当前位置: 仪器信息网 > 行业主题 > >

原电池原理

仪器信息网原电池原理专题为您提供2024年最新原电池原理价格报价、厂家品牌的相关信息, 包括原电池原理参数、型号等,不管是国产,还是进口品牌的原电池原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合原电池原理相关的耗材配件、试剂标物,还有原电池原理相关的最新资讯、资料,以及原电池原理相关的解决方案。

原电池原理相关的方案

  • 安东帕锂离子电池电极材料的密度测量
    如今,可再生能源作为原电池、汽车电池的环保替代品而越来越受欢迎。密度测量在锂离子电池电极材料的制造过程中起着重要作用。
  • 自动电位滴定仪测定全钒液流电池用电解液中硫酸根离子含量
    全钒液流电池是一种以钒为活性物质呈循环流动液态的氧化还原电池。‌‌全钒液流电池的应用场景包括‌风能、‌太阳能等‌可再生能源发电过程,‌电网调峰过程,以及‌城市储能电站等。本试验通过CT-1Plus电位滴定来测定一种全钒液流电池用电解液中的硫酸根离子含量。
  • 自动电位滴定仪测定全钒液流电池用电解液钒离子含量
    全钒液流电池是一种以钒为活性物质呈循环流动液态的氧化还原电池。钒电池电能以化学能的方式存储在不同价态钒离子的硫酸电解液中,通过外接泵把电解液压入电池堆体内,在机械动力作用下,使其在不同的储液罐和半电池的闭合回路中循环流动,采用质子交换膜作为电池组的隔膜,电解质溶液平行流过电极表面并发生电化学反应,通过双电极板收集和传导电流,从而使得储存在溶液中的化学能转换成电能,广泛应用于储能领域。本试验通过CT-1Plus电位滴定来测定一种全钒液流电池用电解液钒离子含量。
  • 解析电池针刺试验机:保障电池安全的关键技术
    电池针刺试验机的工作原理基于模拟电池内部短路的情况。
  • 电池隔膜抗穿刺性能的验证方法
    本文采用Labthink兰光XLW(PC)智能电子拉力试验机对电池隔膜样品的抗穿刺性能进行验证,并通过对验证方法、试验原理、设备参数及适用范围等内容的详细描述,为企业监控电池隔膜的抗穿刺性能提供参考。
  • 锂离子电池隔膜材料的抗穿刺性能测试方法
    电池隔膜是锂电子电池不可或缺的组成部分,隔膜抗穿刺性能优劣对电池性能具有重要影响。本文采用Labthink兰光XLW(PC)智能电子拉力试验机对电池隔膜样品的抗穿刺性能进行验证,并通过对验证方法、试验原理、设备参数及适用范围等内容的详细描述,为企业监控电池隔膜的抗穿刺性能提供参考。
  • 汽车锂电池高低温环境箱可靠性测试方案
    高温试验、恒温恒湿、温度冲击试验在汽车锂电池的品质管理起到了很重要的作用,在研发过程中需要依据不同的试验标准来重复测试被测件的可靠性,其主要原理就是模拟锂电池在不同温度下充电、放电以及老化测试,确保锂电池效率和可预期寿命的关键。
  • 电池负极材料-石墨微波消解解决方案
    利用微波消解仪密闭高温高压原理,配合混合类强酸试剂,对难溶的电池负极材料样品进行完全消解,验证石墨材料在微波消解领域中的应用。
  • 使用台式XAFS/XES谱仪对电池材料进行价态分析
    XAFS技术在电池材料,尤其是正材料,在充放电过程中化学态的分析,有着重要的意义,可以帮助科学家们了解电材料的制备过程,电池组装,运行条件等因素对其化学态的影响,有利于人们更深入地了解电池的工作原理,优化电池结构的设计。采用easyXAFS公司生产的台式XAFS/XES谱仪,科学家们能够方便的通过XANES技术对一系列电材料的化学态进行分析,包括充电和放电态,如LiCoO2, VOPO4, NMC(镍锰钴三元电材料)等等。
  • SPECTRUMA 辉光放电光谱仪对锂离子电池的分析
    锂离子电池(LIB)一般是使用锂合金金属氧化物为正极材料、石墨为负极材料、使用非水电解质的电池。锂离子电池的工作原理是基于锂离子在石墨阳极的碳层或阴极的晶体结构之间的反复嵌入/脱嵌循环。电极的成分和层厚等对锂离子电池的性能和应用有着重要的影响,准确分析测定这些参数对研发者和使用者都有着重要的意义。通常用SEM/EDS分析锂离子电池电极的成分和层厚,但是存在需要切面处理,制样和分析时间较长等问题。我们提出利用Spectruma辉光放电光谱仪,快速且精确地测试这两个参数的解决方案。
  • 四端子法测试蓄电池电池内阻
    蓄电池作为电源系统停电时的备用电源,已广泛的应用于工业生产、交通、通信等行业。如果电池失效或容量不足,就有可能造成重大事故,所以必须对蓄电池的运行参数进行全面的在线监测。蓄电池状态的重要标志之一就是它的内阻。无论是蓄电池即将失效、容量不足或是充放电不当,都能从它的内阻变化中体现出来。因此可以通过测量蓄电池内阻,对其工作状态进行评估。(版权作者所有,仅做学术交流参考)
  • 电池和电池材料测试
    “十三五”期间,新能源汽车产业高速发展,在财政补贴、资本涌入及全行业共同推动下,新能源汽车产业规模在持续扩大,电动汽车安全焦虑、里程焦虑等问题逐渐改善,市场接受度也有显著提升。新能源汽车的飞速发展得益于锂离子电池技术的突破。90年代,锂离子电池的问世引发了电子设备的革命。手机、计算机轻便化,MP3、平板电脑等电子设备应运而生,电子消费市场出现前所未有的繁荣。经过多年的发展,锂离子电池的性能得到进一步优化,目前已在3C消费、储能,尤其是动力电池领域得到越来越来广泛的应用。2020年,动力电池领域消费锂电需求高达56%,预计2025年将达到80%,动力电池的需求将在未来成为推动锂离子电池技术完善的主要动力。
  • 新能源电池试验箱对锂电池的防爆性能检测
    随着电动汽车的兴起,新能源电池试验箱在这个行业中也起到了很大的用处,甚至也支撑了很多企业的生产价值。锂电池引起的安全事故大多数都是因为短路而导致的,我们都知道,当电池正负极在电阻很小的情况下,相互连接的是不正常的通电,就像我们常说的短路时,电池里面会产生很大的电流和热量,这样不仅会造成电池寿命严重损害,还会对锂电池内部压力的骤增,而且对于锂离子的化学特征很活泼,会导致电池外壳的爆裂和燃烧的情况发生。那么,我们的试验仪器如何避免这一现象发生呢?下面小编给大家好好的分析:
  • 电池(锌镍液流电池)电位滴定仪测定氢氧根离子浓度
    锌镍单液流电池是一种新式的液流电池,简易的电池结构、较长的使用寿命以及安全环保等特点,使其在储能方面具备很好的发展前景。锌镍单液流电池有着较大的放电比容量,并且循环性能好,工作温度范围大,电解液材料的性能与电池的放电容量有着很大的关联。本试验通过 MT-V6 自动电位滴定仪来测定锌镍液流电池用电解液氢氧根离子浓度。
  • 大电流脉冲用于电池研究
    测试电池和电池材料的性能有许多不同的方法,传统方法包括长期循环、确定循环寿命和容量衰减;电化学阻抗谱(EIS)分析内部电阻、电容和其他特性;模拟真实的电池使用状况和电池管理,对电池快速、大电流脉冲研究,本应用报告旨在表明我们的设备可以处理这些苛刻的应用,过后仍需要您进一步研究,看看电池是否可以响应这些类型的脉冲。
  • 固态电池,最新Science!
    与用于日常手机和电动汽车的传统锂离子电池相比,固态电池(SSBs)具有重要的潜在优势。在这些潜在优势中,有更高的能量密度和更快的充电速度。由于没有易燃有机溶剂,固体电解质分离器还可以提供更长的寿命、更宽的工作温度和更高的安全性。SSBs的一个关键方面是其微观结构对质量传输驱动的尺寸变化(应变)的应力响应。在液体电解质电池中,正极颗粒中也存在成分应变,但在SSBs中,这些应变导致膨胀或收缩的电极颗粒与固体电解质之间的接触力学问题。在阳极侧,锂金属的电镀在与固体电解质的界面上产生了自己的复杂应力状态。SSBs的一个关键特征是,这种电镀不仅可以发生在电极-电解质界面上,而且可以发生在固体电解质本身、气孔内或沿晶界。这种受限的锂沉积形成了具有高静水压应力的区域,能够在电解质中引发破裂。尽管SSBs中的大多数故障是由机械驱动的,但大多数研究都致力于改善电解质的离子传输和电化学稳定性。为了弥补这一差距,在这篇综述中,美国橡树岭国家实验室Sergiy Kalnaus提出了SSB的力学框架,并审查了该领域的前端研究,重点是压力产生、预防和缓解的机制。相关论文以“Solid-state batteries: The critical role of mechanics"为题,发表在Science。图片具有高电化学稳定性的固体电解质与锂金属和离子电导率高于任何液体电解质的硫化物固体电解质的发现,促使研究界转向SSBs。尽管这些发现已经播下了SSBs可以实现快速充电和能量密度加倍的愿景,但只有充分了解电池材料的机械行为并且将多尺度力学集成到SSBs的开发中,才能实现这一承诺。图片固态电池的前景开发下一代固态电池(SSBs)需要我们思考和设计材料挑战解决方案的方式发生范式转变,包括概念化电池及其接口运行的方式(图1)。采用锂金属阳极和层状氧化物或转化阴极的固态锂金属电池有可能使当今的使用液体电解质的锂离子电池的比能量几乎增加一倍。然而,存储和释放这种能量会伴随着电极的尺寸变化:阴极的晶格拉伸和扭曲以及阳极的金属锂沉积。液体电解质可以立即适应电极的体积变化,而不会在电解质中积聚应力或失去与阴极颗粒的接触。然而,当改用SSBs时,这些成分应变、它们引起的应力以及如何缓解这些应力对于电池性能至关重要。SSBs中的大多数故障首先是机械故障。SSBs的成功设计将与材料如何有效地管理这些电池中的应力和应变的演变密切相关。要在SSBs中实现高能量,最重要的是使用锂金属阳极。从以往来看,锂金属阳极一直被认为是不安全的,因为锂沉积物有可能生长,锂沉积物会穿透电池,导致短路和随后的热失控。解决锂生长问题最有希望的解决方案是使用固态电解质(SSE)代替液体电解质,因为它具有机械抑制锂枝晶渗透的潜力。然而,原型固态锂金属电池的实际经验表明,即使是强的电解质材料,锂也具有不同寻常的渗透和破裂倾向。解决阴极-电解质界面和锂-电解质界面挑战的关键是清楚地了解涉及电池相关长度尺度、温度和应变率的所有材料的力学原理。图片图 1.锂金属SSBs及其相应的力学和传递现象的示意图【SSBs中运行的压力释放机制】由于锂传输和沉积不可避免地会产生局部应力,因此考虑锂金属和SSE中可能的应力消除机制至关重要。目标是激活非弹性或粘弹性应变以降低应力大小。这种激活机制在不同类别的固体电解质和金属锂中是不同的。固态电解质是否能够管理由氧化还原反应施加的应变引起的应力将取决于在所施加的电流密度(应变率)和工作温度下操作应力消除机制的可用性。当非弹性流无法在特定的长度和时间尺度下激活时,应力通过断裂进行释放。图片图 2.锂金属的长度尺度和速率依赖性力学【陶瓷的塑性变形】SSBs中的主要应力来源包括(i)Li镀入固体电解质中的缺陷,(ii)由于固体电解质约束的阴极颗粒膨胀而产生的应力,以及(iii)外部施加到电池上的应力(典型的应力)。SSBs工程的目标是采用能够在SSBs中可逆变形并限制应力而不产生断裂的电池材料组合。虽然通过扩散流或位错滑移来限制应力累积是金属锂的合适机制,但陶瓷电解质在室温下不会激活滑移系统,而是会断裂。在这种情况下,材料的增韧不是通过位错的产生而是通过移动现有位错来实现的。因此,关键是有意在材料中引入高位错密度,以便有可能在裂纹端周围的小体积中找到足够的位错(图 3)。具有高抗断裂性的非晶固体电解质的一个例子是锂磷氮氧化物(Lipon)。使用这种非晶薄膜固体电解质构建的电池已成功循环超过10,000次,容量保持率为 95%,并且没有锂渗透 (6。此外,已证明电流密度高达10 mA/cm2。对无定形Lipon力学的研究有限,但表明制备成薄膜时材料坚固。Lipon具有一定程度的延展性。这种延性行为在中得到了进一步揭示,表明Lipon可以在剪切中致密和变形以降低应力强度。图片图 3.通过非晶材料中的致密化和剪切流动触发塑性,并通过在结晶陶瓷中引入位错来增韧,从而避免断裂对离子传导非晶材料和玻璃的变形行为和断裂的研究相当有限。然而,在Lipon中,室温下观察到与LPS玻璃类似的部分恢复。根据分子动力学(MD)模拟,有人提出Lipon中的致密化是通过P-O-P键角的变化而发生的。这种结构变化可能是可逆粘弹性应变背后的原因。然而,由于MD方法无法实现时间尺度,模拟致密化恢复是不可行的。在不需要外部能量输入的情况下至少部分恢复致密体积的能力值得进一步研究。在循环负载下,这种部分恢复会产生类似磁滞的循环行为(图 4)。图片图 4. 在循环加载纳米压痕时,Lipon的形变恢复会导致类似滞后的行为【电化学疲劳】尽管已经在应力消除的背景下讨论了断裂,但断裂的起源通常要复杂得多。在传统结构材料中,循环应力和应变会导致损伤累积,最终导致断裂失效。活性电极材料对由主体结构中锂的重复插入和脱除引起的循环电化学负载做出响应,其方式类似于对外部机械力的循环施加的结构响应。对于阴极,由此产生的变化导致在两个不同长度和时间尺度上不可逆的损伤累积,并由不同的机制驱动:(i)多晶阴极颗粒中的晶间断裂,以及(ii)单阴极颗粒中锂化引起的位错动力学和穿晶断裂。电极颗粒的循环电化学应变导致尺寸变化,足以扩展固体电解质和阴极活性材料之间的界面裂纹。固体电解质内可以产生额外的裂纹,作为界面裂纹的延伸或作为新的断裂表面,作为减少SSBs中大而复杂的应力的方法(图 5)。现有的实验证据表明,大多数此类界面破裂发生在第一个循环内,并导致初始容量损失。然而,这种裂纹的演变可能是一个循环过程,让人想起疲劳裂纹的扩展;目前,还没有足够的实验信息来自信地支持或拒绝这一假设。图片图 5.复合固态阴极的疲劳损伤【固体电解质中的锂增长】根据目前对固体电解质失效的理解,裂纹的形成对锂通过陶瓷电解质隔膜的扩展起着重要的作用。大多数锂诱导失效的理论处理都认为锂丝是从金属-电解质界面向电解质主体传播的(模式I降解)。然而,锂的还原和随后的锂沉积很容易发生在电解质内,远离与锂的界面(模式II降解)。最后,可以想象这样一种情况,即锂沿着多晶陶瓷电解质的晶界均匀地沉积,从而穿过电解质而不需要裂纹扩展。当电池内施加高电流密度时,这种情况可能会在泄漏电流非常高的情况下发生(图6)。图片图 6.锂通过固体电解质传播的示意图【小结】最近的研究对应变的起源以及SSBs各组成部分的应力消除机制提供了洞察力。最重要的经验之一或许是,在较小的长度范围内,锂的强度是块状锂的100多倍,因此无法放松在锂电镀过程中在界面上积累的应力。这就需要通过固体电解质释放应力,通常会导致失效。电池因锂离子扩散导致电解质破裂而失效,这是最关键的失效类型,也是最常研究的导致短路的失效类型。与突然短路相比,充放电循环下电池容量的降低虽然不那么明显,但仍具有很大的危害性,这与阴极/固体电解质界面裂纹的形成有关。这两种失效模式都与锂、固体电解质和正极活性材料的长度尺度和额定力学以及它们在不断裂的情况下耗散应变能的能力直接相关。尽管在了解这些关键材料的应力释放方面取得了很大进展,但我们的认识仍然存在很大差距。该研究对SSBs力学进行了综述,并为构思和设计机械稳健的SSBs搭建了一个总体框架,即:(i)识别和理解局部应变的来源;(ii)理解应变产生的应力,尤其是电池界面上的应力,以及电池材料如何应对应变。
  • 优可测白光干涉仪AM7000系列新能源电池-钙钛矿表面粗糙度检测解决方案
    优可测白光干涉仪AM7000系列可以应用在新能源电池产业的多个工艺段,产品采用白光干涉原理,可以测量表面粗糙度、膜厚、高度等三维形貌特征,本方案以钙钛矿表面粗糙度检测为例。
  • 天津兰力科:直接甲醇燃料电池有序功能铂基合金阳极催化剂的研究
    能源的短缺和人类对能源的不合理运用,给人类自身的生存条件和自然环境造成了极大的破坏。燃料电池作为一种不经过燃烧直接以电化学方式将燃料的化学能转化为电能的发电装置,有望成为21世纪首选的洁净、高效的发电技术。直接甲醇燃料电池(DirectMethanol Fuel Cell)是燃料电池的一个重要的分支,以甲醇为燃料,具有无污染、能量转化率高、储存和运输方便等优点,有望在便携式电源、电动机车和野外电站等方面得到应用,但是目前阻碍DMFC发展的主要问题是甲醇氧化的电极材料活性不高且对甲醇吸附能力较好的铂的价格昂贵,本文的主要目的是制备出高催化活性且成本较低的甲醇电催化氧化的阳极催化剂。本论文采用了电化学方法,如循环伏安法,常规脉冲伏安法及X射线粉末衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)、X射线能量色散谱(EDS)表征等技术手段研究了铂基功能性系列阳极阵列催化剂的制备方法及对甲醇电催化氧化性能,并讨论了甲醇在催化剂上的催化氧化机理。所制备出来的普通铂基合金修饰玻碳电极、铂基多元纳米线阵列电极、铂基多元空心球和Nafion试剂修饰的玻碳电极对甲醇的电催化氧化性能有了很大的提高,且所用的电极材料(贵金属)相比普通铂电极成本明显降低,得到的实验结果对甲醇燃料电池的商业化有一定的指导意义。本论文综述了燃料电池的发展历史及其分类,重点介绍了直接甲醇燃料电池的工作原理及研究进展和应用前景,尤其是直接甲醇燃料电池的阳极催化剂研究进展以及对纳米电催化材料在甲醇燃料电池阳极催化剂中的应用前景进行了详细说明,由此得出本文的选题依据,主要研究内容和结论如下:
  • 禾工:AKF-BT2015C锂电池专用卡氏水分仪分析电池原料及电极膜片的水分含量
    锂离子动力电池能量高、体积小、重量轻正在逐步的替代传统的铅酸电池,镍镉电池及镍氢电池,随着锂动力电池的量产,需要严格控制电池原料及电极膜片的水分含量。本实验采用AKF-BT2015C锂电池专用卡尔费休水分仪可测定多种电池原料水分,电解液无需加热可直接进样,磷酸铁锂、石墨、负极片等固态电池材料则需采用卡氏加热法,含水量低于100ppm的样品也能准确定量,实现生产监测控制的目的。
  • AKF-BT2015C锂电池专用卡氏水分仪分析电池原料及电极膜片的水分含量
    锂离子动力电池能量高、体积小、重量轻正在逐步的替代传统的铅酸电池,镍镉电池及镍氢电池,随着锂动力电池的量产,需要严格控制电池原料及电极膜片的水分含量。本实验采用AKF-BT2015C锂电池专用卡尔费休水分仪可测定多种电池原料水分,电解液无需加热可直接进样,磷酸铁锂、石墨、负极片等固态电池材料则需采用卡氏加热法,含水量低于100ppm的样品也能准确定量,实现生产监测控制的目的。
  • 新能源电池试验箱 解决方案
    为加快推进新能源产业的发展,在新能源产业的各子行业中,新能源汽车将是未来的发展重点,而新能源汽车电池和充电桩将得到空前的发展。我司研发的新能源电池试验箱主要用于各类大型电池的环境温度测试,如:可进行长时间连续测试新能源电动汽车中的锂电池在高温、低温、湿热、温度交变循环等各种温度环境下的状态,检测锂电池在各种温度下是否会出现故障,爆炸等情况。
  • 哈希解决方案 电池行业
    电池生产中的废水主要来源有电池生产线清洗浆料的废水;调配浆料中洒漏的药剂废水;清洗生产地面的废水。电池生产中的废水含有大量的Zn2+, Mn2+, Hg2+等重金属离子,不加治理排放,将对环境造成污染。在生产过程中使用含汞、锌、锰和淀粉等原料,在电液配制、糊化、洗碳棒头等生产过程中排出的废水重金属污染物浓度平均为:汞0.08mg/L、锌315mg/L、锰73mg/L,直接排放,对环境造成较严重的污染。通过对电池废水水质和废水排放特点的分析,确定如下工艺流程:废水从调节池自流至反应池,在反应池的入口与出口处分别加入三组药剂,再由进流泵将经过混凝反应的废水泵入净化器内处理,处理后的清水从顶部流出,污泥从底部排入污泥浓缩罐,经污泥浓缩罐及污泥贮罐浓缩后脱水运走。哈希电池行业监测方案,重点分析了废水处理的流程与水质特点,并根据不同特点给出解决方案,更好的助力您的水质分析测试。更多精彩内容如实际应用案例等,请您下载后查看。
  • 国仪量子扫描电镜在锂离子电池中的应用
    自 1991 年锂离子电池(LIBs) 首次商业化以来, 锂离子电池因其具有比能量高、 循环寿命长、 无记忆效应、 安全性高等优势而迅速占据主流市场。 经过几十年的发展, 我国已成为全球最大的锂离子电池生产国和消费国。 锂离子电池按照应用领域主要分为储能电池、 消费电池及动力电池。 当前消费锂离子电池领域需求已趋于饱和, 随着全球新能源产业的发展, 新能源汽车逐渐成为锂离子电池的大需求产业, 推动了动力锂离子电池产业链的快速发展。
  • 复纳“锂”论|锂电池安全分析及预防
    锂离子电池安全事故大多以热失控方式发生,其基本特征是:大多由最初的内短路产生热量,由于电池的导热性较差,热量积累推高电池的温度,当温度升高至引发电池内部的链式化学反应时,电池温升将逐渐加速,直至电池内化学反应放热量极大,任何散热手段都无法阻止电池温升,即电池发生热失控。
  • 电池老化测试方法高温老化试验箱
    电池老化测试是为了检测电池在使用一段时间后的性能变化情况。在电池老化测试中,可以通过测试电池的电压、内阻、厚度等参数来判断电池的老化程度和安全性。以下是关于电池老化测试的具体测量方法和原因。
  • 磷酸的电位滴定法
    一、实验目的1.掌握电位滴定的方法及确定化学计量点的方法。2.学会用电位滴定法测定弱酸的pKa。二、实验原理在以NaOH滴定H3PO4时,将饱和甘汞电极及玻璃电极插入待测溶液中,使之组成原电池。由于玻璃薄膜上的阳离子能与溶液中的H+产生离子交换而产生电势,因而称玻璃电极为指示电极,甘汞电极为参比电极,当NaOH溶液不断滴入试液中,溶液H+的活度随着改变,电池的电势也不断变化。以滴定体积VNaOH为横坐标,相应的溶液的pH为纵坐标,绘制NaOH滴定H3PO4的滴定曲线,曲线上呈现出两个滴定突跃,以“三切线法”作图,可以较准确地确定两个突跃范围内各自的滴定终点。
  • 太阳能电池的表面接触角测定
    太阳能电池(光伏电池)是一种能通过光电效应将光能量直接转化成电化学能量的电池。市场上有很多钟太阳能电池,现在最常见的太阳能电池是制备在硅表面。其他的一些太阳能电池包括薄膜电池,染料电池,有机高分子太阳能电池。本文中介绍了光学接触角测量仪如何使用在太阳能研发中。
  • 锂电池解决方案
    日立的SEM可高倍观察锂电池的正负极材料的表面信息,也可小束流无损伤观察锂电池隔膜的形貌。日立的Ion Milling可以将锂电池正负极和隔膜无损伤的切割,以观察截面信息。日立的AFM可以检测锂电池正负极的扩散电阻。而整个过程都可以在惰性气体的保护下完成,避免与空气接触引起氧化。Scion的气相色谱可以对锂电池电解液进行测试,分析其成分。而Kurabo的搅拌脱泡机可以使锂电池正极/负极均匀混合,以保证更好的性能。
  • 锂电池充放电产热测试
    温度对锂电池性能、寿命及安全性具有重要影响。电池热管理系统(BTMS)的职责是确保电池始终工作在合适的温度范围内。对于性能优良的BTMS,其设计与优化离不开电池充放电产热数据的支撑。
  • 氦质谱检漏仪锂电池检漏
    锂离子电池中的真空技术: 锂电池作为储能设备之一, 是一类由锂金属或锂合金为负极材料, 使用非水电解质溶液的电池. 锂电池大致可分为两类: 锂金属电池和锂离子电池. 锂电池形状包含可变的软包电池和形状固定的圆柱形和棱柱形. 锂电池用于各种需要长时间能量储备的终端产品. 由于其重量轻而能量密度大, 在智能手机, 平板和笔记本电脑, 移动通讯等设备和电动汽车中应用尤其普遍, 例如正在开发的大容量锂离子电池也在电动汽车中开始试用, 锂电池将成为21世纪电动汽车的主要动力电源之一, 并将在人造卫星, 航空航天和储能方面得到应用. 无论是哪种类型, 锂电池生产过程的多个环节都需要用到真空技术.
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制