将氨基醛2a转化为叠氮化物4a,间歇式工艺采用了在酸性条件下使用亚硝酸钠的重氮化方案,然后在0°C下添加叠氮化钠。该反应通常在三氟乙酸(TFA)作为酸性介质和溶剂的存在下进行,可以获得高收率的结果,并常规用于小规模合成。【但含有叠氮化物4a的反应混合物形成的悬浊液明显不适合流动化学筛选。而当该反应在水和盐酸的混合物中进行时,观察到明显较低的产率和大量副产物的形成。考虑到下一步反应,叠氮化合物4与氨基哌啶化合物6在Cu(I)催化的热环化反应仍然面临不适合连续流工艺的固体溶解问题。】研究团队首先需要找到合适的反应溶剂和试剂,对这两步反应来说,合适的溶剂既要溶解所有的物料,又要保持高的转化率。其次,作为另一个重点考虑的事项,需要避免叠氮化合物中间体4的分离。2. 叠氮化合物4a生成的连续流工艺开发 1)溶剂的选择研究者首先用亚硝酸叔丁酯和三甲基叠氮硅烷来代替无机物亚硝酸钠和叠氮化钠,但仅得到了20%的转化率。接着,研究者发现利用二氯乙烷和水的两相混合溶剂与三氟乙酸组合,可以将反应体系中的物质完全溶解,并得到了很高的转化率。而其它酸的应用,如乙酸、盐酸、硫酸和四氟硼酸等,仍会造成沉淀的生成或者反应的转化率降低。2)工艺条件筛选对该反应仔细的研究揭示,需当亚硝酸钠完全消耗后再向反应混合物中添加叠氮化钠,如果过早加入叠氮化钠,它将立即被第一反应步骤中剩余的未反应的亚硝酸钠所消耗。图3. 叠氮化合物4a的连续流工艺流程【Entry 3的实验条件连续稳定运行60分钟,可产中间体16g/h,完全满足下游实验的需要。】3. 2H-吲唑5a连续流工艺开发在完成重氮化及叠氮取代的连续流工艺开发之后,研究团队继续研究铜催化环化的连续流工艺。1)间歇式工艺缺陷间歇式反应中,10% mol的氧化亚铜在体系中悬浮性差,不适合用于连续流工艺。对于流动反应而言,80°C下反应90分钟的时间太长,会导致不可接受的低生产率。这种环化反应的收率通常合理的范围在70−80%,研究团队使用LC-MS鉴定了两种主要副产物氨基亚胺8a和氨基醛2a。图4. 2H-吲唑 5a反应路径及副产物确认2)对铜催化剂和配体的筛选研究者发现,在1当量TMEDA存在下,0.1当量的碘化铜可溶于二氯乙烷中。经反应筛选后,研究者确定了流动条件下环化的合适参数。含有0.1当量碘化铜(I)和1当量TMEDA的0.45M 4a 二氯乙烷溶液,在120°C下,在20分钟的停留时间内,完全转化为吲唑5a。使用LC-MS分析反应混合物表明,叠氮化物4a被完全消耗,得到产物5a、氨基醛2a和亚胺8a,其比例分别为91.5%、3.4%和5.1%,与之前使用的间歇式工艺相比,有了显著的改进。3)停留时间及铜盘管催化为了缩短停留时间和提高生产率,研究者在寻求用更具反应性的催化剂代替碘化铜(I)和TMEDA过程中发现,内径为1mm的铜线圈也有效地催化了该环化反应。推断在铜线圈的内表面上形成了少量的氧化铜(I),起到有效催化该反应的作用。图5. 铜盘管反应器催化反应作为概念证明,制备了0.32M的4a溶液,该溶液已与1.2当量的胺6在甲苯中混合,并在120°C下泵送通过铜盘管,停留时间为20分钟。使用色谱法进行处理和纯化后,分离出5.6g吲唑5a,产率为85%,纯度为98%(图5)。4. 重氮-叠氮-环合三步全连续合成2H-吲唑类化合物图6. 2H-吲唑 5b的连续流工艺结果利用上述研究结果,研究者同样进行了类似物5b的连续流工艺开发。与最初使用的间歇合成相比,新的替代连续工艺不仅避免了危险叠氮化物4a和4b的分离,而且为叠氮化物形成和热环化这两个关键步骤提供了更高的纯度和产率。总结报道了三步反应的连续工艺开发,在100克的规模上制备了两个关键的药物中间体2H-吲唑化合物5a和5b。与最初使用的间歇合成相比,新的替代连续工艺不仅避免了危险叠氮化物4a和4b的分离,而且为叠氮化物形成和热环化这两个关键步骤提供了更高的纯度和产率。通过减小反应器的持液体积,避免固体叠氮化合物的分离,并确保精确控制反应参数,特别是反应温度和试剂的比例,改进了工艺的安全性。将两个连续流步骤整合到化合物12的多步合成中导致更安全地制备和处理叠氮化物中间体,并显著促进了高效和选择性TLR 7/8拮抗剂项目的加速开发。随后,连续流工艺从研究部门转移到化学开发部门,仅对工艺进行了少量的修改,便用于制备千克规模的5b。参考文献:Org.Process Res. Dev. 2022,26, 1308−1317
  • 德国新帕泰克将参加第62届中国国际医药原料药、中间体、包装、设备春季交易会!
    德国新帕泰克公司将参加第62届中国国际医药原料药、中间体、包装、设备春季交易会(62nd API)! 德国新帕泰克公司将参加于2009年05月12-14日在西安曲江国际会展中心(西安市雁展路1号)举办的&ldquo 第62届中国国际医药原料药、中间体、包装、设备春季交易会&rdquo ,The 62nd API China 2009 Xi&rsquo an。 公司展位号B1309,届时公司会携专利的全自动干湿二合一激光粒度仪HELOS/OASIS 和世界上第一台光子交叉相关光谱纳米激光粒度仪NANOPHOX 参展!期待与大家进行专业的现场技术交流,并可以在现场提供样品粒度检测。 热忱欢迎各界人士光临公司展位!
  • 德祥顺利参展第10届中国(长春)国际医药原料、中间体、包装设备展览会
    2017年3月23日到25日,第10届中国(长春)国际医药原料、中间体、包装设备展览会在长春国际会展中心顺利举办,德祥携手众多进口实验室仪器供应商在展会上亮相。 作为制药行业的展会,我司代理的德国Hettich离心机,德国Heidoph旋蒸、美国SP scientific、冻干机、德国Pharmatest等仪器作为代表参展,在展会期间,我们产品的质量和性能受到客户的高度认可,客户也对他们目前遇到的技术问题与我们工作人员进行沟通,我们的技术人员也一一给予了满意的答复。 德祥,作为进口实验室仪器的代理商,将一如既往为广大新老客户提供*的产品和完善的服务,欢迎来电咨询,了解更多资讯和产品详情! 电话:4009-000-900
  • 创新通恒参展2012中国国际医药原料药、中间体、包装、设备交易会
    第69届中国国际医药原料药、中间体、包装、设备交易会于2012年11月7日至9日在厦门国际会展中心隆重举行。本届展览交易会的主题是“药品安全之源,品牌优质之选”,旨在关注药品安全,打造创新制药品牌,引领中国制药工业发展大势。 本次交易会吸引了大批国内外众多知名厂商参与。 北京创新通恒科技有限公司作为国内能提供工业化核酸药物合成仪及大型工业级制备纯化系统的企业,组织了公司精干技术人员和市场人员参加了本次交易会。创新通恒十多年来一直专注色谱产品领域的研发及生产,不断攻坚克难,满足客户不同需求。本届展览交易会上我公司展出的产品受到了广大参观者的关注和好评。 “因为专注,所以专业”创新通恒一定能为广大客户提供优质的产品和服务,为用户创造价值。 交易会开幕式 客商正在参观创新通恒展品 创新通恒市场人员与客商进行交流 创新通恒技术人员解答客商的问题
  • 德国新帕泰克公司将参加第61届中国国际医药原料药、中间体、包装、设备秋季交易会!
    公司将参加于2008年11月05-07日在苏州国际博览中心(苏州工业园区现代大道博览广场.) 举办的“第61届中国国际医药原料药、中间体、包装、设备秋季交易会 The 61st API CHINA&INTERPHEX CHINA”。 公司展位号3A522,公司会携专利的全自动干湿二合一激光粒度仪HELOS/OASIS和世界上 第一台光子交叉相关光谱纳米激光粒度仪NANOPHOX 参展! 随着对原料药出口要求的不断提高,粒径分布已经成为原料药出口过程中一个很关键的参数指标。 德国新帕泰克专注于医药行业的粒度检测需要,在全球尤其欧美拥有大量的医药客户,专利的干 法激光粒度仪HELOS/RODOS能为您提供快速、方便的原料药粒度检测技术,功能强大,完全符 合FDA的各项要求! 届时中国区首席代表耿建芳博士等将与大家进行专业的现场技术交流,并可以在现场测试样品。 热忱欢迎各界人士光临公司展位!
  • 丹东百特精密仪器亮相第86届中国国际医药原料药中间体包装设备交易会
    在初夏的美丽羊城-广州,丹东百特携百特激光粒度仪Bettersizer 2600,纳米粒度电位仪BeNano 90 Zeta,智能粉体特性仪 BT-1001,图像颗粒分析仪BT-1600参加了为期三天的第86届中国国际医药原料药中间体包装设备交易会。此次展会吸引了生物制药行业上下游众多企业,同时丹东百特也为制药行业提供了全方位的颗粒检测解决方案。会议开展于广交会展馆,拥有9.2、9.3、10.2、10.3、11.2五个展区,分别展示了制药设备、干燥设备、包装设备、检测设备及原料药和辅药材料,吸引了数以万计的观众前来交流学习。期间,到访百特展位的观众络绎不绝,对于粒度检测比较陌生的观众,百特销售经理从激光粒度仪的原理、测试方法、报告解读以及售后保养等方面为每位观众进行详细全面的介绍。对于前来交流的的老客户,百特销售经理更是细心的询问仪器目前的使用状态是否良好,若出现疑问,销售经理和工程师在现场立刻解决问题,保证每位客户在百特展台的交流都有所收获。耐心的仪器讲解、一丝不苟的做事态度赢得了每一位观众的好评。针对生物制药行业,丹东百特深入研究行业标准,产品均符合ISO13320-2016,21CFR Part 11等制药标准及审计追踪。对于药物颗粒检测,Bettersizer 2600 同时可以具备干湿法分散器及微量耐腐蚀样品池进样方式。正反傅里叶光路设计使得粒度检测范围达到0.02μm-2600μm,重复性和准确性都能达到国际水平。对于纳米颗粒检测,例如蛋白质、脂质体、纳米悬浮液,丹东百特研发的第四代纳米粒度电位仪BeNano 90 Zeta,采用高性能APD和准确的温控系统能够准确测量颗粒的粒度和电位变化。BT-1600图像颗粒分析仪是颗粒检测的眼睛,它能够拍摄到清晰的颗粒照片并通过百特自主研发的高速率分析软件进行颗粒的多项指标分析,例如:长径比、圆形度、单体颗粒和颗粒群等。智能粉体特性仪能够测量粉末的14项粉体特性指标,能够充分表征粉末的物理特性。丹东百特仪器有限公司秉着“诚信经营,以客户为本”的经营方针,为广大制药用户提供全方位的颗粒检测方案,展会还在进行中,百特团队在广交会展馆9.2A06展位期待着您的光临。
  • 定位中国制药新未来——第82届中国国际医药原料药/中间体/包装/设备交易会在杭州召开
    p    strong 仪器信息网讯 /strong & nbsp 2019年5月8-10日,制药及制药设备行业盛会——第82届中国国际医药原料药/中间体/包装/设备交易会(以下简称“API China”)在杭州国际博览中心盛大召开。1200余家医药原料、辅料配料、医药包装、制药设备及检测仪器企业参展,超过5万名全球药品、保健品与化妆品领域专注研发与生产的精英人士汇聚于此,共同分享大健康产业蓬勃发展带来的巨大市场机遇,探讨中国制药行业未来的发展,为观众打造一场规模盛大、产业链齐全的制药工业展会。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201905/uepic/698835a3-34ce-4bb4-8460-709d2db1275e.jpg" title=" 观众入场.JPG" alt=" 观众入场.JPG" / /p p style=" text-align: center " 观众入场 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201905/uepic/2c545a59-36c3-426c-b0df-73dbb1c52986.jpg" title=" 现场.JPG" alt=" 现场.JPG" / /p p style=" text-align: center " 展馆内景 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201905/uepic/9decb2af-c7d2-4017-af58-cef6551293c9.jpg" title=" 现场3.JPG" alt=" 现场3.JPG" / /p p style=" text-align: center " 展馆外景 /p p   API China是中国制药领域规模较大、历史悠久的展会,也是海内外数万家药品与保健品生产企业采购原料药、中间体、药用辅料、医药包材、制药设备的“一站式”的平台。展会当天,穿梭于各展馆之中,可以看到现场人头攒动,展商和参展观众热情高涨,气氛十分热烈。 /p p   除了展览之外,本次展会还给展商以及参展观众提供了一个与前沿技术接触、和专家学者交流的机会。当一致性评价、两票制、智能化、信息化、自动化等政策和趋势向制药工业袭来时,很多企业或许无法采取及时有效的应对措施。本次展会特针对于国内各种制药“新政”举办了三十余场高质量会议论坛,邀请了来自NMPA、CDE、核查中心、中检院、药典委、省市药检所等相关政府部门领导及国内外优秀的制药企业、CRO公司、原辅料企业的百余位嘉宾,为制药行业同仁带来最务实的分析、指导和建议。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201905/uepic/0578332c-f636-4dea-9904-fa05e4eea44c.jpg" title=" 高峰论坛.JPG" alt=" 高峰论坛.JPG" / /p p style=" text-align: center " 2019中欧医药产业发展论坛 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201905/uepic/1d8d1384-9206-4814-933b-a12bdf29abec.jpg" title=" 仪器论坛.JPG" alt=" 仪器论坛.JPG" / /p p style=" text-align: center " “工欲善其事,必先利其器——论现代仪器技术在药品研发与质控中的应用”论坛 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201905/uepic/9d0fe1b5-8f42-471c-b061-58bc2cb1a55e.jpg" title=" 一致性.JPG" alt=" 一致性.JPG" / /p p style=" text-align: center " API China 巡回交流会(杭州)注射剂一致性评价技术和法规研讨会 /p p    span style=" color: rgb(0, 112, 192) " strong 部分实验室仪器设备参展商: /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/909e4ccd-dc69-4316-8f16-ecff5fd194b3.jpg" title=" 永合创新.JPG" alt=" 永合创新.JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 永合创信 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/5699fd34-8a39-4c8e-81af-46217216bedf.jpg" title=" 永岐实验.JPG" alt=" 永岐实验.JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 永生仪器 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/3a5e374c-939a-438e-a34e-dd221ea99dbe.jpg" title=" 苏盈仪器.JPG" alt=" 苏盈仪器.JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 苏盈仪器 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/d1685a44-34c3-4c55-ae7f-ce4241547797.jpg" title=" 真理光学.JPG" alt=" 真理光学.JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 真理光学 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/799f973d-70ba-472e-a4b9-dc1404612bc7.jpg" title=" 长城.JPG" alt=" 长城.JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 郑州长城 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/83938542-3488-4bf2-a322-ed06e4bf6966.jpg" title=" 岩征仪器.JPG" alt=" 岩征仪器.JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 岩征仪器 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/26c575da-30bd-4fde-8bb4-c9015961288f.jpg" title=" 马尔文.JPG" alt=" 马尔文.JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 马尔文帕纳科 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/586bb406-01bb-4eb8-bbe5-e22b1d368003.jpg" title=" 庚yu .JPG" alt=" 庚yu .JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 庚雨仪器 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/aa61d815-7eea-43ce-a924-b7253669736f.jpg" title=" 欧世盛.JPG" alt=" 欧世盛.JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 欧世盛 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/9a4de8d0-be36-4822-8d7b-65df63b0dea2.jpg" title=" 上海雅称.JPG" alt=" 上海雅称.JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 上海雅程 /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong img src=" https://img1.17img.cn/17img/images/201905/uepic/7c223040-8f13-45a6-8af4-f80178701006.jpg" title=" 仪器信息网.JPG" alt=" 仪器信息网.JPG" / /strong /span /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 仪器信息网 /strong /span /p p br/ /p
  • 环境持久性自由基的电子顺磁共振检测和污染特征研究——访中科院生态环境研究中心刘国瑞研究员
    电子顺磁共振(EPR)波谱仪是自由基检测的一种仪器分析技术。EPR在医学、生物、量子化学、物理学、环境以及化学领域等都有所应用。环境与健康是一个热门主题,其中,环境污染会导致怎样的健康效应,也是当下亟需回答的重要科学问题。电子顺磁共振在环境与健康研究领域也可能发挥重要作用。除高活性和短寿命的自由基外,环境中还存在寿命较长的自由基,被称为环境持久性自由基(Environmentally Persistent Free Radicals: EPFRs)或长寿命自由基。EPFRs是十多年前提出的概念,它具有较长的半衰期和稳定性,在环境中存留时间长,增加了生物体的暴露时长,易诱发氧化应激反应,引起细胞和机体损伤等,被认为是一类新型的环境污染物。而实际追溯到1900年,冈伯格发现的第一个自由基——三苯甲基自由基,也是长寿命自由基。目前关于环境中EPFRs的存在及其环境效应研究引起国内外科研人员的广泛重视,开展相关研究工作的课题组逐渐变多。中科院生态环境研究中心环境化学与生态毒理学国家重点实验室刘国瑞研究员较早在国内开展了一些EPFRs相关的工作并取得了不错的成果。日前,仪器信息网特别采访到了刘国瑞研究员,他讲述了与EPR、EPFRs的故事。刘国瑞的主要工作集中在两个方面:1.持久性有机污染物(POPs):如二噁英、溴代二噁英、多氯萘和卤代多环芳烃等持久性有机污染物,建立典型POPs的高灵敏分析方法,阐明了POPs在环境中的污染特征,发现一些潜在排放源并开展了机理和控制原理研究;2.环境持久性自由基(EPFRs):主要研究EPFRs的环境污染特征和转化机理相关的工作。被问到当初选择研究EPFRs的原因,刘国瑞介绍到主要有两个因素,一是想要深入了解二噁英等POPs的分子机理,反应过程的中间体检测至关重要,使用顺磁共振技术可以检测反应过程中的自由基中间体,从而推断二噁英的分子机理。另一个原因是2015年基金委启动了重大研究计划项目——大气细颗粒物的毒理与健康效应。“我们重点实验室江老师鼓励我去做大气细颗粒物里的自由基相关的研究工作,”刘国瑞说道,“2015年左右是北京雾霾天气比较严重的时候,我们课题组采集了北京市大气细颗粒物样品,检测了其中的EPFRs,发现不同粒径的颗粒物中EPFRs有不同的分布,越细的颗粒物中吸附的EPFRs含量也越高,由此导致的潜在健康效应值得进一步关注。”该研究工作发表在当时环境领域的国际知名杂志ENVIRONMENTAL SCIENCE & TECHNOLOGY(ES&T)上。刘国瑞在EPFRs相关研究工作中主要使用了电子顺磁共振波谱和色谱/质谱联用两大类分析技术,电子顺磁共振波谱技术可检测未成对电子,即反应过程中的自由基中间体;色谱质谱联用可对反应后产物进行鉴定,用于研究生成机理。刘国瑞表示,未来希望能将电子顺磁共振和色谱/质谱仪器同时与化学反应器连接使用,同时检测反应中的自由基中间体并鉴定反应后的产物。实验室使用的电子顺磁共振波谱仪器来自布鲁克的EMXplus电子顺磁共振波谱仪。更多精彩内容请观看以下采访视频:
  • 陈素明课题组实现了电化学中间过程的时间分辨质谱解析
    近日,国际权威学术期刊Angew. Chem. Int. Ed(《德国应用化学》)在线发表了高等研究院陈素明教授课题组在结构导向的质谱分析方面最新研究成果。论文题为“Elucidation of Underlying Reactivities of Alternating Current Electrosynthesis by Time-resolved Mapping ofShort-lived Reactive Intermediates”。武汉大学为论文唯一署名单位,高等研究院万琼琼副研究员为论文的第一作者,陈素明教授、易红研究员为论文共同通讯作者。该工作通过构建具有时间分辨能力的Operando电化学-质谱分析装置,实现了电化学过程中活性中间体以及自由基异构体的结构和动力学解析,揭示了电化学反应的内在机制(图1)。图1.时间分辨的Operando电化学-质谱分析装置与电化学芳胺功能化反应质谱是对分子进行定性和定量的有力工具,但在实际的复杂研究体系中,常规的质谱分析方法很难实现深层次的结构解析和定量分析。其中,化学反应瞬态中间过程的分析就是一个巨大的挑战。电化学合成是合成化学的新兴领域,但是电化学反应过程的机理研究一直受限于短寿命活性中间体的捕获和结构分析鉴定。为了解决电化学中间过程分析的难题,本研究开发了一种具有超快时间响应的原位电化学-质谱分析装置,可以在电合成工况条件下时间分辨地解析电化学反应过程中的短寿命活性中间体。由于该装置可以最大程度地模拟直流电合成和交流电合成反应,因此通过全面解析电化学芳胺功能化反应过程中活性中间体的结构和动力学,揭示了交流电合成相对于直流电合成具有独特反应性的内在机制。包括:减少中间体的过度氧化/还原,促进氧化-还原电生活性中间体的有效反应,尤其是控制多步电合成反应过程中氮中心自由基的动力学来减少竞争反应。这些发现对于深入理解交流电合成反应的机理提供了关键的信息。此外,本研究还发展了一种解析反应过程中氮中心自由基异构体的新型分析策略。由于中性的氮中心自由基和胺自由基阳离子在质谱分析时都会呈现出相同质量的质子化离子峰,因此难以在质谱中进行区分。研究巧妙利用中性自由基能形成碱金属加合峰的特性,并通过时间分辨的电化学-质谱分析装置测定中性自由基和自由基阳离子的寿命差异,从而准确地分辨出了反应过程中的氮中心自由基异构体。该方法不仅揭示了电化学芳胺功能化过程中隐藏的自由基反应历程,而且提供一种氮自由基异构体解析的通用方法,从而可以深入理解氮中心自由基的反应动力学。据悉,该研究得到了国家自然科学基金、国家重点研发计划等项目经费的支持,雷爱文教授课题组为该工作提供了电化学实验装置支持。
  • 安全可控、提质增效!胶原蛋白关键中间体二甲基砜MSM的连续流合成工艺
    甲基砜(MSM)是一种重要的有机硫代物,在胶原蛋白合成中起着关键作用,并具有增加胰岛素敏感性和促进体内糖代谢的潜在健康作用。传统的硝酸氧化法生产MSM存在废酸产量高、气味难闻、安全性差等缺点。在绿色化工的指导下,使用双氧水作为氧化剂,因纯度高、原子利用率高且产物仅为水和氧而备受关注。由于生产工艺的强放热性,使用传统间歇釜存在反应失控甚至爆炸的风险,在绿色化学品和安全化学品的概念下,这种生产过程逐渐被淘汰。微通道反应器作为一种新兴技术,针对强放热反应可以有效避免热失控的风险,且尺寸小持液量少,具有本质安全,显著提高反应的过程安全性。近年来,微通道技术已应用于各种高危反应,包括硝化、氧化、氯化、加氢、烷基化、酰化等。来自南京工业大学的倪老师团队构建了几种不同规格的微通道反应器,并将其应用于MSM的连续流合成。实验开始,作者考察了通道直径、水浴温度、催化用量和停留时间对MSM产率的影响,MSM的收率和纯度都很高:图1:初始实验装置图2:初始考察通道直径、水浴温度、催化用量和停留时间对MSM收率的影响最佳条件为使用3mm*1mm的PTFE管道,水浴温度80℃,催化剂用量0.002e.q., 停留时间4min,收率可达91.5%。考虑到此反应初始阶段原料浓度高放热量较大,作者采用两段温区(温区一Tf+温区二Ts)进行研究:图3:第二阶段实验装置图4:第二阶段不同的温区组合对MSM收率的影响当温区一温度20℃,停留时间1.0 min,温区二温度80℃,停留时间3.0 min时,MSM收率最高98.1%。后续作者在自建的工业化微通道反应器上进行了工业化放大,时间收率为18.36吨/年,空间收率为36.43吨/年/m3(如图5):图5:工业化放大装置图5:釜式和连续流的对比总结:根据反应的放热特性,采用微通道反应器实现了MSM连续流合成工艺。单控温工艺,通道直径为3 mm × 1 mm,水浴温度为80℃,催化剂用量为0.002 mol,停留时间为4 min时,MSM收率达91.5%。双温控工艺,当温区一温度为20℃,停留时间为1.0 min,温区二温度为80℃,停留时间为3.0 min时,MSM的收率可达98.1%。在自建的工业化微通道反应器平台上对MSM的连续流工业化生产进行了研究。MSM年平均时间产量为18.36 吨/年,年平均空间产量为36.43吨/年/m3。微通道技术的应用可有效提高MSM制备过程的本质安全性和生产效率,具有广阔的工业应用前景。
  • 《质谱学报》“化学反应中间产物的质谱捕捉与测量”专辑征稿通知
    化学反应在自然界中无处不在。揭示化学反应及其相关过程的机制和基本规律,对认识化学反应的本质、创制新的物质有着不可替代的作用。质谱作为一种重要的分析检测技术,由于具有极高的原位性、特异性、灵敏度、操作性,在化学反应中间体的捕捉、化学反应机制的跟踪等方面大放异彩。从化学反应发生的物相来分,有气相反应、液相反应、固相反应、界面反应等 从化学反应发生的驱动力来分,有电化学反应、高电场反应、光化学反应、催化反应等 从化学反应发生的环境来分,有大气化学反应、生物化学反应、微液滴反应、气泡反应等。质谱技术在这些反应所涉及到的中间体捕获和机理探索研究中均已取得了很大的进展。  然而,机遇和挑战并存,化学反应中间产物通常有着不稳定、寿命短等特点,对质谱的进样、电离、结构解析等过程提出了一定的挑战,也对质谱方法的开发提出了新的要求。  为推动质谱技术在化学反应机制研究中的发展,集中报道相关领域的最新成果,促进广大质谱工作者的交流与合作,《质谱学报》计划组织一期“化学反应中间产物的质谱捕捉与测量”专辑。  本刊邀请南开大学张新星研究员担任该专辑的执行主编。  欢迎各位老师不吝赐稿!  1. 征稿范围(包括但不限于):  (1)多种类型、多种环境化学反应中间产物的捕捉与测量   (2)化学反应新、奇、特中间体的发现   (3)化学反应中间产物质谱检测新方法的开发。  2. 发表形式及时间:正刊(EI,中文核心),2024年1月  3. 稿件要求:  (1)研究性和综述论文,接收英文稿件   (2)投稿论文必须为未在正式出版物上发表过,不存在涉密问题,不存在一稿多投现象,不存在学术不端问题。  4. 投稿方式:  请登录《质谱学报》网站(http://www.jcmss.com.cn)进行在线投 稿。投稿时请选择“化学反应中间产物的质谱捕捉与测量”专辑。  5. 截稿日期:2023年8月底  6. 投稿咨询:  邮箱:jcmss401@163.com  电话:010-69357734  执行主编简介:  张新星,南开大学化学学院研究员、博士生导师,美国约翰霍普金斯大学博士,美国加州理工学院博士后。入选一系列国家和地方人才计划,获得中国化学会第二届菁青化学新锐奖、美国质谱学会ASMS新兴科学家称号、中国物理学会2021年度质谱青年奖。在气液界面质谱分析和相关质谱仪器开发,以及微液滴化学质谱分析领域取得了一系列成果,在PNAS,Angew. Chem.,JACS,Nat. Commun.等国际顶尖刊物发表SCI论文90余篇。
  • “检测直通车”之乳品中双氰胺的检测——金域检验
    我要测讯 2013年1月25日,有媒体爆出新西兰牛奶中发现了有毒物质—双氰胺,可能会对该国总额11亿纽元(约合人民币57亿元)的乳品行业造成打击。据了解,新西兰农民在牧场使用双氰胺主要用以防止硝酸盐等流入河流造成污染。在新西兰1.2万个牧场中,约有500家使用双氰胺。而双氰胺的在食品中检出的相关国际和国家标准尚无。  双氰胺又名二氰二氨、二聚氰胺,缩写DICY或DCD,白色结晶粉末。主要用作三聚氰胺的原料、染料固色剂、化肥、精细化工中间体等。由于无相关标准可循,双氰胺的检测并未作为食品的必检项目,检测方法方面,查询相关文献报道了解到,目前的检测方法主要有高效液相色谱质谱法、高效液相法、分光光度法等。  自事件发生后,相关检测实验室对事件做出积极响应,根据自身具备的条件,快速开发出双氰胺的检测方法,如广州金域检验中心,方法如下:奶粉中双氰胺的检测方法(UPLC-MS/MS法)  一、实验原理  样品经水浸泡并混匀,加入乙腈沉淀蛋白,通过冷冻离心去除脂肪,取清液经过固相萃取SPE小柱净化,氮气浓缩至干,后用1.00 mL 50%乙腈水溶液复溶,过滤膜上UPLC-MS/MS测定。采用电喷雾正离子电离(ESI + )模式和多反应监控(MRM) 扫描模式,外标法定量。该方法在5ng/ml ~ 500ng /ml范围内线性关系良好,相关系数(r2 )大于0. 999。  二、仪器和试剂  超高效液相色谱串联质谱联用仪(UPLC-MS/MS),涡旋振荡器,超声波清洗机,氮吹仪。双氰胺标准品,固相萃取SPE小柱,Venusil HILIC液相色谱柱,微孔滤膜,乙酸铵、甲酸、乙酸、乙腈为色谱纯,实验用水为超纯水。  三、实验方法  1.提取、净化  称取2.5g试样于50ml具塞离心管中,准确加入5ml水浸泡溶解后,准确加入乙腈20ml,振荡混匀,超声10min,5500r/min冷冻离心5min,取5ml上清液过固相萃取SPE小柱净化,氮气浓缩至干,后用1.00 mL 50%乙腈水溶液复溶,过0.22um滤膜上UPLC-MS/MS测定。  2.图文详解  ①称取奶粉样品1.00g于50mL具塞离心管中,涡旋振荡混匀  ②目标物提取和离心  ③固相萃取净化  ④氮吹浓缩  ⑤溶解定容  ⑥上机测定  3.仪器参数  3.1色谱条件:  色谱柱:Agilent HILIC puls 3.5μm 2.1*100mm   流动相:A:2mmol/L乙酸铵(pH=4.0)  B:乙腈  A:B=10:90  进样量:2ul   柱温:30℃   流速:0.3 ml/min。  3.2质谱条件  液相色谱串联质谱联用仪:Agilent UPLC 1290 & QQQ 6460   离子源:电喷雾离子源   扫描方式:正离子扫描   检测方式:多反应监测MRM   干燥气温度(Gas Temp)325℃ 干燥气流量(Gas Flow)5mL/min,雾化器压力(Nebulizer)50psi,鞘流气温度(Sheath Gas Temp)400℃,鞘流气流量(Sheath Gas Flow)12mL/min,毛细管电压(Capillary)3500(+)V,MRM条件:双氰胺85.268.1(CE=19eV),85.243.0(CE=21eV)   4.实验结果  4.1线性关系和检出限  准确称取双氰胺标准品50mg于50ml容量瓶中,加水溶液并稀释至刻度,作为标准贮备液   分别量取一定量的标准贮备液,用乙腈稀释,配置成浓度为5ng/ml,10ng/ml,20ng/ml,50ng/ml,100ng/ml和500ng/ml的标准溶液,按照上述液质方法,结果见下表1:表1 双氰胺线性方程和定量限(UPLC-MS/MS法)名称保留时间线性方程相关系数最低定量限(S/N=10)双氰胺1.15minY=8777.2X+7435.90.99985ng/ml  4.2检测方法稳定性考察  选用50.0ng/ml的标准溶液连续进样6针,计算其保留时间和峰面积的RSD值,结果见表2:表2 检测方法定性和定量稳定性考察考察(UPLC-MS/MS法)标号保留时间,min峰面积11.1538295021.1638795031.1738284041.1539982051.1837858061.19383810RSD,%0.651.92  4.3.准确度和精密度  选取市售某品牌奶粉试样,进行添加回收实验,结果见表3。采用空白样品稀释法判断检测方法的基质效应影响。空白净化液稀释和乙腈稀释的标准溶液,双氰胺峰面积和相对丰度比无明显变化,故判断该方法无基质效应的影响。表3 0.10mg/Kg添加回收实验结果平行1,%平行2,%平行3,%平均值,%RSD,%84.680.790.285.25.61  5 检出限  本方法仪器最低检测浓度5ng/mL,按照上述样品前处理计算,本方法检出限0.01mg/kg。未检出样品以0.01mg/kg报值。  附:广州金域检验中心  金域检验创立于1994年,总部位于广州。是中国最早获得《医疗机构执业许可证》的独立实验室和进入医学检测服务领域的企业之一。业务范围涵盖:医学检验、卫生检验(食品、药品安全检测)、新药临床试验(CRO)、健康体检。经过十五年的发展,金域检验员工人数逾3800 人,2011年营业额达7个亿,在广州、香港、南京、济南、西安、合肥、郑州、重庆、成都、长春、昆明、贵阳、杭州、天津、长沙、南宁、沈阳、和上海等19个城市建立了综合性检测中心,目前已经发展成为立足广州辐射全国的现代生物技术服务的集团企业。
  • 应用指南--expression CMS小型台式质谱仪实现流动化学反应监测和优化
    Flow chemistry 流动化学本意指在连续流动的系统中完成化学反应,不同于批次式反应,其创新地将传统独立分开的合成操作过程整合起来,加快了合成的速度,尤其是能进行危险的、不易实现的反应条件,对于绿色化学和实验室自动化领域具有非常重要的意义。 连续流动化学始于两种以上的物料—比如起始反应物,这些物料以设定流速用泵打入反应舱室、反应管或微型反应器,不同反应物料在此进行混合和反应。根据反应动力学和物料流速,需要保证反应物料在微型反应器中达到某一特定的停留时间,从而获得预期的反应转换率。因为反应是在连续流动的流体中进行,自然希望对反应进行监测以便得知各种反应条件状况,因此反应的监测就尤为重要。 本应用指南中,为大家介绍使用 expression CMS 进行的两种不同反应的流动化学合成实验案例。实验方法质谱系统:expression® CMS 小型台式质谱仪 一、仪器设置 实验中使用了两种略有不同的设置。在第一种方法中,使用注射器将反应混合物注入质谱中(通过阀门,图1)。 第二种情况,使用注射泵系统输送试剂,通过阀门切换自动将样品转移到质谱中(图2), CMS 的数据输入到反应优化和数据处理软件中。二、质谱条件扫描范围:m/z 100-m/z 800;扫描时间:400ms;扫描速度:1750 m/z units/s; 流速:0.2mL/min;流动相:MeCN,H2O(50:50)(0.1% 甲酸);离子源:ESI; 模式:正离子模式 Capillary Temp:200℃;Capillary Voltage:80V; Source Offset:30; Source Gas Temp:250℃; ESI Voltage:3500V;实验结果 反应数据(图3)显示实时监测到产物的增加和原料的减少,同时看到中间体和杂质,提供有关反应的有价值信息,该信息在对反应/过程把控上为实验人员提供了其他技术无法提供的的优势。 获得的详细数据有利于进一步优化反应(尤其对于工艺开发),加深理解反应机理,这对于进一步反应机理开发至关重要。 使用 CMS 监测流动池中不同停留时间的反应,可以密切监测反应进程,看到大量杂质/中间体的形成条件,并且可以选择最佳停留时间。该反应通过两种不同的中间体进行,如果反应没有得到适当控制和优化,最终可能会成为杂质。因此,密切监测和了解这一过程至关重要。 在本实验中,通过流动化学设备自动确定试剂配比,输送不同组分的反应混合物。通过 expression CMS 实时监测原料、产物和中间体,有利于后续优化反应。结论 1、expression CMS 是与流动化学系统联用的理想质谱仪。 2、expression CMS 上具有多个信号输入和输出口,使其具有独特且灵活的接口功能。 3、expression CMS 分析提供了有关反应的详细实时信息,这些信息通常是其他分析技术(例如色谱、核磁共振、红外/近红外、紫外)无法提供的。 4、ESI 和 APCI 多种离子源选项扩展了可监控的反应范围。 5、Advion Interchim Scientific 在质谱与新型合成化学联用的解决方案方面经验丰富,可提供多种质谱联用方案。
  • 复合气体检测仪:应对多种气体检测挑战的解决方案
    复合气体检测仪,作为一种集多种气体检测功能于一体的便携式设备,已成为应对复杂气体检测挑战的重要解决方案。其独特的功能和优势体现在以下几个方面:  1. 多气体检测能力  复合气体检测仪能够同时检测多种有害气体,如硫化氢(H₂ S)、一氧化碳(CO)、二氧化硫(SO₂ )等。这种多气体检测能力使得它特别适用于需要同时监测多种气体浓度的场合,如化工、石化、制药、环保等领域。  2. 高精度与稳定性  复合气体检测仪采用高精度传感器,能够在极短的时间内准确检测出气体浓度,并保持长期的稳定性。这种高精度和稳定性确保了检测结果的可靠性,为及时采取应对措施提供了有力的数据支持。  3. 实时监测与报警  检测仪能够实时显示各种气体的浓度值,并通过声光报警、振动报警等多种方式及时提醒工作人员。这些报警功能可以帮助工作人员在第一时间发现潜在的安全隐患,从而避免事故的发生。  4. 数据存储与传输  复合气体检测仪内置数据存储模块,可以随时查看历史检测数据,了解环境状况的变化趋势。同时,它还支持无线数据传输功能,可以将检测数据实时传输到手机、电脑等设备上,方便用户随时掌握环境状况,并作出相应的处理措施。  5. 防水、防尘、抗震等特性  在恶劣环境下,复合气体检测仪仍然能够正常工作。其防水、防尘、抗震等特性确保了设备的稳定性和耐用性,从而满足了各种复杂环境下的检测需求。  6. 维护与保养  为了确保复合气体检测仪的长期稳定运行,用户需要定期进行维护保养。这包括清洁传感器、更换电池、校准仪器等。此外,当设备出现故障时,可以采用降温法、肉眼观察法、隔离排除法或对比替换法等方法进行故障排查和修复。  7. 适用范围广泛  复合气体检测仪的使用环境广泛,不仅适用于室内环境,如实验室、厂房等,还适用于室外环境,如化工厂、油气田等。其使用温度范围广泛,可以在-25℃至+50℃的温度下正常工作。  综上所述,复合气体检测仪以其多气体检测能力、高精度与稳定性、实时监测与报警、数据存储与传输、防水防尘抗震等特性以及广泛的适用范围,为应对复杂气体检测挑战提供了强有力的解决方案。在未来的环境监测和安全防护工作中,复合气体检测仪将继续发挥重要作用,为人们的生命财产安全保驾护航。
  • 福建质检院制定化妆品中三种禁用物质的检测国标
    日前获悉,由福建省质检院制定的《化妆品中禁用物质乙二醇甲醚、乙二醇乙醚及二乙二醇甲醚的测定气相色谱法》国家标准已正式公布并实施。   该标准建立了化妆品中三种乙二醇醚类禁用物质的测定方法,填补了国内乙二醇醚类物质检测标准的空白,研究成果达到国际先进水平。福建省质检院食品所相关人士介绍,乙二醇醚类物质属《化妆品卫生规范》中规定的禁用物质,被广泛用于溶液、喷气燃料防冰剂、刹车液、化学中间体,过量吸入会抑制中枢神经系统,高浓度可能造成头痛、恶心等。
  • 双氰胺检测推荐色谱柱TSKgel Amide-80
    近日,新西兰乳业出口的奶粉被曝检出含有类似三聚氰胺的化合物&ldquo 双氰胺&rdquo ,引起了众多消费者对乳品安全的担忧。 双氰胺(缩写DICY或DCD,氰胺的二聚体)是一种硝化抑制剂,用作三聚氰胺的生产原料及医药和染料中间体。有食品专家表示,虽然国际标准没有对食品中双氰胺可接受的残留量作出规定,但高剂量双氰胺还是对人体有毒害。 TOSOH公司的HILIC色谱柱TSKgel Amide-80在针对双氰胺的分析上极具优势。在此次事件中,新西兰国家质检机构 AsureQuality 及大型乳制品企业恒天然,均参考国际标准ISO/TS 15495,使用了TSKgel Amide-80色谱柱进行双氰胺的检测。 产品:TSKgel Amide-80(货号:21865) 【相关资料】 1.《TSKgel Amide-80色谱柱在分析奶粉中三聚氰胺三聚氢酸的应用》 2.《TSKgel Amide-80色谱柱分析肥料中的双氰胺》 3.《TSKgel NH2-100 色谱柱分析肥料中的双氰胺》 更多关于TSKgel® Amide-80色谱柱的信息请访问:www.separations.asia.tosohbioscience.com
  • 日加大对中国产荔枝中对氯苯氧乙酸检测频率
    近日,日本厚生劳动省医药食品局食品安全部监视安全课发布食安输发0606第1号:加强对中国产荔枝中对氯苯氧乙酸的监控检查。根据2013年度进口食品等的监控检查计划,按2013年6月5日发布的食安输发0605第1号,对中国产生鲜荔枝实施检查时,发现其违反了食品卫生法。因此,将对其残留农药对氯苯氧乙酸的监控检查频率提高到30%。   对氯苯氧乙酸,又叫防落素,为白色针状粉末结晶,基本无臭无味,是一种苯酚类植物生长调节剂。可用于番茄、蔬菜、桃树等,也用作医药中间体。该物质对眼睛、皮肤、黏膜和上呼吸道有刺激作用,对环境有危害,对水体和大气可造成污染。   检验检疫部门提醒相关企业:要详细了解日本厚生劳动省发布相关通报详细内容,尽快核实荔枝中是否使用了对氯苯氧乙酸,且所使用的剂量是否有超标风险 要配合检验检疫部门,加强对出口荔枝中对氯苯氧乙酸残留量的检测,特别是要加大检测对氯苯氧乙酸的频率,避免造成不必要的贸易风险,确保产品符合进口国标准。
  • 潘远江:质谱成就我们的美妙想象
    p & nbsp & nbsp & nbsp & nbsp strong 仪器信息网讯 /strong 近年来,随着质谱技术的发展,从最早的无机质谱到现在有机、生物、医学质谱的广泛应用,质谱的应用领域越来越广,从业人员越来越多,质谱也不再仅仅是前沿的科研仪器,更是逐渐融入到了我们的日常生活中。以往,各类质谱学术交流活动虽然很多,但多集中于学科内部交流,不同领域之间的交流较少。当前,亟待一个跨学科的大型质谱学术会议来凝聚各领域的质谱同仁,相互交流合作,共谋中国质谱新发展。 /p p & nbsp & nbsp & nbsp & nbsp 为此,由中国质谱学会(中国物理学会质谱分会)、中国化学会质谱分析专业委员会和中国仪器仪表学会分析仪器分会质谱仪器专业委员会联合主办的“2018年中国质谱学术大会”将于2018年11月23-26日在广州市举办。作为第一次联合举办的质谱会议,本次大会标志着中国质谱发展迈入新时代。 /p p & nbsp & nbsp & nbsp & nbsp 在大会举办前夕,我们特别采访了浙江大学潘远江教授,请他谈谈质谱技术在化学反应机制研究中的应用以及对中国质谱未来的期许。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201810/uepic/c57fb61f-1bb3-4c24-8f0a-930509db2436.jpg" title=" 图片 1.png" alt=" 图片 1.png" / /p p style=" text-align: center " 浙江大学潘远江教授 /p p span style=" color: rgb(79, 129, 189) " strong span style=" font-size: 20px " 助力化学反应精准进行,质谱在行动 /span /strong /span /p p & nbsp & nbsp & nbsp & nbsp 化学反应机理作为基础研究,为应用领域提供了很多帮助。例如了解C-H活化的过程,可以提高能源的使用效率;了解大气层臭氧破坏的过程,可以精准地进行大气保护等。但现阶段,化学反应的机理往往是通过理论计算等方法推测的,很难获取直接证据。这是由于在反应的过程中,活性中间体用常规检测手段难以捕获。目前,有机化学家一般是利用红外光谱、核磁共振等手段对这一问题进行探索,虽然有一定的成果,但也面临着很大的局限性。 /p p & nbsp & nbsp & nbsp & nbsp 潘远江表示,虽然利用质谱检测反应中间体也面临很多挑战,但是,借助质谱准确、快速、灵敏的特点,可以将中间体的元素组成、结构信息搞清楚,从而准确判断在反应过程中生成了哪些中间体,而这些中间体又可以导致终产物的形成,最终可以准确、清晰地了解反应全过程。潘远江相信,借助质谱技术最终可以形成一个通用的、普适的用于中间体检测的方法。 /p p & nbsp & nbsp & nbsp & nbsp 对于一些相对较稳定的中间体,可以利用常规的质谱进行分析;但对于稳定性较差的中间体,潘远江团队通过改变反应离子阱的参数,延长中间体活性周期;或采取冷阱技术降低中间体活性等方法延长中间体寿命,便于质谱检测。同时,潘远江团队还与计量科学研究院合作,用大容量的、数字化的线性离子阱,以及串联离子阱技术,增大活性物质的容量,大大提高了阱内离子数,增加了中间体可检测的空间。 /p p & nbsp & nbsp & nbsp & nbsp 潘远江还提到,他希望能够设计一个离子阱,可以将反应的活性中间体收集起来,与相应的化合物反应,获得目标产物,最终达到靶向合成的目的。他的目标是将质谱的离子阱,转化成有机合成的反应器,最终能够实现高效、精准的气相合成。他表示,从分析化学工作者的角度,希望质谱除了在产物检测的基本领域实现价值,还可以成为一个研究有机合成机理的通用型方法。“利用质谱将反应路线落实,解析机理,最终指导反应精准合成。”潘远江表示:“这个研究的前景是非常美好的,我认为从事有机质谱研究的人,很值得在这方面做出努力,完全可以给我们带来一片新天地。” /p p strong span style=" color: rgb(79, 129, 189) font-size: 20px " 打开科研的想象大门,质谱全方位发力 /span /strong /p p & nbsp & nbsp & nbsp & nbsp 除了将质谱应用于化学反应机理的研究,潘远江也表示,质谱可应用的领域非常广阔,他用一句话总结了他眼中的质谱技术——质谱既能给我们带来一些美妙的想象,又能帮助我们解决实实在在的问题。他表示,质谱技术作为一种高效、精准的分子分析手段,给科研工作者带来无穷无尽可以发挥想象力的空间,一些过去棘手的问题,现在可以通过质谱技术得到解决。例如,质谱可以用来进行催化剂的筛选,也可用于探究反应机理等。 /p p & nbsp & nbsp & nbsp & nbsp 质谱更为热门的应用体现在临床以及医学领域,如用于新生儿筛查、真菌感染检测、老年人营养水平检测,以及利用代谢组学判断身体是否有有癌变危险等方面。潘远江表示,未来质谱将更广泛地用于人体健康的检测,当人们感到身体不适时,可以通过质谱对唾液、呼出气体等进行检测、进行疾病的前期诊断。潘远江说到:“未来,可能小型质谱仪就像空气清新器一样进入千家万户,改变我们每个人的生活。” /p p & nbsp & nbsp & nbsp & nbsp 潘远江表示,质谱能应用在众多领域,从根本上来说,就是它能够切实地解决问题。无论是气相混合物还是液相混合物,无论是复杂的生物组学还是最接地气的食品成分,质谱都可以找到对应的手段去解决。 /p p span style=" color: rgb(79, 129, 189) font-size: 20px " strong 中国质谱的未来,在年轻人身上 /strong /span /p p & nbsp & nbsp & nbsp & nbsp 谈到自己的质谱之路,潘远江回忆到,1991年,在兰州大学攻读博士学位期间,他幸运地接触到质谱技术,而彼时质谱在国内还很稀少。1996年,他远赴瑞士从事博士后研究,当导师问他身为质谱博士接触过哪些质谱仪器时,他表示实验室里的几台不同类型质谱仪器都看过,却没有机会实际操作过,这让外国导师十分惊讶。从那之后,他从MALDI-TOF开始学起,一个月学一台,将合作指导导师实验室的仪器学了个遍。 /p p & nbsp & nbsp & nbsp & nbsp 而现在国内的科研条件越来越好,许多实验室的设备条件可能已经超过了国外的实验室。随着国家支持以及质谱发展,年轻的质谱从业者处在前所未有的机遇之下。所以希望年轻人能抓住机会,努力取得更好的成果。 /p p & nbsp & nbsp & nbsp & nbsp 潘远江指出,纵观国内外成名的质谱大家,无一不具有良好的质谱基础,因为基础知识扎实之后,再从事应用的相关研究就会具有不一样的视角和思路,所以年轻人如果想要在质谱研究中有更出色的成果,对技术基础、理论原理的学习还是需要进一步加强。另外,现在中国质谱快速发展,相关从业人员的需求十分旺盛,而相对地,我国的质谱人才还是比较紧缺。所以,为了鼓励更多的年轻人加入质谱行业中来,帮助青年学者走好质谱之路,他也愿意多分享他的经验和知识,也希望有更多的质谱大家为年轻人的教育贡献力量。 /p p & nbsp & nbsp & nbsp & nbsp 潘远江也提到,质谱基础研究比较冷门,从事该领域的人很少。但基础研究是应用研究的先行者,只有基础研究上去了才能真正解决应用领域遇到的一些问题。也希望年轻人不仅仅集中在热门应用领域,也要更重视基础研究的工作。& nbsp /p p & nbsp & nbsp & nbsp & nbsp 他表示,中国质谱大会是一个非常好的契机,是年轻人最好的舞台。作为国内水平最高、规模最大的质谱会议,相信每一个从事质谱工作的人都能找到自己感兴趣的研究方向。希望每一个质谱同仁珍惜这个平台,并通过这个平台让中国质谱事业展现在世界面前。 /p p br/ /p
  • 江苏常州首创纺织品中挥发性有机SVHC检测新方法
    近日,江苏常州检验检疫局轻纺实验室建立了一种用于对纺织品中挥发性SVHC进行快速筛选的方法,实现了便捷、高效检测的目的。SVHC(Substances of Very High Concern),即高度关注物质,来源于欧盟REACH法规,常存在于纺织品生产制造过程中使用的染料、防护剂、洗涤剂等原材料中,但SVHC中挥发性有机物质占据相当的比重,如邻苯二甲酸酯类物质、阻燃剂、部分染料中间体(2,4-二肖基甲苯)等,所以会对环境或人类健康造成危害,严重会有致癌,致畸的危险。   常州检验检疫局首创的新型检测方法,基于离子迁移谱技术(IMS),采取纺织品样品直接进样的方式,可在1~6分钟内分别实现对11种挥发性SVHC的快速检测,检测限均低于100ppm,完全满足欧盟REACH法规中的1000ppm的质量含量限量要求,并可根据用户的实际需求确定报警阈值,作为针对这些挥发性高关注物质的快速筛选技术。该种检测手段轻便快捷,不仅仪器体积小巧便携,可用于现场测试,而且分析速度快,对样品前处理要求很低,大大缩短了样品的检测周期,节约了检测成本,避免了检测过程中使用的化学物质对环境的污染,为企业带来极大的便利。
  • ThalesNano公司推出可实时监测的H-Cube连续流动氢化反应系统
    2010年5月17日,在各自领域均处于领先地位的ThalesNano公司和梅特勒-托利多公司正式宣布了一项合作计划。ThalesNano公司的H-Cube连续流动氢化反应系统与梅特勒-托利多的ReactIR&trade 流动池集成系统的结合俨然成为流动化学的新利器。 此项不仅融合了ThalesNano公司H-Cube连续流动氢化反应系统实时在线修改反应参数、在几分钟之内便可提高产量和优化选择性,还融合ReactIR&trade 可实时监测反应的特点。整合后的H-Cube连续流动氢化反应系统可以内部监测并通知用户是否所有的中间体或原料已反应完全,并且更适用于可能产生有毒/危险的反应中间体反应,使化学反应更便捷更安全。 这款H-Cube连续流动氢化反应系统也可应用于大规模合成:当ReactIR&trade 和H &ndash Cube Midi或H &ndash Cube Maxi(连续流动氢化反应放大系统)整合后,可监测工艺或生产过程中的化学反应中催化剂的活性,催化剂活性下降或催化剂中毒后,更换新催化剂柱。这将确保高纯度的产品,避免了不必要的废料的纯化费用。 Official ThalesNano website: www.thalesnano.com Official ThalesNano contact email: flowchemistry@thalesnano.com Official website: www.pynnco.com Contact Information: 美国培安公司 地址:朝阳区吉庆里14号佳汇国际A202 Email: sales@pynnco.com, Tel:010-65528800
  • 《中药注射剂安全性再评价质量控制要点》征求意见稿发布
    中新网7月6日电 据国家食品药品监督管理局网站消息,全国中药注射剂安全性再评价工作将于近期全面启动,为达到提高药品标准、控制安全隐患、提高产品质量、及时淘汰存在严重安全隐患品种的目的,国家食品药品监督管理局特起草《中药注射剂安全性再评价质量控制要点》(征求意见稿)作为再评价的技术要求。   《要点》对涉及中药注射剂生产使用的原料、辅料及包装材料、生产工艺、质量检测和稳定性考察等五个方面提出要求,以保证中药注射剂质量的稳定均一。   以下为全文:   中药注射剂安全性再评价质量控制要点(征求意见稿)   按照《中药注射剂安全性再评价工作方案》及《中药注射剂安全性再评价工作实施方案》的有关要求,为控制已上市中药注射剂的安全风险,确保公众用药安全有效,制订本要点。   中药注射剂的生产应符合药品GMP关于无菌制剂的有关规定,应具备相应的人员、厂房、设备、设施及各项管理制度并严格实施,应加强原料、辅料及包装材料、生产工艺等各环节的质量管理,进行有效的全过程质量控制和检测,保证中药注射剂质量的稳定均一。   一、原料   1.中药注射剂的处方组成及用量应与国家标准一致。   2.应采取有效措施保证原料质量的稳定。应固定药材的基原、药用部位、产地、采收期、产地加工、贮存条件等,建立相对稳定的药材基地,并加强药材生产全过程的质量控制,尽可能采用规范化种植(GAP)的药材。药材标准中包含多种基原的,应固定使用其中一种基原的药材。无人工栽培药材的,应明确保证野生药材质量稳定的措施和方法。如确需固定多个基原或产地的,应提供充分的研究资料,并保证药材质量稳定。   处方中饮片的生产企业、炮制方法和条件应固定,药材来源及饮片质量应具有可追溯性,药材的要求同上。处方中含有批准文号管理原料的,应固定合法来源,严格进行供应商审计,其生产条件应符合GMP要求。   3.应根据质量控制的需要,建立可控性强的注射剂用原料质量标准,完善质量控制项目,如指纹图谱、浸出物检查等,以体现原料的特点以及与制剂质量控制的相关性,保证原料的质量稳定。   二、辅料及包装材料   1.中药注射剂所用辅料的种类及用量应与国家标准一致。包装材料应与批准的一致。   2.注射用辅料、直接接触药品的包装材料应固定生产企业,严格进行供应商审计。   3.注射剂用辅料应符合法定药用辅料标准(注射用)或注射用要求。应加强辅料的质量控制,保证辅料的质量稳定。必要时应进行精制,并制订相应的质量标准。   4.注射剂用直接接触药品的包装材料应符合相应质量标准的要求,必要时应进行相容性研究。   三、生产工艺   1.中药注射剂的生产工艺不得与法定质量标准的【制法】相违背。否则应提供相关的批准证明文件。   2.中药注射剂应严格按工艺规程规定的工艺参数、工艺细节及相关质控要求生产,并强化物料平衡和偏差管理,保证不同批次产品质量的稳定均一。关键生产设备的原理及主要技术参数应固定。   3.生产工艺过程所用溶剂、吸附剂、脱色剂、澄清剂等应固定来源,并符合药用要求,用于配液的还应符合注射用要求,必要时应进行精制,并制订相应的标准。   4.法定标准中明确规定使用吐温-80作为增溶剂的,应规定使用剂量范围,并进行相应研究和质量控制。   5.生产工艺过程中应对原辅料、中间体的热原(或细菌内毒素)污染情况进行研究,根据情况设置监控点。应明确规定除热原(或细菌内毒素)的方法及条件,如活性炭的用量、处理方法、加入时机、加热温度及时间等,并考察除热原效果及对药物成分的影响。   6.如采用超滤等方法去除注射剂中的大分子杂质(包括聚合物等),应不影响药品有效成分,并明确相关方法和条件,如滤器、滤材的技术参数(包括滤材的材质、孔径及孔径分布、流速、压力等)等,说明滤膜完整性测试的方法及仪器,提供超滤前后的对比研究资料。可在不影响药品有效成分的前提下,去除无效的已知毒性成分,并进行相应研究。   7.注射剂的整个生产过程中均应严格执行GMP,关键工序、主要设备、制水系统及空气净化系统等必须符合要求,并采取措施防止细菌污染,对原辅料、中间体的微生物负荷进行有效控制。应采用可靠的灭菌方法和条件,保证制剂的无菌保证水平符合要求(小容量注射剂及粉针剂的微生物存活概率不得高于10-3 大容量注射剂的微生物存活概率不得高于10-6),并提供充分的灭菌工艺验证资料。   四、质量检测   应根据注射剂质量控制的需要,结合质量及基础研究情况,建立合理的检测项目和检测方法,并对产品质量进行检测。   1.质控项目的设置应充分考虑注射给药以及药品自身的特点,并尽可能全面反映药品的质量状况。   2.检测方法应具有充分的科学性和可行性,并经过方法学验证,符合相应要求。   3.检查项除应符合现行版《中国药典》一部附录制剂通则“注射剂”项下要求外,还应根据研究结果,建立必要的检查项目,如色泽、pH值、重金属、砷盐、炽灼残渣、总固体(不包括辅料)、降压物质、异常毒性检查及刺激、过敏、溶血与凝聚试验等检查项目,注射用无菌粉末应检查水分。此外,有效成份注射剂应对主成份以外的其他成份的种类及含量进行必要的限量检查。对于具体品种的工艺条件下可能存在、而质量研究中未检出的大类成份,应建立排除性检查方法。挥发性成份制成的制剂,应采用挥发性成份总量替代总固体检查。必要时,应建立大分子量物质检查项。   4.应建立中药注射剂的指纹图谱,并根据与制剂指纹图谱的相关性建立原料、中间体的指纹图谱。指纹图谱应尽可能全面反映注射剂所含成份的信息。注射剂中含有的大类成份,一般都应在指纹图谱中得到体现,必要时应建立多张指纹图谱,以适应检出不同大类成份的要求。   5.多成份注射剂应根据情况建立与安全性相关成份的含量测定或限量检查方法,如毒性成份、致敏性成份等。处方药味中含有单一已上市注射剂成份的,应建立其含量测定方法。含有多种大类成分的,一般应采用具专属性的方法分别测定各大类成分中至少一种代表性成份的含量。含量测定项应确定合理的含量限度范围(上下限)。   6.以药材或饮片投料的,应制订中间体的质量标准,质控项目至少应包括性状、浸出物或总固体、含量测定、指纹图谱、微生物等指标。   五、稳定性考察   应对中药注射剂生产涉及的药材、提取物、中间体等进行稳定性考察,规定贮存条件及贮藏时间。应提供上市后产品留样稳定性考察及回顾性分析研究资料(包括配伍稳定性等)。
  • 固体核磁共振“超级放大镜”观察催化反应网络
    2016年,中国科学院大连化学物理研究所(以下简称大连化物所)院士包信和和研究员潘秀莲等提出的OXZEO催化技术发布于《科学》杂志。该项技术自提出以后就广受关注,并且入选了当年的“中国科学十大进展”。  近日,基于OXZEO催化剂设计概念,大连化物所院士包信和、研究员侯广进等利用固体核磁共振技术,在金属氧化物分子筛(OXZEO)双功能催化剂催化合成气转化机理研究领域取得了新进展。相应研究成果于6月23日发表在《自然-催化》上。  重要的催化过程与复杂的反应网络  催化技术在资源利用、能源转化和环境保护等诸多领域发挥着关键作用,是人类现代社会发展速度与质量的重要保证。而石油资源是当代能源和材料的核心来源。近年来,随着石油资源的日益匮乏,寻找补充性乃至替代性技术路径,以此满足现代社会发展日益旺盛的能源和材料需求尤为重要。  我国长期以来“富煤、缺油、少气”的资源结构,导致石油资源长期高度依赖进口。但是石油进口依赖国际环境,价格不可控,获取也容易受限。此外,人们对生态环境的保护意识也在不断增强,改良乃至废止高污染、高排放化工过程的呼声越来越高。但同时,生产效率又不能被牺牲,这使得催化研究领域面临很大的挑战。  针对国家的需求和能源现状,包信和从20世纪90年代回国起就全身心投入到能源小分子催化转化的科学研究中,带领团队深入的开展基础研究,聚焦“纳米限域催化”领域,一干就是二十余年。2016年,包信和与潘秀莲等在煤基合成气转化制低碳烯烃的研究中,创建了OXZEO催化过程。随着研究的不断深入,OXZEO催化概念已拓展成为碳资源转化的重要平台。  然而,OXZEO催化体系中涉及合成气经C1物种到多碳产物的转化过程,其反应网络非常复杂,包含催化剂表面众多的活化过程和复杂的多碳中间体,如何确定其活性组分和中间产物成为研究的难题,反应机理研究面临着挑战。  独特的设计思路  长期以来,基于在表界面催化及固体核磁共振谱学表征领域积累的丰富研究经验,包信和和侯广进等想到可以借助固体核磁共振方法对复杂多碳物种及其所处吸附相化学环境的原子超高分辨表征的优势,实现对OXZEO催化转化过程中催化剂表面活化多碳中间体的准确鉴别。  “在中科院和大连化物所的大力支持下,为研究团队搭建了优异的仪器平台,特别是前些年中科院的修购计划支持了包括高场800MHz固体核磁共振谱仪等的仪器装备,为催化反应机理研究提供了重要的设备保障。”侯广进说。  先进的表征技术和优秀的研究平台是团队在催化反应机理领域克难攻坚的利器。  基于对OXZEO催化过程的大量反应实践,研究团队发现,以甲醇催化转化为代表的传统C1转化反应机理并不能准确解释OXZEO催化体系中观察到的很多实验现象。为了充分论证OXZEO催化体系中包含的特殊反应路径,基于ZnAlOx金属氧化物是典型的合成气转化制甲醇催化剂,而H-ZSM-5分子筛是经典的甲醇转化制烃催化剂。于是团队提出要建立一个ZnAlOx/H-ZSM-5模型催化体系,可以说,这是一种独特的设计思路。  “如果我们可以在模型体系中观测到不同于甲醇直接转化过程报道过的中间体,并能够与OXZEO催化过程中观测到的独特反应现象相关联,”论文的第一作者纪毅说,“我们就可以说明OXZEO双功能催化概念是独特的,而我们观测到的关键中间体也对应了OXZEO催化中涉及的独特反应路径。”  研究人员利用模型催化体系,借助准原位固体核磁共振-气相色谱联用的分析检测方法,观测了从初始碳-碳键生成到稳态转化过程中,包括表面多碳羧酸盐、多碳烷氧基、BAS吸附环戊烯酮、环戊烯基碳正离子在内多种中间体的动态演化过程。检测到了数量众多、种类丰富的含氧化合物中间体物种,揭示了合成气直接转化的OXZEO过程与传统甲醇转化的重要区别,有力的解释了OXZEO合成气转化过程中烯烃及芳烃产物独特的高选择性。  接下来“向前也向后”  在上述研究的基础上,团队进一步提出和论证了一氧化碳和氢气在分子筛中也参与了含氧化合物的生成,并初步建立了OXZEO催化转化过程中C1中间体到多碳产物的反应网络和反应机理。  除了模型催化体系外,研究人员还在多种OXZEO催化剂上均观测到了关键中间体,验证了包括含氧化合物路径在内的反应机理的普适性。  但是,团队的研究工作不止于此,后续的基础研究会“向前也向后”。  “我们会进一步深入开展金属氧化物上C-O、H-H键活化以及C-H键形成的机理研究,进而拓展到其它碳资源转化领域如二氧化碳加氢等。”论文共同第一作者高攀告诉《中国科学报》。  与此同时,大家心里都有一个“梦”,就是将催化机理研究与实际反应密切结合,尽早实现OXZEO过程的工业化。  “基础研究需要一步一个脚印的积累,如果这些催化化学中基础科学问题的研究成果能够帮助应用研究学者建立一套完整的催化体系,设计出更高效的、理想化的催化剂,那我们的梦想就一定能实现。”侯广进提到。  有了前进的方向,整个团队将卯足精神,向前冲锋。侯广进对组内人员也提出了希望:“每个人都要有自己的思考,带着研究性思想去做工作,及时沟通交流,团队合作,协力攻坚,相信我们一定会取得更多、更好的研究成果。”  “作为包老师研究团队中的一个研究组,核磁共振是我们的特色也是优势,与其他几个研究组形成学科交叉、优势互补。最终目标,肯定是要从基础研究推向实际应用。”侯广进说。
  • 微流控电泳技术检测药物中对乙酰氨基酚(扑热息痛)和维生素C
    醋氨酚【对乙酰氨基酚,退热净(一种替代阿司匹林的解热镇痛药);扑热息痛(APAP)】广泛应用于止痛剂和解热镇痛药,用于退热、止头痛和其它轻微的疼痛等。由于药物中APAP的过量会引起暴发性肝病或肾坏死和其他毒副作用,所以药物中APAP的定量检测非常重要。 APAP水解主要生成对氨基苯酚(pAP),在医药制剂中可以作为降解产物或作为合成中间体。 据报道,抗坏血酸(维生素C)对APAP引起的肝中毒具有保护作用。 Micrux微流控系统很好的分离和检测了醋氨酚(APAP)、抗坏血酸(AA)、对氨基苯酚(pAP) 提供了简单、经济、精确的分析方法,非常适合于医药厂家检测药物的稳定性、药物分析和质量控制。相关资料可以在雷迪美特中国有限公司资料中心下载。 或电:400-628-2898 Email:analysis@126.com!
  • Y染色体检测助白银案告破 基因技术千亿级市场待开启
    很多人认为,“白银案”告破是因为基因技术的进步,其实Y-DNA遗传标记技术已有30多年历史,警方也并非第一次使用  位列“中国四大谜案”之首的一桩陈年悬案告破,受害人家属得到欣慰的同时,传统的DNA技术以及新一代基因测序技术也都跟着走红了。  公安部刑侦局8月27日发布消息,1988~2002年间强奸、杀害多名女性的犯罪嫌疑人高承勇在甘肃省白银市落网。高承勇对犯罪事实供认不讳,甘蒙“805”系列强奸杀人残害女性案(白银案)成功告破。  由于帮助办案人员找到犯罪嫌疑人的是一种叫作Y-DNA遗传标记的技术,有人将该案的最终告破归因于基因技术的进步。事实上,Y-DNA遗传标记技术已有30多年历史,是一项十分成熟的技术,警方也并非第一次使用。  相比Y-DNA遗传标记技术,新一代基因测序技术更为先进,基于新技术,寻人(寻亲)或许将不再是一件难事。未来,在医疗健康等领域,基因技术将开启一个新的千亿级市场。  Y染色体检测技术立功  提及司法侦破中的基因技术,很多人都会觉得“酷炫”,因为侦查人员可以仅凭现场的血迹、精液、指纹等身体特征线索,就能在茫茫人海中锁定犯罪嫌疑人。  事实上,从线索到锁定嫌犯,中间还要跨越巨大的数据库鸿沟。  甘肃省白银市在1988~2002年先后发生了9起女性惨遭入室杀害的案件。其间,内蒙古自治区包头市昆都仑区也发生过两起类似案件。  虽然历次罪案现场都留下了数量不等的血迹、精液、指纹、足印等线索,但因为上世纪90年代西部地区的街头几乎没有监控探头,案发前后也几乎没有目击者和间接证人,警方一直未能查出凶手的身份。  直到近期,与案犯同姓氏的远房堂叔因为在甘肃省武威市民勤县犯了罪被监视居住,白银警方采集到了他的血样,经Y-DNA检验分析后发现,结果与“805”大案嫌犯的Y-DNA信息相符合。这一初步检测的结果表明,案犯与此人有相同的Y染色体遗传,是同一家族的男性成员。  警方随后启动家系排查,对其家族上下直系男性逐一筛排分析,尤其是警方已经掌握的嫌犯的大致年龄,最后确定此人的远房侄子高承勇具备作案条件。  高承勇归案后,其本人指纹和DNA与案发现场的指纹和DNA相同。经审讯,案犯对犯罪事实供认不讳。  30多年的老技术  很多人认为,白银案最终告破是因为基因技术的进步,其实Y-DNA遗传标记技术已有30多年历史,警方也并非第一次使用这一技术。  Y染色体鉴定为基础的姓氏检测,是一项生物技术,最早来源于亲子鉴定技术。DNA中有一种特异性的碱基序列称短串联重复顺序(Short Tandem Repeat, STR),Y染色体上的STR称Y-STR,具有家族特异性。  目前已在Y染色体上发现30个左右的STR标记物,通常选取其中6~10个标记物即可满足姓氏检测鉴定的基本要求。另有数据显示,如果把中国12.5亿的汉族人口按照Y-DNA的家系来区分,中国大约有100万个姓氏家系。  华大司法研究人员张博士告诉记者,2006年8月告破的陕西汉阴邱兴华案也用到了这一技术。  在山阴道观铁瓦殿杀害了10名道观管理人员和香客后,邱兴华逃离现场。公安人员从他抽过的烟蒂携带的脱落细胞上,进行了Y-染色体DNA检测,加上相关证人的描述,确定了邱兴华是犯罪嫌疑人并对他进行了抓捕。  Y-DNA遗传标记技术出现了30多年,公安应用也较为广泛,只是普通人并不常接触。当然,这一技术的应用对于数据库内的DNA样本量也有一定要求。  在业内人士看来,DNA技术用于司法破案的震慑作用比实际作用更大,只要在案发现场发现任何蛛丝马迹,公安人员就能通过一定的科技手段找到犯罪嫌疑人。  千亿级市场待开启  随着新一代基因测序仪的出现,新一代基因测序技术也将更多在司法领域“大显神威”。  张博士告诉本报记者,比如新技术可以进行“基因画像”,和传统的画像方式相比,基因画像更加逼真。同时,对于一些复杂的犯罪现场,犯罪嫌疑人的DNA非常微量,可能还混杂了细菌、微生物等,用传统的技术无法检测,新一代基因测序技术都可以解决。  新一代基因测序技术虽然更高效,但在司法鉴定中的推广比较慢,原因之一是成本高。新一代基因测序技术的成本与之前的技术相比,实现了“超摩尔定律”的降低速度,个人全基因组数据从最初的30亿美元,降低到目前的1000~1300美元左右,如果这一成本在几年内有望降低到100美元甚至更低,那普通人都可以到专业的基因机构存储自己的DNA信息。  除了抓捕犯人,让走失的老人或儿童回家,也是DNA信息的重要作用。如果一名孩子或老人录入过DNA信息,一旦走失,被公安人员发现后,便可通过DNA信息比对,迅速找到失散的家人。  基于寻人(寻亲)目的而存储的DNA信息不需要存储个人全基因组数据。张博士表示,只需要存储一些中立DNA,就能在茫茫几十亿人中确定并找到唯一的个人,也不会涉及这个人的功能基因和疾病信息。  尽管市场上也有一些基因检测公司推出瞄准儿童走失的“基因ID”产品,但是,国内像华大司法一样具备司法部核准的第三方鉴定机构且掌握新一代基因技术的机构并不多。  有些走失了孩子的家庭,父母并不知道可以通过孩子用过的牙刷、鞋袜提取到DNA信息,存储下来,未来如果孩子再有机会录入DNA信息,就能通过比对找到父母。  华大司法近期推出的公益项目,就是免费帮助丢失儿童的家庭建立DNA档案,但是至今只有三个家庭主动向华大司法求助。  “存储DNA的目的是为了让我们无论在哪儿都能找到家人。”张博士说。  除了寻人,新一代基因测序技术还能用于亲子鉴定。张博士表示,传统的DNA分型技术只能在孩子出生以后或通过羊水穿刺这种有创方式来进行取样,确定孩子和父母之间的血缘关系。而利用新一代基因测序技术,仅通过抽取怀孕妈妈的外周血,就能尽早知道亲子信息。  事实上,新一代基因测序技术除了司法领域的应用外,在临床医疗领域,很多基因测序公司已经研发出贯穿整个生命周期的产品,个体化医疗的时代正在被基因技术开启。  比如,怀孕前可以做夫妇双方的遗传病基因检测,针对一些有经常性流产史的人也可以对流产组织进行基因检测辅助诊断,新生儿出生后可以做遗传代谢病、遗传性耳聋等儿童期高发遗传病检测,做到防患于未然。  针对肿瘤基因检测,可以通过抽取外周血检测与肿瘤相关的508个基因,可以指导个体化用药,以及预测家族遗传性肿瘤的风险,在一些癌症治疗中,基因检测也可起到常规用药指导的作用。  业内人士表示,如果这些检测产品能够经过监管部门审批,和医疗机构合作,进入临床使用,基因技术打开的将是一个千亿级的市场,而现在正处于市场看到光明前的黑暗期。
  • 手持式原辅料检测光谱仪NanoRam闪耀API CHINA
    2012年4月27日,为期三天的API CHINA 中国国际医药原料药、中间体、包装、设备交易会成功落幕。必达泰克公司的手持式拉曼光谱仪NanoRam在医药原辅料快检应用中有着快速、准确、便捷的独特优势,备受瞩目。 采用NanoRam手持式拉曼光谱仪检测医药原辅料,整个过程只需10-15秒,其中有5秒是国际统一的激光预警时间。由于大多数物质分子的拉曼光谱具有类似人体&ldquo 指纹&rdquo 的唯一特性,所以NanoRam可以准确的鉴别、验证物质的属性,检测结果稳定、可靠,可追溯。NanoRam高度集成了专利激光器和热电致冷检测器,性能优异,可是重量仅有1.1千克,一只手即可操作。而且它内置了专业的拉曼分析软件,友好的中英文显示,非技术人员亦可轻松操作。NanoRam无需样品预处理,它可以透过玻璃、塑料包装检测,是一种无污染的检测方式,同时它还可以检测含水样品。NanoRam也无需待检隔离区和洁净室,能够在仓库、户外等多种环境下进行原辅料的检测。 除了以上优势,NanoRam还实现了与PC端的数据同步传输与共享,通过i-Pad远程实时监管、控制多台NanoRam,以及采用开放的SDK和数据接口,无缝对接客户的ERP或MES系统。NanoRam通过了3Q认证,FDA&CDRH认证,符合GMP规范、USP&EP规范,CFR 21 Part 11&1040.10兼容。手持式拉曼光谱仪能使医药企业提高生产效率、降低资源损耗、增强生产安全、整合生产流程、满足日益增长的精益生产需求,已在美国、欧洲等数千家制药企业广泛使用。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制