当前位置: 仪器信息网 > 行业主题 > >

水质镁标准

仪器信息网水质镁标准专题为您提供2024年最新水质镁标准价格报价、厂家品牌的相关信息, 包括水质镁标准参数、型号等,不管是国产,还是进口品牌的水质镁标准您都可以在这里找到。 除此之外,仪器信息网还免费为您整合水质镁标准相关的耗材配件、试剂标物,还有水质镁标准相关的最新资讯、资料,以及水质镁标准相关的解决方案。

水质镁标准相关的资讯

  • 中外水质标准纵横比
    自今年7月1日起,我国饮用水“新国标”进入强制实施阶段。水质指标由原来的35项增至106项,理论上,达到新国标的水可以直接饮用,而事实上,欧美很多国家的自来水已经能够直接饮用。那么,我国新的水质标准和欧美国家相比,有哪些异同呢?   新国标“新”在哪?   实际上,新的《生活饮用水卫生标准》(GB5749-2006)在2007年7月1日就已正式实施了。但当时只是一个倡议性标准,5年之后的2012年7月1日,才成为强制性的。   纵向比较,不难看出新国标有了明显改进。与“旧国标”相比,新国标中的水质指标从原来的35项增加到106项,并修订了原指标中的8项。其中,毒理指标中有机物的种类,由5项扩充到53项,是原来的10倍多。水质指标更加具体化、多样化、严格化,这的确是前进了一大步。值得一提的是,有几个指标的限值虽然没有调整,单位却发生了变化。例如,毒理指标中氯仿(三氯甲烷)的最大浓度,由60微克/升变成了0.06毫克/升。虽然前面的数据看上去小了很多,但微克变成毫克,标准其实没变。不过,采用毫克/升的单位,与联合国世界卫生组织的做法是一致的。   与多国标准横向比较   我们再把中外的饮用水卫生标准横向比较一下。   据工业出版社2004年出版的《国际饮用水水质标准汇编》一书介绍,世界上最具权威性的三大饮用水标准,分别是世卫组织的《饮用水水质准则》、欧盟的《饮用水水质指令》(1998年)和美国环境保护署的《国家饮用水水质标准》。这三个标准是各国制定水质标准的重要参考依据。   世卫组织的《饮用水水质准则(第三版)》(2005年)共有172项,它被越南、菲律宾、马来西亚、巴西、阿根廷、南非、匈牙利、捷克等国直接照搬。我国新国标的106个指标中,有46项指标的标准与世卫组织的相同。但也有14个指标,是中国有,而世卫组织标准没有的。锰、铜、汞、氰化物等11个指标,中国比世卫组织“管”得更严,只有镉、氯乙烯、三氯乙烯和乐果(一种农药)这4个指标比世卫组织“松”——限定值高于世卫组织标准。另外,世卫组织标准中有64个指标没明确限值,世卫组织的解释是,“饮水中存在的含量对健康无影响”、“饮水中的浓度远低于会产生毒性作用的浓度”等。   欧盟的《饮用水水质指令》被欧盟各成员国采用,我国新国标中大多数无机物指标与它一致,而且硼、钼、氟化物及硝酸盐则比它更严格。但我国在不如欧盟“苛刻”的8个指标中,氯乙烯和三氯乙烯这两种有机物再次现身。与我国新国标相比,欧盟标准的指标项目较少,只有48项,并且还是由1995年版本的66项中“砍”下来的。不过,欧盟很多国家的自来水是可以直接饮用的。   美国的《国家饮用水水质标准》分为一级和二级。一级标准有69项,都是有法律强制性的,全国所有的公共供水系统必须达到这一标准。二级标准共有15项,都属于“无碍健康的指标”,既有影响水的颜色、气味、口感的杂质,也有对人体皮肤、牙齿的色泽产生影响的杂质。虽然联邦政府把它视为推荐性标准,但州级政府也可根据本地水源情况,有选择地“升级”为强制性指标,与我国新国标中对所有物质的浓度限制都是强制性标准不同。   颇具特色的是,美国饮用水一级标准中的每个指标对应两个浓度限值,分别是最大污染物浓度(MCL)和最大污染物浓度目标值(MCLG)。后者指的是不会对人体健康产生不利影响的污染物浓度上限,标准比前者严格得多,但没有强制力。   此外,一级标准中还列出了各种污染物的危害和来源,这是包括欧盟和世卫组织在内的很多水标准都没有提到的。   综合来看,中美两国标准“PK”的结果,可说是“各有所长”。最大污染物浓度(MCL)相同的指标没有几个,有不少数值甚至相差数倍。中国比美国更严格的共有23个指标,如剧毒的氰化物,我国新国标的浓度限值为0.05毫克/升,而美国则为0.2毫克/升 美国对砷的浓度限值为0.05毫克/升,是我国“新国标”的5倍。与此同时,美国比我国严格的指标则有17个。这17个指标多为有机物,氯乙烯和三氯乙烯再次榜上有名。令人吃惊的是,我国三氯乙烯的浓度限值是美国的14倍。另外,在美国的饮用水中,有机物“1,1,1-三氯乙烷”最多只能有0.2毫克/升,但在我国却可以高达2毫克/升,相差10倍。   两种有机物卡得不够“狠”   我国新国标的指标项目很多,对付常规无机物的严格程度已经不亚于国际公认的三大标准。但对有机物的限制我国还不够严厉,在氯乙烯和三氯乙烯两项上更是显得“心有点软”。   据了解,这两种有机物都是常用的工业原料。氯乙烯是无色气体,用途很广、强度和稳定性都很突出的材料PVC(聚氯乙烯)就是由它聚合而成的 比它多两个氯原子的三氯乙烯,则用作金属的脱脂剂和脂肪、油、石蜡等的萃取剂。氯乙烯会损害肝功能,长期接触和摄入会导致肝癌 三氯乙烯除了毁肝,还有一定的麻醉作用,会引发神经功能障碍和内分泌紊乱。这应该就是国际上严格限制它们在水中含量的原因了。   在我国新国标的诸多项目中,许多物质在水中都是无色无味的,公众很难察觉到水质的变化,而水垢(即水硬度,碳酸钙的含量)却非常直观,既能看出来又能喝出来。我国新国标对水硬度的要求是不超过450毫克/升,超过欧盟(60毫克/升)、日本(300毫克/升)和加拿大(300毫克/升)的标准。美国对饮用水的水硬度没有要求,但据记者了解,美国的自来水其实很“软”,几乎没有水垢。   值得一提的是,因恶性通货膨胀“闻名世界”的非洲国家津巴布韦,其饮用水标准对砷、铜、铬等指标的要求比我国更严,在无机物指标中,只有铅的浓度限值高于我国新国标。但据我国商务部网站今年2月报道,如今有400万津巴布韦人面临因水污染而带来的疾病威胁。   由此可见,标准定得严固然是好,但若是不能落到实处,对民众来说,也只是“浮云”。
  • 水质分析中的常见指标以及标准物质在其中的作用
    在此,我们将依据GB 5749-2022《生活饮用水卫生标准》中的表1,对水质常规指标进行深入浅出的解读。这些数据,就如同体检报告上的各项指标,默默讲述着水质的故事。让我们一起,探索那数据背后的意义,守护我们的饮水安全。一、微生物指标饮用水需要检测微生物指标,如菌落总数、总大肠菌群、大肠埃希氏菌等,如果这些指标不合格,易引发细菌感染、寄生虫病,使人出现腹痛、腹泻等消化道症状。二、感官性状指标1、色度:天然水或处理后的各种水进行颜色定量测定时的指标。标准限值:15度。2、浑浊度:水中悬浮及胶体状态的颗粒。标准限值:1NTU。3、臭和味:被污染的水体往往具有不正常的气味。用鼻子闻到的叫做臭,口尝到的叫做味。标准限值:无异臭、无异味。4、肉眼可见物:水中存在的、可以肉眼观察到的颗粒或其他悬浮物质。标准限值:不得含有。超标危害:感官性状指标主要是其他指标的表征体现,一般没有直接危害。如浑浊度超标水样中悬浮物容易吸附细菌、病毒等。三、一般化学指标1、pH值:氢离子浓度倒数的对数。标准限值:6.50~8.50。超标危害:对管道的腐蚀进而引起间接中毒。2、总硬度:主要是指水中钙、镁离子的含量。硬度分为碳酸盐硬度及非碳酸盐硬度。碳酸盐硬度和非碳酸盐硬度的总和称总硬度。标准限值:450mg/L。超标危害:引起胃肠道功能紊乱,容器结垢,腐蚀设备等。3、溶解性总固体(TDS):溶解在水里的无机盐和有机物的总称,主要成分有Ca2+、Mg2+、Na+、K+、CO32-、HCO3-、SO42-、NO3-等。标准限值:1000mg/L。超标危害:味道差,口感差,水壶结垢。四、无机非金属指标1、硫酸盐:主要来自石膏和其他含硫酸盐沉积物的溶解。标准限值:250mg/L。超标危害:大量摄入导致腹泻、脱水、胃肠道紊乱。2、氯化物:广泛存在于水中,来源于天然矿物沉积、海水入侵、农业灌溉等。标准限值:250mg/L。超标危害:腐蚀管路,引入咸味,对胃液分泌、水代谢有影响,从而诱发各种疾病。3、氟化物:广泛存在于水中,来源于天然矿物沉积。标准限值:1.0mg/L。超标危害:适量的氟对身体有益,可预防龋齿。摄入过多对人体有害,容易导致氟斑牙、氟骨症。4、氰化物:自然水体一般不存在氰化物,水中来源主要是工业污染、石油化工、农药、电镀等。标准限值:0.05mg/L。5、硝酸盐氮、氨氮:硝酸盐、亚硝酸盐和氨是氮循环的组成部分。除来自地层外,还主要来源工业废水、生活污水、肥料等。标准限值:硝酸盐氮10mg/L,氨氮0.5mg/L。超标危害:本体无毒。在体内形成亚硝酸盐,可导致高铁血红蛋白症。在胃肠道形成亚硝胺,使动物致畸、致癌、致突变。五、金属指标1、铝:来源于工业污染及混凝剂(如硫酸铝、聚合氯化铝、明矾等)的使用,产生的铝化合物随污水进入水体。标准限值:0.20mg/L。超标危害:铝是一种低毒金属元素,并非人体需要的微量元素,不会导致急性中毒,人体摄入铝后仅有10%-15%能排泄到体外,大部分会在体内蓄积,与多种蛋白质、酶等人体重要成分结合,影响体内多种生化反应,长期摄入会损伤大脑,导致痴呆,还可能出现贫血、骨质疏松等疾病。2、铁:铁是人体的必需元素。铁是地壳层中第二丰富的金属,以多种形式存在于天然水中。水中的铁通常以Fe3+的形式出现,而较易溶解的Fe2+可能在脱氧的情况下出现。标准限值:0.30mg/L。超标危害:当水中含铁量超过0.30mg/L会使衣服、器皿、设备等着色。在含铁量大于 0.50mg/L时,水的色度可能会大于30度。饮用水铁过多可引起食欲不振、呕吐、腹泻、胃肠道紊乱、大便失常等症状。3、锰:是地壳中较为丰富的元素之一,地下水中锰的质量浓度可以达到每升几毫克。常和铁结合在一起。标准限值:0.10 mg/L。超标危害:高浓度锰有毒性,锰主要危害中枢神经系统,可以出现颓废、肌张力增加、震颤和智力减退等中毒症状。但还未达到此水平时根据味道就需对水进行处理了。当锰的质量浓度超过0.10mg/L,会使饮用水发出令人不快的味道,并使器皿和洗涤的衣服着色。如果溶液中Mn2+的化合物被氧化,会形成沉淀,造成结垢。4、铜:是一种存在于地壳和海洋中的金属。在地壳中的含量约0.01%。自然界中的铜多数以化合物(铜矿物)存在。标准限值:1.0mg/L。超标危害:铜是人体重要的必需微量元素,但重金属又有一定毒性。毒性强弱与重金属进入人体的方式和剂量有关。金属铜不易溶解,毒性比铜盐(醋酸铜和硫酸铜)小。铜超标引起急性和慢性中毒,急性中毒有急性胃肠炎、溶血和贫血;慢性中毒有记忆力减退、注意力不集中,易激动、多发性神经炎等。5、锌:在自然界中多以硫化物状态存在。主要含锌矿物是闪锌矿。也有少量氧化矿,如菱锌矿,电池的重要原料。水中锌含量很小,但水流经镀锌管道可能被污染,使水的浑浊度升高,具有不舒服的金属味。标准限值:1.0mg/L。超标危害:锌是人体不可缺少的微量元素,但锌超标也有危害:1.锌与硒有拮扰性,人体大量摄入锌后降低了硒的解毒作用,容易引起某些有毒元素的慢性中毒或诱发某些疾病;2.大量的锌能抑制吞噬细胞的活性和杀菌力,从而降低人体的免疫功能,使抗病能力减弱;3.过量的锌致使铁参与造血机制发生障碍从而使人体发生顽固性缺铁性贫血;4.长期大剂量锌摄入可诱发人体的铜缺乏。6、砷:在地壳中广泛存在,大多以硫化砷或金属砷酸盐和砷化物形式存在。某些地区水砷偏高(地方病),有的来自治炼废水、矿物溶出。标准限值:0.01mg/L。超标危害:砷是饮水中一种重要的污染物,国际癌症研究机构 (IARC)确认是使人致癌的物质之一。7、汞:在自然界中分布量很少,但普遍存在,一般动物植物中都含有微量的汞。汞的用途广泛,人类活动造成水体汞污染,主要来自系碱、塑料、电池、电子、化工废水还有农药、化肥等使用。标准限值:0.001mg/L。超标危害:金属汞和无机汞损伤肝脏和肾脏,但一般不形成累积中毒。有机汞(如甲基汞)等毒性高,能损伤大脑,在体内停留时间长,即使剂量很少也可累积致毒,如日本的水俣病。8、镉:在自然界中常以化合物状态存在,一般水中含量很低。镉在电镀、颜料、塑料、稳定剂、Ni-Cd电池工业、电视显像管制造等工业领域使用广泛。镉的污染主要来源工业排放。标准限值:0.005mg/L。超标危害:镉是人体非必需元素,正常环境状态下,不会影响人体健康。镉被人体吸收后,在体肉形成镉硫蛋白,选择性地蓄积在肝肾中。从而影响肝、肾器官中酶系统的正常功能,使骨路的生长代谢受阻碍,从而造成骨路疏松、萎缩、变形等。如日本的痛痛病。9、铬(六价):铬属于分布较广的元素之一。自然界中主要以铬铁矿FeCr204形式存在。铬的污染源有含铬矿石的加工,金属表面处理、皮革鞣制、印染等排放的污水。标准限值(六价铬):0.05mg/L。超标危害:铬是人体必需的微量元素,在机体的糖代谢和脂代谢中发辉特殊作用。铬的毒性与其价态有关,金属铬对人体几乎无害,六价铬才有毒。六价铬比三价铬毒性高。六价铬对人主要是慢性毒害,它可以通过消化道、呼吸道、皮肤和粘膜侵入人体,在体内主要蓄积在肝、肾和内分泌腺中。通过呼吸道进入的易积存在肺部。10、铅:铅在地壳中含量为0.16%,很少以游离态存在于自然界,工业中含铅废气、废水、废渣等可以污染水源。自来水的铅还来自含铅的管道系统,如输水管、焊料、管件及其接头,聚氯乙烯水管材、管件可能含铅,因为铅作为稳定剂用于生产该种塑料管。标准限值:0.01mg/L。超标危害:铅中毒对机体的影响是多器官、全身性的,临床表现复杂,且缺乏特异性,比较明确的是:1、引起血红蛋白合成障碍;2、损害神经系统;3、损害肾脏;4、损害生殖器官;5、影响子代。病期较长的患者并有贫血,面容呈灰色,伴心悸、气促、乏力等。牙与指甲因铅质沉者而染黑色,有的牙龈出现黑色。编辑搜图六、有机物(综合)指标1、高锰酸盐指数(以O₂ 计):是指水样在规定的氧化剂和氧化条件下的可氧化物质的总量。标准限值:3mg/L。超标危害:高锰酸盐指数是反应饮用水中有机污染物总体水平的一项指标,与肝癌和胃癌死亡率之间有非常显著的相关关系。2、三氯甲烷:是一种有机合成原料,主要用来生产氟氯昂。可用于有机合成及麻醉剂,脂肪、橡胶、树脂、油类、蜡、磷、碘和粘合压克力的溶剂,青霉素,精油、生物碱等的萃取剂,在生产过程中的废水污染水体。饮用水中三氯甲烷的形成在很大程度上取决于用作消毒剂的氯和在水源中存在的前体之间相互反应。标准限值:0.06mg/L。超标危害:主要作用于中枢神经系统,具有麻醉作用,对心,肝,肾有损害,主要引起肝脏损害,并有消化不良、乏力、头痛、失眠等症状。并认为对人具有潜在的致癌危险性。在使用相关仪器设备对水质进行检测的同时,需要确保已有仪器的正确值,这就需要用到相关的标准物质进行校准,那标准物质在其中起到了什么作用呢?水质检测标准物质主要用于保证水质检测结果的准确性。这些标准物质在环境监测中起到重要的作用,可以用于测定水样中污染物质的浓度。此外,这些标准物质还可以被用于制定一些环境标准,如水质标准,以保证水质监测检测结果的合理性和可靠性,进而保证公众的生命健康和生活的安全。具体来说,水质检测标准物质有以下用途:1. 质量控制:在实验室内部的质量控制程序中,标准物质可被用作质控样品,通过比较实际测试结果与标准物质的不确定度,来评估实验的准确度和精密度。2. 比对试验:标准物质可以作为基准,用于比较不同实验室或不同测量方法的结果,以评估其准确性和一致性。3. “盲样”分析:在某些情况下,标准物质会被混入实际样品中,以测试实验室对特定污染物的检测能力。4. 校准仪器:标准物质可用于校准测量仪器,确保其准确性。5. 标定溶液浓度:标准物质可以用来标定用于样品前处理的溶液,确保这些溶液的浓度准确无误。6. 评价分析方法:通过使用标准物质,可以对新开发或改进的分析方法进行验证,确保其有效性。值得注意的是,某些特殊的水质检测标准物质如水中氨氮溶液标准物质和水中铵离子溶液标准物质,不仅可用于上述用途,还可以直接用于对排放的氨氮污染物进行准确测定,为环保领域的新技术新方法研究、新标准验证、质量控制、能力验证样品检测等方面提供技术保障。
  • 水质、空气质量的测定等多项国家环境保护标准发布
    关于发布《水质 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法》等四项国家环境保护标准的公告   为贯彻《中华人民共和国环境保护法》、《中华人民共和国水污染防治法》、《中华人民共和国大气污染防治法》和《中华人民共和国固体废物污染环境防治法》,保护环境,保障人体健康,规范二噁英类的测定方法,现批准《水质 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法》等四项标准为国家环境保护标准,并予发布。   标准名称、编号如下:   一、水质 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法(HJ 77.1-2008)   二、环境空气和废气 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法(HJ 77.2-2008)   三、固体废物 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法(HJ 77.3-2008)   四、土壤和沉积物 二噁英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法(HJ 77.4-2008)   以上标准自2009年4月1日起实施,由中国环境科学出版社出版,标准内容可在环境保护部网站(bz.mep.gov.cn)查询。   自标准实施之日起,《多氯代二苯并二噁英和多氯代二苯并呋喃的测定 同位素稀释高分辨毛细管气相色谱/高分辨质谱法》(HJ/T 77-2001)废止。   十八项标准为国家环境保护标准发布   为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,现批准《水质 多环芳烃的测定 液液萃取和固相萃取高效液相色谱法》等十八项标准为国家环境保护标准,并予发布。   标准名称、编号如下:     一、 《水质 多环芳烃的测定 液液萃取和固相萃取高效液相色谱法》(HJ 478-2009) ;   二、 《环境空气 氮氧化物(一氧化氮和二氧化氮)的测定 盐酸萘乙二胺分光光度法》(HJ 479-2009) ;   三、 《环境空气 氟化物的测定 滤膜采样氟离子选择电极法》(HJ 480-2009) ;   四、 《环境空气 氟化物的测定 石灰滤纸采样氟离子选择电极法》(HJ 481-2009) ;   五、 《环境空气 二氧化硫的测定 甲醛吸收-副玫瑰苯胺分光光度法》(HJ 482-2009) ;   六、 《环境空气 二氧化硫的测定 四氯汞盐吸收-副玫瑰苯胺分光光度法》(HJ 483-2009) ;   七、 《水质 氰化物的测定 容量法和分光光度法》(HJ 484-2009) ;   八、 《水质 铜的测定 二乙基二硫代氨基甲酸钠分光光度法》(HJ 485-2009) ;   九、 《水质 铜的测定 2,9-二甲基-1,10菲萝啉分光光度法》(HJ 486-2009) ;   十、 《水质 氟化物的测定 茜素磺酸锆目视比色法》(HJ 487-2009) ;   十一、 《水质 氟化物的测定 氟试剂分光光度法》(HJ 488-2009) ;   十二、 《水质 银的测定3,5-Br2-PADAP分光光度法》(HJ 489-2009) ;   十三、 《水质 银的测定 镉试剂2B分光光度法》(HJ 490-2009) ;   十四、 《土壤 总铬的测定 火焰原子吸收分光光度法》(HJ 491-2009) ;   十五、 《空气质量 词汇》(HJ 492-2009) ;   十六、 《水质采样 样品的保存和管理技术规定》(HJ 493-2009) ;   十七、 《水质 采样技术指导》(HJ 494-2009) ;   十八、 《水质 采样方案设计技术指导》(HJ 495-2009) 。   以上标准自2009年11月1日起实施,由中国环境科学出版社出版,标准内容可在环境保护部网站(bz.mep.gov.cn)查询。   自以上标准实施之日起,由原国家环境保护局批准、发布的下述二十项国家环境保护标准废止,标准名称、编号如下:   一、《水质 六种特定多环芳烃的测定 高效液相色谱法》(GB 13198—91)   二、《空气质量 氮氧化物的测定 盐酸萘乙二胺比色法》(GB 8969-88)   三、《环境空气 氮氧化物的测定 Saltzman法》(GB/T 15436-1995)   四、《环境空气 氟化物质量浓度的测定 滤膜氟离子选择电极法》(GB/T 15434-1995)   五、《环境空气 氟化物的测定 石灰滤纸氟离子选择电极法》(GB/T 15433-1995)   六、《环境空气 二氧化硫的测定 甲醛吸收-副玫瑰苯胺分光光度法》(GB/T 15262-94)   七、《空气质量 二氧化硫的测定 四氯汞盐-盐酸副玫瑰苯胺比色法》(GB 8970-88)   八、《水质 氰化物的测定 第一部分 总氰化物的测定》(GB 7486-87)   九、《水质 氰化物的测定 第二部分 氰化物的测定》(GB 7487-87)   十、《水质 铜的测定 二乙基二硫代氨基甲酸钠分光光度法》(GB 7474-87)   十一、《水质 铜的测定 2,9-二甲基-1,10-菲啰啉分光光度法》(GB 7473-87)   十二、《水质 氟化物的测定 茜素磺酸锆目视比色法》(GB 7482-87)   十三、《水质 氟化物的测定 氟试剂分光光度法》(GB 7483-87)   十四、《水质 银的测定3,5-Br2-PADAP分光光度法》(GB 11909-89)   十五、《水质 银的测定 镉试剂2B分光光度法》(GB 11908-89)   十六、《土壤质量 总铬的测定 火焰原子吸收分光光度法》(GB/T 17137-1997)   十七、《空气质量 词汇》(GB 6919—86)   十八、《水质采样 样品的保存和管理技术规定》(GB 12999-91)   十九、《水质 采样技术指导》(GB 12998-91)   二十、《水质 采样方案设计技术规定》(GB 12997-91)。   关于发布《水质 总有机碳的测定 燃烧氧化—非分散红外吸收法》等六项国家环境保护标准的公告   为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,现批准《水质 总有机碳的测定 燃烧氧化—非分散红外吸收法》等六项标准为国家环境保护标准,并予发布。   标准名称、编号如下:   一、《水质 总有机碳的测定 燃烧氧化—非分散红外吸收法》(HJ 501-2009);   二、《水质 挥发酚的测定 溴化容量法》(HJ 502-2009);   三、《水质 挥发酚的测定 4-氨基安替比林分光光度法》(HJ 503-2009);   四、《环境空气 臭氧的测定 靛蓝二磺酸钠分光光度法》(HJ 504-2009);   五、《水质 五日生化需氧量(BOD5)的测定 稀释与接种法》(HJ 505-2009);   六、《水质 溶解氧的测定 电化学探头法》(HJ 506-2009)。   以上标准自2009年12月1日起实施,由中国环境科学出版社出版,标准内容可在环境保护部网站(bz.mep.gov.cn)查询。   自以上标准实施之日起,由原国家环境保护局或原国家环境保护总局批准、发布的下述七项国家环境保护标准废止,标准名称、编号如下:   一、《水质 总有机碳(TOC)的测定 非色散红外线吸收法》(GB 13193-91);   二、《水质 总有机碳的测定 燃烧氧化-非分散红外吸收法》(HJ/T 71-2001);   三、《水质 挥发酚的测定 蒸馏后溴化容量法》(GB 7491-87);   四、《水质 挥发酚的测定 蒸馏后4-氨基安替比林分光光度法》(GB 7490-87);   五、《环境空气 臭氧的测定 靛蓝二磺酸钠分光光度法》(GB/T 15437-1995);   六、《水质 五日生化需氧量(BOD5)的测定 稀释与接种法》(GB 7488-87);   七、《水质 溶解氧的测定 电化学探头法》(GB 11913-89)。
  • 广东省拟编制三项水质在线监测仪技术标准
    仪器信息网编辑近日从中国政府采购网获悉,广东省环保厅拟对《生物毒性水质自动在线监测仪技术要求和检测方法》、《锌水质自动在线监测仪技术要求和检测方法》、《镍水质自动在线监测仪技术要求和检测方法》等三项标准编制工作进行单一来源采购。   根据招标公告,《生物毒性水质自动在线监测仪技术要求和检测方法》拟制定的供应商为广东经信清洁生产促进中心。理由为该单位在推广应用水质自动监控等清洁生产技术中积累的丰富的经验,参与完成《生态监控水质在线监测系统的研发》(省科技计划项目)、《LumiFox手持式水质毒性分析仪及试剂研发》等地方科技项目。该单位目前已与省内从事生物毒性水质自动在线监测仪生产的骨干企业合作,开展了生物毒性水质自动在线监测仪检测方法及相关参数指标的研究工作,具有良好的工作基础和研究制定《生物毒性水质自动在线监测仪技术要求和检测方法》的专业能力。   水质生物毒性的标准分析方法主要为分光光度法,现有的生物检测仪器所利用的生物有水蚤、藻类、发光细菌、贻贝以及鱼,其中发光细菌的反应面广,检测谱最宽,灵敏度高,成本低,能够第一时间判断水质毒性程度。目前,发光细菌法已经成为一种简单、快速的生物毒性检测手段、广泛应用于质检、环境监测、水产养殖等领域,并被列入国际标准(ISO11348)和我国国家标准(GB/T15441)。   根据调查,国外欧美等发达国家对生物毒性在线监测设备的研发起步较早,比较成熟的有美国哈希、日本岛津、意大利希思迪、德国布朗卢比等公司生产的产品。目前国内有深圳朗石、深圳宇星等多家企业所生产的生物毒性自动在线监测仪等产品已广泛应用于我国主要饮用水源生物毒性的在线检测。由于没有统一的标准,在光损、精密度、灵敏度、实际水样比对试验只能参考国外或国内其他已有的标准,因此,制定针对性的行业标准显得尤为迫切。   为了反映规定光损、精密度、灵敏度、实际水样比对试验等仪器性能指标的科学性,标准编制组为各仪器生产厂配置了标准样品进行测试比对 收集各厂家测试数据结果,对监测数据进行了分析讨论。   《锌水质自动在线监测仪技术要求和检测方法》拟制定的供应商为广东环协环保职业技能培训中心。理由为该中心持有由广东省劳动和社会保障厅批准的&ldquo 中华人民共和国民办学校许可证&rdquo (劳社民4400003060003号),负责全省自动监控环境污染治理设施运营现场管理人员和操作人员的培训工作。中心在编制自动连续监测运营操作工培训教材、现场操作技能培训以及相关环保标准宣贯培训中积累的丰富的经验,具有参与《广东省印染废水治理技术规范》、《广东省印染、印制电路板行业污染减排技术应用现状调研》等科研项目的工作经历。该单位目前已与省内从事锌水质自动在线监测仪生产的骨干企业合作,开展了锌水质自动在线监测仪检测方法及相关参数指标的研究工作,具有良好的工作基础和研究制定《锌水质自动在线监测仪技术要求和检测方法》的专业能力。   水质锌的标准分析方法主要有分原子吸收,色谱法,分光光度法,以及滴定法等,在以上分析方法中,分光光度法是水质自动在线监测仪最常用的分析监测方法。根据调查,国外欧美等发达国家对镍在线监测设备的研发起步较早,比较成熟的有美国哈希、日本岛津、意大利希思迪、德国布朗卢比等公司生产的产品。国内有中兴仪器、广州怡文、广东伟创、深圳朗石、深圳宇星、深圳世纪天源等多家企业生产锌自动在线监测仪等产品。   此次标准的制定目标为针对锌水质自动在线监测仪的性能指标、试验方法及技术要求制定标准,主要包括仪器组成以及示值误差、零点漂移、量程漂移、加标回收率、实际水样比对试验等性能指标。   《镍水质自动在线监测仪技术要求和检测方法》拟制定的供应商为广东省环境保护产业协会。理由是该协会是由我省从事环境保护科研、设备生产,自然保护与资源综合利用、开发经营、服务等方面的企、事业单位等自愿组成的非营利性社会团体,制定行业规范及行业标准是协会实现行业服务的主要工作之一,长期从事我省环境保护类地方标准编制工作,具有承担《环境工程技术规范&mdash 工程设计文件要求》(国家环保部标准编制计划)、《印制电路板行业废水治理工程技术规范》《印染行业废水治理工程技术规范》、《生态监控水质在线监测系统的研发》、《广东省&ldquo 十二五&rdquo 节能环保产业发展规划(2011-2015年)》等业绩。该单位目前已与省内从事镍水质自动在线监测仪生产的骨干企业合作,开展了镍水质自动在线监测仪检测方法及相关参数指标的研究工作,具有良好的工作基础和研究制定《镍水质自动在线监测仪技术要求和检测方法》的专业能力。   水质镍的标准分析方法主要有分光光度法、原子吸收光度法、电化学法、电感耦合等离子体发射光谱法等,在以上分析方法中,自动在线监测仪最常采用分析的方法有阳极溶出伏安法和化学比色法。根据调查,国外欧美等发达国家对镍在线监测设备的研发起步较早,比较成熟的有美国哈希、日本岛津、意大利希思迪、德国布朗卢比等公司生产的产品。国内有中兴仪器、广州怡文、广东伟创、深圳朗石、深圳宇星、深圳世纪天源等多家企业生产镍自动在线监测仪等产品。   此次标准的制定目标为针对镍水质自动在线监测仪的性能指标、试验方法及技术要求制定标准,主要包括仪器组成以及示值误差、零点漂移、量程漂移、加标回收率、实际水样比对试验等性能指标。
  • 号外!坛墨质检新品-水质色度标准溶液 问世了!
    产品名称:水质色度标准溶液产品编号:BW20030-500-C-20技术指标:500度包装规格:20mL(安瓿瓶)应用领域:水质检测中色度指标监测相关国标:GB 11903-89及《水和废水监测分析方法》一 概念普及 水的颜色定义为“改变透射可见光光谱组成的光学性质”,可区分为“表观颜色”和“真实颜色”。水的表观颜色,指由溶解物质及不溶解性悬浮物产生的颜色,用未经过滤或离心分离的原始样品测定。而水的真实颜色,是指仅由溶解物质产生的颜色,用经0.45μm滤膜过滤器过滤的样品测定。没听过的,自行脑补。 色度的标准单位是度:在每升溶液中含有2mg六水合氯化钴(Ⅱ)和1mg铂[以六氯铂(Ⅳ)酸的形式]时产生的颜色为1度。二 产品介绍1.名称及配制 本产品《色度标准溶液》,依据国标GB 11903-89及《水和废水监测分析方法》相关指标,购买昂贵的含铂原料,配制成Pt-Co标准溶液,以供水质监测市场需求。2.应用范围 适用于黄色色调的天然水、饮用水、受工业废水污染的地表水以及纺织、印刷、造纸、食品、有机合成工业的废水等的测定,以满足水质监测领域的需求。不适用于非黄色的其他颜色种类的测定。3.产品特点 本产品为深黄色液体,用20mL安瓿瓶包装,推荐避光冷藏储存,配制所用原料均为溶解性物质,故溶液颜色稳定,透明,为均相体系,均匀性可靠,用户可放心使用。三 测试结果1.仪器与材料 哈希DR3900分光光度计;20mL比色皿;2.测试结果 采用分光光度法测定,使用计量院的色度标准溶液(GBW(E)080345)为参考基准,测试结果相对偏差均在2%以下或1度以下,表明此产品的色度值准确可靠。四 探讨延伸 分光光度法测水质色度准确度高,灵敏度、精密度好,最低适宜测试度数为2.2度,最高测试度数可达70度以上,可以避免因分析人员的视觉差异而带来的误差。用户也可根据情况借鉴引用。 传统的铂钴标准比色法和稀释倍数法,肉眼凡胎直接观察,易造成较大误差,而且不同人员不同环境下观察,误差大小也会有所不同。相对而言,使用仪器比色可以大幅度提高色度测定的灵敏度准确度。 但是,分光光度法测定色度值毕竟只测试单点波长的吸光度,从而计算出色度值,万不能代替人眼的可见光范围,所以国标方法适用范围会更广。如果水样浑浊,或者水样显现其他颜色种类,则不能使用此种方法定值。 此外,笔者查阅大量资料发现,某些学者老师采用紫外可见分光光度计,在350~600nm的波长范围内求出峰面积,然后以峰面积对色度绘制标准曲线,从而得出色度值。据文献介绍,此种方法比最大吸收波长法更为准确,有兴趣的用户也可以试验对比。在分析检测方法中,可使用重铬酸钾来代替氯铂酸钾配制标准色列,但此溶液不宜久存,具体见《水和废水监测分析方法》。故在此寻求讨论学习,望有志之士、有识之师留言交流。请赐教!
  • ICP-MS将首入水质检测标准
    仪器信息网讯 日前,环保部公布了国家环境保护标准《水质 65种元素的测定 电感耦合等离子体质谱法》(征求意见稿),这是ICP-MS法(电感耦合等离子体质谱法)首次进入我国水质检测标准,而且和EPA 200.8、EPA 6020A、EPA 200.1、ISO 17294-2等国际标准相比,这一新标准可用于更多水中元素的测定。以ICP-MS法对水中铁(Fe)、钛(Ti) 、铌(Nb)三种元素的测定,尚未在其他国内外标准方法中被采用。另外,由于目前国内需要消解处理的地表水和废水(处理设施出口)中无机元素总量的测定尚没有统一的前处理方法,新标准也采用了电热板消解和微波消解的方法对地表水和废水(处理设施出口)进行处理。   新标准适用于地表水、地下水、生活污水、工业废水(处理设施出口) 中银、铝、砷、金、硼、钡、铍、铋、钙、镉、铈、钴、铬、铯、铜、镝、铒、铕、铁、镓、钆、锗、铪、钬、铟、铱、钾、镧、锂、镥、镁、锰、钼、钠、铌、钕、镍、磷、铅、钯、镨、铂、铷、铼、铑、钌、锑、钪、硒、钐、锡、锶、铽、碲、钍、钛、铊、铥、铀、钒、钨、钇、镱、锌、锆的测定。   目前的水质监测方法标准中,测定以上元素通常有分光光度法、原子吸收分光光度法(火焰与石墨炉)、原子荧光法、极谱法、电感耦合等离子体发射光谱法(ICP-AES)等,这些方法各有其优点,也各有其局限性。分光光度法前处理复杂,需萃取、浓缩富集或抑制干扰 原子吸收分光光度法、原子荧光光谱法不能进行多组分或多元素的同时分析 原子吸收分光光度法对部分元素的检测限或灵敏度达不到指标要求,对某些元素无法测定或准确度不高。由于检测项目大量增加,而且它们在环境中的含量都非常低,常用的多元素分析方法如电感耦合等离子体发射光谱技术对硒、铍、砷、铅、铊、铀等元素不能达到检测限要求,必须与石墨炉原子吸收分光光度法(GF-AAS)和汞冷原子吸收(CV-AAS)技术结合使用才能达到大部分元素的分析要求。电感耦合等离子体质谱法是一种微量与超微量多元素同时分析的方法,具有灵敏度高、检出限低,分析过程快捷,分析取样量少等优点,它可以同时测量周期表中大多数元素,测定分析物浓度可低至纳克/升(ppt)的水平,是目前最有效的痕量元素的检测且可以测定现有技术难以分析的饮用水标准中特殊要求的铀和铊。ICP-MS技术的优势,使其在很大程度上可以取代ICP-AES、GF-AAS和CV-AAS等方法,将成为未来的发展趋势。   ICP-MS法首次成为水质分析的标准方法,将开启电感耦合等离子体质谱仪在水质分析中的应用,促进ICP-MS技术的发展和ICP-MS仪器的销售,但ICP-MS较高的价格和使用难度,对其推广普及形成了一定阻碍。   新标准方法对65种元素的检出限和测定下限:   标准下载:《水质 65种元素的测定 电感耦合等离子体质谱法》(征求意见稿)
  • 水质28种有机磷农药检测标准来了,您准备好了吗?
    导读有机磷农药,指含有磷元素的有机物农药,主要用于植物病虫害防治,具有明显的刺激性气味及较强的挥发性,因在农业生产中大量使用,并受地表径流等汇集作用而在环境水体中存在不同程度的残留。为规范环境水中有机磷农药的测定方法,生态环境部颁布了《水质 28种有机磷农药的测定 气相色谱-质谱法》(HJ 1189-2021),并将于2022年4月1日起正式实施。 有机磷农药的危害有机磷农药具有神经毒性,通过与胆碱酯酶结合,形成磷酰化胆碱酯酶,抑制胆碱酯酶活性,使胆碱酯酶失去催化乙酰胆碱水解作用,积聚的乙酰胆碱进而引起神经毒性。有机磷见光易分解、受热不稳定、在碱性条件下更是会迅速降解,目前常用的有机磷农药主要有乐果、敌敌畏、甲拌磷、毒死蜱、甲基对硫磷等。图1. 4种常见有机磷农药 有机磷农药可经地表径流汇入地表饮用水源,并通过食物链富集进入动物及人体内,对人类健康造成不可忽视的风险。此外,有机磷农药一旦渗入地下水,在地下环境中受光照及温度影响较小,难以自然降解,极易造成长期残留,因此对水体中有机磷农药残留量监测变得刻不容缓。 新标准实施在即,岛津GCMS助您从容应对参考HJ 1189-2021标准,使用岛津气质联用仪GCMS-QP2020 NX建立了一种快速准确测定环境水中28种有机磷农药含量的方法,同位素内标定量,轻松应对新标准。图2. 岛津气质联用仪(GCMS-QP2020 NX) ◦分析条件图3. 有机磷农药及内标溶液色谱图1、萘-d8(内标)2、敌敌畏3、(E)-速灭磷4、(Z)-速灭磷5、苊-d10(内标)6、内吸磷7、灭线磷8、治螟磷9、甲拌磷10、特丁硫磷11、二嗪磷12、地虫硫磷13、异稻瘟净14、(E)-磷胺15、菲-d10(内标)16、氯唑磷17、乐果18、甲基毒死蜱19、(Z)-磷胺20、甲基对硫磷21、毒死蜱22、马拉硫磷23、杀螟硫磷24、对硫磷25、甲基异柳磷26、溴硫磷27、水胺硫磷28、稻丰散29、苯线磷30、丙溴磷31、三唑磷32、䓛-d12(内标)33、蝇毒磷 ◦样品处理流程参照HJ 1189-2021标准,水样中敌百虫经碱解转化为敌敌畏间接测定,其他27种有机磷农药经萃取浓缩后直接测定。图4. 样品前处理流程简图 ◦方法学结果考察0.2-20 μg/mL浓度范围内各目标物线性关系,将0.5 μg/mL标准溶液连续进样6次计算峰面积重复性以考察进样精密度,并以50 μg/L浓度添加回收试验并平行处理3份进行回收率测试。结果表明,方法准确度及精密度均满足相关标准要求。 表1. 28种有机磷农药方法学考察结果 结语使用岛津GCMS-QP2020 NX气质联用仪,可准确测定环境水中有机磷农药含量,轻松应对《水质 28种有机磷农药的测定 气相色谱-质谱法》(HJ 1189-2021)标准要求,水质监测刻不容缓,岛津方案助您从容应对。 本文内容非商业广告,仅供专业人士参考。
  • 国家环保标准《海水水质标准》征集修订意见
    关于征集对修订国家环境保护标准《海水水质标准》意见的函   各有关单位:   为贯彻落实《中华人民共和国环境保护法》和《中华人民共和国水污染防治法》,加强生态文明建设,适应国家经济社会发展和环境保护工作的需要,保护生态环境和人体健康,完善国家环境质量标准体系,我部决定对国家环境保护标准《海水水质标准》(GB3097-1997)进行修订。   鉴于该标准对于环境保护和环境质量评价工作有重大影响,与社会公众利益密切相关,为做好标准修订工作,充分了解各有关方面的意见,根据《国家环境保护标准制修订工作管理办法》的有关规定,现就修订该标准公开征集意见。请各单位参照附件一所列问题或就其他问题,对修订标准工作提出意见和建议,并反馈我部。征集意见截至为2010年12月10日。   联系人:环境保护部科技标准司 滕云 冯波   通信地址:北京市西直门内南小街115号   邮政编码:100035   传真:(010)66556213   附件:1.修订《海水水质标准》相关问题   2.海水水质标准   附件一:   修订《海水水质标准》相关问题   一、现行《海水水质标准》(GB 3097-1997)在实施过程中主要存在哪些不适应国家经济社会发展和环境保护工作需要的问题?   二、对于协调《海水水质标准》和《渔业水质标准》中关于渔业水体的水质要求有何建议?   三、现行《海水水质标准》(GB 3097-1997)中的海水水质分类方案是否有必要进行调整?如有必要,应如何调整?   四、是否有必要调整现行《海水水质标准》(GB 3097-1997)中的水质评价项目数量及要求(限值等)?   五、对修订《海水水质标准》(GB 3097-1997)的其他建议。   二○一○年十一月二日
  • COD测定仪是监测水质标准的重要机器
    COD测定仪的电化学法是采用电极和水质样品所产生的化学反应,间接的测出COD的数据值。这种方法操作起来非常简单,可靠性高,利于我们污水的监测工作。但是这种方法不再国标法的范畴之内,鉴于数据可靠性强,只需要把这个数据和国标法的数据进行比较,然后适当的进行校正即可。  COD快速测定仪TOC法是考核污水水质中碳的含量,来确定COD数值的浓度。这个方法步骤非常简单,仪器的灵敏度高,转化的流程快速,因此被大家广泛采用。这种方法还没被我们查出弊端,相对其他的方法来讲,这个方法的优点有很多,缺点少之又少,是我们科学研究进步的阶梯。  仪器的型号和作用等详细资料都对我们的污水处理环节有用,是一份有力的数据。因此保管好数据档案使我们日常中重要性的工作,不容我们忽视小觑的。在污水处理系统中故障排除和日常维护对在线仪表是否拥有完整齐全的档案和资料的依赖性还是比较大的,这就要求日常管理中要对每一台仪表都进行详细完整的档案管理。  COD测定仪的定期维护有利于我们机器的正常运转,这需要我们工作人员定期的观察。确保机器的正常运行状态,定期的清理机器的污垢,可以提高机器本身的灵敏性,有利于我们数据的采集。  从上面看出,COD快速测定仪机器的定期检查工作是我们工作中重要的一部分。可以预防机器出现的故障发生率,有利于我们污水处理工作,提高了我们工作的能力和办事水平。  作为环境监测方面,COD测定仪已经全面渗透,是监测水质标准的重要机器。下面就让我们了解一下仪器的测量方法,方便我们后期的污水治理环节的应用。
  • 85项《地下水质分析方法》标准发布 7月1日起实施
    近日,《地下水质分析方法》等85项系列行业标准已通过全国自然资源与国土空间规划标准化技术委员会审查,现予批准、发布,自2021年7月1日起实施。编号及名称如下表所示。(文末附下载链接)据了解,本次发布的《地下水质分析方法》系列行业标准主要包括色度、pH值、电导率、砷、钙、镁、硬度、总铬、六价铬、铁等项目的测定,并涉及了比色法、电极法、原子吸收分光光度法、电感耦合等离子体发射光谱法、火焰发射光谱法、原子荧光光谱法、气相色谱法及气体同位素质谱计等多种水质分析方法。近些年,我国人口不断上升,经济发展迅速,社会对于地下水的需求量也日益增大,尤其是城市污水、工业废水的肆意排放,农药化肥的过量使用,使我国地下水位严重下降,污染程度逐步加深。相关部门对于地下水的监测力度也相应加大。相关数据表明,2019年,全国10168个国家级地下水水质监测点中,I~III类水质监测点占14.4%,IV类占66.9%,V类占18.8%。全国2830处浅层地下水水质监测井中,I~III类水质监测井占23.7%,IV类占30.0%,V类占46.2%。超标指标为锰、总硬度、碘化物、溶解性总固体、铁、氟化物、氨氮、钠、硫酸盐和氯化物。保护地下水环境的安全和稳定迫在眉睫,这要求不仅要建立健全的地下水环境监管体系,强化监督检查,还需要不断完善相应的法规标准、加强执法管理。与大气监测和地表水监测相比,地下水监测还有很多工作要做,对于地下水监测工作,国家已陆续投资几十亿元,未来两年全国地下水监测项目的市场比较可观。  85项系列行业标准编号及名称序号行业标准编号标准名称代替标准号1DZ/T 0064.1-2021地下水质分析方法 第1部分:一般要求DZ/T 0064.1-19932DZ/T 0064.2-2021地下水质分析方法 第2部分:水样的采集和保存DZ/T 0064.2-19933DZ/T 0064.3-2021地下水质分析方法 第3部分:温度的测定 温度计(测温仪)法DZ/T 0064.3-19934DZ/T 0064.4-2021地下水质分析方法 第4部分:色度的测定 铂-钴标准比色法DZ/T 0064.4-19935DZ/T 0064.5-2021地下水质分析方法 第5部分:pH值的测定 玻璃电极法DZ/T 0064.5-19936DZ/T 0064.6-2021地下水质分析方法 第6部分:电导率的测定 电极法DZ/T 0064.6-19937DZ/T 0064.7-2021地下水质分析方法 第7部分:Eh值的测定电位法DZ/T 0064.7-19938DZ/T 0064.8-2021地下水质分析方法 第8部分:悬浮物的测定 重量法DZ/T 0064.8-19939DZ/T 0064.9-2021地下水质分析方法 第9部分:溶解性固体总量的测定 重量法DZ/T 0064.9-199310DZ/T 0064.10-2021地下水质分析方法 第10部分:砷量的测定 二乙基二硫代氨基甲酸银分光光度法DZ/T 0064.10-199311DZ/T 0064.11-2021地下水质分析方法 第11部分:砷量的测定 氢化物发生—原子荧光光谱法DZ/T 0064.11-199312DZ/T 0064.12-2021地下水质分析方法 第12部分:钙和镁量的测定 火焰原子吸收分光光度法DZ/T 0064.12-199313DZ/T 0064.13-2021地下水质分析方法 第13部分:钙量的测定 乙二胺四乙酸二钠滴定法DZ/T 0064.13-199314DZ/T 0064.14-2021地下水质分析方法 第14部分:镁量的测定 乙二胺四乙酸二钠滴定法DZ/T 0064.14-199315DZ/T 0064.15-2021地下水质分析方法 第15部分:总硬度的测定 乙二胺四乙酸二钠滴定法DZ/T 0064.15-199316DZ/T 0064.17-2021地下水质分析方法 第17部分:总铬和六价铬量的测定 二苯碳酰二肼分光光度法DZ/T 0064.17-199317DZ/T 0064.18-2021地下水质分析方法 第18部分:总铬和六价铬量的测定 催化极谱法DZ/T 0064.18-199318DZ/T 0064.20-2021地下水质分析方法 第20部分:铜、铅、锌、镉、镍和钴量的测定 螯合树脂交换富集火焰原子吸收分光光度法DZ/T 0064.20-199319DZ/T 0064.21-2021地下水质分析方法 第21部分:铜、铅、锌、镉、镍、铬、钼和银量的测定 无火焰原子吸收分光光度法DZ/T 0064.21-199320DZ/T 0064.22-2021地下水质分析方法 第22部分:铜、铅、锌、镉、锰、铬、镍、钴、钒、锡、铍及钛量的测定 电感耦合等离子体发射光谱法DZ/T 0064.22-199321DZ/T 0064.23-2021地下水质分析方法 第23部分:铁量的测定二氮杂菲分光光度法DZ/T 0064.23-199322DZ/T 0064.24-2021地下水质分析方法 第24部分:铁量的测定硫氰酸盐分光光度法DZ/T 0064.24-199323DZ/T 0064.25-2021地下水质分析方法 第25部分:铁量的测定 火焰原子吸收分光光度法DZ/T 0064.25-199324DZ/T 0064.26-2021地下水质分析方法 第26部分:汞量的测定冷原子吸收分光光度法DZ/T 0064.26-199325DZ/T 0064.27-2021地下水质分析方法 第27部分:钾和钠量的测定火焰发射光谱法DZ/T 0064.27-199326DZ/T 0064.28-2021地下水质分析方法 第28部分:钾、钠、锂和铵量的测定 离子色谱法DZ/T 0064.28-199327DZ/T 0064.29-2021地下水质分析方法 第29部分:锂量的测定火焰发射光谱法DZ/T 0064.29-199328DZ/T 0064.30-2021地下水质分析方法 第30部分:锂量的测定火焰原子吸收分光光度法DZ/T 0064.30-199329DZ/T 0064.31-2021地下水质分析方法 第31部分:锰量的测定过硫酸铵分光光度法DZ/T 0064.31-199330DZ/T 0064.32-2021地下水质分析方法 第32部分:锰量的测定 火焰原子吸收分光光度法DZ/T 0064.32-199331DZ/T 0064.33-2021地下水质分析方法 第33部分:钼量的测定催化极谱法DZ/T 0064.33-199332DZ/T 0064.36-2021地下水质分析方法 第36部分:铷和铯量的测定火焰发射光谱法DZ/T 0064.36-199333DZ/T 0064.37-2021地下水质分析方法 第37部分:硒量的测定催化极谱法DZ/T 0064.37-199334DZ/T 0064.38-2021地下水质分析方法 第38部分:硒量的测定氢化物发生-原子荧光光谱法DZ/T 0064.38-199335DZ/T 0064.39-2021地下水质分析方法 第39部分:锶量的测定火焰发射光谱法DZ/T 0064.39-199336DZ/T 0064.42-2021地下水质分析方法 第42部分:钙、镁、钾、钠、 铝、铁、锶、钡和锰量的测定电感耦合等离子体发射光谱法DZ/T 0064.42-199337DZ/T 0064.43-2021地下水质分析方法 第43部分:酸度的测定滴定法DZ/T 0064.43-199338DZ/T 0064.44-2021地下水质分析方法 第44部分:硼量的测定H酸-甲亚胺分光光度法DZ/T 0064.44-199339DZ/T 0064.45-2021地下水质分析方法 第45部分:硼量的测定甘露醇碱滴定法DZ/T 0064.45-199340DZ/T 0064.46-2021地下水质分析方法 第46部分:溴化物的测定溴酚红分光光度法DZ/T 0064.46-199341DZ/T 0064.47-2021地下水质分析方法 第47部分:游离二氧化碳的测定滴定法DZ/T 0064.47-199342DZ/T 0064.48-2021地下水质分析方法 第48部分:侵蚀性二氧化碳的测定滴定法DZ/T 0064.48-199343DZ/T 0064.49-2021地下水质分析方法 第49部分:碳酸根、重碳酸根和氢氧根离子的测定 滴定法DZ/T 0064.49-199344DZ/T 0064.50-2021地下水质分析方法 第50部分:氯化物的测定 银量滴定法DZ/T 0064.50-199345DZ/T 0064.51-2021地下水质分析方法第51部分:氯化物、氟化物、溴化物、硝酸盐和硫酸盐的测定离子色谱法DZ/T 0064.51-199346DZ/T 0064.52-2021地下水质分析方法第52部分:氰化物的测定吡啶-吡唑啉酮分光光度法DZ/T 0064.52-199347DZ/T 0064.53-2021地下水质分析方法 第53部分:氟化物的测定茜素络合物分光光度法DZ/T 0064.53-199348DZ/T 0064.54-2021地下水质分析方法 第54部分:氟化物的测定离子选择电极法DZ/T 0064.54-199349DZ/T 0064.55-2021地下水质分析方法 第55部分:碘化物的测定催化还原分光光度法DZ/T 0064.55-199350DZ/T 0064.56-2021地下水质分析方法 第56部分:碘化物的测定淀粉分光光度法DZ/T 0064.56-199351DZ/T 0064.57-2021地下水质分析方法 第57部分:氨氮的测定纳氏试剂分光光度法DZ/T 0064.57-199352DZ/T 0064.58-2021地下水质分析方法 第58部分:硝酸盐的测定二磺酸酚分光光度法DZ/T 0064.58-199353DZ/T 0064.59-2021地下水质分析方法 第59部分:硝酸盐的测定紫外分光光度法DZ/T 0064.59-199354DZ/T 0064.60-2021地下水质分析方法 第60部分:亚硝酸盐的测定分光光度法DZ/T 0064.60-199355DZ/T 0064.61-2021地下水质分析方法 第61部分:磷酸盐的测定磷铋钼蓝分光光度法DZ/T 0064.61-199356DZ/T 0064.62-2021地下水质分析方法 第62部分:硅酸的测定硅钼黄分光光度法DZ/T 0064.62-199357DZ/T 0064.63-2021地下水质分析方法 第63部分:硅酸的测定硅钼蓝分光光度法DZ/T 0064.63-199358DZ/T 0064.64-2021地下水质分析方法 第64部分:硫酸盐的测定乙二胺四乙酸二钠—钡滴定法DZ/T 0064.64-199359DZ/T 0064.65-2021地下水质分析方法第65部分:硫酸盐的测定比浊法DZ/T 0064.65-199360DZ/T 0064.66-2021地下水质分析方法第66部分:硫化物的测定碘量法DZ/T 0064.66-199361DZ/T 0064.67-2021地下水质分析方法第67部分:硫化物的测定对氨基二甲基苯胺分光光度法DZ/T 0064.67-199362DZ/T 0064.68-2021地下水质分析方法第68部分:耗氧量的测定酸性高锰酸钾滴定法DZ/T 0064.68-199363DZ/T 0064.69-2021地下水质分析方法 69部分:耗氧量的测定碱性高锰酸钾滴定法DZ/T 0064.69-199364DZ/T 0064.70-2021地下水质分析方法 第70质谱法新制定标准下载链接:《地下水质分析方法》
  • 瓶装水水质国标不及自来水:测菌仍按苏联标准
    今年3月以来,瓶装饮用水生产企业农夫山泉的“质量门”持续发酵。这场风波的核心,是舆论对地方标准宽松于国家标准的质疑。   连日来,新京报记者采访了国内十多位相关领域专家,并收集了饮用水行业国家标准、地方标准、企业标准共几十份卫生标准,进行了一一比对。其背后,呈现出中国瓶装水行业标准乱象。   在公众的认知中,瓶装水应该比自来水更安全。然而,瓶装饮用水的国标中,水质指标仅有20项,相比之下,自来水的标准中水质指标有106项 而一些病菌和微生物指标,也被认为瓶装水的标准宽松于自来水。   国内多地出现了“天然山泉水”等新地方标准,与“天然矿泉水”一字之差,但在矿物质指标上却与后者相差甚远。   此外,印刷在每瓶水上,理应公开告诉消费者的企业标准,却成为“商业机密”,新京报记者向雀巢、可口可乐、康师傅和统一等多家知名企业发函要求查看其企业标准,均遭拒绝。   同时,新京报记者采访发现,在标准背后,一个标准的确立,更改,消失更有诸多疑问。标准的背后有着行业巨头、利益集团不同程度的“参与”。   看似清澈透明的瓶装水中,有多少不为公众所知的秘密?   【国标之疑】   瓶装水标准不如自来水?   指标总数少,汞、甲醛等毒理指标缺失,大肠菌群的指标似乎略高于自来水……这样的瓶装水国标是否低了些?   瓶装水指标数目少于自来水   黄越是北京的一名“白领”,初来北京时,他发现这里的自来水水垢比家乡重很多,怀疑自来水质量不过关,他一直坚持饮用各种瓶装水。   然而,今年4月,一则关于农夫山泉的标准不如自来水标准的报道让他颇为吃惊,从那时起,他开始留意各种瓶装水的具体名称和标准号,却被“天然水”、“山泉水”、“矿物质水”、国标、地标、企标等一大堆概念和名词搞得一头雾水。   瓶装水的标准到底是怎样的,是否真的比自来水安全?随着农夫山泉“标准风波”的不断发酵,黄越的问题也成为了很多人的疑问。   在我国,关于包装饮用水,目前已有4份国标,其中一份名为《GB19298瓶(桶)装饮用水卫生标准》的国标(以下简称“瓶装水国标”)适用范围最广。   4月19日,国家卫生计生委表示,除天然矿泉水和饮用纯净水已有明确的国家标准外,其他包装饮用水均需符合瓶装饮用水卫生标准。   新京报记者将这份国标与自来水国标进行对比,发现了诸多疑问。   首当其冲的,是水质指标的数目。在很多人认知当中,瓶装水应该比自来水更加干净、安全,但在《桶(瓶)装饮用水卫生标准》(GB 19298-2003)中,水质指标仅有21项,远远少于自来水国标(生活饮用水卫生标准GB 5749-2006)中的106项。   诸如汞、银、四氯化碳、甲醛在内的毒理性指标,以及pH值、硬度等较为常见的水质指标,都未出现在瓶装水国标中。   中国疾病预防控制中心环境所的一位专家对新京报记者表示,指标数目少于自来水,是因为“瓶装水的源水来自于自来水,所以在自来水检测过之后,某些项目上,瓶装水应该不需要进行检测。”   新京报记者查阅标准发现,瓶装水国标的确要求原料用水符合自来水国标的规定,但随着行业的不断发展,诸如农夫山泉之类的“天然水”,已并非使用自来水作为源水。   瓶装水标准滞后   在指标数目之外,瓶装水国标似乎也比自来水更宽松。   瓶装水国标中大肠菌群指标为MPN/100ml≤3,而自来水国标中则要求不得检出。   浙江大学食品与营养系教授,博士生导师叶兴乾此前在一篇论文中研究认为,国家瓶装水标准对微生物的要求相对较低,甚至低于自来水国标。   中疾控环境所的专家告诉新京报记者,这是两种不同的检测方法所致。“以前检测菌群是按照旧式的苏联标准,取1L水检测,不得超过3个菌,而后世界卫生组织改进了检测方法,取100ML水,当中不得验出。”该专家说,世卫组织更新了检测方法之后,自来水的标准随即更新,而瓶装水标准未更新。   “这事实上是瓶装饮用水标准滞后,我们应该向国际看齐。”北京市矿泉水委员会常务副会长王绣燕说。   瓶装水自来水国标涉及部门不同   清华大学环境学院副院长、饮用水安全研究所前所长刘文君表示,这样的局面反映出,我国在标准制定、产品监管等方面还有一定的问题。   中疾控环境所的专家介绍说,自来水国标的出台涉及多个部门,2006年修订的自来水国标,由卫生部和国家标准化管理委员会牵头,联合水利、环保、疾控等方面的相关单位共同修订。   而瓶装水标准主要是原中国疾控中心食品所牵头制定,涉及的部门主要在卫生系统,起草单位还包括了一家企业。   对于瓶装水标准不如自来水的质疑,国家食品安全风险评估中心一位负责人向新京报记者称,“这很复杂。几句说不清”。   新京报记者向国家食品安全风险评估中心提出采访要求,至截稿时未得到回复。   【地标之惑】   山泉水地方标准林立   一些地标未及时更新,与国标发生了冲突 而另一些地标中的“新概念”,容易对消费者造成误导。   山泉水概念迷惑消费者   在此前的农夫山泉“标准风波”中,农夫山泉所参照的浙江省地方标准(地标),明显不如自来水国标,遭舆论诟病。近日浙江省卫生厅发文称,地标中的安全相关指标不得与国家标准相违背,认为农夫山泉所参照的浙江省地标应“自行废止”。   本应5年前“自行废止”的浙江地标,被企业使用多年,相关企业和部门是否存在失职甚至违法行为?国内还有多少这类失效地标还在被企业采用?新京报记者就此向国家食品安全风险评估中心了解,该中心回应称,中心不负责监管工作。   新京报记者收集了十多份地方标准。发现包装水地标中,“天然泉水”概念正在各地悄然兴起。   截至目前,已有包括云南、贵州、湖南、广东、河北在内的多个省份出台“山泉水”地方标准,有的名为“天然泉水”,有的则名为“天然山泉水”。事实上,国家早已制定了“天然矿泉水”的国标,地方纷纷订立“山泉水”地标,是何原因?   “变换名称里的一个字,对企业来说可以降低太多的成本。”中国矿泉水联合委员会秘书长廖雷对新京报记者表示,矿泉水的国家标准是国土资源部牵头制定的,对于企业来说,瓶装水上要想印“天然矿泉水”5个字,需要有采矿资质的审批,此外还要对开采地的水源进行春夏秋冬4次检测。在他看来,企业热捧“山泉水”,有傍矿泉水,迷惑消费者嫌疑。   山泉水地标不及矿泉水国标   对比已公开的“山泉水”地标与“天然矿泉水”国标,其中“山泉水”与“矿泉水”虽然只有一字之差,矿物质的含量却存在多处不同之处。   天然矿泉水国标中规定了8项矿物质的最低含量,企业生产的矿泉水至少要有一项达标,方能称之为“天然矿泉水”。   相比之下,一些山泉水地标对于矿物质含量的要求更为宽松。例如,河北省天然泉水地标(DB13T1269-2010)中列出了5项矿物质的界限指标,但其中4项低于矿泉水国标。例如该地标中锌的界限指标为不低于0.05mg/L,而国标中的这一指标为不低于0.20mg/L,相差4倍。类似的情形在贵州等地的“山泉水”地标中也存在。   另一些省份的山泉水地标,则没有对矿物质界限指标作出说明。例如,广东饮用天然山泉水地标(DBS44001-2011)和云南的山泉水地标(DB53/118-2009)中,都没有矿物质界限指标。专家认为,没有矿物质界限指标的所谓山泉水,和普通自来水无异。   中国饮料工业协会副秘书长李羽楠曾解释“天然泉水”概念,认为除矿物质含量不需要天然矿泉水那么高外,其他各项和天然矿泉水一致。而目前云南、贵州制定的“山泉水”地标中,毒理指标中重金属和微生物指标高过矿泉水国标。矿泉水国标规定,镉的含量应不超过0.003mg/L,但这两份地标均放宽至0.005mg/L。   在微生物上,包括云南、贵州和湖南省瓶装饮用天然泉水地方标准,其大肠菌群总数限制上均为MPN/100ml≤3,而“矿泉水”国标中为MPN/100ml≤0。这些地标不仅不如天然矿泉水,甚至不如自来水。   企业参与制定地标   “像这样的地方新型饮用水概念标准,多为地方企业推动出台,背后有他们自己的利益在里面。”廖雷说。   新京报记者发现,这些地方标准的制定大多都有企业的参与。例如云南的那份地标,起草单位包括了云南大山饮品有限公司、云南天外天天然饮料有限公司在内的5家瓶装水企业 广东的山泉水地标也有广东鼎湖山泉有限公司等3家企业的参与。   【企标之谜】   “商业机密”背后存质量隐忧   与公开可查的国标、地标相比,大多数的企业标准都被宣称为“商业机密”。这些攸关公众健康的数据,媒体、公众无从知晓。   新京报记者在北京调查市面上公开售卖的瓶装水发现,占据主要市场份额的十多种瓶装水品牌中,有三分之一是执行企业标准。   企业拒绝公开企标   中国消费者协会律师团团长邱宝昌介绍说,对于没有国家标准、行业标准和地方标准的工业产品,各企业可以根据安全、卫生要求制定企业标准,并且企业标准必须高于国家标准或行业标准。   新京报记者向雀巢、统一、可口可乐、康师傅等知名企业提出公开企业标准,上述三家公司均表示相关产品符合国家标准,同时以企业标准涉及商业机密为由,拒绝公开企业标准。   事实上,《食品安全法》第26条规定,食品安全标准应当供公众免费查阅。   律师邱宝昌认为,企业标准作为一个生产的基本指标,并不涉及其生产环节的工艺流程和商业机密,并且已经明确标注在其生产产品包装之上,如果消费者有意愿了解产品资质,法律上,企业有义务向消费者公开生产标准。   企标可靠性存疑   新京报记者通过其他途径获得一份可口可乐云南公司的矿物质水企业标准(Q/KKK 0003 S-2009),标准由该公司发布,自2010年1月29日起实施,并已在云南省卫生厅备案,备案期从2010年1月至2013年1月。   标准显示,该企业的矿物质水,是以纯净水为原料,人工加入硫酸镁,氯化钾制成。   相对瓶装水国标,该企业标准缺少“总α放射性”、“总β放射性”指标 此外,作为瓶装水重要毒理指标的镉(镉损害肝和肾脏,对人体危害严重),该标准里也没有。在记者获取的另一份标准中,大连半岛山泉饮品厂出台的矿物质水企标中,明确对镉的含量做出了限制,mg/L≤0.005,与瓶装水国标相同。   不愿具名人士对新京报记者称,镉是重要的水体污染物,近年云南多地爆发镉污染事件。   同时,相比自来水国标,可口可乐的这份企业标准也没有汞,铬,氰化物,甲醛等限制指标。而大肠杆菌一项,也比自来水低。   【标准之乱】   部分矿物质水用自来水添加制造   复杂的标准体系看似覆盖了所有的包装饮用水,但由于分类方式不同,相互间还是出现了交叉和空白。   5个国标分类混乱   目前中国关于饮用水的国标共有5个。除自来水标准外,剩下4个国标均为包装水标准。   其中,从产品分类,有“天然矿泉水”国标和“纯净水”国标,剩下所有包装水均被纳入瓶装水国标范围。   这样的标准体系看似覆盖了所有的包装饮用水,但由于分类混乱,相互间还是出现了交叉和空白。   以矿物质水为例。新京报记者获取的几份矿物质水企标中显示,部分是基于纯净水国标制订,部分则是参照了瓶装水国标。这样一来,尽管都叫“矿物质水”,但在具体工艺流程和水质指标上,不同企业之间却大相径庭。   例如,上述可口可乐云南公司的矿物质水标准,其产品水源是纯净水,产品的标准制订参照了纯净水国标 而大连半岛山泉饮品厂企业标准(Q/DBD0002S-2012)显示,他们的矿物质水水源是自来水,并非纯净水,该企业标准中的各项指标,也大多参照瓶装水国标。   这意味着,同样是所谓的矿物质水,有的是用纯净水加入食品添加剂制成,有的则是用自来水添加。   缺乏统一的瓶装水国标   饮用水管理上的标准之乱,已引起了一些部门和专家的关注。   据悉,相关主管部门曾希望通过一个国标囊括市面上能买到的各类主流水种。早于2011年,《食品安全国家标准包装饮用水》征求意见稿已在业内下发,希望替代瓶装水国标,并将山泉水、矿物质水等产品纳入“包装水”的定义中一起进行监管。不过,该国标在征求意见后,目前尚无下文。   北京保护健康协会健康饮用水专业委员会主任赵飞虹说,国际食品法典对瓶装水只有两个标准:矿泉水和其他瓶装水。清华大学环境学院副院长刘文君也表示,瓶装水的国标“应该统一”。   中国矿泉水联合委员会副会长王绣燕认为,我国目前缺乏一个高效的审核、更新、修改的机制。她建议,有关部门应成立一个独立的第三方标准审核委员会,由固定的专家参与,提高修改审批和更新各种饮用水标准上的效率。   【检测之疏】   重金属等指标半年检测一次   瓶装水出厂前,大多只检测感官、微生物等指标,对于重金属、有机物等更多的指标,往往半年才检测一次。   只检测少数标准   即便这些企业标准都符合国家规定,出厂的产品能否真正合格,也存有疑问。   以可口可乐云南公司的上述企业标准为例,该企标规定了22项水质指标,但在产品出厂前,并非22项指标全都一一检测。例如企标中严格限制的砷、铅、溴酸盐等重金属指标,只是作为“型式检测”,半年检测一次,或是在更改配方、更换设备等情况出现后才必须进行检测。   在记者获得的多份企标中,关于检测,大多是类似的情况。不少企业在产品出厂前,只需检测感官标准、微生物指标等少数几项。   广东一家饮料生产企业的品控室负责人告诉新京报记者,大多数饮料企业的生产都是以“不吃坏肚子”为标准,因此对于微生物指标的把控最为严格,而其他诸如重金属、有机污染物等方面的检测,大多数企业都没有检测能力,只能定期向质监部门送检。   赵飞虹说,国家对于作为瓶装水企业的实验室要求很简单,一般只需要配备做检测生物的显微镜,浊度仪等等就可以。只有一些大企业才可能配备比较高级的仪器。   瓶装水质量堪忧   中国地质科学院一位不愿具名的学者向新京报记者介绍,目前市场上诸如矿物质水,天然水都存在一定质量隐忧。他认为,矿物质水是人为添加矿化剂,能不能添加,添多少,缺少研究。   张书芳,河南省疾病预防控制中心公共卫生研究所所长。他对市场上瓶装饮用水溴酸盐(潜在致癌物)含量进行了调查。结果显示,矿泉水的合格率仅50%,矿物质水合格率为66.7%,山泉水为71.4%。   目前中国市场上包装水整体质量如何?新京报记者就标准、检测等相关问题向国家食品安全风险评估中心、中国饮料工业协会等部门和机构发出采访函,截至发稿时,这些单位尚无回应。   拿着手中的瓶装水,黄越有些迟疑,自己每天喝的瓶装水,能保证是安全健康的吗?他希望有一天,自己不用再研究国标、化学元素等专业问题。
  • 关于成立《菌落总数、总大肠菌群、粪大肠菌群、大肠埃 希氏菌酶底物法水质自动分析仪》团体标准起草工作组的通知
    p style=" text-align: justify text-indent: 2em " 12月24日,中国仪器仪表行业协会官网发布关于成立《菌落总数、总大肠菌群、粪大肠菌群、大肠埃希氏菌酶底物法水质自动分析仪》团体标准起草工作组的通知。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/e78d99c1-dbec-4bcb-8492-91f5fba8d214.jpg" title=" 企业微信截图_20201225104600.jpg" alt=" 企业微信截图_20201225104600.jpg" / /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202012/uepic/18138437-6b45-4d90-87a8-ec28a2cba009.jpg" title=" 通知.jpg" alt=" 通知.jpg" / /p p style=" text-align: justify text-indent: 2em " 各有关单位: /p p style=" text-align: justify text-indent: 2em " 根据《关于& lt 菌落总数、总大肠菌群、粪大肠菌群、大肠埃希氏菌酶底物法水质自动分析仪& gt 团体标准项目建议书的批复》(中仪协[2019] 017号),《菌落总数、总大肠菌群、粪大肠菌群、大肠埃希氏菌酶底物法水质自动分析仪》项目已经列入中国仪器仪表行业协会的团体标准制定计划。该团体标准由中国仪器仪表行业协会归口管理,青岛佳明测控科技股份有限公司牵头起草。主要参与单位有吉林市光大分析技术有限责任公司等。现征集参与标准起草单位并成立标准起草工作组,请有关单位指派熟悉相关标准内容的技术人员参加,报名表(见附件)签字盖章后于2020年12月30日前扫描电子版发送至中国仪器仪表行业协会。 !--菌落总数、总大肠菌群、粪大肠菌群、大肠埃希氏菌酶底物法水质自动分析仪-- /p p style=" text-align: justify text-indent: 2em " 联系人:马雅娟 /p p style=" text-align: justify text-indent: 2em " 电话:13611013933 /p p style=" text-align: justify text-indent: 2em " 地址:北京市西城区百万庄大街16号1号楼6层 /p p style=" text-align: justify text-indent: 2em " 电子邮箱:mayj@cima.org.cn /p p style=" text-align: justify text-indent: 2em " 附件: /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202012/attachment/ce9bdb3e-7cf9-4497-a3c3-3a4140fe9054.doc" title=" 《菌落总数、总大肠菌群、粪大肠菌群、大肠埃希氏菌酶底物法水质自动分析仪》起草工作组报名表.doc.doc" 《菌落总数、总大肠菌群、粪大肠菌群、大肠埃希氏菌酶底物法水质自动分析仪》起草工作组报名表.doc.doc /a /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202012/attachment/d365221d-896f-4078-b98f-c6d531851c2a.pdf" title=" 关于成立团体标准起草工作组的通知.pdf.pdf" 关于成立团体标准起草工作组的通知.pdf.pdf /a /p
  • 惊喜不断!土壤、水质、VOCs多项标准集中发布
    p   我们注意到,近期环保标准的发布频率加快。近日,生态环境部又连发三个公告,共发布国家环境保护标准12项,涉及土壤、水质和环境空气挥发性有机物的测定方法、技术要求等。 /p p   标准名称、编号如下。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/182ae5ab-3c3d-4ce9-a7f0-5f4cc5ae2178.jpg" title=" tu1.jpg" alt=" tu1.jpg" / /p p style=" line-height: 16px " & nbsp & nbsp img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a href=" https://img1.17img.cn/17img/files/201901/attachment/6f4b0016-0083-49fb-965b-c6fe8a707f51.pdf" target=" _self" title=" 1.1.pdf" textvalue="  一、《土壤和沉积物 醛、酮类化合物的测定 高效液相色谱法》(HJ 997-2018).pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 一、《土壤和沉积物 醛、酮类化合物的测定 高效液相色谱法》(HJ 997-2018).pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p   本标准规定了测定土壤和沉积物中醛、酮类化合物的高效液相色谱法。本标准的附录A为规范性附录,附录B~附录D为资料性附录。本标准为首次发布。 /p p    img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201901/attachment/afef211b-55ca-48a7-b725-6249905e927d.pdf" target=" _self" title=" 1.2.pdf" textvalue=" 二、《土壤和沉积物 挥发酚的测定 4-氨基安替比林分光光度法》(HJ 998-2018) .pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 二、《土壤和沉积物 挥发酚的测定 4-氨基安替比林分光光度法》(HJ 998-2018).pdf /span /a span style=" color: rgb(0, 112, 192) " ; /span /p p   本标准规定了测定土壤和沉积物中挥发酚的4-氨基安替比林分光光度法。本标准的附录A为资料性附录。本标准为首次发布。 /p p    img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201901/attachment/7868e66b-ffc9-48c2-a37b-a1e958f4f2a8.pdf" target=" _self" title=" 1.3.pdf" textvalue=" 三、《固体废物 氟的测定 碱熔-离子选择电极法》(HJ 999-2018).pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 三、《固体废物 氟的测定 碱熔-离子选择电极法》(HJ 999-2018).pdf /span /a span style=" color: rgb(0, 112, 192) " ; /span /p p   本标准规定了测定固体废物中氟的碱熔-离子选择电极法。本标准为首次发布。 /p p   以上标准自2019年6月1日起实施。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/b6922e96-ed5c-4ecd-a414-1d02ca699c0a.jpg" title=" tu2.jpg" alt=" tu2.jpg" / /p p    img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201901/attachment/9b5f6b67-85c9-4cc3-9f36-6fe0a62b3c61.pdf" target=" _self" title=" 2.1.pdf" textvalue=" 一、《水质 粪大肠菌群的测定 滤膜法》(HJ 347.1-2018).pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 一、《水质 粪大肠菌群的测定 滤膜法》(HJ 347.1-2018).pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p   本标准规定了测定地表水、地下水、生活污水和工业废水中粪大肠菌群的滤膜法。本标准是对《水质 粪大肠菌群的测定 多管发酵法和滤膜法(试行)》(HJ/T 347-2007)滤膜法部分的修订。 /p p    img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201901/attachment/476607fd-e53b-434f-bccb-290496aa1ddb.pdf" target=" _self" title=" 2.2.pdf" textvalue=" 二、《水质 粪大肠菌群的测定 多管发酵法》(HJ 347.2-2018).pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 二、《水质 粪大肠菌群的测定 多管发酵法》(HJ 347.2-2018).pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p   本标准规定了测定地表水、地下水、生活污水和工业废水中粪大肠菌群的多管发酵法。本标准是对《水质 粪大肠菌群的测定 多管发酵法和滤膜法(试行)》(HJ/T 347-2007)多管发酵法部分的修订。 /p p    img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201901/attachment/bb90b986-d10b-4b60-b7c6-688a56ef5f61.pdf" target=" _self" title=" 2.3.pdf" textvalue=" 三、《水质 细菌总数的测定 平皿计数法》(HJ 1000-2018).pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 三、《水质 细菌总数的测定 平皿计数法》(HJ 1000-2018).pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p   本标准规定了测定地表水、地下水、生活污水和工业废水中细菌总数的平皿计数法。本标准的附录A为资料性附录。本标准为首次发布。 /p p    img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" width=" 16" height=" 16" style=" vertical-align: middle margin-right: 2px width: 16px height: 16px " / a href=" https://img1.17img.cn/17img/files/201901/attachment/0c3a8e0b-d884-46fd-8ace-873187fc8abf.pdf" target=" _self" title=" 2.4.pdf" textvalue=" 四、《水质 总大肠菌群、粪大肠菌群和大肠埃希氏菌的测定 酶底物法》(HJ 1001-2018).pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 四、《水质 总大肠菌群、粪大肠菌群和大肠埃希氏菌的测定 酶底物法》(HJ 1001-2018).pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p   本标准规定了测定地表水、地下水、生活污水和工业废水中总大肠菌群、粪大肠菌群和大肠埃希氏菌的酶底物法。本标准的附录A为规范性附录,附录B和附录C为资料性附录。本标准为首次发布。 /p p    img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201901/attachment/405926e5-630f-4423-bace-86e857854fb0.pdf" target=" _self" title=" 2.5.pdf" textvalue=" 五、《水质 丁基黄原酸的测定 液相色谱-三重四极杆串联质谱法》(HJ 1002-2018).pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 五、《水质 丁基黄原酸的测定 液相色谱-三重四极杆串联质谱法》(HJ 1002-2018).pdf /span /a span style=" color: rgb(0, 112, 192) " ; /span /p p   本标准规定了测定地表水、地下水、生活污水和工业废水中丁基黄原酸的液相色谱-三重四极杆串联质谱法。本标准的附录A为资料性附录。本标准为首次发布。 /p p   以上标准自2019年6月1日起实施。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201901/uepic/21b4ef65-9403-4da2-9848-e61aee3d0073.jpg" title=" tu3.jpg" alt=" tu3.jpg" / /p p    img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201901/attachment/b55f77ee-c77d-45d4-9691-170cdbc81614.pdf" target=" _self" title=" 3.1.pdf" textvalue=" 一、《环境空气挥发性有机物气相色谱连续监测系统技术要求及检测方法》(HJ1010 -2018).pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 一、《环境空气挥发性有机物气相色谱连续监测系统技术要求及检测方法》(HJ1010 -2018).pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p   本标准规定了环境空气挥发性有机物气相色谱连续监测系统的组成、技术要求、性能指标和检测方法。本标准的附录A~附录B为规范性附录。本标准为首次发布。 /p p    img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201901/attachment/b446d050-fd69-435c-a6c9-7d8f34a30a62.pdf" target=" _self" title=" 3.2.pdf" textvalue=" 二、《环境空气和废气 挥发性有机物组分便携式傅里叶红外监测仪技术要求及检测方法》(HJ1011-2018).pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 二、《环境空气和废气 挥发性有机物组分便携式傅里叶红外监测仪技术要求及检测方法》(HJ1011-2018).pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p   本标准规定了挥发性有机物组分便携式傅里叶红外监测仪的主要技术要求、检测项目和检测方法。本标准为首次发布。 /p p    img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201901/attachment/c75f846d-340f-488b-9f01-05e53906e9b5.pdf" target=" _self" title=" 3.3.pdf" textvalue=" 三、《环境空气和废气 总烃、甲烷和非甲烷总烃便携式监测仪技术要求及检测方法》(HJ1012-2018).pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 三、《环境空气和废气 总烃、甲烷和非甲烷总烃便携式监测仪技术要求及检测方法》(HJ1012-2018).pdf /span /a span style=" color: rgb(0, 112, 192) " /span /p p   本标准规定了总烃、甲烷和非甲烷总烃便携式监测仪的主要技术要求、检测项目和检测方法。本标准为首次发布。 /p p    img src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" style=" vertical-align: middle margin-right: 2px " / a href=" https://img1.17img.cn/17img/files/201901/attachment/5b22853b-029a-4431-bdd5-b7275dd56d4a.pdf" target=" _self" title=" 3.4.pdf" textvalue=" 四、《固定污染源废气非甲烷总烃连续监测系统技术要求及检测方法》(HJ1013-2018).pdf" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 四、《固定污染源废气非甲烷总烃连续监测系统技术要求及检测方法》(HJ1013-2018).pdf /span /a span style=" color: rgb(0, 112, 192) " ; /span /p p   本标准规定了固定污染源废气非甲烷总烃连续监测系统的主要技术要求、检测项目和检测方法。本标准的附录A、C为规范性附录,附录B为资料性附录。本标准为首次发布。 /p p   以上标准自2019年7月1日起实施。 /p
  • 强化标准溯源,提升水质检测基准
    离子浓度是衡量纯水/超纯水水质的重要指标,通常是采用电导率仪进行检测,由于纯水/超纯水的离子浓度极低,分别达到ppm级别(百万分之一)和ppt级别(十亿分之一),因此对检测仪表的精度、分辨率、准确度等均有较高的要求,四川优普做为国内纯水/超纯水设备的龙头企业,一直以来都相当重视检测仪表的检定、校准和溯源工作。为进一步提升水质检测的仪器基准,四川优普邀请检测仪器的行业领军企业梅特勒托利多公司相关人员到公司进行技术交流。在交流过程中双方就水质检测相关仪器的行业状况,不同领域的运用,水质检测相应能力,超精密仪器的量值溯源等问题进行了深入的沟通,同时也准备在纯水/超纯水的电导率和比电阻检测方面尝试合作。基于目前电导率仪市场品牌众多,产品质量参差不齐,对检验结果溯源和电导率仪本身的检定和校准准确度也成为较大的难题。梅特勒托利多在纯水、超纯水检测仪器方面在国际上是非常具有影响力的,产品技术成熟,配套产业链完善,通过双方的合作,有利于优普进一步提高检测能力和结果溯源能力。同时,有高精度仪表作为支撑,优普可以更好地具备其它类似设备的比对校准能力,产品质量和服务能力能够得到进一步的提升。在市场竞争日趋激烈的情况下,优普产品质量已经具备市场的核心竞争力了,在提升水质检测能力方面的不断努力,不仅仅是为了加强检测结果溯源,更是为提高水质检测结果的准确性,为进一步提升水质打好更坚实的基础。
  • GB 5084-2021《农田灌溉水质标准》正式实施,您需要的解决方案来了
    为了分质用水、协调水土体系,生态环境部与国家市场监督管理总局联合发布的GB 5084-2021《农田灌溉水质标准》在2021年7月1日起实施,从而保证水土标准体系的整体性、协调性。 农田灌溉水质标准的限值变化与控制项目请见上一篇介绍☟☟☟推动分质用水,协调水土体系——生态环境部发布GB 5084-2021《农田灌溉水质标准》点击链接:https://mp.weixin.qq.com/s?__biz=MzIwMzM4NTc3NA==&mid=2247497112&idx=1&sn=a8588cd3b2ee3d13d2f8aa4998dcfa8b&scene=21#wechat_redirect今天,根据农田灌溉水质标准的项目要求,在这里给大家带来岛津详细的水质分析方案。 挥发性有机物&半挥发性有机物 GCMS结合吹扫捕集测定土壤中60种挥发性有机物 仪器配置:岛津气质谱联用仪GCMS-QP2020 NXCDS 7400 水土一体自动进样器CDS 7000E 吹扫捕集 仪器条件:样品前处理:50 mL 容量瓶中加入20 μL 内标溶液(ρ=25 μg/mL),用水样定容至50 mL,将添加内标的水样转移至40 mL 棕色吹扫捕集瓶中,放置于CDS 7400 自动进样器中。5 mL 水样自动吸入,氦气将脱附的VOCs 载入到气相色谱- 质谱联用仪 57 种挥发性有机物TIC 图(5.0 μg/L)样品色谱图 GCMS法测定生活饮用水中半挥发性有机物 仪器 GCMS-QP2020 NX 分析条件: 前处理:取1 L自来水水样,用固相萃取柱(填料为聚甲基丙烯酸酯-苯乙烯)吸附萃取,待测物经洗脱后浓缩定容,待上机分析。SVOCs和内标的TIC图 (浓度:10 µg/mL)样品色谱图 GCMS 易用性:Smart SIM数据库 & 智能钟功能 智能钟功能:自动检漏自动调谐,准确掌控停机时间 无机阴离子分析 应对HJ 84-2016 色谱条件:氢氧根体系,梯度洗脱色谱柱:Shodex IC SI-36 4D;保护柱:Shodex IC SI-90G淋洗液:A:50mM KOH ;B:水流速:0.7 mL/min(泵压:14.3MPa)柱温:35 ℃ 标准曲线:重现性:连续进样6次,保留时间和峰面积的RSD值七种阴离子的保留时间重复性≤0.07%,峰面积重复性≤0.88% 金属元素分析 ICPMS --- 江河水中金属元素分析 对微量的铅(Pb)、铬 (Cr)、镉 (Cd) 、硒 (Se)、砷(As) 、铜(Cu) 、铁 (Fe)、锰 (Mn) 、锌(Zn) 、硼 (B)、铝 (Al)、镍(Ni)、钡 (Ba)、钼(Mo)、铀 (U)、钾 (K)、钠 (Na)、镁 (Mg) 以及钙 (Ca)等19种成分进行了分析。向样品内添加了内标元素Be、Co、Ga、Y、In、Tl使其浓度分别达到5μg/L。 直接分析江河水标准物质:JSAC0301-3, 0302-3,ICP-MS会由于多原子离子形成的谱线干扰,造成灵敏度下降以及测量值产生误差。ICPMS-2030通过使用碰撞,系统消除谱线56Fe的40Ar16O、75As的40Ar35Cl与78Se的40Ar38A等的干扰,提高灵敏度,降低检测限。 ICP/ICPMS极低运行成本 —— 三大技术使运行成本降至常规的30%。ICPMS 提升分析效率 —— 方法开发与诊断助手。水质应用扩展 水质异味分析系统,无需标准品对100多种水质异味进行半定量筛查GCMS + Compound Composer 快速筛查数据库,能快速应对突发性环境污染事故,对900多种有机污染物进行半定量筛查GCMS Compound composer快速筛查数据库 AOE-LCMS/MS 大体积进样系统,自动化快速前处理,应对SVOC分析难题
  • 吉天仪器解读国家环境新标准,FIA引领水质检测潮流
    随着国务院“水十条”的颁布,实验室水质检测能力的提高迫在眉睫,新的环境标准也应运而生。2017年3月30日,环保部发布了七项国家环境保护标准(水质),其中的四项标准涉及流动注射仪器分析方法;标准自2017年5月1日起实施。四项标准涉及流动注射仪器分析方法  什么是流动注射技术?  流动注射分析技术(Flow injection analysis,FIA)是在1974年由丹麦分析化学家Ruzicka和Hansen首先命名并取得专利。FIA技术摆脱了溶液化学分析平衡理论的老技术的局限,它可以使测定时反应时间和混合状态高度重现,在非平衡状态下高效率地完成了试样的在线处理与测定,从而触发了化学实验室中基本操作技术的一次根本性的变革。  流动注射技术打破了几百年来分析化学反应必须在物理化学平衡条件下完成的传统,使非平衡条件下的分析化学成为可能,从而开发出分析化学的一个全新领域。  流动注射分析仪的工作原理是什么?  新环境标准上说明,仪器的工作原理,即:在封闭的管路中,将一定体积的试样注入连续流动的载液中,试样与试剂在化学反应模块中按特定的顺序和比例混合、反应,在非完全反应的条件下,进入流动检测池进行光度检测。  新标准针对哪些检测项目?有何意义?   这四项新环境标准都是首次发布,规范了水中挥发酚、氰化物(总氰)、阴离子表明活性剂和硫化物这四种检测项目的测定方法,分别为《水质 挥发酚的测定 流动注射-4-氨基安替比林分光光度法》(HJ 825-2017)、《水质 硫化物的测定 流动注射-亚甲基蓝分光光度法》(HJ 824-2017)、《水质 氰化物的测定 流动注射-分光光度法》(HJ 823-2017)和《水质 阴离子表面活性剂的测定 流动注射-亚甲基蓝分光光度法》(HJ 826-2017)。  新环境标准的公布有利于流动注射技术(FIA)应用的发展和普及,对实验室水质检测能力的规范和提高具有深远意义。流动注射分析仪分析所需水样量少,分析速度快,可避免人工操作带来的不确定因素,从而提高样品的分析效率和准确度。仪器较高的自动化程度以及较快分析的速度、极低的操作费用和极好的重现性都是其重要优势。  聚光科技(杭州)股份有限公司下属子公司北京吉天仪器有限公司(以下简称“吉天仪器”)的口碑产品FIA6000+以及新产品iFIA7流动注射分析仪,仪器的线性范围、检出限、精密度等技术指标都完全符合新环境标准的要求。  国内流动注射技术的发展如何?  在“十五”国家科技攻关重大项目《科学仪器研制与开发》—《样品自动化前处理仪器设备的研制与开发》课题中,吉天仪器研发了“FIA-6000全自动流动注射分析仪”。此项仪器的研发,填补了国内流动注射分析仪的空白。吉天仪器FIA6000全自动流动注射分析仪  这几年来,吉天仪器的全自动流动注射分析仪参与了北京市科委、北京出入境的“首都科技条件平台国产检测仪器设备验证评价研究与应用”课题的实际案例应用验证,是首批接受验证的仪器;并多次助力环保、疾控行业会议,在各单位水质检测能力提升方面做出了重要贡献,获得了权威专家和市场的广泛认可。吉天仪器iFIA7全自动流动注射分析仪 吉天仪器试剂包解决方案  吉天仪器FIA6000+和iFIA7的技术不但符合环境新标准HJ 825-2017、HJ 824-2017、HJ 823-2017和HJ 826-2017,还符合GB/T 8538-2008、HJ 666-2013、HJ 668-2013等国家、行业标准以及ISO、EPA标准。配合仪器推出的试剂包解决方案,提供了方便、快速、可靠、绿色的试剂配制方式。仪器检测项目全面,广泛应用于水质分析、环境分析、食品分析等多个领域。
  • 吉天仪器解读国家环境新标准,FIA引领水质检测潮流
    随着国务院“水十条”的颁布,实验室水质检测能力的提高迫在眉睫,新的环境标准也应运而生。2017年3月30日,环保部发布了七项国家环境保护标准(水质),其中的四项标准涉及流动注射仪器分析方法;标准自2017年5月1日起实施。 什么是流动注射技术?流动注射分析技术(Flow injection analysis,FIA)是在1974年由丹麦分析化学家Ruzicka和Hansen首先命名并取得专利。FIA技术摆脱了溶液化学分析平衡理论的老技术的局限,它可以使测定时反应时间和混合状态可高度重现,在非平衡状态下高效率地完成了试样的在线处理与测定, 从而触发了化学实验室中基本操作技术的一次根本性的变革。流动注射技术打破了几百年来分析化学反应必须在物理化学平衡条件下完成的传统,使非平衡条件下的分析化学成为可能, 从而开发出分析化学的一个全新领域。 流动注射分析仪的工作原理是什么?新环境标准上说明,仪器的工作原理,即:在封闭的管路中,将一定体积的试样注入连续流动的载液中,试样与试剂在化学反应模块中按特定的顺序和比例混合、反应,在非完全反应的条件下,进入流动检测池进行光度检测。 新标准针对哪些检测项目?有何意义? 这四项新环境标准都是首次发布,规范了水中挥发酚、氰化物(总氰)、阴离子表面活性剂和硫化物这四种检测项目的测定方法,分别为《水质 挥发酚的测定 流动注射-4-氨基安替比林分光光度法》(HJ 825-2017)、《水质 硫化物的测定 流动注射-亚甲基蓝分光光度法》(HJ 824-2017)、《水质 氰化物的测定 流动注射-分光光度法》(HJ 823-2017)和《水质 阴离子表面活性剂的测定 流动注射-亚甲基蓝分光光度法》(HJ 826-2017)。新环境标准的公布有利于流动注射技术(FIA)应用的发展和普及,对实验室水质检测能力的规范和提高具有深远意义。流动注射分析仪分析所需水样量少,分析速度快,可避免人工操作带来的不确定因素,从而提高样品的分析效率和准确度。仪器较高的自动化程度以及较快分析的速度、极低的操作费用和极好的重现性都是其重要优势。吉天仪器的口碑产品FIA6000+以及新产品iFIA7流动注射分析仪,仪器的线性范围、检出限、精密度等技术指标都完全符合新环境标准的要求。 国内流动注射技术的发展如何?在“十五”国家科技攻关重大项目《科学仪器研制与开发》—《样品自动化前处理仪器设备的研制与开发》课题中,北京吉天仪器有限公司研发了“FIA-6000全自动流动注射分析仪”。此项仪器的研发,填补了国内流动注射分析仪的空白。吉天仪器FIA6000全自动流动注射分析仪 这几年来,吉天的全自动流动注射分析仪参与了北京市科委、北京出入境的“首都科技条件平台国产检测仪器设备验证评价研究与应用”课题的实际案例应用验证,是首批接受验证的仪器;并多次助力环保、疾控行业会议,在各单位水质检测能力提升方面做出了重要贡献,获得了权威专家和市场的广泛认可。 吉天仪器iFIA7全自动流动注射分析仪 吉天仪器试剂包解决方案 吉天仪器FIA6000+和iFIA7的技术不但符合环境新标准HJ 825-2017、HJ 824-2017、HJ 823-2017和HJ 826-2017,还符合GB/T 8538-2008、HJ 666-2013、HJ 668-2013等国家、行业标准以及ISO、EPA标准。配合仪器推出的试剂包解决方案,提供了方便、快速、可靠、绿色的试剂配制方式。仪器检测项目全面,广泛应用于水质分析、环境分析、食品分析等多个领域。
  • 环保部发布六项新标准 五项为水质检测标准
    日前,环保部公告批准了六项标准为国家环境保护标准,其中五项为水质标准,一项为固定污染源废气标准。新标准将从2016年10月1日起实施,同时废止两项标准。  五项水质标准分别为:  《水质 亚硝胺类化合物的测定 气相色谱法》(HJ 809-2016):规定了测定地表水、地下水、工业废水和生活污水中亚硝胺类化合物的气相色谱法。标准为首次发布。  《水质 挥发性有机物的测定 顶空/气相色谱-质谱法》(HJ 810-2016):规定了测定地表水、地下水、生活污水、工业废水和海水中挥发性有机物的顶空/气相色谱-质谱法。标准为首次发布。  《水质 总硒的测定 3,3' -二氨基联苯胺分光光度法》(HJ 811-2016):规定了测定地表水、地下水、生活污水和工业废水中总硒的3,3' -二氨基联苯胺分光光度法。标准为首次发布。  《水质 可溶性阳离子(Li+ 、Na+、NH4+、K+、Ca2+、Mg2+)的测定 离子色谱法》(HJ 812-2016):规定了测定水中6种可溶性阳离子(Li+、Na+、NH4+、K+、Ca2+、Mg2+)的离子色谱法。标准为首次发布。  以及《水质 无机阴离子(F-、Cl-、NO2-、Br-、NO3-、PO43-、SO32-、SO42-)的测定 离子色谱法》(HJ 84-2016):规定了测定水中无机阴离子(F-、Cl-、NO2-、Br-、NO3-、PO43-、SO32-、SO42-)的离子色谱法。本标准是对《水质 无机阴离子的测定 离子色谱法》(HJ/T 84-2001)的修订。 固定污染源废气标准为: 《固定污染源废气 砷的测定 二乙基二硫代氨基甲酸银分光光度法》(HJ 540-2016):本标准规定了测定固定污染源废气中以颗粒物形态存在的砷及其化合物的二乙基二硫代氨基甲酸银分光光度法。本标准是对《环境空气和废气 砷的测定 二乙基二硫代氨基甲酸银分光光度法(暂行)》(HJ 540—2009)的修订。   附件1:水质亚硝胺类化合物的测定 气相色谱法.pdf 附件2:水质 挥发性有机物的测定 顶空气相色谱质谱法.pdf 附件3:水质 总硒的测定 3,3'-二氨基联苯胺分光光度法.pdf 附件4:水质 可溶性阳离子(Li+、Na+、NH4+、K+、Ca2+、Mg2+)的测定 离子色谱法.pdf 附件5:水质 无机阴离子(F-、Cl-、NO2-、Br-、NO3-、PO43-、SO32-、SO42-)的测定 离子色谱法.pdf 附件6:固定污染源废气 砷的测定 二乙基二硫代氨基甲酸银分光光度法.pdf
  • 环境LCMSMS新标准来袭,水质中有机磷农药检测无忧应对
    导读有机磷农药是一类高效广谱的杀虫剂,也是目前农业生产活动中使用最多的农药种类之一,其大量使用已对环境水体造成污染。水体中残留的有机磷农药,通过食物链富集后,可对人畜健康构成潜在危害。在检测低含量环境污染物方面,液质联用系统凭借其高灵敏度、高准确度、高通量等特点,在环境监测领域得到越来越广泛的应用。近期,生态环境部发布了《HJ 1183-2021 水质 氧化乐果、甲胺磷、乙酰甲胺磷、辛硫磷的测定 液相色谱-三重四极杆质谱法》,并将于2021年12月15日起正式实施。 有机磷杀虫剂类化合物的危害有机磷杀虫剂是一类常用的含磷有机合成杀虫剂,品种繁多,药效高,使用浓度低,广泛用于防治植物病、虫害,但容易造成人、畜急性中毒,毒性主要来自抑制乙酰胆碱酯酶引起的神经毒性。大多数品种对光、热不稳定,在碱性条件下会迅速分解而失效。目前,广泛使用的有机磷杀虫剂品种主要有氧化乐果、甲胺磷、乙酰甲胺磷、辛硫磷、对硫磷、甲基对硫磷、敌敌畏、马拉硫磷、敌百虫等。图1 4种常见有机磷杀虫剂类化合物 由于农药会随地表径流进入地表水,通过不断积累和浓缩,必然影响生态系统本身的种类组成和群体数量,破坏生态平衡。另一方面,地下水生物量少,无光解作用,一旦污染,难以治理,对人体生命健康造成极大威胁。因此,水质中有机磷农残污染也随之成为水环境研究的热点问题。 新标准来袭,岛津方案助您从容应对参考HJ1183-2021标准,使用岛津液相色谱仪 LC-40 与三重四极杆质谱仪 LCMS-8040,建立了一种LC-MS/MS法快速准确测定水质中4种有机磷杀虫剂含量的方法,同位素内标定量,助您及时应对新标准! 图2 岛津液相色谱质谱联用仪(LCMS-8040) • 分析条件 表1 MRM优化参数注:*表示定量离子 • 标准曲线与检出限氧化乐果、乙酰甲胺磷在2~100 µg/L浓度范围内,甲胺磷、辛硫磷在2~200 µg/L浓度范围内,均具有较好的线性关系,线性相关系数均≥0.997,各校准点准确度在85.4~116.8%之间。 表2 校准曲线参数图3 4种化合物的校准曲线 • 样品测试结果及加标回收率对某地表水样品进行分析,未检测出上述4种有机磷杀虫剂类化合物。2 µg/L样品加标平均回收率分布在88.17~116.62%之间,满足标准要求,方法可靠。 图4 地表水样品色谱图图5 加标样品回收色谱图(2 µg/L) 表3 回收率结果(n=3) 结语水质安全是环境安全的重要一环,也关系到千家万户的用水安全与身体健康。HJ1183-2021新标准即将实施,岛津提供“交钥匙”全流程培训指导,经验丰富的工程师将在您的实验室提供全流程解决方案的现场培训服务,助您轻松掌握从样品前处理到分析报告生成的整个流程。
  • 水质检测六项国家环保标准发布
    关于发布《水质 总有机碳的测定 燃烧氧化—非分散红外吸收法》等六项国家环境保护标准的公告   为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,现批准《水质 总有机碳的测定 燃烧氧化—非分散红外吸收法》等六项标准为国家环境保护标准,并予发布。   标准名称、编号如下:   一、《水质 总有机碳的测定 燃烧氧化—非分散红外吸收法》(HJ 501-2009);   二、《水质 挥发酚的测定 溴化容量法》(HJ 502-2009);   三、《水质 挥发酚的测定 4-氨基安替比林分光光度法》(HJ 503-2009);   四、《环境空气 臭氧的测定 靛蓝二磺酸钠分光光度法》(HJ 504-2009);   五、《水质 五日生化需氧量(BOD5)的测定 稀释与接种法》(HJ 505-2009);   六、《水质 溶解氧的测定 电化学探头法》(HJ 506-2009)。   以上标准自2009年12月1日起实施,由中国环境科学出版社出版,标准内容可在环境保护部网站(bz.mep.gov.cn)查询。   自以上标准实施之日起,由原国家环境保护局或原国家环境保护总局批准、发布的下述七项国家环境保护标准废止,标准名称、编号如下:   一、《水质 总有机碳(TOC)的测定 非色散红外线吸收法》(GB 13193-91);   二、《水质 总有机碳的测定 燃烧氧化-非分散红外吸收法》(HJ/T 71-2001);   三、《水质 挥发酚的测定 蒸馏后溴化容量法》(GB 7491-87);   四、《水质 挥发酚的测定 蒸馏后4-氨基安替比林分光光度法》(GB 7490-87);   五、《环境空气 臭氧的测定 靛蓝二磺酸钠分光光度法》(GB/T 15437-1995);   六、《水质 五日生化需氧量(BOD5)的测定 稀释与接种法》(GB 7488-87);   七、《水质 溶解氧的测定 电化学探头法》(GB 11913-89)。   特此公告。
  • 4项水质测定环保标准征求意见
    关于征求《水质 钴的测定 火焰原子吸收分光光度法》(征求意见稿)等4项国家环境保护标准意见的函   各有关单位:   为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,提高环境管理水平,规范环境监测工作,我部决定制订《水质 钴的测定 火焰原子吸收分光光度法》等4项国家环境保护标准。目前,标准编制单位已编制完成标准的征求意见稿。根据国家环境保护标准制修订工作管理规定,现将标准征求意见稿和有关材料印送给你们,请研究并提出书面意见,并于2011年1月15日前反馈我部。   联系人:环境保护部科技标准司 谷雪景   通信地址:北京市西直门内南小街115号   邮政编码:100035   联系电话:(010)66556214   传真:(010)66556213   联系人:环境保护部环境标准研究所 黄翠芳 周羽化   通信地址:北京市安外大羊坊8号   邮政编码:100012   联系电话:(010)84934068   传真:(010)84921403   附件:1.《水质 钴的测定 火焰原子吸收分光光度法》(征求意见稿)      2.《水质 钴的测定 火焰原子吸收分光光度法》(征求意见稿)编制说明      3.《水质 钴的测定 石墨炉原子吸收分光光度法》(征求意见稿)      4.《水质 钴的测定 石墨炉原子吸收分光光度法》(征求意见稿)编制说明      5.《水质 氨氮的测定 流动注射分析-分光光度法》(征求意见稿)      6.《水质 氨氮的测定 流动注射分析-分光光度法》(征求意见稿)编制说明      7.《水质 总磷的测定 流动注射分析-分光光度法》(征求意见稿)      8.《水质 总磷的测定 流动注射分析-分光光度法》(征求意见稿)编制说明   二○一○年十二月三日
  • 气质联用法测定水质等6项环保标准征求意见
    关于征求《水质 挥发性有机物的测定 吹扫捕集/气相色谱—质谱法》(征求意见稿)等6项国家环境保护标准意见的函   各有关单位:   为贯彻《中华人民共和国环境保护法》,保护环境,保障人体健康,提高环境管理水平,规范环境监测工作,我部决定制定《水质 挥发性有机物的测定 吹扫捕集/气相色谱-质谱法》等6项国家环境保护标准。目前,标准编制单位已编制完成标准的征求意见稿。根据国家环境保护标准制修订工作管理规定,现将标准征求意见稿和有关材料印送给你们,请研究并提出书面意见,于2011年6月10日前反馈我部科技标准司。   联系人:环境保护部科技标准司 谷雪景 何俊   通信地址:北京市西直门内南小街115号   邮政编码:100035   联系电话:(010)66556214,66556221   传真:(010)66556213   联系人:环境保护部环境标准研究所 黄翠芳 武婷   联系电话:(010)84934068,84924935   附件:   1.《水质 挥发性有机物的测定 吹扫捕集/气相色谱—质谱法》(征求意见稿)   2.《水质 挥发性有机物的测定 吹扫捕集/气相色谱—质谱法》(征求意见稿)编制说明   3.《水质 半挥发性有机物的测定 气相色谱—质谱法》(征求意见稿)   4.《水质 半挥发性有机物的测定 气相色谱—质谱法》(征求意见稿)编制说明   5.《水质 丙烯腈和丙烯醛的测定 吹扫捕集—气相色谱法》(征求意见稿)   6.《水质 丙烯腈和丙烯醛的测定 吹扫捕集—气相色谱法》(征求意见稿)编制说明   7.《环境空气 现场快速检测 传感器法》(征求意见稿)   8.《环境空气 现场快速检测 传感器法》(征求意见稿)编制说明   9.《环境空气 现场快速检测 检气管法》(征求意见稿)   10.《环境空气 现场快速检测 检气管法》(征求意见稿)编制说明   11.《固体废物 总铬的测定 火焰原子吸收分光光度法》(征求意见稿)   12.《固体废物 总铬的测定 火焰原子吸收分光光度法》(征求意见稿)编制说明   二○一一年五月三日
  • 【行业动态】GB/T 14848-2017 地下水质量标准
    水是万物之源,人们的日常饮食起居都离不开水。随着我国工业化进程加快,人工合成的各种化合物投入施用,地下水中各种化学组分正在发生变化;为保护和合理开发地下水资源,防止和控制地下水污染,保障人民身体健康,促进经济建设,国土资源部特制定《地下水质量标准》(GB/T 14848-2017),于2018年5月1日实施;该标准代替《地下水质量标准》(GB/T 14848-1993)。与《地下水质量标准》(GB/T 14848-1993)相比,该标准的变化是水质指标明显增加,由原来的39项增加至93项,增加了54项。调整了20项指标分类限值,直接采用了19项分类限值;减少了综合评价规定,使标准具有更广泛的应用性。 该标准规定了地下水质量分布、指标及限值,地下水质量调查与监测,地下水质量评价等内容地下水质量是指地下水的物理、化学和生物性质的总称。 它包括常规指标和非常规指标的检测。Ø 常规指标:反映地下水质量基本状况的指标,包括感官性状及一般化学指标、微生物指标、常见毒理学指标和 放射性指标。Ø 非常规指标:在常规指标上的拓展,根据地区和时间差异或特殊情况确定的地下水质量指标,反映地下水中所产生的主要质量问题,包括比较少见的无机和有机毒理学指标。 针对该标准中毒理学指标,坛墨质检提供五款混标和一款单标方案,涵盖有机检测项目指标,欢迎大家到坛墨质检商城选购。详细阅读:GB/T 14848-2017标准文件产品名称商城编号溶剂浓度μg/mL规格27种VOC混标GB/T 14848-201781723a甲醇1001mL11种SVOC混标GB/T 14848-201780238GM二氯甲烷1001mL9种PCB混标GB/T 14848-201780247GB正己烷1001mL8种有机氯农药混标GB/T 14848-201780087GA甲醇1001mL11种农药类混标GB/T 14848-201781471a甲苯1001mL 有机物定制混标组分 有机物单标中文名称CAS号商城编号溶剂浓度 μg/mL规格草甘膦1071-83-671257//250 mg71257-100mg100 mg71257-10mg10 mg水中草甘膦BW900145-1000-L水10001.2 mL水中草甘膦BW900145-100-L水1001.2 mL
  • 应对水质监测新标准,赛默飞苯胺类和硝基酚类液质分析
    应对水质监测新标准,赛默飞苯胺类和硝基酚类液质分析方法“交钥匙”啦关注我们,更多干货和惊喜好礼水质监测珍惜水资源,保护水环境。水质监测是保护水资源的基本手段之一,是水资源保护科学研究的基础,对水污染控制和维护水环境健康十分重要。苯胺类和硝基酚类化合物是水体中优先控制污染物,生态环境部发布的国家环境标准《水质 苯胺类化合物测定》(HJ1048-2019)和《水质 4种硝基酚类化合物测定》(HJ1049-2019)于2020年4月24日正式实施。标准监测范围包括地表水,地下水,生活污水及各种各样的工业废水。 苯胺和硝基酚类化合物都是重要且常用的化工原料,作为原材料或中间体被广泛应用。在生产和使用过程中,会随工业废水的排放对环境造成污染,使地表水等受到污染。苯胺类物质具特殊的气味,一般难溶于水,而易溶于有机试剂,易挥发,结构稳定,对人体的危害高,少量苯胺就能引起急性中毒,其中一些苯胺类化合物可以快速透过皮肤或呼吸道系统进入体内,造成溶血性贫血,损害肝脏引起中毒性肝炎,对肾功能造成损害等。硝基酚类化合物为淡黄色或黄色晶体,微溶于水,可溶于乙醇,乙醚,氯仿等有机溶剂。硝基酚对人和哺乳动物都有毒性,在生物体内易被酶转化为亚硝基和羟胺基衍生物,这些衍生物可生成正铁血红蛋白或亚硝基胺,前者能与氧结合,后者是致癌物。因此,2019年10月,生态环境部发布了水质17种苯胺类化合物和水质4种硝基酚类化合物测定液相色谱-三重四极杆质谱法的两个检测标准。 赛默飞全新一代三重四极杆液质联用仪Thermo Scientific™ TSQ系列应对国家环境保护标准水质监测,建立的方法灵敏度高、专属性强、稳定性好,为水质中苯胺类和硝基酚类化合物风险监控提供有效的支持。赛默飞针对苯胺类和硝基酚类化合物的水质检测解决方案01 建立了基于Thermo Scientific™ TSQ Quantis™ 三重四极杆串联质谱仪分析17种苯胺类物质的检测方法 表1 17种苯胺类化合物信息(点击查看大图) 方法选用C8柱(Thermo Scientific™ Hypersil GOLD™ 150x3mm, 3μm),以0.02%甲酸水溶液为流动相水相,以0.02%甲酸甲醇为流动相有机相,流速为0.4 mL/min,柱温为35℃。采用ESI源正离子模式进行 SRM扫描。 1、邻苯二胺;2、苯胺;3、对甲苯胺;4、联苯胺;5、邻甲氧基苯胺;6、邻甲苯胺;7、2,4-二甲基苯胺;8、4-氯苯胺;9、4-硝基苯胺;10、2,6-二甲基苯胺;11、2-萘胺;12、3-氯苯胺;13、2-硝基苯胺;14、2-甲基-6乙基苯胺;15、2,6-二乙基苯胺;16、3,3-二氯联苯胺;17、3-硝基苯胺。图1 17种苯胺类物质提取离子流图(点击查看大图) 实验进行了详细的方法学验证,基于Thermo Scientific™ TSQ Quantis™ 建立的水质中苯胺类化合物检测方法不仅具有优异的灵敏度和线性范围,同时专属性高,具备良好的重现性。 02 建立了基于Thermo Scientific™ TSQ Fortis™ 三重四极杆串联质谱仪分析4种硝基酚类物质的检测方法 表2 4种硝基酚化合物信息(点击查看大图) 方法选用C18柱(Thermo Scientific™ Hypersil GOLD™ 100x2.1mm, 1.9μ),0.01%乙酸水溶液和甲醇为流动相梯度洗脱,流速0.3 mL/min,柱温35℃。采用ESI源负离子模式SRM扫描方式检测。 图2 4种硝基酚类化合物和内标色谱图(点击查看大图) 实验进行了详细的方法学验证,四种硝基酚化合物定量限优于标准的检测要求,重现性和线性关系优异。并且本方法专属性强,适用于水质中硝基酚类污染物的检测。 结语预防水污染,保护水资源,赛默飞全新一代三重四极杆液质联用仪以其优异的性能有效应对环境检测相关法规。更多环境解决方案,请继续关注赛默飞官方微信平台。 如需合作转载本文,请文末留言。扫描下方二维码即可获取赛默飞全行业解决方案,或关注“赛默飞色谱与质谱中国”公众号,了解更多资讯+了解更多的产品及应用资讯,可至赛默飞色谱与质谱展台+网址https://www.instrument.com.cn/netshow/sh100244/
  • 5项水质检测标准发布 明年正式实施
    为进一步完善生态环境监测标准体系,规范生态环境监测行为,提高环境监测数据质量,服务生态环境监管执法,促进生态环境保护和保障人体健康,生态环境部于近日发布了5项国家生态环境标准,5项标准都与水质检测相关,且均为首次发布。《水质 28种有机磷农药的测定 气相色谱-质谱法》(HJ 1189-2021)本标准规定了测定水中有机磷农药的气相色谱-质谱法,适用于地表水、地下水、海水、生活污水和工业废水中敌敌畏、速灭磷、内吸磷、灭线磷、治螟磷、甲拌磷、特丁硫磷、二嗪磷、地虫硫磷、异稻瘟净、乐果、氯唑磷、甲基毒死蜱、磷胺、甲基对硫磷、毒死蜱、杀螟硫磷、马拉硫磷、对硫磷、溴硫磷、甲基异柳磷、水胺硫磷、稻丰散、丙溴磷、苯线磷、三唑磷、蝇毒磷、敌百虫等28 种有机磷农药的测定。本标准适用分析对象多,分离效果好,可支撑《地表水环境质量标准》(GB 3838-2002)、《地下水质量标准》(GB/T 14848-2017)等水环境质量标准实施,为农药行业水污染物排放标准的制修订、企业污染物排放的精细化管理提供监测技术支撑。该标准将于2022年4月1日实施。《水质 灭菌生物指示物(枯草芽孢杆菌黑色变种)的鉴定 生物学检测法》(HJ 1190-2021)  本标准规定了鉴定水中灭菌生物指示物(枯草芽孢杆菌黑色变种)的生物学方法。适用于微生物实验室废水灭菌效果的评价。本标准的发布实施可支撑微生物实验室废水灭菌效果的生物学检测,有利于贯彻落实《生物安全法》,加强生物安全风险防范,保护生态环境。该标准将于2022年4月1日实施。《水质 叠氮化物的测定 分光光度法》(HJ 1191-2021)  本标准规定了测定水中叠氮化物的分光光度法,适用于地表水、地下水、生活污水和工业废水中叠氮化物的测定。叠氮化物毒性强,危险性大。本标准的发布实施有利于相关工业排放叠氮化物的水污染物精细化管控,对保护生态环境和保障人体健康具有重要作用。该标准将于2022年4月1日实施。《水质 9种烷基酚类化合物和双酚A的测定 固相萃取/高效液相色谱法》(HJ 1192-2021)  本标准规定了测定水中烷基酚类化合物和双酚A 的高效液相色谱法,适用于地表水、地下水、生活污水和工业废水中 4-叔丁基苯酚、4-丁基苯酚、4-戊基苯酚、4-己基苯酚、4-庚基苯酚、4-辛基苯酚、4-支链壬基酚、4-叔辛基苯酚和 4-壬基酚等 9 种烷基酚类化合物和双酚A 的测定。可支撑《石油化学工业污染物排放标准》(GB 31571-2015)等水污染物排放标准实施。烷基酚类化合物和双酚A是典型的内分泌干扰物,具有毒性、持久性及生物累积性,我国已在相关产品的生产中禁用并在相关行业污染物排放标准中设置了限制指标。本标准的发布实施,有助于加强水污染物排放管控,为烷基酚类化合物和双酚A污染治理提供监测方法支撑。该标准将于2022年4月1日实施。《水质 铟的测定 石墨炉原子吸收分光光度法》(HJ 1193-2021)  本标准规定了测定水中铟的石墨炉原子吸收分光光度法,适用于地表水、地下水和工业废水中铟的测定。随着高新技术产业发展,铟的使用日益广泛,需关注含铟污染物对生态环境的影响。本标准选择性强、灵敏度高,所用仪器设备价格和分析成本相对较低。本标准的发布实施可为水环境及相关行业水污染物中铟的测定提供技术支撑。该标准将于2022年1月1日实施。
  • 行业标准《地下水质分析方法 第98部分: 锑和铊含量的测定 电感耦合等离子体质谱法》等6项标准公开征求意见
    各有关单位:行业标准《地下水质分析方法 第99部分: 锑含量的测定 氢化物发生-原子荧光光谱法》、《地下水质分析方法 第99部分: 锑含量的测定 氢化物发生-原子荧光光谱法》、《地下水质分析方法 第100部分: 阴离子表面活性剂的测定 二氮杂菲萃取分光光度法》、《地下水质分析方法 第101部分: 阴离子表面活性剂的测定 流动注射在线萃取法》、《地下水质分析方法 第102部分: 多氯联苯的测定 气相色谱-质谱法》、《地下水质分析方法 第103部分: 多环芳烃的测定 气相色谱-质谱法》公开征求意见。序号国/行计划号项目编号标准名称征求意见稿及编制说明1行业标准202213010DZ20226210地下水质分析方法 第100部分: 阴离子表面活性剂的测定 二氮杂菲萃取分光光度法编制说明_地下水质分析方法+第100部分.pdf征求意见稿_地下水质分析方法+第100部分.pdf2行业标准202213008DZ20226211地下水质分析方法 第98部分: 锑和铊含量的测定 电感耦合等离子体质谱法征求意见稿_地下水质分析方法+第98部分.pdf编制说明_地下水质分析方法+第98部分.pdf3行业标准202213009DZ20226213地下水质分析方法 第99部分: 锑含量的测定 氢化物发生-原子荧光光谱法编制说明_地下水质分析方法+第99部分.pdf征求意见稿_地下水质分析方法+第99部分.pdf4行业标准202213011DZ20226225地下水质分析方法 第101部分: 阴离子表面活性剂的测定 流动注射在线萃取法征求意见稿_地下水质分析方法+第101部分.pdf编制说明_地下水质分析方法+第101部分.pdf5行业标准202213012DZ20226217地下水质分析方法 第102部分: 多氯联苯的测定 气相色谱-质谱法征求意见稿_地下水质分析方法+第102部分.pdf编制说明_地下水质分析方法+第102部分.pdf6行业标准202213013DZ20226221地下水质分析方法 第103部分:多环芳烃的测定 气相色谱-质谱法征求意见稿_地下水质分析方法+第103部分.pdf编制说明_地下水质分析方法+第103部分.pdf联 系 人:韩梅联系电话:15930153255电子邮箱:hanmei0209@163.com下载意见反馈表.docx全国自然资源与国土空间规划标准化技术委员会2023年10月27日
  • 卫生部:北京水质符合106项国家最新标准检测要求
    卫生部新闻发言人、卫生部办公厅副主任邓海华请记者提问。中国网 李佳 摄   中国网1月10日讯 近日,有媒体报道,北京水专家夫妇称20年不喝自来水,引发公众疑虑。北京自来水集团表示,北京自来水可以放心喝。一边是专家表态,一边是厂家解读,北京水质话题引起广泛关注。对此,卫生部新闻发言人、卫生部办公厅副主任邓海华表示,北京的水质符合国家最新标准的106项指标的检测要求。   邓海华指出,卫生部牵头修订的《生活饮用水卫生标准》与国际相接轨,是高水平、高质量的饮用水标准,其中的106项的指标,从2012年7月1号全面实施。“北京的水质符合国家最新标准的106项指标的检测要求。”   在介绍在饮用水职责方面,卫生部负责供水单位的卫生监督和监测,邓海华对此具体说明:卫生部根据职责开展国家饮用水的卫生监督监测。2012年,卫生部一共监测了饮用水的监测点29825个,涵盖了所有的直辖市、省会城市以及91.5%的地级市和46.7%的县和县级市,目前已经完成了6万多分水样检测,结果正在进行统计,也将及时的向社会进行公布。   邓海华表示,饮用水的安全质量涉及的面很广,近年来,国务院相关部门做了大量的工作,城乡特别是农村地区的饮用水的安全状况有明显的改善。   “但是也应该看到,当前包括今后一段时间我们的饮用水安全形势仍然是十分严峻的。从卫生方面来讲,饮用水监测能力还不是很强,各方面的保障还不是很到位,监督监测的力度还需要进一步加大。”   据介绍,2012年卫生部印发《关于加强饮用水卫生监督监测工作的指导意见》,卫生部将进一步加大对饮用水卫生监督执法力度,加强饮用水监督、监测能力的建设,切实加强饮用水卫生监督,来保障广大人民群众的身体健康和生命安全。同时卫生部也将进一步按照《政府信息公开条例》的要求,做好生活饮用水监督监测有关的信息公开工作。   今天(1月10日)上午,卫生部举行2013年第一场新闻发布会,并回答记者提问。中国网现场直播。
  • 地下水质分析方法系列标准更新,坛墨为您提供标准品解决方案!
    2021年2月22日,国家自然资源部发布了DZ/T 0064《地下水质分析方法》的系列标准,该标准替换了93年的老标准,对85个子标准全部进行了更新。该系列标准的适用领域是地下水的测定,在经过方法验证后也可适用于地表水和饮用水的测定。新标准已于2021年7月1日实施。坛墨质检一直以来紧跟检验检测行业标准规定,在环境、食品、职业卫生、化妆品、药品、地质等各个检测领域都提供产品方案,且提供定制服务。根据这次地下水质系列标准的要求,坛墨质检已准备好配套的产品方案,欢迎咨询!在系列标准中有机物检测标准主要有三个:DZ/T 0064.71-2021,DZ/T 0064.72-2021和DZ/T 0064.91-2021。①DZ/T 0064.71-2021《地下水质分析方法 第71部分:α-六六六、β-六六六、 γ-六六六、δ-六六六、六氯苯、p, p′-滴滴伊、p, p′-滴滴滴、o,p′-滴滴涕和p,p′-滴滴涕的测定 气相色谱法》有机氯农药是水体中的常见污染物,对人体健康和生态环境有着巨大的危害,该方法以正己烷为萃取溶剂,采用液-液萃取方式提取地下水样品中有机氯农药,提取的有机相经脱水、净化、浓缩后气相色谱毛细管柱分离,电子捕获检测器检测。新标准调整了检测范围,增加了精密度和准确度数据并且增加了质量保证和质量控制的要求,为方法的实施提供了大量实验数据的支撑。坛墨质检DZ/T 0064.71-2021标准物质解决方案:官网产品链接:https://www.gbw-china.com/info/170005095.html正己烷中9种有机氯农药混标/DZ/T 0064.71-2021产品编码CAS号名称标准值单位81693b319-84-6α-六六六1000μg/mL319-85-7β-六六六1000μg/mL58-89-9γ-六六六1000μg/mL319-86-8δ-六六六1000μg/mL72-55-94,4’-滴滴伊1000μg/mL789-02-62,4' -滴滴涕1000μg/mL72-54-84,4’-滴滴滴1000μg/mL50-29-34,4' -滴滴涕1000μg/mL118-74-1六氯苯1000μg/mL(点击产品编码即可查询产品)②DZ/T 0064.72-2021《地下水质分析方法 第72部分:敌敌畏、甲拌磷、乐果、甲基对硫磷、马拉硫磷、毒死蜱和对硫磷的测定 气相色谱法》敌敌畏、甲拌磷、乐果、甲基对硫磷、马拉硫磷、毒死蜱和对硫磷均为水体中毒性较强的有机磷污染物,方法以丙酮、二氯甲烷为萃取溶剂,采用液-液萃取方式提取地下水样品中有机磷农药,提取有机相液经脱水、净化、浓缩后毛细管气相色谱柱分离,火焰光度检测器检测,其他类似的有机磷农药通过验证后也可适用于该方法。该方法操作简单,灵敏度高,检出限达到ng/L。坛墨质检DZ/T 0064.72-2021标准物质解决方案:官网产品链接:https://www.gbw-china.com/info/170001628.html丙酮中7种有机磷农药混标/DZ/T 0064.72-2021产品编码CAS号名称标准值单位溶剂81601a62-73-7敌敌畏100μg/mL丙酮298-02-2甲拌磷100μg/mL丙酮60-51-5乐果100μg/mL丙酮298-00-0甲基对硫磷100μg/mL丙酮121-75-5马拉硫磷100溶剂81457b75-01-467-66-3三氯甲烷1000μg/mL甲醇71-55-6甲醇79-01-6三氯乙烯1000μg/mL甲醇
  • 原子荧光获水质汞等元素测定标准方法采用
    环保部日前发布两项新的国家环境保护标准:《水质 汞、砷、硒、铋和锑的测定 原子荧光法》(HJ 694-2014)、《土壤 有机碳的测定 燃烧氧化-非分散红外法》(HJ 695-2014)。两项标准自2014年7月1日起实施。   《水质 汞、砷、硒、铋和锑的测定 原子荧光法》适用于地表水、地下水、生活污水和工业废水中汞、砷、硒、铋和锑的溶解态和总量的原子荧光法测定。继2013年12月发布的《土壤和沉积物 汞、砷、硒、铋、锑的测定 微波消解/原子荧光法》使原子荧光法首次成为土壤和沉积物中硒、铋、锑等元素测定的标准方法之后,本次的新标准有望使原子荧光在环境领域中的应用得到进一步的扩展。   《土壤 有机碳的测定 燃烧氧化-非分散红外法》则是继2011年发布的《土壤 有机碳的测定 重铬酸钾氧化-分光光度法》之后,又一种土壤中有机碳的测定方法。   附件:   《水质 汞、砷、硒、铋和锑的测定 原子荧光法》   《土壤 有机碳的测定 燃烧氧化-非分散红外法》
  • 水质监测领域又一标准首次发布
    p   水质监测无人艇是指集成水质采样、监测设备或仪器,实现自主水质采样、监测功能的无人艇。随着无人艇技术的不断提高,使用无人艇技术对地表水进行采样监测的案例不断增多,如在天津8.12爆炸事故危险区域水样采集,甘肃锑污染事故中,连云港、安徽东至县企业偷排应急事件中,以及镇江市在黑臭河的治理中曾尝试使用过智能无人艇进行水样监测和监管。 /p p   一直以来,我国并没有相关的技术标准或规范,为规范生态环境监测工作,生态环境部决定制定《水质监测用无人艇技术要求(试行)》国家环境保护标准。目前,标准编制单位已完成征求意见稿。 /p p   《水质监测用无人艇技术要求(试行)(征求意见稿)》为首次发布,对于水质监测无人艇技术性能和指标的要求及检验评估作出了明确的规定。 /p p   标准中规定,水质监测无人艇系统由以下部分组成: /p p span    /span a)无人艇平台:艇体、电气设备、任务载荷接口、定位系统、动力系统等 /p p span    /span b)通信系统:包含信息传输设备、中继转发设备、通信软件等 /p p span    /span c)操控系统:显控基站控制设备,无线电遥控设备等 /p p span    /span d)任务载荷:水质采样/监测用仪器,包含水质采样仪器、水质监测仪器等。 /p p   其中,对于监测平台配置的要求是: /p p span    /span a)配置不少于5个光学或离子选择传感器接口,可选择性的实现pH、水温、溶解氧、电导率、氨氮、叶绿素a等指标的原位监测 /p p span    /span b)具有接收远程控制,定点监测功能。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/8001a63d-40e3-4b33-984a-a1a786139a46.jpg" title=" 图片.jpg" alt=" 图片.jpg" / /p p span    /span 详情如下: /p p   span style=" color: rgb(0, 112, 192) "   /span a href=" https://www.instrument.com.cn/download/shtml/954751.shtml" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 水质监测用无人艇技术要求(试行)(征求意见稿); /span /a /p p span style=" color: rgb(0, 112, 192) "    /span a href=" https://www.instrument.com.cn/download/shtml/954750.shtml" target=" _self" style=" color: rgb(0, 112, 192) text-decoration: underline " span style=" color: rgb(0, 112, 192) " 《水质监测用无人艇技术要求(试行)》(征求意见稿)编制说明。 /span /a /p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制