当前位置: 仪器信息网 > 行业主题 > >

止回阀原理

仪器信息网止回阀原理专题为您提供2024年最新止回阀原理价格报价、厂家品牌的相关信息, 包括止回阀原理参数、型号等,不管是国产,还是进口品牌的止回阀原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合止回阀原理相关的耗材配件、试剂标物,还有止回阀原理相关的最新资讯、资料,以及止回阀原理相关的解决方案。

止回阀原理相关的资讯

  • 如何利用冷水机提高冷风机降温效果
    一般冷风机都是安装在户外,因此蓄水盘在烈日高温幅射下,水温升高,严重影响了降温效果,如果蓄水盘的水温大于等于室内空气的温度,则根本起不到降温的效果。因此蓄水盘内水的温度高低决定着冷风机的降温效果。 上海田枫实业有限公司是专业的冷水机厂家,可以提供冷水机非标定做,配套冷水机解决方案。根据多年经验,总结下如何利用冷水机来提供冷风机的降温效果。 本方案包括降温蓄水罐、制冷水泵、上海田枫冷水机、数目与冷风机相同的回水管和进水管,冷风机的出水口通过回水管和降温蓄水罐进水口连接,降温蓄水罐出水口通过制冷水泵连接冷水机进水口,冷水机的出水口通过进水管连接冷风机的另一个进水口。 为了控制水流的通断,制冷水泵和冷水机进水口之间设有水流开关。为了防止水的回流,让水能够顺利的输送到冷风机,冷水机的出水口和冷风机的进水口之间设有止回阀和水阀。 其原理是将自来水输送到冷风机,利用机身蓄水盘内水的温度比室内空气的温度低,从空气吸取热量,来进行降温,而温度升高的水通过冷水循环机构,经过降温蓄水罐和冷水机冷却后,降低到合适的温度,就可以送到冷风机再次进行降温。因此,只需要少量的循环水,冷水机耗费少量的电能就可以大幅提高冷风降温装置的降温效果。 来源:上海田枫仪器有限公司:冻干机www.tfyqchina.cn 冷水机www.tfsye.com关键词:[冷水机][小型冷水机][工业水冷机][实验室冷水机][制冰机][超低温冰箱][冻干机] [实验室冻干机][生产型冻干机]
  • 技术线上论坛| 5月31日《从基本制冷原理到顶级的低温设备 ——如何发挥设备的低温性能》
    [报告简介]本次报告将结合具代表性的低温设备为大家介绍科研中常用制冷技术与制冷设备的工作原理, 让您了解低温设备在设计细节上的精益求精。 我们以广受关注和好评的 Montana超精细多功能无液氦低温光学恒温器、 OptiCool 超全开放强磁场低温光学研究平台、综合物性测量系统(PPMS)、磁学测量系统(MPMS)、 mK 光学恒温器、 mK 快速换样低温系统等设备为例,来介绍性能背后的温度控制技术、样品粘贴与导热技术、低温导线选择与连接技术、窗口的尺寸与厚度、低温设备的真空密封等低温知识和实验技巧。Quantum Design 中国子公司长期致力于为国内用户提供多种用途的低温光学、低温强磁场设备和测量系统,了解这些设备的特点并使设备发挥出应有的性能将会有效的提升实验结果。[直播入口]您可通过扫描下方二维码,关注QuantumDesign官方视频号,届时观看直播,无需注册!扫描上方二维码,即刻观看直播![报告时间]2022 年 5月 31 日 10:00—11:00[主讲人介绍]魏文刚 博士魏文刚,凝聚态物理博士,科研背景为低温、表面磁学与磁性材料相关领域。Quantum Design产品经理。主要负责低温恒温器、低温强磁场光学设备和低温测量设备的销售与技术沟通工作。
  • Millipore超滤原理、操作及工艺优化交流讨论会
    北京昊诺斯-鼎昊源&ldquo 真心英雄&rdquo 第二季系列活动之东北行 &mdash &mdash Millipore超滤原理、操作及工艺优化交流讨论会 2011年11月17、18日,北京昊诺斯科技有限公司及同一集团下负责仪器生产的北京鼎昊源科技有限公司,携手Merk-Millipore,在中国农业科学院哈尔滨兽医研究所和东北农业大学举办了两场&ldquo Millipore超滤原理、操作及工艺优化交流讨论会&rdquo ,这是继去年昊诺斯-鼎昊源&ldquo 真心英雄&rdquo 第一季东北行活动在吉林长春举办后,又一次走进了东北,选择了北国冰城黑龙江省哈尔滨市。 本次活动邀请了Merk-Millipore生物制药工艺部行业市场主管陈建锋及其台湾同事郑慧中、销售主管林红波,从超滤的原理、膜的特性及选择、超滤操作、工艺优化、除菌及除病毒过滤、搅拌技术、一次性产品等方面做了介绍。Merk-Millipore生物制药工艺部的销售经理戴欣和黑龙江地区的销售李鹏也受邀出席了本次讨论会。在讨论会进行过程中,前来参加的老师、学生及企业工作人员和Merk-Millipore的专家们进行了友好的互动,就工艺优化、除菌过滤、与传统超滤技术的对比等方面展开了讨论,与会人员表示收获颇多。 中国农业科学院兽医研究所讨论会现场 东北农业大学讨论会现场
  • 第15期线上讲座:泵与比例阀的结构原理与常见故障
    答疑解惑时间:2009年7月8日---7月24日 热烈欢迎pandora98先生光临仪器论坛进行讲座!   在4月份我们刚在液相色谱与液质联用版面联合举办第12期的线上讲座---剖析液相色谱仪和液质联用仪,而今液相色谱版面又迎来了新一期在线讲座。   本期讲座我们邀请了pandora98先生就泵与比例阀的结构和工作原理以及常见故障展开一期专题讲座。本期讲座共分两章,第一章是对泵的单向阀、泵的比例阀、泵的梯度系统等的结构及工作原理进行详细阐述 第二章就对泵的单向阀漏液、泵的比例阀漏液、二元泵的问题等常见故障进行详细的解剖,并介绍自己的维修的经验及心得体会。   本次的线上讲座将开展16天(2009年7月8日---24日)。这次讲座以某一款仪器为例,主要讲解泵、泵的单向阀、比例阀的知识,重点介绍泵与比例阀的常见故障及pandora98老师的维修经验、心得。希望大家珍惜此次交流机会,共同参与探索液相色谱泵的奥妙之处,有利于提高液相色谱的操作能力。   再次感谢pandora98先生提供的丰富的讲座,也感谢pandora98先生与大家一起交流心得和经验。pandora98先生从事色谱分析工作多年,有丰富的实践经验,欢迎大家就液相色谱仪器泵的单向阀、比例阀的的问题前来提问,也欢迎液相色谱方面的高手前来与pandora98先生一起交流切磋。 第15期线上讲座泵与比例阀的结构原理与常见故障 线上导览论坛线上活动导览
  • 【邀请函】锁相放大器工作原理及应用和Moku产品介绍网络研讨会
    【邀请函】锁相放大器工作原理及应用和Moku产品介绍网络研讨会昊量光电邀您参加2022年01月19日锁相放大器工作原理及应用和Moku产品介绍网络研讨会。由Liquid Instruments研发的Moku系列多功能综合测量仪器在量子光学、超快光学、冷原子、材料科学和纳米技术等领域都有着广泛的应用,尤其是他的锁相放大器、PID控制器和相位表、激光器稳频功能,单一设备满足实验室多种测量、控制应用需求。在本次网络研讨会中,您将了解到锁相放大器的基本原理及应用,并提供对应的信号的检测方案介绍。主办方上海昊量光电设备有限公司,Liquid Instruments会议主题锁相放大器工作原理及应用和Moku产品介绍会议内容1. 锁相放大器的基本原理2. 锁相放大器在光学领域的重要应用方向-测量信号振幅(强度)以及相位3. 如何设置锁相放大器的调制频率和时间常数4. 应用介绍:超快光谱和锁相环/差频激光锁频5. 如何通过锁相环来解决锁相放大器测相位时的局限性6. 问题环节主讲嘉宾应用工程师:Fengyuan (Max) Deng, Ph.D.简介:普渡大学化学博士学位,主要研究非线性光学显微成像方向。应用工程师:Nandi Wuu, Ph.D.简介:澳洲国立大学工程博士学位,主要研究钙钛矿太阳能电池。直播活动1.研讨会当天登记采购意向并在2022年第一季度内采购的客户,可获赠Moku:Go一台!其中采购Pro还可加赠云编译使用权限一年。 2.联系昊量光电并转发微信文章即可获得礼品一份。直播时间:2022年01月19日报名方式:欢迎致电昊量光电报名成功!开播前一周您将收到一封确认电子邮件,会详细告知如何参加线上研讨会。期待您的参与,研讨会见!
  • HORIBA讲座回放视频|光栅光谱仪原理简介
    课程内容 光谱测量系统组成 光栅技术 光栅光谱仪原理 小结讲师介绍熊洪武,HORIBA 应用技术主管,负责光学光谱仪的应用支持,光学背景深厚,有着丰富的光学系统搭建经验。可根据用户需求提供性能优异,功能独特的的光谱测试方案,如光致发光、拉曼、荧光、透射/反射/吸收等。课程链接识别下方“二维码”即可观看我们录制好的讲解视频了,您准备好了吗? HORIBA Optical SchoolHORIBA一直致力于为用户普及光谱基础知识,其旗下的Jobin Yvon有着近200年的光学、光谱经验,我们非常乐意与大家分享这些经验,为此特创立 Optical School(光谱学院)。无论是刚接触光谱的学生,还是希望有所建树的研究者,都能在这里找到适合的资料及课程。 我们希望通过这种分享方式,使您对光学及光谱技术有更系统、全面的了解,不断提高仪器使用水平,解决应用中的问题,进而提升科研水平,更好地探索未知世界。
  • 经典库尔特原理及其发展——颗粒表征电阻法(下)
    前文回顾:发明人库尔特的传奇人生——颗粒表征电阻法(上)一、经典库尔特原理在经典电阻法测量中,壁上带有一个小孔的玻璃管被放置在含有低浓度颗粒的弱电解质悬浮液中,该小孔使得管内外的液体相通,并通过一个在孔内另一个在孔外的两个电极建立一个电场。通常是在一片红宝石圆片上打上直径精确控制的小孔,然后将此圆片通过粘结或烧结贴在小孔管壁上有孔的位置。由于悬浮液中的电解质,在两电极加了一定电压后(或通了一定电流后), 小孔内会有一定的电流流过(或两端有一定的电压),并在那小孔附近产生一个所谓的“感应区”。含颗粒的液体从小孔管外被真空或其他方法抽取而穿过小孔进入小孔管。当颗粒通过感应区时,颗粒的浸入体积取代了等同体积的电解液从而使感应区的电阻发生短暂的变化。这种电阻变化导致产生相应的电流脉冲或电压脉冲。图1 颗粒通过小孔时由于电阻变化而产生脉冲在测量血球细胞等生物颗粒时所用的电解质为生理盐水(0.9%氯化钠溶液),这也是人体内液体的渗透压浓度,红细胞可以在这个渗透压浓度中正常生存,浓度过低会发生红细胞的破裂,浓度过高会发生细胞的皱缩改变。在测量工业颗粒时,通常也用同样的电解质溶液,对粒度在小孔管测量下限附近的颗粒,用 4%的氯化钠溶液以增加测量灵敏度。当颗粒必须悬浮在有机溶剂内时,也可以加入适用于该有机溶液的电解质后,再用此有机 溶液内进行测量。通过测量电脉冲的数量及其振幅,可以获取有关颗粒数量和每个颗粒体积的信息。测量过程中检测到的脉冲数是测量到的颗粒数,脉冲的振幅与颗粒的体积成正比,从而可以获得颗粒粒度及其分布。由于每秒钟可测量多达 1 万个颗粒,整个测量通常在数分钟内可以完成。在使用已知粒度的标准物质进行校准后,颗粒体积测量的准确度通常在 1-2%以内。通过小孔的液体体积可以通过精确的计量装置来测量,这样就能从测量体积内的颗粒计数得到很准确的颗粒数量浓度。 为了能单独测量每个颗粒,悬浮液浓度必须能保证当含颗粒液体通过小孔时,颗粒是一个一个通过小孔,否则就会将两个颗粒计为一个,体积测量也会发生错误。由于浓度太高出现的重合效应会带来两种后果:1)两个颗粒被计为一个大颗粒;2)两个本来处于单个颗粒探测阈值之下而测不到的颗粒被计为一个大颗粒。颗粒通过小孔时可有不同的途径,可以径直地通过小孔,但也可能通过非轴向的途径通过。非轴向通过时不但速度会较慢,所受的电流密度也较大,结果会产生表观较大体积的后果,也有可能将一个颗粒计成两个[1]。现代商业仪器通过脉冲图形分析可以矫正由于非轴向流动对颗粒粒度测量或计数的影响。图2 颗粒的轴向流动与非轴向流动以及产生的脉冲经典库尔特原理的粒度测量下限由区分通过小孔的颗粒产生的信号与各种背景噪声的能力所决定。测量上限由在样品烧杯中均匀悬浮颗粒的能力决定。每个小孔可用于测量直径等于 2%至 80%小孔直径范围内的颗粒,即 40:1 的动态范围。实用中的小孔直径通常为 15 µm 至 2000 µm,所测颗粒粒度的范围为 0.3 µm 至 1600 µm。如果要测量的样品粒度分布范围比任何单个小孔所能测量的范围更宽,则可以使用两个或两个以上不同小孔直径的小孔管,将样品根据小孔的直径用湿法筛分或其他分离方法分级,以免大颗粒堵住小孔,然后将用不同小孔管分别测试得到的分布重叠起来,以提供完整的颗粒分布。譬如一个粒径分布为从 0.6 µm 至 240 µm 的样品,便可以用 30 µm、140 µm、400 µm 三根小孔管来进行测量。 库尔特原理的优点在于颗粒的体积与计数是每个颗粒单独测量的,所以有极高的分辨率,可以测量极稀或极少个数颗粒的样品。由于体积是直接测量而不是如激光衍射等技术的结果是通过某个模型计算出来的,所以不受模型与实际颗粒差别的影响,结果一般也不会因颗粒形状而产生偏差。该方法的最大局限是只能测量能悬浮在水相或非水相电解质溶液中的颗粒。使用当代微电子技术,测量中的每个脉冲过程都可以打上时间标记后详细记录下来用于回放或进行详细的脉冲图形分析。如果在测量过程中,颗粒有变化(如凝聚或溶解过程,细胞的生长或死亡过程等),则可以根据不同时间的脉冲对颗粒粒度进行动态跟踪。 对于球状或长短比很接近的非球状颗粒,脉冲类似于正弦波,波峰的两侧是对称的。对很长的棒状颗粒,如果是径直地通过小孔,则有可能当大部分进入感应区后,此颗粒还有部分在感应区外,这样产生的脉冲就是平台型的,从平台的宽度可以估计出棒的长度。对所有颗粒的脉冲图形进行分析,可以分辨出样品中的不同形状的颗粒。 大部分生物与工业颗粒是非导电与非多孔性的。对于含贯通孔或盲孔的颗粒,由于孔隙中填满了电解质溶液,在颗粒通过小孔时,这些体积并没有被非导电的颗粒物质所替代而对电脉冲有所贡献,所以电感应区法测量这些颗粒时,所测到的是颗粒的固体体积,其等效球直径将小于颗粒的包络等效球直径。对于孔隙率极高的如海绵状颗粒,测出的等效球直径可以比如用激光粒度仪测出的包络等效球小好几倍。 只要所加电场的电压不是太高,通常为 10 V 至 15 V,导电颗粒譬如金属颗粒也可以用电阻法进行测量,还可以添加 0.5%的溴棕三甲铵溶液阻止表面层的形成。当在一定电流获得结果后,可以使用一半的电流和两倍的增益重复进行分析,应该得到同样的结果。否则应使用更小的电流重复该过程,直到进一步降低电流时结果不变。 在各种制造过程中,例如在制造和使用化学机械抛光浆料、食品乳液、药品、油漆和印刷碳粉时,往往在产品的大量小颗粒中混有少量的聚合物或杂质大颗粒,这些大颗粒会严重影响产品质量,需要进行对其进行粒度与数量的表征。使用库尔特原理时,如果选择检测阈值远超过小颗粒粒度的小孔管(小孔直径比小颗粒大 50 倍以上),则可以含大量小颗粒的悬浮液作为基础液体,选择适当的仪器设置与直径在大颗粒平均直径的 1.2 倍至 50 倍左右的小孔,来检测那些平均直径比小颗粒至少大 5 倍的大颗粒 [2]。 二、库尔特原理的新发展 可调电阻脉冲感应法可调电阻脉冲感应法(TRPS)是在 21 世纪初发明的,用库尔特原理测量纳米颗粒的粒度与计数。在这一方法中,一个封闭的容器中间有一片弹性热塑性聚氨酯膜,膜上面有个小孔,小孔的大小(从 300 nm 至 15 m)可根据撑着膜的装置的拉伸而变来达到测量不同粒度的样品。与经典的电阻法仪器一样,在小孔两边各有一个电极,测量由于颗粒通过小孔而产生的电流(电压) 变化。它的主要应用是测量生物纳米颗粒如病毒,这类仪器不用真空抽取液体,而是用压力将携带颗粒的液体压过小孔。压力与电压都可调节以适用于不同的样 品。由于弹性膜的特性,此小孔很难做到均匀的圆形,大小也很难控制,每次测得的在一定压力、一定小孔直径下电脉冲高度与粒度的关系,需要通过测量标准颗粒来进行标定而确定。图3 可调电阻脉冲感应法示意图当小孔上有足够的压力差时,对流是主要的液体传输机制。 由于流体流速与施加的压力下降成正比,颗粒浓度可以从脉冲频率与施加压力之间线性关系的斜率求出。但是需要用已知浓度的标准颗粒在不同压力下进行标定以得到比例系数[3]。 这个技术在给定小孔直径的检测范围下限为能导致相对电流变化 0.05%的颗粒直径。检测范围的上限为小孔孔径的一半,这样能保持较低程度的小孔阻塞。典型的圆锥形小孔的动态范围 为 5:1 至 15:1,可测量的粒径范围通常从 40 nm 至 10 µm。 此技术也可在测量颗粒度的同时测量颗粒的 zeta 电位,但是测量的准确度与精确度都还有待提高,如何排除布朗运动对电泳迁移率测量的影响也是一个难题[4]。微型化的库尔特计数仪随着库尔特原理在生物领域与纳米材料领域不断扩展的应用,出现了好几类小型化(手提式)、微型化的库尔特计数仪。这些装置主要用于生物颗粒的检测与计数,粒度不是这些应用主要关心的参数,小孔的直径都在数百微米以内。与上述使用宏观压力的方法不同的是很多这些设计使用的是微流控技术,整个装置的核心部分就是一个微芯片,携带颗粒的液体在微通道中流动,小孔是微通道中的关卡。除了需要考虑液体微流对测量带来的影响,以及可以小至 10 nm 的微纳米级电极的生产及埋入,其余的测量原理和计算与经典的库尔特计数器并无两致。这些微芯片可以使用平版印刷、玻璃蚀刻、 防蚀层清除、面板覆盖等步骤用玻璃片制作[5], 也可以使用三维打印的方式制作[6]。一些这类微流控电阻法装置已商业化。图4 微流计数仪示意图利用库尔特原理高精度快速的进行 DNA 测序近年来库尔特原理还被用于进行高精度、快速、检测误差极小的 DNA 或肽链测序。这个技术利用不同类型的纳米孔,如石墨烯形成的纳米孔或生物蛋白质分子的纳米孔,例如耻垢分枝杆菌孔蛋白 A(MspA)。当线性化的 DNA-肽复合物缓慢通过纳米孔时,由于不同碱基对所加电场中电流电压的响应不同,通过精确地测量电流的变化就可对肽链测序。由于此过程不影响肽链的完整性,如果将实验设计成由于电极极性的变化而肽链可以来 回反复地通过同一小孔,就可以反复地读取肽链中的碱基,在单氨基酸变异鉴定中的检测误差率可小于 10-6[7,8]。图5 纳米孔 DNA 测序库尔特原理的标准化 早在 2000 年,国际标准化组织就已成文了电感应区法测量颗粒分布的国际标准(ISO 13319),并得到了广泛引用。在 2007 年与 2021 年国际标准化组织又前后两次对此标准进行了修订。中国国家标委会也在 2013 年对此标准进行了采标,成为中国国家标准(GB/T 29025-2012)。参考文献【1】Berge, L.I., Jossang, T., Feder, J., Off-axis Response for Particles Passing through Long Apertures in Coulter-type Counters, Meas Sci Technol, 1990, 1(6), 471-474. 【2】Xu, R., Yang, Y., Method of Characterizing Particles, US Patent 8,395,398, 2013. 【3】Pei, Y., Vogel, R., Minelli, C., Tunable Resistive Pulse Sensing (TRPS), In Characterization of Nanoparticles, Measurement Processes for Nanoparticles, Eds. Hodoroaba, V., Unger, W.E.S., Shard, A.G., Elsevier, Amsterdam, 2020, Chpt.3.1.4, pp117-136.【4】Blundell, E.L.C.J, Vogel, R., Platt, M., Particle-by-Particle Charge Analysis of DNA-Modified Nanoparticles Using Tunable Resistive Pulse Sensing, Langmuir, 2016, 32(4), 1082–1090. 【5】Zhang, W., Hu, Y., Choi, G., Liang, S., Liu, M., Guan, W., Microfluidic Multiple Cross-Correlated Coulter Counter for Improved Particle Size Analysis, Sensor Actuat B: Chem, 2019, 296, 126615. 【6】Pollard, M., Hunsicker, E., Platt, M., A Tunable Three-Dimensional Printed Microfluidic Resistive Pulse Sensor for the Characterization of Algae and Microplastics, ACS Sens, 2020, 5(8), 2578–2586. 【7】Derrington, I.M., Butler, T.Z., Collins, M.D., Manrao, E., Pavlenok, M., Niederweis, M., Gundlach, J.H., Nanopore DNA sequencing with MspA, P Natl Acad Sci, 107(37), 16060-16065, 2010. 【8】Brinkerhoff, H., Kang, A.S.W., Liu, J., Aksimentiev, A., Dekker, C., Multiple Rereads of Single Proteins at Single– Amino Acid Resolution Using Nanopores, Science, 374(6574), 1509-1513, 2021. 作者简介许人良,国际标委会颗粒表征专家。1980年代前往美国就学,受教于20世纪物理化学大师彼得德拜的关门弟子、光散射巨擘朱鹏年和国际荧光物理化学权威魏尼克的门下,获博士及MBA学位。曾在多家跨国企业内任研发与管理等职位,包括美国贝克曼库尔特仪器公司颗粒部全球技术总监,英国马尔文仪器公司亚太区技术总监,美国麦克仪器公司中国区总经理,资深首席科学家。也曾任中国数所大学的兼职教授。 国际标准化组织资深专家与召集人,执笔与主持过多个颗粒表征国际标准 美国标准测试材料学会与化学学会的获奖者 中国颗粒学会高级理事,颗粒测试专业委员会常务理事 中国3个全国专业标准化技术委员会的委员 与中国颗粒学会共同主持设立了《麦克仪器-中国颗粒学报最佳论文奖》浸淫颗粒表征近半个世纪,除去70多篇专业学术论文、SCI援引近5000、数个美国专利之外,著有400页业内经典英文专著《Particle Characterization: Light Scattering Methods》,以及即将由化学工业出版社出版的《颗粒表征的光学技术及其应用》。点击图片查看更多表征技术
  • 聚焦离子束(FIB)技术原理与发展历史
    20世纪以来,微纳米科技作为一个新兴科技领域发展迅速,当前,纳米科技已经成为21 世纪前沿科学技术的代表领域之一,发展作为国家战略的纳米科技对经济和社会发展有着重要的意义。纳米材料结构单元尺寸与电子相干长度及光波长相近,表面和界面效应,小尺寸效应,量子尺寸效应以及电学,磁学,光学等其他特殊性能、力学和其他领域有很多新奇的性质,对于高性能器件的应用有很大潜力。具有新奇特性纳米结构与器件的开发要求开发出具有更高精度,多维度,稳定性好的微纳加工技术。微纳加工工艺范围非常广泛,其中主要常见有离子注入、光刻、刻蚀、薄膜沉积等工艺技术。近年来,由于现代加工技术的小型化趋势,聚焦离子束(focused ion beam,FIB)技术越来越广泛地应用于不同领域中的微纳结构制造中,成为微纳加工技术中不可替代的重要技术之一。FIB是在常规离子束和聚焦电子束系统研究的基础上发展起来的,从本质上是一样的。与电子束相比FIB是将离子源产生的离子束经过加速聚焦对样品表面进行扫描工作。由于离子与电子相比质量要大的非常多,即时最轻的离子如H+离子也是电子质量的1800多倍,这就使得离子束不仅可以实现像电子束一样的成像曝光,离子的重质量同样能在固体表面溅射原子,可用作直写加工工具;FIB又能和化学气体协同在样品材料表面诱导原子沉积,所以FIB在微纳加工工具中应用很广。本文主要介绍FIB技术的基本原理与发展历史。离子源FIB采用离子源,而不是电子束系统中电子光学系统电子枪所产生的加速电子。FIB系统以离子源为中心,较早的离子源由质谱学与核物理学研究驱动,60年代以后半导体工业的离子注入工艺进一步促进离子源开发,这类离子源按其工作原理可粗略地分为三类:1、电子轰击型离子源,通过热阴极发射的电子,加速后轰击离子源室内的气体分子使气体分子电离,这类离子源多用于质谱分析仪器,束流不高,能量分散小。2、气体放电型离子源,由气体等离子体放电产生离子,如辉光放电、弧光放电、火花放电离子源,这类离子源束流大,多应用于核物理研究中。3、场致电离型离子源是利用针尖针尖电极周围的强电场来电离针尖上吸附的气体原子,这种离子源多应用于场致离子显微镜中。除场致电离型离子源外,其余离子源均在大面积空间内(电离室)生成离子并由小孔引出离子流。故离子流密度低,离子源面积大,不适合聚焦成细束,不适合作为FIB的离子源。20世纪70年代Clampitt等人在研究用于卫星助推器的铯离子源的过程中开发出了液态金属离子源(liquid metal ion source,LMIS)。图1:LMIS基本结构将直径为0.5 mm左右的钨丝经过电解腐蚀成尖端直径只有5-10μm的钨针,然后将熔融状态的液态金属粘附在针尖上,外加加强电场后,液态金属在电场力的作用下形成极小的尖端(约5 nm的泰勒锥),尖端处电场强度可达10^10 V/m。在这样高电场作用下,液尖表面金属离子会以场蒸发方式逸散到表面形成离子束流。而且因为LMIS发射面积很小,离子电流虽然仅有几微安,但所产生电流密度可达到10^6/cm2左右,亮度在20μA/Sr左右,为场致气体电离源20倍。LMIS研究的问世,确实使FIB系统成为可能,并得到了广泛的应用。LMIS中离子发射过程很复杂,动态过程也很复杂,因为LMIS发射面为金属液体,所以发射液尖形状会随着电场和发射电流的不同而改变,金属液体还必须确保不间断地补充物质的存在,所以发射全过程就是电流体力学和场离子发射相互依赖和相互作用的过程。有分析表明LMIS稳定发射必须满足三个条件:(1)发射表面具有一定形状,从而形成一定的表面电场;(2)表面电场足以维持一定的发射电流与一定的液态金属流速;(3)表面流速足以维持与发射电流相应的物质流量损失,从而保持发射表面具有一定形状。从实用角度,LMIS稳定发射的一个最关键条件:制作LMIS时保证液态金属与钨针尖的良好浸润。由于只有将二者充分持续地粘附在一起,才能够确保液态金属很好地流动,这一方面能够确保发射液尖的形成,同时也能够确保液态金属持续地供应。实验发现LMIS还有一些特性:(1) 存在临界发射阈值电压。一般在2 kV以上;电压超过阈值后,发射电流增加很快。(2) 空间发射角较大。离子束的自然发射角一般在30º左右;发射角随着离子流的增加而增加;大发射角将降低束流利用率。(3) 角电流密度分布较均匀。(4) 离子能量分散大(色差)。离子能散通常约为4.5 eV,能散随离子流增大而增大,这是由于离子源发射顶端存在严重空间电荷效应所致。由于离子质量比电子质量大得多,同一加速电压时离子速度比电子速度低得多,离子源发射前沿空间电荷密度很大,极高密度离子互斥,造成能量高度分散。减小色差的一个最有效的办法是减小发射电流,但低于2uA后色差很难再下降,维持在4.5eV附近。继续降低后离子源工作不稳定,呈现脉冲状发射。大能散使离子光学系统的色差增加,加重了束斑弥散。(5) LMIS质谱分析表明,在低束流(≤ 10 μA)时,单电荷离子几乎占100%;随着束流增加,多电荷离子、分子离子、离子团以及带电金属液滴的比重增加,这些对聚焦离子束的应用是不利的。以上特性表明就实际应用而言,LMIS不应工作在大束流条件下,最佳工作束流应小于10μA,此时,离子能量分散与发散角都小,束流利用率高。LMIS最早以液态金属镓为发射材料,因为镓熔融温度仅为29.8 ºC,工作温度低,而且液态镓极难挥发、原子核重、与钨针的附着能力好以及良好的抗氧化力。近些年经过长时间的发展,除Ga以外,Al、As、Au、B、Be、Bi、Cs、Cu、Ge、Fe、In、Li、Pb、P、Pd、Si、Sn、U、Zn都有报道。它们有的可直接制成单质源;有的必须制成共熔合金(eutectic alloy),使某些难熔金属转变为低熔点合金,不同元素的离子可通过EXB分离器排出。合金离子源中的As、B、Be、Si元素可以直接掺杂到半导体材料中。尽管现在离子源的品种变多,但镓所具有的优良性能决定其现在仍是使用最为广泛的离子源之一,在一些高端型号中甚至使用同位素等级的镓。FIB系统结构聚焦离子束系统实质上和电子束曝光系统相同,都是由离子发射源,离子光柱,工作台以及真空和控制系统的结构所构成。就像电子束系统的心脏是电子光学系统一样,将离子聚焦为细束最核心的部分就是离子光学系统。而离子光学与电子光学之间最基本的不同点:离子具有远小于电子的荷质比,因此磁场不能有效的调控离子束的运动,目前聚焦离子束系统只采用静电透镜和静电偏转器。静电透镜结构简单,不发热,但像差大。图2:聚焦离子束系统结构示意图典型的聚焦离子束系统为两级透镜系统。液态金属离子源产生的离子束,在外加电场( Suppressor) 的作用下,形成一个极小的尖端,再加上负电场( Extractor) 牵引尖端的金属,从而导出离子束。第一,经过第一级光阑后离子束经过第一级静电透镜的聚焦和初级八级偏转器对离子束的调节来降低像散。通过一系列可变的孔径(Variable aperture),可以灵活地改变离子束束斑的大小。二是次级八极偏转器使得离子束按照定义加工图形扫描加工而成,利用消隐偏转器以及消隐阻挡膜孔可以达到离子束消隐的目的。最后,通过第二级静电透镜,离子束被聚焦到非常精细的束斑,分辨率可至约5nm。被聚焦的离子束轰击在样品表面,产生的二次电子和离子被对应的探测器收集并成像。离子与固体材料中的原子碰撞分析作为带电粒子,离子和电子一样在固体材料中会发生一系列散射,在散射过程中不断失去所携带的能量最后停留在固体材料中。这其中分为弹性散射和非弹性散射,弹性散射不损失能量,但是改变离子在固体中的飞行方向。由于离子和固体材料内部原子质量相当,离子和固体材料之间发生原子碰撞会产生能量损失,所以非弹性散射会损耗能量。材料中离子的损失主要有两个方面的原因,一是原子核的损失,离子与固体材料中原子的原子核发生碰撞,将一部分能量传递给原子,使得原子或者移位或者与固体材料的表面完全分离,这种现象即为溅射,刻蚀功能在FIB加工过程中也是靠这种原理来完成。另一种损失是电子损失:将能量传递给原子核周围的电子,使这些电子或被激发产生二次电子发射,或剥离固体原子核周围的部分电子,使原子电离成离子,产生二次离子发射。离子散射过程可以用蒙特卡洛方法模拟,具体模拟过程与电子散射过程相似。1.由原子核微分散射截面计算总散射截面,据此确定离子与某一固体材料原子碰撞的概率;2.随机选取散射角与散射平均自由程,计算散射能量的核损失与电子损失;3.跟踪离子散射轨迹直到离子损失其全部携带能量,并停留在固体材料内部某一位置成为离子注入。这一过程均假设衬底材料是原子无序排列的非晶材料且散射具有随机性。但在实践中,衬底材料较多地使用了例如硅单晶这种晶体材料,相比之下晶体是有晶向的,存在着低指数晶向,也就是原子排列疏密有致,离子一个方向“长驱直入”时穿透深度可能增加几倍,即“沟道效应”(channeling effect)。FIB的历史与现状自1910年Thomson发明气体放电型离子源以来,离子束已使用百年之久,但真正意义上FIB的使用是从LMIS发明问世开始的,有关LMIS的文章已做了简单介绍。1975年Levi-Setti和Orloff和Swanson开发了首个基于场发射技术的FIB系统,并使用了气场电离源(GFIS)。1975年:Krohn和Ringo生产了第一款高亮度离子源:液态金属离子源,FIB技术的离子源正式进入到新的时代,LMIS时代。1978年美国加州的Hughes Research Labs的Seliger等人建造了第一套基于LMIS的FIB。1982年 FEI生产第一只聚焦离子束镜筒。1983年FEI制造了第一台静电场聚焦电子镜筒并于当年创立了Micrion专注于掩膜修复用聚焦离子束系统的研发,1984年Micrion和FEI进行了合作,FEI是Micrion的供应部件。1985年 Micrion交付第一台聚焦离子束系统。1988年第一台聚焦离子束与扫描电镜(FIB-SEM)双束系统被成功开发出来,在FIB系统上增加传统的扫描电子显微系统,离子束与电子束成一定夹角安装,使用时试样在共心高度位置既可实现电子束成像,又可进行离子束处理,且可通过试样台倾转将试样表面垂直于电子束或者离子束。到目前为止基本上所有FIB设备均与SEM组合为双束系统,因此我们通常所说的FIB就是指FIB-SEM双束系统。20世纪90年代FIB双束系统走出实验室开始了商业化。图3:典型FIB-SEM 双束设备示意图1999年FEI收购了Micrion公司对产品线与业务进行了整合。2005年ALIS公司成立,次年ZEISS收购了ALIS。2007年蔡司推出第一台商用He+显微镜,氦离子显微镜是以氦离子作为离子源,尽管在高放大倍率和长扫描时间下它仍会溅射少量材料但氦离子源本来对样品的损害要比Ga离子小的多,由于氦离子可以聚焦成较小的探针尺寸氦离子显微镜可以生成比SEM更高分辨率的图像,并具有良好的材料对比度。2011年Orsay Physics发布了能够用于FIB-SEM的Xe等离子源。Xe等离子源是用高频振动电离惰性气体,再经引出极引出离子束而聚焦的。不同于液态Ga离子源,Xe等离子源离子束在光阑作用下达到试样最大束流可达2uA,显著增强FIB微区加工能力,可以达到液态Ga离子FIB加工速度的50倍,因此具有更高的实用性,加工的尺寸往往达到几百微米。如今FIB技术发展已经今非昔比,进步飞快,FIB不断与各种探测器、微纳操纵仪及测试装置集成,并在今天发展成为一个集微区成像、加工、分析、操纵于一体的功能极其强大的综合型加工与表征设备,广泛的进入半导体行业、微纳尺度科研、生命健康、地球科学等领域。参考文献:[1]崔铮. 微纳米加工技术及其应用(第2版)(精)[M]. 2009.[2]于华杰, 崔益民, 王荣明. 聚焦离子束系统原理、应用及进展[J]. 电子显微学报, 2008(03):76-82.[3]房丰洲, 徐宗伟. 基于聚焦离子束的纳米加工技术及进展[J]. 黑龙江科技学院学报, 2013(3):211-221.[3]付琴琴, 单智伟. FIB-SEM双束技术简介及其部分应用介绍[J]. 电子显微学报, 2016, v.35 No.183(01):90-98.[4]Reyntjens S , Puers R . A review of focused ion beam applications in microsystem technology[J]. Journal of Micromechanics & Microengineering, 2001, 11(4):287-300.
  • “旋转流变仪--原理,应用和新进展”学术研讨会邀请函
    尊敬的客户: 想巩固流变学的知识? 实验中遇到了问题? 实验数据如何处理? 流变测量学有何新技术和新进展?...针对快速发展的流变测量技术, 全球领先的旋转流变仪供应商 - 安东帕公司(Anton Paar GmbH)邀请您参加我们的学术研讨会! 主要内容包括: 1.旋转流变仪的测量原理和方法 2.流变测量技术在涂料/油墨, 食品和药品, 聚合物溶液和熔体,油品等领域的应用 3.旋转流变仪的新进展: 流变光学, 界面流变学, 磁流变, 拉伸流变, 摩擦学等 主讲: Mr. Klaus Wollny (安东帕德国), 陈飞跃 先生(安东帕中国) 时间: 2007年5月18日 上午9:30到下午16:30 地点: 好望角大饭店(上海市肇嘉浜路500号5楼鸣龙厅); 若您对该学术交流会感兴趣, 请填写以下回执, 传真或Email给徐甲菲小姐(传真: 021-6288 6810 Email: selina.xu@anton-paar.com,电话:021-6288 7878) 谢谢! 奥地利安东帕(中国)有限公司 回执 我参加” 旋转流变仪--原理,应用和新进展” 的学术报告,请预留位置: 姓名: 单位名称和邮编: 电话: 传真: EMAIL:
  • BLT小课堂|细菌发光原理及其在动物活体成像中的应用
    夏季的夜晚,走到山间草丛,可以看到一种昆虫提着一盏灯在飞行,这就是萤火虫在发光。萤火虫体内的荧光素酶催化底物荧光素,发生化学反应,产生光子。这也是大家比较熟悉的,在动物活体生物发光成像当中运用到的反应原理。通过利用该原理,配合上转基因技术及动物活体成像系统,我们可以非侵入性和纵向研究小动物的基因表达、蛋白质-蛋白质相互作用、肿瘤学机制和抗肿瘤药物药效及动力学和疾病机制等;相比于传统研究手段,这种方法通过在动物整体水平上进行研究,能提供更多有用的信息,同时大幅减少实验研究所需的动物数量和降低个体间的差异。萤火虫荧光素酶反应的示意图(a)、荧光素酶以报告基因的形式进入细胞核,并翻译成功能性酶。该酶将底物荧光素、氧(O2)和三磷酸腺苷(ATP)转化为氧荧光素、二氧化碳(CO2)和二磷酸腺苷(ADP),同时发光。(b)、萤火虫底物D-荧光素及其产物氧合荧光素的化学结构。 那么问题来了,自然界会发光的生物除了有萤火虫,还有鱼类、藻类、植物和细菌等,这些生物的发光原理是否也和萤火虫一样呢?这些发光原理能否运用到动物活体成像研究中呢?今天,小编就为大家介绍另外一种生物发光原理—细菌发光及其在动物活体成像中的应用。细菌荧光素酶对于细菌的生物发光现象,早在1875年就被发现了,研究人员Boyle首先揭示了细菌发光对氧气的依赖。而随着研究的深入,研究人员发现细菌发光涉及到的酶有荧光素酶、脂肪酸还原酶和黄素还原酶,以及底物还原性黄素单核苷酸和长链脂肪醛。在发光细菌中发现的一种操纵子,基因顺序为luxCDABEG,其中luxA和luxB基因分别编码细菌荧光素酶α和β亚基,luxC、luxD和luxE基因分别编码合成和回收荧光素酶醛底物的脂肪酸还原酶复合物的r、s和t多肽,luxG编码黄素还原酶。到目前为止所知的所有发光细菌,都是基于细菌荧光素酶介导的酶反应来产生光。这是一种大约80kDa的异二聚体蛋白,与长链烷烃单加氧酶具有同源性。该酶通过以下反应介导O2氧化还原的黄素单核苷酸(FMNH2)和长链脂肪族(脂肪)醛(RCHO),以产生蓝绿光。细菌荧光素酶介导的酶反应1细菌发光明场图2细菌发光发光图细菌发光反应过程在发光反应中,FMNH2与酶结合,然后与O2相互作用,形成黄素-4A-过氧化氢。这种复合物与醛结合形成一种高度稳定的中间体,其缓慢的衰变导致FMNH2和醛底物的氧化和发光,反应的量子产率估计为0.1-0.2个光子。该反应对FMNH2具有高度特异性,体内的醛底物可能是十四醛。FMNH2是由NADH:FMN氧化还原酶(黄素还原酶)提供,该酶从细胞代谢(如糖酵解和柠檬酸循环)中产生的NADH中提取还原剂,还原剂通过自由扩散从FMNH2向荧光素酶的转移。长链醛的合成是由脂肪酸还原酶复合物催化。与细菌荧光素酶一样,底物FMNH2和长链脂肪醛也是细菌发光反应的特异性底物;真核生物生物发光使用不同的化学物质和荧光素酶,它们在蛋白质或基因序列水平上与细菌荧光素酶不同。细菌中的荧光素酶反应过程细菌发光原理在动物活体成像中的应用目前,细菌发光原理在动物活体成像研究中的应用有:传染病研究、菌种抗药性测试及细菌介导的肿瘤治疗等。通过将luxCDABE操纵子稳定地整合到不同的细菌基因结构中,不需要任何其他外源底物(除了氧)来产生生物发光,再通过一套超灵敏的动物活体成像系统(AniView 100),为监测细菌物种感染负担、致病机理研究和肿瘤药物靶向治疗等提供了一种快速便捷的研究检测方法。AniView 100检测减毒鼠伤寒沙门氏菌体内靶向性肿瘤情况(箭头指向为肿瘤)应用说明如以细菌介导的肿瘤治疗为例,传统的癌症治疗方法是手术切除,治疗转移性癌症还需要与其他疗法(如放疗或化疗)相结合。这些疗法存在局限性,如放疗的疗效主要取决于组织氧水平,肿瘤内坏死区和缺氧区低氧浓度是治疗失败的常见原因;而化疗的疗效主要取决于药物的分布,肿瘤内坏死区和缺氧区的血管不规则会影响药物的输送,限制药物的疗效。与传统方法相比,使用细菌进行癌症治疗有以下优势:首先,细菌会在肿瘤中选择性积累,肿瘤中的细菌聚集量大约是正常器官的1000倍,肿瘤特有的坏死区和缺氧区一般不会在大多数器官中形成。其次,细菌的增殖能力使得它们可以进行持续治疗;最后,许多细菌的全基因组测序已经完成,能够通过基因组操作提高它们在人类使用中的安全性,并增强其杀瘤效果。目前,细菌介导的肿瘤治疗广泛应用于DNA或siRNA的传递、运送经工程改造的毒素或前药物和触发机体免疫反应,进而达到抑制或杀灭肿瘤细胞、起到抗击肿瘤的作用。应用案例 静脉注射3天后,表达lux的鼠伤寒沙门氏菌在各种肿瘤中积聚。CT26:小鼠结肠癌,4T1:小鼠乳腺癌,MC38:小鼠结直肠腺癌,TC-1:小鼠肺癌,Hep3B:人肝细胞癌,ARO:人甲状腺癌,ASPC1:人胰腺癌应用案例 携带受L-阿拉伯糖诱导启动子pBAD表达系统控制的细胞毒蛋白(溶细胞素A)、表达lux报告基因的减毒鼠伤寒沙门氏菌,用于肿瘤治疗。总结利用生物发光原理进行动物活体成像,目前主要有两种方式。一种是使用萤火虫荧光素酶,最适合在哺乳动物细胞中表达;另外一种是细菌荧光素酶,广泛应用于原核生物。细菌Lux操纵子由于编码生物发光所需的所有蛋白质,包括荧光素酶、底物和底物生成酶,不需要外源底物,成像更加的方便,不需要像萤火虫荧光素酶一样,考虑ATP的可用性、底物分子的渗透、药代动力学和生物分布等对成像的影响。但是,细菌荧光素酶的发射波长较短(490nm),组织吸收较大,这会影响成像数据的量化;而且,对于某些真核微生物(包括真菌和寄生虫)和真核细胞,仍然需要使用萤火虫荧光素酶标记,原因在于lux报告基因没有得到足够的优化,还不能在真核细胞中稳定表达。不过由于细菌荧光素酶和萤火虫荧光素酶的发射波长不同,从而可以进行多光谱成像,用于同时定量评估小动物的不同生物过程,进一步扩展生物发光原理在动物活体成像中的应用。TipsAniView 100多模式动物活体成像系统 AniView 100多模式动物活体成像系统作为广州博鹭腾生物科技有限公司推出的高灵敏度动物活体成像系统,其采用全密闭抗干扰暗箱,避免外界光源及宇宙射线对拍照影响的同时,配合零缺陷、科研级高灵敏背部薄化、背部感应型冷CCD相机,极大地提高成像的灵敏度。AniView 100可以检测到100个luciferase标记细胞,对于动物活体细菌荧光素酶的生物发光信号,无论是在皮下或器官,均可以轻易检测到。快来关注我们,申请免费试用!
  • 新型可穿戴设备 利用电化学原理发电
    据PCWorld网站报道,目前可穿戴设备通常用于追踪锻炼和健身活动,但是,可穿戴设备可以用于为其他可穿戴设备提供电能吗?麻省理工学院的一项新研究将很快使这成为可能。  一直以来,电能都是制约可穿戴设备和其他移动设备发展的一个因素。但麻省理工学院研究人员本周宣布,他们已经发现了利用幅度很小的弯曲运动发电的方法。  PCWorld表示,他们的系统利用两层很薄的锂合金片作为电极,然后在两个电极之间夹一层浸泡有液态电解质的多孔聚合物。即使轻微的弯曲,也会在连接在两个电极间的外部电路中产生电压和电流,从而为其他设备供电。只需在一端施加很小的力,就能引起锂合金金属片弯曲,例如,把装置固定在手臂或腿上。  麻省理工学院研究人员指出,利用轻微运动发电还有其他方法,但它们利用不同原理。大多数方法利用了摩擦起电效应——例如把羊毛和气球相互摩擦,或压电效应。麻省理工学院材料科学和工程教授李举(Ju Li,音译)表示,这些传统方法存在“电阻大、弯曲刚度大、成本高”的缺陷。  麻省理工学院称,通过利用电化学原理,新技术能利用大量自然运动和活动生成电能,其中包括典型的人类活动,例如走路或锻炼。  这类设备不仅仅能低成本地批量生产,而且天生很柔韧,这使得它们与可穿戴设备更搭,在外力作用下不容易受损。  李举表示,测试设备已经证明这一系统非常稳定,在使用1500个周期后仍然能保持其性能。  PCWorld称,这一技术的其他潜在用途包括生物医学设备,或者应用在道路、桥梁、甚至是键盘中的嵌入式压力传感器。  麻省理工学院的这一成果当地时间周三发表在《Nature Communications》上。
  • 真空衰减法无损密封检测仪的原理
    真空衰减法无损密封检测仪的原理在现代包装工业中,密封完整性是确保产品质量和安全性的关键因素之一。真空衰减法无损密封检测仪作为一种先进的检测技术,以其高效、精确和无损的特点,广泛应用于制药、食品、化妆品等行业的密封性测试。本文将深入探讨真空衰减法的原理、技术优势以及在不同领域的应用情况。真空衰减法的原理真空衰减法无损密封检测仪的核心原理在于利用压力差来检测包装容器的密封性。其操作流程如下:测试腔体准备:将待测容器置于专门的测试腔体中。真空抽吸:对测试腔体进行抽真空处理,形成容器内外的压差。气体泄漏:由于压差作用,容器内部的气体通过潜在的漏孔泄漏到测试腔体内。压力监测:主机压力传感器实时监测测试腔体的压力变化。数据比较:将监测到的压力变化值与预设的参考值进行比较,以判断容器的密封性是否达标。技术优势无损检测:与传统的破坏性测试方法相比,真空衰减法能够在不破坏产品的情况下完成密封性检测。高精度:采用高精度的CCIT测试技术,能够检测到微小的泄漏孔径和泄漏流量。符合标准:满足ASTM测试方法和FDA标准,确保检测结果的权威性和准确性。适用范围广:适用于多种包装容器,包括西林瓶、安瓿瓶、输液瓶等,覆盖大容量和小容量注射液以及冻干产品的密封完整性验证。应用领域制药行业:在制药领域,真空衰减法无损密封检测仪被用于确保药品包装的密封性,防止微生物污染和药物变质。第三方检测机构:作为独立的检测机构,使用该技术为客户提供客观、准确的密封性测试服务。药检机构:药检机构利用该技术进行药品质量监管,保障公众用药安全。结论真空衰减法无损密封检测仪以其高效、精确、无损的特点,为包装密封性检测提供了一种理想的解决方案。本文旨在提供一个关于真空衰减法无损密封检测仪的全面介绍,包括其工作原理、技术优势以及在不同行业中的广泛应用。希望能够帮助读者更好地理解这一技术,并认识到其在现代工业中的重要性。
  • 采用中和法原理的柴油汽油煤油酸度测定仪
    柴油汽油煤油酸度测定仪适用标准:GB/T264-83 GB/T7599-87 GB258-77, 用于检测变压器油,汽轮机油及抗燃油等样品的酸值分析测量。酸值是中和1克油品中的酸性物质所需要的氢氧化钾毫克数,用mgKOH/g油表示,它是油品质量中应严格控制的指标之一。该仪器通过机械、光学以及电子等技术的综合运用,采用微处理器,能够自动实现多样品切换、滴定、判断滴定终点、打印测量结果等功能,该系统稳定可靠,自动化程度高。可广泛运用于电力、化工、环保等领域。仪器特点1.液晶大屏幕、中文菜单、无标识按键;2.自动换杯、自动检测、打印检测结果;3.该仪器可对六个油样进行检测;4.采用中和法原理,用微机控制在常温下自动完成加液、滴定、搅拌、判断滴定终点,液晶屏幕显示测定结果并可打印输出,全部过程约需4分钟;5.用试剂瓶盛装萃取液和中和液,试剂在使用过程不与空气接触,避免了溶剂挥发和空气中CO2的影响。技术参数工作电源:AC220V±10% ,50Hz耗电功率: ﹤100W测定范围: 0.0001~0.9999mgKOH/g 分辨率: ≥0.0001 mgKOH/g测量准确度:酸值<0.1时 ±0.02 mgKOH/g酸值≥0.1时 ±0.05 mgKOH/g重复性: 0.004 mgKOH/g环境温度:10℃~40℃相对湿度:<85%
  • 莱恩德首发|抗生素检测仪的原理、应用和发展趋势
    点击此处可了解更多产品详情:抗生素检测仪 随着抗生素的广泛使用,细菌耐药性的问题日益严重。为了有效控制抗生素的使用,避免耐药性的产生,开发了抗生素检测仪。本文将介绍抗生素检测仪的原理、应用和发展趋势。    一、抗生素检测仪的原理    抗生素检测仪主要基于微生物学原理,通过测量细菌生长抑制率来检测抗生素浓度。该仪器利用微孔板技术,将待测样品中的细菌与特定浓度的抗生素共培养,通过测量细菌生长抑制率,计算出抗生素浓度。该仪器可检测多种抗生素,包括β-内酰胺类、大环内酯类、氨基糖苷类等。    二、抗生素检测仪的应用   抗生素检测仪在临床医学、药理学和微生物学等领域具有广泛的应用价值。在临床医学中,抗生素检测仪可用于监测感染患者的抗生素浓度,指导医生合理用药。在药理学中,抗生素检测仪可用于研究新药和优化现有药物的疗效。在微生物学中,抗生素检测仪可用于检测病原菌对不同抗生素的敏感性,为医生提供针对性的抗生素治疗方案。    三、抗生素检测仪的发展趋势    随着科学技术的不断发展,抗生素检测仪也在不断升级和完善。未来,抗生素检测仪将朝着更快速、更准确、更便携的方向发展。同时,随着大数据和人工智能技术的普及,抗生素检测仪将实现智能化分析和预测,为临床决策提供更加准确的支持。此外,随着新材料和新技术的出现,抗生素检测仪的制造也将更加环保和可持续。    总之,抗生素检测仪在控制抗生素使用、预防细菌耐药性产生方面具有重要作用。未来,随着科学技术的不断进步,抗生素检测仪将会得到更加广泛的应用和发展。莱恩德首发|抗生素检测仪的原理、应用和发展趋势
  • HPLC系统出现压力波动怎么办?
    导致压力波动的原因因为HPLC系统无法提供稳定准确的流量。当出现压力波动时,最明显的是,会导致保留时间漂移。但是保留时间受到多方面因素的影响,我们也不可能做到1OO%的控制这些因素。日常测试中,HPLC系统的压力会发生正常的浮动。通常来说,浮动应为工作压力的1%~2%。不同的HPLC系统不同的使用目的,浮动的程度也不一样。因此,日常测试中记录系统正常使用压力是很有必要的。同时也要知道梯度洗脱中正常压力循环。压力波动过大的症状、来源以及解决办法01位置/症状:泵里存在气泡;可能的来源:脱气或者冲洗不完全,脱气机失灵;解决方法:对流动相进行脱气,对泵进行清洗,更换脱气机。02位置/症状:入口止回阀;可能的来源:使用ACN流动相时变得黏稠;解决方法:在甲醇里超声,更换。03位置/症状:高压接头可能的来源:接口松脱或者污染解决方法:拧紧,清洁或更换04位置/症状:低压接头可能的来源:接口松脱或者污染解决方法:拧紧,清洁或更换05位置/症状:低压混合的多个管道;可能的来源:气体从未使用的溶剂管管道漏泄出来,成比分配阀漏泄;解决方法:用有机溶剂冲洗未使用的管道,更换失灵的成比分配法。06位置/症状:泵里缺乏溶剂(失败的虹吸测试);可能的来源:入口管道滤头堵塞/失灵的成比分配阀;解决方法:更换。07位置/症状:泵的密封垫;可能的来源:用坏的泵密封垫;解决方法:更换。08位置/症状:泵的活塞;可能的来源:活塞破损或刮花;解决方法:更换。09位置/症状:检测器;可能的来源:流通池堵塞和出口管路不通畅;解决方法:冲洗流通池,更换管路。最常见的故障来源是泵里面存在气泡、黏稠的止回阀、损坏的泵密封垫、损坏的泵活塞以及流动相供给不足等。
  • 预制菜包装密封性测试仪首选真空负压气泡法原理介绍
    一、引言随着预制菜市场的不断发展,包装密封性测试已成为保障食品品质和安全的重要环节。真空负压气泡法作为一种先进的测试方法,因其准确、高效的特点,逐渐成为预制菜包装密封性测试的首选方案。本文将详细介绍真空负压气泡法的原理及其在预制菜包装密封性测试中的应用。二、真空负压气泡法原理真空负压气泡法是一种基于压力差或真空度变化的测试方法,用于检测包装的密封性。该方法的原理在于,通过模拟包装在不同环境下的压力变化,观察包装内部是否出现气泡,从而判断包装的密封性是否良好。在测试过程中,首先将预制菜包装放入一个密封的测试腔体内,然后通过抽真空的方式使腔内形成负压。随着负压的增加,如果包装存在微小的泄漏点,空气将通过这些泄漏点进入包装内部,形成可见的气泡。通过观察气泡的产生和位置,可以准确地找到包装的泄漏点,进而判断其密封性能是否合格。三、真空负压气泡法在预制菜包装密封性测试中的应用真空负压气泡法在预制菜包装密封性测试中具有广泛的应用。首先,该方法能够准确、快速地检测出包装中可能存在的泄漏点,帮助生产厂家及时发现并改进包装问题。其次,通过调节负压的压力,可以适应不同类型的包装材料和密封要求,使得测试更加具有针对性和实用性。此外,真空负压气泡法还具有操作简单、测试成本低廉等优点,使得其在预制菜包装行业中得到了广泛的应用。四、预制菜包装密封性测试仪的选择与使用在选择预制菜包装密封性测试仪时,需要考虑多种因素。首先,要确保测试仪具有准确的测试精度和可靠的稳定性,以保证测试结果的准确性和可靠性。其次,测试仪应具备简单易懂的操作界面和友好的用户体验,方便用户进行快速、高效的测试操作。此外,测试仪的价格、售后服务等因素也应纳入考虑范围。在使用预制菜包装密封性测试仪时,需要遵循一定的操作规范。首先,要确保测试环境的清洁和干燥,避免外界因素对测试结果的影响。其次,要正确放置预制菜包装,使其与测试仪的测试腔体紧密贴合,避免漏气现象的发生。同时,要根据实际测试需求,合理设置负压的压力和测试时间等参数。五、结论真空负压气泡法作为一种先进的预制菜包装密封性测试方法,具有准确、高效、操作简单等优点,在预制菜包装行业中得到了广泛的应用。通过选择适合的预制菜包装密封性测试仪,并遵循正确的操作规范,生产厂家可以及时发现并解决包装问题,保障食品的品质和安全。未来,随着预制菜市场的不断扩大和消费者对食品品质要求的不断提高,真空负压气泡法将在预制菜包装密封性测试中发挥更加重要的作用。
  • 深大学子使用色谱原理研发出食品安全检测仪
    p   最近在广州举行的第十三届“挑战杯”广东大学生课外学术科技作品竞赛终审决赛上,由深圳大学推荐的“食品安全检测仪”项目获得特等奖,团中央书记处书记傅振邦会见了该项目的研发团队,给予了亲切鼓励。 /p p   食品安全检测仪是由深圳大学的20多名大学生研发出来的,该仪器获得了4项国家专利和1项软件著作权,并已顺利投产。项目领头人张小虎是深圳大学2011级信息工程学院毕业生,目前就读于北京大学深圳研究生院。这个年仅23岁、对新技术有着特殊敏感的大男孩,凭借食品安全检测仪技术创业开办了自己的公司,实现了从技术到应用的转化。 /p p strong 历时两年研发成功 /strong /p p   食品安全检测仪于2011年开始研发,那时张小虎在深圳大学读本科一年级。 /p p   “三鹿奶粉事件,把中国的食品安全问题再一次推向了风口浪尖。短短几年的时间,致病的瘦肉精、毒米、毒面、毒油,为什么问题一再出现?中国的食品安全问题该如何解决?”张小虎说,由于食品中的有毒物质具有多样性和微量性,传统的检测设备不能满足要求,他因此萌发了自主研发一款针对中国食品安全问题的绿色食品安全检测仪器的心思。 /p p   在学校的支持与老师的指导下,张小虎带领深大信息工程学院的20多名大学生开始研发这款化学分析仪器,并一直坚持了两年多的时间。“有一次,有一个不合格的氘灯电源损坏了氘灯,氘灯光源不稳定导致输出的基线数据不稳定。开始我们不知道问题在哪里,因为影响基线稳定的因素很多,我们费了九牛二虎之力才最终定位问题。中途,我们几乎都想放弃了,在老师的鼓励和帮助下,我们还是挺过来了。”张小虎说。 /p p   2013年底,绿色食品安全检测仪研发成功。这个仪器有两个30寸传统电视机叠加起来大小,检测时,食物样品由自动进样器进入设备,被高压泵打入色谱柱,在色谱柱中进行分离,再到达检测器的流通池,经过光电管,用24位高精度AD采集数据,电脑计算出图谱并进行比较分析,实现了一键式全程操作。 /p p   2014年该仪器通过了广东省计量院的测试,并获得了广东省技术监督局颁发的生产许可证,正式投产。 /p p strong 技术上实现多项创新 /strong /p p   这款食品安全检测仪在技术上实现了多项创新,其中用液相色谱原理设计制作更属于国际国内首创。 /p p   张小虎介绍,液相色谱技术由于具有高分辨率、高灵敏度、速度快、色谱柱可反复利用以及流出组分易收集等优点,比传统的基于分光光度法原理的食品安全检测仪灵敏度更高,定性定量分析更准确。“在检测食品中的有毒物质时,我们往往不知道有毒物质是什么,这时我们就要利用大数据的图谱分析方法,通过工作量的图谱在几千张,人工读图要花费很多时间。而我们利用自己编写的MapReduce来处理图谱数据,使用计算机代替人工大量读图。” /p p   食品安全检测仪目前已获得了4项国家专利和1项软件著作权。其中一项专利技术“双流通池系统”,在不降低性能的同时可大幅度降低系统成本。“这种双系统特别适用于那些要检测大量的,相同类型的样品,比如食品的原料检测等。” /p p   项目的开发成功让张小虎有了创业的冲动,他迫切希望能将技术予以应用,从而将技术的价值最大化。在父母的支持下,他与伙伴于2012年12月6日成立了“通用深圳仪器公司”,同时他还被聘请为深圳市分析测试协会委员。 /p p   而这款针对中国食品安全问题的绿色食品安全检测仪器投放市场后也颇受青睐,目前已拥有广州饲料添加剂厂、佛山富维生物饲料有限公司、广州格拉姆生物科技有限公司等几十家饲料和生物制品企业“客户”。 /p p strong 用高科技创业成功概率大 /strong /p p   2014年10月,张小虎被北京大学深圳研究生院录取为研究生,继续着他的学业,他的导师亦非常支持他的项目。而他的企业,从原来的3个人发展到现在的16个人,几乎都是青春勃发的大学生,其中还有一个麻省理工学院的博士。 /p p   “从小到大,我都希望能成为一个通过自己努力实现个人梦想、掌控自己生活的人。小到成功拆装一个玩具、读完一本喜欢的书籍,大到选择自己热爱的专业、做出几项发明专利、创办自己的公司,很幸运的是,我正按照自己的人生规划,如愿地逐步实现自己的人生目标。每当实现一个目标,我都有深深的满足感和成就感。”张小虎说,尤其当自己创办的公司做出了对人们生活质量有所促进的产品的时候,“我感觉自己的成就感不仅来自于实现个人梦想、掌控自己的生活,而更大的来自于自己对于社会的价值和意义。” /p p   对于未来,张小虎充满了信心:“食品安全检测设备的市场很大,全国有大小近百家生产企业,但他们用的技术大都是分光光度法原理或比色试纸原理。这两种方法的检测精度都很低,不能有效检出食品中的微量有毒物质。市场急需新的高灵敏的检测设备,我们基于液相色谱原理的食品安全检测仪会有广阔的市场空间。” 他打算以“直销”和“代理”的模式,继续推广食品安全检测仪。 /p p   作为一个大学生创业成功的“典型”,时常有学弟学妹追问张小虎“成功的秘诀”。他的切身体会是:“大学生创业应该具有非常强的专业知识,用高科技创业成功的概率会大得多。同时,项目开发最重要的是团队开发管理的能力和设计模式。”而创业更让他感受到了责任,也让他有了更高的目标:争取创立食品安全的行业标准,最终为解决中国现有的食品安全问题贡献自己的一分力量。 /p p /p
  • 质检总局、标准委批准发布192项国家标准
    5月12日,国家质检总局、国家标准委发布了192项国家标准。该批国家标准中,制定128项,修订64项 强制性标准29项,推荐性标准163项。标准名称、编号及实施日期在《中华人民共和国国家标准公告》(2011年第6号)中向社会发布。序号国家标准编号国  家  标  准  名  称代替标准号实施日期1GB/T 620-2011化学试剂 氢氟酸GB/T 620-19932011-12-012GB/T 623-2011化学试剂 高氯酸GB/T 623-19922011-12-013GB/T 628-2011化学试剂 硼酸GB/T 628-19932011-12-014GB/T 636-2011化学试剂 硝酸钠GB/T 636-19922011-12-015GB/T 641-2011化学试剂 过二硫酸钾(过硫酸钾)GB/T 641-19942011-12-016GB/T 644-2011化学试剂 六氰合铁(Ⅲ)酸钾(铁氰化钾)GB/T 644-19932011-12-017GB/T 645-2011化学试剂 氯酸钾GB/T 645-19942011-12-018GB/T 646-2011化学试剂 氯化钾GB/T 646-19932011-12-019GB/T 647-2011化学试剂 硝酸钾GB/T 647-19932011-12-0110GB/T 648-2011化学试剂 硫氰酸钾GB/T 648-19932011-12-0111GB/T 651-2011化学试剂 碘酸钾GB/T 651-19932011-12-0112GB/T 653-2011化学试剂 硝酸钡GB/T 653-19942011-12-0113GB/T 655-2011化学试剂 过硫酸铵GB/T 655-19942011-12-0114GB/T 657-2011化学试剂 四水合钼酸铵(钼酸铵)GB/T 657-19932011-12-0115GB/T 659-2011化学试剂 硝酸铵GB/T 659-19932011-12-0116GB/T 661-2011化学试剂 六水合硫酸铁(Ⅱ)铵(硫酸亚铁铵)GB/T 661-19922011-12-0117GB/T 664-2011化学试剂 七水合硫酸亚铁(硫酸亚铁)GB/T 664-19932011-12-0118GB/T 666-2011化学试剂 七水合硫酸锌(硫酸锌)GB/T 666-19932011-12-0119GB/T 675-2011化学试剂 碘GB/T 675-19932011-12-0120GB/T 677-2011化学试剂 乙酸酐GB/T 677-19922011-12-0121GB/T 687-2011化学试剂 丙三醇GB/T 687-19942011-12-0122GB/T 688-2011化学试剂 四氯化碳GB/T 688-19922011-12-0123GB/T 1156-2011旋套式注油油杯GB/T 1156-19792011-10-0124GB/T 1271-2011化学试剂 二水合氟化钾(氟化钾)GB/T 1271-19942011-12-0125GB/T 1274-2011化学试剂 磷酸二氢钾GB/T 1274-19932011-12-0126GB/T 1281-2011化学试剂 溴GB/T 1281-19932011-12-0127GB/T 1288-2011化学试剂 四水合酒石酸钾钠(酒石酸钾钠)GB/T 1288-19922011-12-0128GB/T 1479.1-2011金属粉末 松装密度的测定 第1部分:漏斗法GB/T 1479-19842012-02-0129GB/T 1479.2-2011金属粉末 松装密度的测定 第2部分:斯柯特容量计法GB/T 5060-19852012-02-0130GB/T 3683-2011橡胶软管及软管组合件 油基或水基流体适用的钢丝编织增强液压型 规范GB/T 3683.1-20062011-12-0131GB/T 3915-2011工业用苯乙烯GB 3915-19982011-11-0132GB/T 4698.2-2011海绵钛、钛及钛合金化学分析方法 铁量的测定GB/T 4698.2-19962012-02-0133GB/T 4698.7-2011海绵钛、钛及钛合金化学分析方法 氧量、氮量的测定GB/T 4698.7-1996,GB/T 4698.16-19962012-02-0134GB/T 4698.14-2011海绵钛、钛及钛合金化学分析方法 碳量的测定GB/T 4698.14-19962012-02-0135GB/T 4698.15-2011海绵钛、钛及钛合金化学分析方法 氢量的测定GB/T 4698.15-19962012-02-0136GB/T 5158.1-2011金属粉末 还原法测定氧含量 第1部分:总则 2012-02-0137GB/T 5158.2-2011金属粉末 还原法测定氧含量 第2部分:氢还原时的质量损失(氢损)GB/T 5158-19992012-02-0138GB/T 5158.3-2011金属粉末 还原法测定氧含量 第3部分:可被氢还原的氧 2012-02-0139GB/T 5158.4-2011金属粉末 还原法测定氧含量 第4部分:还原-提取法测定总氧量GB/T 5158.4-20012012-02-0140GB 6249-2011核动力厂环境辐射防护规定GB 6249-19862011-09-0141GB/T 6548-2011瓦楞纸板粘合强度的测定GB/T 6548-19982011-09-1542GB 7063-2011汽车护轮板GB 7063-19942012-01-0143GB/T 8005.2-2011铝及铝合金术语 第2部分:化学分析 2012-02-0144GB/T 9082.1-2011无管芯热管GB/T 9082.1-19882011-10-0145GB/T 9082.2-2011有管芯热管GB/T 9082.2-19882011-10-0146GB/T 10597-2011卷扬式启闭机GB/T 10597.1-1989,GB/T 10597.2-19892011-12-0147GB 11291.1-2011工业环境用机器人 安全要求 第1部分:机器人GB 11291-19972011-10-0148GB 11557-2011防止汽车转向机构对驾驶员伤害的规定GB 11557-19982012-01-0149GB 11568-2011汽车罩(盖)锁系统GB 11568-19992012-01-0150GB/T 12688.1-2011工业用苯乙烯试验方法 第1部分:纯度和烃类杂质的测定 气相色谱法GB/T 12688.1-19982011-11-0151GB/T 12688.3-2011工业用苯乙烯试验方法 第3部分:聚合物含量的测定GB/T 12688.3-19902011-11-0152GB/T 12688.4-2011工业用苯乙烯试验方法 第4部分:过氧化物含量的测定 滴定法GB/T 12688.4-19902011-11-0153GB/T 12688.5-2011工业用苯乙烯试验方法 第5部分:总醛含量的测定 滴定法GB/T 12688.5-19902011-11-0154GB/T 12688.8-2011工业用苯乙烯试验方法 第8部分:阻聚剂(对-叔丁基邻苯二酚)含量的测定 分光光度法GB/T 12688.8-19982011-11-0155GB/T 12688.9-2011工业用苯乙烯试验方法 第9部分:微量苯的测定 气相色谱法 2011-11-0156GB/T 13306-2011标牌GB/T 13306-19912011-10-0157GB/T 14405-2011通用桥式起重机GB/T 14405-19932011-12-0158GB/T 14406-2011通用门式起重机GB/T 14406-19932011-12-0159GB 14569.1-2011低、中水平放射性废物固化体性能要求 水泥固化体GB 14569.1-19932011-09-0160GB 14587-2011核电厂放射性液态流出物排放技术要求GB 14587-19932011-09-0161GB/T 14627-2011液压式启闭机GB/T 14627-19932011-12-0162GB/T 15354-2011化学试剂 磷酸三丁酯GB/T 15354-19942011-12-0163GB 15580-2011磷肥工业水污染物排放标准GB 15580-19952011-10-0164GB 17930-2011车用汽油GB 17930-20062011-05-1265GB/T 18623-2011地理标志产品 镇江香醋GB 18623-20022011-11-0166GB/T 18691.1-2011农业灌溉设备 灌溉阀 第1部分:通用要求 2011-10-0167GB/T 18691.2-2011农业灌溉设备 灌溉阀 第2部分:隔离阀 2011-10-0168GB/T 18691.3-2011农业灌溉设备 灌溉阀 第3部分:止回阀GB/T 18691-20022011-10-0169GB/T 18691.4-2011农业灌溉设备 灌溉阀 第4部分:进排气阀GB/T 18693-20022011-10-0170GB/T 18691.5-2011农业灌溉设备 灌溉阀 第5部分:控制阀GB/T 19793-20052011-10-0171GB/T 26124-2011临床化学体外诊断试剂(盒) 2011-11-0172GB/T 26125-2011电子电气产品 六种限用物质(铅、汞、镉、六价铬、多溴联苯和多溴二苯醚)的测定 2011-08-0173GB/T 26378-2011粗梳毛织品 2011-09-1574GB/T 26379-2011纺织品 木浆复合水刺非织造布 2011-09-1575GB/T 26380-2011纺织品 丝绸术语 2011-09-1576GB/T 26381-2011合成纤维丝织坯绸 2011-09-1577GB/T 26382-2011精梳毛织品 2011-09-1578GB/T 26383-2011抗电磁辐射精梳毛织品 2011-09-1579GB/T 26384-2011针织棉服装 2011-09-1580GB/T 26385-2011针织拼接服装 2011-09-1581GB 26386-2011燃香类产品安全通用技术条件 2011-09-1582GB 26387-2011玩具安全 化学及类似活动的实验玩具 2011-09-1583GB/T 26388-2011表面活性剂中二噁烷残留量的测定 气相色谱法 2011-09-1584GB/T 26389-2011衡器产品型号编制方法 2011-09-1585GB/T 26390-2011浸渍纸层压木质地板用表层耐磨纸 2011-09-1586GB/T 26391-2011马桶垫纸 2011-09-1587GB/T 26392-2011慢回弹泡沫 复原时间的测定 2011-09-1588GB/T 26393-2011燃香类产品有害物质测试方法 2011-09-1589GB/T 26394-2011水性薄膜凹印复合油墨 2011-09-1590GB/T 26395-2011水性烟包凹印油墨 2011-09-1591GB/T 26396-2011洗涤用品安全技术规范 2011-09-1592GB/T 26397-2011眼科光学 术语 2011-09-1593GB/T 26398-2011衣料用洗涤剂耗水量与节水性能评估指南 2011-09-1594GB/T 26407-2011初级农产品安全区域化管理体系 要求 2011-09-0195GB/T 26408-2011混凝土搅拌运输车 2012-01-0196GB/T 26409-2011流动式混凝土泵 2011-07-0197GB 26410-2011防爆通风机 2012-01-0198GB 26451-2011稀土工业污染物排放标准 2011-10-0199GB 26452-2011钒工业污染物排放标准 2011-10-01100GB 26453-2011平板玻璃工业大气污染物排放标准 2011-10-01101GB/T 26454-2011造纸用单层成形网 2011-09-15102GB/T 26455-2011造纸用多层成形网 2011-09-15103GB/T 26456-2011造纸用异形丝干燥网 2011-09-15104GB/T 26457-2011造纸用圆丝干燥网 2011-09-15105GB/T 26458-2011脂肪烷基二甲基氧化胺 2011-09-15106GB/T 26459-2011纸、纸板和纸浆 返黄值的测定 2011-09-15107GB/T 26460-2011纸浆 零距抗张强度的测定(干法或湿法) 2011-09-15108GB/T 26461-2011纸张凹版油墨 2011-09-15109GB/T 26462-2011种子发芽纸 2011-09-15110GB/T 26463-2011羰基合成脂肪醇 2011-09-15111GB/T 26464-2011造纸无机颜料亮度(白度)的测定 2011-09-15112GB 26465-2011消防电梯制造与安装安全规范 2012-04-01113GB/T 26466-2011固定式高压储氢用钢带错绕式容器 2011-12-01114GB/T 26467-2011承压设备带压密封技术规范 2011-12-01115GB/T 26468-2011承压设备带压密封夹具设计规范 2011-12-01116GB 26469-2011架桥机安全规程 2012-04-01117GB/T 26470-2011架桥机通用技术条件 2012-04-01118GB/T 26471-2011塔式起重机 安装与拆卸规则 2011-12-01119GB/T 26472-2011流动式起重机 卷筒和滑轮尺寸 2011-12-01120GB/T 26473-2011起重机 随车起重机安全要求 2011-12-01121GB/T 26474-2011集装箱正面吊运起重机 技术条件 2011-12-01122GB/T 26475-2011桥式抓斗卸船机 2011-12-01123GB/T 26476-2011机械式停车设备 术语 2011-12-01124GB/T 26477.1-2011起重机 车轮和相关小车承轨结构的设计计算 第1部分:总则 2011-12-01125GB/T 26478-2011氨用截止阀和升降式止回阀 2011-10-01126GB/T 26479-2011弹性密封部分回转阀门 耐火试验 2011-10-01127GB/T 26480-2011阀门的检验和试验 2011-10-01128GB/T 26481-2011阀门的逸散性试验 2011-10-01129GB/T 26482-2011止回阀 耐火试验 2011-10-01130GB 26483-2011机械压力机 噪声限值 2012-01-01131GB 26484-2011液压机 噪声限值 2012-01-01132GB 26485-2011开卷矫平剪切生产线 安全要求 2012-01-01133GB/T 26486-2011数控开卷矫平剪切生产线 2012-01-01134GB/T 26487-2011壳体钣金成型设备 通用技术条件 2011-10-01135GB 26488-2011镁合金压铸安全生产规范 2012-05-01136GB/T 26489-2011纳米材料超双亲性能检测方法 2012-02-01137GB/T 26490-2011纳米材料超双疏性能检测方法 2012-02-01138GB/T 26491-20115XXX系铝合金晶间腐蚀试验方法 质量损失法 2012-02-01139GB/T 26492.1-2011变形铝及铝合金铸锭及加工产品缺陷 第1部分:铸锭缺陷 2012-02-01140GB/T 26492.2-2011变形铝及铝合金铸锭及加工产品缺陷 第2部分:铸轧带材缺陷 2012-02-01141GB/T 26492.3-2011变形铝及铝合金铸锭及加工产品缺陷 第3部分:板、带缺陷 2012-02-01142GB/T 26492.4-2011变形铝及铝合金铸锭及加工产品缺陷 第4部分:铝箔缺陷 2012-02-01143GB/T 26492.5-2011, , , , DIV变形铝及铝合金铸锭及加工产品缺陷 第5部分:管材、棒材、型材、线材缺陷 2012-02-01144GB/T 26493-2011电池废料贮运规范 2012-02-01145GB/T 26494-2011轨道列车车辆结构用铝合金挤压型材 2012-02-01146GB/T 26495-2011镁合金压铸转向盘骨架坯料 2012-02-01147GB/T 26496-2011钨及钨合金废料 2012-02-01148GB/T 26497-2011电子天平 2011-10-01149GB/T 26498-2011工业自动化系统与集成 物理设备控制 尺寸测量接口标准(DMIS) 2011-10-01150GB/T 26499.1-2011机械 科学数据 第1部分:分级分类方法 2011-10-01151GB/T 26499.2-2011机械 科学数据 第2部分:数据元目录 2011-10-01152GB/T 26499.3-2011机械 科学数据 第3部分:元数据 2011-10-01153GB/T 26499.4-2011机械 科学数据 第4部分:交换格式 2011-10-01154GB/T 26500-2011氟塑料衬里钢管、管件通用技术要求 2011-10-01155GB/T 26501-2011氟塑料衬里压力容器 通用技术条件 2011-10-01156GB/T 26502.1-2011传动带胶片裁断拼接机 2011-10-01157GB/T 26502.2-2011传动带成型机 2011-10-01158GB/T 26502.3-2011多楔带磨削机 2011-10-01159GB/T 26502.4-2011同步带磨削机 2011-10-01160GB 26503-2011快速成形机床 安全防护技术要求 2012-04-01161GB 26504-2011移动式道路施工机械 通用安全要求 2012-04-01162GB 26505-2011移动式道路施工机械 摊铺机安全要求 2012-04-01163GB/T 26506-2011悬臂筛网振动筛 2011-10-01164GB/T 26507-2011石油天然气工业 钻井和采油设备 地面油气混输泵 2011-10-01165GB 26508-2011园林机械 坐骑式草坪割草机 安全技术要求和试验方法 2012-04-01166GB 26509-2011园林机械 以汽(柴)油机为动力的步进式草坪割草机 安全技术要求和试验方法 2012-04-01167GB/T 26510-2011防水用塑性体改性沥青 2011-09-01168GB 26511-2011商用车前下部防护要求 2013-01-01169GB 26512-2011商用车驾驶室乘员保护 2012-01-01170GB/T 26513-2011润唇膏 2011-12-01171GB/T 26514-2011互叶白千层(精)油,松油烯-4-醇型[茶树(精)油] 2011-11-01172GB/T 26515.1-2011精油 气相色谱图像通用指南 第1部分:标准中气相色谱图像的建立 2011-11-01173GB/T 26515.2-2011精油 气相色谱图像通用指南 第2部分:精油样品气相色谱图像的利用 2011-11-01174GB/T 26516-2011按摩精油 2011-10-01175GB/T 26517-2011化妆品中二十四种防腐剂的测定 高效液相色谱法 2011-10-01176GB/T 26518-2011高分子增强复合防水片材 2011-12-01177GB/T 26519.2-2011工业过硫酸盐 第2部分:工业过硫酸钾 2011-12-01178GB/T 26520-2011工业氯化钙 2011-12-01179GB/T 26521-2011工业碳酸镍 2011-12-01180GB/T 26522-2011精制氯化镍 2011-12-01181GB/T 26523-2011精制硫酸钴 2011-12-01182GB/T 26524-2011精制硫酸镍 2011-12-01183GB/T 26525-2011精制氯化钴 2011-12-01184GB/T 26526-2011热塑性弹性体 低烟无卤阻燃材料规范 2011-12-01185GB/T 26527-2011有机硅消泡剂 2011-12-01186GB/T 26528-2011防水用弹性体(SBS)改性沥青 2011-09-01187GB 26529-2011宗教活动场所和旅游场所燃香安全规范 2011-10-01188GB/T 26530-2011地理标志产品 崂山绿茶 2011-11-01189GB/T 26531-2011地理标志产品 永春老醋 2011-11-01190GB/T 26532-2011地理标志产品 慈溪杨梅 2011-11-01191GB/T 26533-2011俄歇电子能谱分析方法通则 2011-12-01192GB/T 26572-2011电子电气产品中限用物质的限量要求 2011-08-01   注: 1. GB 6249-2011《核动力厂环境辐射防护规定》、GB 14569.1-2011《低、中水平放射性废物固化体性能要求水泥固化体》、GB 14587-2011《核电厂放射性液态流出物排放技术要求》、GB 15580-2011《磷肥工业水污染物排放标准》、GB 26451-2011《稀土工业污染物排放标准》、GB 26452-2011《钒工业污染物排放标准》、GB 26453-2011《平板玻璃工业大气污染物排放标准》等7项国家标准由环境保护部、国家质量监督检验检疫总局发布。  2. 更正:2011年第2号《中华人民共和国国家标准公告》中,第512项GB/T 26326.2-2010《离线编程式机器人柔性加工系统第2部分:砂带磨削加工系统》的标准编号调整为:GB/T 26153.2-2010。
  • 预包装螺蛳粉密封性测试仪首选真空负压气泡法原理介绍
    在食品包装领域,预包装螺蛳粉作为一种深受消费者喜爱的方便食品,其密封性的优劣直接关系到产品的保质期和食品安全。真空负压气泡法作为一种有效的密封性测试方法,被广泛应用于检测预包装产品的密封完整性。以下是关于真空负压气泡法原理及其在预包装螺蛳粉密封性测试中的应用介绍。真空负压气泡法原理真空负压气泡法是一种通过在包装内部形成负压环境来检测密封性的方法。该方法的基本步骤如下:负压形成:将预包装螺蛳粉的包装袋放入一个密封的测试腔体内,然后通过抽真空的方式使腔内形成负压。观察气泡:随着腔内负压的增加,如果包装袋存在微小的泄漏点,空气会通过泄漏点进入包装内部,形成可见的气泡。泄漏点定位:通过观察气泡的产生和位置,可以准确地找到包装袋的泄漏点。压力控制:测试过程中,负压的压力可以根据需要进行调节,以适应不同类型的包装材料和密封要求。真空负压气泡法的优势直观性:通过直接观察气泡的产生,可以直观地判断包装的密封性。高灵敏度:该方法能够检测到微小的泄漏点,确保包装的密封质量。操作简便:设备操作简单,易于学习和使用。适用性广:适用于各种材质和形状的包装袋,包括塑料、铝箔、纸塑复合等材料。在预包装螺蛳粉密封性测试中的应用质量控制:真空负压气泡法可以帮助生产企业在生产过程中及时发现包装的密封问题,提高产品质量。产品检验:在出厂前对预包装螺蛳粉进行密封性测试,确保消费者获得的产品质量可靠。研究与开发:在新产品的研发过程中,利用该方法可以评估不同包装材料和设计对密封性的影响。结论真空负压气泡法作为一种高效、直观的密封性测试方法,非常适合用于预包装螺蛳粉等食品的密封性检测。它能够帮助生产企业确保产品的密封质量,延长保质期,保障消费者的食品安全。随着食品工业的不断发展,真空负压气泡法及其相关设备将继续在食品包装质量控制中发挥重要作用。
  • 青岛能源所等发明基于拉曼组原理的益生菌单细胞质检技术
    目前市场上有大量的益生菌品牌和产品,但质量参差不齐,给消费者带来极大困扰,也阻碍了产业的健康发展。此问题的根源在于目前业界缺乏快速、准确、全面、低成本的益生菌产品质检手段。青岛能源所单细胞中心联合中国食品发酵工业研究院、青岛东海药业和青岛星赛生物科技有限公司等,开发了基于拉曼组原理的益生菌单细胞质检技术SCIVVS,为突破这一紧迫的技术瓶颈提供了全新的解决方案。该工作近日发表于iMeta杂志。 基于拉曼组原理发明益生菌单细胞质检技术SCIVVS   益生菌产品的市场规模已近千亿,但是存在大量的“鱼目混珠”现象。其重要原因是益生菌质检的方法学局限性。由于这些方法大多依赖于分离培养或元基因组测序,因此存在耗时长、成本高、难以快速测定细胞活性和代谢活力及其细胞间异质性、复合益生菌产品深度质检困难、流程繁琐、难以自动化等瓶颈性问题。这些局限性导致益生菌产品难以快速、低成本、全面、深度地进行质检,很大程度上阻碍了益生菌产业的健康发展。   针对这一产业瓶颈,青岛能源所单细胞中心张佳副研究员、任立辉高级工程师、张磊博士、公衍海助理研究员等带领的研究小组,联合中国食品发酵工业研究院、青岛东海药业和青岛星赛生物等团队,基于拉曼组原理,开发了一种名为SCIVVS(Single-Cell Identification, Viability and Vitality tests and Source-tracking)的单细胞精度益生菌质检技术体系。针对益生菌产品,SCIVVS首先不是提取总核酸或者进行平板培养,而是提取所有的细胞进行重水饲喂和单细胞拉曼光谱的高通量采集。在每一张拉曼光谱上,利用其指纹区,基于与益生菌单细胞拉曼光谱参照数据库的比对,快速完成每个细胞的种类鉴定环节。通过构建21种法定可食用益生菌的标准菌株拉曼光谱数据库,SCIVVS可实现平均高达93%的分辨准确度。同时,利用其重水利用峰(C-D峰),则可针对每个物种,量化每个细胞的活性、代谢活力等。进而可通过拉曼激活单细胞分选技术,快速获得目标种类或目标代谢活力的单细胞,从而对接下游单细胞全基因组测序或培养。   为了支撑SCIVVS,在国家重大科学仪器研制、国家重点研发计划等项目的支持下,青岛能源所和青岛星赛生物合作研制成功了单细胞拉曼光镊分选仪(RACS-Seq)、高通量流式拉曼分选仪(FlowRACS)等原创仪器产品。运用RACS-Seq,研究人员直接从纯种或复合益生菌产品出发,在5个小时之内,完成了精确到每个物种的活细胞计数、活力定量和活力异质性测量。同时,针对乳酸杆菌、双歧杆菌或链球菌等各种益生菌,均能产出高质量的单细胞基因组(覆盖度可高达99.4%),从而完成精准溯源。   对比目前的益生菌产品质检方法,SCIVVS具有快速、准确、全面、低成本、易于自动化等优势,较传统方法快20倍以上,而成本仅为传统方法的1/10,且能免培养、高精度、自动化、一站式地完成产品中每个物种的活细胞计数、活力定量、活力异质性测量和溯源,有望形成新的技术标准。在此基础上,该合作团队将基于“益生菌单细胞技术联盟(A-STEP)”,联合益生菌产业领军企业,建立一个“标准化”、“一站式”、“公益性”的技术服务体系,为实现从生产端到消费端的益生菌产品质量规范化,提供一个原创的、切实可行的解决方案。   该工作由单细胞中心徐健、中国食品发酵工业研究院姚粟、青岛东海药业崔云龙等主持完成,得到了国家自然科学基金、山东省自然科学基金和国家重点研发计划青年科学家项目等项目的支持。
  • 旋转蒸发器的原理和利与弊
    一,旋转蒸发仪的工作原理通过电子控制,使烧瓶在最适合速度下,恒速旋转以增大蒸发面积。通过真空泵使蒸发烧瓶处于负压状态。蒸发烧瓶在旋转同时置于水浴锅中恒温加热,瓶内溶液在负压下在旋转烧瓶内进行加热扩散蒸发。旋转蒸发器系统可以密封减压至 400~600毫米汞柱;用加热浴加热蒸馏瓶中的溶剂,加热温度可接近该溶剂的沸点;同时还可进行旋转,速度为50~160转/分,使溶剂形成薄膜,增大蒸发面积。此外,在高效冷却器作用下,可将热蒸气迅速液化,加快蒸发速率。二,旋转蒸发仪的利与弊旋转蒸发仪存在如下优点:⒈所有IKA艾卡的旋转蒸发仪都内置了一个升降马达,该装置可以在断电的时候自动将烧瓶提升到加热锅以上的位置。⒉由于液体样品和蒸发瓶间的向心力和摩擦力的作用,液体样品在蒸发瓶内表面形成一层液体薄膜,受热面积大;⒊样品的旋转所产生的作用力有效抑制样品的沸腾。综上特征以及其便利的特点,使现代化的旋转蒸发仪可用于快速、温和地对绝大多数样品进行蒸馏,即使是没有操作经验的操作者也能完成。推荐使用太康生物科技产品。旋转蒸发仪应用中最大的弊端是某些样品的沸腾,例如乙醇和水,将导致实验者收集样品的损失。操作时,通常可以在蒸馏过程的混匀阶段时通过小心的调节真空泵的工作强度或者加热锅的温度防止沸腾。或者也可以通过向样品中加入防沸颗粒。对于特别难以蒸馏的样品,包括易产生泡沫的样品,也可以对旋转蒸发仪配置特殊的冷凝管。三,旋转蒸发仪的使用方法⒈高低调节:手动升降,转动机柱上面手轮,顺转为上升,逆转为下降.电动升降,手触上升键主机上升,手触下降键主机下降.⒉冷凝器上有两个外接头是接冷却水用的,一头接进水,另一头接出水,一般接自来水,冷凝水温度越低效果越好.上端口装抽真空接头,接真空泵皮管抽真空用的.⒊开机前先将调速旋钮左旋到最小,按下电源开关指示灯亮,然后慢慢往右旋至所需要的转速,一般大蒸发瓶用中,低速,粘度大的溶液用较低转速.烧瓶是标准接口24号,随机附500ml,1000ml两种烧瓶,溶液量一般不超过50%为适宜.⒋使用时,应先减压,再开动电机转动蒸馏烧瓶,结束时,因先停电动机,再通大气,以防蒸馏烧瓶在转动中脱落。上海嘉鹏科技有限公司专业生产:紫外分析仪、三用紫外分析仪、暗箱式紫外分析仪、暗箱三用紫外分析仪、暗箱紫外分析仪、手提式紫外分析仪、三用紫外分析仪暗箱式、紫外检测仪、部分收集器、恒流泵、蠕动泵、凝胶成像系统、凝胶成像分析系统、化学发光成像分析系统、光化学反应仪、旋涡混合器、漩涡混合器、玻璃层析柱、梯度混合器、梯度混合仪、核酸蛋白检测仪、玻璃层析柱、荧光增白剂测定仪、馏分收集器、切胶仪、蓝光切胶仪、层析系统等产品。欢迎来电咨询。
  • 电位滴定仪的原理
    电位滴定仪(Potentiometric Titrator)是一种常用的滴定仪器,其原理基于电位测量的方法。它通过测量反应溶液中电位的变化来确定滴定过程中滴定剂的添加量,从而确定待测溶液中所含物质的浓度。以下是电位滴定仪的原理:1.电位测量: 电位滴定仪通过电极对反应溶液的电位进行测量。通常使用的电极包括指示电极(如玻璃电极)和参比电极(如银/银氯化钾电极)。指示电极感应到溶液中所含物质的变化,而参比电极提供一个稳定的参考电位。2.滴定过程: 在滴定过程中,待测溶液(被滴定物)与滴定剂(滴定液)发生化学反应,导致溶液中所含物质浓度的变化。滴定过程中滴定剂逐渐添加到待测溶液中,直至达到滴定终点。3.终点检测: 滴定终点通常是指滴定反应完全完成时的状态。在电位滴定中,终点的检测基于电位的变化。在滴定过程中,当滴定剂与待测溶液中的物质完全反应时,反应溶液的电位会发生明显的变化。这个变化被用来指示滴定终点。4.记录数据: 电位滴定仪会记录滴定过程中电位的变化,并将数据转换为体积-电位曲线或体积-导电度曲线。通过分析曲线,可以确定滴定终点的位置,从而计算出被滴定物的浓度。5.自动化控制: 现代电位滴定仪通常配备了自动化控制系统,可以自动控制滴定剂的添加速率,并在检测到电位变化时停止滴定,从而提高滴定的准确性和可重复性。综上所述,电位滴定仪利用电位测量的原理来确定滴定过程中滴定剂的添加量,并通过分析电位的变化来检测滴定终点,从而实现对待测溶液中所含物质浓度的测量。
  • 第三届微流控细胞分析学术报告会圆满落幕——新原理、新技术未来可期
    2021年9月29日,为期两天的第三届微流控细胞分析学术报告会在北京中国国际展览中心(天竺新馆)圆满落幕。本届论坛由中国分析测试协会和清华大学化学系联合举办,旨在为从事相关领域专家学者、科研人员等提供多学科交叉学术交流平台。本届会议,共计20余位资深专家学者就微流控细胞分析领域的最新科研成果分别作精彩报告!会议首日,10余位专家就器官模拟与细胞代谢分析等领域进行分享探讨(点击查看首日精彩报告:微流控技术大有可为)。会议次日,7位专家学者分别就微流控新原理、新技术等方向带来精彩主题报告,详情如下:报告人:南京大学 李仲秋副研究员报告题目:《生物传感和能源转化的纳流控器件》李仲秋副研究员报道了各类纳流控器件应用于不同的材料与生物的成果,对比说明了纳流控器件之于传统器件在性能上的优势,并提出了纳米通道中分子检测方法的一般模型。报告人:南方科技大学 蒋兴宇教授报告题目:《微流控-液态金属的细胞调控与分析》蒋兴宇教授介绍了用微流控芯片来提升细胞分析检测性能的系列方法与各类应用,此外还着重介绍了结合微流控芯片的金属高分子导体(MPC),拓展了微流控芯片研究的新思路。报告人:北京工业大学 汪夏燕教授报告题目:《基于超薄可控温微坑阵列芯片的单细胞胞内递送》汪夏燕教授介绍了一整套单细胞操作的基本流程,包括对细胞的捕获、固定到探针递送等步骤,结合三光路显微镜成像技术,能有效实现对单个细胞的精准检测研究。报告人:中国农业大学 林建涵教授报告题目:《用于病原微生物快速检测的微流控生物传感器研究》林建涵教授提出了食源性致病微生物检测的重要性,并针对此问题提出了免疫磁珠分选的方法,实现了对目标微生物的高通量检测;此外还针对提升检测灵敏度介绍了电化学生物传感器等有效新型分析方法。报告人:清华大学 梁琼麟教授报告题目:《药物分析“芯”方法》梁琼麟教授介绍了建立“芯片药物实验室”的基本思路,并基于此设计了一系列的芯片器官与仿生材料,以物理结构重现、细胞结构重现和器官功能重现为目标,完成了肾小球模拟的重要工作。报告人: Chinese Chemical Letters编辑部 郭焕芳副主编报告题目:《中国化学快报进展》郭焕芳副主编介绍了CCL杂志的创办理念与该期刊目前取得的优异成绩,并呼吁各位学者在撰写高水平论文的同时,保持学术端正。报告人:华中农业大学 何子怡副研究员报告题目:《微流控芯片质谱联用细胞分析仪器的研制与应用》何子怡副研究员通过总结传统芯片液滴产生的模式,提出了基于声控产生液滴的新型方法,兼备了仪器的便携性与实验的可控性,为芯片液滴技术发展提供了新的思路。报告环节过后,清华大学林金明教授就闭幕式致辞。清华大学林金明教授闭幕式致辞林金明教授总结了为期两天的专家报告内容,为各位从事微流控生命分析的学者们提出了期许,希望大家铭记该会议的追求创新的精神,共同推动中国微流控分析领域更上一层楼。后记放眼未来,林金明教授认为微流控芯片在单细胞分析等领域应用意义重大,将会对生命科学的研究起到巨大的促进作用。与此同时,我们期待各位专家学者在微流控细胞分析技术领域取得更多的突破与创新,也期待在下一届微流控细胞分析技术学术会议能继续为听众带来如此前沿技术的饕餮盛宴。
  • 国瑞力恒发布国瑞力恒 土壤VOCs检测仪 PID光离子化检测原理新品
    GR-3012C型手持式VOCs检测仪产品概述 土壤VOCs检测仪 PID光离子化检测原理GR-3012C型手持式VOCs检测仪(以下简称检测仪)是我公司研发的一款PID光离子化检查原理快速测量总挥发性有机物浓度的手持式仪器。本仪器主要用于现场检测环境空气,应急(泄漏)事故监测、职业卫生场所、石化企业安全检测以及储罐、管道、阀门泄漏检测等的总挥发性有机物浓度,根据不同的需求可选配不同量程的传感器。适用范围土壤VOCs检测仪 PID光离子化检测原理适用于环境空气,应急(泄漏)事故监测、职业卫生场所、石化企业安全检测以及储罐、管道、阀门泄漏检测等的总挥发性有机物浓度。配备专门的土壤打孔器和取样管可实现对土壤挥发在空气中的有机挥发性气体进行快速检测。依据标准土壤VOCs检测仪 PID光离子化检测原理HJ 1019—2019 《地块土壤和地下水中挥发性有机物采样技术》GB 12358-2006 《作业场所环境气体检测报警仪通用技术要求》GB 37822-2019 《挥发性有机物无组织排放控制标准》GB 20950-2007 《储油库大气污染物排放标准》技术特点土壤VOCs检测仪 PID光离子化检测原理1. 可选择不同量程的传感器,分辨率可达1PPB,测量量程可达10000PPM;2. 内置上百种VOCs气体的校正系数,测量数据更准确;3. 高灵敏度、高稳定性、响应迅速;4. 传感器气室外置,更换传感器方便; 5. 采用进口采样泵,负载能力强,使用寿命长; 6. 电子流量计、闭环流量控制,流量不受管道负压影响,测量数据更稳定;7. 内置高能锂电池,一次充电可连续工作8小时;8. 便携式,体积小、重量轻;9. 配备蓝牙打印功能,打印项目可自由选择; 10. 报警功能,上、下限报警值可任意设定。11. 测量数据包括平均值、峰值、TWA值、STEL值等多种浓度信息技术指标 表1技术指标主要参数参数范围分辨率准确度采样流量0.7L/min0.01L/min优于±5%VOCs传感器10000PPM1ppb负载流量 20kPa 工作温度(-20~+60)℃数据存储能力1000组电池工作时间大于8小时仪器噪声60dB(A)整机重量约0.9kg外型尺寸(长×宽×高)200×100×50功耗5W创新点:传感器量程精度做了很大的变化,10000ppm分辨率可达到1ppb国瑞力恒 土壤VOCs检测仪 PID光离子化检测原理
  • 超声波破碎仪的基本工作原理
    超声波破碎仪的基本工作原理超声波破碎仪是一种利用超声波振动产生的高频机械波动力,对样品进行破碎、分散、乳化等处理的实验仪器。其基本工作原理涉及超声波的产生和传播,以及超声波在液体中产生的声波效应。以下是超声波破碎仪的基本工作原理: 超声波的产生: 超声波破碎仪内部通常包含一个压电陶瓷晶体,该晶体可以通过电压的作用发生振动。当施加高频电压时,压电晶体会迅速振动,产生高频的超声波。超声波的传播: 通过振动的压电晶体,超声波会传播到连接样品的处理装置(通常是破碎杵、破碎管或破碎尖等)。这个处理装置的设计可以将超声波传递到液体中的样品。声波效应: 超声波在液体中产生高强度的声波效应,形成破碎区域。当超声波传播到液体中,它会产生交替的高压和低压区域,形成声波节点和反节点。在高压区域,液体分子受到挤压,形成微小的气泡;在低压区域,气泡迅速坍塌,产生局部高温和高压。这种声波效应称为“空化”效应。空化效应的作用: 空化效应导致液体中的气泡在瞬间形成和坍塌,产生局部高温和高压。这些瞬时的高能量作用于样品中的细胞、分子或颗粒,导致物质的破碎、分散或乳化。作用于样品: 超声波的高频振动和声波效应作用于样品,可以打破细胞膜、细胞壁或分散颗粒,使样品更均匀地分散在液体中。总体而言,超声波破碎仪利用超声波的机械波效应,通过声波在液体中产生的高压和低压区域的交替作用,实现对样品的破碎、分散和乳化等处理。这种方法在生物、化学和材料科学等领域中被广泛应用。
  • 新手捋清qPCR原理并不难~
    什么是实时荧光定量PCR(qPCR)?在PCR反应体系中加入荧光基团,利用荧光信号积累实时监测整个PCR进程,最后通过Cq值和标准曲线对起始模板进行定量分析的方法。一.使DNA产物发出荧光的常用标记方法① 非特异性荧光染料—SYBR Green荧光染料也称DNA结合染料,SYBR Green 是一种结合于所有DNA双螺旋小沟区域的具有绿色激发波长的染料。游离的SYBR Green几乎没有荧光信号,但结合双链DNA后,其荧光信号可呈数百倍的增加。随PCR产物的增加,PCR产物与染料的结合量也增大,其荧光信号强度代表双链DNA分子的数量。▲ 图1. SYBR Green染料法发光原理② 特异性荧光探针—TaqMan探针qPCR中最常用的荧光探针为TaqMan探针,其基本原理是依据目的基因设计合成一个能够与之特异性杂交的探针,该探针的5' 端标记荧光基团,3' 端标记淬灭基团。完整的探针,两个基团的空间距离很近,淬灭基团的靠近会通过空间上的荧光共振能力转移(FRET)而显著降低由荧光基团发射的荧光。PCR扩增时,探针一般先于引物结合到目的基因序列上,结合位点位于其中一个引物结合位点的下游。随着引物的延伸通过Taq DNA聚合酶的5' 外切酶活性,探针发生水解,荧光基团和淬灭基团进行分离,从而增强了荧光基团的信号。每经过一个PCR循环,就会有更多的荧光基因从探针上脱离,荧光强度会随着PCR产物的增加而增加。因此,根据PCR反应体系中的荧光强度即可得出初始DNA模板的数量。▲ 图2. TaqMan探针法发光原理二.荧光定量PCR系统如何记录荧光信号所有的实时荧光定量PCR系统都有三个共同的组成部分:温控系统,光源系统和检测系统。温控系统用于PCR扩增,执行高温变性,低温退火和中温延伸的步骤;光源系统用于激发荧光染料或荧光基团,使其发出信号;检测系统采集荧光信号。温控系统每完成一个循环,光源和检测系统则先后进行激发和采集,从而实时记录每一个循环荧光信号的变化。随着PCR反应的进行,产物逐渐积累,荧光信号逐渐增强。▲ 图3. 实时荧光定量PCR系统检测原理那么Azure Cielo™ 实时荧光定量PCR系统,采用了高能LED作为光源系统,可保证光源强度高,光源一致性好;高品质的帕尔贴温度模块作为温控系统,升降温速率快,可设置12列跨度30°C的温度梯度;卓越的CMOS拍照+光纤信号传输作为检测系统,CMOS检测灵敏度高,光纤传输速度快,无光损失和噪音干扰,无需ROX校准。Azure Cielo™ 实时荧光定量PCR系统的高配置保证为您的科学研究提供高精准度、高灵敏度和高可靠性的实验结果。▲ 图4. Azure Cielo™ 实时荧光定量PCR系统三.如何根据荧光信号得出初始模板量实时荧光定量PCR系统所监测到的所有循环的荧光信号可以绘制成一条曲线,即为荧光扩增曲线。扩增曲线一般分为基线期、指数期、线性期和平台期。指数期内,每个循环PCR产物量大约增加1倍(假定100%反应效率),该阶段的扩增反应具有高度特异性和精确度,所以重复性好。▲ 图5. 扩增曲线qPCR软件会在指数期划定一个阈值线,阈值线对应一个荧光强度值,即阈值。在qPCR过程中,各扩增产物的荧光信号达到设定的阈值时,所经过的扩增循环数即是Cq值。Cq值与初始模板量的对数成线性关系。样本初始模板量越多,荧光信号达到阈值所经历的循环数越少,即Cq值越小。▲ 图6. Cq值与初始模板量的关系
  • 普洛帝药典0903不溶性微粒分析仪光阻法检测原理解读
    不溶性微粒分析仪阻法检测原理药典规定检测原理—光阻法满足《美国药典》、《中国药典》、《药包材标准》及输液器具 GB8368-2018 等要求。待测液体流过流通池,流通池两侧装有光学玻璃,激光器的光束通过透镜组准直 穿过流通池,照射在光陷阱上。若待测液体中没有微粒,则光电探测器接收不到光信号;若液体中有微粒,与液体流向垂直的入射光,由于被微粒阻挡而减弱,因此由传感器输出的信号降低,这种信号变化与微粒的截面积成正比。根据信号的幅度和个数可以对液体中的微小微粒进行计数检测。图.光阻法检测原理示意图PULUODY 的创新型双激光窄光微粒检测技术不仅对微粒的探测范围宽广更具有精度高、重复性好的特点,让任何微粒无处遁形。
  • 德祥诚征美国Pickering Vector PCX 柱后衍生仪代理
    仪器简介: Vector PCX柱后衍生仪 Pickering Laboratories 是*提供化学药品、色谱柱、方法和柱后分析系统完整方案的机构。因为方法的每一部分都是设计成共同工作的,Pickering实验室由此作出特别承诺,就是分析保证能为计划中的应用而工作。Pickering Laboratories设计﹑生产分析化学仪器与试剂的专业厂家,在柱后衍生仪器﹑分析柱﹑衍生试剂﹑分析方法等方面*,认可度高,精湛的专业技术在业内久负盛名,不断创新及良好的信誉被众多的美国政府机构如EPA﹑ATF(酒精、烟草与火器管理局) ﹑FDA、AOAC(美国官方分析化学师协会)和世界*的厂商所认可,Pickering公司提供全方位个性化服务,只有Pickering Laboratories可以提供全面的关于柱后衍生的化学品、分析柱、分析方法和仪器。 技术参数: 试剂泵:独立并可调节,低脉冲性 流量可以从 0.05 到2.00 mL/minute 调整,操作压力可以达到2000Psi 当流量大于或等于0.33 ml/min时,流量误差是3%, 当流量低于0.33 ml/min时,流量误差是0.01 ml/min 流量精确度为 0.5% RSD 蓝宝石活塞 液压阀;含PEEK的止回阀 对于每一个泵,PEEK材料的旁路/吹扫阀都在仪器的前面板上 自动活塞清洗 流 路:每一个泵,有独立的压力传感器,为210 bar (0-3000 psi) 菱形的限流器可与液体的流速、黏度匹配 PEEK旁路/排空阀门 可更换试剂的过滤器 全PEEK流路系统可选 反应器:温控可从室温以上10° C 到130° C. 精度是 ± 0.4° C 反应器的大小可以根据实际应用来调整 在130℃时,反应器壁能经受42 bar (600 psi)的内部压力 实际温度或者设定温度通过液晶显示屏显示 温度保险开关的温度限定在 150° C 安全措施: (1)柱后试剂防回流 在LC(洗提液)泵和样品注射器之间安装了一个压力开关,当洗提液泵的压力降低到35 bar (500 psi) 时,压力开关会将试剂泵和反应器的电源关闭,确保试剂不会回流,不会破坏分析柱。造成低的洗提液压力的原因有电源供应问题、洗提液泵的故障、突然的或者潜在的关闭、或者空的蓄水池等。VectorPCX将不会自动重启。 (2)柱后系统过压保护 当出现流路堵塞的时候,一个预先校准好的在35 bar (500 psi) 打开的调节阀能阻止柱后反应的崩溃,以及减少全部或者部分试剂流向柱内的可能性。 (3)减少检测器噪音 后压力调节器采用7 bar (100 psi)的压力调节检测器噪声,沉淀来自于溶剂的除气作用以及沸腾的调整(2-10 bar) 气压模块调节器: 调节器可以维持0.3 bar (3-5 psi)的压力在溶剂瓶内,当源压力为3-5 bar (45-75 psi)时 在0.7 bar (10 psi)时,卸压阀打开 阀门组采用双向1/4-28管道连接 加压试剂瓶: &bull 一升的容器(2 and 5 L的可选) &bull 惰性气体环境,以抑制如邻苯二甲醛(OPA)或者其他对氧气敏感的试剂被氧化 &bull 在瓶盖上有排空阀,可在试剂准备期间进行吹扫 &bull 试剂瓶给易氧化的试剂配备了外径为3.1 mm(1/8")(氧气不能透过)的莎纶(SARAN)管道。 &bull 气体流动线路上的止回阀,使得当压力下降,阻止试剂回流到多阀系统里 主要特点: 优点:  可以和任何HPLC连用  耐用性和可靠性  自动活塞冲洗  低脉冲流动 应用分析: 柱后衍生仪配备高效液相色谱使用,分析功能非常强大,可对多种物质进行检测,包括:  氨基甲酸盐杀虫剂  草苷膦除草剂  胍基类化合物  毒枝菌素  致人瘫痪或麻痹的甲壳类或贝类水生动物毒素  百草枯和杀草快  聚醚类抗生素  磺胺药  单端孢霉烯霉菌毒素  维生素B1、B6  询价请电: 德祥科技 南区(华南,西南与中南)地区请联系: 周先生 广州市中山五路219号中旅商业城1505室 Tel:020-22273381 , 13512710084 Fax:020-22273368-399 东区(华东, 江,浙,沪)地区请联系: 黄小姐 上海市静安区北京西路1068号银发大厦18楼 Tel:021-52610159 52610099 转851 Fax:021-52610122 北区(华北,东北,西北)地区请联系: 王先生 北京市海淀区知春路9号坤讯大厦1506室 Tel:010-82326924 Fax:010-82329551 更多产品信息,请登陆德祥官网:www.tegent.com.cn 德祥热线:4008 822 822 邮箱:info@tegent.com.cn
  • 新技术新原理 CFAS 2018上的食品安全检测方法创新
    p    strong 仪器信息网讯 /strong 2018年6月7日,“第七届中国食品与农产品安全检测技术与质量控制国际论坛(CFAS 2018)”第二天,“农兽药残留检测”、“快速检测技术”等12个分论坛,共76场精彩报告在北京国际会议中心同期举行。仪器信息网镜头走进“基于新技术新原理开发的创新食品安全检测方法专题”论坛,带来五位专家的成果分享。论坛由天津大学赵友全教授主持。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201806/insimg/076ad959-891e-4d19-9e8c-da9edb57c423.jpg" title=" DSC05100.jpg" / /p p style=" text-align: center " strong 报告题目:乳品食品蛋白电泳滴定新技术新设备 /strong /p p style=" text-align: center " strong 报告人:上海交通大学 曹成喜教授 /strong /p p   相比传统凯式定氮方法,蛋白电泳滴定具有灵敏度高、快速检测、功耗降低、绿色环保等特点。团队利用这一技术,解决了乳品蛋白含量测定时凯式定氮技术长期存在的非蛋白干扰问题,解决了乳品食品以次掺好(如豆奶掺牛奶)定性定量分析问题,为乳品品质的高低评估提供新参数、新指标。此外,结合滴定芯片技术,团队还研制了临床诊断电泳仪器、科学研究电泳仪器在内的系列便携式电泳滴定设备,具有广阔市场应用前景。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201806/insimg/06ef68f3-8a59-4f64-90ae-e5292d6eeb5d.jpg" title=" DSC05121.jpg" / /p p style=" text-align: center " strong 报告题目:碳基功能纳米杂化材料在农产(食)品品质检测中的应用研究 /strong /p p style=" text-align: center " strong 报告人:江苏大学化学化工学院 王坤教授 /strong /p p   民以食为天,食以安为先。农产品质量与安全检测关系事关公众健康和农业发展,报告介绍了团队在农药残留、真菌毒素、微囊藻毒素、重金属离子、转基因作物等方面开展的检测研究及成果。如:在农药残留方面构建了啶虫咪的光电化学适配体传感器,成果显示出良好的稳定性,较宽的检测范围,较高的灵敏度和优异的选择性。在仪器研发上,还基于QDs荧光成像和机器视觉技术,实现P35S和TNOS的同时检测。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201806/insimg/ee0c98f5-8d61-47ff-9886-efabb588583a.jpg" title=" DSC05160.jpg" / /p p style=" text-align: center " strong 报告题目:浅析食品中痕量砷的分析方法 /strong /p p style=" text-align: center " strong 报告人:天津大学 赵友全教授 /strong /p p   众所周知,长期服用砷污染食品会对人体健康造成极大危害,对食品中痕量砷的分析检测因此显得尤为重要。常用痕量砷分析方法有银盐法、氢化物原子荧光光谱法、电感耦合等离子体质谱法等。报告介绍了化学发光分析法检测砷的原理,化学发光方法检测灵敏度高、检测限值低、干扰容易擦除、选择性好,且系统结构简单,响应速度快,成本低。化学发光检测能力与ICP-MS相当,不失为一种检测食品中痕量砷的好方法。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201806/insimg/39e99dd2-fabd-49c3-a814-aced71af4ecc.jpg" title=" DSC05190.jpg" / /p p style=" text-align: center " strong 报告题目:免仪器定量分析新技术开发及初步应用 /strong /p p style=" text-align: center " strong 报告人:桂林理工大学 张云教授 /strong /p p   纸芯片成本低、样品/试剂用量小、信号量测方式多样化,在现场分析等资源匮乏环境中具有极大应用潜力。为探索“低成本、制备简单”的纸芯片制备方法,团队开发了使用记号笔的“一步绘制法”和受活字印刷术启发的“石蜡活字印章法”。此外,为解决“免仪器信号量测”这一关键科学问题,团队还开发了基于计数免仪器信号量测策略的定量分析、基于计时免仪器信号量测策略的定量分析等新技术,结合二维液相比色分析方法得以应用。 /p p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201806/insimg/9c70ec8b-8bf3-442c-bf21-eb9373102f56.jpg" title=" DSC05224.jpg" / /p p style=" text-align: center " strong 报告题目:细胞传感检测技术及其在食品安全中的应用 /strong /p p style=" text-align: center " strong 报告人:江南大学食品学院 孙秀兰教授 /strong /p p   细胞是生物体形态结构与生命活动的最基本单位,基于单细胞的研究能在更深层次上揭示生命活动的本质和规律,更全面地分析细胞生理代谢机制及外源物质影响。团队针对真菌毒素、致病菌、过敏原等研究对象,开发了结合细胞微流控芯片实现实时监测、细胞电化学传感器检测LPS、微电极阵列细胞传感无标记实时监测IgE介导的过敏感应等方法,在食品安全检测中发挥关键作用。 /p
  • 3i讲堂:9月最受用户关注厂商技术报告TOP 10
    2023年7月起,仪器信息网3i讲堂栏目将推出全新盘点与分析,展示各大仪器厂商在网络会议分享的应用技术报告。现在,2023年9月榜单已经火热出炉!根据9月份用户对各大仪器厂商在3i讲堂栏目分享的应用技术报告的关注程度,产生“2023年9月最受用户关注的应用技术报告TOP 10”榜单。这个榜单将为您揭示,哪些应用技术报告最受用户关注,哪些厂商的技术实力得到了用户的广泛认可。无论您是仪器行业的从业者,还是对应用技术报告感兴趣的用户,这个榜单都将为您带来有价值的参考信息。TOP1:德国耶拿分析仪器股份公司报告摘要:随着中国国内医药健康领域的高速发展,抗体药物研发受到越来越多的关注。为了提升抗体药物的研发效率,提升产品的推出速度,德国耶拿公司自动化移液工作站产品线致力于为广大研发工作者提供更高通量、更加精确、更加便捷且有效防止污染的自动化液体处理解决方案。TOP2:赛默飞世尔科技(中国)有限公司报告摘要:1、ADC药物分子量及DAR值检测 2、ADC药物肽图分析 3、HCP的鉴别和定量TOP3:沃特世报告摘要:实验室中的错误形式多样,例如:忘记样品、溶剂液位不正确、系统接头未正确拧紧或未验证系统性能是否正常发挥。无论是哪种错误,都会导致分析程序重复运行,还有可能需要耗时开展调查。 Waters公司作为商用液相色谱仪的发明者,拥有独具优势的液相色谱仪器制造技术。 最新推出的智能液相Alliance iS HPLC System具有独特的简单直观化性能,可以显著提升实验室的分析能力,保证一次性获得准确的结果、缩短放行周期并减少调查次数,同时,在继承沃特世前几代仪器所具有的可靠性能的基础上,对进样器、混合器、色谱柱管理器、止回阀和检测器的升级可大幅提高仪器的可靠性。沃特世高佳将与大家分享该智能化液相系统的特点及应用。TOP4:牛津报告摘要:我国是文物大国,文物的分析和保护是其中的应有之义。现在的文物研究早已经摆脱了经验式的摸索,步入科学分析的时代。分析文物时,研究人员不可避免地需要分析文物的材质、工艺、结构等信息,将这些信息综合起来研究文物的过往。牛津仪器的显微分析技术包括能谱仪(EDS)、波谱仪(WDS)、电子背散射衍射仪(EBSD)、拉曼成像(Raman Imaging)。在SEM平台上分析文物时,上述技术可以无损地获得微区的成分、显微结构等信息,在固态文物比如金属器、陶瓷、壁画、珠宝鉴定上均有应用,本次报告将详细地介绍这些技术的基本原理及其在文物分析中的应用。TOP5:永道致远科学技术(上海)有限公司报告摘要:毛细管电泳质谱联用技术(CE-MS)是一种有效的分离分析技术,包括以毛细管电泳作为样品分离手段和以质谱作为检测手段。永道致远的EMASS-II型毛细管电泳和质谱联用技术(EMASS-II型CE-MS)采用了一种基于电渗流泵的超低流速同轴鞘流液纳流电喷雾电离技术,能提供更高的检测灵敏度和分离效率。 在本讲座中,我们会结合应用实例,介绍EMASS-Ⅱ型CE-MS联用平台加速各种新型生物大分子(抗体、ADC、融合蛋白等)的开发和表征。TOP6:贝克曼库尔特生命科学报告摘要:随着工业4.0 的推进以及自动化高通量设备的革新, 企业对于自动化需求日渐增长,对于优质灵活的自动化解决方案也愈发期待。贝克曼库尔特生命科学的旨在以最少的人工干预和尽可能高的自动化程度来提高抗体药的研发速度和效率,为药物开发助力。本次分享将聚焦多个自动化应用场景,通过一系列的自动化解决方案来满足现今生物药企业对于降本增效的的需求。TOP7:TESCAN报告摘要:当下CT系统多专注于三维成像,随着原位实验需求与日俱增,静态3D结果已无法满足科研和工业需求,TESCAN显微CT不仅可实现多尺度的高分辨(亚微米)、高通量三维成像,也可进行长时间连续扫描(几百小时)以及快速“4D”动态成像。本报告将展示如何使用动态CT对原本无法观测的连续变化或只能模拟仿真的实验实现实时观测。TOP8:沃特世科技(上海)有限公司报告摘要:细胞株开发及工艺开发阶段的自动化LC-MS分析; 在线UPLC PAT技术助力连续流工艺分析; 沃特世培养基成分监测整体解决方案TOP9:丹东奥龙射线仪器集团有限公司报告摘要:2D、3D X射线检测设备不光应用在工业领域,同样应用于科研、航空航天、军工等领域。2D、3D智能检测提高了检测效率,解放了劳动力,并提供了全面且精准的检测结果,是X射线无损检测设备重要发展方向。TOP10:岛津报告摘要:本报告主要介绍岛津从客户实际应用出发,新研发的X射线台式CT。该设备操作简便、图像清晰,特别适合工厂的快速筛,为产线检测带来新思路。注:用户关注程度根据用户直播观看、点赞和回放视频点播等综合计算所得。仪器信息网3i讲堂根据行业热点,会定期组织网络研讨会,并针对不同的行业用户精准推广。在此,诚邀广大仪器厂商积极提供优质的应用技术报告,与栏目共创优质的会议内容。2023年11-12月仪器信息网3i讲堂会议计划举办时间大会名称11月14-15日第二届表面分析技术与应用网络会议11月15-17日第二届 动物源性食品质量安全检测技术网络会议11月16日第一届微流控技术与应用网络会议11月21-23日第四届药物研发及分析技术网络会议11月28-29日新能源材料检测技术发展及应用网络研讨会11月29日转化医学系列论坛网络研讨会12月1-2日先进生物显微技术及前沿应用网络研讨会12月6日第四届水污染监测及检测技术网络研讨会12月7-8日第五届材料表征与分析检测技术网络会议202312月8日第二届智慧实验室创新发展网络研讨会12月12-15日第十四届质谱网络会议iCMS202312月14日第二届精密测量技术与先进制造网络会议赞助咨询:  刘先生 电话:010-51654077-8266;15718850776(微信同号);邮箱:liuyw@instrument.com.cn 福利:现在咨询赞助并签订合同,即送价值1.5万元精品会议banner广告1个扫码咨询关于3i讲堂 2010年,仪器信息网3i讲堂(webinar.instrument.com.cn)正式创立,开启科学仪器及分析测试行业的网络会议新时代。作为科学仪器行业的“百家讲坛”,3i讲堂联合业内专家学者、相关学会、协会及仪器厂商共同组织网络研讨会,以在线直播方式分享科学仪器新技术、新应用;展现行业热点;深度解读行业法规、政策与标准,为国内外从事科学仪器研发及应用的专业技术人员搭建实时、在线的学术、技术交流平台。 迄今,3i讲堂已成功组织数千场网络研讨会,涵盖食品、制药、环境、生命科学、能源石化、仪器技术等领域,每年为数十万科学仪器从业人士提供技术交流机会,有效促进各领域用户仪器应用能力的提升和科学仪器技术的推广。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制