当前位置: 仪器信息网 > 行业主题 > >

拉拔仪原理

仪器信息网拉拔仪原理专题为您提供2024年最新拉拔仪原理价格报价、厂家品牌的相关信息, 包括拉拔仪原理参数、型号等,不管是国产,还是进口品牌的拉拔仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合拉拔仪原理相关的耗材配件、试剂标物,还有拉拔仪原理相关的最新资讯、资料,以及拉拔仪原理相关的解决方案。

拉拔仪原理相关的资讯

  • LBY-Ⅵ型拉拔试验机
    table width=" 633" cellspacing=" 0" cellpadding=" 0" border=" 1" align=" center" tbody tr style=" height:25px" class=" firstRow" td style=" border: 1px solid windowtext padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 成果名称 /span /p /td td colspan=" 3" style=" border-color: windowtext windowtext windowtext currentcolor border-style: solid solid solid none border-width: 1px 1px 1px medium border-image: none 100% / 1 / 0 stretch padding: 0px 7px " valign=" bottom" width=" 501" height=" 25" p style=" text-align:center line-height:150%" strong span style=" line-height:150% font-family:宋体" LBY- /span /strong strong span style=" line-height:150% font-family: 宋体" Ⅵ型拉拔试验机 /span /strong /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 单位名称 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 501" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 北京天誉科技有限公司 /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 联系人 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 168" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 张磊 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 161" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 联系邮箱 /span /p /td td style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 172" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" zhanglei@ctc.ac.cn /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 成果成熟度 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 501" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" □正在研发& nbsp & nbsp □已有样机& nbsp & nbsp □通过小试& nbsp & nbsp □通过中试& nbsp & nbsp √可以量产 /span /p /td /tr tr style=" height:25px" td style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 132" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" 合作方式 /span /p /td td colspan=" 3" style=" border-color: currentcolor windowtext windowtext currentcolor border-style: none solid solid none border-width: medium 1px 1px medium padding: 0px 7px " width=" 501" height=" 25" p style=" line-height:150%" span style=" line-height:150% font-family:宋体" □技术转让& nbsp & nbsp & nbsp □技术入股& nbsp & nbsp & nbsp √合作开发& nbsp & nbsp & nbsp □其他 /span /p /td /tr tr style=" height:169px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 633" height=" 169" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 成果简介: /span /strong /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201803/insimg/36804364-dd79-440f-b8ee-4a5cade4cfa5.jpg" title=" 36.jpg" style=" width: 400px height: 396px " width=" 400" vspace=" 0" hspace=" 0" height=" 396" border=" 0" / /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" LBY- /span span style=" line-height:150% font-family:宋体" Ⅵ型拉拔仪,是针对干混砂浆、保温材料、防水材料、陶瓷墙地砖胶粘剂、复层建筑涂料、建筑外墙用腻子的拉伸及粘接强度检测领域,以XY二维移动平台为技术核心,研制的可连续测量多个试验拉拔强度的试验机。该试验机可通过检测反馈的力值信号,通过闭环控制系统,来实现匀位移和匀加力两种控制模式,广泛适用于工厂、建筑工程质量检测站、产品质量检验所、科研院校等生产检验、开发研究等领域。 /span /p p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 技术特点: /span /strong /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" (1)二维移动系统:拉拔施力头可以在基板 XY 方向上移动,克服了现有万能试验机拉拔头不能移动,无法对大基板多样品点进行拉拔实验的难题,可方便的进行多样品的测试; /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" (2)自由更换力值传感器:可最多选择三个力值传感器,用户自由更换,方便对具有不同粘结强度试样的检测; /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" (3)采用伺服控制系统,与油压型拉拔仪相比之下,仪器标定、校准更加方便,体积更小,易于车载。 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" LBY- /span span style=" line-height:150% font-family:宋体" Ⅵ型拉拔仪已实现小批量生产,截止至2017年6月,已累积销售115台,销售收入602万元。通过二维移动平台的应用,非常适用于多样品的快速拉拔试验,降低了劳动强度,提高了试验效率,已成为干混砂浆、涂料行业内的标志性设备。 /span /p /td /tr tr style=" height:75px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 633" height=" 75" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 应用前景: /span /strong /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 在干混砂浆、保温材料、陶瓷墙地砖胶粘剂、复层建筑涂料、建筑外墙用腻子等行业的粘接强度试验使用的设备大部分还是采用万能试验机。万能试验机是通用设备,相关企业众多,设备十分便宜,质量可靠,因此在这些行业内有较高的市场占有率。二维移动系统是我们的专利技术,目前市场上还没有类似的试验机,由于二维移动平台的应用,该试验机可以方便的连续测量多个试验,有效的减轻了试验强度,提高试验效率。本项目研制的LBY-Ⅴ型拉拔试验机处于无竞争状态,该试验机一经销售就取得了市场的认可,已经面向企业、质检机构、大学等领域销售115台,相信未来会快速抢占了万能试验机的市场。 /span /p /td /tr tr style=" height:72px" td colspan=" 4" style=" border-color: currentcolor windowtext windowtext border-style: none solid solid border-width: medium 1px 1px border-image: none 100% / 1 / 0 stretch padding: 0px 7px " width=" 633" height=" 72" p style=" line-height:150%" strong span style=" line-height:150% font-family: 宋体" 知识产权及项目获奖情况: /span /strong /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 实用新型:平面多点匀速匀加力拉压试验机,ZL201420295194.8 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family:宋体" 外观专利:平面多点拉拔试验机,ZL201630462117.1 /span /p p style=" text-indent:28px line-height:150%" span style=" line-height:150% font-family: 宋体" 2015 /span span style=" line-height:150% font-family:宋体" 年获中国建材检验认证集团“创新贡献奖”科技成果奖二等奖。 /span /p /td /tr /tbody /table p br/ /p
  • 应用 | 基于表面能理论和拉拔试验的铁尾矿和沥青黏附性研究
    研究背景铁尾矿是铁矿石经破碎、筛分、研磨、分级、浮选等工艺流程,筛选出铁元素后的剩余产物,其主要成分与公路工程用集料相同。但现阶段我国的铁尾矿综合利用率较低,主要采取堆存方式进行处置,该做法造成了资源的浪费。公路工程建设过程中需要大量的筑路材料,若能将铁尾矿用作筑路材料,即可以降低公路工程造价,也可减少其对环境的污染。本文以表面自由能理论为依据,采用座滴法测量铁尾矿和不同沥青的表面能参数,并计算沥青与不同集料间的粘附功,以衡量铁尾矿与沥青间的粘附性能。实验方法与仪器1.表面能测试本文使用蒸馏水、甘油以及甲酰胺作为测定接触角的试剂,后测定这三种试剂在试样表面的接触角,并计算沥青与集料的表面能及其分量。本文采用德国KRÜ SS公司的DSA100接触角测量仪在25℃下对四种集料和沥青的接触角进行测试。DSA100接触角测试仪2.原材料本文研究过程中采用东海70号沥青、SBS改性沥青(I-D)和SBR改性乳化沥青蒸发残留物三种沥青,集料采用石灰岩、玄武岩和铁尾矿石。原材料各项技术均能满足现行技术规范要求,其中沥青技术指标如表1所示,四种集料矿物成分如表2所示。表1 沥青技术指标表2 矿物成分组成表结果与讨论1.接触角图1 接触角测试结果由图1实验结果可以发现,四种集料与测试液体的接触角差别较小,且不同材料与各测试液体的接触角试验的重复性较高。其主要原因可能是,各集料在测试前均对其表面进行了分割和磨平,这使得其空隙情况差别不大,因此各接触角差别不是很大。整体而言,蒸馏水与集料间的接触角随SiO2含量的增加而减小,其主要原因是水为极性分子,SiO2对水的极性能力较大,二者接触时更倾向于吸附更多的水以平衡表面力场,降低表面能,所以表现出水与集料间的接触角随SiO2含量的增加而减小的现象。SBS改性沥青与水和甘油间的接触角最大,SBR改性乳化沥青蒸发残留物与水间的接触角次之,基质沥青最小;SBR改性乳化沥青蒸发残留物与甲酰胺间的接触角最大,SBS改性沥青次之,基质沥青最小。图2γL与γLcosθ的关系为进一步验证测试结果的准确性,将不同测试液体的表面能γL与γLCOSθ进行线性拟合,结果如图2。由图 2可以发现,测试液体的表面能γL与γLCOSθ 线性拟合后的相关系数(R2)均大于0.90。表明二者之间具有良好的线性关系,即测试结果可靠。2.表面自由能图3表面能计算结果分别综合3种测试液体的表面能参数及其在集料和沥青的接触角计算集料和沥青的表面能及其分量,计算结果如图3所示。由图3(a)-(c)可以看出,四种集料的表面能相差不大,其中石灰岩的表面能最大,铁尾矿1的表面能最小,该现象的主要原因是石灰岩中的SiO2含量最小,铁尾矿1中SiO2含量最大,已有研究结果表明集料的表面能与SiO2含量呈负相关关系。四种集料中,铁尾矿2的极性分量最大,色散分量最小,石灰岩的极性分量最小,色散分量最大。由(d)-(f)三种沥青的表面能存在较大的差异,其中SBS改性沥青的表面能最大,SBR改性乳化沥青蒸发残留物的表面能最小,其可能原因是改性乳化沥青制备过程中需要加入乳化剂,乳化剂的作用原理是降低沥青与水间的界面能,提高二者间的稳定性,蒸发残留物制备过程中的乳化剂未能完全蒸发,导致其表面能的降低。SBS改性沥青的极性分量最小,色散分量最大,SBR改性乳化沥青的极性分量最大,色散分量最小,其可能原因是SBS蒸发残留物中的乳化剂未能充分挥发,使得其蒸发残留物的极性增强。3.粘附功的计算图4不同沥青与集料间的粘附功通过沥青和集料的表面能数据计算得到二者间的粘附功,计算结果如图4。由图4可以发现,不同沥青与不同集料间的粘附功存在一定差别,其中SBS改性沥青与石灰岩间的粘附功最大,为71.16mJ/m2,而SBR改性乳化沥青蒸发残留物和铁尾矿1之间的粘附功最小,为66.24mJ/m2。整体而言,石灰岩与各沥青间的粘附功要大于玄武岩和铁尾矿,该现象产生的原因是石灰岩的SiO2含量仅为0.76%,其碱性要强于玄武岩和铁尾矿。SBS改性沥青与集料间的粘附功要大于70号基质沥青和SBR改性乳化沥青蒸发残留物,究其原因,SBS改性剂的加入使得沥青的极性降低,而SBR改性乳化沥青蒸发残留物中乳化剂在挥发不完全情况下,其极性更大,且残留物制备过程中需要经过高温蒸发,使得沥青发生了一定程度的老化,老化后的沥青极性增强。小结石灰岩的表面能最大,铁尾矿的表面能小于石灰岩和玄武岩,且铁尾矿的极性分量大于石灰岩和玄武岩,色散分量小于二者。不同沥青与不同集料间的粘附功存在一定差别,SBS改性沥青与集料间的粘附功大于基质沥青和SBR改性乳化沥青蒸发残留物,石灰岩与沥青间的粘附功要大于玄武岩和铁尾矿。参考文献:[1]王鑫洋,苏纪壮,祁冰.基于表面能理论和拉拔试验的铁尾矿与沥青黏附性研究[J/OL].武汉理工大学学报(交通科学与工程版):1-11[2022-12-15].
  • 情暖冬日 公司为员工送爱心腊八粥
    腊八是腊月的第一个节日,一年之末称为“腊”,意为新旧交替,辞旧迎新。老话说,“过了腊八就是年”,在这一天吃腊八粥,也有温暖、圆满、和谐、吉祥等意义。  为了营造良好的节日氛围、提升员工在企业的归属感,聚光科技(杭州)股份有限公司(以下简称聚光科技)党委工会联合行政部和聚光科技园在腊八节开展了“关爱员工送温暖”的节日慰问活动。在聚光科技滨安路园区,行政部的工作人员早早准备好腊八粥,在公司大厅进行派送,员工一上班就收到了来自公司的祝福,心里都暖暖的。工作人员在滨安路园区派发腊八粥  在聚光科技阡陌路园区,公司党委书记兼工会主席陈荧平携工会副主席王鲁平、聚光科技园工作人员到每个楼层为聚光科技的员工送上公司工会和聚光科技园的祝福:“今天是腊八节,又是下雪天,给大家送一份腊八粥,祝愿大家在新的一年顺顺利利,幸福安康!”党委书记兼工会主席陈荧平在阡陌路园区派发腊八粥  公司实实在在的行动也让不少员工为之感动,他们感慨道:“在寒冷的冬季,陈总亲自将腊八粥送到每个员工的工位,真的太感动了”。有的员工则边喝着边说道:“腊八节喝上腊八粥,感受到了家的温暖”。此外,许多员工发朋友圈对此次活动给予高度好评。
  • ATAGO(爱拓)祝您“腊八”节快乐
    腊八节,俗称“腊八”,即农历十二月初八,古人有祭祀祖先和神灵、祈求丰收吉祥的传统,一些地区有喝腊八粥的习俗。借助腊八节之日,atago(爱拓)全体同仁祝广大代理商和用户,腊八节快乐,幸福安康。
  • 印度西行记——走进海德拉巴实验展
    印度,一个神秘的国家,各种新奇、新鲜的事物在这片土地上绽放出朵朵奇葩。刚一落地,不同肤色的人群接踵往来,令人处处充满着探索的欲望和对未知的好奇。民以食为天,中国人的胃尤其娇贵,来到印度如何解决吃饭问题成为首先需要考虑的问题。印度食物香料味道浓厚,异域风情格外突出,和中国饮食的风味大相径庭。但是Kevin和李赛决定入乡随俗,将自己的味蕾交给印度的美食调教。相比第二次来到印度的Kevin,李赛更加热情地融入到当地人的生活,在路边摊寻找印度普通人生活的痕迹。在来到海德拉巴之前,海外业务负责人Kevin Pu和工程师李赛首先来到了德里,参观了印度代理商的办公室,约见了终端用户,针对用户之前的使用经验进行了解,并沟通了之后的项目需求与合作机会。周四(2019.9.20),印度慕尼黑(海德拉巴)实验展正式开展。本次是盛瀚作为参展商第二次来到印度,带来了最新的CIC-D100和淋洗液发生器SHRF-10,搭配最新推出的PEEK色谱柱,带给印度用户更加优质和高性价比的体验。意向用户详细询问关于仪器的配置及参数,以及耗材的配套使用情况。盛瀚生产的色谱柱、抑制器、自动进样器及淋洗液发生器均可搭配戴安(Dionex)和万通(Metrohm)使用,给用户提供了更多选择的机会,和更具性价比的使用体验。展会现场采访之印度客户为了使更多的潜在使用者了解到盛瀚最新的产品,我们在Facebook进行了线上直播,实时连线了多位意向客户,进行了在线展示和答疑。在本次印度展会上,盛瀚推出今年刚上市的CIC-D100,联合淋洗液发生器,作为针对印度市场的黄金配置进行推广。一经推出,便收获了不少用户前来询问,市场反应超出预期。CIC-D100 盛瀚2019年新产品介绍盛瀚海外售后服务介绍双极电路脉冲系统(检出限更低,阳离子0.5ppb)SHINE CIC-D100 adopts bipolar circuit Impulsivesystem, able to detect ions with low concentration, like cation ions of 0.5ppb.电导池(数字电导模式),减轻噪声和飘移SHINE CIC-D100 adopts conductance-cell (digitalconductance mode), which is able to highly reduce noise and drift.自动量程(不需要分别稀释,节省时间)SHINE CIC-D100 can detect ions with huge differencesin concentration at the same time. Samples no longer need to be dilutedrespectively, your time can be therefore much saved.淋洗液预热功能SHINE CIC-D100 develop the function that eluent can bewarmed before entering into columns, avoiding inaccuracycaused by changing temperature.一键开关机(流速,电流,温度,电导池加热一次设置)SHINE CIC-D100 can be switched on/off with only onebutton. You don’t need to set up flow rate, current and temperature repeatedly.可升级性好SHINE CIC-D100 can be equipped with eluent generator,autosampler and amperometric detector. In addition, it can also be used withmass spectrogram.大气外观SHINE CIC-D100 has excellent appearance, making yourlab look more high-ranking. 为期三天的海德拉巴实验展上周六(2019.9.21)落下帷幕,启程回青的盛瀚人还在准备着下次的出发。海外市场的拓展源于我们对盛瀚制造品质的信心,源于中国制造业强势崛起的现实必然。怀抱着实现盛瀚国际化的愿景,我们一直在路上。
  • 用于毫米尺度3D物体操纵的喇叭状粘附结构
    对于毫米尺度3D物体的操纵技术在电子转印、精密装配、微机电系统等领域具有重要的应用前景。传统的基于机械夹持的抓取方案(如镊子等)需要针对不同特征的物体进行专门的设计和定制。例如,普通的尖头镊子难以夹持球体,需要在镊子末端设计专门的环形结构,并且具有环形结构的镊子无法夹持直径小于环形的球体。此外,对于平放在基底表面上的薄片状脆性物体(如硅片等)来说,因其无特殊的可夹持特征,使用镊子等工具难以将其从基底表面夹持住。目前,对于毫米尺度的不同形状和尺寸的3D物体进行可控抓取操纵的通用性技术方案仍然面临挑战。近日,清华大学机械工程系摩擦学国家重点实验室的田煜教授课题组提出了一种毫米尺度的喇叭状可控粘附结构及其力学调控方法。喇叭状粘附结构由面投影微立体光刻技术(nanoArch S130,摩方精密)和多步浇铸的工艺方案制备而成,对于多种曲率表面具有良好的自适应接触性能。喇叭状可控粘附结构能够通过接触界面的范德华力作用和负压作用达到~80 kPa的粘附强度,通过外力调控屈曲失稳与基底表面主动脱附,从而实现对于多种三维物体的可控抓取和操纵。该项研究成果以“Trumpet-shaped controllable adhesive structure for manipulation of millimeter-sized objects”为题发表在国际知名期刊《Smart Materials and Structures》上。该研究工作由清华大学机械工程系摩擦学国家重点实验室的博士生李小松完成。原文链接:https://iopscience.iop.org/article/10.1088/1361-665X/ac262f图1 喇叭状可控粘附结构制备工艺流程图。(a)由面投影微立体光刻技术直接制备得到的蘑菇状结构;(b)通过浇铸得到阴模模具;(c)阴模模具浇铸PU并脱泡;(d)将PDMS球面按压模具得到凹面结构;(e)脱模后的喇叭状结构(dp = 1 mm, h = 1 mm, dt = 1.8 mm, θ =60º);(f)喇叭状结构的扫描电镜照片。图2 喇叭状粘附结构的粘附性能典型测试力曲线和对应的接触状态演化规律。(a)附着测试模式和(b)脱附测试模式对应的典型法向力测试曲线;(c)附着测试模式和(d)脱附测试模式对应的接触界面状态演化过程;(e)附着测试模式下喇叭状粘附结构的粘附力和预载荷之间的关系;(f)脱附测试模式下喇叭状粘附结构的粘附力和剪切距离的关系。图3 基于内聚力模型的喇叭状可控结构的有限元仿真与界面法向应力演化规律机理。(a)接触-脱附测试过程;(b)接触-卸载-剪切测试过程;(c)接触-卸载-扭转过程中喇叭状粘附结构的变形行为;(d)附着测试过程和(e)脱附测试过程中接触界面法向应力的演化规律,其中紫色的箭头表示法向应力分布的变化方向。图4 喇叭状可控粘附结构对不同大小、不同形状、不同质量、不同材质物体的操纵效果。(a)集成喇叭状粘附结构的操作器;(b)喇叭状粘附结构抓取、转移和释放物体的典型操作步骤;喇叭状粘附结构用于转移多种毫米尺度(c)平面物体和(d)曲面物体的展示;(e)喇叭状粘附结构用于操纵LED灯珠完成THU字样柔性电路装配的展示;(f)喇叭状粘附结构用于水下环境操纵曲面物体的展示。官网:https://www.bmftec.cn/links/10
  • 德瑞克实验室检测设备· 诚祝各位伙伴腊八快乐
    转眼间,又是一年“腊八”时,德瑞克诚祝各位伙伴「腊八快乐万事粥全」德瑞克专业生产检测仪器已18年,致力于实验室和工业检验仪器的研发/制造/销售,专注为不同领域提供实验室整体建设方案,产品及服务涵盖:分析仪器/环境检测/物理光学/力学检测/医疗检测/教学仪器/实验家具/实验耗材等8大类,包括:仪器仪表的委托检定与校准工作并出具证书。
  • 赛默飞计划裁员97人,关闭阿拉巴马州工厂
    近期获悉,赛默飞世尔科技公司1月将在阿拉巴马州解雇97名员工,这是该公司今年在全国范围内进行的多轮裁员的基础。根据阿拉巴马州警局的通知,裁员将于1月2日开始,届时该公司将关闭其在阿拉巴马州奥本的工厂。这已经是今年赛默飞第五次宣布裁员/关闭工厂。今年2月,Thermo还在圣迭戈的三个生产基地裁员230人,主要从事制造业,工程师和科学家也被解雇。4月,Thermo关闭了位于新泽西州普林斯顿的一家工厂,裁员113人,这家工厂主要负责生物制品开发和细胞治疗服务。5月,公司以Covid-19产品需求减少为由,在圣迭戈的三个工厂进行了第二轮裁员,共裁员218人。8月份Thermo宣布计划在佛罗里达州阿拉瓜的工厂裁员205人。第一轮裁员发生在10月份,第二轮裁员发生在明年3月份。当时,Thermo公司称将把病毒载体生产网络搬到马萨诸塞州普莱恩维尔的一个地点,而科技工作将留在阿拉楚阿。
  • 《Smart Materials and Structures》:用于毫米尺度3D物体操纵的喇叭状粘附结构
    对于毫米尺度3D物体的操纵技术在电子转印、精密装配、微机电系统等领域具有重要的应用前景。传统的基于机械夹持的抓取方案(如镊子等)需要针对不同特征的物体进行专门的设计和定制。例如,普通的尖头镊子难以夹持球体,需要在镊子末端设计专门的环形结构,并且具有环形结构的镊子无法夹持直径小于环形的球体。此外,对于平放在基底表面上的薄片状脆性物体(如硅片等)来说,因其无特殊的可夹持特征,使用镊子等工具难以将其从基底表面夹持住。目前,对于毫米尺度的不同形状和尺寸的3D物体进行可控抓取操纵的通用性技术方案仍然面临挑战。近日,清华大学机械工程系摩擦学国家重点实验室的田煜教授课题组提出了一种毫米尺度的喇叭状可控粘附结构及其力学调控方法。喇叭状粘附结构由面投影微立体光刻技术(nanoArch S130,摩方精密)和多步浇铸的工艺方案制备而成,对于多种曲率表面具有良好的自适应接触性能。喇叭状可控粘附结构能够通过接触界面的范德华力作用和负压作用达到~80 kPa的粘附强度,通过外力调控屈曲失稳与基底表面主动脱附,从而实现对于多种三维物体的可控抓取和操纵。该项研究成果以“Trumpet-shaped controllable adhesive structure for manipulation of millimeter-sized objects”为题发表在国际知名期刊《Smart Materials and Structures》上。该研究工作由清华大学机械工程系摩擦学国家重点实验室的博士生李小松完成。原文链接:https://iopscience.iop.org/article/10.1088/1361-665X/ac262f图1 喇叭状可控粘附结构制备工艺流程图。(a)由面投影微立体光刻技术直接制备得到的蘑菇状结构;(b)通过浇铸得到阴模模具;(c)阴模模具浇铸PU并脱泡;(d)将PDMS球面按压模具得到凹面结构;(e)脱模后的喇叭状结构(dp = 1 mm, h = 1 mm, dt = 1.8 mm, θ =60º);(f)喇叭状结构的扫描电镜照片。图2 喇叭状粘附结构的粘附性能典型测试力曲线和对应的接触状态演化规律。(a)附着测试模式和(b)脱附测试模式对应的典型法向力测试曲线;(c)附着测试模式和(d)脱附测试模式对应的接触界面状态演化过程;(e)附着测试模式下喇叭状粘附结构的粘附力和预载荷之间的关系;(f)脱附测试模式下喇叭状粘附结构的粘附力和剪切距离的关系。图3 基于内聚力模型的喇叭状可控结构的有限元仿真与界面法向应力演化规律机理。(a)接触-脱附测试过程;(b)接触-卸载-剪切测试过程;(c)接触-卸载-扭转过程中喇叭状粘附结构的变形行为;(d)附着测试过程和(e)脱附测试过程中接触界面法向应力的演化规律,其中紫色的箭头表示法向应力分布的变化方向。图4 喇叭状可控粘附结构对不同大小、不同形状、不同质量、不同材质物体的操纵效果。(a)集成喇叭状粘附结构的操作器;(b)喇叭状粘附结构抓取、转移和释放物体的典型操作步骤;喇叭状粘附结构用于转移多种毫米尺度(c)平面物体和(d)曲面物体的展示;(e)喇叭状粘附结构用于操纵LED灯珠完成THU字样柔性电路装配的展示;(f)喇叭状粘附结构用于水下环境操纵曲面物体的展示。
  • 阿拉巴马大学研究人员设计出一种混合超高分辨率干涉仪
    近日,阿拉巴马大学亨茨维尔分校 (UAH) 的研究人员设计了一种超高分辨率干涉仪,它基于混合设计,结合了双路径配置和光学谐振器两者的优点,灵敏度非常高,可以检测到其他传感器无法检测的微弱声学信号。 该项目的主要研究者Nabil Md Rakinul Hoque将基于光学谐振器的法布里-珀罗干涉仪嵌入道双路径马赫-曾德尔干涉仪之中,并把该设备称之为马赫曾德尔-法布里珀罗(MZ-FP)干涉仪。 类似于法布里-珀罗之类的基于光学谐振器的干涉仪,它们可以使特定的谐振频率通过干涉仪或从干涉仪反射。尽管其尺寸非常紧凑,但由于反射镜的高反射率,它们的光路长度非常长,从而在光流之间建立了可测量的干涉模式。 第二种干涉仪基于公共路径或双路径结构,它的灵敏度取决于其干涉臂的长度,最长可达数十甚至数百米,导致干涉仪体积较为笨重。马赫-曾德尔干涉仪和迈克耳逊干涉仪就是典型的传统双路径干涉仪。 MZ-FP 干涉仪的混合方案使得研究人员能够将传统的双路径配置与光纤谐振器相结合。Hoque 和他的同事研发了一种紧凑型干涉式光纤传感器,可在热噪声水平下工作,同时使用现成的商用二极管激光器进行检测。图1 Nabil Md Rakinul Hoque 的新型干涉仪结合了马赫-曾德尔干涉仪和迈克耳逊干涉仪的优点。该设备结构紧凑,灵敏度高,可在各种生物医学和物理领域中使用。 Hoque 表示,新型干涉仪的主要优点是其前所未有的高信号分辨率。 团队使用相同的光纤法布里-珀罗干涉仪作为光路倍增器,使 MZ-FP 干涉仪能够在一系列频率范围内达到破纪录的应变分辨率。在测试中,MZ-FP 干涉仪实现了1飞秒应变的分辨率,探测精度达到微米级。 据该团队称,如果适当放大干涉仪,MZ-FP的应变分辨率可以扩展到超声波范围。阿拉巴马大学的教授Lingze Duan表示,他们的传感器分辨率在次声波到超声波的频率范围内创造了最高记录。设备检测超弱信号的能力在将来有望应用于预测环境事件、武器检测、控制气候变化研究等领域。 此外,基于 MZ-FP 干涉仪的光学传感器可用于辅助声学医学诊断。“比如,基于我们的混合干涉仪的声学传感器能够检测非常微弱的生理声学信号,从而反映人体健康状况,然而目前的传感器是无法检测到这些信号的”,Hoque 讲到。 “在我看来,这项研究最重要的影响是它为无源光纤传感器达到前所未有的应变分辨率水平找到了一条可行的道路,”Lingze Duan说。“如此高的传感分辨率使得光纤传感器可以接收比现在更弱的信号,大大拓宽了应用范围。” 该研究发表在Scientific Reports(www.doi.org/10.1038/s41598-022-16474-y)。
  • HORIBA讲座回放视频|光栅光谱仪原理简介
    课程内容 光谱测量系统组成 光栅技术 光栅光谱仪原理 小结讲师介绍熊洪武,HORIBA 应用技术主管,负责光学光谱仪的应用支持,光学背景深厚,有着丰富的光学系统搭建经验。可根据用户需求提供性能优异,功能独特的的光谱测试方案,如光致发光、拉曼、荧光、透射/反射/吸收等。课程链接识别下方“二维码”即可观看我们录制好的讲解视频了,您准备好了吗? HORIBA Optical SchoolHORIBA一直致力于为用户普及光谱基础知识,其旗下的Jobin Yvon有着近200年的光学、光谱经验,我们非常乐意与大家分享这些经验,为此特创立 Optical School(光谱学院)。无论是刚接触光谱的学生,还是希望有所建树的研究者,都能在这里找到适合的资料及课程。 我们希望通过这种分享方式,使您对光学及光谱技术有更系统、全面的了解,不断提高仪器使用水平,解决应用中的问题,进而提升科研水平,更好地探索未知世界。
  • 液质联用技术结合脂质组学技术揭示拔罐疗法科学原理
    p   中医拔罐治疗有什么科学依据和作用原理?22日,科技日报记者从陆军军医大学第二附属医院(重庆新桥医院)获悉,该院全军肿瘤研究所李咏生团队率先使用小鼠拔罐模型,运用超高效液相-质谱联用仪建立的脂质代谢组学平台,揭示了拔罐疗法导致体内抗炎/促炎脂质代谢谱的变化规律,为拔罐疗法的潜在机制提供了科学支撑。研究论文已于20日在《Cell Physiol Biochem》杂志发表。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201802/noimg/8200ab16-44a7-4531-9fff-7b979ba2cce0.jpg" title=" 928712.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 拔罐实验程序:A.裸鼠4个部位的背部皮肤负压吸引(每个2ml)15分钟,休息24小时,处死后代谢组学分析;B.拔罐治疗后的裸鼠皮肤。 /span /strong /p p   据了解,在以往的报道中,拔罐疗法研究者的关注点多在于拔罐处的皮肤温改善、血压、热效应以及血氧含量或者受试者的客观感受评分。该团队使用小鼠拔罐模型,运用超高效液相-质谱联用仪建立的脂质代谢组学平台研究发现,拔罐后健康小鼠体内抗炎脂质(如PGE1, 5,6-EET, 14,15-EET, 11 10S,17S-DiHDoHE, 17R-RvD1, RvD5和14S-HDoHE),显著升高,而促炎脂质(如12-HETE和TXB2)明显下调。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201802/noimg/0af76b02-9f88-465d-939a-ef093e5b44ec.jpg" title=" 002.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 小鼠皮肤和血浆中PUFA代谢组拔罐治疗前后的变化。 A.代表MRM谱图显示每种鉴定的生物活性LM的保留时间:Q1,M-H(母离子);Q3,串联质谱(MS/MS)子离子。 AA、EPA、DHA等代表性代谢产物不饱和脂肪酸。 B.治疗组及对照组小鼠皮肤中PUFA代谢组热图(左图)和血浆代谢组热图(右)。 /span /strong /p p   通过体外实验,课题组进一步发现拔罐疗法能减少脂多糖诱导的腹膜炎老鼠模型腹腔液中的促炎介质TNF-α及IL-6的产生。该研究说明拔罐可引起体内抗炎、促消退脂质成分的升高,促炎脂质的减少,为其促进机体免疫自稳提供了科学依据。 /p p span style=" color: rgb(0, 112, 192) " strong 更多资料: /strong /span /p p style=" line-height: 16px " img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / span style=" color: rgb(0, 112, 192) text-decoration: underline " a href=" http://img1.17img.cn/17img/files/201802/ueattachment/7cc11b4a-6b9d-426b-a437-56110f994d7a.pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " Anti- Versus Pro-Inflammatory Metabololipidome Upon Cupping Treatment.pdf /a /span /p p style=" line-height: 16px " Cell Physiol Biochem:李咏生团队运用脂质组学及液质联用技术揭示拔罐科学原理 /p p style=" line-height: 16px " a href=" http://www.instrument.com.cn/news/20180224/240471.shtml" _src=" http://www.instrument.com.cn/news/20180224/240471.shtml" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " http://www.instrument.com.cn/news/20180224/240471.shtml /span /a /p
  • 智能生态负氧离子监测站-一款十分钟爱的天然氧吧监测站
    智能生态负氧离子监测站-一款十分钟爱的天然氧吧监测站#2022已更新【品牌型号:天合环境TH-FZ5】温度和湿度等环境因素对负氧离子的浓度有很大影响。负氧离子浓度在春、夏、秋、冬季具有明显的变化特征。夏季和秋季浓度较高,春季和冬季浓度较低,这与负氧离子含量与气温呈正相关。雷电日和降水日的负氧离子浓度明显较高,需要通过负氧离子监测站实时了解。一、产品简介高智能一体化负氧离子监测站可全天候监测空气中负氧离子浓度,同时可根据用户需求扩展监测项目,如:空气温度、空气湿度、PM2.5、PM10、大气压力、氧含量、噪声、风速、风向等气象要素。传感器一体化设计,无机械位移,精度高、使用寿命长现场可通过全彩液晶屏读取数据,亦可远程云平台/WEB/微信公众号实时查看数据现场用户可自定义添加歌曲,亦可超标语音播报二、应用范围旅游景区、生态庄园、湿地公园、瀑布公园、森林公园、自然保护区、售楼处、学校三、技术参数1、风速:测量原理超声波,0~60m/s(±0.1m/s)分辨率0.01m/s;2、风向:测量原理超声波,0~360°(±2°)分辨率1°;3、空气温度:测量原理二极管结电压法,-40-60℃(±0.3℃)分辨率0.01°;4、空气湿度:测量原理电容式,0-100%RH(±0.3%RH)分辨率0.1%RH;5、大气压力:测量原理压阻式,300-1100hpa(±0.25%),分辨率0.1hpa;6、PM2.5:测量原理光散射,0-1000ug/m3(±10%)分辨率1ug/m37、PM10:测量原理光散射,0-1000ug/m3(±10%)分辨率1ug/m38、噪声:测量原理电容式,30-120dB(±1.5dB)分辨率0.1db9、负氧离子:测量原理圆筒式电极吸入式,0-10万个/m3(±10%)分辨率1个/m310、氧含量:测量原理电化学,0~100%uol(±3%uol)分辨率0.1%11、屏幕:分辨率1920(RGB)×1080(FHD),工作频率120Hz,亮度1500-2500 cd/m212、立杆:碳钢双立柱,可耐受15级强台风13、工作环境:温度-20℃-55℃,湿度0%-100%14、生产企业具有ISO质量管理体系、环境管理体系和职业健康管理体系认证15、生产企业具有知识产权管理体系认证证书、计算机软件注册证书17、数据存储:可存储一年的原始监测数据18、数据传输:4G/光纤19、供电方式:220V市电20、功耗:500w四、产品特点1、整机采用高集成模组化设计,标准化电器设计,工作状态一目了然,可实现快速维护2、防水:主体结构采用2-3mm碳钢,配合复合密封胶条,实现多角度防水3、防尘:设备底部配备过滤装置,可过滤5μm以上尘埃粒子,同时过滤棉可从外部快速更换,无需专业人员操作4、防雷、防漏电:内有防雷装置及漏电保护器,保护机器及周围人身安全5、采用高透、耐高温高强度钢化玻璃,防火、防划、防爆6、喇叭:户外大功率防水扬声器,双声道设计,声音清晰立体7、内置感光探头,可有效识别光照变化,自动调节屏幕亮度8、显示屏采用LED背光源,寿命达到50000小时,环保节能动态对比度高,显示画面更清晰9、散热系统采用工业级涡流离心风扇,风量大、转速高、噪声小,内置感温探头传感设备,有效识别内部温度变化,同时可根据现场环境调节响应温度及响应速度,实现低能耗精确控温10、内置时控开关,可设置预定开启和关闭时间11、全彩显示界面,设备开机自动进入气象监测平台(显示画面支持有限定制)12、可选配摄像头,显示界面可同步摄像头画面13、一体化传感器,传感器一体化集成,安装方便,维护简单
  • Cell Physiol Biochem:李咏生团队运用脂质组学及液质联用技术揭示拔罐科学原理
    p   拔罐是以罐为工具,利用燃火、抽气等方法产生负压,使之吸附于体表,造成局部瘀血,以达到通经活络、行气活血、祛风散寒、解疲止痛、消肿抗炎等作用的疗法。拔罐疗法在中国有着悠久的历史,在古罗马及古希腊也曾盛行。在近年的运动会上,该疗法被众多奥运健儿所青睐,他们身上的拔火罐印记再次引发了全世界的关注。在以前的报道中,研究者的关注点多在于拔罐处的皮肤温改善、血压、热效应以及血氧含量或者受试者的客观感受评分,尽管这些能够说明拔罐有疗效,但其科学证据以及作用原理仍未得到很好的阐释。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201802/noimg/8de16af5-ab7a-4604-a49c-bbea5567b8c3.jpg" title=" 0.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 陆军军医大学第二附属医院(重庆新桥医院)全军肿瘤研究所教授 李咏生 /strong /span /p p   2月20日,Cell Physiol Biochem杂志(IF=5.104)在线发表了陆军军医大学第二附属医院(重庆新桥医院)全军肿瘤研究所李咏生团队题为“Anti- Versus Pro-Inflammatory Metabololipidome Upon Cupping Treatment”的研究论文。该研究率先使用小鼠拔罐模型,运用Waters I-Class UPLC联合Sciex6500 Qtrap超高效液相-质谱联用仪建立的脂质代谢组学平台,揭示了拔罐疗法导致体内抗炎/促炎脂质代谢谱的变化规律,为拔罐疗法的潜在机制提供了科学支撑。硕士生张琦、研究实习员王湘和博士生颜桂芳为本文的共同第一作者,李咏生是通讯作者。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201802/noimg/5ee12d26-aafd-4167-aab4-80d041ecc0c1.jpg" title=" 0001.jpg" / /p p   该研究发现,拔罐后健康小鼠体内抗炎脂质显著升高(如PGE1, 5,6-EET, 14,15-EET, 11 10S,17S-DiHDoHE, 17R-RvD1, RvD5 和14S-HDoHE),而促炎脂质(如12-HETE 和TXB2)明显下调。课题组进一步发现拔火罐疗法能减少脂多糖诱导的腹膜炎老鼠模型腹腔液中的促炎介质TNF-α及IL-6的产生。在体外实验中,5,6-EET, PGE1明显下调了未受脂多糖处理的巨噬细胞中TNF-α的水平,而5,6-EET, 5,6-DHET显著抑制了IL-6的水平。值得注意的是,在脂多糖处理后的巨噬细胞中,14,15-EET 和14S-HDoHE显著抑制了TNF-α及IL-6的水平;17-RvD1, RvD5 和PGE1可抑制TNF-α;然而,TXB2 和12-HETE进一步上调了脂多糖介导的TNF-α和IL-6的水平。因此,该研究说明拔罐可引起体内抗炎、促消退脂质成分的升高,促炎脂质的减少,为其促进机体免疫自稳提供了科学依据。 br/ /p p img src=" http://img1.17img.cn/17img/images/201802/noimg/ed66de9c-505c-497b-b3b8-75ad005e71bb.jpg" title=" 0002.jpg" /   据悉,李咏生教授为华中科技大学医学博士,美国哈佛医学院博士后,中国临床肿瘤学会CSCO“35岁以下最具潜力肿瘤医生”入选者。现为陆军军医大学第二附属医院肿瘤科教授、博士生导师,兼任陆军军医大学生物化学与分子生物学教研室教授、博士生导师,研究方向:肝癌脂质代谢组学。主持国家自然科学基金面上项目2项,参与课题及申请专利15项,发表文章50余篇,累计影响因子(IF)大于200。以第一/通信作者在Immunity、Cell Reports、Oncogene等杂志共发表SCI论文17篇,其中13篇IF& gt 5。论文被Nature,Science,Cell,PNAS 等著名杂志正面引用 1000余次,2篇论文被F1000收录。兼任美国免疫学家协会(AAI)、美国微生物学会(ASM)、美国癌症研究协会(AACR)、欧洲肿瘤免疫协会(EATI)会员、重庆市免疫学会理事、重庆市中西医结合学会肿瘤免疫治疗专委会委员等 Frontiers in Immunology副主编(Nature Publishing Group);Current Cancer Therapy Reviews客座编委(Bentham Science Publishers);同时还是Critical Care Medicine、Journal of Molecular Medicine (Springer)、Journal of Hematology & amp Oncology、Cancer Letters等15个SCI杂志特邀审稿人。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201802/noimg/b85e99c5-dcc6-4696-ba05-805cd5c0fd20.jpg" title=" 01.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 112, 192) " strong 陆军军医大学第二附属医院(重庆新桥医院)全军肿瘤研究所 strong style=" color: rgb(0, 112, 192) " 李咏生团队 /strong /strong /span /p p & nbsp & nbsp 李咏生教授创建了陆军军医大学第二附属医院脂质代谢组学平台,现已能检测脂肪酸、甘油酯、磷脂、固醇等多种脂类介质,并与哈佛医学院、密歇根大学、牛津大学、中科院、华中科技大学等著名高校和研究所建立了良好稳固的国内外合作,多次举办和受邀参加国内外学术会议,课题组在脂质组学和肿瘤免疫领域有较好的工作积累,已在前期研究工作、技术培训、转化医学平台搭建方面打下了坚实的基础。 /p p style=" text-align: right " 本文由李咏生教授供稿。 /p p span style=" color: rgb(0, 112, 192) " strong 更多资料: /strong /span /p p img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" width=" 16" height=" 16" style=" width: 16px height: 16px " / span style=" text-decoration: underline color: rgb(0, 112, 192) " a href=" http://img1.17img.cn/17img/files/201802/ueattachment/7ed1667d-1cf8-49cb-b201-cc06879afa8b.pdf" style=" color: rgb(0, 112, 192) " Anti- Versus Pro-Inflammatory Metabololipidome Upon Cupping Treatment.pdf /a /span /p p style=" line-height: 16px " span style=" color: rgb(0, 0, 0) " 液质联用技术结合脂质组学技术揭示拔罐疗法科学原理 /span /p p style=" line-height: 16px " span style=" text-decoration: underline color: rgb(0, 112, 192) " a href=" http://www.instrument.com.cn/news/20180223/240444.shtml" _src=" http://www.instrument.com.cn/news/20180223/240444.shtml" style=" text-decoration: underline color: rgb(0, 112, 192) " http://www.instrument.com.cn/news/20180223/240444.shtml /a /span /p
  • Labthink拉力机系列再添新成员 “多工位、大量程”成亮点
    2016年5月,Labthink拉力机系列仪器再添新成员。MEGA1500多工位拉力试验仪和MEGA1510电子万能试验仪正式问世,在满足GB、YBB、ASTM、ISO、JIS诸多国内外标准的基础上,实现了“多工位”和“大量程”的完美结合。  作为Labthink第二台六工位拉力机,MEGA1500的力值传感器最高规格达1000N,尚属首例。该款仪器集拉伸、剥离、撕裂、热封、粘合等多种独立测试功能于一体,其测试原理为:将试样装夹于夹具的两个夹头之间,两夹头做相对运动,通过位于动夹头上的力值传感器和机器内置的位移传感器,采集到试验过程中的力值变化和位移变化。仪器通过内置软件能自动计算试样的拉伸、撕裂、变形率等性能指标,并提供定伸应力、弹性模量、应力应变等数据分析。该仪器具有0.5级超高测试精度,用户可根据自身需求从50N、100N、200N、500N、1000N五种规格力值传感器中择一而定,配合仪器的六工位设计,即能获得精确的试验结果和高效的测试体验。  突破不断,一直是Labthink坚守的工作信条之一。在其推动下,诞生了MEGA1510电子万能试验仪,彻底填补了Labthink万能试验机的空白。该仪器采用传统的单工位设计,在保持一贯的0.5级高精度的同时,最大承载负荷达到10000N,并增加了抗压性能检测,满足了更多大力值测试项目的需要。  针对拉力机系列仪器,Labthink研制了百余种专用夹具以拓展设备的应用范围,上述两款仪器也同样适用,如表1。这在检测需求日趋多样化的今天来说,具有重要的实用意义。表1 MEGA1500和MEGA1510基础应用和扩展应用基础应用拉伸性能、拉伸强度与变形率、拉断力、抗撕裂性能、热封强度性能、90°剥离、180°剥离、抗压性能*扩展应用 (需特殊附件或改制)组合盖开启力ZD型瓶盖撕开力口服液盖撕开力倾斜90°输液袋盖拉拔力胶订书页撕开力胶粘物撕开力倾斜23°瓶盖拉拔力带袋输液袋盖拉拔力胶带90°剥离力黏附强度测试(硬)90°水性膏药剥离力果冻杯和酸奶杯开启力黏附强度测试(软)牙刷刷毛拉拔力软管盖剥开力导管和导管接头脱离力化妆刷刷毛拉拔力胶塞拔出力绳类拉断力保护膜分离力奶杯杯膜剥离力热封膜撕开力瓶膜45°剥离力自封袋袋口拉力离型纸分离力135°插销剥离力胶带解卷力裤型撕裂力20°斜面剥离力浮辊剥离夹具偏心夹具宽试样夹具日式夹具英式夹具容器抗压缩力*海绵抗压缩力*注:*为MEGA1510独有,其余皆为共有项目。
  • 赛成发布XLW-H 智能电子拉力试验机新品
    产品特点◎ 10寸超大触摸屏,人机接口时尚、便捷。 ◎ 多种试验项目选择,满足绝大多数行业应用。 ◎ 测力系统精度高,线性度好,响应快。 ◎ 传感器超量程保护。 ◎ 运动驱动系统平稳且运行精度高。 ◎ 运动机构限位保护、过载保护、自动回位、以及掉电记忆等智能配置,保证用户与仪器本身的安全。 ◎ 开机自动零点校准,支持手动传感器清零。 ◎ 试验曲线实时展示试验过程中力值的变化趋势。 ◎ 产品符合GMP用户三级权限。 ◎ 测试数据历史记录可查询,数据不可更改,可审计追踪。 ◎ 可进行试验结果的单次、成组的统计分析。 ◎ 微型打印机,随时打印试验统计结果。 ◎ 设有标准的USB通信接口。 ◎ 专门的计算机通信软件,可进行试验的实时显示及数据的分析处理 、数据保存。 ◎ 可选气动夹持,减少操作时间,操作体验更流畅。 ◎ 可扩展网络传输接口,测试数据直接上传云服务器,可全球远程查询。测试原理将试样装夹在夹具的两个夹头之间,两夹头做相对运动,通过位于动夹头上的力值传感器和机器内置的位移传感器,采集到试验过程中的力值变换和位移变换,从而计算出试样的拉伸、撕裂、变形率等性能指标。测试标准该仪器符合多项国家和国标标准:GB 13022、GB 8808、GB 1040、GB 4850、GB 7753、GB 7754、GB 453、GB/T 17200、GB/T 16578、GB/T 7122、GB/T 2790、GB/T 2791、GB/T 2792、ASTM E4、 ASTM D828、ASTM D882、ASTM D1938、ASTM D3330、ASTM F88、ASTM F904、ISO 37、JIS P8113、QB/T 2358、QB/T1130 、YBB00152002-2015、YBB00212005-2015 、YBB00232005-2015、YBB00222005-2015、YBB00182004-2015、YBB00202005-2015、YBB00242002-2015、YBB00212004-2015、YBB00132005-2015、YBB00142005-2015、YBB00152005-2015。应用领域基础应用扩展应用(需特殊附件或改制)抗拉强度与变形率模拟皮肤抗穿刺力带瓶瓶盖和胶塞穿刺/拉波力绳类拉断力裤型撕裂力拉断力薄膜穿刺力胶钉书页撕开力果冻杯和酸奶杯开启力胶带解卷力抗撕裂性能带袋输液袋盖穿刺力90度水性膏药剥离力奶杯杯膜剥离力塑料瓶抗压力90度/180度剥离软橡胶瓶塞穿刺/拨拉力胶粘物撕开力胶塞拨出力20度斜面剥离力热封强度性能组合盖开启力剪切性能瓶膜45度剥离力135度插销剥离力抗压性能ZD型瓶盖撕开力黏附强度测试(软)自封袋袋口拉力浮辊剥离夹具穿刺性能口服液盖撕开力黏附强度测试(硬)磁卡磁心剥离力偏心夹具恒压保持力口服液盖穿刺/拨拉力软管盖剥开力磁卡90度剥离力宽试样夹具弹性模量倾斜90度输液袋盖拉拔力导管和导管接头脱离力热封膜撕开力日式夹具带袋输液袋盖拉拔力化妆刷刷毛拉拔力保护膜分离力英式夹具倾斜23度瓶盖拉拔力牙刷刷毛拉拔力离型纸分离力技术指标项目指标量程范围30N、100N,500N,1000N测力精度0.5级力值分辨率0.001N位移精度0.5级位移分辨率0.1mm试验速度1-800 mm / min(无级调速)行程800mm(可选1000mm)电源220 V/50Hz/60W外形尺寸520mm×380mm×1400mm主机净重72kg测试环境温度 10 ℃ ~ 40 ℃、湿度20%~80%仪器配置标准配置主机、微型打印机、气动夹具、专业软件、通信电缆选购件折断力夹具、组合盖开启力夹具、拉伸夹具、针尖穿刺力测试夹具、滑动性测试夹具、器身密合性 测试夹具、热合强度测试夹具、连接力夹具、拨开力夹具、全开力夹具等。创新点:?10寸超大触摸屏,人机接口时尚、便捷 ?多种试验项目选择,满足绝大多数行业应用 ?测力系统精度高,线性度好,响应快 ?传感器超量程保护 ?运动驱动系统平稳且运行精度高 ?运动机构限位保护、过载保护、自动回位、以及掉电记忆等智能配置,保证用户与仪器本身的安全 ?开机自动零点校准,支持手动传感器清零 ?试验曲线实时展示试验过程中力值的变化趋势 ?产品符合GMP用户三级权限 ?测试数据历史记录可查询,数据不可更改,可审计追踪 ?可进行试验结果的单次、成组的统计分析 ?微型打印机,便条随时打印试验统计结果 ?设有标准的USB通信接口 ?专门的计算机通信软件,可进行试验的实时显示及数据的分析处理 、数据保存 ?可选气动夹持,减少操作时间,操作体验更流畅 可扩展网络传输接口,测试数据直接上传云服务器,可全球远程查询
  • 阿蛋学仪器 | 色谱分离的原理 So Easy !
    广州绿百草推出全新连载短篇小说【阿蛋学仪器】, 不定期的跟大家讲述关于学渣阿蛋在工作后不得不学习仪器知识的苦逼经历。夸张的剧情下都是以现实为原型,记得准时关注哦!夏天的风正暖暖吹过,穿过头发穿过耳朵.........话说在那天气晴朗万里无云的某个周末,正在抠着大脚丫吃着冰西瓜思考人生意义的胖##突然接到领导的一个任务。“喂。小胖呀~ 上头下了个任务,要拍一个化学知识视频,我看你一向最受学生欢迎,就随便摆弄一下吧。课题已经帮你选好了,色谱分析原理。”“额,不不不,虽然为了科学教育的发展我上刀山下火海都在所不辞,但是......”“别啰嗦,就这么定了。告诉你啊,给我做的好好的,不然你今年的考评....88”嘟嘟嘟。。。胖##现在已经无法继续好好玩耍了,学生喜欢他都是因为他风流一趟玉树临风知识渊博心地善良从不让人挂科呀~真是。。。冷冷清清凄凄惨惨戚戚呀~内心再抗拒,生活还是要继续的。胖##叫来了以前跟他一起打LOL的阿蛋,浑浑噩噩迷迷糊糊想了三天三夜的剧本,终于开拍了。( 导演和其它演员的召唤,这里就不详细说啦哈! )导演:色谱分析原理So Easy 剧组 Action!!!场景预设 ——色谱柱:为一间双门房子,一门可进,一门可出。分析的样品:胖##,高大威猛略胖。阿蛋,形象气质佳小明星(剧情需求,大家多多包涵,少吐些。)Part 1 —— 反相柱分析原理屋子里有一大群美女,胖##和阿蛋从一个门进入,穿过屋子,从另一个门出来。结果:众美女都喜欢帅哥,不断有人拉阿蛋的手并要求合影签名。胖##由于高大威猛,也有部分小萝莉喜欢,但是还是比阿蛋少,走的自然比阿蛋快。结果胖##和阿蛋的距离越来越远,出门的时候,已经分离的很好了。分离度3.0,柱效15万/m。反相柱分离注意事项:1)不可用于分离帅得离谱的人(非极性太强的物质),会造成美女互相踩伤践踏拥挤的现象,造成柱堵塞,柱压升高;心脏不好的美女会由于过于激动而休克,甚至兴奋而死,造成柱子过早老化,降低柱效。另外,还会造成吸附现象,出峰时间太久甚至不出峰。2)不可用于分离过于猥琐丑陋可怕的人(极性太强的物质),会导致美女流失,造成柱效下降,出峰时间太快,影响分离效果。不过这时有个色谱柱再生方法可以回复柱效,就说“牛掰了”的鞋正挥泪大甩卖,美女将迅速赶回,恢复柱效!Part 2 —— 正相柱分析原理屋子里有一大群男子,胖##和阿蛋从一个门进入,穿过屋子,从另一个门出来。结果:阿蛋由于太帅招人嫉妒率先被赶出来。胖##被同胞惺惺相惜,留下来吃饭唱K看电影,最后才依依不舍的含泪送别。分离度2.8,柱效13万/m。正相柱分离注意事项:并不适用于分离Gay男(无保留物质)。Part 3 —— 体积排阻色谱柱分析原理屋子里面变成了溶洞效果,溶洞里的洞有大有小,非常好玩。胖##和阿蛋从一个门进入,穿过溶洞,从另一个门出来。结果:本以为阿蛋个头小灵活,会早点爬出来,谁知是体积庞大的胖##先出来啦。因为两人一钻溶洞,便仿佛回到了童年,逮着洞就想钻。阿蛋个子小,钻来钻去玩得不亦乐乎。而胖##在意思到自己已非3岁的小胖胖后,害怕被小洞卡住而崴了,只好作罢,沿大路走了出来,扼腕叹息“时光蹉跎,青春少年已不复!”Part 4 —— 离子对色谱柱分析原理屋子里有一大群美女,胖##和阿蛋从一个门进入,穿过屋子,从另一个门出来。胖##痛苦回忆:美女都喜欢帅哥,不断有人拉住阿蛋吟诗作对自拍萌萌哒,拉胖##的仅有几个发育不全的小萝莉。结果胖##和阿蛋渐行渐远。。。胖##对策:往事不堪回首,所以第二天再过这间屋子的时候,带上了他的必杀技——萌萌哒小鲜肉胖小子。结果:胖##抱着胖小子和阿蛋一起穿过屋子,美女们发现居然还有个小鲜肉,纷纷过来捏捏小脸蛋。“美女,敢吃青椒吗?” 胖小子搭配美女的功夫一点也不含糊呢。胖##色眯眯的看着围着的众美女,美其名曰为胖小子报仇,把美女的脸蛋一一捏了个编。直到胖小子微怒言 “爸比,我饿了!” ,才恋恋不舍的抱起小胖,发话 “最后再捏一遍!......” 阿蛋在门口,秒倒!Part 4 拍摄花絮 ——1)观众问:美女为什么喜欢小鲜肉抛弃阿蛋呢? 回复:现在流行小鲜肉。另外,女人总是有母爱的,这是与生俱来的本能,所以此处美女年龄要大些。呵呵。2)拍完这段以后,导演“卡”了N次。因为胖小子被捏后没有表现出天真烂漫可爱的样子,反而哭了N次,最终拍得胖小子又累又饿又痛才终被导演放行。3)Case结束时,镜头正面是胖##得意而归的表情,远端发现众美女一脸哀怨的正在揉脸,忿忿曰“死胖子,手够狠啊!̷�!”By the way, 这次拍摄的视频非常受欢迎,胖##终于又能在领导的眼皮底下好好思考人生了!想知道阿蛋后续又有怎样的遭遇?记得持续关注广州绿百草微信公众号~我们会不定期推出续集哦~关注广州绿百草微信公众号,获取更多资讯!
  • 注射针尖穿刺力测试仪----原理与应用解析
    注射针尖穿刺力测试仪在制药与包装行业中,注射针尖作为药物传递的直接媒介,其性能的稳定与安全性直接关系到患者的健康与安全。随着医疗技术的不断进步和药品包装的多样化发展,注射针尖在各类薄膜、复合膜、电池隔膜、人造皮肤乃至药品包装用胶塞、组合盖、口服液盖等材料的穿刺应用日益广泛。这些材料不仅需要具备良好的阻隔性以保护药品免受外界污染,还需在针尖穿刺时展现适宜的力学特性,以确保药物输送的顺畅与安全。注射针尖在制药包装行业的应用概述在制药过程中,注射针尖常被用于穿透药品包装材料,以实现药物的精准注入或抽取。无论是液体药品的密封瓶、预充式注射器,还是复杂的医疗装置,都离不开注射针尖的高效与准确。同时,随着环保和可持续性理念的深入人心,制药包装材料正逐步向轻量化、可降解方向发展,这对注射针尖的穿刺性能提出了更高的要求。为何需要注射针尖穿刺力测试仪鉴于注射针尖在制药包装中的核心作用,其穿刺性能的优劣直接影响到产品的使用体验和药品的安全性。因此,对注射针尖在不同材料上的穿刺力进行测试显得尤为重要。注射针尖穿刺力测试仪应运而生,它专为评估针尖在穿透各种材料时所需的力值及拔出时的阻力而设计,能够有效帮助制造商、质检机构及研究人员评估材料的适用性,优化产品设计,确保产品质量。广泛应用领域注射针尖穿刺力测试仪广泛应用于质检中心、药检中心、包装厂、药厂、食品厂等多个领域,成为保障产品安全与质量的重要工具。通过精确测量不同材料在穿刺过程中的力值变化与位移情况,可以深入了解材料的物理特性,为材料选择、工艺改进及质量控制提供科学依据。测试原理详解注射针尖穿刺力测试仪的测试原理基于力学原理与精密测量技术。测试时,首先将待测样品装夹在仪器的两个夹头之间,通过精确控制两夹头的相对运动,使标准要求的穿刺针以设定速度刺入样品。在穿刺过程中,仪器会实时记录并显示穿刺力及拔出力的变化曲线,同时监测针尖的位移情况。这些数据不仅反映了材料对针尖的抵抗能力,还能揭示材料内部的力学结构特性,为材料性能评估提供全面而准确的信息。
  • 盘点:三代PCR仪原理及应用
    p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 前言 /span /strong /p p   人类对于核酸的研究已经有100多年的历史。20世纪60年代末70年代初,人们致力于研究基因的体外分离技术。但是,由于核酸的含量较少,一定程度上限制了DNA的体外操作。Khorana于1971年最早提出核酸体外扩增的设想:经过DNA变性,与合适引物杂交,用DNA聚合酶延伸引物,并不断重复该过程便可克隆tRNA基因。 /p p   但由于测序和引物合成的困难,以及70年代基因工程技术的发明使克隆基因成为可能,所以,Khorana的设想被人们遗忘了。 /p p   1985年,美国科学家穆利斯在高速公路的启发下,经过两年的努力,发明了PCR(聚合酶链式反应)技术,并在Science杂志上发表了关于PCR技术的第一篇学术论文。从此,PCR技术开始走进生命科学界,应用于各大小实验室,成为生命科学实验室不可或缺的技术手段和工具,极大地推动了生命科学的研究进展。穆利斯也因此而获得1993年的诺贝尔化学奖。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/42353234-b84b-4124-8228-ad9e5dd139c7.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 穆利斯 /span /strong br/ /p p   PCR是分子生物学研究极其重要的工具,是一种用于放大扩增特定的DNA片段的分子生物学技术,基本原理是在试管中模拟细胞内的DNA复制,即人为创造核酸半保留复制条件,使目的DNA在细胞外完成扩增的过程,它可被看作是生物体外的特殊DNA复制。 /p p   根据PCR原理,商业公司在PCR仪的基础功能上不断进行创新和改进。至今,PCR仪已经更新至第三代技术。为方便读者朋友理解,本文将对三代PCR仪的原理、特点、主要厂商及产品、应用领域做一系统梳理。 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 第一代——标准PCR仪 /span /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/41d48cc2-6454-41a4-80a2-32d8206eeb55.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 标准PCR反应过程 /span /strong br/ /p p   标准PCR仪也叫做终点PCR仪,是指目的基因仅经过预变性、变性、退火、延伸阶段产生大量的核酸序列的PCR仪,PE-Cetus公司推出的世界上第一台PCR自动化热循环仪属于此种。根据PCR退火温度和扩增条件(细胞内/外),标准PCR又可以分为三类:普通PCR、梯度PCR和原位PCR。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/2749e6d5-017a-46c5-9cae-a379b96def96.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p    strong 普通PCR仪 /strong :一般把一次PCR扩增只能运行一个特定退火温度的PCR仪,称之为普通PCR仪。如果要用它做不同的退火温度则需要多次运行。主要是用作简单的、对单一退火温度的目的基因的扩增。 /p p   主要应用于科研、教学、临床医学、检验、检疫等。 /p p    strong 梯度PCR仪 /strong :普通PCR仪衍生出的带梯度PCR功能的基因扩增仪。梯度PCR仪每个孔的温度可以在指定范围内按照梯度设置,一次性PCR扩增可以设置一系列不同的退火温度条件(通常12种温度梯度)。由于被扩增的DNA片段不同,其最佳退火温度也不同,通过梯度设置,可一次性筛选出最佳的退火温度。这样既可节省试验时间,提高实验效率,又能节约实验成本。在不设置梯度的情况下亦可当做普通的PCR用。 /p p   梯度PCR仪多应用于科研、教学机构。 /p p    strong 原位PCR仪 /strong :是将PCR技术的高效扩增与原位杂交的细胞定位结合起来,用于从细胞内靶DNA的定位分析的细胞内基因扩增仪,从而在组织细胞原位检测单拷贝或低拷贝的特定DNA或RNA序列。原位PCR技术的待检标本一般先经化学固定,以保持组织细胞的良好形态结构。细胞膜和核膜均具有一定的通透性,当进行PCR扩增时,各种成分,如引物、DNA聚合酶、核苷酸等均可进进细胞内或细胞核内,以固定在细胞内或细胞核内的RNA或DNA为模板,于原位进行扩增。 /p p   原位PCR仪对于在分子和细胞水平上研究疾病的发病机理和临床过程及病理的转变有着重要意义。 /p p   需要说明的是,以上三种类型PCR仪并非是对立的,许多普通PCR仪结合了以上两种或者两种以上功能。 /p p   市售标准PCR仪种类繁多,国内外公司都有相应产品,赛默飞旗下PCR仪占据国内生命科学实验室的半壁江山,其次分别是是伯乐、罗氏和艾本德。 /p p style=" text-indent: 2em " strong span style=" color: rgb(192, 0, 0) " 此处列出部分在仪器信息网参展并且是仪器信息网新品或者仪器信息网“绿色仪器”的一代PCR仪。 /span /strong /p p style=" text-align: center text-indent: 2em " img src=" https://img1.17img.cn/17img/images/201812/uepic/d7059e6f-1922-4b57-b5f8-f58abfaedd51.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " Eppendorf Mastercycler X50 梯度 PCR 仪(绿色仪器) /span /strong /p p   艾本德此款PCR仪采用2D-梯度技术,能够同时优化退火与变性条件,升温速度高达10° C/s,10台仪器可直接并组成网,适用于高通量应用或者人员众多需求复杂的实验室。 /p p   strong span style=" color: rgb(0, 112, 192) "   /span /strong a href=" https://www.instrument.com.cn/netshow/C273735.htm" target=" _self" title=" 详情请点击" style=" color: rgb(0, 112, 192) text-decoration: underline " strong span style=" color: rgb(0, 112, 192) " 详情请点击 /span /strong /a /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/cd7674e4-20aa-44cb-8e24-97e172abc108.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 力康Trident 960基因扩增仪(新品) /span /strong /p p   此款基因扩增仪与今年5月上市,创新点在于它是多模块PCR仪,可同时运行三种控温程序 界面采用安卓系统,操作体验大幅提升 最大升温速率达到6℃/s。 /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/netshow/C288657.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " strong span style=" color: rgb(0, 112, 192) " 详情请点击 /span /strong /a /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 第二代——qPCR(实时定量PCR) /span /strong /p p   1996年Applied Biosystems(现被赛默飞收购)公司推出了实时荧光定量PCR(RTFQ PCR)技术,并发明了世界上第一台荧光定量PCR仪,开始了从定性到定量的跨越。 /p p   实时定量PCR仪是指在PCR反应体系中加入能够指示DNA片段扩增过程的荧光染料(SYBR Green等)或荧光标记的特异性的探针(TaqMan Probe等),在普通PCR仪设计基础上增加荧光信号激发和采集系统和计算机分析处理系统,形成了具有荧光定量PCR功能的仪器,通过对PCR过程中产生的荧光信号积累实时监测整个PCR过程,再结合相应的计算机软件对所获得的荧光信号数据进行分析,计算待测样品特定DNA片段的初始浓度。 /p p   目前根据荧光信号反应样品浓度主要有两种该方法: /p p    strong 1.Taqman探针法 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/a439631b-e389-434b-9801-df6dd2552a4a.jpg" title=" taqman.jpg" alt=" taqman.jpg" / /p p style=" text-indent: 2em " 探针两端分别为报告荧光基团R和荧光淬灭基团Q,当探针完整时,R发出的荧光被Q吸收,检测不到荧光信号。探针随机结合到DNA单链上,PCR扩增时,探针被水解,R与Q分离,R发出的荧光就会被检测到。每扩增一条DNA链都会生成一个荧光分子。 /p p    strong 2. SYBR Green Ι染料法 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/38bc15e1-e944-4d6b-b2e8-8cba519b1f26.jpg" title=" ranliao.jpg" alt=" ranliao.jpg" / /p p style=" text-indent: 2em " SYBR Green Ι是一种只有在和双链DNA结合时才会发荧光的染料。在PCR变性时,无荧光产生,到了复性和延伸阶段则能检测到荧光信号。 /p p   实时荧光定量PCR仪主要应用于病原体检测、药物疗效考核、肿瘤基因检测、基因表达研究、转基因研究、单核苷酸多态性(SNP)及突变分析等细分研究方向,广泛应用于临床医学检测、生物医药研发、食品行业等研究领域。 /p p   目前市售qPCR仪种类繁多,伯乐、罗氏、赛默飞均推出系列定量PCR仪产品,国内生物公司也相继进入这一市场,并取得了不错的口碑,如博日、力康、福生生物等。 /p p style=" text-indent: 2em " span style=" color: rgb(192, 0, 0) " strong 本篇列出部分在仪器信息网参展的新品qPCR仪: /strong /span /p p    /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/f9abfbd2-a173-48ae-925e-cdd3516dc9e2.jpg" title=" olumeikesi.jpg" alt=" olumeikesi.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 鲁美科斯实时荧光定量PCR AriaDNA-4(新品) /span /strong br/ /p p   鲁美科斯此款荧光定量PCR仪主要创新点如下: 1.采用专利冻干微芯片技术,实现超微量进样分析,和常规PCR试剂和样品大大减少,普通PCR15微升,LUMEX实时微芯片PCR进样量1-2微升,节省进样量和后续使用成本 2.专利冻干微芯片技术,避免试剂冷链储存,动感试剂涂布在芯片上,可实现一次性检测多种DNA和RNA样品,实现常温储存运输。 /p p    a href=" https://www.instrument.com.cn/netshow/C278549.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " strong span style=" color: rgb(0, 112, 192) " 详情请点击 /span /strong /a /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/d3a9640c-b164-4331-9c13-5879ae51e203.jpg" title=" 天隆科技.jpg" alt=" 天隆科技.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 天隆科技Gentier 96E实时荧光定量PCR检测系统(优秀新品) /span /strong /p p   Gentier 96E实时荧光定量PCR检测系统是天隆科技最新一代、为满足高端用户的实验需求而量身定制。该款产品具有科学高效的温控系统与光电系统、强大易用的软件分析功能、人性化的操控方式、六通道同步检测等诸多优势,能够轻松实现下游多重基因检测、定量分析、SNP分析、HRM分析等应用。 /p p   strong span style=" color: rgb(0, 112, 192) "   /span /strong a href=" https://www.instrument.com.cn/netshow/C260668.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " strong span style=" color: rgb(0, 112, 192) " 详情请点击 /span /strong /a /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 第三代——dPCR(数字PCR) /span /strong /p p   不同于qPCR 对每个循环进行实时荧光测定的方法,数字 PCR 技术是在扩增结束后对每个反应单元的荧光信号进行采集。 /p p   数字PCR是一种基于PCR反应(聚合酶链反应)的单分子绝对定量技术。如图1,在数字PCR的过程中:(a) PCR反应体系(含有荧光染料或探针)被分割为数以万计的均一微液滴,(b) 其中部分微液滴内会含有一个或多个模板,(c) 将这些微液滴收集到试管内进行PCR反应,其中含有模板的微液滴会产生扩增产物,由此具有较强的荧光,成为阳性微液滴,(d) 在PCR反应完成后,依次对每个微液滴内的荧光进行检测,(e) 根据微液滴信号的峰值高度,绘制出微液滴荧光分布的散点图,(f) 通过合理的荧光分类阈值将微液滴内的荧光强度数字化,判断出其中具有较强荧光的阳性微液滴(图1f中绿色的数据点,称为“1”)和具有较弱荧光的阴性微液滴(图1f中蓝色的数据点,称为“0”),并通过“1”和“0”的个数来实现绝对定量。因此,与实时定量PCR不同,数字PCR不需要使用标准曲线,即可直接对核酸拷贝数的绝对值进行定量。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/d60f8316-ce67-4b06-81fb-9f90f95250f2.jpg" title=" 数字PCR的原理示意图.jpg" alt=" 数字PCR的原理示意图.jpg" width=" 427" height=" 489" style=" width: 427px height: 489px " / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 数字PCR原理示意图 /span /strong /p p   最后通过直接计数或泊松分布公式计算得到样品的原始浓度或含量。 /p p   迄今为止,目前市面上常见的数字PCR仪器主要有两种,根据微反应的形成原理不同,主要分为 “芯片数字PCR”与“微滴数字PCR”两类。 /p p    strong 1.芯片数字PCR /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/f4f13392-c096-4bbd-abde-2bd2e3719bb7.jpg" title=" 芯片数字PCR.jpg" alt=" 芯片数字PCR.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 芯片数字PCR原理图 /span /strong br/ /p p    strong 2.液滴数字PCR /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/1f2874f7-5e13-494d-a138-f50fbd7fe98b.jpg" title=" 22.jpg" alt=" 22.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 微液滴数字PCR原理图 /span /strong /p p   液滴数字PCR源于乳液PCR( emulsion PCR) 技术,即将DNA模板与连接引物的磁性微球以极低的浓度(比如单拷贝) 包裹于油水两相形成的纳升至皮升级液滴中进行 PCR 扩增,扩增后的产物富集在磁性微球上,收集破乳后进行测序。通过油水两相间隔得到的以液滴为单位的 PCR 反应体系,比微孔板和 IFC 系统更容易实现小体积和高通量,而且系统简单,成本低,因此成为理想的数字PCR技术平台。 /p p   数字PCR技术主要应用于不稳定性分析、肿瘤早期研究、产前诊断、致病微生物检测、癌症标志物稀有突变检测等研究领域,也用于验证NGS中的低频突变、 DNA甲基化检测、突变多重检测等方向。 /p p   基于数字PCR精准、灵敏、高效的应用场景,巨头公司(伯乐、罗氏和赛默飞)纷纷在这一领域布局,并相继推出数字PCR产品,许多国产数字PCR厂商如泛生子、顺德永诺生物、科维思、 诺禾致源、小海龟科技也争相进入市场,数字PCR大有可为。 /p p    strong span style=" color: rgb(192, 0, 0) " 本篇列出在仪器信息网参展的部分数字PCR仪产品 /span /strong strong span style=" color: rgb(192, 0, 0) " : /span /strong /p p style=" text-align: center "    img src=" https://img1.17img.cn/17img/images/201812/uepic/f8fdec21-ba5e-48ef-b8dc-c83c1ba0d937.jpg" title=" 11.jpg" alt=" 11.jpg" style=" text-align: center " / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 伯乐QX200 微滴式数字PCR系统 /span /strong br/ /p p   Bio-Rad的技术主要来源于QuantaLife公司,QuantaLife 利用油包水微滴生成技术开发了微滴式数字PCR技术,这也是最早出现的相对成熟的数字PCR平台,在运行成本和实验结果稳定性方面都基本达到了商品化的标准。2011年,QuantaLife 公司被Bio-Rad公司收购,其微滴式数字PCR仪产品更名为QX100型号仪继续在市场上销售,这个早期型号为dPCR概念的普及和应用领域的拓展发挥了重要作用。2013年该公司又推出了升级型号QX200。 /p p    a href=" https://www.instrument.com.cn/netshow/C293849.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " strong 详情请点击 /strong /span /a /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/a75e17b8-0d45-4394-9f8e-afb3ad61b6c7.jpg" title=" 12.jpg" alt=" 12.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 赛默飞QuantStudio 3D Digital PCR System /span /strong /p p   Applied Biosystems于2013年也推出了产品,Quant Studio 3D数字PCR系统。采用高密度的纳升流控芯片技术,样本均匀分配至20,000个单独的反应孔中。在整个工作流程中,样本之间保持完全隔离,可以有效地防止样品交叉污染,减少移液过程,简化操作步骤。同时芯片式设计避免了微滴式系统可能面临的管路堵塞问题。作为Applied Biosystems在OpenArray芯片平台之外推出的全新的芯片式数字PCR系统,值得一提的是,这个全新的系统在设计理念上综合考虑了系统稳定性与运行成本因素,直接反映了该系统“适合所有分子生物学实验室使用的数字PCR系统”的市场定位。2013年,Thermo Fisher收购Applied Biosystems。 /p p    a href=" https://www.instrument.com.cn/netshow/C194603.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " strong 详情请点击 /strong /span /a /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/35dde0a8-6e31-4ee4-b590-e7284aa84e5e.jpg" title=" 13.jpg" alt=" 13.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " Naica crystal微滴数字PCR系统 /span /strong /p p   NaicaTMcrystal 微滴数字PCR系统是法国Stilla公司开发的下一代核酸绝对定量技术。使用cutting-edge微流体创新型芯片——Sapphire芯片作为数字PCR过程的唯一耗材。样品通过毛细通道网格以30,000个微滴的形式进入2D芯片中,可称作Crystal微滴。PCR扩增实验在芯片上实现。对微滴成像用以检测包含扩增片段的微滴。最后一步是对阳性微滴计数从而得到精准的核酸绝对数量。 /p p    a href=" https://www.instrument.com.cn/netshow/C277808.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " strong 详情请点击 /strong /span /a /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/80eaf629-bff9-48a9-af5b-629dcf2eb49c.jpg" title=" 14.jpg" alt=" 14.jpg" / /p p style=" text-align: center " strong span style=" color: rgb(127, 127, 127) " 新羿TD-1 微滴式数字PCR系统 /span /strong /p p   新羿TD-1微滴式数字PCR系统由Drop Maker 样本制备仪和 Chip Reader 生物芯片阅读仪及其他相关试剂耗材构成。Drop Maker 样本制备仪采用光、机、电一体化设计,配套具有自主知识产权的微流控芯片,可以将水相样本快速制备成纳升体积的液滴,液滴数与样本体积相关,30微升样本可制备约5万个液滴。液滴尺寸均一,并可在PCR扩增后保持稳定。 /p p   Chip Reader R1生物芯片阅读仪采用光、机、电一体化设计,及激光共聚焦原理,配套具有自主知识产权的微流控芯片,可以准确快速地定位、识别纳升体积微液滴,获取其荧光信号值。经过泊松统计分析,提供研究者所需的阳性、阴性液滴数绝对数值,从而推算出起始靶标核酸分子精确浓度。Chip Reader R1 生物芯片阅读仪兼容Taqman水解探针和EVAGreen检测。 /p p    a href=" https://www.instrument.com.cn/netshow/C289823.htm" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " strong 详情请点击 /strong /span /a /p p    span style=" color: rgb(0, 0, 0) " strong 与传统定量 PCR 不同,数字 PCR 通过直接计数的方法,可以实现起始 DNA 模板的绝对定量但是,目前的数字 PCR 技术仍然存在一些不足,制约了该技术广泛应用。例如,数字 PCR 自身特点决定了其分析的样品通量很低,基本每块芯片上万个反应单元都是针对单一样本的分析。而荧光检测技术的局限性限制了多个芯片的同时检测,因此该技术目前在常规基因表达分析中不具备优势。此外,数字PCR技术的灵敏度(分辨率) 和准确性有待进一步提高和优化,在临床诊断中需要进行大量的比较和验证实验(对照传统方法) 。基于精密仪器和复杂芯片的数字 PCR 技术成本高昂,也是制约其广泛应用的一个原因。 /strong /span /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 小结 /span /strong /p p    img src=" https://img1.17img.cn/17img/images/201812/uepic/31e8b226-4e10-4fd4-b9e4-40cf1c10a698.jpg" title=" 111.jpg" alt=" 111.jpg" width=" 582" height=" 265" style=" text-align: center width: 582px height: 265px " /    span style=" text-align: center " /span /p table border=" 1" cellspacing=" 0" cellpadding=" 0" tbody tr class=" firstRow" td width=" 121" valign=" top" style=" border-width: 1px border-color: windowtext padding: 0px 7px " p style=" line-height:150% background:white" span style=" font-family: arial, helvetica, sans-serif " span style=" line-height: 150% color: rgb(51, 51, 51) " PCR /span span style=" line-height: 150% color: rgb(51, 51, 51) " 代次 /span /span /p /td td width=" 151" valign=" top" style=" border-top-width: 1px border-right-width: 1px border-bottom-width: 1px border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-left: none padding: 0px 7px word-break: break-all " p style=" line-height:150% background:white" span style=" font-family: arial, helvetica, sans-serif " span style=" line-height: 150% color: rgb(51, 51, 51) " 标准 /span span style=" line-height: 150% color: rgb(51, 51, 51) " PCR /span span style=" line-height: 150% color: rgb(51, 51, 51) " (第一代) /span /span /p /td td width=" 142" valign=" top" style=" border-top-width: 1px border-right-width: 1px border-bottom-width: 1px border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-left: none padding: 0px 7px " p style=" line-height:150% background:white" span style=" font-family: arial, helvetica, sans-serif " span style=" line-height: 150% color: rgb(51, 51, 51) " 定量 /span span style=" line-height: 150% color: rgb(51, 51, 51) " PCR /span span style=" line-height: 150% color: rgb(51, 51, 51) " (第二代) /span /span /p /td td width=" 146" valign=" top" style=" border-top-width: 1px border-right-width: 1px border-bottom-width: 1px border-top-color: windowtext border-right-color: windowtext border-bottom-color: windowtext border-left: none padding: 0px 7px " p style=" line-height:150% background:white" span style=" font-family: arial, helvetica, sans-serif " span style=" line-height: 150% color: rgb(51, 51, 51) " 数字 /span span style=" line-height: 150% color: rgb(51, 51, 51) " PCR /span span style=" line-height: 150% color: rgb(51, 51, 51) " (第三代) /span /span /p /td /tr tr td width=" 121" valign=" top" style=" border-right-width: 1px border-bottom-width: 1px border-left-width: 1px border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-top: none padding: 0px 7px word-break: break-all " p style=" line-height:150% background:white" span style=" line-height: 150% color: rgb(51, 51, 51) font-family: arial, helvetica, sans-serif " 定量能力 /span /p /td td width=" 157" valign=" top" style=" border-top: none border-left: none border-bottom-width: 1px border-bottom-color: windowtext border-right-width: 1px border-right-color: windowtext padding: 0px 7px " p style=" line-height:150% background:white" span style=" line-height: 150% color: rgb(51, 51, 51) font-family: arial, helvetica, sans-serif " 定性 /span /p /td td width=" 148" valign=" top" style=" border-top: none border-left: none border-bottom-width: 1px border-bottom-color: windowtext border-right-width: 1px border-right-color: windowtext padding: 0px 7px " p style=" line-height:150% background:white" span style=" line-height: 150% color: rgb(51, 51, 51) font-family: arial, helvetica, sans-serif " 半定量 /span /p /td td width=" 152" valign=" top" style=" border-top: none border-left: none border-bottom-width: 1px border-bottom-color: windowtext border-right-width: 1px border-right-color: windowtext padding: 0px 7px " p style=" line-height:150% background:white" span style=" line-height: 150% color: rgb(51, 51, 51) font-family: arial, helvetica, sans-serif " 绝对定量 /span /p /td /tr tr td width=" 121" valign=" top" style=" border-right-width: 1px border-bottom-width: 1px border-left-width: 1px border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-top: none padding: 0px 7px " p style=" line-height:150% background:white" span style=" line-height: 150% color: rgb(51, 51, 51) font-family: arial, helvetica, sans-serif " 分子数灵敏度 /span /p /td td width=" 157" valign=" top" style=" border-top: none border-left: none border-bottom-width: 1px border-bottom-color: windowtext border-right-width: 1px border-right-color: windowtext padding: 0px 7px " p style=" line-height:150% background:white" span style=" font-family: arial, helvetica, sans-serif " span style=" line-height: 150% color: rgb(51, 51, 51) " 100 /span span style=" line-height: 150% color: rgb(51, 51, 51) " 个分子 /span /span /p /td td width=" 148" valign=" top" style=" border-top: none border-left: none border-bottom-width: 1px border-bottom-color: windowtext border-right-width: 1px border-right-color: windowtext padding: 0px 7px " p style=" line-height:150% background:white" span style=" font-family: arial, helvetica, sans-serif " span style=" line-height: 150% color: rgb(51, 51, 51) " 10 /span span style=" line-height: 150% color: rgb(51, 51, 51) " 个分子 /span /span /p /td td width=" 152" valign=" top" style=" border-top: none border-left: none border-bottom-width: 1px border-bottom-color: windowtext border-right-width: 1px border-right-color: windowtext padding: 0px 7px " p style=" line-height:150% background:white" span style=" line-height: 150% font-family: Arial, sans-serif color: rgb(51, 51, 51)" 1 /span span style=" line-height: 150% font-family: 宋体 color: rgb(51, 51, 51)" 个分子 /span /p /td /tr tr td width=" 121" valign=" top" style=" border-right-width: 1px border-bottom-width: 1px border-left-width: 1px border-right-color: windowtext border-bottom-color: windowtext border-left-color: windowtext border-top: none padding: 0px 7px " p style=" line-height:150% background:white" span style=" line-height: 150% color: rgb(51, 51, 51) font-family: arial, helvetica, sans-serif " 稀有突变灵敏度 /span /p /td td width=" 157" valign=" top" style=" border-top: none border-left: none border-bottom-width: 1px border-bottom-color: windowtext border-right-width: 1px border-right-color: windowtext padding: 0px 7px " p style=" line-height:150% background:white" span style=" line-height: 150% color: rgb(51, 51, 51) font-family: arial, helvetica, sans-serif " 10-50% /span /p /td td width=" 148" valign=" top" style=" border-top: none border-left: none border-bottom-width: 1px border-bottom-color: windowtext border-right-width: 1px border-right-color: windowtext padding: 0px 7px " p style=" line-height:150% background:white" span style=" line-height: 150% font-family: Arial, sans-serif color: rgb(51, 51, 51)" 1-5% /span /p /td td width=" 152" valign=" top" style=" border-top: none border-left: none border-bottom-width: 1px border-bottom-color: windowtext border-right-width: 1px border-right-color: windowtext padding: 0px 7px " p style=" line-height:150% background:white" span style=" line-height: 150% font-family: Arial, sans-serif color: rgb(51, 51, 51)" 0.1% /span /p /td /tr /tbody /table p style=" text-indent: 2em " PCR技术已在生命学、医学诊断、遗传工程、法医学和考古学等领域广泛应用,在临床检验中的应用,对疾病的诊断提高到基因水平,众多的疑难病症得到及时确诊和有效的治疗。 br/ /p p   对于不同的应用场景,三代PCR各有优势,但是可以看出,数字PCR具有绝对定量的优势,是未来临床标准化分子诊断的首选技术。 /p p   相信在未来的几年里将会不断有新的技术和产品出现,不断扩展其应用范围,使之成为新一代分子诊断工具。 /p p strong 附: a href=" https://www.instrument.com.cn/zc/133.html" target=" _self" 仪器信息网PCR仪专场 /a /strong /p
  • 一看就懂|动图解析16种仪器原理
    p span style=" color: rgb(31, 73, 125) " strong 紫外分光光谱UV /strong /span /p p style=" text-align: center " span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/8ab5194e-71c2-423f-ab65-03058376187d.jpg" title=" 紫外分光光谱UV.jpeg" width=" 400" height=" 290" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 290px " / /strong /span /p p strong i 分析原理 /i /strong :吸收紫外光能量,引起分子中电子能级的跃迁 /p p i strong 谱图的表示方法 /strong /i :相对吸收光能量随吸收光波长的变化 /p p i strong 提供的信息 /strong /i :吸收峰的位置、强度和形状,提供分子中不同电子结构的信息 /p p style=" text-indent: 2em " 物质分子吸收一定的波长的紫外光时,分子中的价电子从低能级跃迁到高能级而产生的吸收光谱较紫外光谱。紫光吸收光谱主要用于测定共轭分子、组分及平衡常数。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/6122f151-9d54-41a3-88a5-4158748f0d34.gif" title=" 光线传输.gif" / br/ /p p style=" text-align: center " strong 光线传输 /strong /p p style=" text-align:center" strong img src=" https://img1.17img.cn/17img/images/201808/noimg/19887b2b-4de7-4f43-99dc-a382338d1c5b.gif" title=" 光衍射.gif" / /strong /p p style=" text-align:center" strong 光衍射 /strong br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/f1caf7ed-a3a7-4782-871b-82cd279346a8.gif" title=" 探测.gif" / br/ /p p style=" text-align: center " strong 探测 /strong /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/1d7d1318-2fe2-4704-aea6-68c76f901233.gif" title=" 数据输出.gif" / br/ /p p style=" text-align: center " strong 数据输出 /strong /p p span style=" color: rgb(31, 73, 125) " strong 红外吸收光谱法IR /strong /span /p p style=" text-align: center " span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/3a428e28-d9fb-4db8-b78c-58b5480e87c9.jpg" title=" 红外吸收光谱法IR.jpeg" width=" 400" height=" 351" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 351px " / /strong /span /p p i strong 分析原理 /strong /i :吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁 /p p i strong 谱图的表示方法 /strong /i :相对透射光能量随透射光频率变化 /p p strong i 提供的信息 /i /strong :峰的位置、强度和形状,提供功能团或化学键的特征振动频率 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/41b34bed-9a1a-4103-a3c9-c8412dc51e95.gif" title=" 红外光谱测试.gif" / br/ /p p style=" text-align: center " strong 红外光谱测试 /strong /p p style=" text-indent: 2em " 红外光谱的特征吸收峰对应分子基团,因此可以根据红外光谱推断出分子结构式。 /p p style=" text-indent: 2em " 以下是甲醇红外光谱分析过程: /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/7de57c9c-db88-40eb-8591-f797776f12eb.gif" title=" 甲醇红外光谱结构分析过程1.gif" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/c0f4e29c-7ae9-42af-b345-b205ba9a893c.gif" title=" 甲醇红外光谱结构分析过程2.gif" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/a0aa4a60-27be-4d46-b2b5-7afd0dca48d2.gif" title=" 甲醇红外光谱结构分析过程3.gif" / /p p style=" text-align:center" strong 甲醇红外光谱结构分析过程 /strong br/ /p p span style=" color: rgb(31, 73, 125) " strong 核磁共振波谱法NMR /strong /span br/ /p p style=" text-align: center " span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/829af79c-f4b3-40eb-9382-b9eff42334f3.jpg" title=" 核磁共振波谱法NMR.jpeg" width=" 400" height=" 240" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 240px " / /strong /span /p p i strong 分析原理 /strong /i :在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁 /p p i strong 谱图的表示方法 /strong /i :吸收光能量随化学位移的变化 /p p i strong 提供的信息 /strong /i :峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/39b89c4b-6f7e-4031-aa61-93b6851de8bc.gif" title=" NMR结构.gif" / br/ /p p style=" text-align: center " strong NMR结构 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/093bf492-16db-446c-bd23-3a1fe1f1f21e.gif" title=" 进样.gif" / br/ /p p style=" text-align: center " strong 进样 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/00d0be2f-c318-44ef-925d-159a4fe3fd7b.gif" title=" 样品在磁场中.gif" / br/ /p p style=" text-align: center " strong 样品在磁场中 /strong /p p style=" text-indent: 2em " 当外加射频场的频率与原子核自旋进动的频率相同时,射频场的能量才能被有效地吸收,因此对于给定的原子核,在给定的外加磁场中,只能吸收特定频率射频场提供的能量,由此形成核磁共振信号。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/b9110f69-6d30-4b94-8ef2-662f88b9449b.gif" style=" float:none " title=" 核磁共振及数据输出1.gif" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/ed6564f9-3205-46c9-823a-00a4a2b6c0bc.gif" style=" float:none " title=" 核磁共振及数据输出2.gif" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/054ba93d-f4ce-496b-8506-1ba91c2c0d95.gif" style=" float: none width: 400px height: 225px " title=" 核磁共振及数据输出3.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" / /p p style=" text-align:center" strong 核磁共振及数据输出 /strong /p p span style=" color: rgb(31, 73, 125) " strong 质谱分析法MS /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/5f727f1c-80fa-4828-b40d-7dd0003c50a1.jpg" title=" 质谱分析法MS.jpeg" width=" 400" height=" 282" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 282px " / /strong /span /p p strong i 分析原理 /i /strong :分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e的变化 /p p i strong 提供的信息 /strong /i :分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息 /p p i strong FT-ICR质谱仪工作过程: /strong /i /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/0a83da1d-ffb7-45d7-a570-abc02e9e4187.gif" title=" 离子产生.gif" / br/ /p p style=" text-align: center " strong 离子产生 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/a8e8b100-15db-4df8-87f9-91152f0656b1.gif" title=" 离子收集.gif" / br/ /p p style=" text-align: center " strong 离子收集 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/8b773803-09e5-4bd3-b849-23005f6bd132.gif" title=" 离子传输.gif" / br/ /p p style=" text-align: center " strong 离子传输 /strong /p p style=" text-indent: 2em " FT-ICR质谱的分析器是一个具有均匀(超导)磁场的空腔,离子在垂直于磁场的圆形轨道上作回旋运动,回旋频率仅与磁场强度和离子的质荷比有关,因此可以分离不同质荷比的离子,并得到质荷比相关的图谱。 /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/087524ac-bea1-4fd4-86bf-3ba50903ac29.gif" style=" float:none " title=" 离子回旋运动1.gif" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/a74c74d2-3aee-41b9-9490-0034951aef52.gif" style=" float:none " title=" 离子回旋运动2.gif" / /p p style=" text-align:center" strong 离子回旋运动 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/a80d0b75-1461-443b-96ba-878eb10101f6.gif" title=" 傅立叶变换.gif" / br/ /p p style=" text-align: center " strong 傅立叶变换 /strong /p p span style=" color: rgb(31, 73, 125) " strong 气相色谱法GC /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/bcfdfd69-ffb0-443d-98e7-c514fbb1ad6d.jpg" title=" 气相色谱法GC.jpeg" width=" 400" height=" 364" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 364px " / /strong /span /p p i strong 分析原理 /strong /i :样品中各组分在流动相和固定相之间,由于分配系数不同而分离 /p p i strong 谱图的表示方法 /strong /i :柱后流出物浓度随保留值的变化 /p p i strong 提供的信息 /strong /i :峰的保留值与组分热力学参数有关,是定性依据 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/52946bcb-d9e8-4667-b58f-a5371a812992.gif" title=" 气相色谱仪检测流程.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 气相色谱仪检测流程 /strong /p p style=" text-indent: 2em " 气相色谱仪,主要由三大部分构成:载气、色谱柱、检测器。每一模块具体工作流程如下。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/aba9a284-7690-4ead-9eae-c331f7742e53.gif" title=" 注射器.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 注射器 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/891e4835-0aca-4ea3-84fd-2fea84ba46c0.gif" title=" 色谱柱.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 色谱柱 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/18227132-52c1-42ed-ae3c-94f85089e5f4.gif" title=" 检测器.gif" width=" 400" height=" 212" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 212px " / br/ /p p style=" text-align: center " strong 检测器 /strong /p p span style=" color: rgb(31, 73, 125) " strong 凝胶色谱法GPC /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/ca20b06f-cd93-4c40-8a0e-1f0e6ed7f901.jpg" title=" 凝胶色谱法GPC.jpeg" width=" 400" height=" 298" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 298px " / /strong /span /p p i strong 分析原理 /strong /i :样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出 /p p i strong 谱图的表示方法 /strong /i :柱后流出物浓度随保留值的变化 /p p i strong 提供的信息 /strong /i :高聚物的平均分子量及其分布 /p p style=" text-indent: 2em " 根据所用凝胶的性质,可以分为使用水溶液的凝胶过滤色谱法(GFC)和使用有机溶剂的凝胶渗透色谱法(GPC)。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/85650fe3-b9fe-4f2c-ad1b-e5075277a14f.gif" title=" 只依据尺寸大小分离,大组分最先被洗提出.gif" width=" 400" height=" 294" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 294px " / br/ /p p style=" text-align: center " strong 只依据尺寸大小分离,大组分最先被洗提出 /strong /p p style=" text-indent: 2em " 色谱固定相是多孔性凝胶,只有直径小于孔径的组分可以进入凝胶孔道。大组分不能进入凝胶孔洞而被排阻,只能沿着凝胶粒子之间的空隙通过,因而最大的组分最先被洗提出来。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/9e3e1054-2d80-425c-a62c-fde6ced73425.gif" title=" 直径小于孔径的组分进入凝胶孔道.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 直径小于孔径的组分进入凝胶孔道 /strong /p p style=" text-indent: 2em " 小组分可进入大部分凝胶孔洞,在色谱柱中滞留时间长,会更慢被洗提出来。溶剂分子因体积最小,可进入所有凝胶孔洞,因而是最后从色谱柱中洗提出。这也是与其他色谱法最大的不同。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/da816fe1-73f4-4370-9c85-fcfed078d003.gif" title=" 依据尺寸差异,样品组分分离.gif" width=" 400" height=" 225" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 225px " / br/ /p p style=" text-align: center " strong 依据尺寸差异,样品组分分离 /strong /p p style=" text-indent: 2em " 体积排阻色谱法适用于对未知样品的探索分离。凝胶过滤色谱适于分析水溶液中的多肽、蛋白质、生物酶等生物分子 凝胶渗透色谱主要用于高聚物(如聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、聚甲基丙烯酸甲酯)的分子量测定。 /p p span style=" color: rgb(31, 73, 125) " strong 热重法TG /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/960f1dd8-e4b6-4197-a18a-7d5d02c82bdd.jpg" title=" 热重法TG.jpeg" width=" 400" height=" 268" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 268px " / /strong /span /p p i strong 分析原理 /strong /i :在控温环境中,样品重量随温度或时间变化 /p p i strong 谱图的表示方法 /strong /i :样品的重量分数随温度或时间的变化曲线 /p p strong i 提供的信息 /i /strong :曲线陡降处为样品失重区,平台区为样品的热稳定区 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/71b6267a-dbf2-47d6-9dd9-9e2d2a35324c.gif" title=" 自动进样过程.gif" width=" 400" height=" 222" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 222px " / br/ /p p style=" text-align: center " strong 自动进样过程 /strong /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/d1ec9825-832d-45e4-bf8c-6662d7f679d5.gif" style=" float: none width: 400px height: 222px " title=" 热重分析过程.gif" width=" 400" height=" 222" border=" 0" hspace=" 0" vspace=" 0" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/ecb6680e-fae6-48b5-b59c-9564519e7bd3.gif" style=" float: none width: 400px height: 222px " title=" 热重分析过程2.gif" width=" 400" height=" 222" border=" 0" hspace=" 0" vspace=" 0" / /p p style=" text-align:center" strong 热重分析过程 /strong /p p span style=" color: rgb(31, 73, 125) " strong 静态热-力分析TMA /strong /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/92906ff1-0140-4758-9e8e-3b93244ec676.jpg" title=" 静态热-力分析TMA.png" width=" 400" height=" 400" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 400px " / /p p i strong 分析原理 /strong /i :样品在恒力作用下产生的形变随温度或时间变化 /p p i strong 谱图的表示方法 /strong /i :样品形变值随温度或时间变化曲线 /p p i strong 提供的信息 /strong /i :热转变温度和力学状态 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/494f42b0-b3a5-423a-a0a1-9af99eed9741.gif" title=" TMA进样及分析1.gif" style=" float: none width: 400px height: 223px " width=" 400" height=" 223" border=" 0" hspace=" 0" vspace=" 0" / br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/b7eab865-5ed6-40fd-9885-cfc0d745c7df.gif" title=" TMA进样及分析2.gif" width=" 400" height=" 223" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 223px " / /p p style=" text-align: center " strong TMA进样及分析 /strong /p p strong span style=" color: rgb(31, 73, 125) " 透射电子显微技术TEM /span /strong /p p style=" text-align:center" strong span style=" color: rgb(31, 73, 125) " img src=" https://img1.17img.cn/17img/images/201808/insimg/6c591633-0cea-4a5b-a3de-1bfd16ab115e.jpg" title=" 透射电子显微技术TEM.jpeg" width=" 400" height=" 494" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 494px " / /span /strong /p p i strong 分析原理 /strong /i :高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象 /p p i strong 谱图的表示方法 /strong /i :质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象 /p p i strong 提供的信息 /strong /i :晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/2d2309eb-5d53-41c3-bcb2-233898451561.gif" title=" TEM工作图.gif" / br/ /p p style=" text-align: center " strong TEM工作图 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/e19a3fc4-7276-4112-b30f-613ee8c5c7e4.gif" title=" TEM成像过程.gif" / br/ /p p style=" text-align: center " strong TEM成像过程 /strong /p p style=" text-indent: 2em " STEM成像不同于平行电子束的TEM,它是利用聚集的电子束在样品上扫描来完成的,与SEM不同之处在于探测器置于试样下方,探测器接收透射电子束流或弹性散射电子束流,经放大后在荧光屏上显示出明场像和暗场像。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/80f20816-e715-41f2-944b-beecca86c56a.gif" title=" STEM分析图.gif" / br/ /p p style=" text-align: center " strong STEM分析图 /strong /p p style=" text-indent: 2em " 入射电子束照射试样表面发生弹性散射,一部分电子所损失能量值是样品中某个元素的特征值,由此获得能量损失谱(EELS),利用EELS可以对薄试样微区元素组成、化学键及电子结构等进行分析。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/a80b145d-fa22-40cd-81a7-f7ee7853c59e.gif" title=" EELS原理图.gif" / br/ /p p style=" text-align: center " strong EELS原理图 /strong /p p span style=" color: rgb(31, 73, 125) " strong 扫描电子显微技术SEM /strong /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/316f661e-bd8c-4b0b-a4db-ba28474d90e6.jpg" title=" 扫描电子显微技术SEM.jpeg" width=" 400" height=" 351" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 351px " / /p p i strong 分析原理 /strong /i :用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象 /p p i strong 谱图的表示方法 /strong /i :背散射象、二次电子象、吸收电流象、元素的线分布和面分布等 /p p i strong 提供的信息 /strong /i :断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/8fb69ade-2a8f-496e-9047-613b586c0e1b.gif" title=" SEM工作图.gif" / br/ /p p style=" text-align: center " strong SEM工作图 /strong /p p style=" text-indent: 2em " 入射电子与样品中原子的价电子发生非弹性散射作用而损失的那部分能量(30~50eV)激发核外电子脱离原子,能量大于材料逸出功的价电子从样品表面逸出成为真空中的自由电子,此即二次电子。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/7e005a36-0a5a-4ac5-934f-3ab8ead944a7.gif" title=" 电子发射图.gif" / br/ /p p style=" text-align: center " strong 电子发射图 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/6580019e-86ae-4b52-af2f-06b6b1b0d8d8.gif" title=" 二次电子探测图.gif" / br/ /p p style=" text-align: center " strong 二次电子探测图 /strong /p p style=" text-indent: 2em " 二次电子试样表面状态非常敏感,能有效显示试样表面的微观形貌,分辨率可达5~10nm。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/25ee0fc5-785e-476b-9c47-d46588228e0e.jpg" title=" 二次电子扫描成像.jpeg" / br/ /p p style=" text-align: center " strong 二次电子扫描成像 /strong /p p style=" text-indent: 2em " 入射电子达到离核很近的地方被反射,没有能量损失 既包括与原子核作用而形成的弹性背散射电子,又包括与样品核外电子作用而形成的非弹性背散射电子。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/3b7d3d61-ea3d-4a72-b8bd-55b72ceda02d.gif" title=" 背散射电子探测图.gif" / br/ /p p style=" text-align: center " strong 背散射电子探测图 /strong /p p style=" text-indent: 2em " 用背反射信号进行形貌分析时,其分辨率远比二次电子低。可根据背散射电子像的亮暗程度,判别出相应区域的原子序数的相对大小,由此可对金属及其合金的显微组织进行成分分析。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/1174f921-e05b-4aa4-890b-8cfcfd91ad8a.gif" title=" EBSD成像过程.gif" / br/ /p p style=" text-align: center " strong EBSD成像过程 /strong /p p span style=" color: rgb(31, 73, 125) " 原子力显微镜AFM /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/76d50cd6-1fa1-4604-8775-5a7cd72b196c.jpg" title=" 原子力显微镜AFM.jpeg" width=" 400" height=" 176" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 176px " / /p p i strong 分析原理 /strong /i :将一个对微弱力极敏感的微悬臂一端固定,另一端有一微小的针尖,由于针尖尖端原子与样品表面原子间存在极微弱的作用力,通过在扫描时控制这种力的恒定,带有针尖的微悬臂将在垂直于样品的表面方向起伏运动。从而可以获得样品表面形貌的信息 /p p i strong 谱图的表示方法 /strong /i :微悬臂对应于扫描各点的位置变化 /p p i strong 提供的信息 /strong /i :样品表面形貌的信息 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/eb4b5347-dda5-4b05-883b-dc575ec1768d.gif" title=" AFM原理:针尖与表面原子相互作用.gif" / br/ /p p style=" text-align: center " strong AFM原理:针尖与表面原子相互作用 /strong /p p style=" text-indent: 2em " AFM的扫描模式有接触模式和非接触模式,接触式利用原子之间的排斥力的变化而产生样品表面轮廓 非接触式利用原子之间的吸引力的变化而产生样品表面轮廓。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/19f93f8d-cbeb-4fba-b377-a9008c6fe007.gif" title=" 接触模式.gif" / br/ /p p style=" text-align: center " strong 接触模式 /strong /p p span style=" color: rgb(31, 73, 125) " strong 扫描隧道显微镜STM /strong /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/ba6fb6b6-ba14-4416-965f-89ab322f5136.jpg" title=" 扫描隧道显微镜STM.jpeg" width=" 400" height=" 288" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 288px " / /p p i strong 分析原理 /strong /i :隧道电流强度对针尖和样品之间的距离有着指数依赖关系,根据隧道电流的变化,我们可以得到样品表面微小的起伏变化信息,如果同时对x-y方向进行扫描,就可以直接得到三维的样品表面形貌图,这就是扫描隧道显微镜的工作原理。 /p p i strong 谱图的表示方法 /strong /i :探针随样品表面形貌变化而引起隧道电流的波动 /p p i strong 提供的信息 /strong /i :软件处理后可输出三维的样品表面形貌图 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/837324a2-f24b-4a6a-9f9a-9376b04fc45d.gif" title=" 探针.gif" / br/ /p p style=" text-align: center " strong 探针 /strong /p p style=" text-indent: 2em " 隧道电流对针尖与样品表面之间的距离极为敏感,距离减小0.1nm,隧道电流就会增加一个数量级。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/4e8408e5-3819-4a73-96e2-916e83952bf7.gif" title=" 隧道电流.gif" / br/ /p p style=" text-align: center " strong 隧道电流 /strong /p p style=" text-indent: 2em " 针尖在样品表面扫描时,即使表面只有原子尺度的起伏,也将通过隧道电流显示出来,再利用计算机的测量软件和数据处理软件将得到的信息处理成为三维图像在屏幕上显示出来。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/41ef7e62-822f-438d-a86d-9afd2f02035b.gif" title=" 三维图像1.gif" style=" float: none " / br/ /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/2c900b56-41dd-4ffa-bf83-d69c1a7063b1.gif" style=" float:none " title=" 三维图像2.gif" / /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201808/noimg/7377f5c3-8b63-4539-bb71-123c11a9996b.gif" style=" float:none " title=" 三维图像3.gif" / /p p span style=" color: rgb(31, 73, 125) " strong 原子吸收光谱AAS /strong /span br/ /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/19784e88-861e-4974-b85a-c852cfd9be0c.jpg" title=" 原子吸收光谱AAS.jpeg" width=" 400" height=" 288" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 288px " / /strong /span /p p i strong 分析原理 /strong /i :通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。吸光度与待测元素的浓度成正比。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/fc84144b-efad-4d04-b8fb-92c01ddc9e8d.gif" title=" 待测试样原子化.gif" width=" 400" height=" 220" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 220px " / br/ /p p style=" text-align: center " strong 待测试样原子化 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/fddb2170-90e4-42f0-9ff6-d1a6077e2166.gif" title=" 原子吸收及鉴定1.gif" style=" float: none width: 400px height: 222px " width=" 400" height=" 222" border=" 0" hspace=" 0" vspace=" 0" / br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/2085a1cb-a886-4ae9-9d86-97d2363b9a01.gif" title=" 原子吸收及鉴定2.gif" width=" 400" height=" 220" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 220px " / /p p style=" text-align: center " strong 原子吸收及鉴定 /strong /p p span style=" color: rgb(31, 73, 125) " strong 电感耦合高频等离子体ICP /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/a52ce051-b73b-42d7-8fe4-1feb42aac661.jpg" title=" 电感耦合高频等离子体ICP.jpeg" width=" 400" height=" 255" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 255px " / /strong /span /p p i strong 分析原理 /strong /i :利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/62eea5d0-6859-42fb-aee0-6730cd8a93d5.gif" title=" Icp设备构造.gif" width=" 400" height=" 219" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 219px " / br/ /p p style=" text-align: center " strong Icp设备构造 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/c6e9d70f-a9a4-4264-9c86-442f2cb16c6d.gif" title=" 形成激发态的原子和离子.gif" width=" 400" height=" 219" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 219px " / br/ /p p style=" text-align: center " strong 形成激发态的原子和离子 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/6b4acc93-c1b2-4ea1-83fb-9f064d099859.gif" title=" 检测器检测.gif" width=" 400" height=" 219" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 219px " / br/ /p p style=" text-align: center " strong 检测器检测 /strong /p p span style=" color: rgb(31, 73, 125) " strong X射线衍射XRD /strong /span /p p style=" text-align:center" span style=" color: rgb(31, 73, 125) " strong img src=" https://img1.17img.cn/17img/images/201808/insimg/1e9c1411-08c6-4086-a740-1e5bd2a9ffa0.jpg" title=" X射线衍射XRD.jpeg" width=" 400" height=" 351" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 351px " / /strong /span /p p i strong 分析原理 /strong /i :X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。 /p p style=" text-indent: 2em " 满足衍射条件,可应用布拉格公式:2dsinθ=λ /p p style=" text-indent: 2em " 应用已知波长的X射线来测量θ角,从而计算出晶面间距d,这是用于X射线结构分析 另一个是应用已知d的晶体来测量θ角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。 /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/27e70349-3e34-40a6-a2be-ccd119dd64e6.jpg" title=" XRD结构.jpeg" width=" 400" height=" 421" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 421px " / /p p style=" text-indent: 2em " 以下是使用XRD确定未知晶体结构分析过程: /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/e41c6c4c-3041-4b54-8a0b-ecd0bff7610e.gif" title=" XRD确定未知晶体结构分析过程1.gif" style=" float: none " / br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/090f2986-904e-4c2a-8cbd-c6926226bd6a.gif" title=" XRD确定未知晶体结构分析过程2.gif" / /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/b1a01d84-aad0-4587-8052-6b07d62015f8.gif" title=" XRD确定未知晶体结构分析过程3.gif" / /p p style=" text-align: center " strong XRD确定未知晶体结构分析过程 /strong /p p span style=" color: rgb(31, 73, 125) " strong 纳米颗粒追踪表征 /strong /span /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/insimg/62fda81f-80f4-4f24-9075-3c03b6953aa0.jpg" title=" 纳米颗粒追踪表征.jpeg" width=" 400" height=" 261" border=" 0" hspace=" 0" vspace=" 0" style=" text-align: center width: 400px height: 261px " / /p p i strong 分析原理 /strong /i :纳米颗粒追踪分析技术, 利用光散射原理,不同粒径颗粒的散射光成像在CCD上的亮度和光斑大小不一样,依此来确定粒径尺寸 合适浓度的样品均质分散在液体中可以得出粒径尺寸分布和颗粒浓度信息, 准确度非常高。 br/ /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/420ce466-3a17-4f4f-8ffd-7e3b1fcb1f90.gif" title=" 不同粒径颗粒的散射光成像在CCD.gif" width=" 400" height=" 168" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 168px " / br/ /p p style=" text-align: center " strong 不同粒径颗粒的散射光成像在CCD /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/6dac7839-6888-49da-93ff-d7d6653c643c.gif" title=" 实际样品测试效果.gif" width=" 400" height=" 301" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 301px " / br/ /p p style=" text-align: center " strong 实际样品测试效果 /strong /p p style=" text-align:center" img src=" https://img1.17img.cn/17img/images/201808/noimg/d0a95acd-0b1a-4d2b-848a-5185852adec2.jpg" title=" 不同技术的数据对比.jpeg" width=" 400" height=" 377" border=" 0" hspace=" 0" vspace=" 0" style=" width: 400px height: 377px " / br/ /p p style=" text-align: center " strong 不同技术的数据对比 /strong /p
  • 注射剂瓶胶塞穿刺力测试仪的原理与应用
    注射剂瓶胶塞穿刺力测试仪的原理与应用在现代医疗与制药行业中,注射剂瓶作为药物传输的关键容器,其密封性与安全性直接关系到患者的健康与生命安全。而注射剂瓶的胶塞,作为连接瓶体与外部世界的“门户”,不仅需具备良好的密封性能,还需在药物输送过程中承受各种穿刺操作而不失效,确保药物的无菌、无污染传递。因此,使用三泉中石的注射剂瓶胶塞穿刺力测试仪CCY-02对其进行穿刺力测试,成为了保障药品质量与患者安全不可或缺的一环。注射剂瓶胶塞的使用用途与重要性注射剂瓶胶塞,作为药品包装系统的重要组成部分,其主要功能在于提供可靠的密封屏障,防止药品在储存和运输过程中受到外界污染,同时确保在药物使用过程中(如注射给药)能够顺利穿刺而不泄漏。其材质多为橡胶或热塑性弹性体,需具备良好的弹性、耐化学性、生物相容性及适当的硬度,以适应不同药物的存储需求和穿刺操作。穿刺力测试的必要性与意义随着医疗技术的不断进步和药品包装的多样化发展,对注射剂瓶胶塞的性能要求也日益严格。穿刺力测试作为评估胶塞质量的重要手段之一,旨在模拟实际使用过程中穿刺针或输液针等医疗器械对胶塞的穿刺行为,通过量化分析穿刺过程中的力值变化与位移变化,评估胶塞的耐穿刺性能、密封保持能力及可能的破损风险。这对于确保药品在传输过程中的完整性和无菌性至关重要,直接关系到患者的用药安全与治疗效果。注射剂瓶胶塞穿刺力测试仪的测试原理与技术应用济南三泉中石的注射剂瓶胶塞穿刺力测试仪CCY-02采用力学测试技术,将试样装夹在测试仪器的两个夹头之间,通过精密控制的相对运动,使标准要求的穿刺针以恒定速度或预设条件刺入试样。在此过程中,仪器实时记录并显示穿刺力(即刺破试样所需的最大力)和拔出力(即将穿刺针从试样中拔出时所需的力)等关键参数。这些数据不仅反映了胶塞的物理强度特性,还能揭示其潜在的密封失效风险,为产品设计与质量控制提供科学依据。注射剂瓶胶塞穿刺力测试仪的广泛应用领域由于穿刺力测试技术的广泛适用性和重要性,其应用范围已远远超出了注射剂瓶胶塞本身,涵盖了各种薄膜、复合膜、电池隔膜、人造皮肤、药品包装用胶塞、组合盖、口服液盖以及各类医疗穿刺器械(如注射针、穿刺针、输液针、采血针等)的穿刺力强度试验。这些测试在质检中心、药检中心、包装厂、药厂、医疗器械厂等单位得到了广泛应用,成为保障产品质量、提升生产效率、降低安全风险的重要工具。总之,三泉中石的注射剂瓶胶塞穿刺力测试仪CCY-02作为现代医疗与制药领域的一项重要检测设备,通过科学、精准的测试手段,为药品包装与医疗器械的安全性与有效性提供了坚实保障。
  • 天美和日立高科携手参加色谱光谱产品应用研讨会
    2017年12月1日,天美和日立高科携手参加由iNexus Biosystem组织的色谱光谱产品应用研讨会。会议在印度海得拉巴Manohar酒店举办。海得拉巴以繁荣的IT,医药行业而闻名,当然还有著名的羊肉手抓饭。  会议介绍了日立高科的最新产品F-7100,F-4700。此外,深入讲解了紫外可见光,HPLC, AAA等技术的原理和应用。超过30个在分析化学领域顶尖的科学家参加会议,分享使用日立仪器的经验心得。其中来自CCMB和奥斯马尼亚大学的代表告诉我们,他们使用日立仪器超过25年,现在仍运转良好。日立高科的代表Kanai先生介绍最新产品问答环节,听众积极提问,反应热烈天美代表余博士详细讲解日立仪器的相关应用关于天美:  天美(控股)有限公司(“天美(控股)”)从事表面科学、分析仪器、生命科学 设备及实验室仪器的设计、开发和制造及分销 为科研、教育、检测及生产提供完整可靠的解决方案。继2004年於新加坡SGX主板上市后,2011年12月 21日天美(控股)又在香港联交所主板上市(香港股票代码1298),成为中国分析仪器行业第一家在国际主要市场主板上市的公司。近年来天美(控股)积极 拓展国际市场,先后在新加坡、印度、澳门、印尼、泰国、越南、美国、英国、法国、德国、瑞士等多个国家设立分支机构。公司亦先后收购了法国 Froilabo公司、瑞士Precisa公司、美国IXRF公司、英国 Edinburgh Instruments公司等多家海外知名生产企业和布鲁克公司Scion气相和气质产品生产线,加强了公司产品的多样化。
  • 电位滴定仪的原理和使用,禾工电位滴定仪的优点和特点
    电位滴定仪原理:电位滴定法是一种用电极电位的突跃来确定终点的滴定方法。在滴定过程中,滴定容器内浸入一对适当的指示电极和参比电极,随着滴定剂的加入,待测离子浓度发生改变,指示电极的电位也发生变化,在化学计量点附近可以观察到电位的突变(电位突变),因而根据电极电位突跃可以确定终点的到达,这就是电位滴定法的原理。 电位滴定仪的结构组成:电位滴定的装置1.电位计2.滴定装置3.工作电池4.磁力搅拌器 一阶微分图 二阶微分图滴定终点判断的方法手工滴定(指示剂的颜色变化)自动电位滴定(电极的信号响应代替人眼对指示剂颜色变化的判断 自动电位滴定的优点: 1.滴定速度更快速, 准确 2.提高结果的重现性 3.减少人为错误 4.自动化进行复杂的滴定程序 5.没有合适指示剂或者有色或浑浊的溶液都可以进行测试 CT-1plus全自动电位滴定仪主要优点和特点:1、自动颜色判定,机器人视觉原理精确颜色判断,大大提高滴定准确度,大大降低了操作人员的误差。2、自主知识产权的计量管活塞,使得滴定控制更精确。3、测试报告符合GLP/GMP规范,U盘存储防伪pdf实验报告。4、测试方法和测试记录条数无限制。 电位滴定种类:1、pH滴定(酸碱滴定) 指示电极:pH玻璃电极 参比电极:饱和甘汞电极2、氧化还原滴定 指示电极:铂电极 参比电极:饱和甘汞电极3、沉淀滴定 指示电极:不同的沉淀反应采用不同的指示电极,如测卤素时使用银电极 参比电极:双盐桥甘汞电极4、络合滴定 指示电极:Hg/Hg-EDTA电极 参比电极:饱和甘汞电极 参比电极:参比电极是电极电位恒定且重现性良好的电极。标准氢电极的电位为零,是参比电极中的一级电极。但由于氢电极制作麻烦,使用不便,故实际工作中少用。分析测试工作中使用的参比电极主要是甘汞电极和银-氯化银参比电极。 电位滴定仪应用行业:石化行业:总酸值TAN和总碱值TBN、皂化值、碘值、溴价和溴指数、硫醇硫含量及含盐量的检测。水质分析中还要检测钙离子、氯离子、氟离子、碳酸根离子等的检测。原油中的盐含量测定;石油产品酸值的测定;三聚磷酸钠中氯化钠含量测定;卷烟纸中碳酸钙含量测定。 医药行业:沉淀滴定:丁溴东莨菪碱、苯巴比妥(银电极);酸碱滴定(非水滴定):门冬氨酸、己酮可可碱、马来酸伊索拉定、双氯芬酸钠等;酸碱滴定(水相滴定):五氟利多、牛磺酸、甘油磷酸钠等;氧化还原滴定:维生素C、青霉素钠、聚维酮碘; 食品行业:酸碱滴定:乳化剂中的酸值、植物油中的酸值、酱油中总酸、淀粉酸度等;氧化还原滴定:糖中的二氧化硫、糖品中亚硫酸盐、植物油中过氧化值;络合滴定:牛奶中钙含量;沉淀滴定:酱油中食盐(以氯化钠计)的含量; 化妆品行业:硼酸及其硼酸盐含量;卤酸盐含量;酯值或含酯量的测定;羰基化合物的测定;
  • 小小游戏揭秘GE TOC仪工作原理
    6月25日,GE TOC小游戏正式上线,小小游戏为您展示GE TOC仪内部的大秘密,点击此处,开始游戏!GE Sievers系列总有机碳(TOC)分析仪具备两大基本功能,第一, 首先通过UV灯氧化技术将水中的总有机碳充分氧化,生成CO2;第二,测试新产生的CO2,以测量水中总有机碳含量,用于表征水中有机物的含量,这是水质的重要指标之一。Sievers系列TOC分析仪区别于其他品牌TOC仪的关键在于:检测新生成的CO2时,Sievers TOC分析仪采用了薄膜电导率检测技术。Sievers薄膜电导率检测技术使用了选择性气体渗透薄膜,只有氧化产生的CO2能通过这层薄膜进入检测舱。从而防止酸、碱和含卤素等杂原子化合物的干扰,因此相比直接电导率法,Sievers薄膜电导率检测法减少了检测中的“假正”现象,提供了无比优异的选择性、灵敏度、稳定性、精确度和准确度。看完文字介绍,再玩一下GE TOC的小游戏吧,更形象地了解一下GE TOC仪的原理!若无法正常显示,点击此处开始游戏!
  • 纳米粒度分析仪的原理及应用
    纳米粒度仪是应用很广泛的一种科学仪器,使用多角度动态光散射技术测量颗粒粒度分布 。动态光散射(DLS)法原理 :当激光照射到分散于液体介质中的微小颗粒时,由于颗粒的布朗 运动引起散射光的频率偏移,导致散射光信号随时间发生动态变化,该变化的大小与颗粒的布朗运动速度有关,而颗粒的布朗运动速度又取决于颗粒粒径的大小,颗粒大布朗运动速度低,反之颗粒小布朗运动速度高,因此动态光散射技术是分析样品颗粒的散射光强随时间的涨落规律,使用光子探测器在固定的角度采集散射光,通过相关器进行自相关运算得到相关函数,再经过数学反演获得颗粒粒径信息。纳米粒度仪的应用领域: 纳米材料:用于研究纳米金属氧化物、纳米金属粉、纳米陶瓷材料的粒度对材料性能的影响。 生物医药:分析蛋白质、DNA、RNA、病毒,以及各种抗原抗体的粒度。 精细化工: 用于寻找纳米催化剂的最佳粒度分布,以降低化学反应温度,提高反应速度。 油漆涂料:用于测量油漆、涂料、硅胶、聚合物胶乳、颜料、 油墨、水/油乳液、调色剂、化妆品等材料中纳米颗粒物的粒径。 食品药品:药物表面包覆纳米微粒可使其高效缓释,并可以制成靶向药物,可用来测量包覆物粒度的大小,以便更好地发挥药物的疗效。 航空航天 纳米金属粉添加到火箭固体推进剂中,可以显著改进推进剂的燃烧性能,可用于研究金属粉的最佳粒度分布。 国防科技:纳米材料增加电磁能转化为热能的效率,从而提高对电磁波的吸收性能,可以制成电磁波吸波材料。不同粒径纳米材料具有不同的光学特性,可用于研究吸波材料的性能。
  • 德国科学家破译了生化反应的基本运作原理
    酶是生命的分子催化剂,在细胞的新陈代谢中起重大作用。对于酶在作出生化反应时会曲折底物并借此分裂的原理,迄今为止仅是推测。现在德国哥廷根大学生物分子科学中心的科学家们首次在试验中证实了这个推测。   哥廷根大学的研究人员先是培养出了高度有序的人体酵素转酮酶的蛋白质晶体,它们在人体代谢的糖消化中具有关键作用。他们将这种晶体与天然糖底物混合,而后在柏林和法国格勒诺布尔用粒子加速器对酶晶体的结构进行分析,结果科学家们获得了酶中糖分子在即将分裂成两半前的一个超高分辨率结构。这张有着独一无二清晰度的快照毫无悬念地显示,酶中的糖底物如同夹在虎钳上的工件似得弯曲起来。   专家们指出,酶通常是药物标靶,新的发现因而对于开发具有高度特异性的、比如用于癌症治疗的有效药物具有意义。研究中涉及的人体转酮酶对于癌细胞的代谢也同样具有关键作用。此研究成果已发表在专业期刊Nature Chemistry 上。
  • 从原理到应用,6大类元素分析仪大比拼
    p   元素定义:是 strong span style=" color: rgb(0, 0, 0) " 具有相同质子数(核电荷数)的同一类原子的总称 /span /strong ,到目前为止,人们在自然中发现的元素有90余种,人工合成的元素有20余种. /p p   元素(element)又称化学元素,指自然界中一百多种基本的金属和非金属物质,它们只由几种有共同特点的原子组成,其原子中的每一原子核具有同样数量的质子,质子数来决定元素是由种类。 /p p   明白了我们要检测的东西是什么,接下来就进入正题,看看各元素分析仪器的分析过程及性能对比。 /p p style=" text-align: center " strong span style=" text-align: center color: rgb(0, 112, 192) " 主要元素分析仪器 /span /strong /p p    strong span style=" color: rgb(0, 0, 0) " 1.紫外\可见光分光光度计(UV) /span /strong /p p strong span style=" color: rgb(0, 0, 0) "   2.原子吸收分光光度计(AAS) /span /strong /p p strong span style=" color: rgb(0, 0, 0) "   3.原子荧光分光光度计(AFS) /span /strong /p p strong span style=" color: rgb(0, 0, 0) "   4.原子发射分光光度计(AES) /span /strong /p p strong span style=" color: rgb(0, 0, 0) "   5.质谱(MS) /span /strong /p p strong span style=" color: rgb(0, 0, 0) "   6.X射线分光光度计(XRF ) /span /strong /p p   常见分析仪器的归属类型: /p p   ICP-OES:是原子发射光谱的一种,原名ICP-AES后改名为ICP-OES /p p   ICP-MS: 无机质谱(MS),用于分析元素含量,也用于同位素分析 /p p   FAAS、GAAS和 HGAAS(HAAS):火焰原子吸收、石墨炉原子吸收和氢化物原子吸收,都属于原子吸收一类。 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 各种元素分析仪器分析过程、特点及应用 /span /strong /p p    strong span style=" color: rgb(192, 0, 0) " 紫外\可见光分光光度计(UV) /span /strong /p p    strong 1.分析过程: /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/e2fdc87e-0993-48a6-befd-0ce8f87e01a0.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p    strong 2.原理: /strong /p p   利用比耳定律(A=ξbC),其中ξ为摩尔吸光系数,对于固定物质为常数 b为样品厚度 C为样品浓度 A为吸光度。很明显,在样品厚度和摩尔吸光系数一定的情况下A与样品浓度成正比。 /p p    strong 3.主要特点 /strong strong : /strong /p p   (1)灵敏度高 /p p   (2)选择性好 /p p   (3)准确度高 /p p   (4)适用浓度范围广 /p p   (5)分析成本低、操作简便、快速、应用广泛 /p p    strong span style=" color: rgb(192, 0, 0) " 原子吸收和荧光分光光度计 /span /strong /p p    strong 1.分析过程: /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/4893d001-558b-4388-a325-5cf4e753ce51.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p    strong 2.原子吸收光谱法原理: /strong /p p   原子吸收光谱法 (AAS)是利用气态原子可以吸收一定波长的光辐射,使原子中外层的电子从基态跃迁到激发态的现象而建立的。 /p p   公式:A=KC /p p   式中K为常数 C为试样浓度 K包含了所有的常数。此式就是原子吸收光谱法进行定量分析的理论基础。 /p p   原子荧光光谱法是以原子在辐射能激发下发射的荧光强度进行定量分析的发射光谱分析法。所用仪器与原子吸收光谱法相近。 /p p    strong 3.原子吸收主要特点: /strong /p p   (1)灵敏度高FAAS可以测试ppm-ppb级的金属 /p p   (2)原子吸收谱线简单,选择性好,干扰少。 /p p   (3)操作简单、快速,自动进样每小时可测定数百个样品 /p p   (4)测量精密度好,火焰吸收精密度可以达到1-2%,非火焰可以达到5-10% /p p   (5)测定元素多,可测试70多种元素,利用化学反应还可间接测试部分非金属。 /p p    strong 4.原子荧光主要特点: /strong /p p   (1)有较低的检出限,灵敏度高。 /p p   (2)干扰较少,谱线比较简单。 /p p   (3)仪器结构简单,价格便宜。 /p p   (4)分析校准曲线线性范围宽,可达3~5个数量级。 /p p   (5)由于原子荧光是向空间各个方向发射的,比较容易制作多道仪器,因而能实现多元素同时测定。 /p p    strong span style=" color: rgb(192, 0, 0) " 原子发射分光光度计 /span /strong /p p    strong 1.分析过程: /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/3f0e5fdc-f945-4e01-9c4f-7238f511c132.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-indent: 2em " strong 2.原理 /strong /p p   原子的核外电子一般处在基态运动,当获取足够的能量后,就会从基态跃迁到激发态,处于激发态不稳定(寿命小于10-8 s),迅速回到基态时,就要释放出多余的能量,若此能量以光的形式出显,即得到发射光谱(线光谱)。 /p p   发射的光波长为: /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/465515c6-4eaa-4a6b-b16a-785849c6c925.jpg" title=" 0.png" alt=" 0.png" / /p p   每个元素有自己独特的特征光谱,从而进行元素定性分析。 /p p    strong 3.主要特点 /strong /p p   (1)高温,104K /p p   (2)环状通道,具有较高的稳定性 /p p   (3)惰性气氛,电极放电较稳定 /p p   (4)具有好的检出限,一些元素可达到10-3~10-5ppm /p p   (5)ICP稳定性好,精密度高,相对标准偏差约1% /p p   (6)基体效应小 /p p   (7)光谱背景小 /p p   (8)自吸效应小 /p p   (9)线性范围宽。 /p p    span style=" color: rgb(192, 0, 0) " strong 质谱分析法 /strong /span /p p    strong 1.分析过程: /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/389e5ec2-0606-4be5-bad8-d1e0e9dd7a52.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p    strong 2.原理 /strong /p p   使试样中各组分电离生成不同荷质比的离子,经加速电场的作用,进入质量分析器,通过电磁场按不同m/e的变化,分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息。 /p p    strong 3.主要特点: /strong /p p   (1)质量测定范围广泛 /p p   (2)分辨高 /p p   (3)绝对灵敏度,可检测的最小样品量。 /p p    strong span style=" color: rgb(192, 0, 0) " X荧光光度计(XRF) /span /strong /p p    strong 1.分析过程: /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/908c4b76-7454-4801-876b-f21696fadca4.jpg" title=" 5.jpg" alt=" 5.jpg" / /p p    strong 2.原理: /strong /p p   受激发的样品中的每一种元素会放射出二次X射线,并且不同的元素所放射出的二次X射线具有特定的能量特性或波长特性。探测系统测量这些放射出来的二次X射线的能量及数量。然后,仪器软件将探测系统所收集到的信息转换成样品中各种元素的种类及含量。 /p p    strong 3.主要特点: /strong /p p   (1)快速,测试一个样品只需2min-3min /p p   (2)无损,测试过程中无需损坏样品,直接测试 /p p   (3)含量范围广 /p p style=" text-align: center " strong span style=" color: rgb(0, 112, 192) " 几种元素分析仪器对比 /span /strong /p p    strong 1.工作范围 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/1eceb58a-ba37-4cb0-b29a-24f3ef593b8a.jpg" title=" 6.jpg" alt=" 6.jpg" / /p p    strong 2.无机分析产品的检出限 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/d55d223e-1a23-4835-af62-3185baa3e6b5.jpg" title=" 7.jpg" alt=" 7.jpg" / /p p    strong 3.干扰 /strong /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201902/uepic/4958e1cd-ea8c-4447-bf43-4ce9ce5b38b4.jpg" title=" 8.jpg" alt=" 8.jpg" / /p p    strong 4.费用 /strong /p p style=" text-align: center " img src=" https://img1.17img.cn/17img/images/201902/uepic/72e71f99-335a-49ba-85f8-7a850e6b86e4.jpg" title=" 9.jpg" alt=" 9.jpg" /    /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/zc/818.html" target=" _self" style=" color: rgb(192, 0, 0) text-decoration: underline " span style=" color: rgb(192, 0, 0) " 医用原子吸收光谱仪会场 /span /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/zc/646.html" target=" _self" style=" color: rgb(192, 0, 0) text-decoration: underline " span style=" color: rgb(192, 0, 0) " 金属多元素分析仪会场 /span /a /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/zc/476.html" target=" _self" style=" text-decoration: underline color: rgb(192, 0, 0) " span style=" color: rgb(192, 0, 0) " 有机元素分析仪会场 /span /a /p
  • 气质联用仪的基本原理
    p style=" line-height: 1.5em " & nbsp & nbsp & nbsp & nbsp 气质联用仪是指将气相色谱仪和质谱仪联合起来使用的仪器。质谱法可以进行有效的定性分析,但对复杂有机化合物的分析就显得无能为力 而色谱法对有机化合物是一种有效的分离分析方法,特别适合于进行有机化合物的定量分析,但定性分析则比较困难。因此,这两者的有效结合必将为化学家及生物化学家提供一个进行复杂有机化合物高效的定性、定量分析工具。像这种将两种或两种以上方法结合起来的技术称之为联用技术,将气相色谱仪和质谱仪联合起来使用的仪器叫做气质联用仪。 br/ /p p style=" line-height: 1.5em "    strong 基本应用 /strong /p p style=" line-height: 1.5em "   气质联用仪被广泛应用于复杂组分的分离与鉴定,其具有GC的高分辨率和质谱的高灵敏度,是生物样品中药物与代谢物定性定量的有效工具。质谱仪的基本部件有:离子源、滤质器、检测器三部分组成,它们被安放在真空总管道内。接口:由GC出来的样品通过接口进入到质谱仪,接口是气质联用系统的关键。 /p p style=" line-height: 1.5em "   strong  GC-MS主要由以下部分组成:色谱部分、气质接口、质谱仪部分(离子源、质量分析器、检测器)和数据处理系统。 /strong /p p style=" line-height: 1.5em "    strong 一、色谱部分 /strong /p p style=" line-height: 1.5em "   色谱部分和一般的色谱仪基本相同,包括柱箱、气化室和载气系统。除特殊需要,多数不再装检测器,而是将MS作为检测器。此外,在色谱部分还带有分流/不分流进样系统,程序升温系统,压力、流量自动控制系统等。色谱部分的主要作用是分离,混合物样品在合适的色谱条件下被分离成单个组分,然后进入质谱仪进行鉴定。色谱仪是在常压下工作,而质谱仪需要高真空,因此,如果色谱仪使用填充柱,必须经过一种接口装置-分子分离器,将色谱载气去除,使样品气进入质谱仪。如果色谱仪使用毛细管柱,因为毛细管中载气流量比填充柱小得多,不会破坏质谱仪真空,可以将毛细管直接插入质谱仪离子源。 /p p style=" line-height: 1.5em "   strong  二、气质接口 /strong /p p style=" line-height: 1.5em "   气质接口是GC到MS的连接部件。最常见的连接方式是直接连接法,毛细管色谱柱直接导入质谱仪,使用石墨垫圈密封(85%Vespel+15%石墨),接口必须加热,防止分离的组分冷凝,接口温度设置一般为气相色谱程序升温最高值。 /p p style=" line-height: 1.5em "    strong 三、质谱仪部分 /strong /p p style=" line-height: 1.5em "   质谱仪既是一种通用型的检测器,又是有选择性的检测器。它是在离子源部分将样品分子电离,形成离子和碎片离子,再通过质量分析器按照质荷比的不同进行分离,最后在检测器部分产生信号,并放大、记录得到质谱图。 /p p style=" line-height: 1.5em "    strong 1.离子源 /strong /p p style=" line-height: 1.5em "   离子源的作用是接受样品产生离子,常用的离子化方式有: /p p style=" line-height: 1.5em "    strong 电子轰击离子化 /strong (electron impact ionization,EI)EI是最常用的一种离子源,有机分子被一束电子流(能量一般为70eV)轰击,失去一个外层电子,形成带正电荷的分子离子(M+),M+进一步碎裂成各种碎片离子、中性离子或游离基,在电场作用下,正离子被加速、聚焦、进入质量分析器分析。 /p p style=" line-height: 1.5em "    strong EI特点: /strong /p p style=" line-height: 1.5em "   ⑴结构简单,操作方便。 /p p style=" line-height: 1.5em "   ⑵图谱具有特征性,化合物分子碎裂大,能提供较多信息,对化合物的鉴别和结构解析十分有利。 /p p style=" line-height: 1.5em "   ⑶所得分子离子峰不强,有时不能识别。 /p p style=" line-height: 1.5em "   本法不适合于高分子量和热不稳定的化合物。 /p p style=" line-height: 1.5em "    strong 化学离子化 /strong (chemicalionization,CI)将反应气(甲烷、异丁烷、氨气等)与样品按一定比例混合,然后进行电子轰击,甲烷分子先被电离,形成一次、二次离子,这些离子再与样品分子发生反应,形成比样品分子大一个质量数的(M+1) 离子,或称为准分子离子。准分子离子也可能失去一个H2,形成(M-1)离子。 /p p style=" line-height: 1.5em "    strong CI特点 /strong /p p style=" line-height: 1.5em "   ⑴不会发生象EI中那么强的能量交换,较少发生化学键断裂,谱形简单。 /p p style=" line-height: 1.5em "   ⑵分子离子峰弱,但(M+1) 峰强,这提供了分子量信息。 /p p style=" line-height: 1.5em "    strong 场致离子化 /strong (fieldionization,FI) 适用于易变分子的离子化,如碳水化合物、氨基酸、多肽、抗生素、苯丙胺类等。能产生较强的分子离子峰和准分子离子峰。 /p p style=" line-height: 1.5em "    strong 场解吸离子化 /strong ( field desorption ionization,FD) 用于极性大、难气化、对热不稳定的化合物。 /p p style=" line-height: 1.5em "    strong 负离子化学离子化 /strong (negative ion chemical ionization,NICI)是在正离子MS的基础上发展起来的一种离子化方法,其给出特征的负离子峰,具有很高的灵敏度(10-15g)。 /p p style=" line-height: 1.5em "    strong 2.质量分析 /strong /p p style=" line-height: 1.5em "   其作用是将电离室中生成的离子按质荷比(m/z)大小分开,进行质谱检测。常见质量分析器有: /p p style=" line-height: 1.5em "    strong 四极杆质量分析器(quadrupoleanalyzer) /strong /p p style=" line-height: 1.5em "   原理:由四根平行圆柱形电极组成,电极分为两组,分别加上直流电压和一定频率的交流电压。样品离子沿电极间轴向进入电场后,在极性相反的电极间振荡,只有质荷比在某个范围的离子才能通过四极杆,到达检测器,其余离子因振幅过大与电极碰撞,放电中和后被抽走。因此,改变电压或频率,可使不同质荷比的离子依次到达检测器,被分离检测。 /p p style=" line-height: 1.5em "    strong 扇形质量分析器 /strong /p p style=" line-height: 1.5em "   磁式扇形质量分析器(magnetic-sector massanalyzer)被电场加速的离子进入磁场后,运动轨道弯曲了,离子轨道偏转可用公式表示:当H,V一定时,只有某一质荷比的离子能通过狭缝到达检测器。 /p p style=" line-height: 1.5em "   特点:分辨率低,对质量同、能量不同的离子分辨较困难。 /p p style=" line-height: 1.5em "    strong 双聚焦质量分析器 /strong (double-focusing massassay)由一个静电分析器和一个磁分析器组成,静电分析器允许有某个能量的离子通过,并按不同能量聚焦,先后进入磁分析器,经过两次聚焦,大大提高了分辨率。 /p p style=" line-height: 1.5em "    strong 离子阱检测器(iontrap detector) /strong /p p style=" line-height: 1.5em "   原理类似于四极分析器,但让离子贮存于井中,改变电极电压,使离子向上、下两端运动,通过底端小孔进入检测器。 /p p style=" line-height: 1.5em "   检测器的作用是将离子束转变成电信号,并将信号放大,常用检测器是电子倍增器。当离子撞击到检测器时引起倍增器电极表面喷射出一些电子,被喷射出的电子由于电位差被加速射向第二个倍增器电极,喷射出更多的电子,由此连续作用,每个电子碰撞下一个电极时能喷射出2~3个电子,通常电子倍增器有14级倍增器电极,可大大提高检测灵敏度。 /p p style=" line-height: 1.5em "    strong 真空系统 /strong /p p style=" line-height: 1.5em "   由于质谱仪必须在真空条件下才能工作,因此真空度的好坏直接影响了气质联用仪的性能。一般真空系统由两级真空组成,前级真空泵和高真空泵。前级真空泵的主要作用是给高真空泵提供一个运行的环境,一般为机械旋片泵。高真空泵主要有油扩散泵和涡轮分子泵,目前主要应用的是涡轮分子泵 /p p style=" line-height: 1.5em "   strong  主要性能指标 /strong /p p style=" line-height: 1.5em "   气质联用仪的整体性能指标主要有以下几个:质量范围、分辨率、灵敏度、质量准确度、扫描速度、质量轴稳定性、动态范围。 /p p style=" line-height: 1.5em "   质量范围指的是能检测的最低和最高质量,决定了仪器的应用范围,取决于质量分析器的类型。四极杆质量分析器的质量范围下限1~10,上限500~1200。 /p p style=" line-height: 1.5em "   分辨率是指质谱分辨相邻两个离子质量的能力,质量分析器的类型决定了质谱仪的分辨能力。四极杆质量分析器的分辨率一般为单位质量分辨力。 /p p style=" line-height: 1.5em "   灵敏度:气质联用仪一般采用八氟萘作为灵敏度测试的化合物,选择质量数272的离子,以1pg八氟萘的均方根(RMS)信噪比来表示。灵敏度的高低不仅与气质联用仪的性能有关,测试条件也会对结果产生一定影响。 /p p style=" line-height: 1.5em "   质量准确度为离子质量测定的准确性,与分辨率一样取决于质量分析器的类型。四极杆质量分析器属于低分辨质谱,质量准确度为0.1u。 /p p style=" line-height: 1.5em "   扫描速度定义为每秒钟扫描的最大质量数,是数据采集的一个基本参数,对于获得合理的谱图和好的峰形有显著的影响。 /p p style=" line-height: 1.5em "   质量轴稳定性是指在一定条件下,一定时间内质量标尺发生偏移的程度,一般多以24h内某一质量测定值的变化来表示。 /p p style=" line-height: 1.5em "   动态范围决定了气质联用仪的检测浓度范围。 /p p style=" line-height: 1.5em "    strong 测定方法 /strong /p p style=" line-height: 1.5em "    strong 总离子流色谱法(totalionization chromatography,TIC) /strong --类似于GC图谱,用于定量。l反复扫描法(repetitive scanningmethod,RSM)--按一定间隔时间反复扫描,自动测量、运算,制得各个组分的质谱图,可进行定性。l质量色谱法(masschromatography,MC)--记录具有某质荷比的离子强度随时间变化图谱。在选定的质量范围内,任何一个质量数都有与总离子流色谱图相似的质量色谱图。 /p p style=" line-height: 1.5em "    strong 选择性离子监测(selectedion monitoring,SIM) /strong --对选定的某个或数个特征质量峰进行单离子或多离子检测,获得这些离子流强度随时间的变化曲线。其检测灵敏度较总离子流检测高2~3个数量级。 /p p style=" line-height: 1.5em "    strong 质谱图 /strong --为带正电荷的离子碎片质荷比与其相对强度之间关系的棒图。质谱图中最强峰称为基峰,其强度规定为100%,其它峰以此峰为准,确定其相对强度。 /p p br/ /p
  • 振动试验入门——振动试验装置基础知识2
    振动试验机的动作原理和构造电动型振动试验机的基本构造和音响的喇叭类似,只是喇叭的发音部分变成了金属制(铝合金或镁合金)的动圈,动圈受力发生上下振动。(注意:本专栏内振动试验机都是指电动型振动试验机。)其原理是高中时学的左手定则,磁场中的导体通电产生力,可通过下式表示。B的产生利用右手法则,即电流流过导体,其四周产生磁场。励磁线圈内流经直流电流,形成磁场(下图中N、S表示)。振动台面和线圈(动圈)加工在一起,安装在该磁场中,需要注意的是在振动试验机的动圈里面通过的是交流电流,受到的力是有正负之分的。产生上下交变力,发生振动,即振动台面上下振动。当然,为了保持振动台面的垂直方向振动不偏移,还需要上下支撑机构。具体内部构造简单示意图如下。功放的目的和动作功放主要是将振动控制的振动信号进行放大,即提供电能量给振动发生机动作,电能量可通过功率电压乘以电流表示。比如,输出10KVA的功放,振动控制仪输入信号约3V10mA(30mVA),通过功放可放大为100V100A(10kVA)。功放的类型也多种多样,有模拟型,开关数字型等等,下表是其各自特点比较。振动控制仪的种类振动控制仪对安装在振动台面上的控制加速度传感器反馈来的加速度值(振动量级响应值)和目标值进行比较,进行振动的控制。响应值大了就降低振动控制仪的输出,响应值小就增大振动控制仪的输出,始终使振动台面加速度在目标值附近振动,满足振动试验精度要求。简单理解,其实内部控制很复杂,不仅仅只控制加速度值。其种类有很多,主要有以下几种,正弦波控制软件:正弦波加振,对振动幅值控制。随机波控制软件:随即波加振,对振动谱控制。冲击波控制软件:实现有限脉宽(约2秒以下)冲击各波形控制。波形再现控制软件:实现长时间波形控制。由上可知,波形不同,控制方法各异,需要专门的控制软件进行对应。以前以模拟振动控制仪为主流,最近随着数字电子技术的发展,数字振动控制仪得到普及,且价格也相对变得便宜很多。备注:图片和部分文字等来源于网络,如有侵权,请联系作者本人。
  • 热重分析仪原理简介
    p   热重分析是在程序控温和一定气氛下,测量试样的质量与温度或时间关系的技术。使用这种技术测量的仪器就是热重分析仪(Thermogravimetric analyzer-TGA),热重分析仪也被称为热天平。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 热重分析仪基本结构 /strong /span /p p   热重分析仪的主要部件有热天平、加热炉、程序控温系统、气氛控制系统。 /p p strong 热天平 /strong /p p   热天平的主要工作原理是把电路和天平结合起来。通过程序控温仪使加热电炉按一定的升温速率升温(或恒温),当被测试样发生质量变化,光电传感器能将质量变化转化为直流电信号。此信号经测重电子放大器放大并反馈至天平动圈,产生反向电磁力矩,驱使天平梁复位。反馈形成的电位差与质量变化成正比(即可转变为样品的质量变化)。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/d515a402-1f0a-4ba4-a12b-725e7f252d60.jpg" title=" 电压式微量热天平.png" / /p p style=" text-align: center " strong 电压式微量热天平 /strong /p p   热天平结构图如图所示。电压式微量热天平采用的是差动变压器法,即零位法。用光学方法测定天平梁的倾斜度,以此信号调整安装在天平系统和磁场中线圈的电流,线圈转动恢复天平梁的倾斜。另一解释为:当被测物发生质量变化时,光传感器能将质量变化转化为直流电信号,此信号经测重放大器放大后反馈至天平动圈,产生反向电磁力矩,驱使天平复位。反馈形成的电位差与质量变化成正比,即样品的质量变化可转变电压信号。 /p p   TGA有三种热天平结构设计:上置式(上皿式)设计—天平置于测试炉体下方,试样支架垂直托起试样坩埚 悬挂式(下皿式)设计—天平位于测试炉体上方,坩埚置于下垂支架上 水平式设计—天平与测试炉体处于同一水平面,坩埚支架水平插入炉体。 /p p   天平与炉体间须采取结构性措施防止天平受到来自炉体热辐射和腐蚀性物质的影响。 /p p   天平的主要性能指标有分辨率和量程。根据分辨率不同可分为半微量天平(10μg)、微量天平(1μg)和超微量天平(0.1μg)。 /p p   物体的质量是物体中物质量的量度,而物体的重量是质量乘以重力加速度所得的力,TGA测量的是转换成质量的力。由于气体的密度会随炉体温度的变化而变化,需要对测试过程中试样、坩埚及支架受到的浮力进行修正。可采用相同的测试程序进行空白样测试以得到空白曲线,再由试样测试曲线减去空白曲线即可进行浮力修正。 /p p strong 加热炉 /strong /p p   炉体包括炉管、炉盖、炉体加热器和隔离护套。炉体加热器位于炉管表面的凹槽中。炉管的内径根据炉子的类型而有所不同。 /p p style=" text-align: center " img src=" http://img1.17img.cn/17img/images/201807/insimg/08fe3180-30d2-44d5-9bb8-da75c8e8d5a6.jpg" title=" 炉体结构图.png" / /p p style=" text-align: center " strong 炉体结构图 /strong /p p   1-气体出口活塞,石英玻璃 2-前部护套,氧化铝 3-压缩弹簧,不锈钢 4-后部护套,氧化铝 5-炉盖,氧化铝 6-样品盘,铂/铑 7-炉温传感器,R型热电偶 8-样品温度传感器,R型热电偶 9-冷却循环连接夹套,镀镍黄铜 10-炉体法兰冷却连接,镀镍黄铜 11-炉休法兰,加工过的铝 12-转向齿条,不锈钢 13-收集盘,加工过的铝 14-开启样品室的炉子马达 15-真空和吹扫气体入口,不锈钢 16.保护性气体入口,不锈钢 17-用螺丝调节的夹子,铝 18-冷却夹套,加工过的铝 19-反射管,镍 20-隔离护套,氧化铝 21-炉子加热器,坎萨尔斯铬铝电热丝Al通路 22-炉管,氧化铝 23-反应性气体导管,氧化铝 24-样品支架,氧化铝 25-炉体天平室垫圈,氟橡胶 26-隔板、挡板,不锈钢 27-炉子与天平室间的垫圈,硅橡胶 28-反应性气体入口,不锈钢 29-天平室,加工过的铝 /p p strong 程序控温系统 /strong /p p   加热炉温度增加的速率受温度程序的控制,其程序控制器能够在不同的温度范围内进行线性温度控制,如果升温速率是非线性的将会影响到TGA曲线。程序控制器的另一特点是,对于线性输送电压和周围温度变化必须是稳定的,并能够与不同类型的热电偶相匹配。 /p p   当输入测试条件之后(温度起止范围和升温速率),温度控制系统会按照所设置的条件程序升温,准确执行发出的指令。所有这些控温程序均由热电偶传感器(简称热电偶)执行,热电偶分为样品温度热电偶和加热炉温度热电偶。样品温度热电偶位于样品盘下方,保证样品离样品温度测量点较近,温度误差小 加热炉温度热电偶测量炉温并控制加热炉电源,其位于炉管的表面。 /p p strong 气氛控制系统 /strong /p p   气氛控制系统分为两路,一路是反应气体,经由反应性气体毛细管导入到样品池附近,并随样品一起进入炉腔,使样品的整个测试过程一直处于某种气氛的保护中。通入的气体由样品而定,有的样品需要通入参与反应的气体,而有的则需要不参加反应的惰性气体 另一路是对天平的保护气体,通入并对天平室内进行吹扫,防止样品加热时发生化学反应而放出的腐蚀性气体进入天平室,这样既可以使天平得到很高的精度,也可以延长热天平的使用寿命。 /p p style=" text-align: center " span style=" color: rgb(255, 0, 0) " strong 热重分析仪测量曲线 /strong /span /p p   热重分析仪测量得到的曲线有TGA曲线与DTG曲线。TGA曲线是质量对温度或时间绘制的曲线,DTG曲线是TGA曲线对温度或时间的一阶微商曲线,体现了质量随温度或时间的变化速率。 /p p   当试样随温度变化失去所含物质或与一定气氛中气体进行反应时,质量发生变化,反应在TGA曲线上可观察到台阶,在DTG曲线上可观察到峰。 /p p   引起试样质量变化的效应有:挥发性组分的蒸发,干燥,气体、水分和其他挥发性物质的吸附与解吸,结晶水的失去 在空气或氧气中的氧化反应 在惰性气氛中发生热分解,并伴随有气体产生 试样与气氛的非均相反应。 /p p   同步热分析仪STA将热重分析仪TGA与差示扫描量热仪DSC或差热分析仪DTA整合在一起。可在热重分析的同时进行DSC或DTA信号的测量,但灵敏度往往不及单独的DSC,限制了其应用。 /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制