当前位置: 仪器信息网 > 行业主题 > >

电化学原理

仪器信息网电化学原理专题为您提供2024年最新电化学原理价格报价、厂家品牌的相关信息, 包括电化学原理参数、型号等,不管是国产,还是进口品牌的电化学原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电化学原理相关的耗材配件、试剂标物,还有电化学原理相关的最新资讯、资料,以及电化学原理相关的解决方案。

电化学原理相关的资讯

  • 线上讲座 | 原位空间微纳尺度微区扫描电化学原理及应用
    线上讲座 | 原位空间微纳尺度微区扫描电化学原理及应用 主讲: 黄建书 博士, 阿美特克科学仪器部应用经理 讲座简介:传统的电化学方法基于样品的宏观平均响应表征,在局部腐蚀、能源材料、光/电催化活性、电致变色、微流控组装,生物医学、多维梯度材料等研究方面,面临诸多挑战。国内外相关研究表明,微区扫描电化学技术以其原位微纳尺度空间分辨率等特点,在上述热门研究方面显示出巨大优势及广阔应用前景。 主讲人: 黄建书博士,目前任阿美特克公司科学仪器部应用经理。主要负责普林斯顿及输力强电化学产品的技术支持,应用开发,市场推广等方面工作。多年来与国内外大学,科研单位及企业研发机构保持密切合作,尤其在原位超高空间分辨率微区扫描电化学应用方面积累了大量经验。曾多次在国内外学术会议上,进行普林斯顿及输力强电化学前沿应用报告。 主要内容: 金属及涂层表面腐蚀过程的演化分析 水分解,氧还原等光电催化活性位分布研究 电池电极材料离子脱嵌动力学表征 为了便于您时间安排,本次应用讲座,将连续举办两场,请您选择合适时间报名参加 第一场: 6月30日14:00-15:30 第二场: 7月07日14:00-15:30
  • 新型可穿戴设备 利用电化学原理发电
    据PCWorld网站报道,目前可穿戴设备通常用于追踪锻炼和健身活动,但是,可穿戴设备可以用于为其他可穿戴设备提供电能吗?麻省理工学院的一项新研究将很快使这成为可能。  一直以来,电能都是制约可穿戴设备和其他移动设备发展的一个因素。但麻省理工学院研究人员本周宣布,他们已经发现了利用幅度很小的弯曲运动发电的方法。  PCWorld表示,他们的系统利用两层很薄的锂合金片作为电极,然后在两个电极之间夹一层浸泡有液态电解质的多孔聚合物。即使轻微的弯曲,也会在连接在两个电极间的外部电路中产生电压和电流,从而为其他设备供电。只需在一端施加很小的力,就能引起锂合金金属片弯曲,例如,把装置固定在手臂或腿上。  麻省理工学院研究人员指出,利用轻微运动发电还有其他方法,但它们利用不同原理。大多数方法利用了摩擦起电效应——例如把羊毛和气球相互摩擦,或压电效应。麻省理工学院材料科学和工程教授李举(Ju Li,音译)表示,这些传统方法存在“电阻大、弯曲刚度大、成本高”的缺陷。  麻省理工学院称,通过利用电化学原理,新技术能利用大量自然运动和活动生成电能,其中包括典型的人类活动,例如走路或锻炼。  这类设备不仅仅能低成本地批量生产,而且天生很柔韧,这使得它们与可穿戴设备更搭,在外力作用下不容易受损。  李举表示,测试设备已经证明这一系统非常稳定,在使用1500个周期后仍然能保持其性能。  PCWorld称,这一技术的其他潜在用途包括生物医学设备,或者应用在道路、桥梁、甚至是键盘中的嵌入式压力传感器。  麻省理工学院的这一成果当地时间周三发表在《Nature Communications》上。
  • 浅析电化学型气体传感器的工作原理和检测方法
    p   要进行一个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,国产还是进口,价格能否承受,还是自行研制。在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。 /p p strong 1.电化学型气体传感器的结构 /strong /p p   电化学式气体传感器,主要利用两个电极间的化学电位差,一个在气体中测量气体浓度,另一个是固定的参比电极。电化学式传感器采用恒电位电解方式和伽伐尼电池方式工作。有液体电解质和固体电解质,而液体电解质有分为电位型和电流型。电位型是利用电极电势和气体浓度之间的关系进行测量;电流型采用极限电流原理,利用气体通过薄层透气膜或毛细孔扩散作为限流措施,获得稳定的传质条件,产生正比于气体浓度或分压的极限扩散电流。 /p p   电化学传感器有两电极和三电极结构,主要区别在于有无参比电极。两电极CO传感器没有参比电极,结构简单,易于设计和制造,成本较低适用于低浓度CO的检测和报警;三电极CO传感器引入参比电极,使传感器具有较大的量程和良好的精度,但参比电极的引入增加了制造工序和材料成本,所以三电极CO传感器的价格高于两电极CO传感器,主要用于工业领域。两电极电化学CO传感器主要由电极、电解液、电解液的保持材料、出去干涉气体的过滤材料、管脚等零部件组成。 /p p strong 2.电传感器工作原理 /strong /p p   电化学气体传感器是一种化学传感器,按照工作原理一般分为:a.在保持电极和电解质溶液的界面为某恒电位时,将气体直接氧化或还原,并将流过外电路的电流作为传感器的输出;b.将溶解于电解质溶液并离子化的气态物质的离子作用与离子电极,把由此产生的电动势作为传感器输出;c.将气体与电解质溶液反应而产生的电解电流作为传感器输出;d.不用电解质溶液,而用有机电解质、有机凝胶电解质、固体电解质、固体聚合物电解质等材料制作传感器。 /p p strong 表1 各种电化学式气体传感器的比较 /strong /p table cellspacing=" 0" cellpadding=" 0" border=" 1" tbody tr class=" firstRow" td style=" border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 种类 /span /strong /p /td td style=" border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 现象 /span /strong /p /td td style=" border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 传感器材料 /span /strong /p /td td style=" border-width: 1px medium border-style: solid none border-color: rgb(79, 129, 189) currentcolor padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 特点 /span /strong /p /td /tr tr td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 恒电位电解式 /span /strong /p /td td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 电解电流 /span /p /td td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 气体扩散电极,电解质水溶液 /span /p /td td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 通过改变气体电极,电解质水溶液,电极电位等可测量CO、H sub 2 /sub S、HO sub 2 /sub 、SO sub 2 /sub 、HCl等 /span /p /td /tr tr td style=" border: medium none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 离子电极式 /span /strong /p /td td style=" border: medium none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 电极电位变化 /span /p /td td style=" border: medium none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 离子选择电极,电解质水溶液,多孔聚四氟乙烯膜 /span /p /td td style=" border: medium none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 选择性好,可测量NH sub 3 /sub 、HCN、H sub 2 /sub S、SO sub 2 /sub 、CO sub 2 /sub 等气体 /span /p /td /tr tr td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 电量式 /span /strong /p /td td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 电解电流 /span /p /td td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 贵金属正负电极,电解质水溶液,多孔聚四氟乙烯膜 /span /p /td td style=" border: medium none background: rgb(211, 223, 238) none repeat scroll 0% 0% padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 选择性好,可测量Cl sub 2 /sub 、NH sub 3 /sub 、H sub 2 /sub S等 /span /p /td /tr tr td style=" border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 固体电解质式 /span /strong /p /td td style=" border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 测定电解质浓度差产生的电势 /span /p /td td style=" border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 固体电解质 /span /p /td td style=" border-width: medium medium 1px border-style: none none solid border-color: currentcolor currentcolor rgb(79, 129, 189) -moz-border-top-colors: none -moz-border-right-colors: none -moz-border-bottom-colors: none -moz-border-left-colors: none border-image: none padding: 0px 7px " width=" 142" valign=" top" p style=" text-align:left" span style=" font-family:& #39 微软雅黑& #39 ,& #39 sans-serif& #39 color:#365F91" 适合低浓度测量,需要基准气体,耗电,可测量CO sub 2 /sub sub 、 /sub NO sub 2 /sub 、H sub 2 /sub S等 /span /p /td /tr /tbody /table p 表1汇集了各类电化学气体传感器的种类、检测原理所用材料与特点。 /p p 2.1 恒电位电解式气体传感器 /p p   恒电位电解式气体传感器的原理是:使电极与电解质溶液的界面保持一定电位进行电解,通过改变其设定电位,有选择的使气体进行氧化或还原,从而能定量检测各种气体。对于特定气体来说,设定电位由其固有的氧化还原电位决定,但又随电解时作用电极的材质、电解质的种类不同而变化。电解电流和气体浓度之间的关系如下式表示: /p p     I=(nfADC)/ σ /p p   式中:I-电解电流;n-1mol气体产生的电子数;f-法拉第常数;A-气体扩散面积;D-扩散系数;C-电解质溶液中电解的气体浓度;σ-扩散层的厚度。 /p p   在统一传感器中,n、f、A、D及σ是一定的,电解电流与气体浓度成正比。 /p p   自20世纪50年代出现CIDK电极以来,控制电位电化学气体传感器在结构、性能和用途等方面都得到了很大的发展。20世纪70年代初,市场上就有了31检测器。有先后出现了CO、N sub x /sub O sub Y /sub (氮氧化物)、H sub 2 /sub S检测仪器等产品。这些气体传感器灵敏度是不同的,一般是H sub 2 /sub S& gt NO& gt NO sub b /sub & gt Sq& gt CO,响应时间一般为几秒至几十秒,大多数小于1min;他们的寿命相差很大,短的只有半年,有的CO监测仪实际寿命已近10年。影响这类传感器寿命的主要因素为:电极受淹、电解质干枯、电极催化剂晶体长大、催化剂中毒和传感器使用方法等。 /p p   以CO气体监测为例来说明这种传感器隔膜工作电极对比电极的结构和工作原理。在容器内的相对两壁,安置作用电极h’和对比电极,其内充满电解质溶液构成一密封结构。瓦在化田由极3g对冲由极AnljI进行恒定电位差而构成恒压电路。此时,作用电极和对比电极之间的电流是I,恒电位电解式气体传感器的基本构造根据此电流值就可知CO气体的浓度。这种方式的传感器可用于检测各种可燃性气体和毒气,如H sub 2 /sub S、NO、NO sub b /sub 、Sq、HCl、Cl sub 2 /sub 、PH sub 3 /sub 等,还能检测血液中的氧浓度。 /p p 2.2离子电极式气体传感器 /p p   离子电极式气体传感器的工作原理是:气态物质溶解于电解质溶液并离解,离解生成的离子作用于离子电极产生电动势,将此电动势取出以代表气体浓度。这种方式的传感器是有作用电极、对比电极、内部溶液和隔膜等构成的。 /p p   现以检测NH sub 3 /sub 传感器为例说明这种气体传感器的工作原理。作用电极是可测定pH的玻璃电极,参比电极是A8从姐电极,内部溶液是NIkCE溶液。NEACt离解,产生铵离子NH sub 4 /sub sup + /sup ,同时水也微弱离解,生成氢离子H sup + /sup ,而NH4 sup + /sup 与H sup + /sup 保持平衡。将传感器侵入NH sub 3 /sub 中,NH sub 3 /sub 将通过隔膜向内部渗透,NH sub 3 /sub 增加,而H sup + /sup 减少,即pH 增加。通过玻璃电极检测此PH的变化,就能知道NH sub 3 /sub 浓度。除NH sub 3 /sub 外,这种传感器海能检测HCN(氰化氢)、H sub 2 /sub S、Sq、C0 sub 2 /sub 等气体。 /p p   离子电极式气体传感器出现得较早,通过检测离子极化电流来检测气体的体积分数,电化学式气体传感器主要的有点是检测气体的灵敏度高、选择性好。 /p p 2.3电量式气体传感器 /p p   电量式气体传感器的原理是:被测气体与电解质溶液反应生成电解电流,将此电流作为传感器输出,来检测气体浓度,其作用电极、对比电极都是Pt电极。 /p p   现以检测C12为例来说明这种传感器的工作原理。将溴化物MBr(M是一价金属)水溶液介于两个铂电极之间,其离解成比,同时水也离解成H sup + /sup ,在两铂电极间加上适当电压,电流开始流动,后因H sup + /sup 反应产生了H sub 2 /sub ,电极间发生极化,发生反应,其结果,电极部分的H sub 2 /sub 被极化解除,从而产生电流。该电流与H sub 2 /sub 浓度成正比,所以检测该电流就能检测Cl sub 2 /sub 浓度。除Cl sub 2 /sub 外,这种方式的传感器还可以检测NH sub 2 /sub 、H sub 2 /sub S等气体。 /p p strong 3.传感器的检测 /strong /p p   电化学型气体传感器可分为原电池式、可控电位电解式、电量式和离子电极式四种类型。原电池式气体传感器通过检测电流来检测气体的体积分数,市售的检测缺氧的仪器几乎都配有这种传感器。可控电解式传感器是通过检测电解时流过的电流来检测气体的体积分数,和原电池式不同的是,需要由外界施加特定电压,除了能检测CO、NO、NO sub 2 /sub 、O sub 2 /sub 、SO sub 2 /sub 等气体外,还能检测血液中的氧体积分数。电量式气体传感器是通过被测气体与电解质反应产生的电流来检测气体的体积分数。离子电极式气体传感器出现得较早,通过检测离子极化电流来检测气体的体积分数。电化学式气体传感器主要的优点是检测气体的灵敏度高、选择性好。 /p p   综上所述,不同种类的气体传感器适用于不同气体检测与控制的需求,随着现代工业的发展,尤其是绿色环保理念的不断加强,气体传感器技术的开发应用必将具有非常广阔的发展前景。两电极电化学CO传感器,是近年来研究的热点,属于国际上先进的传感器技术,通过实验研究,在电极、过滤层、电解质等材料选择和结构的设计中,攻克了影响传感器寿命的诸多技术难题,研制成功了具有实用意义的新型CO传感器,它必将在CO气体检测领域发挥积极的作用。 /p
  • BPCL微弱发光\化学发光\电化学发光测量的原理及应用
    品牌:BPCL是Biological& Physical Chemiluminescence的缩写,1995年开始对外使用;超微弱发光测量仪,英文Ultra-WeakLuminescence Analyzer。 BPCL超微弱发光测量仪,是生物与化学光子计数器,又俗称为化学发光分析仪,是我国原中科院系统科研人员自主研发的一种可探测超微弱生物发光和化学发光的分析仪器,是我国最早商品化的微弱光测量产品。BPCL倾注了老一辈科研工作者的心血,其研制为发光研究提供了有力的科研工具,推动了我国甚至国际发光研究的发展,目前被众多高校、研究院所使用,产生了具有重大社会和经济效益。 涉及研究方向包括:发光分析检测技术研究(如:流动注射发光分析、毛细管电泳发光分析、生物传感器发光分析、纳米材料发光分析、自由基临床检验)、自由基生物学研究、药物抗氧化剂研究、细胞学超微弱发光研究、肿瘤医学研究、农业种质研究、花卉果实超微弱发光研究及农作物抗逆性研究。 BPCL微弱发光测量仪现有19个型号产品,覆盖近紫外、可见及近红外光谱领域微弱光检测,同时还有光谱扫描、多样品测试、温控等型号产品,以适应不同领域研发需求。由于BPCL独特和先进的光探测技术,利用此仪器可测定10^-15瓦的光强度,测量10^-13瓦的微弱光影可给出1-2万/秒的计数率,这对于生物体、细胞、DNA等生命物质的超微弱发光研究尤为重要。通过独特的接口计数,该仪器可实时获得发光动力学曲线,最快采集速度可达0.1毫秒,可用于快速发光反应的监测。 任何有生命的物质都可以自发的或在外界因素诱导下辐射出一种极其微弱的光子流,这种现象称为生物的超微弱发光(UltraweakPhoton Emission),亦被称为生物系统超弱光子辐射、自发发光等。超微弱发光只有10^-5~ 10 ^-8hυ / s cm ,量子产额(效率)为10^-14~ 10 ^-9,波长范围为180~800nm,从红外到近紫外波段。1.BPCL电化学发光测试原理 电化学发光分析技术(Electrogeneratedchemiluminescence,ECL)。ECL是一种在电极表面由电化学引发的特异性化学发光反应。包括了两个过程。发光底物二价的三联吡啶钌及反应参与物三丙胺在电极表面失去电子而被氧化。氧化的三丙胺失去一个H成为强还原剂,将氧化型的三价钌还原成激发态的二价钌,随即释放光子恢复为基态的发光底物。最好的发光标记物-三联吡啶钌分子量小,结构简单。可以标记于抗原,抗体,核酸等各种分子量,分子结构的物质。从而具有最齐全的检测菜单。三联吡啶钌为水溶性,且高度稳定的小分子物质。保证电化学发光反应的高效和稳定,而且避免了本底噪声干扰。 简单来理解,ECL是在电极上施加一定的电压使电极反应产物之间或电极反应产物与溶液中某组分进行化学反应而产生的一种光辐射,其作为一种新的痕量分析手段越来越引人注目。1.1电化学反应过程 在工作电极上(阳极)加一定的电压能量作用下,二价的三氯联吡啶钌[Ru(bpy)3]2+释放电子发生氧化反应而成为三价的三氯联吡啶钌[Ru(bpy)3]3+,同时,电极表面的TPA也释放电子发生氧化反应而成为阳离子自由基 TPA+,并迅速自发脱去一个质子而形成三丙胺自由基TPA,这样,在反应体系中就存在具有强氧化性的三价的三氯联吡啶钌[Ru(bpy)3]3+和具有强还原性的三丙胺自由基TPA。1.2化学发光过程 具有强氧化性的三价的三氯联吡啶钌[Ru(bpy)3]3+和具有强还原性的三丙胺自由基 TPA发生氧化还原反应,结果使三价的三氯联吡啶钌[Ru(bpy)3]3+还原成激发态的二价的三氯联吡啶钌[Ru(bpy)3]2+,其能量来源于三价的三氯联吡啶钌[Ru(bpy)3]3+与三丙胺自由基TPA之间的电势差,激发态[Ru(bpy)3]2+以荧光机制衰变并以释放出一个波长为620nm光子的方式释放能量,而成为基态的[Ru(bpy)3]2+。1.3循环过程 上述化学发光过程后,反应体系中仍存在二价的三氯联吡啶钌[Ru(bpy)3]2+和三丙胺(TPA),使得电极表面的电化学反应和化学发光过程可以继续进行,这样,整个反应过程可以循环进行。 通过上述的循环过程,测定信号不断的放大,从而使检测灵敏度大大提高,所以ECL测定具有高灵敏的特点。上述的电化学发光过程产生的光信号的强度与二价的三氯联吡啶钌[Ru(bpy)3]2+的浓度成线性关系。将二价的三氯联吡啶钌[Ru(bpy)3]2+与免疫反应体系中的一种物质结合,经免疫反应、分离后,检测免疫反应体系中剩余二价的三氯联吡啶钌[Ru(bpy)3]2+经上述过程后所发出的光,即可得知待检物的浓度。1.4电化学发光剂定义:指通过在电极表面进行电化学反应而发出光的物质。特点:反应在电极表面进行发光标记物/化学发光剂:三联吡啶钌Ru(bpy)32+共反应剂/电子供体为:三丙胺(TPA)电化学发光启动条件:直流电场反应产物:三丙胺自由基(TPA*)+620nm的光子最终检测信号:可见光强度反应特点:迅速、可控、循环发光三联吡啶钌“催化”三丙胺发出可见光2.BPCL化学/电化学发光分析领域的应用案例2.1 医学及药学领域 BPCL在临床上,其可直接或与免疫技术结合,通过化学/电化学发光技术,其可用于甲状腺激素、生殖激素、肾上腺/垂体激素、贫血因子、肿瘤标记物、癌细胞等物质的检测;另外,基于活性氧诱导的化学发光现象,其可实现体内及光治疗过程产生的活性氧的检测。2.1.1 Ru@SiO2表面增强电化学发光检测痕量癌胚抗原 癌胚抗原(CEA)被认为是反映人体中各种癌症和肿瘤存在的疾病生物标志物。体液中CEA的灵敏检测利于癌症的临床诊断和治疗评估。 在此,本文提出了一种基于Ru(bpy)32+的局域表面等离子体共振(LSPR)增强电化学发光(ECL)超灵敏测定人血清中CEA的新方法。在这种表面增强ECL(SEECL)传感方案中,Ru(bpy)32+掺杂的SiO2纳米颗粒(Ru@SiO2)并且AuNPs用作LSPR源以增强ECL信号。两种不同种类的CEA特异性适体在Ru@SiO2和AuNP。在CEA存在的情况下Ru@SiO2-将形成AuNPs纳米结构。我们的研究表明Ru@SiO2可以通过AuNP有效地增强。一层Ru@SiO2-AuNPs与不存在AuNP的纳米结构的ECL相比,纳米结构将产生约3倍的ECL增强。通过多层Ru@SiO2-AuNPs纳米架构。在最佳条件下,人血清CEA的检测限为1.52×10^-6ng/mL。 据我们所知,对于ECL传感器,从未报道过具有如此低LOD的CEA测定。2.1.2 基于连接探针的电化学发光适体生物传感器,检测超痕量凝血酶的信号 基于结构切换电化学发光猝灭机制,本文中开发了一种用于检测超痕量凝血酶的新型连接探针上信号电化学发光适体生物传感器。ECL适体生物传感器包括两个主要部分:ECL底物和ECL强度开关。ECL衬底是通过修饰金电极(GE)表面的Au纳米颗粒和钌(II)三联吡啶(Ru(bpy)32+–AuNPs)的络合物制成的,ECL强度开关包含三个根据“结-探针”策略设计的探针。 第一种探针是捕获探针(Cp),其一端用巯基官能化,并通过S–Au键共价连接到Ru(bpy)32+–AuNPs修饰的GE上。 第二个探针是适体探针(Ap),它含有15个碱基的抗凝血酶DNA适体。 第三种是二茂铁标记探针(Fp),其一端用二茂铁标签进行功能化。 文中证明,在没有凝血酶的情况下,Cp、Ap和Fp将杂交形成三元“Y”结结构,并导致Ru(bpy)32+的ECL猝灭。然而,在凝血酶存在的情况下,Ap倾向于形成G-四链体适体-凝血酶复合物,并导致Ru(bpy)32+的ECL的明显恢复,这为凝血酶的检测提供了传感平台。利用这种可重复使用的传感平台,开发了一种简单、快速、选择性的ECL适体生物传感器信号检测凝血酶,检测限为8.0×10^-15M。 本生物传感器的成功是朝着在临床检测中监测超痕量凝血酶的发展迈出的重要一步。2.1.3 Ru(phen)32+掺杂二氧化硅纳米粒子的电化学发光共振能量转移及其在臭氧“开启”检测中的应用 首次报道了灵敏检测臭氧的电化学发光(ECL)方法和利用臭氧进行电化学发光共振能量转移(ECRET)的方法。 它是基于Ru(phen)32+掺杂的二氧化硅纳米颗粒(RuSiNPs)对靛蓝胭脂红的ECRET。在没有臭氧的情况下,RuSiNP的ECL由于RuSiNP对靛蓝胭脂红的ECRET而猝灭。在臭氧存在的情况下,系统的ECL被“打开”,因为臭氧可以氧化靛蓝胭脂红,并中断从RuSiNP到靛蓝胭脂的ECRET。通过这种方式,它通过所提出的基于RuSiNP的ECRET策略提供了臭氧的简单ECL传感,线性范围为0.05-3.0μM,检测限(LOD)为30nM。检测时间不到5分钟。该方法也成功应用于人体血清样品和大气样品中臭氧的分析。2.1.4 用二极管实现数码相机灵敏视觉检测,使无线电极阵列芯片的电化学发光强度提高数千倍 首次报道了无线电化学发光(ECL)电极微阵列芯片和通过在电磁接收器线圈中嵌入二极管来显著提高ECL。新设计的设备由一个芯片和一个发射机组成。该芯片有一个电磁接收线圈、一个迷你二极管和一个金电极阵列。该微型二极管可以将交流电整流为直流电,从而将ECL强度提高18000倍,从而能够使用普通相机或智能手机作为低成本探测器进行灵敏的视觉检测。使用数码相机检测过氧化氢的极限与使用基于光电倍增管(PMT)的检测器的极限相当。与基于PMT的检测器相结合,该设备可以以更高的灵敏度检测鲁米诺,线性范围从10nM到1mM。由于具有高灵敏度、高通量、低成本、高便携性和简单性等优点,它在护理点检测、药物筛选和高通量分析中很有前途。2.1.5 中晶体和仿生催化剂调控肿瘤标志物的比例电化学发光免疫分析 本文以壳聚糖功能化碘化银(CS-AgI)为仿生催化剂,研制了一种基于八面体锐钛矿介晶(OAM)载体的比率电化学发光免疫传感器,用于α胎儿蛋白(AFP)的超灵敏测定。所提出的系统是通过选择鲁米诺和过硫酸钾(K2S2O8)作为有前途的ECL发射单元来实现的,因为它们具有潜在的分辨特性和最大发射波长分辨特性。采用具有高孔隙率、定向亚基排列和大表面积的OAM吸附鲁米诺形成固态ECL,并作为亲和载体首次固定了大量AFP(Ab)抗体。 此外,发现CSAgI具有仿生催化剂活性,可以催化作为鲁米诺和K2S2O8共同助反应剂的过氧化氢的分解,从而放大了双ECL响应。当生物传感器在CSAgI标记的AFP的混合溶液中孵育时(CS-AgI@AFP)和目标AFP,这是由于对CS-AgI@AFP和目标AFP与AbCS-AgI@AFP固定化Ab捕获的蛋白质随AFP浓度的增加而减少,因此,双ECL反应减少。基于两个激发电位下ECL强度的比值,这种提出的比率ECL策略通过竞争性免疫反应实现了对α胎儿蛋白的超灵敏测定,线性检测范围为1fg/ml至20ng/ml,检测限为1fgg/ml2.1.6 一种新型放大电化学发光生物传感器(基于AuNPs@PDA@CuInZnS量子点纳米复合材料),用于p53基因的超灵敏检测 在这项工作中,首次设计了一种基于Au的新型表面等离子体共振(SPR)增强电化学发光(ECL)生物传感模型NPs@polydopamine(PDA)@CuInZnS量子点纳米复合材料。 通过静电力用PDA层涂覆AuNP。CuInZnS量子点结合在Au表面NPs@PDA纳米复合材料。CuInZnS量子点在传感应用中起到了ECL发光体的作用。PDA壳层不仅控制了AuNPs和QDs之间的分离长度以诱导SPR增强的ECL响应,而且限制了电势电荷转移和ECL猝灭效应。结果,纳米复合材料的ECL强度是具有K2S2O8的量子点的两倍。在扩增的ECL传感系统中检测到肿瘤抑制基因p53。 该传感方法的线性响应范围为0.1nmol/L至15nmol/L,检测限为0.03nmol/L。基于该纳米复合材料的DNA生物传感器具有良好的灵敏度、选择性、重现性和稳定性,并应用于加标人血清样品,取得了满意的结果。2.1.7铕多壁碳纳米管作为新型发光体,在凝血酶电化学发光适体传感器中的应 提出了一种新的电化学发光(ECL)适体传感器,用于凝血酶(TB)的测定,该传感器利用核酸外切酶催化的靶循环和杂交链式反应(HCR)来放大信号。捕获探针通过Au-S键固定在Au-GS修饰的电极上。随后,捕获探针和互补凝血酶结合适体(TBA)之间的杂交旨在获得双链DNA(dsDNA)。TB与其适体之间的相互作用导致dsDNA的解离,因为TB对TBA的亲和力高于互补链。在核酸外切酶存在的情况下,适体被选择性地消化,TB可以被释放用于靶循环。通过捕获探针的HCR和两条发夹状DNA链(NH2-DNA1和NH2-DNA1)形成延伸的dsDNA。然后,可以通过NH2封端的DNA链和Eu-MWCNT上的羧基之间的酰胺化反应引入大量的铕多壁碳纳米管(Eu-MWCNTs),导致ECL信号增加。 多种扩增策略,包括分析物回收和HCR的扩增,以及Eu-MWCNTs的高ECL效率,导致宽的线性范围(1.0×10-12-5.0×10-9mol/L)和低的检测限(0.23pmol/L)。将该方法应用于血清样品分析,结果令人满意。2.2 环境领域 采用BPCL已建立了众多灵敏快速检测环境污染物、环境激素、环境干扰物、自由基的发光分析方法。此外有有研究人员将其与臭氧化学发光结合应用于水体COD分析。其突出优点是仪器方法简单、易操作、线性范围宽、灵敏度高。 2.2.1 Fenton体系降解持久性氯化酚产生本征化学发光的机理:醌类和半醌自由基中间体的构效关系研究及其关键作用 在环境友好的高级氧化过程中,所有19种氯酚类持久性有机污染物都可以产生本征化学发光(CL)。然而,结构-活性关系(SAR,即化学结构和CL生成)的潜在机制仍不清楚。在这项研究中,本文中发现,对于所有19种测试的氯酚同系物,CL通常随着氯原子数量的增加而增加;对于氯酚异构体(如6种三氯苯酚),相对于氯酚的-OH基团,CL以间->邻-/对-CL取代基的顺序降低。 进一步的研究表明,在Fenton试剂降解三氯苯酚的过程中,不仅会产生氯化醌中间体,而且更有趣的是,还会产生氯化半醌自由基;其类型和产率由OH-和/或Cl取代基的定向效应、氢键和空间位阻效应决定。 更重要的是,观察到这些醌类中间体的形成与CL的产生之间存在良好的相关性,这可以充分解释上述SAR发现。 这是关于醌和半醌自由基中间体的结构-活性关系研究和关键作用的第一份报告,这可能对未来通过高级氧化工艺修复其他卤代持久性有机污染物的研究具有广泛的化学和环境意义。2.2.2 介质阻挡放电等离子体辅助制备g-C3N4-Mn3O4复合材料,用于高性能催化发光H2S气体传感 提出了一种新的、简单的基于介质阻挡放电(DBD)等离子体的快速制备g-C3N4-Mn3O4复合材料的策略。所获得的g-C3N4-Mn3O4可作为一种优良的H2S气体传感催化发光(CTL)催化剂,具有优异的选择性、高灵敏度、快速稳定的响应。 基于所提出的传感器能够检测到亚ppm水平的H2S,为在各个领域监测H2S提供了一种极好的替代方案。采用SEM、TEM、XPS、XRD、N2吸附-脱附等测试手段对合成的传感材料进行了表征。该复合材料具有较小的颗粒尺寸和较大的比表面积,这可能归因于氧化非平衡等离子体蚀刻。 此外,该合成以Mn2+浸渍的g-C3N4为唯一前驱体,以空气为工作气体,不含溶剂、额外的氧化剂/还原剂或高温,具有结构简单、操作方便、速度快等优点,并且它可以容易地大规模实施,并扩展到制造用于不同目的的各种金属氧化物改性复合材料。2.2.3表面增强电化学发光,用于汞离子痕量的检测 Ru(bpy) 3^2+的电化学发光(ECL)在分析化学中有着广泛的应用。在此,我们提出了一种通过金纳米棒(AuNR)的局域表面等离子体共振(LSPR)来增强Ru(bpy)3^2+的ECL的新方法。 我们的研究表明,通过控制Ru(bpy)3^2+与AuNRs表面之间的距离,可以大大增强ECL强度。我们将这种表面等离子体激元诱导的ECL增强称为表面增强电化学发光(SEECL)。利用这种SEECL现象来制备用于痕量Hg2+检测的生物传感器。SEECL生物传感器是通过在金电极表面自组装AuNRs和富含T的ssDNA探针来制备的。随着Hg2+的存在,ssDNA探针的构象通过形成T-Hg2+-T结构而变为发夹状结构。Ru(bpy)3^2+可以插入发夹结构DNA探针的凹槽中产生ECL发射,AuNR的LSPR可以增强ECL发射。传感器的ECL强度随着Hg2+浓度的增加而增加,并且在水溶液中达到10fMHg2+的检测极限。研究了AuNR不同LSPR峰位对生物传感器灵敏度的影响。 结果表明,Ru(bpy)3^2+的LSPR吸收光谱和ECL发射光谱之间的良好重叠可以实现最佳的ECL信号增强。2.3 农林业领域 BPCL在农业上有着十分广阔的应用价值。植物的超弱发光来自于体内的核酸代谢、呼吸代谢以及各种氧化还原过程,它变化与植物体内的生理生化变化密切相关.边种广泛存在于体内的自发辐射与机体代谢活动、能量转化之间存在着磐然的联系.因此,利用它作为代谢指标的应用研究就很快引起了广泛的重视。 超弱发光可以作为一种反映生命过程及变化的极其灵敏的指标。另一方面,由于植物的超弱发光与环境密切相关,在不同植物、不同的环境条件下超弱发光均有所不同。 BPCL可以探测植物的超弱发光,研究植物的盐碱、抗旱、抗热、抗寒乃至抗病的指标,从而为抗逆性育种提供一种新的灵敏的物理方法。植物的超弱发光能在一定程度上反映植物生活力的大小,所以可用超弱发光鉴定植物或种子的活力.用超弱发光鉴定种子的活力用样品量少又不破坏种子,对于种子量少的珍贵品种极其有益。此外,BPCL还可以用于农蔬作物新鲜度的评价、污染物残留量分析、辐照食品的检测。2.3.1 基于生物延迟发光,评价玉米萌发期抗旱性。(西安理工大学习岗) 玉米种子萌发抗旱性评价是节水农业研究中的难点和热点问题之一,生物延迟发光分析技术的应用有可能解决这一问题。采用生物延迟发光评价方法研究了玉米种子萌发期的抗旱性能力,延迟发光积分强度的升高有不同的抑制作用,胁迫强度越大。以下为玉米萌发过程中的延迟发光积分强度的变化:2.3.2 盐胁迫下绿豆幼苗的超微弱发光(山东理工大学王相友) 对不同 NaCl 浓度胁迫下绿豆种子早期萌发时的超微弱发光变化进行了初步研究。结果表明,随 NaCI 浓度的增加,绿豆胚根的生长速度(根长)减慢,生长受到明显抑制,其超微弱发光的强度显著下降。萌发期间,SOD 活性随着盐浓度的增加而降低,其活性与生物光子强度有极为密切的关系。 这些结果表明生物超微弱发光探测技术有可能成为植物盐胁迫研究的有效工具,对于进一步理解盐胁迫机理有一定的意义。2.3.3 苹果成熟过程中超弱发光强度与果实跃变的关系(山东理工大学王相友) 用1-甲基环丙烯(1-methyicyclopropene,1-MCP)和乙烯利两种化学药剂,测定了红富士苹果果实超弱发光强度的变化及与乙烯释放、呼吸的关系。 结果显示,各处理果实超弱发光强度的变化与呼吸、乙烯释放速率的变化趋势相似,均有明显的高峰出现,且出峰时间一致。乙烯利处理加速了果实软化,使果实超弱发光强度峰直出现时间提前,并加速了果实跃变后超弱发光强度的衰减:1-MCP 处理延缓了果实的衰老,使果实超弱发光强度峰值推迟,并减弱了峰值过后超弱发光强度的衰减。超弱发光强度能反映富士苹果成熟过程中代谢的变化。2.4 材料领域2.4.1 有机改性水滑石量子点纳米复合材料作为新型化学发光共振能量转移探针 在本工作中,通过在有机改性的LDH外表面上以十二烷基苯磺酸钠双层束的形式高度有序和交替地组装痕量CdTe量子点,制备了定向发光量子点(QD)-层状双氢氧化物(LDH)纳米复合材料。 有趣的是,新型QD-LDH纳米复合材料可以显著增强鲁米诺-H2O2体系的化学发光(CL),这归因于H2O2对QD氧化的抑制、辐射衰减率的增加以及对QDs的非辐射弛豫的抑制。 此外,以鲁米诺为能量供体,以固体发光QD-LDH纳米复合材料为能量受体进行信号放大,制备了一种新型的基于流通柱的CL共振能量转移。通过使用鲁米诺-H2O2CL系统测定H2O2来评估该流通柱的适用性。CL强度在0.5至60μM的浓度范围内对H2O2表现出稳定的响应,检测限低至0.3μM。 最后,该方法已成功应用于雪样品中H2O2的检测,结果与标准分光光度法一致。我们的研究结果表明,新型发光量子点-LDH纳米复合材料将用于高通量筛选具有不同尺寸量子点的复杂系统。2.4.2 油膜碳糊电极热电子诱导阴极电化学发光及其在邻苯二酚纳摩尔测定中的应用 首次在油膜覆盖碳糊电极(CPE)上研究了Ru(bpy)32+/S2O82-体系在阴极脉冲极化下的热电子诱导阴极电化学发光。与其他电极相比,CPE具有更低的背景、更好的稳定性和再现性。该方法也适用于邻苯二酚的测定。 在最佳条件下,在2.0*10^-10mol/L~4.0*10^-9 mol/L和4.0*10^-9mol/L~4.0*10^-7 mol/L范围内,观察到猝灭ECL强度(DI)与邻苯二酚浓度对数(logCcatechol)之间的线性相关性,检测限(LOD)为2.0*10^-10mol/L,低于其他报道的方法。 将该方法应用于水库水中邻苯二酚的测定。平均回收率为83.3%–99.0%,相对标准偏差为0.8%–2.2%。2.4.3 等离子体辅助增强Cu/Ni金属纳米粒子的超弱化学发光 采用具有类似Kirkendall效应的简单水溶液法合成了具有稳定荧光和良好水分散性的Cu/Ni纳米颗粒。60±5nm铜镍摩尔比为1:2的Cu/NiNP显著增强了碳酸氢钠(NaHCO3)与过氧化氢(H2O2)在中性介质中氧化反应产生的超微弱化学发光(CL)。时间依赖性CL的增强取决于NP的组成和试剂添加的顺序。 在研究CL发射光谱、电子自旋共振光谱、紫外-可见吸收光谱和荧光光谱的基础上,提出了等离子体辅助金属催化这种金属NP(MNP)增强CL的机理。MNP的表面等离子体可以从化学反应中获得能量,形成活化的MNP(MNP*),与OH自由基偶联产生新的加合物OH-MNP*。OH-MNP*可以加速HCO3-生成发射体中间体(CO2)2*的反应速率,从而提高整个反应的CL。2.5 食品领域 BPCL可以用于食品中的微生物/病原体及其毒素、痕量金属离子、抗生素、氧自由基、含氮、硫、磷物质、抗坏血酸、有机酸以及辐照食品的分析检测。2.5.1 基于光谱阵列的单一催化发光传感器及其在葡萄酒鉴定中的应用 识别复杂混合物,特别是那些成分非常相似的混合物,仍然是化学分析中一个具有挑战性的部分。本文利用MgO纳米材料在封闭反应池(CRC)中构建的单一催化发光(CTL)传感器来识别醋。它可以提供这种类型的高度多组分系统的原型。通过扫描反应期间分布在15个波长的CTL光谱,获得了醋的光谱阵列图案。这些就像他们的指纹。然后通过线性判别分析(LDA)对阵列的CTL信号进行归一化和识别。对九种类型和八个品牌的醋以及另外一系列的人造样品进行了测试;人们发现这项新技术能很好地区分它们。 这种单一传感器在实际应用中表现出了对复杂混合物分析的良好前景,并可能提供一种识别非常相似的复杂分析物的新方法。2.5.2 层状双氢氧化物纳米片胶体诱导化学发光失活对食品中生物胺浓度的影响 通过氢键识别打开/关闭荧光和视觉传感器在文献中已经明确确立。显然没有充分的理由忽视氢键诱导的化学发光失活(CL)。 在本工作中,作为新型CL催化剂和CL共振能量转移受体(CRET),层状双氢氧化物(LDH)纳米片胶体可以显著提高双(2,4,6-三氯苯基)草酸盐(TCPO)-H2O2体系的CL强度。另一方面,生物胺可以选择性地抑制LDH纳米片TCPO–H2O2系统的CL强度,这是由于光致发光LDH纳米片通过O–H…N键取代O–HO键而失活的结果。 此外,组胺被用作食品腐败的常见指标,发现CL强度与组胺浓度在0.1–100uM范围内呈线性关系,组胺(S/N=3)的检测限为3.2nM。所提出的方法已成功应用于追踪变质鱼类和猪肉样品的组胺释放,显示出这些样品中生物胺水平的时间依赖性增加。2.5.3 碳酸盐夹层水滑石增强过氧亚硝酸化学发光,检测抗坏血酸的高选择性 在本研究中,发现Mg-Al碳酸酯层状双氢氧化物(表示为Mg-Al-CO3LDHs)催化过氧硝酸(ONOOH)的化学发光(CL)发射。CL信号的增强是由于过亚硝酸根(ONOO)通过静电吸引在LDHs表面的浓度,这意味着ONOO可以容易有效地与嵌入的碳酸盐相互作用。此外,抗坏血酸可以与ONOO或其分解产物(例如_OH和_NO2)反应,导致Mg-Al-CO3-LDHs催化的ONOOH反应的CL强度降低。 基于这些发现,以Mg-Al-CO3-LDHs催化的ONOOH为新的CL体系,建立了一种灵敏、选择性和快速的CL法测定抗坏血酸。CL强度在5.0至5000nM的范围内与抗坏血酸的浓度成比例。检测限(S/N=3)为0.5nM,9次重复测量0.1mM抗坏血酸的相对标准偏差(RSD)为2.6%。 该方法已成功应用于商业液体果汁中抗坏血酸的测定,回收率为97–107%。这项工作不仅对更好地理解LDHs催化的CL的独特性质具有重要意义,而且在许多领域具有广泛的应用潜力,如发光器件、生物分析和标记探针。2.6 气相催化发光2.6.1 基于纳米ZnS的四氯化碳催化发光气体传感 基于四氯化碳在空气中氧化纳米ZnS表面的催化发光(CTL),提出了一种新的灵敏的气体传感器来测定四氯化碳。详细研究了其发光特性及最佳工艺条件。 在优化的条件下,CTL强度与四氯化碳浓度的线性范围为0.4–114ug/mL,相关系数(R)为0.9986,检测限(S/N=3)为0.2ug/mL。5.9ug/mL四氯化碳的相对标准偏差(R.S.D.)为2.9%(n=5)。 对甲醇、乙醇、苯、丙酮、甲醛、乙醛、二氯甲烷、二甲苯、氨和三氯甲烷等常见异物无反应或反应较弱。在4天的40小时内,传感器的催化活性没有显著变化,通过每小时收集一次CTL强度,R.S.D.小于5%。该方法简便灵敏,具有检测环境和工业中四氯化碳的潜力。2.6.2 珊瑚状Zn掺杂SnO2的一步合成及其对2-丁酮的催化发光传感 将一维纳米级构建块自组装成功能性的二维或三维复杂上部结构具有重要意义。在这项工作中,我们开发了一种简单的水热方法来合成由纳米棒组装的珊瑚状Zn掺杂SnO2分级结构。利用XRD、SEM、TEM、XPS、FTIR和N2吸附-脱附对所得样品的组成和微观结构进行了表征。通过研究在不同反应时间合成的样品,探讨了生长机理。作为催化发光(CTL)气体传感器的传感材料,这种珊瑚状Zn掺杂的SnO2表现出优异的CTL行为(即,与其他15种常见的挥发性有机化合物(VOC)相比,具有高灵敏度、对2-丁酮的优异选择性以及快速响应和回收)。在相同的条件下测试了SnO2样品的三种不同Zn/Sn摩尔比,以证明Zn掺杂浓度对传感性能的影响。在最佳实验条件下,进一步研究了基于1∶10Zn掺杂SnO2传感材料的CTL传感器对2-丁酮的分析特性。气体传感器的线性范围为2.31–92.57ug/mL(R=0.9983),检测限为0.6ug/mL(S/N=3)。2.6.3 缺陷相关催化发光法检测氧化物中的氧空位 氧空位可以控制氧化物的许多不同性质。然而,氧空位的快速简单检测是一个巨大的挑战,因为它们的种类难以捉摸,含量高度稀释。在这项工作中,本文中发现TiO2纳米颗粒表面乙醚氧化反应中的催化发光(CTL)强度与氧空位的含量成正比。氧空位依赖性乙醚CTL是由于氧空位中大量的化学吸附O2可以促进其与化学吸附的乙醚分子的接触反应,从而显著提高CTL强度。因此,乙醚CTL可以用作TiO2纳米颗粒中氧空位的简单探针。通过检测金属离子掺杂的TiO2纳米粒子(Cu、Fe、Co和Cr)和氢处理的TiO2纳米粒子在不同温度下在具有可变氧空位的TiO2表面上的乙醚CTL强度,验证了其可行性。本CTL探针测得的氧空位含量与常规X射线光电子能谱(XPS)技术测得的结果基本一致。与已经开发的方法相比,所开发的CTL探针的优越性能包括快速响应、易于操作、低成本、长期稳定性和简单配置。本文认为氧空位敏感的CTL探针在区分氧化物中的氧空位方面具有很大的潜力。
  • 前沿电化学研究的热点--微区扫描电化学新技术讲座
    美国AMETEK集团旗下两大著名电化学仪器品牌:PAR(普林斯顿应用研究)及Solartron(输力强分析),一直以来作为电化学工作站设备领域内的技术领导者,为广大从事电化学研究的科研工作者提供高品质的技术解决方案。此次,阿美特克科学仪器部将于2014年5月22日(SINO?CORR 2014 NACE 中国国际腐蚀控制与涂料涂装展览期间)举办微区扫描电化学新技术讲座,现场提供全套微区扫描电化学设备供实际操作及样品测试,热忱欢迎各位的光临! 近年来,微区扫描电化学技术发展迅猛,在腐蚀和电沉积科学中的表面反映过程基础研究,酶稳定性研究,生物大分子的电化学反应特性,化学传感器,点蚀孔蚀,涂层完整性和均匀性,涂层下或逾金属界面间的局部腐蚀,缓蚀剂性能等相关领域得到广泛应用,倍受科技工作者的关注。 本次新技术讲座特邀请了阿美特克公司科学仪器部产品经理Dr.John Harper和中国海洋大学王佳教授主讲。 Dr. John Harper (AMETEK GROUP 科学仪器部)Dr. John Harper师从英国莱斯特大学Andrew Abbott教授,并获得博士学位。他的研究关注于超临界二氧化碳中的电化学性质。在英国短暂博士后工作后,他进入工业界,参与了新型双极板的氢燃料电池的研发工作。他在燃料电池领域的成就使得他被英国剑桥的一个利用燃料电池催化剂的微传感器研发公司聘用。2003,John加入输力强分析担任应用专家并在公司发挥了巨大的作用,目前,John担任科学仪器部系统产品经理,主要负责的产品有Versascan / SECM, Modulab XM DSSC染料敏化太阳能电池测试系统等。 主讲内容:从腐蚀,基础电化学,能源领域探讨微区扫描电化学包括SECM, SVET, SKP, LEIS, OSP, SDS的基本原理及应用 王佳教授 (中国海洋大学)中国海洋大学化学化工学院王佳教授,博士生导师,曾担任中国科学院海洋研究所责任研究员,现任中国腐蚀与防护学会腐蚀电化学及测试方法专业委员会副主任,中国防腐蚀标准化技术委员会委员,中国造船工程学会高级会员,山东省腐蚀与防护学会副理事长,“中国腐蚀与防护学报”和“腐蚀科学与防护技术”编委。王佳教授在腐蚀电化学研究领域,专注于多种环境条件下的腐蚀机理,腐蚀控制与监测,腐蚀电化学电子仪器及传感器,腐蚀防护评价等,并在这些领域获得大量成绩,已发表研究论文225篇(SCI 50篇);已发表专利46项。 主讲内容:腐蚀研究中的微区电化学方法腐蚀研究中的电化学阻抗谱等效电路模型解析方法 新技术讲座定于2014年5月22日(星期四), 在阿美特克商贸(上海)有限公司北京分公司培训室举办。具体安排如下:9:00-11:00 / Dr. John Harper 从腐蚀,基础电化学,能源领域探讨微区扫描 电化学 包括SECM, SVET, SKP, LEIS, OSP, SDS的基本原理及应用11:15-12:30 / 王佳教授 微区扫描电化学测试技术及应用实例 交流阻抗谱数据分析及解析12:30-13:30 午餐13:30-16:30 分组进行仪器上机动手实践及自由讨论 联系方式:美国阿美特克科学仪器部(普林斯顿及输力强)联系人:乌鑫 女士电话: 010-85262111-15 北京市朝阳区酒仙桥路10号京东方大厦(B10)二层西侧邮编:100015 Email: michelle.wu@ametek.com.cn 回执姓名 单位及通讯地址电话 email参加人数 是否需要住宿
  • 2023厦门大学“电化学研究范式”暑期班:开启电化学的奇幻之旅
    2023年7月22日,厦门大学在翔安校区如期举行了“电化学研究范式”暑期班活动。本次活动吸引了约200多名学者参与培训,探索了电化学领域的前沿知识和技术。通过本次暑期班,同学们深入了解了电催化原理、电化学阻抗技术、电催化测试实验数据及智能计算电化学等内容。尤其值得一提的是,连续三天下午的实验高潮,学生们频频亲身操作、体验最经典的先进实验设备之美国PINE旋转圆盘电极(MSR)。具体来说,PINE旋转圆盘电极是一种常用于电化学研究的装置,通过加速物质在电极表面的扩散过程,提高反应效率和灵敏度。这一设备不仅在实验室中发挥着重要作用,更为电化学研究带来了无限的可能。目前理化(香港)有限公司代理的PINE旋转圆盘电极(MSR)在中国累计约有2000多家高校和研究院所应用,可以说积累了大量的用户基础及应用解决方案。本次暑期班的实验课程以PINE旋转圆盘电极为基础,利用其独特的旋转机制,结合电催化原理和电化学阻抗技术,学者们在老师指导下开展了一系列动态实验。实验过程中,他们掌握了实验设计、数据采集和分析等关键技能,加深了对电化学领域的理论和应用的理解。7.22-7.24日这三天,除了理论与实践的精彩呈现,活动还为学者们开启了与电化学专家交流的大门。他们与老师们进行深入的研究探讨,分享彼此的研究成果和思考,获得了宝贵的学习机会。这次暑期班不仅是一次知识的盛宴,更是学者们在电化学领域的一次奇幻之旅。暑期培训班课程仍在如火如荼的进行中.....理化(香港)有限公司期待您赶紧加入这场奇幻之旅!!
  • 美国Gamry电化学新品发布-Interface™ 1010系列电化学工作站
    —— Gamry不断追求在电化学领域的技术创新! 美国Gamry 电化学仪器公司(Gamry Instruments,Inc.)是世界电化学工作站的领先制造者,从单通道到多通道电化学工作站,在全球都已得到广泛应用。 Gamry不断追求在电化学领域的技术创新,最新推出的Interface™ 1010系列电化学工作站,是Gamry电化学专家与仪器专家共同开发的成果。这是一款研究级、通用型电化学工作站,最终模数分辨率达到23位,频率分辨率(采样时间的倒数)达到1/232。 Interface™ 1010是电化学领域最精密制造的电子产品,采用表面贴装电子元件方式,机箱内无电缆、线束、互联;所选用的变速风扇、低噪音电源、专门设计的底盘等,充分保证了仪器更低的漂移,更高的精度、准确度及稳定性。 Interface™ 1010可自由组合成为多通道电化学工作站,并且通道之间达到完美隔离,互不影响。 Interface™ 1010具有多种细分型号(Interface™ 1010E、1010B、1010T),满足用户不同方面的需求。 下面将详细阐述Interface™ 1010系列电化学工作站的技术特点: 最佳分辨率:为了获得最佳模数分辨率,Gamry以16位A/D转换器为设计基础,然后增加了噪声滤波器,以消除通道中的任何噪声。最后,通过放大器进一步对信号进行可控放大,增益高达×100,几乎为27倍,即提高7位分辨率。当增益添加到A/D转换器时,得到的最终分辨率为23位,是几乎没有噪声条件下的分辨率!上图是电化学工作站InterfaceTM 1010采用Framework™ 软件,针对200 Ω电阻的实际噪声数据(电位0.0 vs参考值; IE范围1μA满量程;滤波器:1 kHz;CA速度正常)。峰值电流为41.1 nA。使用这种200Ω电阻,我们可以从欧姆定律计算峰峰值电压仅为8.2μV。请注意,没有电源(60 Hz)信号引起的噪声! 频率分辨率在电子学中,频率分辨率 ?f 可以定义为采样时间的倒数。对于Gamry仪器,采用32位直接数字合成时钟为信号发生源,拥有1/232的频率分辨率。(有关频率分辨率的更多信息,请参见我们的技术报告“波形生成和频率分辨率”)。 微调电位器微调电位器会引来系列系统误差和费时矫正。 Interface™ 1010采取软硬件的完美结合,在相关硬件里结合相应软件,不采用微调电位器来实现微调性能。几乎所有的调整都是通过软件自动执行,很少需要手动校准。一般来说,微调电位器极易受到机械冲击和温度变化的影响,而使电化学测量结果失真。因此,Interface™ 1010的设计,不需要更多手动,使校准更容易。InterfaceTM 1010内部的印刷电路板请注意组件的平面分布:左上角的变速冷却风扇远离敏感的电子设备,来避免信号中的噪音。 只在表面安装元器件Gamry仪器在印刷电路板中只使用表面贴装电子元件。表面安装的组件意味着体积更小,温度波动更小,当您获取数据时,可以减少漂移并获得更精确的信号。 没有电缆、线束或互连Interface™ 1010在其机箱里面不包含电缆,线束或互连。这意味着Interface™ 1010具有优越的机械可靠性(无连接变松),较少的杂散电磁干扰,以及更少的触点而导致内部腐蚀。降低金属间接触,可以保证我们的仪器具有更低的漂移,更好的稳定性。 低噪声电源Gamry制造的系列电化学工作站,都使用低噪声开关电源。这种电源消除了电磁干扰。它是有效率的,意味着产生的热量较少,而使环境更加环保。 专门设计的底盘Gamry制造的系列电化学工作站中的底盘,保证优化除热和保持恒温。底盘有一个特殊的引导气流设计,可以更快地冷却电子设备。专门设计的底盘,保证Interface™ 1010电位器的低漂移,高精度和稳定的测量! 变速风扇设计电化学工作站机箱内的电脑控制的变频风扇,可以有效冷却内部电子元件,风扇设计用于保持恒温。电动马达驱动的风扇会产生少量的电气噪音,风扇远离敏感元件,有效避免风扇信号引起的噪音。另外,变速风扇更安静,这在繁忙的实验室环境中很重要。 通道间的完美隔离电化学测量中的信号测量或者施加来自不同电极或者不同通道。这些信号对应的每一个通道,理想地说,不应该影响另外一个通道的信号。也就是说,通道之间要彼此隔离。Gamry 采取特制组件与导电栅栏,大大降低了任何电磁干扰与通道之间的影响。绿色制造为了保护环境,所有Gamry电化学工作站均符合中国RoHS标准,因此您可以确保Interface™ 1010几乎无铅,无汞,无镉。 Gamry电化学工作站也采取可回收利用的铝制底盘。 了解更详细的产品信息,请登陆Gamry官网。
  • 大型动力电池电化学测量方法技术讲座
    大型动力电池的电化学测量方法技术讲座--EIS(电化学交流阻抗测试)应用-- 电化学交流阻抗测试(EIS)、是把电池内部的化学反应置换为电气特性的等效电路,进行详细解析的唯一方法。在很早以前,此方法就应用于基础电化学、金属腐蚀、蓄电池、燃料电池等的测试。 其具有通过扫频的方式可以分离时间常数的特点,如果应用于电池测试,可以在不破坏复杂的电池内部状态的情况下,对电池进行解析,这是在充放电测试中无法达到的。在高性能电池研发技术处于领先地位的日本,EIS测试在电动汽车用大型电池的评价测试领域也已经广泛普及。而在目前的中国大部分企业偏重于实际生产,忽略了基础研发,基本上没有进行大型电池的EIS测试。 本次讲座,以已经进行着大型电池的研发或者将来有意进行大型电池研发的技术人员为对象,结合我公司测试设备的演示,以简单易懂的方式讲解EIS测试的基本原理以及在大型动力电池领域上的应用。■主讲人:佐佐木 浩人 (尖端应用测量部 部长)■现场翻译:郑海林■内容: 交流阻抗与直流电阻的区别 EIS的测试原理、设备选型、测试注意事项 EIS测试事例简介 大型动力电池上的应用和现场演示 大型动力电池测试的注意事项、误差因素 问题的解决方法:介绍我公司的解决方案 ※采用模拟和现场演示的方法进行说明。 ※讲座结束后,举办交流晚餐■时间:2011年12月22日(星期四)13:30-16:30■地点:上海市内酒店会议室(另行通知)■参加人数:30人■参加费:免费(需要事先登记报名)■登记报名: 使用E-mail登记 请写清楚所在公司、部门、姓名、电话、邮箱地址, 并注明"报名参加大型动力电池的电气化学测试方法应用技术讲座", 发邮件至bfc@toyochina.com.cn  ※讲座内容可能部分发生变化。  ※由于参会人数有要求,超过定员将停止接受报名,请您尽早登记报名。  ※我们可能拒绝同行业的竞争对手以及与此相关的人员参会。■咨询 东扬精测系统(上海)有限公司 尖端应用测量部 郑海林、沈利 TEL: 021-6380-9633 Email: bfc@toyochina.com.cn URL: http://www.toyochina.com.cn
  • 我国率先实现对重金属离子高灵敏的电化学检测
    p   中科院合肥物质科学研究院智能所黄行九研究团队利用表面具有大量氧空位的TiO2-x纳米片,实现对重金属离子高灵敏的电化学检测,对一直困扰人们的重金属离子检测干扰机制做了深入的探索,并提出了“电子诱导干扰机制”这一原理。相关成果日前已发表在美国化学学会的《分析化学》(Analytical Chemistry)杂志上。 /p p   纳米材料已经被广泛的应用于电分析化学中。然而,对于纳米材料活性位点与电化学传感机制的构效关系,仍然缺乏一个原子层面的解释。由于电化学分析原理的内在原因,重金属离子之间的相互干扰在电化学检测领域中也是研究人员不可回避的一个问题。 /p p   研究人员已经发现了二氧化钛TiO2表面掺杂氧空穴调控晶面的表面电子结构,激发了惰性半导体纳米材料对重金属离子的检测活性。在此基础上,研究人员通过调控反应物中氟化氢的比例,制备了具有大量表面氧空位的TiO2-x纳米片。通过高分辨透射电子显微镜(HRTEM),X射线衍射(XRD),拉曼,电子顺磁共振(ESR),X射线光电子能谱(XPS)等多种技术揭示了纳米材料活性位点与电化学传感性能的构效关系。实验证实,在离子共存体系中,研究人员利用同步辐射技术(EXAFS),从原子层面上系统的阐述了二价镉离子Cd(II)对二价铜离子Cu(II)的干扰原因。研究表明,Cd(II)能够促进电子从TiO2-x纳米片表面向Cu(II)的转移,同时,Cu(II)的存在增长了Cu-O的键长,导致解吸能降低。 /p p   这些发现为从原子层面上发展高灵敏纳米材料和研究电化学检测干扰机制夯实了坚定的道路。 /p p br/ /p
  • 本周开播!两大知名电化学厂商的最新产品,想你想不到
    电分析化学是仪器分析的一个重要的分支,它是以测量某一化学体系或试样的电响应为基础建立起来的一类分析方法。近年来,该分析方法广泛地服务于生物、能源、环境、安全等多个领域。而作为一项系统设备相对简单,占地面积小,设备操作维护成本低,能有效避免环境污染的“环境友好型”分析方法,利用电分析化学技术的相关仪器设备在实际应用中同样有着无可替代的地位。在工业自动化的发展过程中,这项技术被广大优秀厂商应用并发展,在各大工业领域切实发挥着作用。2022年12月21日-22日(本周三周四),仪器信息网与广州大学联合举办,西湾国家重大仪器科学园(中山)协办的“第三届电分析化学”主题网络研讨会将于线上隆重开幕!本次网络研讨会将采用线上直播的形式,针对当下电分析化学前沿研究及应用热点进行探讨,为电分析化学相关从业人员搭建沟通和交流的平台,促进我国电分析化学及相关仪器技术与应用的发展。会议邀请广州大学分析科学技术研究中心主任,国家杰出青年科学基金获得者,广州大学牛利教授进行开场致辞,2位来自赛莱默与刚瑞的专家、14位来自各大高校、研究所的大咖进行最新的技术分析与最新结果科研成果的分享。点击参会》》》https://www.instrument.com.cn/webinar/meetings/electroanalytical2022赛莱默Xylem,全球领先的水技术公司之一。赛莱默致力于开发创新的技术解决方案,以应对全球严苛的水资源挑战。赛莱默的产品和服务专注于市政、工业、民用和商用建筑等领域的水输送、水处理、水测试、水监测和水回用。那么,分析过程敏捷高效的电分析化学在水质检测领域又有什么“大展拳脚”的机会?据了解,电极法余氯总氯分析仪是其中一个广泛的应用。其原理是运用先进的恒电压原理,利用在极化电极和参比电极之间施加一个稳定的点位势,不同的被测成分在该点位势下产生不同的电流强度,仪表通过对电流信号的采集和分析计算出被测成分的浓度。相对于DPD比色法,电极法余氯总氯分析仪具有无需试剂、连续测试等优势,广泛应用于饮用水行业。纪宗媛 赛莱默 应用工程师《余氯/总氯电极在自来水监测中的应用》纪宗媛,女,应用工程师,就职于赛莱默分析仪器有限公司。毕业于北京化工大学,环境科学与工程专业硕士。长期从事水质分析仪表的技术支持、产品培训和应用问题解决等工作,在水质监测领域具有丰富经验。本次网络研讨会,纪宗媛将介绍一款维护量极低的电极法余氯/总氯分析仪的应用及特点。点击参会》》》https://www.instrument.com.cn/webinar/meetings/electroanalytical2022除此以外,作为电分析化学领域的另一优秀厂商,刚瑞GAMRY三十年专注于电化学测试及相关产品的研制,致力于电化学分析最佳性能的研发,其产品在电化学测试领域被广泛应用着。刚瑞产品涵盖各类电化学工作站、电化学阻抗谱仪、电化学石英晶体微天平以及电化学工作站与各种光谱联用装置等。刚瑞目前在上海已设立分公司以服务全国,并致力为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务。王凤平 辽宁师范大学化学化工学院 教授《电分析化学的关键测试技术与实验教学》王凤平,男,东北师范大学理学硕士,中国科学院金属研究所工学博士,北京科技大学博士后,日本北海道大学高级访问学者;现为辽宁师范大学化学化工学院教授,辽宁省科技奖励评审专家,辽宁省表面工程协会专家,辽宁省高校“分子与功能材料”重点实验室成员,辽宁省高等学校创新团队成员;大连市安全生产专家,大连市金属腐蚀防护学会理事,大连市化学化工学会理事;王凤平长期从事腐蚀电化学方面教学与研究,主持国家自然科学基金、辽宁省科技厅、辽宁省教育厅及各类企业合作项目11项;已在国际、国内核心期刊发表研究论文110余篇,出版学术专著8部,获辽宁省自然科学学术成果奖。本次网络研讨会,王凤平主要从三个方面介绍刚瑞的仪器特点,以及在电分析领域的应用:1.低电流准确表征及其应用:刚瑞的仪器擅长测量微小的电流,最低可以达到pA级别;2.全范围阻抗测试技术:刚瑞的阻抗技术一直非常全面,低阻抗准确测量至纳欧级样品,高阻抗准确测量至T欧(1.0E+12Ω)级样品,不导电涂层等,包括常规的样品;3.电化学光谱联用技术:刚瑞的电化学工作站可以直接与IMPS/IMVS光谱电化学系统、以及紫外-可见光谱、红外光谱、拉曼等第三方设备联用,尤其软件方面可以实现严格同步。点击参会》》》https://www.instrument.com.cn/webinar/meetings/electroanalytical2022
  • 阿美特克微区扫描电化学技术讲座在京举办
    (摘自仪器信息网 2011-9-23新闻) 仪器信息网讯 2011年9月22日上午9:00,美国阿美特克(Ametek)公司微区扫描电化学技术讲座在北京科技大学腐蚀中心成功举办,80余位从事扫描电化学研究领域的专家学者出席了会议;仪器信息网作为特邀媒体亦参加了会议。 会议现场 美国阿美特克公司科学仪器部中国区经理杨琦女士主持会议 近年来,微区扫描电化学技术发展迅猛,在腐蚀和电沉积科学中的表面反映过程基础研究、酶稳定性研究、生物大分子的电化学反应特性、化学传感器、点蚀孔蚀、涂层完整性和均匀性、涂层下或逾金属界面间的局部腐蚀、缓蚀剂性能等相关领域得到广泛应用,倍受科技工作者的关注。因此,阿美特克公司特别邀请了美国阿美特克公司普林斯顿应用研究(PAR)部门Rob Sides博士、厦门大学林昌健教授作相关的技术讲座。 美国阿美特克公司普林斯顿应用研究部门Rob Sides博士 报告题目:Applications of Different Localized, Scanning Electrochemical Measurements   Rob Sides博士在报告中简要介绍了微区电化学测试系统的各项技术设备原理及进展,并对阿美特克公司扫描振动探针/扫描振动电极(SVP/SVET)、局部电化学阻抗 (LEIS)、扫描电化学显微镜(SECM)、扫描开尔文探针(SKP)等微区电化学测试设备的技术特点和重要参数;同时,Rob Sides博士用大量数据和图片说明了上述微区电化学仪器在金属材料腐蚀等多个领域拥有着广泛的应用。据了解,Rob Sides博士长期从事微区扫描技术应用和开发,迄今已在全球提供了超过30套微区电化学仪器的应用方案设计与技术支持。 厦门大学林昌健教授 报告题目:扫描电化学微探针技术及在局部腐蚀研究中的应用   林昌健教授简要概述了当前国内外具有空间分辨能力的扫描微探针技术及其在腐蚀研究中的应用,包括扫描微电极技术(SMET)、SECM、SKP等 同时,林昌健教授在报告中还重点介绍了其近年来先后建立的具有微米空间分辨度的电化学微探针技术,并利用各种扫描探针技术研究金属/溶液界面电化学不均一性及其局部腐蚀过程。该研究表明,空间分辨电化学方法的发展及应用,加深了人们对金属表面和金属/溶液界面电化学不均一性,特别是金属局部腐蚀发生、发展及过程机理的认识。 Rob Sides博士对M370扫描电化学工作站作现场演示 用户参观阿美特克公司M370扫描电化学工作站 讲座结束后,阿美特克公司特别组织了参会人员参观了北京科技大学腐蚀与防护中心的阿美特克公司M370扫描电化学工作站(SVP,SKP,SECM,LEIS技术四合一),并由Rob Sides博士对设备作了现场演示,使到场用户获益匪浅。
  • 阿美特克微区扫描电化学技术讲座在京举办
    仪器信息网讯 2011年9月22日上午9:00,美国阿美特克(Ametek)公司微区扫描电化学技术讲座在北京科技大学腐蚀中心成功举办,80余位从事扫描电化学研究领域的专家学者出席了会议;仪器信息网作为特邀媒体亦参加了会议。 会议现场 美国阿美特克公司科学仪器部中国区经理杨琦女士主持会议   近年来,微区扫描电化学技术发展迅猛,在腐蚀和电沉积科学中的表面反映过程基础研究、酶稳定性研究、生物大分子的电化学反应特性、化学传感器、点蚀孔蚀、涂层完整性和均匀性、涂层下或逾金属界面间的局部腐蚀、缓蚀剂性能等相关领域得到广泛应用,倍受科技工作者的关注。因此,阿美特克公司特别邀请了美国阿美特克公司普林斯顿应用研究(PAR)部门Rob Sides博士、厦门大学林昌健教授作相关的技术讲座。 美国阿美特克公司普林斯顿应用研究部门Rob Sides博士 报告题目:Applications of Different Localized, Scanning Electrochemical Measurements   Rob Sides博士在报告中简要介绍了微区电化学测试系统的各项技术设备原理及进展,并对阿美特克公司扫描振动探针/扫描振动电极(SVP/SVET)、局部电化学阻抗 (LEIS)、扫描电化学显微镜(SECM)、扫描开尔文探针(SKP)等微区电化学测试设备的技术特点和重要参数;同时,Rob Sides博士用大量数据和图片说明了上述微区电化学仪器在金属材料腐蚀等多个领域拥有着广泛的应用。据了解,Rob Sides博士长期从事微区扫描技术应用和开发,迄今已在全球提供了超过30套微区电化学仪器的应用方案设计与技术支持。 厦门大学林昌健教授 报告题目:扫描电化学微探针技术及在局部腐蚀研究中的应用  林昌健教授简要概述了当前国内外具有空间分辨能力的扫描微探针技术及其在腐蚀研究中的应用,包括扫描微电极技术(SMET)、SECM、SKP等 同时,林昌健教授在报告中还重点介绍了其近年来先后建立的具有微米空间分辨度的电化学微探针技术,并利用各种扫描探针技术研究金属/溶液界面电化学不均一性及其局部腐蚀过程。该研究表明,空间分辨电化学方法的发展及应用,加深了人们对金属表面和金属/溶液界面电化学不均一性,特别是金属局部腐蚀发生、发展及过程机理的认识。 Rob Sides博士对M370扫描电化学工作站作现场演示 用户参观阿美特克公司M370扫描电化学工作站   讲座结束后,阿美特克公司特别组织了参会人员参观了北京科技大学腐蚀与防护中心的阿美特克公司M370扫描电化学工作站(SVP,SKP,SECM,LEIS技术四合一),并由Rob Sides博士对设备作了现场演示,使到场用户获益匪浅。   关于美国阿美特克集团公司:   美国阿美特克集团公司(www.ametek.com)是全球电子仪器和电子机械设备的领先制造商,年销售额超过27亿美元,员工超过11,000人,分布在美国及全球的80多个工厂,80多家销售和服务中心。Advanced Measurement Technology Inc.是美国阿美特克(AMETEK)集团的子公司,旗下拥有Princeton Applied Research(PAR)普林斯顿应用研究,Solartron Analytical输力强分析,Signal Recovery和ORTEC四个品牌。其中普林斯顿应用研究,输力强分析与Signal Recovery组成了阿美特克科学仪器部。   普林斯顿应用研究是阿美特克集团公司旗下一个具有悠久历史的电化学仪器品牌。它创建于1961年,由世界著名的普林斯顿大学和等离子物理实验室的一群科学家和商业人士联合组建,50年来,在业内拥有极高的品牌知名度。自1979年以EG&G品牌进入中国以来,用户已经超过千人,专心倾注于电化学分析与合成、电催化、腐蚀应用与研究、化学电源、生物医药和传感器、材料研究等领域,提供卓越的研究型宏观和微观电化学测试仪器。
  • 美国Gamry电化学测试技术培训会(青岛站)盛大召开
    2017年3月22日,美国Gamry电化学测试技术培训会在美丽的海滨城市——青岛盛大召开,来自各高校、研究所、企业的一百二十多名Gamry用户参加了此次会议。会议围绕电化学基本原理、交流阻抗测试与数据分析、腐蚀电化学测试原理及方法、Gamry产品信息、仪器的操作使用、数据处理等主题进行了热烈的讨论与交流。 会议由产品经理司国春主持,司经理介绍了Gamry公司概况、最新的产品信息以及Gamry举办的各种形式技术支持活动。美国Gamry 电化学仪器公司是世界电化学工作站的领先制造者,有着近30年历史。从单通道到多通道电化学工作站,在全球都已得到广泛应用。从线路板的设计, 元器件的选择,信号的处理,甚至到智能导线,Gamry一致都追求电化学仪器的最佳性能。 Gamry应用工程师作了关于电化学工作站基本原理及使用、腐蚀电化学原理与测试的报告,着眼于电化学基本原理与概念、实验基础知识,围绕腐蚀、电池等领域进行了详细的分析与讲解。 Gamry为材料科学家和腐蚀工程师提供了世界上最完整的电化学工具。所有的Gamry恒电位仪都可以运行完整的直流测试技术、交流EIS、电化学噪声和电化学频率调制技术(EFM)。长期以来,Gamry一直是电化学腐蚀领域的领军者。 会议特邀中国海洋大学王佳教授,作了“腐蚀电化学阻抗谱等效电路模型解析方法”的报告。王教授在金属腐蚀与防护领域、电化学阻抗等领域具有深厚的造诣,他深入浅出地讲解了交流阻抗测试的仪器原理、测试方法、腐蚀相关的数据解析,阻抗实验的注意事项等,在场的听众都深受启发,赢得大家热烈的掌声。之后,王教授还与有问题的用户进行了深入的探讨和交流。 美国Gamry电化学仪器公司的阻抗技术一直闻名国内外,低阻抗准确测量至微欧(10-6 Ohm),高阻抗准确测量至T欧(1012 Ohm)。仪器具有很高的输入阻抗(1014Ω),任何一台电化学工作站的噪声小于微伏。另外,独特的设计还可以进行电池阴阳极同步测试、半电池阻抗测试、单个电池与电池堆同步测试,以及同时测试温度、压力、pH值等。仪器具有超强的扩展性和兼容性,可以方便地与各种充放电设备兼容,实现阻抗的准确测量;还可与各种光谱设备联用,开展太阳能电池、拉曼、紫外-可见等光谱电化学研究。 培训会期间,中国科学院海洋研究所孙虎元教授还就弱极化曲线解析分享了自己的心得。极化曲线的测试解析方法、几种机理分析模型、对于Gamry弱极化曲线拟合分析的独到见解,并就Gamry数据接口进一步开发了数据分析工具。 最后,Gamry技术支持工作人员与用户就仪器使用及实验中遇到的各种问题进行自由交流和讨论。
  • 锂离子电池电化学测量方法概述
    p   锂离子电池电极过程一般经历复杂的多步骤电化学反应,并伴随化学反应,电极是非均相多孔粉末电极。为了获得可重现的、能反映材料与电池热力学及动力学特征的信息,需要对锂离子电池电极过程本身有清楚的认识。 /p p   电池中电极过程一般包括溶液相中离子的传输,电极中离子的传输,电极中电子的传导,电荷转移,双电层或空间电荷层充放电,溶剂、电解质中阴阳离子,气相反应物或产物的吸附脱附,新相成核长大,与电化学反应耦合的化学反应,体积变化,吸放热等过程。这些过程有些同时进行,有些先后发生。 /p p   电极过程的驱动力包括电化学势、化学势、浓度梯度、电场梯度、温度梯度。影响电极过程热力学的因素包括理想电极材料的电化学势,受电极材料形貌、结晶度、结晶取向、表面官能团影响的缺陷能,温度等因素。影响电极过程动力学的因素包括电化学与化学反应活化能,极化电流与电势,电极与电解质相电位匹配性,电极材料离子、电子输运特性,参与电化学反应的活性位密度、真实面积,离子扩散距离,电极与电解质浸润程度与接触面积,界面结构与界面副反应,温度等。 /p p   为了理解复杂的电极过程,一般电化学测量要结合稳态和暂态方法,通常包括3个基本步骤,如图1所示。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/a9afc2e6-64ea-4948-82ad-3215bccf8bd5.jpg" title=" 001.jpg.png" alt=" 001.jpg.png" / /p p    strong 1 电化学测量概述 /strong /p p   1.1测量的基本内容 /p p   电化学测量主要研究电池或电极的电流、电势在稳态和暂态的激励信号下随外界条件变化的规律,测量反映动力学特性的参数。 /p p   1.2测量电池的分类及特点电化学测量一般采用两电极电池或三电极电池,较少使用四电极电池。 /p p   1.2.1两电极电池如图2所示,蓝色虚线框所示是一个典型的两电极电池的测量示意图,其中W表示研究电极,亦称之为工作电极(workingelectrode),C是辅助电极(auxiliaryelectrode),亦称之为对电极(counterelectrode)。锂电池的研究中多数为两电极电池,两电极电池测量的电压(voltage)是正极电势(potential)与负极电势之差,无法单独获得其中正极或负极的电势及其电极过程动力学信息。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/42e77e09-6d49-4696-a71d-981ad1f27239.jpg" title=" 002.jpg.png" alt=" 002.jpg.png" / /p p   1.2.2三电极电池与电极电势以及极化电流的测量图2是一个三电极电池示意图,W和C分别是工作电极和对电极(同上),R是参比电极(referenceelectrode)。W和C之间通过极化电流,实现电极的极化。W和R之间通过极小的电流,用于测量工作电极的电势。通过三电极电池,可以专门研究工作电极的电极过程动力学。 /p p   由于在锂离子电池中,正极和负极的电化学响应存在较大差异,近年来通过测量两电极电池电压电流曲线,对曲线进行dQ/dV处理,结合熵的原位测量,也能大致判断电池的电流或电压响应主要是与负极还是与正极反应有关。 /p p   1.3参比电极的特性及门类参比电极的性能直接影响电极电势的准确测量,通常参比电极应具备以下基本特征:①参比电极应为可逆电极 ②不易被极化,以保证电极电势比较标准和恒定 ③具有较好的恢复特性,不发生严重的滞后现象 ④具有较好的稳定性和重现性 ⑤快速暂态测量时,要求参比电极具有较低的电阻,以减少干扰,提高测量系统的稳定性 ⑥不同的溶液体系,采用相同的参比电极的,其测量结果可能存在差异,误差主要来源于溶液体系间的相互污染和液接界电势的差异。 /p p   常用的水溶液体系参比电极有可逆氢电极、甘汞电极、汞-氧化汞电极、汞-硫酸亚汞电极等 常用的非水溶液体系参比电极有银-氯化银电极、Pt电极以及金属锂、钠等电极。此外,也可以用银丝、铂丝做准参比电极,或者采用电化学反应电位稳定的溶解于电解液的二茂铁氧化还原电对。关于准参比电极细节可参考A.J.Bard编著的《ElectrochemicalMethods》。 /p p   1.4研究电极的门类及特性电化学测量中常用的研究电极主要有固体电极、超微电极和单晶电极。一般电化学研究所指的的固体电极主要有Pt电极和碳电极。其中碳电极包括热解石墨、高定向热解石墨(HOPG)、多晶石墨、玻璃化碳、碳纤维等。固体电极在使用时需要对其表面进行特殊处理,以期达到较好的重复性。常规的处理步骤为:①浸泡有机溶剂,除去表面吸附有机物 ②机械抛光,初步获取较高的表面光洁度 ③电化学抛光,除去电极表面氧化层及残留吸附物质 ④溶液净化,保证溶液的纯度,消除溶液中的杂质对测量结果的影响。 /p p   此外,超微电极和单晶电极以其独特的性质,近些年来也得到了较广泛的应用。前者可以快速获得动力学参数,且对待测材料的量要求很低,可以避免黏结剂、导电添加剂的干扰。后者可以精确获得溶剂吸脱附、表面结构、结晶取向等对电极过程动力学的影响。 /p p   在锂离子电池的研究中,固体电极包括含有活性物质的多孔粉末电极、多晶薄膜电极、外延膜薄膜电极、单颗粒微电极以及单晶电极等,多数测量时采用多孔粉末电极。 /p p   1.5电极过程电极过程一般情况下包括下列基本过程或步骤:①电化学反应过程:在电极/溶液界面上得到或失去电子生成反应产物的过程,即电荷转移过程 ②传质过程:反应物向电极表面或内部传递或反应产物自电极内部或表面向溶液中或向电极内部的传递过程(扩散和迁移) ③电极界面处靠近电解液一侧的双电层以及靠近电极内一侧的空间电荷层的充放电过程 ④溶液中离子的电迁移或电子导体、电极内电子的导电过程。 /p p   此外,伴随电化学反应,还有溶剂、阴阳离子、电化学反应产物的吸附/脱附过程,新相生长过程以及其它化学反应等。 /p p   锂离子电池作为一种复杂的电化学体系,其电极过程同样具备上述几个基本步骤。其工作原理如图3所示。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/93c5e038-8fe5-45b8-95cf-7a848c79c7c2.jpg" title=" 003.jpg.png" alt=" 003.jpg.png" / /p p   针对不同的电极材料及电极体系,上述基本过程可简化为锂离子电池中离子和电子的传输及存储过程。所涉及的电化学过程有电子、离子在材料的体相、两相界面和(solidelectrolyteinterphase,SEI)的形成等过程。典型的电极过程及动力学参数有:①离子在电解质中的迁移电阻(Rsol) ②离子在电极表面的吸附电阻和电容(Rad,Cad) ③电化学双电层电容(Cdl) ④空间电荷层电容(Csc) ⑤离子在电极电解质界面的传输电阻(Rincorporation) ⑥离子在表面膜中的输运电阻和电容(Rfilm,Cfilm) ⑦电荷转移(Rct) ⑧电解质中离子的扩散电阻(Zdiffusion) ⑨电极中离子的扩散(Zdiffusion)——体相扩散(Rb)和晶粒晶界中的扩散(Rgb) ⑩宿主晶格中外来原子/离子的存储电容(Cchem) 相转变反应电容(Cchem) 电子的输运(Re)。 /p p   上述基本动力学参数涉及不同的电极基本过程,因而具有不同的时间常数。典型的电池中的电极过程及时间常数如图4所示。 /p p style=" text-align: center" img src=" https://img1.17img.cn/17img/images/201812/uepic/15e1c68c-99dc-4dd3-baf5-27e2c29a2754.jpg" title=" 004.jpg.png" alt=" 004.jpg.png" / /p p   1.6电化学极化的类型及其特征1.6.1极化的类型及其特征在施加了外来电场后,电池或电极逐渐偏离平衡电势的状态,称之为极化。在不具有流动相的电池中,存在着3种类型的极化:①电化学极化——与电荷转移过程有关的极化,极化的驱动力是电场梯度 ②浓差极化——与参与电化学反应的反应物和产物的扩散过程有关的极化,极化的驱动力为浓度梯度 ③欧姆极化——与载流子在电池中各相输运有关的极化,驱动力是电场梯度。 /p p   若还存在其它基本电极过程,如匀相或多相化学反应过程,则可能存在化学反应极化。 /p p   极化电势与平衡电势的差值的大小被称之为过电势。 /p p   1.6.2极化的影响因素各类极化的影响因素如下。(1)电化学极化的大小是由电化学反应速率决定的,电化学极化电阻(Rct)的大小与交换电流密度(io)直接相关。受多种因素影响,包括电极电位、电极电位与电解质电化学势差、反应物与产物的活度、参与电化学反应的电极的真实表面积、结晶取向、有序度、表面电导、反应温度、催化剂催化特性、电化学反应的可逆性等。 /p p   电化学极化的电流与电势在一定的电流电压范围内一般符合Tafel关系,log(i)与过电势成正比。 /p p   (2)浓差极化与传质粒子的扩散系数有关。电池中的扩散过程可以发生在电极材料内部,多孔电极的孔隙中,以及电解质相中,参与扩散的可以是多种带电或中性粒子。涉及扩散的粒子流的流量一般符合菲克扩散定律,与扩散系数及浓度梯度有关。由于电池是非均相体系,扩散系数与浓度梯度是空间位置的函数,在电化学反应的过程中,会随时间变化。传质的快慢与传质距离的平方成正比。 /p p   浓差极化过电势hcon与电流i,极限电流il的关系符合对数关系,hcon=RT/nF´ ln[(il-i)/il]。在过电势较小时,hcon=-RTi/nFil。 /p p   (3)欧姆极化的大小是由电池内部涉及到电迁移的各类电阻之和,即欧姆电阻决定的。欧姆极化过电势与极化电流密度成正比。 /p p    strong 2 小结与展望 /strong /p p   电化学表征技术在锂离子电池中有着非常广泛的应用,而电化学表征方法也非常之丰富,除了文中介绍的几种方法外,还有诸如 PSCA、CPR、CITT、RPG 等。随着实际应用的需要,新的电化学表征方法,特别是与其它表征技术结合形成的各类原位测量技术,正在迅速发展。 /p p   电极过程动力学研究的目的是获得能反映电极材料本征动力学特性的参数值,例如电荷转移电阻、扩散系数、交换电流密度,膜电阻等,并掌握该参数值随不同充放电深度(嵌脱锂量)以及温度的变化,从而能够理解、模拟、预测各类工况下及充电过程中电池极化电阻、电容的变化规律。而实验室在基础研究时往往采用粉末电极,导致在不同材料之间可靠的比较动力学参数基本不可能非常精确,除非材料的尺寸、粒度分布、表面官能团、导电添加剂、粘接剂、分散度、电极厚度、压实密度、体积容量得到了精确的控制和能实现高度的一致性。 /p p   相对于手工制作的电极,自动化设备制作的电极往往具有较好的一致性,更适合用来研究电极过程动力学。在基础研究时最好采用薄膜电极、微电极或单晶电极。 /p p   对于批量生产的电池,通过比较充放电曲线,分析直流极化电阻、固定频率的交流阻抗,开路电压等,可以获得表观的动力学参数,采用这些参数通过电化学模拟软件,可以将为准确的预测电池各类工况下的荷电态、极化电阻、输出功率,成为电源管理系统软件的核心内容 。 /p p   事实上,锂离子电池涉及的电化学为嵌入电极电化学,有别于传统的电极不发生结构演化,电化学反应主要发生在电极表面的溶液电化学。电化学双电层(EDL)与空间电荷层(SCL)共存,在充放电过程中,离子将穿过 EDL 与 SCL,电荷转移往往发生在电极内部而非表面,电极为混合离子导体,电化学反应伴随着相变和内部传质,这与一般教科书上描述的的电化学反应体系、研究方法、数学模型存在显著差异,需要发展新的理论与实验方法。 /p p    span style=" color: rgb(127, 127, 127) " i 文章摘自Energy Storage Science and Technology(储能科学与技术),2015,4(1),(凌仕刚,吴娇杨,张舒,高健,王少飞,李泓,中国科学院物理研究所) /i /span /p
  • 同学习,共成长——瑞士万通助力“电化学研究方法”暑期学校成功举办
    7月19-26日,由厦门大学化学化工学院、固体表面物理化学国家重点实验室(厦门大学)、能源材料化学协同创新中心和厦门大学研究生院主办的2019厦门大学“电化学研究方法”暑期学校成功举办。来自国内外99所高等院校和科研院所的青年教师博后及研究生共200名学员参加了暑期学校的学习。瑞士万通作为本次暑期学校的协助者参与其中。“电化学研究方法”暑期学校讲座现场本期“电化学研究方法”暑期学校课程内容丰富全面。理论学习部分涵盖基础电化学、电化学研究方法、原位谱学电化学方法、扫描探针电化学方法、电催化原理和研究方法、化学电源原理和研究方法以及光电催化原理研究方法的讲授。在理论学习的同时,暑期学校还安排了系列电化学实验教学,其中瑞士万通参与了电化学交流阻抗技术、原位拉曼光谱技术等实验的教学,协助教师与学生顺利完成实验环节,有益于更深层次的理解电化学研究方法。学员们使用瑞士万通Autolab电化学工作站进行实验 关于Metrohm Autolab三十多年来,Metrohm Autolab恒电位/恒电流仪在品质,可靠性和耐用性方面,已经成为电化学领域的标杆!我们致力于为从事电化学研究的用户,提供最前沿的仪器,控制软件,附件和应用方案 。Metrohm Autolab为满足电化学研究的需要,提供一系列仪器,包括紧凑型,经济型仪器,灵活的模块化系统,以及可以同时测定多个样品的多通道工作站。
  • 美国Gamry电化学测试技术培训会(成都站)盛大召开
    2016年11月22日,美国Gamry电化学测试技术培训会在四川成都顺利举办。来自西南地区各高校、研究所和企业的几十名Gamry用户参加了此次培训活动。 会议开场,由产品经理司国春介绍了Gamry公司概况、产品信息以及相关的各种形式的日常培训活动。 美国Gamry 电化学仪器公司是世界电化学工作站的领先制造者,有着近30年历史。从单通道到多通道电化学工作站,在全球都已得到广泛应用。从线路板的设计, 元器件的选择,信号的处理,甚至到智能导线,Gamry一致都追求电化学仪器的最佳性能。Gamry软件功能齐全和容易使用, 同时又具备最大灵活性,可以根据研究实验需求进行设计。这种开放性设计可以提供更优质的服务和更多的可能。 然后,Gamry公司美国高级仪器专家张学元博士,远程作了关于腐蚀领域电化学测试的报告 —— “Corrosion Measurement and Testing with Electrochemical Techniques”,从腐蚀的基本概念、原理、公式,到多种腐蚀类型、相应的测试技术,以及实际样品曲线都作了全面系统的分析和讲解。 Gamry为材料科学家和腐蚀工程师提供了世界上最完整的电化学工具。所有的Gamry恒电位仪都可以运行完整的直流测试技术、交流EIS、电化学噪声和电化学频率调制技术(EFM)。长期以来,Gamry一直是电化学腐蚀领域的领军者。 接下来,由Gamry仪器化学家揭晓博士作了关于电化学及交流阻抗原理与应用的报告,深入浅出地解释了常见的电化学概念,加深了大家对常见测试技术,尤其是交流阻抗技术的理解! Gamry电化学仪器公司的阻抗技术一直闻名国内外,低阻抗准确测量至微欧(10-6 Ohm),高阻抗准确测量至T欧(1012 Ohm)。任何一台电化学工作站的噪声小于微伏。另外,可以进行电池阴阳极同步测试、半电池阻抗测试、单个电池与电池堆同步测试,以及同时测试温度、压力、pH值等。 Gamry公司技术支持工程师的关于“电化学工作站的基本原理及应用”的报告,主要着眼于让用户了解仪器工作原理,有助于分析和解决日常实验中的常见问题。 最后,用户与厂家就研究中遇到的各种问题进行了热烈的交流和讨论。 刚瑞(上海)商务信息咨询有限公司上海市杨浦区逸仙路25号同济晶度310室 200437电话:021-65686006传真:021-65688389微信公众号:Gamry电化学
  • 2012年下半年仪器新品盘点:电化学仪器
    新产品和新技术体现了相关行业的技术发展趋势,定期推出一定数量的新产品和新技术是一个仪器企业创新能力的具体表现。仪器信息网“半年新品盘点”旨在将最近半年内推出的新产品和新技术集中展示给广大用户,让大家对于感兴趣的领域有总体性了解,更多创新产品和更详细内容见新品栏目。   电化学分析是仪器分析的重要组成部分,与光谱分析、色谱分析一起构成了现代分析仪器的三大重要支柱。电化学分析法灵敏度和准确度高,选择性好,某些方法最低检测量可以达到10-12mol.L-1。电化学仪器装置较为简单,操作方便,应用广泛。   电化学分析所包含的内容丰富,已近建立起比较完善的理论体系,在现代化学工业、生物与药物分析、环境分析等领域有着广泛的应用,特别是在生命科学领域更是发挥着其他分析方法难以取代的作用。近年来,随着环境监测、生物医药等领域的快速发展,对电化学仪器的需求也越来越多。   2012年,电化学领域新产品新技术不断推出。上半年中,仪器信息网新品栏目和相关资讯中发布了8款电化学仪器新品及相关设备。下半年,又发布了5款电化学仪器新品及相关设备。分别为海能的T860全自动滴定仪、瑞士万通899型库伦水分测定仪、上海仪迈科学仪器有限公司IS139专业型pH计、梅特勒-托利多的SevenExcellenceTM系列模块组合式多参数测试仪、Bio-Logic的VMP-300 多通道电化学工作站。   自动电位滴定仪   电位滴定法是在滴定过程中通过测量电位变化以确定滴定终点的方法。电位滴定法是靠电极电位的突跃来指示滴定终点,如果使用自动电位滴定仪,在滴定过程中可以自动绘出滴定曲线,自动找出滴定终点,自动给出体积,滴定快捷方便。目前电位滴定仪分通用型和专用型仪器,不过专用型仪器的市场需求量相对通用型仪器要小很多。 T860全自动滴定仪(海能) 上市时间:2012年10月   海能T860自动电位滴定仪采用模块化设计,可进行酸碱滴定、氧化还原、沉淀和络合等多种滴定。该仪器采用无死体积电磁阀,PTFE滴定管路更换便捷;采用超薄搅拌台,用线圈实现磁力搅拌;原装进口过滤器,避免溶液中杂质堵塞管路及阀体;滴定管采用推拉式拆卸,更换非常方便,且精度能达到0.005mm;整机体积非常小巧灵便,且7寸超大彩色液晶触摸界面,显示信息丰富,方便操作。   卡式水分测定仪   按照原理来说卡式水分测定仪可以分为容量法和库仑法两类。就自动化程度方面来说还可分为手动的和自动的。目前,由于一些标准的问题,手动的仪器还有用武之地,特别是学校教学用,一时还不能淘汰。但是,随着标准及教科书的更新,自动的卡式水分仪的市场也越来越大。 瑞士万通899型库仑水分测定仪   该款仪器是瑞士万通第一款可便携型库仑水分测定仪,可重复充电式电源盒提供独立电源,一次充电可保证仪器持续稳定运行几个小时,测试地点不再局限;可以自动感应样品,样品进入滴定池后自动开始水分测定;并且可与卡式炉联用,进行困难样品水分的测定。   pH计/电导率仪   作为实验室必备的仪器,pH计/电导率仪广泛应用于工业、农业、科研、环保等领域。按照外形来分,实验室中的pH计/电导率仪可以分为台式、便携式、笔式三大类;按照参数来分,可以分为单参数和多参数(多功能的)。其中,市面上现在笔试的pH计/电导率仪越来越多的进入人们的日常生活。另一方面,也有越来越多的产品往往综合了pH、电导率、溶解氧等参数,以多功能的高端产品面世。当然,在追求多功能和高的精确度之外,操作简单方便始终是一个发展方向。 IS139专业型pH计(上海仪迈科学仪器有限公司) 上市时间:2012年7月   该仪器采用创新的软件设计,全屏触摸均有响应,最大限度方便用户操作和参数的快捷设定;创新的半透明、灰色格调的外观设计,带给用户独特的测量体验;独创的“M-log”测量日志功能,可自由记录编写和显示所需内容;国际最高水准的测量精度,最宽的测量范围,自动识别9组标准缓冲液;超大的数据库,存储数据多达2000组;独具连续测量模式,动态曲线显示mV和pH测量读数,帮助用户更好地追踪样品pH读数的变化。 SevenExcellenceTM系列模块组合式多参数测试仪(梅特勒-托利多) 上市时间:2012年10月   SevenExcellenceTM系列产品包含pH/mV测量仪、电导率仪、pH/离子浓度测量仪和双通道pH/电导率测量仪。该系列产品秉承Seven系列台式仪表的优良品质,并引入创新的ISM(智能电极管理)技术和OneClickTM方法概念。采用三通道仪表与测量模块灵活组合,测量功能随时拓展;拥有包括中文在内的10种菜单语言,7英寸彩色触摸屏,uPlaceTM电极支架,可单手操作,垂直上下移动电极;四级用户管理,ISM技术,方法和样品系列快捷操作,专业校准,密码保护,限值监测,无线电时钟,符合最严格的GLP管理规范,数据更安全。   电化学工作站   电化学工作站的本质是用于控制和监测电化学池电流和电位以及其它电化学参数变化的仪器装置,它将恒电位仪、恒电流仪和电化学交流阻抗分析仪有机地结合,主要应用于电化学机理研究、生物技术研究、物质的定性定量分析、常规电化学测试、纳米科学研究等。近几年,全球市场对电化学工作站的需求增长很快,国际上生产电化学工作站的厂商主要有瑞士万通、Bio-Logic、阿美特克(普林斯顿及输力强)等。国内这几年发展也不错,上海辰华、天津兰力科、武汉科思特等也推出了电化学工作站,但是国内在电化学阻抗技术方面与国外还是有一定的差距。 VMP-300 多通道电化学工作站(Bio-Logic,华洋科仪代理) 上市时间:2012年10月   VMP-300是一款多通道电化学工作站,它可以为恒电位仪/恒电流仪/FRA或扩展电路板提供16个插槽,可以外接恒电位仪,恒电流仪,FRA电路板或扩展电路板。通道板和booster电路板可以在一个模块上进行整合,既可以获取很多通道,又可以达到很高的电流。作为多通道电化学工作站,每个通道可以完全独立于其他通道,从而允许多个用户同时使用该仪器。仪器内置校准技术,模块化设计。   2012年上半年发布仪器新品:电化学仪器   了解更多质谱产品请访问仪器信息网电化学专场   了解更多新品请访问仪器信息网新品栏目   关于申报新品   凡是“网上仪器展厂商”都可以随时免费申报最新上市的仪器,所有经审批通过的新品将在仪器信息网“新品栏目”、“网上仪器展”、“仪器信息网首页”等进行多方位展示;越早申报的新品,将获得更多的展示机会。
  • Autolab电化学工作站应用技术交流会——太原站顺利召开
    4月 24 日,瑞士万通电化学工作站应用技术交流会在山西太原迎泽宾馆如期举行。本次交流会受到了山西太原各界电化学研究领域的专家、学者、老师和新老用户的热烈欢迎。会上,瑞士万通AUTOLAB的亚太区总监 Martijn 先生从全球角度讲解了电化学的发展、应用,电化学工作站的原理,详细介绍了瑞士万通电化学工作站的产品线的现状和发展。瑞士万通AUTOLAB中国区产品总监雷涛先生主讲了NOVA软件的特点,电化学工作站在国内相关领域的应用和发展,Autolab各个型号的特点和模块的作用。 会后,应用户邀请,Martijn先生和雷涛一行到太原理工大学材料学院、化工学院等单位回访。在用户单位,双中的问题深入交换了意见,并在实验室现场示范仪器操作。 很多与会用户纷纷表示希望在太原举办高级用户培训班。享受Autolab电化学工作站带来的便利和乐趣&mdash &mdash 也一直是 Metrohm Autolab 服务客户的努力方向。
  • 大脑多巴胺在体(in vivo)记录用电化学微电极研制
    成果名称 大脑多巴胺在体(in vivo)记录用电化学微电极研制 单位名称 北京大学 联系人 马靖 联系邮箱 mj@labpku.com 成果成熟度 □研发阶段 &radic 原理样机 □通过小试 □通过中试 □可以量产 成果简介: 多巴胺是中枢神经系统中一种重要的神经递质,其胞体主要分布在中脑黑质致密部和腹侧背盖区,轴突末梢主要分布在纹状体、伏隔核、海马等区域。多巴胺在调节运动、情绪、奖赏等生理功能中发挥着重要作用,其分泌异常是多种神经精神类疾病发生、发展的病因之一。因此,监测脑内多巴胺分泌水平具有十分重要的意义。目前,国内外研究人员主要采用Microdialysis法检测脑内多巴胺的平均水平,但这种方法的局限是无法实时地进行检测。 北京大学分子医学研究所周专课题组研发的在体碳纤微电极电化学监测技术可以灵敏、实时探测脑内多巴胺的分泌,这种方法需要研制在体检测多巴胺分泌的电化学微电极,并采用不同的动作电位编码进行电刺激,以研究在黑质-纹状体通路中刺激模式对分泌的调控作用。 2009年,周专教授申请的&ldquo 大脑多巴胺在体(in vivo)记录用电化学微电极研制&rdquo 项目得到了第一期&ldquo 仪器创制与关键技术研发&rdquo 基金的支持。在基金的资助下,通过实验仪器与研制材料的购置,周专课题组开展了富有成效的工作,包括:(1)改进实验室原有的在体电极系统;(2)将该系统应用到具体的大脑多巴胺分泌检测中;(3)优化电极的制作,为更大规模的生产奠定基础。目前,该项目已经顺利结题,其研制的碳纤维电极直径仅7um,制作方便,对脑组织损伤较轻,并已经能够在动物实验中稳定检测多巴胺的异常分泌活动。 应用前景: 多巴胺在调节运动、情绪、奖赏等生理功能中发挥着重要作用,其分泌异常是多种神经精神类疾病发生、发展的病因之一。因此,实时监测脑内多巴胺分泌水平具有十分重要的意义。由于目前临床上没有较好的检测神经性精神疾病患者多巴胺分泌水平的方法,该技术进一步完善后,将在未来应用到临床辅助多巴胺检测和神经外科手术治疗中。
  • 美国Gamry电化学测试技术培训会(北京站)隆重举办
    2016年8月24日,美国Gamry电化学测试技术培训会在北京隆重举办。来自各高校、研究院所和企业的一百多位Gamry用户参加了本次培训与交流。会议开始,产品经理司国春对Gamry公司、产品及相关活动进行了介绍;作为一流的美国电化学仪器厂家, Gamry设计、制造一系列电化学仪器和其配件,包括单通道和多通道仪器,来服务研究人员的需求。从具备辅助电位仪功能的Reference 3000到Interface 5000,Gamry研发了一系列电化学仪器, 光谱电化学仪器, 旋转圆盘电极, IMPS/IMVS 太阳能测试系统等。 产品经理司国春介绍Gamry公司、产品及相关活动 来自GAMRY公司美国总部的高级仪器专家 Dr. Dave Loveday着重围绕交流阻抗的基本原理、交流阻抗在材料与腐蚀研究中的应用,以及在能源器件中的应用等主题进行了讲述;Gamry电化学仪器公司的阻抗技术和低电流测量一直闻名国内外。低阻抗准确测量至微欧(10-6 Ohm),高阻抗准确测量至T欧(1012 Ohm)。任何一台电化学工作站的噪声小于微伏。 Dr. Dave Loveday的现场报告 另外,上海、北京的应用工程师对仪器原理、电化学工作站测试技术、仪器使用与维护中的常见问题等进行了多方面具体的讲解和分析。会议还安排了现场交流、仪器展示等环节。 Gamry技术工程师介绍具体测试技术 会场仪器展示刚瑞(上海)商务信息咨询有限公司上海市杨浦区逸仙路25号同济晶度310室 200437网址:cn.gamry.com电话:021-65686006传真:021-65688389微信公众号:Gamry电化学
  • 阿美特克Ametek第八届电化学技术及仪器研讨会
    金秋十月,丰收的季节。阿美特克商贸(上海)有限公司北京分公司的培训室里迎来了来自全国40多个科研院所、高校、企业的60多位阿美特克科学仪器部普林斯顿/输力强公司的新老用户以及未来的用户,在这里成功举办了第八届一年一度的&ldquo 电化学测试技术及仪器研讨会&rdquo ,共同探讨电化学研究应用领域的测试及研究技术,分享仪器的使用心得, 听取最新的研究经验,参与仪器的实际上机操作。在10月16日至18日三天的时间里通过国内相关领域专家的演讲和双向交流,加深了电化学技术的实际应用知识,同时对仪器使用中所涉及的实验设计,仪器操作,数据采集和处理等方面的问题进行讨论和交流。 研讨会场景(一) 研讨会场景(二) 来自浙江大学的张鉴清教授,身任电化学委员会腐蚀分会主任委员,集多年的腐蚀研究及阻抗分析的经验,深入浅出的向大家介绍了交流阻抗的原理, 测量技术的发展, 各种影响因素以及数据处理分析等等。另外,对于腐蚀研究方面所涉及的方法及技术,例如噪声的测量原理分析处理等等做了深入浅出的说明。虽然张老师已年过花甲,但是讲课时依然精神状态饱满,声音铿锵有力,思路清晰,给人映像深刻。 张鉴清教授讲解阻抗分析技术 听完张教授的讲座,大家普遍反映收获不小,对于电化学测量技术尤其是阻抗基本原理更加清晰。同时,在讲课及讨论过程中张老师一再强调影响测试结果的众多因素,当测试结果异常时,首先想到的是要从样品电极的制备,环境干扰因素,测试参数的选择等方面去考虑产生的干扰,其次再考虑仪器所产生的干扰。通过权威人士的强调,在用户大脑中形成这样一个概念,对于我们研究人员来说是非常重要的。 热烈的讨论,受益非浅 会议还邀请了北京科技大学的教授王新东老师,很多参会代表都是慕王教授的大名前来,王教授给大家讲述了锂离子电池,燃料电池,燃料敏化太阳能电池,超级电容器等多方面应用,从基本概念,基本原理,基本构成成分,各种电池的研究方向,主要存在的问题,目前的研究热点做出阐述,使大家对各种电池以及测试的关键技术有了全面的认识。内容丰富有深度,语言生动有趣,在具体的实例分析当中,王教授让大家参与互动,引导大家积极思考,怎么去发现问题,分析问题以及分析看待问题的角度。在研究的关键问题和关键参数中,引出所涉及的测试方法。以及找出不同事物间的相互关联性,并相互借鉴。不仅在学术上仔细讲解,在为人成事上,王教授更是循循善诱,王老师说,对待科研的态度,首先要自己有兴趣,才能有热情投入;对于研究结果分析要谨慎,有理有据,数据可靠充分。特别要从原理构造上推断结果的可靠性. 王新东教授与参会代表的互动 阿美特克的应用工程师黄建书博士,从腐蚀与电池两个应用领域,详细全面地介绍了普林斯顿及输力强仪器及软件在各个应用领域上的特色;资深工程师张贵权给大家分享了仪器的保养和维护,从如何更好地使用仪器,更准确地进行电化学测量的角度,把多年在和用户交往中,用户现场测试中,维修仪器中的经验和大家做了极好的分享。 张贵权工程师的经验分享,娓娓道来 最后,阿美特克的多位工程师,为新老用户们进行了软件培训,以及仪器的实际操作培训,让每位用户能够实际上机畅谈他们在工作中遇到的问题。 现场上机解答问题,直观有效 会议讨论气氛浓烈,会议代表们都表示此行收获颇丰,希望我们能继续举办下去,并期待明年下一届的研讨会。
  • 瑞士万通参展第十九次全国电化学大会,独家赞助“电化学青年奖”
    12月1-4日,以“电化学与可持续发展”为主题的第十九次全国电化学大会在上海国际会议中心举行。中国科学院院士杨裕生、汪尔康、陈洪渊、董绍俊、田中群、陈军等出席,共有来自全国500多家高校、科研所的2700余名代表参会,涉及内容包括纳米与材料电化学、燃料电池、锂离子电池、有机、环境、工业电化学与腐蚀电化学等多个方面,是国内规模最大、范围最广的电化学学术。瑞士万通携旗下Autolab和Dropsens品牌参加会议。 大会开幕式现场 大会开幕式上,大会主席、电化学委员会主任夏永姚教授为 “中国电化学青年奖”等奖项举行了颁奖仪式。“中国电化学青年奖”是针对青年电化学工作者设立的最高学术奖励,用于奖励取得突出成绩的40周岁以下的四位优秀青年电化学工作者,获奖者分别为复旦大学的王永刚、苏州大学的黄小青、中科院化学所的胡劲松和北京大学的郭少军。 瑞士万通赞助电化学青年奖 “中国电化学青年奖” 连续多届均由瑞士万通赞助,瑞士万通集团旗下Autolab品牌拥有三十多年的历史,凭借深厚的电化学研究背景以及Metrohm Autolab “致力于电化学研究”的理念,是我们坚持多年赞助这个鼓励优秀电化学工作者奖项的力量源泉。 瑞士万通展出电化学相关产品 会场外,瑞士万通设立了展位,展出了旗下品牌Autolab和Dropsens相关产品,共涉及模块化电化学工作站、RRDE旋转环盘电极、微型双恒电位仪、拉曼光谱电化学测试仪等多台仪器。不少专家学者对我们的仪器产生浓烈的兴趣。 专家莅临展位指导交流 关于Metrohm Autolab三十多年来,Metrohm Autolab恒电位/恒电流仪在品质,可靠性和耐用性方面,已经成为电化学领域的标杆!我们致力于为从事电化学研究的用户,提供最前沿的仪器,控制软件,附件和应用方案 。Metrohm Autolab为满足电化学研究的需要,提供一系列仪器,包括紧凑型,经济型仪器,灵活的模块化系统,以及可以同时测定多个样品的多通道工作站。更多信息请访问瑞士万通官网。
  • 普林斯顿/输力强电化学太原地区用户培训会通知
    尊敬普林斯顿及输力强电化学仪器用户: 长期以来,Ametek公司科学仪器部(普林斯顿及输力强品牌)一贯以“提供具有优异性能的电化学仪器和周到的技术服务”为公司宗旨。为了充分开发电化学仪器的功能,提高实验技能,为用户提供互相学习和交流的机会。美国阿美特克公司科学仪器部将在太原理工大学举办"普林斯顿PARC/输力强SOLARTRON软件培训会。本次培训会由售后服务丛海军经理针对普林斯顿PARC/输力强SOLARTORN仪器软硬件操作,硬件拓展及日常维护进行介绍和分析,热忱欢迎您单位电化学工作者参加。时间: 2016年9月26日(星期一)下午14:00-18:00地点:太原理工大学化学化工学院三层会议室联系人:丛海军,王喜民电话:18911883122Email: hai.jun.cong@ametek.com or xi.min.wang@ametek.com请务必于9月23日前邮件确认参加单位及人数以便安排
  • 阿美特克Ametek第九届电化学技术及仪器研讨会成功召开
    上海四月天,春意盎然,阿美特克Ametek第九届电化学技术及仪器研讨会在阿美特克中国公司上海总部召开,会议迎来了四十多位来自科研院所、高校、企业的新老用户,大家共同探讨了电化学领域研究应用、测试技术,分享了使用心得,并对仪器进行了实际的操作。 会议请来了浙江大学的张鉴清教授,深入浅出的就电化学阻抗测量技术以及阻抗谱的数据处理进行了讲解,与会者纷纷表示获益良多,在讲课的间隙,参会者纷纷就自己实验设置,实验结果向张教授请教,张教授一一进行细致解答,真正做到诲人不惓,由此可见老教授的情操和风采。 会议还请来北京科技大学的王新东教授,就电池领域的各种电池从原理,工艺到测试做了精彩的报告,让大家对各种电池以及测试的关键技术有了全面的认识,同时王教授还就用户在实验中碰到的问题进行答疑解惑。 在两天的专题报告会之后,阿美特克公司的工程师们从腐蚀与电池两个应用领域,详细全面地介绍了普林斯顿及输力强仪器及软件在各个应用领域上的特色;另外就仪器原理进行了详细的说明,还进行分享了仪器的保养和维护,让用户在了解仪器的基础上,更好的使用仪器;针对阿美特克各个仪器的软件操作一一进行了详细的说明;并且提供了用户实际样机的操作使用培训。为各位新老用户的使用,提供详细的培训和答疑。 会议期间,阿美特克公司还组织参会者对阿美特克公司上海总部进行了参观,包括阿美特克公司在外高桥的演示实验事,并由下属各部门的专业人士对其演示产品进行介绍。不少用户惊叹,没想到阿美特克是这么大的一家有实力的公司,纷纷拍照留念。为新的应用新的技术,微区电化学系统受到越来越多的用户关注,为了让大家更直观地了解阿美特克新产品VersaScan,会议还组织用户到上海电力学院进行了微区电化学系统仪器的参观,在此也非常感谢上海电力学院给予我们的帮助。 会议学术讨论气氛浓烈,会议代表们都表示此行收获颇丰,我们敬请期待明年下一届的研讨会召开。
  • 美国Gamry电化学参加 2016全国腐蚀电化学及测试方法学术交流会
    主题为“面向石油、天然气和海洋工程的腐蚀电化学”的2016全国腐蚀电化学及测试方法学术交流会于7月13日~7月15日在中国青岛顺利举行。本次会议由腐蚀与防护学会腐蚀电化学及测试方法专业委员会主办、中国石油大学(华东)协办,来自全国的腐蚀研究者共聚青岛,交流和展示最新成果,讨论腐蚀电化学学科的前沿和发展方向,探索如何进一步推动和拓展腐蚀电化学科学和技术在我国石油工程、天然气工程、海洋工程和水处理中的应用与发展。 美国Gamry电化学仪器公司是电化学专业仪器生产厂商。目前在中国的上海与北京有专门的技术人员与支持中心, 维修中心。 本次大会, 产品经理司国春与技术支持工程师谈天与到会的新、老客户进行了交流和互动。 针对腐蚀领域,Gamry将具有优异测试性能的Ref 600升级至Ref 600 Plus。升级后的Ref 600 Plus频率范围扩展至10μHz~5MHz,电流范围13个量程(600fA~600mA),仪器本身噪声低至μV,具有超高的阻抗测试范围和精度μΩ~TΩ(参考阻抗精度图),集恒电位计、恒电流计、ZRA为一身,可运行完整的直流技术、交流阻抗和电化学噪声测试。优异的浮地性能,轻松应用于石油、天然气管道在线监测,高温高压反应釜等领域。 Interface 1000是另一种最佳选择,包含应用腐蚀领域的各种直流、交流、噪声等测试方法,并可组成多通道,提高测试效率。Gamry多通道系统比较灵活,同型号或不同型号均可组成多通道,各个通道之间相互独立, 也可同时进行测试。 为了更好的让新、老客户了解和熟悉使用Gamry电化学工作站,Gamry计划提供系列培训方式,包括定期上海、北京培训,安装现场培训,网络在线培训以及阻抗/腐蚀专场培训(美国),各种培训详情请参考以下链接:http://cn.gamry.com/training-info.pdf 。诚挚欢迎新、老客户前来参加。
  • 德国ZAHNER电化学助力第十九次全国电化学大会顺利召开
    由中国电化学会专业委员会主办、上海电力学院承办、复旦大学协办的第十九次全国电化学大会于2017年12月1-4日在上海市举行。此次会议上我们展出了德国Zahner公司电化学工作站 Zennium E、Zennium、Zennium Pro 、Zennium X,CIMPS光电化学测试系统、CIMPS-fit瞬态光电响应测试模块、CIMPS-IPCE/QE光电转换效率测试系统等。参会的很多专家教授都是我们的老用户,也带给我们很多好评和建议,我们会秉承用户至上的原则,在设备研发的道路上再接再厉,为我们的广大用户提供更好的科研利器。
  • 飞纳电镜即将出席全国电化学制造技术论坛2018
    全国电化学制造技术论坛是系列会议论坛,由中国化学会主办,旨在推动本领域技术的深度交流,促进创新和产业化发展。全国电化学制造技术论坛 2018 将围绕技术发展、工业应用以及需求趋势等展开专题讨论和交流,努力推动新成果转化。会议时间:2018年11月30日 - 12月2日会议地点:辽宁省友谊宾馆电化学电化学是研究两类导体形成的带电界面现象及其上所发生的变化的科学。电和化学反应相互作用可通过电池来完成,也可利用高压静电放电来实现(如氧通过无声放电管转变为臭氧),二者统称电化学,后者为电化学的一个分支,称放电化学。由于放电化学有了专门的名称,因而,电化学往往专门指“电池的科学”。电化学如今已形成了合成电化学、量子电化学、半导体电化学、有机导体电化学、光谱电化学、生物电化学等多个分支。电化学制造是基于电化学原理与方法,进行产品、器件和材料的制备与制造,具有突出的技术优势和不可替代性。飞纳台式扫描电镜在电池领域的应用 隔膜: 陶瓷隔膜 正极材料: 三元材料 负极材料: 石墨 改性材料: 石墨烯、碳管 电池外壳 质量控制 缺陷分析正极材料锂电池正极颗粒的形貌控制、材料的均匀性和批次的一致性关系到整个电池的性能与稳定性。通过飞纳电镜,可以对颗粒晶体的生长方向、晶粒大小和晶粒堆积方式进行有效表征,通过这些信息调整生产工艺,优化电化学性/惰性界面的面积、应力释放路径、锂离子扩散途径,从而提升电池的倍率性能和循环稳定性。 锂电池正极材材料 锂电池截面:离子研磨负极材料锂电池负极材料的颗粒大小将会对材料的堆积产生直接的影响,进而直接影响到锂离子的脱嵌,从而影响到电池性能。颗粒的形状,粒径分布会影响浆料的流变特性。通过飞纳台式扫描电镜和颗粒统计分析软件,可以对颗粒的大小,形状,粒径分布进行全方位的分析。 锂电池负极材料 颗粒统计分析测量系统电池隔膜根据制造工艺不同,电池隔膜表面的孔洞孔径介于 30 至 200 纳米之间,因此放大倍数需要 2 万- 10 万倍。电池隔膜在电子束下很容易受到损伤,所以需要使用低电压成像。飞纳场发射台式扫描电镜可以满足表征要求,对隔膜孔径大小和孔洞均匀性实现有效表征。 电池隔膜 陶瓷隔膜 通过飞纳电镜的孔径分析测量系统,还可对电池隔膜进一步分析,获得每个孔径的属性参数,如孔径尺寸、长轴短轴比等。 孔径统计分析测量系统改性材料 石墨烯 碳纳米管飞纳电镜与手套箱的结合在手套箱众多行业的应用中,传统的方法始终难以避免将样品从手套箱中取出,再放到实验器材中观察分析。对于检测空气敏感型样品,如锂电池材料等,取出样品的过程即便时间再短,也无法避免材料的瞬间剧烈氧化反应,这会导致样品的形貌、成分发生严重破坏。飞纳台式扫描电镜成功地解决了这方面的问题,小巧轻便的体积使得电镜可以轻松放进手套箱狭小的空间中,扫描电镜所有的操作都可以在手套箱内进行,样品合成制备、制样清理、观察分析的全过程全部在手套箱中完成。得益于飞纳电镜的电路防护设计,电镜即使放置在充满氩气这种易电离气体环境的手套箱中也可以完全正常工作。飞纳电镜与手套箱锂电池材料在检测过程中,为了防止空气与锂电池材料的相互反应,往往需要在惰性气体环境下进行工作。氩(Ar)气手套箱是最常用的隔绝空气设备。飞纳电镜开创了扫描电镜在氩(Ar)手套箱内进行正常工作的先例。飞纳电镜电池行业对检测样品的分辨率要求较高,可以选择飞纳台式扫描电镜能谱一体机 Phenom ProX,或者飞纳台式场发射电镜 Phenom LE,为电池领域研究提供解决方案。 飞纳电镜操作简便,快捷,稳定,无需频繁更换灯丝,非常适合电池行业中的企业使用。 飞纳电镜体积小巧,是可以放到手套箱中使用的电镜。 飞纳电镜的颗粒系统及孔径系统软件可以方便快捷地对电镜行业进行分析(颗粒系统分析正负极材料颗粒,孔径系统分析隔膜孔隙。
  • 千人盛会!电化学分析主题网络会成功召开(附视频)
    p    strong 仪器信息网讯 /strong 2020年11月5日,由仪器信息网与广州大学联合举办的“2020电化学分析主题网络研讨会”成功举办,本次会议共邀请到13位来自高校、科研院所、电化学仪器企业的专家老师分享精彩内容,并吸引近2000名高校、政府检测单位和制药企业的相关用户报名参会,并获得到参会用户的积极反馈。 /p p   为方便更多用户学习,经报告专家允许,现将部分会议视频整理发布。(点击报告题目即可进入视频页面观看) /p p style=" text-align: center " strong 回放视频列表 /strong /p table border=" 1" cellspacing=" 0" cellpadding=" 0" width=" 614" style=" border-collapse: collapse border: none " align=" center" tbody tr class=" firstRow" td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,sans-serif" 时间 /span /strong /p /td td width=" 293" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,sans-serif" 报告题目 /span /strong /p /td td width=" 208" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,sans-serif" 报告人 /span /strong /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,sans-serif" 9:00-9:30 /span /strong /p /td td width=" 293" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" span style=" font-family: & #39 微软雅黑& #39 ,sans-serif" 纳米孔道电化学测量仪器研制和应用研究 /span /p /td td width=" 208" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" span style=" font-family: & #39 微软雅黑& #39 ,sans-serif" 龙亿涛(南京大学 教授) /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,sans-serif" 9:30-10:00 /span /strong /p /td td width=" 293" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" a href=" https://www.instrument.com.cn/webinar/video_113884.html" target=" _blank" title=" pH电极的选择与应用" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) font-family: 微软雅黑, sans-serif " pH电极的选择与应用 /span /a /p /td td width=" 208" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" span style=" font-family: & #39 微软雅黑& #39 ,sans-serif" 纪宗媛(赛莱默 应用工程师) /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,sans-serif" 10:00-10:30 /span /strong /p /td td width=" 293" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" span style=" font-family: & #39 微软雅黑& #39 ,sans-serif" 基于界面电荷转移表征的研究 /span /p /td td width=" 208" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" span style=" font-family: & #39 微软雅黑& #39 ,sans-serif" 卢小泉(西北师范大学 教授) /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,sans-serif" 10:30-11:00 /span /strong /p /td td width=" 293" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" a href=" https://www.instrument.com.cn/webinar/video_113876.html" target=" _blank" title=" 梅特勒-托利多电位滴定仪的原理和应用" style=" font-family: 微软雅黑, sans-serif color: rgb(0, 176, 240) text-decoration: underline " span style=" font-family: 微软雅黑, sans-serif color: rgb(0, 176, 240) " 梅特勒-托利多电位滴定仪的原理和应用 /span /a /p /td td width=" 208" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" span style=" font-family: & #39 微软雅黑& #39 ,sans-serif" 李玉琪(梅特勒 span - /span 托利多 产品专员) /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,sans-serif" 11:00-11:30 /span /strong /p /td td width=" 293" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" span style=" font-family: & #39 微软雅黑& #39 ,sans-serif" 光谱分辨型电致化学发光定量分析 /span /p /td td width=" 208" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" span style=" font-family: & #39 微软雅黑& #39 ,sans-serif" 邹桂征(山东大学 教授) /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,sans-serif" 11:30-12:00 /span /strong /p /td td width=" 293" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" a href=" https://www.instrument.com.cn/webinar/video_113875.html" target=" _blank" title=" 高精度与高兼容性电化学工作站的研究与应用" style=" font-family: 微软雅黑, sans-serif color: rgb(0, 176, 240) text-decoration: underline " span style=" font-family: 微软雅黑, sans-serif color: rgb(0, 176, 240) " 高精度与高兼容性电化学工作站的研究与应用 /span /a /p /td td width=" 208" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" span style=" font-family: & #39 微软雅黑& #39 ,sans-serif" 张学元(美国 span GAMRY /span 电化学 总经理 span / /span 高级仪器专家) /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,sans-serif" 12:00-13:30 /span /strong /p /td td width=" 501" colspan=" 2" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:center" strong span style=" font-family:& #39 微软雅黑& #39 ,sans-serif" 午休 /span /strong /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,sans-serif" 13:30-14:00 /span /strong /p /td td width=" 293" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" a href=" https://www.instrument.com.cn/webinar/video_113880.html" target=" _blank" title=" 电化学微纳加工设备平台的研制及应用" style=" font-family: 微软雅黑, sans-serif color: rgb(0, 176, 240) text-decoration: underline " span style=" font-family: 微软雅黑, sans-serif color: rgb(0, 176, 240) " 电化学微纳加工设备平台的研制及应用 /span /a /p /td td width=" 208" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" span style=" font-family: & #39 微软雅黑& #39 ,sans-serif" 詹东平(厦门大学 教授) /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,sans-serif" 14:00-14:30 /span /strong /p /td td width=" 293" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" a href=" https://www.instrument.com.cn/webinar/video_113883.html" target=" _blank" title=" 卡尔费休水分测定仪使用指南" style=" font-family: 微软雅黑, sans-serif color: rgb(0, 176, 240) text-decoration: underline " span style=" font-family: 微软雅黑, sans-serif color: rgb(0, 176, 240) " 卡尔费休水分测定仪使用指南 /span /a /p /td td width=" 208" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" span style=" font-family: & #39 微软雅黑& #39 ,sans-serif" 龚雁 span ( /span 瑞士万通 产品经理 span ) /span /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,sans-serif" 14:30-15:00 /span /strong /p /td td width=" 293" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" a href=" https://www.instrument.com.cn/webinar/video_113879.html" target=" _blank" title=" 表面增强红外光谱电化学方法和生物分析应用" style=" font-family: 微软雅黑, sans-serif color: rgb(0, 176, 240) text-decoration: underline " span style=" font-family: 微软雅黑, sans-serif color: rgb(0, 176, 240) " 表面增强红外光谱电化学方法和生物分析应用 /span /a /p /td td width=" 208" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" span style=" font-family: & #39 微软雅黑& #39 ,sans-serif" 姜秀娥(中科院长春应化所 研究员) /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,sans-serif" 15:00-15:30 /span /strong /p /td td width=" 293" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" a href=" https://www.instrument.com.cn/webinar/video_113877.html" target=" _blank" title=" 原位空间微纳尺度微区扫描电化学原理及应用" style=" font-family: 微软雅黑, sans-serif color: rgb(0, 176, 240) text-decoration: underline " span style=" font-family: 微软雅黑, sans-serif color: rgb(0, 176, 240) " 原位空间微纳尺度微区扫描电化学原理及应用 /span /a /p /td td width=" 208" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" span style=" font-family: & #39 微软雅黑& #39 ,sans-serif" 黄建书(阿美特克【普林斯顿输力强电化学】 应用经理) /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,sans-serif" 15:30-16:00 /span /strong /p /td td width=" 293" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" a href=" https://www.instrument.com.cn/webinar/video_113881.html" target=" _blank" title=" 大振幅傅里叶变换伏安法原理、仪器及应用" style=" font-family: 微软雅黑, sans-serif color: rgb(0, 176, 240) text-decoration: underline " span style=" font-family: 微软雅黑, sans-serif color: rgb(0, 176, 240) " 大振幅傅里叶变换伏安法原理、仪器及应用 /span /a /p /td td width=" 208" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" span style=" font-family: & #39 微软雅黑& #39 ,sans-serif" 王立世(华南理工大学 教授) /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,sans-serif" 16:00-16:30 /span /strong /p /td td width=" 293" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" a href=" https://www.instrument.com.cn/webinar/video_113882.html" target=" _blank" title=" 溶出伏安法重金属分析仪产品技术及其应用" style=" font-family: 微软雅黑, sans-serif color: rgb(0, 176, 240) text-decoration: underline " span style=" font-family: 微软雅黑, sans-serif color: rgb(0, 176, 240) " 溶出伏安法重金属分析仪产品技术及其应用 /span /a /p /td td width=" 208" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" span style=" font-family: & #39 微软雅黑& #39 ,sans-serif" 金建余 span ( /span 上海仪电科仪 副总经理 span ) /span /span /p /td /tr tr td width=" 113" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" strong span style=" font-family:& #39 微软雅黑& #39 ,sans-serif" 16:30-17:00 /span /strong /p /td td width=" 293" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" a href=" https://www.instrument.com.cn/webinar/video_113878.html" target=" _blank" title=" 电化学技术进展" style=" font-family: 微软雅黑, sans-serif color: rgb(0, 176, 240) text-decoration: underline " span style=" font-family: 微软雅黑, sans-serif color: rgb(0, 176, 240) " 电化学技术进展 /span /a /p /td td width=" 208" valign=" top" style=" border: 1px solid rgb(0, 0, 0) padding: 5px " p style=" text-align:left" span style=" font-family: & #39 微软雅黑& #39 ,sans-serif" 牛利(广州大学 教授) /span /p /td /tr /tbody /table p style=" text-align: center " strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/ab79f94f-8b88-4a5e-a7bd-276f36d1d975.jpg" title=" 龙亿涛_副本.jpg" alt=" 龙亿涛_副本.jpg" / /p p style=" text-align: center " strong /strong br/ /p p style=" text-align: center " strong 南京大学 龙亿涛教授 /strong /p p style=" text-align: center " strong 《纳米孔道电化学测量仪器研制和应用研究》 /strong /p p   纳米孔道电化学分析技术是一种高通量、非标记的单分子测量技术,已用于DNA、多肽和蛋白质单个体的研究。课题组在多年研制的纳米孔道电化学小型仪器装置不仅能够进行单分子、单颗粒的电化学分析研究,并用于本科学生的仪器分析实验课程教学。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/60286085-b4f5-4682-aa16-96ae7e50280d.jpg" title=" 纪宗媛.jpg" alt=" 纪宗媛.jpg" / /p p style=" text-align: center " strong 赛莱默分析仪器(北京)有限公司 应用工程师 纪宗媛 /strong /p p style=" text-align: center " strong 《pH电极的选择与应用》 /strong /p p   电化学测量方法在一般科学、研究、食品和饮料生产、化学、制药和生物技术等行业变得越来越重要。pH 是电化学测量中应用广泛的测量参数。Xylem Analytics SI在玻璃技术和分析设备开发方面拥有超过75年的经验。结合我们实际应用发现,阐述不同电极结构、电解液成分、玻璃材质等对pH测试的影响,帮助进行各种应用条件下pH 电极的选择,并提供高效应用的方法及注意事项。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/d6f2df5f-a22c-4ee0-aa07-abdc7269b244.jpg" title=" 卢小泉_副本.jpg" alt=" 卢小泉_副本.jpg" / /p p style=" text-align: center " strong 西北师范大学 卢小泉教授 /strong /p p style=" text-align: center " strong 《基于界面电荷转移表征的研究》 /strong /p p   电荷转移是生命科学的基本问题,它对于材料、能源、环境领域的发展具有重要的意义。然而传统的电化学方法(如循环伏安法、电化学阻抗法、光谱学方法等),只能从宏观角度研究光电化学总体的“平均”过程和性能,不能真实反映电荷转移的局部和微观信息。因此,需要发展微区原位动态地表征技术,从微纳尺度对光电体系的界面电荷转移行为进行整体、原位表征,进而深入理解复杂电荷转移过程与性能的关系。在这里,我们构筑地界面表征方法,如扫描光谱电化学显微镜和强度调节光电流谱,研究了光合作用过程中的光诱导电子转移行为,实现了光电化学体系中光生电荷的直接追踪,为生命、能源、环境的发展提供了思路。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/929f56f4-6393-43d3-ae11-cad72d34f42c.jpg" title=" 李玉琪.jpg" alt=" 李玉琪.jpg" / /p p style=" text-align: center " strong 梅特勒-托利多 产品专员 李玉琪 /strong /p p style=" text-align: center " strong 《梅特勒-托利多电位滴定仪的原理和应用》 /strong /p p   电位分析法是电分析化学方法的重要分支,它是通过测定原电池电动势进行分析测定的一种方法,包括直接电位法和电位滴定法两种方法。梅特勒-托利多电位滴定仪采用One Click一键滴定理念,仅需一键便可自动执行酸碱滴定、氧化还原滴定、沉淀滴定以及络合滴定的自动化分析,为您提供在制药、化工、检测实验室、食品、电子半导体等行业专业、高效、智能化的解决方案。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/6784c02b-38b7-479f-b677-295cdb88f0ff.jpg" title=" 邹桂征_副本.jpg" alt=" 邹桂征_副本.jpg" / /p p style=" text-align: center " strong 山东大学 邹桂征教授 /strong /p p style=" text-align: center " strong 《光谱分辨型电致化学发光定量分析》 /strong /p p   电致化学发光光谱采集技术及其相关器件装置研发的情况概览、光谱分辨型电致化学发光定量分析及其具体应用。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/1f49ad5f-8be4-4f10-97f2-c1eda3ab28a8.jpg" title=" 张学元_副本.jpg" alt=" 张学元_副本.jpg" / /p p style=" text-align: center " strong 美国GAMRY电化学 总经理/高级仪器专家 张学元 /strong /p p style=" text-align: center " strong 《高精度与高兼容性电化学工作站的研究与应用》 /strong /p p   本报告针对国际品牌美国Gamry电化学工作站的低电流、低噪声、低阻抗、高精度与高兼容性电化学工作站的原理与研究现状进行汇报,阐述其在生物传感器、能源、腐蚀、电分析化学等等领域的应用,加深理解电化学工作站的技术参数和工作站原理的理解。同时会针对其高兼容性进行解析,从仪器角度阐述其和投射电镜、红外、质谱、拉曼、晶体微天平、扫描显微镜、旋转圆盘电极系统等等仪器的联用与注意事项。最后希望达到大家共同提高电分析化学的测试技术,更好地原位研究电化学这一现象而解决科学与工程技术问题。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/167e0fcd-87a2-4174-83bf-9c0f3619aadd.jpg" title=" 詹东平_副本.jpg" alt=" 詹东平_副本.jpg" / /p p style=" text-align: center " strong 厦门大学 詹东平教授 /strong /p p style=" text-align: center " strong 《电化学微纳加工设备平台的研制及应用》 /strong /p p   电化学微纳加工是化学和机械工程大学科交叉领域。由于无工具磨顺、无残余应力、无表层物理和化学损伤等优点,电化学微纳加工在特种加工和微纳制造领域具有不可替代的一席之地。报告将介绍厦门大学所开展的电化学微纳加工原理、设备研制和技术应用方面取得的最新进展。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/2cfd1008-58f8-4800-a5da-2be7bfb8186a.jpg" title=" 龚雁.jpg" alt=" 龚雁.jpg" / /p p style=" text-align: center " strong 瑞士万通中国有限公司 产品经理 龚雁 /strong /p p style=" text-align: center " strong 《卡尔费休水分测定仪使用指南》 /strong /p p   1) 卡尔费休水分测定仪基本原理 /p p   2) 卡尔费休水分仪的选择 /p p   3) 卡尔费休水分仪的常见应用 /p p   4) 如何使用好卡尔费休水分测定仪 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/3e891ea1-08ac-47a5-90b9-fdd11ecccbe4.jpg" title=" 姜秀娥.jpg" alt=" 姜秀娥.jpg" / /p p style=" text-align: center " strong 中科院长春应化所 姜秀娥研究员 /strong /p p style=" text-align: center " strong 《表面增强红外光谱电化学方法和生物分析应用》 /strong /p p   因贵金属薄膜可以充当工作电极,基于贵金属电磁场增强效应发展的表面增强红外光谱电化学联用技术是研究电化学调制下,表界面反应机制的有力手段。基于此,我们研究了电位调控下膜蛋白功能变化 揭示了纳米材料与仿生膜的弱相互作用力及磷脂磷酸基团上局域结构水对界面静电势修饰机制和对蛋白与仿生线膜弱相互作的调控原理。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/bd49fe68-ca25-4b0f-aeb5-8c7d5b0d5555.jpg" title=" 黄建书_副本.jpg" alt=" 黄建书_副本.jpg" / /p p style=" text-align: center " strong 阿美特克(普林斯顿输力强电化学) 应用经理 黄建书 /strong /p p style=" text-align: center " strong 《原位空间微纳尺度微区扫描电化学原理及应用》 /strong /p p   传统的电化学方法基于样品的宏观平均响应表征,在局部腐蚀、能源材料、光/电催化活性、电致变色、微流控组装,生物医学、多维梯度材料等研究方面,面临诸多挑战。国内外相关研究表明,微区扫描电化学技术以其原位微纳尺度空间分辨率等特点,在上述热门研究方面显示出巨大优势及广阔应用前景。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/bc334c07-8615-4fb5-94a7-b02fb6d27e15.jpg" title=" 王立世.jpg" alt=" 王立世.jpg" / /p p style=" text-align: center " strong 华南理工大学 王立世教授 /strong /p p style=" text-align: center " strong 《大振幅傅里叶变换伏安法原理、仪器及应用》 /strong /p p   近年来,在电分析研究领域,研究者主要集中于电极体系的功能化和新应用领域的拓展上,而在新型电分析实验方法上的进展却不大。通过原理创新、仪器开发和应用实践,本课题组在傅里叶变换伏安法方面进行了系列工作,取得了很好的进展,有力地推进了传统伏安法研究手段的进步。在此,将对完成的大振幅傅里叶变换伏安法原理、仪器及应用等进行介绍。其中,将对大振幅傅里叶变换方波伏安法、阶梯正弦伏安法、正弦伏安法、单阶跃伏安法及任意函数伏安法仪器的原理和特点进行对比,并重点介绍大振幅傅里叶变换伏安法分析仪器所基于的工作原理、应用举例和实验验证结果等。通过比对和介绍可以归纳出,所给出的大振幅傅里叶变换伏安法分析仪器具有多方面的技术优势,包括解析能力、选择性、同步分辨能力和数据处理能力等,从而使该仪器将具有广泛的应用范围。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/9b1f60d8-1d21-4ed7-9dab-4f676bc3433b.jpg" title=" 金建余.jpg" alt=" 金建余.jpg" / /p p style=" text-align: center " strong 上海仪电科学仪器股份有限公司 副总经理 金建余 /strong /p p style=" text-align: center " strong 《溶出伏安法重金属分析仪产品技术及其应用》 /strong /p p   阳极溶出伏安法是一种非常灵敏的重金属检测方法,具有ppb级的检出限。相比原子吸收等传统分析仪器,溶出伏安法重金属分析仪具有操作简单、小巧便携、经济安全等优点。上海雷磁对溶出伏安法重金属分析仪进行了十余年的技术研究,实现了十种重金属离子的检测,并将其应用于饮用水安全、环境保护、食品安全等众多领域的重金属检测。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202011/uepic/f4a783d4-5469-4df5-8550-388b47563cd2.jpg" title=" 牛利.jpg" alt=" 牛利.jpg" / /p p style=" text-align: center " strong 广州大学 牛利教授 /strong /p p style=" text-align: center " strong 《电化学技术进展》 /strong /p p   综述了电化学技术方法及仪器系统的发展历程,并就国内电化学仪器相关领域做了简要介绍 针对电化学技术方法的特点,简述了电化学技术方法及仪器的应用领域,同时也介绍了传统电化学技术方法的一些最新功能拓展。最后就科学仪器产业现状及电化学仪器发展趋势给出了一些自己的个人观点。 /p
  • 上海微系统所在基于CRISPR的电化学传感器研究方面取得进展
    CRISPR近年来被广泛专注,Cas 13a在crRNA的引导下识别靶RNA后,对单链RNA表现出“附带切割”能力。较之荧光检测方法,电化学生物传感技术具有成本低,高效,灵敏,易于微型化和集成化的优势。基于CRISPR的电化学检测方法在生物分子检测方面显示出极大的应用前景。   近日,中国科学院微系统与信息技术研究所第八研究室宓现强课题组构建了一种基于CRISPR的电化学传感器(CRISPR-E)。该研究将DNA四面体框架结构修饰在印刷电极上,进一步与RNA探针杂交,最后连接HRP分子构建TCP探针。通过将电化学技术、DNA四面体框架结构与CRISPR技术相结合,实现了对miRNA的无扩增、高灵敏度检测。由于整个反应过程可以在电极上实现,因此有望推动miRNA的及时快速(POC)检测。   相关论文“Tetrahedral DNA framework based CRISPR electrochemical biosensor for amplification-free miRNA detection”发表于国际生物传感著名期刊Biosensors and Bioelectronics。该论文的第一通讯单位为中科院上海微系统所,通讯作者为上海微系统所宓现强研究员。   该工作得到得到上海市优秀学术带头人计划项目(20XD1404600),中国科学院项目(KFJ-STS-QYZD-2021-08-002 )上海市科委项目(20511107600, 19511107100, 19511107102)等支持。基于CRISPR的电化学传感器原理图
  • 2011年电化学仪器产业发展战略研讨会召开
    仪器信息网讯 在第十一届全国电分析化学会议召开期间,由中国仪器仪表学会分析仪器分会、中国仪器仪表学会电分析化学专业委员会主办,南京大学生命分析化学国家重点实验室(筹)承办的2011年电化学仪器产业发展战略研讨会暨“中国仪器仪表学会电分析化学专业委员会第二次全体委员会议”于2011年5月14日在山东聊城顺利召开,近30位电分析化学专业委员出席了此次会议,仪器信息网作为特邀媒体亦参会。 会议现场   中国仪器仪表学会电分析化学专业委员会成立于上世纪80年代,并于2008年3月进行了重组。重组后,中国仪器仪表学会电分析化学专业委员会由鞠熀先教授担任主任委员,挂靠在南京大学和上海精密科学仪器有限公司开展日常工作。 中国仪器仪表学会分析仪器分会闫成德理事长致辞   闫成德理事长表示,近年来我国对进口仪器依赖度逐年增高,国内分析仪器与国外产品的差距不是逐步缩小,反而在渐渐拉大,我国分析仪器还是扮演着一个“跟踪模仿”的角色,电分析仪器也不例外。随后,闫成德理事长分析总结了我国分析仪器产业的发展现状、存在不足以及相应的对策建议,并指出,“十二五”期间,科技部、工信部等政府部门以及中国仪器仪表学会对于科学仪器的自主研发非常重视,这就给国内的专家学者、仪器企业提供了一个很好的发展机遇,希望大家能够积极地为我国分析仪器行业的发展献计献策。 会议由南京大学鞠熀先教授主持   此外,会议主办方还邀请了朱果逸研究员、蔡青云教授、毛兰群研究员、殷传新高工、范清杰高工就目前的新方法、新技术以及各自的研究成果、科研经验、特色产品作了精彩报告。 中科院化学所活体分析化学院重点实验室毛兰群研究员 报告题目:活动物在线电化学分析系统的研制   毛兰群研究员介绍到,活体分析的优势在于时空分辨,结果可靠,动物量少,仪器简单。而活体在线电化学分析设备主要由活体微透析系统、在线样品处理系统、在线样品检测系统及样品检测信号处理4部分组成,可用于检测抗坏血酸、葡萄糖/乳酸、钙镁离子、尿酸等活体样品。   此外,毛兰群研究员实例展示了活体电化学分析系统在生物疾病诊疗方面的应用途径和效果,并指出,活体在线电化学系统在人类疾病诊断和治疗方面有着很重要的应用前景。 天津市兰力科化学电子高技术有限公司范清杰高工 报告题目:电化学仪器产业规模化发展趋势与问题研讨   范清杰高工介绍到,天津兰力科、上海雷磁、江苏江分是目前国内从事电化学仪器的主要生产企业,年销售收入均超过千万元,并具有快速上升的发展趋势。随后,范清杰高工介绍了兰力科公司的4个重点发展领域及当前电化学仪器产业规模化的发展现状与方向。   最后,范清杰高工还指出,电化学仪器产业规模化存在5大问题:(1)电化学仪器大部生产企业规模小,产值低,低水平同类产品泛滥;(2)企业自主创新能力不强,科技投入少,创新人才匮乏;(3)缺乏针对用户而开发的专用解决方案;(4)缺乏官、产、学、研、金、用的有效结合;(5)缺乏高端旗帜性产品和民族品牌意识。 中科院长春应化所电分析化学国家重点实验室朱果逸研究员 报告题目:系列电化学分析及联用测量系统   朱果逸研究员说到,由于电化学仪器具备易于开发及小型化等优势,可实现对分析对象的高通量、低下限和实时检测,因此该类仪器具有显见的应用研发前景。近年来,随着分析技术和方法的发展,电化学联用技术方法已成为电化学仪器的一个发展热点。另外发展高灵敏度、响应快、寿命长、可动态在线检测的新型电化学检测器和功能联用仪器也是当前迫切需要的。   同时,朱果逸研究员还介绍了电化学仪器的中长期发展规划以及其研究团队开发的多款电化学仪器系统的性能指标、技术特点、应用实例等。 湖南大学生物传感与计量学国家重点实验室蔡青云教授 报告题目:生物分析仪器研发   蔡青云教授在报告中详细介绍了艾丽特微生物快培仪、无线磁传感测定仪这两款生物分析仪器的研发背景、技术优势及应用成果。   微生物快速检测是减少抗生素滥用的重要技术前提,艾丽特微生物快培仪是一款从检测原理到部件设计完全创新的仪器,其临床评价为检出速度快﹑结果准确﹑假阳性率低、操作简便﹑价格便宜;无线磁传感测定仪则克服了现有仪器昂贵、缺乏实用性、存在背景信号干扰等缺陷,利用无线无源传感器与磁场进行信号激发与传送,在持续激励条件下测定传感信号,具有稳定、灵敏等特点。 上海精密科学仪器有限公司殷传新高工 报告题目:坚持自主创新 铸就民族分析仪器品牌   殷传新高工在报告中说到,在4大自主创新措施的指导下,上海精密科学仪器有限公司雷磁电化学事业部(原上海雷磁仪器厂)研发出pH计、离子计、电导率仪等多个系列的自主创新产品。这些创新产品与国内外同类产品相比,具有极高性价比,产品市场占有率名列第一。   此外,殷传新高工还指出了电化学分析仪器产业目前面临的问题及解决办法:(1)前瞻性前沿性新技术研发缺乏,希望加强和高校、院所进行交流合作;(2)科技创新能力不够,希望加强产学研合作力度;(3)科技创新投入不够,希望得到各级政府的关心和支持。   此外,30多位与会委员就专业委员会的发展、今后要开展的工作进行了积极地交流与沟通,并就专业委员会进一步加强产学研合作、推动电分析仪器的研制与产业发展等议题展开了热烈的讨论。 与会委员合影留念
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制