当前位置: 仪器信息网 > 行业主题 > >

微焦距检测

仪器信息网微焦距检测专题为您提供2024年最新微焦距检测价格报价、厂家品牌的相关信息, 包括微焦距检测参数、型号等,不管是国产,还是进口品牌的微焦距检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合微焦距检测相关的耗材配件、试剂标物,还有微焦距检测相关的最新资讯、资料,以及微焦距检测相关的解决方案。

微焦距检测相关的论坛

  • 共焦距显微技术及其应用

    共焦距显微技术是一种获得高分辨率图像和3D重构的宝贵工具。共焦距显微技术最重要的功能是能够从样片内部隔离和收集焦点平面,由此消除荧光样片中常见的模糊不清的“薄雾”。如何将该技术应用于医疗设备中?请看本文的介绍。共焦距显微技术是一种获得高分辨率图像和3D重构的宝贵工具。共焦距显微技术最重要的功能是能够从样片内部隔离和收集焦点平面,由此消除荧光样片中常见的模糊不清的“薄雾”。精美的细节通常被薄雾弄得模糊不清,无法用非共焦距、荧光显微技术检测到。在此应用中使用DLP技术使用户能够轻松改变观察条件,消除影响查看的不想要的振动。DLP技术的用途有两个:扫描和配置照明与检测针孔阵列。照明针孔通过以下方式创建:打“开”一个显微镜,而使周围的镜保持“关闭”状态。因此只有这一个微镜反射的光会透过光学系统。此微镜在物镜中的图像充当聚焦于物体的照明针孔。然后,在此针点碰到样片后“反射”的光会重新聚集到 DMD的同一微镜上。通常,当某个物体在荧光显微镜中成像时,产生的信号来自全厚度样本,该样本不允许大多数信号聚焦到查看器。共焦距显微技术通过位于平面像前面的共焦距“针孔”去除这种对焦不准的信息,此针孔充当空间滤波器,仅允许焦距对准部分的光成像。要使整个视野成像,可通过以覆盖整个视野的时变模式转换开关镜来配置马赛克。使用水平扫描并按每个垂直位置一个微镜几次来转换模式,就可扫描整个样片领域。然后在DMD执行扫描时使用CCD相机拍摄一个完整连续的图像。

  • 【讨论】焦距与景深

    笨笨的问题:是否焦距越长,景深就越好?有什么方法可以另焦距变大?因本公司需购买金相显微镜,看资料中有说到一些物镜可进行焦距的调节,不知道有这种功能的物镜是否图象的质量会更好?

  • 望远镜和显微镜的目镜及物镜焦距的长短区别

    显微镜的物镜组和目镜组都相当于凸透镜。先说物镜: 物镜的物(载玻片)处于物镜的1倍和2倍焦距之间,物镜所成的像是倒立放大实像,处于物镜2倍焦距以外,但在目镜之前。由此可见,显微镜调整清晰后,通过观察物镜离载玻片的距离,就可以得出物镜的大致焦距。也就是说,物镜的焦距大致略小于载玻片到物镜组的组合中心的距离。而且越是放大倍数高的物镜,焦距越短,物镜离载玻片越近。再说目镜: 目镜的焦距较长。物镜所成的实像就是目镜的实物,这个实物位于目镜前1倍焦距以内靠近焦点的位置。目镜所成的是正立放大的虚像。因为此前物镜所成的像已经倒了,所以现在正立放大的像对于载物台上的真实物体而言就是倒的。 由于镜筒、物镜、目镜固定,所以我们调节镜筒的上下时,实际就是调节物镜所成的倒立放大实像在镜筒中的位置,当镜筒向载物台靠近时,倒立放大实像朝镜筒外移动(即远离物镜的方向),反之相反。当倒立放大的实像正落在目镜的观察点时,目镜才能成像清晰。

  • 【求助】请问单目显微镜1600X在大倍数上无法调到合适焦距的问题?

    我司有一台灵峰光学产的XSP-35-1600X的显微镜,现出现以下问题~1:用头发作为试样: 1).用目镜(10X,16X) 物镜(10X)可以轻松调到焦距,并且观看很清晰 2).如果把物镜更换为(40X)或者(100X)时无法调到焦距,并且连试样的轮廓的都看不到 3).使用维修替换法,首先把目镜换了,情况一样. 再把物镜也更换了,情况还是一样.2:疑问 1).为什么在100X-160X可以轻松调好焦距 2).加大倍数就无法调到可以观看试样的焦距呢?在此,还请各位显微镜的高手不吝赐教!

  • 【求助】傅里叶透镜的尺寸与焦距的问题

    一般来说是不是焦距越大,尺寸越大呢? 对于后向汇聚的傅里叶变换来说对透镜的尺寸应该是要求不大,而仅是对焦距有要求吧,一般采用比较大的焦距是为了提高分辨率吧?另外有没有办法获得小尺寸的长焦距的傅里叶透镜呢?

  • 从电镜照片如何判断焦距,过焦,欠焦?

    从高分辨照片如何判断焦距,过焦,欠焦?有无机孔的话,可以根据Fresnel fringe判断,如果没有呢?感觉不好判断啊。做了FFT,背景环不明显。哪里有可以参考的书或文献,谢谢了!

  • 哪个答案对?光栅刻痕\面积\焦距,哪个更能反映单色器性能,色散率是否为综合指标?它与前三者关系如何?

    以上问题有三个答案,请问哪个对?答:答案1:色散率是光栅刻痕数、光栅面积和焦距的综合指标,光栅刻痕数越多,光栅面积越大,焦距越长,仪器的色散率越好。 (回答者:本网VIPbinfu) 答案2:仪器的色散率正比于光栅线数和谱仪焦距,反比于狭缝宽度,与光栅面积无关。光栅面积与光通量有关,光栅面积大则通光孔径大,光能量强。色散率和光通量都是单色器的重要指标。 (回答者:本网VIPzhujx) 答案3:我不同意回答2的答案. 参见binfu老师的答案,这才是科学的:在实际工作中用线色散率dl/dλ表示。对于平面光栅,线色散率为: d l /dλ= nf / d cosβ式中,f为会聚透镜的焦距。β为闪耀角。光栅的分辨率R等于光谱级次n与光栅刻痕总数N的乘积,即R= nN例如,对于一块宽度为50mm,刻痕数N为1200条/mm的光栅,在第一级光谱中(即n=1),它的分辨率为 R=nN=l×50 mm × l200/mm =60000可见,光栅的宽度越大,单位宽度的刻痕数越多,分辨率就越大。

  • 你们用的马尔文擦拭镜片后调整完焦距后会自己再次变动吗?

    我们公司做石墨的,一直在用马尔文2000做粒度测试,因为原料不好,经常清洗镜片,每次清洗过后要调整焦距,但最近不知道什么原因,偶尔听到样品池的里面会发出咔咔的声音,有时候遮光度就变化了,焦距也就跟着变化了,想向各位求助,你们遇到过吗?

  • 【原创】8 简单理解光谱仪焦距,线色散系数,分辨率,狭缝宽度,光谱带宽

    对于用户来讲,最有用的是光谱带宽,既代表分辨率,也说明光通量大小。线色散系数和狭缝宽度决定分辨率,也是光谱带宽;焦距和光栅刻线以及光谱仪设计模式决定线色散系数;光谱带宽和分辨率之间也有区别:因为分辨率是能够测试得到的最小的半高宽峰,于是,还要引入一个参数,就是最小扫描步进。要获得一个峰,至少需要5个点(有些说3个点,有些牵强),那么我们的分辨率还有一个限制项---3倍步进!从这个意义讲:光谱带宽不等于分辨率。

  • 光谱检测器知识介绍

    CID-电荷注入式固体检测器; SCD-分段式电荷耦合固体检测器; CCD-电荷耦合固体检测器; HDD-高动态范围(光电倍增管)检测器。 新型台式、便携式全谱直读光谱仪器 随着微电子技术的发展,固体检测元件的使用和高配置计算机的引入,发射光谱直读仪器的全谱技术进入全新的发展阶段。国外已有很多厂家推出新型的全谱直读光谱仪,除了已经开发的采用中阶梯光栅分光系统与面阵式固体检测器的全谱光谱仪外,采用特制全息光栅与线阵式固体检测器相结合,也可达到全谱直读的目的,而且使光谱仪器从结构上和体积上发生了很大变化,出现了新型的全谱直读光谱仪、小型台式或便携式的全谱直读仪器,可用于现场分析的光谱仪。给发射光谱仪器的研制开拓了一个崭新的发展前景。 传统的直读光谱仪器,一直采用光电倍增管(PMT)作为检测器,它是单一的检测元件,检测一条谱线需要一个PMT检测器,设置为一个独立通道。由于其光电性能和体积上的局限性,限制了发射光谱仪器向全谱直读和小型高效化的发展。CCD、CID等固体检测器,作为光电元件具有暗电流小,灵敏度高,有较高的信噪比,很高的量子效率,接近理想器件的理论极限值。且是个超小型和大规模集成的元件,可以制成线阵式或面阵式的检测器,能同时记录成千上万条谱线,并大大缩短了分光系统的焦距,使直读光谱仪的多元素同时测定功能大为提高,而仪器体积又可大为缩小,正在成为PMT器件的换代产品。 由中阶梯光栅与棱镜色散系统产生的二维光谱,在焦平面上形成点状光谱,适合于采用CCD、CID一类面阵式检测器,兼具光电法与摄谱法的优点,从而能最大限度地获取光谱信息,便于进行光谱干扰和谱线强度空间分布同时测量,有利于多谱图校正技术的采用,有效的消除光谱干扰,提高选择性和灵敏度。而且仪器的体积结构更为紧凑。因此,采用新型检测器研制新一代光谱仪器已成为各大光谱仪器厂家的发展方向。 传统的直读光谱仪器是采用衍射光栅,将不同波长的光色散并成像在各个出射狭缝上,光电检测器则安装于出射狭缝后面。为了使光谱仪能装上尽可能多的检测器,仪器的分光系统必须将谱线尽量分开,也就是说单色器的焦距要足够长。即使采用高刻线光栅的情况下,也需0.5m至1.0m长的焦距,才有满意的分辨率和装上足够多的检测器。所有这些光学器件均需精确定位,误差不得超过几个微米;并且要求整个系统有很高的机械稳定性和热稳定性。由于振动和温度湿度等环境因素的变化,导致光学元件的微小形变,将使光路偏离定位,造成测量结果的波动。为减少这类影响,通常将光学系统安置在一块长度至少0.5m以上的刚性合金基座上,且整个单色系统必须恒温恒湿。这就是传统光谱仪器庞大而笨重,使用条件要求高的原因。而且,由于传统的光谱仪是使用多个独立的光电倍增管和电路对被分析样品中的元素进行测定,分析一 个元素至少要预先设置一个通道。如果增加分析元素或改变分析材料类型就需要另外安装更多的硬件,而光室中机构及部件又影响了谱线的精确定位,就需要重新调整狭缝和反射镜。既增加投资又花费时间,很受限制。 采用CCD等固体检测器作为光谱仪的检测器,则光的接收方式不同,仪器的结构发生了重大变化:当分光系统仍采用传统的全息衍射光栅分光,检测器采用线阵式CCD固体检 测元件,光线经光栅色散后聚焦在探测单元的硅片表面,检测器将光信号转换成电信号,便可经计算机进行快速高效处理得出分析结果。此时检测器是由上万个像素构成的线阵式CCD元件,每个像素仅为几个微米宽、面积只有十几个平方微米的检测单元,对应于每个元素分析谱线的检测单元象素可以做得很小,检测单元相隔也可以做得很近,组成的CCD板也很小,因此分光系统的焦距也就可以大为缩短,要达到通常的分辨率,单色器的焦距只要15-30cm即可。这样分光室便大大缩小。而且从根本上改变了传统光谱仪的机械定位方式。谱线与探测像素之间的定位是通过软件实现,外界因素引起的谱线漂移,可通过软件的峰值和寻找功能自动进行校正,并获得精确的测量结果。 由于一个CCD板可同时记录几千条谱线,在测定多种基体、多个元素时,不用增加任何硬件,仅用电路补偿,在扫描图中找到新增加的元素,就可进行分析。由于光室很 小,所以无需真空泵,用充氩或氮气就可以满足如碳、磷、硫等紫外波长区元素的分析。使用CCD可以做全谱接收,而不会出现传统光谱仪常遇到的位阻问题,离得很近的 谱线也能同时使用,也无需选择二级或更高谱级的谱线进行测量。这就极大地减小了仪器的体积和重量,使光谱仪器可以向全谱和小型轻便化发展。 国际上已有几个厂家采用这种新技术(例如德国斯派克等公司),推出了新型台式以及便携式手提直读光谱仪,具有全谱直读功能,轻便实用,可以满足生产现场分析的需要。 这些新型台式及便携式直读光谱仪均采用光栅分光-CCD检测器系统,光谱焦距仅在15 ~17cm,小型、轻便,具有全谱直读的分析功能,其性能不亚于传统的实验室直读光谱仪器。这些仪器均具有:使用简单,操作容易,无需设置调整,无需用户校准,样品不需处理,稳定可靠,使用成本低便于携带等特点。具有可直接显示分析结果和金属类型、对/错鉴别,快速分类、黑色以及有色金属近似定量分析和等级鉴别,利用预置的通用或特别工作曲线,可作单基体或多基体分析,可以按照具体样品和用户的要求进一步制作工作曲线,以满足特殊工艺或材质的要求等功能。作为料场合金牌号鉴别、废旧金属分类、冶金生产过程中质量控制和金属材料等级鉴别的一种有效工具。可以携带到需要做可靠的金属鉴别或金属分类的任何地方,适合于现场金属分析 。是一种全新概念的金属分析仪。利用 CCD 光学技术和现代微电子元 件推出的小型化全谱直读仪器,或便携式的现场光谱分析仪,提供性能价格比最好的金属光谱分析仪器,将是解决冶金、机械等行业中金属材料现场分析的理想工具。也 是发射光谱分析仪器向多功能、高实用化的发展前景

  • [转帖]检测器介绍(CCD.CID)

    CID-电荷注入式固体检测器; SCD-分段式电荷耦合固体检测器; CCD-电荷耦合固体检测器; HDD-高动态范围(光电倍增管)检测器。 新型台式、便携式全谱直读光谱仪器 随着微电子技术的发展,固体检测元件的使用和高配置计算机的引入,发射光谱直读仪器的全谱技术进入全新的发展阶段。国外已有很多厂家推出新型的全谱直读光谱仪,除了已经开发的采用中阶梯光栅分光系统与面阵式固体检测器的全谱光谱仪外,采用特制全息光栅与线阵式固体检测器相结合,也可达到全谱直读的目的,而且使光谱仪器从结构上和体积上发生了很大变化,出现了新型的全谱直读光谱仪、小型台式或便携式的全谱直读仪器,可用于现场分析的光谱仪。给发射光谱仪器的研制开拓了一个崭新的发展前景。 传统的直读光谱仪器,一直采用光电倍增管(PMT)作为检测器,它是单一的检测元件,检测一条谱线需要一个PMT检测器,设置为一个独立通道。由于其光电性能和体积上的局限性,限制了发射光谱仪器向全谱直读和小型高效化的发展。CCD、CID等固体检测器,作为光电元件具有暗电流小,灵敏度高,有较高的信噪比,很高的量子效率,接近理想器件的理论极限值。且是个超小型和大规模集成的元件,可以制成线阵式或面阵式的检测器,能同时记录成千上万条谱线,并大大缩短了分光系统的焦距,使直读光谱仪的多元素同时测定功能大为提高,而仪器体积又可大为缩小,正在成为PMT器件的换代产品。 由中阶梯光栅与棱镜色散系统产生的二维光谱,在焦平面上形成点状光谱,适合于采用CCD、CID一类面阵式检测器,兼具光电法与摄谱法的优点,从而能最大限度地获取光谱信息,便于进行光谱干扰和谱线强度空间分布同时测量,有利于多谱图校正技术的采用,有效的消除光谱干扰,提高选择性和灵敏度。而且仪器的体积结构更为紧凑。因此,采用新型检测器研制新一代光谱仪器已成为各大光谱仪器厂家的发展方向。 传统的直读光谱仪器是采用衍射光栅,将不同波长的光色散并成像在各个出射狭缝上,光电检测器则安装于出射狭缝后面。为了使光谱仪能装上尽可能多的检测器,仪器的分光系统必须将谱线尽量分开,也就是说单色器的焦距要足够长。即使采用高刻线光栅的情况下,也需0.5m至1.0m长的焦距,才有满意的分辨率和装上足够多的检测器。所有这些光学器件均需精确定位,误差不得超过几个微米;并且要求整个系统有很高的机械稳定性和热稳定性。由于振动和温度湿度等环境因素的变化,导致光学元件的微小形变,将使光路偏离定位,造成测量结果的波动。为减少这类影响,通常将光学系统安置在一块长度至少0.5m以上的刚性合金基座上,且整个单色系统必须恒温恒湿。这就是传统光谱仪器庞大而笨重,使用条件要求高的原因。而且,由于传统的光谱仪是使用多个独立的光电倍增管和电路对被分析样品中的元素进行测定,分析一 个元素至少要预先设置一个通道。如果增加分析元素或改变分析材料类型就需要另外安装更多的硬件,而光室中机构及部件又影响了谱线的精确定位,就需要重新调整狭缝和反射镜。既增加投资又花费时间,很受限制。 采用CCD等固体检测器作为光谱仪的检测器,则光的接收方式不同,仪器的结构发生了重大变化:当分光系统仍采用传统的全息衍射光栅分光,检测器采用线阵式CCD固体检 测元件,光线经光栅色散后聚焦在探测单元的硅片表面,检测器将光信号转换成电信号,便可经计算机进行快速高效处理得出分析结果。此时检测器是由上万个像素构成的线阵式CCD元件,每个像素仅为几个微米宽、面积只有十几个平方微米的检测单元,对应于每个元素分析谱线的检测单元象素可以做得很小,检测单元相隔也可以做得很近,组成的CCD板也很小,因此分光系统的焦距也就可以大为缩短,要达到通常的分辨率,单色器的焦距只要15-30cm即可。这样分光室便大大缩小。而且从根本上改变了传统光谱仪的机械定位方式。谱线与探测像素之间的定位是通过软件实现,外界因素引起的谱线漂移,可通过软件的峰值和寻找功能自动进行校正,并获得精确的测量结果。 由于一个CCD板可同时记录几千条谱线,在测定多种基体、多个元素时,不用增加任何硬件,仅用电路补偿,在扫描图中找到新增加的元素,就可进行分析。由于光室很 小,所以无需真空泵,用充氩或氮气就可以满足如碳、磷、硫等紫外波长区元素的分析。使用CCD可以做全谱接收,而不会出现传统光谱仪常遇到的位阻问题,离得很近的 谱线也能同时使用,也无需选择二级或更高谱级的谱线进行测量。这就极大地减小了仪器的体积和重量,使光谱仪器可以向全谱和小型轻便化发展。 国际上已有几个厂家采用这种新技术(例如德国斯派克等公司),推出了新型台式以及便携式手提直读光谱仪,具有全谱直读功能,轻便实用,可以满足生产现场分析的需要。 这些新型台式及便携式直读光谱仪均采用光栅分光-CCD检测器系统,光谱焦距仅在15 ~17cm,小型、轻便,具有全谱直读的分析功能,其性能不亚于传统的实验室直读光谱仪器。这些仪器均具有:使用简单,操作容易,无需设置调整,无需用户校准,样品不需处理,稳定可靠,使用成本低便于携带等特点。具有可直接显示分析结果和金属类型、对/错鉴别,快速分类、黑色以及有色金属近似定量分析和等级鉴别,利用预置的通用或特别工作曲线,可作单基体或多基体分析,可以按照具体样品和用户的要求进一步制作工作曲线,以满足特殊工艺或材质的要求等功能。作为料场合金牌号鉴别、废旧金属分类、冶金生产过程中质量控制和金属材料等级鉴别的一种有效工具。可以携带到需要做可靠的金属鉴别或金属分类的任何地方,适合于现场金属分析 。是一种全新概念的金属分析仪。利用 CCD 光学技术和现代微电子元 件推出的小型化全谱直读仪器,或便携式的现场光谱分析仪,提供性能价格比最好的金属光谱分析仪器,将是解决冶金、机械等行业中金属材料现场分析的理想工具。也 是发射光谱分析仪器向多功能、高实用化的发展前景

  • 有关硅胶厨具的欧盟检测

    最近开展了很多硅胶制品的检测。主要是出口欧盟的。我们在检测模拟物D的总迁移量时,经常发生检测不合格。不知道大家是否了解。应该如何处理。由于时间限制,我们的样品无法进行橄榄油测试,因为橄榄油测试需要平衡很长时间。我们一般用95%乙醇做替代实验。比如用于厨房锅具上的硅胶锅盖(产品本身耐热超过200度),我们的检测实验条件是回流温度,2小时。总迁移量一般都会超过10 mg/dm2,只有样品为蛋糕模类制品的时候,因为结果可以除以3或者5,才会合格。大家对于模拟物D的硅胶厨具一般如何检测?

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制