当前位置: 仪器信息网 > 行业主题 > >

电池循环测试站

仪器信息网电池循环测试站专题为您提供2024年最新电池循环测试站价格报价、厂家品牌的相关信息, 包括电池循环测试站参数、型号等,不管是国产,还是进口品牌的电池循环测试站您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电池循环测试站相关的耗材配件、试剂标物,还有电池循环测试站相关的最新资讯、资料,以及电池循环测试站相关的解决方案。

电池循环测试站相关的论坛

  • 新能源汽车电池高低温循环测试分析锂电池的使用方法

    新能源汽车电池高低温循环测试分析锂电池的使用方法

    无锡冠亚新能源汽车电池高低温循环测试是现代汽车电池测试中使用比较广的设备之一,锂电池作为比较常见的电池之一,在使用的时候需要注意哪些呢?  锂电池使用需要把握时间,防过充,正确的时间做正确的事,虽然,锂电池本身具有优异的电化学性能,然而,任何一种事物在背离平衡状态后都会存在安全隐患。  新能源汽车电池高低温循环测试建议大家,锂电池保养温度适宜,防冷热。在闲置时,锂电池通常不会发生安全事故,日常保养的目的就是使锂电池置于适宜的环境中,从而延迟电池的老化。事实上,锂电池参数设计中有一个就是适宜温度,相对来说,温度低一些问题不大,但如果放在较高的温度下,俗话说物极必反,也是会产生安全问题的。我们说的闲置状态仅仅是就正常环境而言,如果把锂电池放到水里或靠近火源那就已经脱离“保养”的话题了,那么,在正常环境下要做的是什么呢?水的方面防潮和热的方面防暴晒。故而,无锡冠亚恒温制冷技术有限公司提醒,锂电池日常保养的适宜环境应是四个字:通风、阴凉。无论锂电池是独立闲置还是在用电器具中待用,均应遵循这四个字。  在锂电池的正确使用方法中,锂电池充电方法是比较重要的,因为不正确的充电方法会引发安全问题,而放电与日常保养影响的仅仅是锂电池的使用寿命,锂电池本身也是一种耗材,无论我们采取什么办法也避免不了它之后的损耗,只是我们用正确的方法,延缓其衰老而已。  新能源汽车电池高低温循环测试在测试中,不论什么电池都需要正确使用,避免产生一些故障。[img=,690,690]https://ng1.17img.cn/bbsfiles/images/2018/09/201809041651055268_8627_3445897_3.jpg!w690x690.jpg[/img]

  • 中国高低温循环测试箱排行榜

    中国高低温循环测试箱排行榜

    原文来源:中国高低温循环测试箱排行榜 编辑:林频仪器  金榜题名是多少人重盼所归的大喜之事,榜首便是科举第一的美称。演变至今不单单是人进行科举考试,连工业企业生产出的产品也要经过[b]高低温循环测试箱[/b]的科考,而这位以严厉著称的考官自身也是经过了层层筛选。早在我国多年前就有了质量的比较,只是当时科技并未有如此的发达,只能通过使用一样东西的耐用性与生产材质来进行比较。[align=center][img=,348,348]http://ng1.17img.cn/bbsfiles/images/2018/01/201801100831_4607_1037_3.jpg!w348x348.jpg[/img][/align]  现如今经历了无数轮回的白天与昼夜,我国已将环试行业的销路开始扩张。古时还记得最早的出口贸易虽对现在来说不算是什么出口,但是在我国历史上还是记载了张骞从长安(今西安)为起点,经甘肃、新疆,到中亚、西亚,并联结地中海各国的陆上通道进行了第一次的“丝绸之路”。而有了这一次的开展也为今后我们进行国外销售做好了铺垫。高低温循环测试箱在我国的试验箱行业中可以说是佼佼者之一,首先它的幸运是在这个互联网全面发展的时代被发现,我们便将互联网的优势技术与高低温循环测试箱进行了一体化的结合 其次这个时代注重的是高效与快捷的使用方式,而高低温循环测试箱的诞生就是为了帮助各种需要它的行业,所以高低温循环测试箱的使用是简单与快捷的 最后就是价位与质量的等价比较,这也成为了它的一大优势,从价位上讲是符合各个企业的采购要求的,从质量上看材质与售后服务都是它完胜的利器。这样一来该款设备在中国的排行榜上是如出一辙,而在中国高低温循环测试箱排行榜上就要从品牌来看了。作为环试行业的常青树上海林频已经比不少刚出现的毛头小厂根基要稳定,而那些先我们之前的前辈厂家我们则在据理力争的迎头赶上。所以我们虽不是远近闻名但一定是名列前茅,林频追求扎实稳健的性能作为设备的基础,以良好的品牌效益打下环试今日的一片天地。  古往今来多少文人墨客哪个不是科举后得到了金榜题名,从此便人尽皆知了,而林频十年磨一剑传承的是品质的扎实,留下的是品牌的口碑,完成的是林频人的梦想,追求的是卓越的非凡。“十年寒窗无人问,一举成名天下知。”这诗句诠释了我林频今日之所成。

  • 美国 inTEST 超高速高低温循环测试机

    美国 inTEST 超高速高低温循环测试机

    上海伯东代理美国 inTEST 原装进口超高速高低温循环测试机,不需要液态氮气或二氧化碳冷却每秒可快速升温或降温 15°C分辨率 +-0.1℃温度精度 +-1.0℃(通过美国国家标准与技术研究院 NIST 校准)与传统高低温试验箱对比,上海伯东 Temptronic ThermoStream 高低温测试机主要优势:1、变温速率更快,每秒可快速升温/降温 15 °C2、温控精度:±1℃;3、实时监测待测元件真实温度,可随时调整冲击气流温度4、针对 PCB 电路板上众多元器件中的某一单个IC(模块),可单独进行高低温冲击,而不影响周边其它器件5、对测试机平台 load board上 的 IC 进行温度循环 / 冲击;传统高低温箱无法针对此类测试。6、对整块集成电路板提供精确且快速的环境温度。http://ng1.17img.cn/bbsfiles/images/2017/04/201704061455_01_728_3.jpg

  • 动力电池组测试系统更加省电

    经济的快速发展和环境日益槽糕的状态对于人们来来说,问题也日益凸显,所以,不论什么设备,都需要节能,动力电池组测试系统在使用中节能省电是十分必须的。  调整动力电池组测试系统合理的运行负载,在保证动力电池组测试系统安全运行的情况下,主机组运行在70%-80%负载比运行在满负载小时,单位冷量的功耗更小。运用此方式开机要结合动力电池组的运行情况综合考虑。  降低动力电池组测试系统冷凝温度,在满足动力电池组测试系统安全和生产需求的前提下,尽量提高无锡冠亚动力电池组测试系统蒸发温度和降低冷凝温度,为此需加大对动力电池组测试系统的改造,以保证冷却水效能。车,专用于新能源汽车永磁同步电动机、开关磁阻电机、异步电动机及其控制器测试时的精密控温设备。  动力电池组测试系统在运行中,要防止和减少冷却循环水机管道结垢,如果循环水处理做的不好,碳酸氢钙和碳酸氢镁受热产生的碳酸钙和碳酸镁会沉积在管道上,使导热性能下降,影响冷凝器和蒸发器的换热效率,并使运行的电费大幅度上升。此时除了采用水处理技术外,还可以利用管道定期自动清洗设备进行管道清洗,节省电量的同时提升制冷效果。  动力电池组测试系统在运行过程中,节能减排在一定程度上可以节约企业运行成本,为企业创造更大的效益。

  • 【分享】电池测试仪介绍

    电池测试仪,主要用于检测电流、电压、容量、内阻、温度、电池循环寿命,并给出曲线图。电池测试仪有多个通道可供选择。可以单点启动,单点控制,同时测不同型号、类型的电池(镍氢,镍镉,锂电等)。电池测试仪根据电池的形态及电池组装后的成品分类,测试仪又可分为:电芯测试仪,成品电池测试仪,手机电池测试仪,笔记本电池测试仪,移动DVD电池测试仪,蓄电池测试仪,都可以做综合性能测试。

  • 电化学工作站能否用来测试光电池的放电曲线?

    我现在做的课题是染料敏化太阳能电池,已经有了光源,需要一台能够测试电池放电曲线的仪器,不是很清楚能否用电化学工作站的线性扫描伏安法来测IV曲线呢?比较便宜的能完成这个试验的仪器得多少钱呢?哪位有详细的资料麻烦告知一下:chenrk#sohu.com,谢谢了

  • 电池电机电控测试

    点击链接查看更多:[url]https://www.woyaoce.cn/service/info-11070.html[/url]电池安全性测试过量充电、短路、针刺、海拔、振动、机械冲击、撞击跌落、翻滚、碰撞/挤压、加热、燃料火灾、温度冲击浸泡电池性能测试外观、极性、尺寸及质量、常温放电容量、-20℃放电容量、55℃放电容量、常温倍率放电、常温荷电保持、容量恢复能力、高温荷电保持、容量恢复能力、存储、容量及能量(室温、高温、低温)、功率及内阻测试(室温、高温、低温)、无负载容量损失(高温、室温)、存储中的容量损失、高低温启动功率、能量效率测试电池电磁兼容性测试电磁干扰(EMI)、电磁干扰度(EMS)电池生命周期和耐久性测试加速的寿命测试、寿命终结预测、日历寿命测试、高温和低温操作耐久性试验、供电热循环耐久性试验热湿度循环试验、高温和高湿度耐久性电池的可靠性和环境模拟振动、机械冲击、温度、湿度、盐雾、灰尘、固体和液体侵入(IP保护)、混流气、化学品接触、水射流、盐水浸泡、热冲击循环UN运输测试T1海拔模拟、T2热测试、T3振动、T4冲击、T5外部短路、T6撞击、T7过度充电[table=100%][tr][td][img=,260,182]https://img2.17img.cn/pic/kind/20191025/20191025154232_9800.jpg[/img][/td][td][img=,260,182]https://img2.17img.cn/pic/kind/20191025/20191025154233_1519.jpg[/img][/td][td][img=,260,182]https://img2.17img.cn/pic/kind/20191025/20191025154233_2828.jpg[/img][/td][/tr][tr][td]新能源动力电池(蓄电池)分析检测[/td][td]美国必测电池包测试系统[/td][td]电池包试验现场[/td][/tr][tr][td][align=center][img]https://img2.17img.cn/pic/kind/20191025/20191025154233_4068.jpg[/img][/align][/td][td][align=center][img]https://img2.17img.cn/pic/kind/20191025/20191025154233_5425.jpg[/img][/align][/td][td][align=center][img]https://img2.17img.cn/pic/kind/20191025/20191025154234_0289.jpg[/img][/align][/td][/tr][tr][td]电池燃烧试验机、电池挤压试验机电池重物冲击试验机[/td][td]防爆型可程式恒温恒湿试验箱[/td][td]温控型电池短路试验机[/td][/tr][/table]

  • 锂电池过度充电测试

    锂电池以其能量密度高等特点,广泛应用于工业自动化、新能源汽车、消费电子产品等领域。然而,在日常使用中,电池过度充电等问题时有发生,这可能对电池造成不可逆的损害,轻则缩短电池寿命或导致彻底失效,重则可能引发电池燃烧爆炸,危及电气设备和人员安全。为确保锂电池在使用和运输过程中的安全性,必须进行严格的测试和检测,以评估其对过度充电的承受能力。其中,UN38.3过度充电测试是锂电池在运输前必须通过的安全检测,由联合国发布,具备高度的公信力。在锂电池行业中,注重安全标准和测试的重要性,是为了推动科技发展的同时,最大程度地降低潜在的风险和安全隐患。通过这一测试,可以有效避免用户在使用锂电池时发生意外,保障设备和人员的安全。[align=center][img=,690,411]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181624110174_6281_6387980_3.png!w690x411.jpg[/img][/align][b]什么是UN38.3(可充电型锂电池操作规范)[/b]UN38.3(可充电型锂电池操作规范)是联合国危险物品运输专门制定的《联合国危险物品运输试验和标准手册》的第3部分38.3款,为确保锂电池在运输前的安全性,规定了一系列严格的测试要求。这些测试包括高度模拟、高低温循环、振动试验、冲击试验、55℃外短路、撞击试验、过度充电试验、强制放电试验等。如果锂电池与设备没有安装在一起,并且每个包装件内装有超过24个电池芯或12个电池,则还须通过1.2米自由跌落试验。[b]解决方案[/b]在这些测试中,过度充电试验是其中难度较大的一项。该测试要求在2倍最大连续充电电流和2倍最大连续充电电压的条件下,将待测锂电池连续充电24小时。测试的主要目的是评估锂电池对过度充电的承受能力,要求电池在过度充电过程中及之后七天内没有发生电池解体或燃烧爆炸的情况。这一系列的测试确保了锂电池在运输过程中的高度安全性,尤其是过度充电试验,关系到用电设备与用户的安危,具有极其重要的意义。为应对UN38.3标准中的过度充电测试。利用直流电源为电池进行持续供电,同时结合SBT300电池测试仪,全面监测电池充电过程中的电压、交流内阻等关键参数。通过这些先进的测试设备,工程师能够深入分析锂电池的衰化效应和稳定性,为研发制造更加安全可靠的锂电池提供有力支持。[align=center][img=,690,460]https://ng1.17img.cn/bbsfiles/images/2024/03/202403181625312538_6416_6387980_3.png!w690x460.jpg[/img][/align][b]主要优势[/b]交流四端子法测量:SBT300电池测试仪采用交流四端子法测量交流内阻和电压,能够分离提供电流的导线和测量器件上电压降的导线,进而消除电缆和探针接触电阻的阻抗。校正功能:SBT300电池测试仪能够补偿仪器内部电路的偏置电压或者增益漂移等,对测量数据进行校正以提高测量精度,并且可以根据测量结果计算统计指标,绘制正态分布图,观察测量结果的正态分布情况。模拟输出:SBT300电池测试仪可以进行交流内阻测量值的模拟输出,通过将模拟输出量连接到数据记录仪上,记录电阻值的变化,便于使用数据采集仪进行需要长期记录的测量和锂电池的评估等。

  • 混合动力汽车电池测试保养说明

    混合动力汽车电池测试是目前混合动力汽车中电池测试的必备的设备之一,所以其性能是能够影响混合动力汽车的运行,所以无锡冠亚混合动力汽车电池测试的保养工作也是很重要的。  混合动力汽车电池测试检查电压是否正常、缺相(缺项主要是针对380V电压的机器),检查和记录运转电流,丈量并记录高低压压力和温控温度是否正常,正常工作时高压为 1.5MPa/ 低压为 0.45MPa4 检查连锁控制电路装置是否松动、老化,检查油位及油温是否正常,检查压缩机有无异常声音及不正常之震动,冷媒系统测试,整体试车及测试,定期检查冷冻水、冷却水水质是否正常,当水源水质变污浊、蜕变时请及时更换水源,这是每月要定期检查和保养的。  混合动力汽车电池测试的年度保养需要清洗冷凝器(累积运行六个月清洗一次),清洗冷却塔(混合动力汽车电池测试累积运行三个月清洗一次),检查冷冻油及润滑油系统,必要时进行更换和补充,检查颐养主机电路系统,冷却循环水机的压缩机马达线圈绝缘测试,检查干燥过滤器是否正常,有无堵塞,必要时予以更换,检查冷媒量,及时补充冷媒,检查及校正高低压力开关,检查及校正温控器,试车运行及总校正,测试过热度是否正常,各部件有无异常声。  不论是无锡冠亚的混合动力汽车电池测试还是冠亚的其他高低温一体机、制冷加热循环器、工业冰箱等设备都需要进行保养的。

  • 动力电池组测试设备闲置时如何保养

    在新能源汽车厂家中无锡冠亚新能源动力电池组测试设备在不使用的状态下也是需要保养的,那么,怎么来保养比较好呢?  动力电池组测试设备经过长期的使用以后,动力电池组测试设备的面板、内置滤网等一些部件都积攒了很厚的灰尘,而这些灰尘如果不及时清理,在下次使用时不但会出现异味,还会影响动力电池组测试设备的正常运转。而且随着附着时间长,灰尘、污渍可能会更难清理。所以,给动力电池组测试设备做个清洁后再闲置起来会更好。  当动力电池组测试设备闲置超过1个月时,建议每个月能通电运转一次动力电池组测试设备,比如只开水泵循环。这样会有利于动力电池组测试设备主机内的各个机械部件保持良好状态。这就跟汽车长时间闲置,中间建议能启动并开开是建议的,很多东西不怕用,反而更怕闲。  有条件的可以检查一下动力电池组测试设备压缩机是否正常,包括脏污程度,此外包括使用期间可能从没关注过的动力电池组测试设备电源插座,是否还正常。  动力电池组测试设备无论闲置还是其他时候,保养都是很重要的,别小看这些日常的保养,只有保养好才能更好的运行动力电池组测试设备。

  • 动力电池测试系统研究说明

    新能源汽车动力电池测试其目的是为了新能源汽车电池系统的合理使用,提高新能源汽车产业的经济运行效益,实现新能源汽车电池的稳定发展。  在以往动力电池执行标准构建的过程中,所使用的对象相对单一,而且没有全面反映出电池的综合使用性能所以无法满足新能源汽车动力电池系统的设计需求。伴随我国新能源以及新材料的发展,在产业运行中,为了实现高新技术的综合性运用,需要结合动力电池材料的产业发展状况,进行资源的合理使用,并充分展现材料使用的优势性,进行动力电池测试,促进新能源动力产业的稳定发展。  电芯系统测试  对于电芯而言,作为电池系统中很重要的组成部分,是电池的储能单元。研究中发现,电芯性能的稳定性在某种程度上决定了电池系统的动力性能使用期限以及安全能力等。所以,在检测的过程中,应该针对电芯层面的实验进行电化学性能、使用寿命以及安全性能的分析,并结合测试实验的温度因素,进行电芯能力的确定,以保障电芯测试的稳定性,提高电芯使用寿命。  电池系统测试  在电池模块设计的过程中,电池模块作为构成电池系统的重要组成部分,通常是由电芯、电池管理单元以及冷却装置共同组成。通过电池系统的使用,应该充分满足安全性、机械性以及环境的基本需求。通常状况下,在电池系统测试严重的过程中,不仅会对电池模块层面的电池管理模块进行控制,而且也会对电池自身设计结构具有一定要求,通过这些要求的设计,可以充分保障电池系统运行的安全性。因此,在电池模块安全性能检测的过程中,应该将安全问题作为重点,充分保证电池系统运行的有效性。  测试研究结果分析  通过对新能源汽车动力电池系统检测状况的分析,在电池模板、电芯检测的过程中,应该按照整车开发性能进行检测标准的确定。所以,在电池系统的整车开发中,应该结合整车的性能汽车零部件测试要求以及电池自身特点等,进行检测方法的完善,以保障检测方案的合理性。  所以,在新能源汽车动力电池测试中,需要结合无锡冠亚新能源汽车电池系统的整体状况,提高新能源汽车电池的整体质量,促进汽车产业的绿色发展。

  • 新能安推出循环15,000次的电池技术

    [align=left][font=宋体][font=宋体]新能安称其新型电池技术使用寿命可达[/font][font=宋体]15,000次循环,适用于固定和太阳能储能应用,实现长达20年的潜在寿命。[/font][/font][/align][align=left][font=宋体] [/font][/align][align=left][font=宋体][font=宋体]中国电池制造商厦门新能安科技有限公司([/font][font=宋体]Ampace)在上周拉斯维加斯举行的RE+展会上发布了新型电池技术。公司表示,新型昆仑系列电池适用于[/font][/font][font=宋体][font=宋体]屋顶光伏项目的储能系统。[/font][/font][/align][align=left][font=宋体] [/font][/align][align=left][font=宋体][font=宋体]公司表示:[/font][font=宋体]“这种长寿命电池对全球工商业和住宅储能系统具有重要价值,能使工商业储能用户有效实现光储同寿,并且由于克服了传统电池寿命限制,能在VPP模式下为住宅储能[/font][/font][font=宋体][font=宋体]用户带来更大收益。[/font][font=宋体]”[/font][/font][/align][align=left][font=宋体] [/font][/align][align=left][font=宋体][font=宋体]公司表示该电池技术可确保[/font][font=宋体]15,000次循环或20年使用寿命,而且新产品在循环15,000次后可保持80%的健康状态率,在循环20,000次后可保持70%以上的健康状态率。[/font][/font][/align][align=left][font=宋体] [/font][/align][align=left][font=宋体][font=宋体]电池尺寸为[/font][font=宋体]22.5 mm x 122.7 mm x 360.5 mm,重约1.8 kg,其最大容量为100 Ah,标称电压为3.2 V。[/font][/font][/align][align=left][font=宋体] [/font][/align][align=left][font=宋体][font=宋体]公司表示:[/font][font=宋体]“这有效解决了客户在太阳能储能项目运营阶段需要更换电池的顾虑,使整个生命周期的[/font][/font][font=宋体][font=宋体]电力成本显著降低了[/font][font=宋体]30%。”并指出该新电池技术可有效实现光储同寿,并能处理多个日常循环。新能安是中国制造商新能源科技有限公司(ATL)与中国电池巨头宁德时代(CATL)组建的合资企业,CATL于2011年从ATL分拆出来。[/font][/font][/align]

  • 动力电池测试解决方案

    在目前能源危机下,减轻污染,绿色出行已经是当代发展的主题之一,所以,电动汽车发展也是必然的,电动汽车的电池作为其运行核心,动力电池测试解决方案也是比较重要的。  在汽车领域,通过巨额补贴来鼓励大家购买新能源汽车,可以说新能源汽车已经成为汽车工业发展的必然趋势,基于这种社会需求,必将推动动力电池的市场需求。但是,汽车电池在分拣过程中,会出现很多问题,比如:汽车电池组在使用一段时间后,每个电池的容量会有不同程度的下降,这样,便造成了电池模块内部以及电池模块间的不均衡状态。从而导致电池组的整体利用率下滑,新能源汽车每次充电的里程数也会大大缩短。或者电池经常处于过充电或者过放电的情况导致的电池容量下降。而且,容量变化的程度不一。  如果有这样的分拣测试系统或者检测设备,它可以将单个电池逐一进行分拣,挑出效率高的电池,甩掉“拖后腿”的电池,从而使整台车的电池组达到优化的状态,相信这是汽车电池生产厂家追求的致高境界。那么现在就有这样的系统与设备,可以实现这样的设想。无锡冠亚动力电池测试解决方案就应运而生了,通过该系统自身的工作原理来实现消除电池间不均衡的现象,从而达到提高整个电池组的工作效率,在未来的新能源汽车发展中,动力电池测试系统的不断研发与升级将会使新能源汽车市场更加趋于成熟并高速发展。  动力电池测试解决方案不同,推出的动力电池测试设备也是不同的,专业提供动力电池测试解决方案,帮助用户解决制冷加热控温难题。

  • 电池测试系统润滑油系统说明

    电池测试系统是主要应用于新能源汽车的电池测试中,其作为新能源汽车的重要部件之一,无锡冠亚电池测试系统的性能是很重要的,其中,润滑油系统的地位也不低,也需要我们去慢慢了解的。  润滑油是运行不可缺少的重要辅助材料,润滑油能够减少制冷剂在压缩过程中由高压侧向低压侧的泄漏及减少相互间的机械摩损,润滑油可以冷却被压缩的制冷剂,油被喷入压缩机内,吸收制冷剂气体在压缩过程中产生的热量,降低排气温度润滑油可以对轴承起润滑作用润滑油能够传递压差力量,驱动容量调节系统, 经由压缩机的加卸载电磁阀的动作,调节容调滑块的位置,实现压缩机容量调节控制润滑油还可以降低运转噪音。因此,可以说电池测试系统组的使用好坏,都主要集中在油的选择及使用上及系统回油,冷却的设计上。  润滑油如果没有匹配好,将有可能造成压缩机烧坏,制冷系统瘫痪后,其影响不可估量。所以,电池测试系统上使用的润滑油比较好使用原厂匹配的产品。优质合适的润滑油能够让电池测试系统的制冷量更高,随之其效率更高。在电池测试系统润滑油更换时间上,一般建议电池测试系统每运转10000小时须检查或更换一次润滑油,且第一次运转后,2500小时建议更换一次润滑油并清洗或者更换机油过滤器。因系统组装的残渣在正式运转后都会累积至压缩机中。所以2500小时 (或3个月) 应更换一次润滑油,若没有条件的至少要更换一次油过滤器芯。  在电池测试系统更换润滑油时需要注意,不同牌号的润滑油切不可混用,尤其是矿物油和合成酯类油切不可混用如果更换不同牌号的润滑油,注意要将系统内残存的原润滑油排除掉有些油品因有吸湿的特性,所以不要将润滑油长期暴露在空气中。安装时尽可能缩短暴露的时间,并做好抽真空操作如果系统发生过压缩机电机烧毁故障,更换新机时要特别注意将系统残存的酸性物质去除,并在调试运转七十二小时后检查润滑油的酸度,建议更换润滑油和干燥过滤器,降低酸蚀的可能。此后运转一个月左右再次检测或更换一次润滑油如果系统曾发生过进水的事故,要特别注意将水分去除干净,除更换润滑油外,要特别注意检测油品的酸度,并及时更换新油和干燥过滤器。  电池测试系统在运行中,需要注意选择全密闭的循环管路,这一对于整体的运行效果都是有一定的好处。

  • 面对动力电池测试压缩机回油怎么处理?

    面对动力电池测试压缩机回油怎么处理?

    动力电池测试是目前市场上新能源汽车电池专用的电池测试系统,为了保证新能源汽车电池的有效运行,所以对动力电池测试的性能有一定的要求,压缩机作为其核心配件,一旦发生回油故障就要及时解决。[img=,400,400]https://ng1.17img.cn/bbsfiles/images/2018/09/201809181539552442_4888_3445897_3.jpg!w400x400.jpg[/img]  动力电池测试制冷系统运行的过程中,润滑油是随着冷媒一起排出压缩机,经过循环又回到压缩机,那么在有冷媒出入的地方就有润滑油的出入。冷媒性能和润滑油性能有着本质的区别,冷媒在制冷系统循环过程中存在两相,即液态冷媒和汽态冷媒,而润滑油基本上处于液态,当动力电池测试冷媒从液态转变为汽态,润滑油会从冷媒中析出,在诸多因素的影响下,它们很可能在某个零部件或某个结构点储存,导致润滑油无法顺利回流到压缩机,造成涡旋压缩机缺油,如果缺油长时间得不到解决,会导致压缩机内部运动零件润滑不足,出现干烧等故障,大大加速冷水机压缩机的损坏。  动力电池测试的压缩机在排出冷媒时,也会排出微量的冷冻机油。即使只有0.5%的上油率,如果油不能通过系统循环回到压缩机中,因此为了确保压缩机运行不缺油,应该确保排出压缩机的冷冻机油回到压缩机,减少压缩机的上油率。  动力电池测试需确保吸气管冷媒的流速,才能使油回到压缩机,但流速应小于15m/s,以减小压降与流动噪音,对水平管还应沿冷媒流动方向有向下的坡度。需要防止冷冻机油滞留在蒸发器内,确保适当的气液分离器的回油孔,过大会造成湿压缩,过小则会回油不足,滞流油在气液分离器中。动力电池测试系统中不应存在使油滞留的部位,确保在长配管高落差的情况下有足够的冷冻机油在压缩机里,通常用带油面镜的压缩机确认压缩机频繁启动不利于回油。  新能源动力电池测试是目前比较新兴的设备,无锡冠亚在这一领域不断创新不断开发,争取为大众提高性能更加优良的动力电池测试。

  • 【收集问答】关于锂电池颗粒度测试—4月27日CIBF2024重庆电池展直播间问题征集

    随着新能源汽车市场的蓬勃发展,电池技术的革新成为了行业的焦点!在这其中,续航里程无疑是衡量电池性能的核心指标,而电池材料结构的优化则是实现续航里程飞跃的关键所在。[list][*][img]https://simg.instrument.com.cn/bbs/images/brow/em29.gif[/img] 【1】电池续航里程受[color=#ff0000][b]多个关键因素[/b][/color]影响,包括[b][color=#ff0000]电池的能量密度、内阻、充放电效率、电池管理系统[/color][/b]等。这些因素综合作用,决定了电池能够提供的[color=#ff0000][b]续航里程[/b][/color]。[/list][list][*]【2】电池材料[color=#ff0000][b]粒度分布[/b][/color]对电池性能有直接影响。粒度分布均匀有利于[color=#ff0000][b]电子和离子的传输[/b][/color],提高电池效率;反之,粒度分布[color=#ff0000][b]不均可能导致性能下降[/b][/color]。粒度控制面临的挑战包括制备工艺的稳定性、粒度测量技术的准确性以及成本控制等。[/list][list][*]【3】常用的电池材料粒度测试方法包括[color=#ff0000][b]激光粒度仪、扫描电镜[/b][/color]等。百特在电池材料粒度测试领域提供了一系列解决方案,如高精度激光粒度仪和定制化的[color=#ff0000][b]粒度分析软件[/b][/color],有助于更准确地评估电池材料的粒度分布。这些解决方案通过优化电池材料结构,提高电池性能,从而助力电池实现更长的续航里程。[/list][list][*]【4】选购激光粒度仪时,应重点关注仪器的[b][color=#ff0000]测量范围[/color][/b]、分辨率、准确性、重复性、稳定性以及易用性等性能指标。这些指标将直接影响粒度测试的准确性和可靠性。[/list][list][*]【5】随着电池行业的快速发展,对激光粒度仪技术提出了更高的需求,包括更高的测量精度、更快的测试速度、更强的数据处理能力以及更好的稳定性等。这些需求推动了激光粒度仪技术的不断创新和进步。[/list][list][*]【6】针对电池行业存在的粒度测试需求,百特将推出更加精准、高效的激光粒度仪产品,以及更加智能化的粒度分析软件。同时,百特还将提供定制化的解决方案,以满足不同客户在电池材料粒度测试方面的特殊需求。这些解决方案将有助于提升电池性能,推动电池行业的持续发展。[/list][font=-apple-system, BlinkMacSystemFont, &][size=15px][color=#05073b][img]https://simg.instrument.com.cn/bbs/images/brow/em17.gif[/img]欢迎留言!对于上述关于电池续航里程、电池材料粒度分布、粒度测试方法、激光粒度仪选购以及电池行业对激光粒度仪的新需求等问题,我们非常期待您的看法和疑问。您的留言将是我们直播间讨论的重要内容,我们会将您的问题转达给专家,并在直播中为您详细解答。[/color][/size][/font][b]直播间日程:[url]https://www.instrument.com.cn/webinar/meetings/bettersize2024[/url]问卷有礼:[url]https://instrument666.mikecrm.com/G8mEOgC[/url][/b]

  • 【原创大赛】锂离子电池热性能评价:电池材料导热系数测试方法研究

    【原创大赛】锂离子电池热性能评价:电池材料导热系数测试方法研究

    [color=#cc0000]摘要:本文针对锂离子电池材料导热系数测试方法,评论性概述了近些年的相关研究文献报道,研究分析了这些导热系数测试方法的特点,总结了电池材料导热系数测试技术所面临的挑战,从热分析仪器市场化角度提出了迎接这些挑战的技术途径。[/color][hr/][size=18px][color=#cc0000]1.问题的提出[/color][/size] 锂离子电池在各种应用中用于能量转换和存储,包括消费类电子产品、电动汽车、航空航天系统等。图1-1所示为典型的锂离子电池的结构,锂离子电池主要包括电极材料、电解质材料、隔膜材料、电池堆和热管理高导热相变复合材料。[align=center][img=锂离子电池结构示意图,500,375]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250623319094_6619_3384_3.jpg!w600x450.jpg[/img][/align][align=center][color=#cc0000]图1-1 锂离子电池结构示意图[/color][/align] 导热系数作为电池材料的重要热物理性能参数之一,严重影响着锂离子电池的各种特性。而锂离子电池在使用过程中会面临着电、热、力和质的不同边界条件,这就使得准确测试电池材料导热系数面临着以下几方面的严峻挑战: (1)锂离子电池材料往往涉及含能和储能材料,在不同边界条件下,如在充放电过程中会伴随着生热甚至热解过程,在电池热管理系统中还涉及到相变材料,这就要求要在这些电化学和热化学过程中同时对导热系数进行测量,这要比以往纯热物理变化过程中的导热系数测试技术更为复杂。 (2)导热系数测试方法众多,但针对锂离子电池材料的复杂特征和要求,首先要需要找出合理的测试方法,以保证测量结果的准确性,这对锂离子电池材料和电池热管理尤为重要。 (3)由于锂离子电池材料导热系数测试所涉及的环境条件众多,会涉及众多不同的导热系数测试方法和设备。但在实际工程应用中,还是希望能对测试方法进行优化和开发测试新技术,从而实现用尽量少的测试方法和仪器设备尽可能多的满足各种各种锂离子电池材料的导热系数测试需求。 (4)由于锂离子电池材料还涉及其他热性能参数和表征参数,如比热容和热失控等,这样就要求导热系数测试方法和仪器能与其他热性能参数测试仪器进行集成,使得测试仪器具备多功能性,在一台测试仪器上可实现多个参数的测试。 本文将针对上述存在的问题和挑战,首先对近些年锂离子电池材料导热系数测试技术进行评论性综述,然后在分析研究的基础上,提出比较适合锂离子电池和材料导热系数测量的实用方法。[size=18px][color=#cc0000]2.电池材料导热系数测试方法综述[/color][/size] 在锂离子电池材料级别方面,主要涉及的材料有电极、电解质、隔膜、电极隔膜堆和热管理高导热相变复合材料。 在材料级别方面,已经报道了电极[1]-[4]、电解质[5]、隔膜[6][7]、电极堆[2][8]的导热系数和接触热阻[9][10]测量结果。 如图2-1所示,阴极样品厚度方向上导热系数已使用保护型热流计法(ASTM E1530)进行了测量[1][12],阴极由等体积分数的聚合物电解质以及活性材料和乙炔黑的混合物制成。经测量,在25~150℃之间复合材料导热系数在0.2 ~ 0.5 W/mK范围内变化。由于阴极材料太薄,将多层阴极材料叠加后形成1~2mm厚的可测样品,样品直径为25.4mm,测试压力为10psi以减少多层叠加后带来的接触热阻。[align=center][img=保护型热流计法导系数测试示意图,500,419]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250624120593_5244_3384_3.jpg!w500x419.jpg[/img][/align][align=center]图2-1 保护型热流计法导热系数测试示意图[/align] 如图 2-2所示,展示了锂离子电池电极材料厚度方向导热系数测量装置结构[2]。[align=center][img=,600,428]https://ng1.17img.cn/bbsfiles/images/2020/05/202005252355511656_8624_3384_3.jpg!w600x428.jpg[/img][/align][align=center][color=#cc0000]图2-2 锂离子电池材料厚度方向导热系数测量装置示意图[/color][/align] 装置采用了稳态薄加热片法[13],单层材料面积为431mm2,厚度0.42mm,被测样品为多层叠加形式。还采用了闪光法测量多层锂离子电池薄层材料的热扩散系数,并通过叠层材料不同取样方向来测量得到不同方向的热扩散系数。 时域热反射(TDTR)技术已用于测量LiCoO2薄膜厚度方向导热系数[3],样品厚度约500nm,测量了锂化程度对导热系数的影响。循环过程中原位测量LiCoO2阴极的导热系数表明,去锂化时,导热系数从5.4W/mK可逆地降低至4.7W/mK。 如图2-3所示,采用闪光法确定由各种粒径的合成石墨制成的负电极(NE)材料的导热系数[4][14],样品尺寸为直径约15mm,厚度范围为1.1~9.5mm,实验在室温RT,150和200°C下进行。[align=center][img=激光闪法测量原理,500,467]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250625143698_6549_3384_3.jpg!w500x467.jpg[/img][/align][align=center][color=#cc0000]图2-3 激光闪光法测量原理[/color][/align] 同样,聚合物电解质的导热系数采用图1-1所示保护型热流计法进行了测量[5],测量样品厚度方向上的温差,该温差用于计算总热阻,从中可提取出样品厚度方向上的导热系数。通过刮刀技术制备聚合物电解质薄膜样品,并将其夹在导热仪顶板和底板之间,然后测量温度差。据报道,在25~150℃范围内,导热系数在0.12~0.22W/mK之间变化。 如图2-4所示,隔膜材料面内方向导热系数已使用直流加热法进行了测量[6]。在100级无尘室中从26650锂离子电池中提取隔膜样品,在隔膜样品上沉积了两条相距很小的细钛线,其中一条线用作加热器,而这两条线都用于温度测量,两条线的温度作为时间函数的超快测量用于确定隔膜样品的热性能[15]。室温下的面内方向导热系数为0.5W/mK,在50℃下测量时,这些值没有明显变化。[align=center][img=,500,308]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250625463285_8933_3384_3.jpg!w550x339.jpg[/img][/align][align=center][color=#cc0000]图2-4 隔膜材料比热容和面内方向导热系数测试示意图[/color][/align] 正负电极薄膜材料和隔膜材料厚度方向和面内方向导热系数已使用不同的稳态方法进行了测量[7],实验装置与先前使用的一维热流计法装置非常相似[1]。样品尺寸30mm×30mm,单层膜厚度在24~106um范围内,导热系数测量结果范围为0.19~31W/mK。 如图2-5所示,采用闪光法测量了多层阳极、隔膜和阴极构成的电极隔膜堆的厚度方向和面内方向热扩散系数[8],采用差示扫描量热仪测量了比热容,由此得到电极隔膜堆厚度方向和面内方向的导热系数。另外对从新电池中取出的电极隔膜堆在45℃下循环500次,考察了高温循环对导热系数的影响。[align=center][img=闪光法厚度方向和面内方向测试示意图,690,400]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250626168406_2334_3384_3.jpg!w690x400.jpg[/img][/align][align=center][color=#cc0000]图2-5 (a)闪光法测试厚度方向和面内方向电极隔膜堆热扩散系数示意图;(b)测试过程中样品的取样形式和摆放形式[/color][/align] 除了上述关于导热系数测量的报道外,还报道了采用恒定热流法(ASTM D5470)在不同压力和温度下测量了电极隔膜堆的接触热阻[9][16]。如图2-6所示,测试过程中将被测电极隔膜堆叠层夹在两个铜块之间,并测量了叠层的总热阻。电池隔膜堆包括了涂覆有石墨的铜阳极、涂覆有钴酸锂的铝阴极、聚乙烯/聚丙烯隔膜和电解质,测试温度范围-20~50℃,压力0~250psi。通过测试得出的主要结论包括:与干电池组相比,湿电池组的接触热阻更低,并且电极隔膜堆叠热阻的温度依赖性较弱。但是,此处测得的热阻是总热阻,其中还包括材料自身热阻,而不仅仅是电池不同材料之间的接触热阻。已经测量了使用的电极和铜棒之间的接触热阻,这与电池的原位操作没有特别的关系。[align=center][img=,550,442]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250626475813_5845_3384_3.jpg!w550x442.jpg[/img][/align][align=center][color=#cc0000]图2-6 恒定热流法(ASTM D5470)测量电池材料接触热阻示意图[/color][/align] 如图2-7所示,在另一项工作中,同样采用恒定热流法(ASTM D5470)测量了阴极和隔膜之间的界面热传导[10]。测量结果表明,锂离子电池的热特性很大程度上取决于穿过阴极-隔膜界面的传热,而不是通过电池本身的传热。这种界面热阻约占电池总热阻的88%。[align=center][img=,500,267]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250627005929_1859_3384_3.jpg!w600x321.jpg[/img][/align][align=center][color=#cc0000]图2-7 恒定热流法测量电池材料接触热阻示意图:(a)被测样品为电极隔膜堆;(b)纯隔膜样品;(c)纯阴极样品[/color][/align] 如图2-8所示,采用瞬态平面热源法测量了石墨烯填料的混合相变材料[11][17],石蜡相变材料在添加石墨烯前后的导热系数分别为0.25W/mK和45W/mK。[align=center][img=,500,202]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250627216467_2507_3384_3.jpg!w600x243.jpg[/img][/align][align=center][color=#cc0000]图2-8 瞬态平面热源法测试探头和测量原理图[/color][/align] 对于锂离子电池材料这类薄膜材料,其导热系数的测量还有一种非常有效的方法就是温度波法[18]。这种方法尽管已推出多年,但应用还是较少,但今后将是一种重要的有效方法。[size=18px][color=#cc0000]3.测试方法的特点[/color][/size] 从上述综述中可以看出,电池材料导热系数采用了以下几种测试方法: (1)稳态保护热流计法:ASTM E1530; (2)稳态护热板法:ASTM C177; (3)时域反射法; (4)闪光法:ASTM E1461; (5)稳态热流计法:ASTM C518; (6)恒定热流法:ASTM D5470; (7)瞬态平面热源法:ISO 22007-2。 (8)温度波法:ISO 22007-3。 从上述所涉及的多个测试方法可以看出,与传统材料导热系数测试不同,锂离子电池材料导热系数测试呈现出以下显著特点: (1)薄膜化:锂离子电池材料基本都呈现出薄膜化的形态,所涉及的则是典型的薄膜导热系数测试技术; (2)各向异性:薄膜化的锂离子电池材料呈现出比较明显的各向异性特征,导热系数在厚度方向和面内方向上表现出明显差别,锂离子电池材料导热系数测试实际上是一个各向异性薄膜材料导热系数测试问题; (3)测试变量多:锂离子电池材料导热系数测试的另一个显著特征是测试条件变量较多,除需在传统的不同温度下进行测试之外,还需要包括其他测试条件,如不同的加载压力、SOC荷电、气氛、振动、湿度等条件,甚至还需在通电状态下。[size=18px][color=#cc0000]4.电池材料导热系数测试方法分析[/color][/size] 根据上述锂离子电池材料导热系数测试的特点,对上述各种测试方法进行分析,以寻找出那些测试方法更能适合锂离子电池材料的测试。 纵观上述测试方法,我们将它们分为稳态法和瞬态法进行分析。[color=#cc0000]4.1. 稳态法[/color] 稳态法主要包括:保护热流计法、护热板法、热流计法和恒定热流法。 稳态法的显著特点就是依据经典的傅里叶稳态传热定律,在被测电池材料薄膜样品的测试方向上形成稳定的一维热流,通过测量不同条件下的温度和热流密度来测定相应的导热系数和接触热阻。 稳态法做为一种传统方法,是在较厚的块体材料热性能基础上发展起来的测试方法,对于较大尺寸和较厚块体样品的导热系数测试非常准确和成熟,如保护热流计法、护热板法、热流计法。为了进行电池薄膜材料测试,需要对薄膜材料进行多层叠加后制成样品才能满足稳态法测量准确性要求,这种多层叠加势必会带来接触热阻的严重影响。鉴于传统稳态法对薄膜材料导热系数测试的局限性,开发的恒定热流法则部分解决了测试问题,通过独特的表面温度测试技术,可以进行百微米厚度量级的薄膜导热系数测量,非常适合测试多层膜构成的电池堆以及高导热相变复合材料。 尽管做了相应的改进,但这种在稳态法上做的任何努力都是在挖掘稳态法的潜力,是对稳态法测试能力区间的下限进行进一步的拓展,测试能力下限毕竟还是非常有限,受到了稳态法自身的制约,特别是受到表面温度和厚度测量准确性的制约,使得这种扩展空间十分有限且效果很难保证。总之,对于锂离子电池材料,暂时比较适合的稳态法是ASTM D5470恒定热流法,可以进行导热系数和热阻测量,样品尺寸适中并比较适合加载各种边界条件。[color=#cc0000]4.2. 瞬态法[/color] 瞬态法主要包括时域反射法、闪光法和瞬态平面热源法。 与稳态法恰恰相反,瞬态法是基于样品材料对热激励动态响应的一种测试方法,被测样品越薄,对热激励的响应越快,所以瞬态法的核心是检测物理量随时间变化快慢的问题。同时,在被测样品对热激励的快速响应过程中,周围环境和其他边界条件的影响反而变得很小。最主要的是,随着技术的发展,块体样品(特别是薄膜材料)对热激励的动态响应时间,在当前的电子检测技术面前都不再属于快速测量范畴,采用目前的各种电子技术手段很容易对热激励响应进行快速和准确测量。从另一方面理解,就是针对材料的热性能测试,瞬态法可以针对不同被测样品厚度范围(响应时间)采用相应响应频率范围的电子仪器和设备来实现准确测量,而目前电子仪器设备的测试能力要远远超过薄膜材料热性能测试的需求。这就是瞬态法自身的最大优势,同时也是目前市场上薄膜材料热性能测试仪器大多采用瞬态法的主要原因。 总之,瞬态法作为非接触是测量方法非常适用于致密性薄膜材料,适合测量非常薄的样品,但对于锂离子电池材料这类较低密度的薄膜材料则会遇到许多测试难题,多孔性的薄膜材料样品需要进行表面处理才能进行导热系数测量,但表面处理往往会带来渗透而改变薄膜样品的热性能。另外,瞬态法的另一个明显不足是很难在被测样品上加载各种相应的边界条件进行导热系数测量,如压力和通电等。但瞬态法中的温度波法则是一个例外,这将在下节中进行介绍。[size=18px][color=#cc0000]5.未来设想:新方法的提出[/color][/size] 从上述对电池材料导热系数测试方法的分析中可以看出,现有方法都不能很好的解决本文开始提到的锂离子电池材料导热系数测试所面临的问题,需要研究和开发新型测试方法才能应对相应的技术挑战。 通过我们的研究,我们认为将上述稳态法和瞬态法相结合的方法将会是一种有效的技术途径,具体的结合形式就是改进型的瞬态温度波法。 ISO 22007-3规定的温度波测试方法[18],主要用于确定薄膜和塑料板在整个厚度方向上的热扩散系数。温度波法是一种通过测量样品前后表面之间温度波的相移来测量薄而扁平样品厚度方向热扩散系数的方法。使用在样品两个表面上溅射或接触的电阻器,一个作为加热器,通过交流焦耳加热产生温度波,另一个作为温度计来检测温度波。ISO 22007-3中给出了温度波法测量装置示意图,如图5-1所示。[align=center][img=温度波法热扩散系数测量装置示意图,690,473]https://ng1.17img.cn/bbsfiles/images/2020/05/202005250627416770_5455_3384_3.jpg!w690x473.jpg[/img][/align][align=center][color=#cc0000]图5-1 温度波法热扩散系数测量装置示意图[/color][/align] 从上述描述中可以看出,温度波法测量装置包括彼此面对的微加热器和温度传感器,样品安装在它们之间。向加热器提供弱的正弦电功率信号,在样品表面上产生温度波。温度传感器是一种高灵敏度电阻传感器,它使用前置放大器在将弱信号进入锁相放大器之前对其进行放大。观察到的温度信号是激发温度波和背景温度信号的混合,例如环境的温度。在交流测量中,锁定放大的一个优点是能够提取和分析信号中仅一个指定频率分量的变化,抵消室温变化的影响(误差的主要来源)以及噪声成分实现高灵敏度测量。通过将实际施加的温度波幅度限制在1℃以内或更低,可以有效地抑制对流和辐射,并确保几乎不损坏样品。此外,如果采用极小的传感器尺寸则可识别更小样品区域内的热扩散系数。 总之,采用改进后的温度波法,将具备以下几方面的显著特点: (1)在样品的夹持、厚度控制和测量方面,温度波法与稳态法基本相同,可以在测量过程中对样品加载一定的压力和其他测试条件。同时,温度波法还具备了非接触瞬态法的优点,将温度和热流测量转换为高精度的频率和相位测量,减少了误差,可以实现高灵敏的测量。 (2)尽管ISO 22007-3规定的温度波测试方法是用于测量薄膜材料厚度方向的热扩散系数,但这种方法也可以用于薄膜面内方向上的热扩散系数测量,转换后的测试方法就是经典的Angstrom周期热波法[19]。 (3)从图5-1所示的温度波测量原理可以看出,只要将交流加热形式控制为直流形式,温度波法就变成了传统的热流计法,就可以用于板材样品测量,也就是说可以进行各种规格尺寸袋装和片状锂离子电池热扩散系数和导热系数的测量。 (4)更重要的特点是,改进的温度波法结构小巧,可以与其他热性能测试方法进行集成,这方面的内容将在后续报告中进行介绍。 综上所述,我们选择并开展改进型的温度波法研究,基本可以解决本文前面所提出的锂离子电池材料测试中所面临的几方面难题,同时还兼顾了测试仪器的微型化、集成化和低成本,这将是我们今后热分析仪器发展的一个方向。[size=18px][color=#cc0000]6.参考文献[/color][/size][1] Song, L., and Evans, J. W., 1999, “Measurements of the Thermal Conductivity of Lithium Polymer Battery Composite Cathodes,” J. Electrochem. Soc., 146(3), pp. 869–871.[2] Maleki, H., Al Hallaj, S., Selman, J. R., Dinwiddie, R. B., and Wang, H., 1999, “Thermal Properties of Lithium-Ion Battery and Components,” J. Electrochem. Soc., 146(3), pp. 947–954.[3] Cho, J., Losego, M. D., Zhang, H. G., Kim, H., Zuo, J., Petrov, I., Cahill, D. G., and Braun, P. V., 2014, “Electrochemically Tunable Thermal Conductivity of Lithium Cobalt Oxide,” Nat. Commun., 5, p. 4035.[4] Maleki, H., Selman, J. R., Dinwiddie, R. B., and Wang, H., 2001, “High Thermal Conductivity Negative Electrode Material for Lithium-Ion Batteries,” J. Power Sources, 94(1), pp. 26–35.[5] Song, L., Chen, Y., and Evans, J. W., 1997, “Measurements of the Thermal Conductivity of Poly(Ethylene Oxide)-Lithium Salt Electrolytes,” J. Electrochem. Soc., 144(11), pp. 3797–3800.[6] Vishwakarma, V., and Jain, A., 2014, “Measurement of In-Plane Thermal Conductivity and Heat Capacity of Separator in Li-Ion Cells Using a Transient DC Heating Method,” J. Power Sources, 272, pp. 378–385.[7] Yang, Y., Huang, X., Cao, Z., and Chen, G., 2016, “Thermally Conductive Separator With Hierarchical Nano/Microstructures for Improving Thermal Management of Batteries,” Nano Energy, 22, pp. 301–309.[8] Maleki, H., Wang, H., Porter, W., and Hallmark, J., 2014, “Li-Ion Polymer Cells Thermal Property Changes as a Function of Cycle-Life,” J. Power Sources, 263, pp. 223–230.[9] Ponnappan, R., and Ravigururajan, T. S., 2004, “Contact Thermal Resistance of Li-Ion Cell Electrode Stack,” J. Power Sources, 129(1), pp. 7–13.[10] Vishwakarma, V., Waghela, C., Wei, Z., Prasher, R., Nagpure, S. C., Li, J., Liu, F., Daniel, C., and Jain, A., 2015, “Heat Transfer Enhancement in a Lithium-Ion Cell Through Improved Material-Level Thermal Transport,” J. Power Sources, 300, pp. 123–131.[11] Goli, P., Legedza, S., Dhar, A., Salgado, R., Renteria, J., and Balandin, A. A., 2014, “Graphene-Enhanced Hybrid Phase Change Materials for Thermal Management of Li-Ion Batteries,” J. Power Sources, 248, pp. 37–43.[12] ASTM E1530 Standard Test Method for Evaluating the Resistance to Thermal Transmission by the Guarded Heat Flow Meter Technique[13] ASTM C177 Standard Test Method for Steady-State Heat Flux Measurements and Thermal Transmission Properties by Means of the Guarded-Hot-Plate Apparatus[14] ASTM E1461-13 Standard Test Method for Thermal Diffusivity by the Flash Method[15] ASTM C518 Standard Test Method for Steady-State Thermal Transmission Properties by Means of the Heat Flow Meter Apparatus[16] ASTM D5470 Standard Test Method for Thermal Transmission Properties of Thermally Conductive Electrical Insulation Materials[17] ISO 22007-2 Plastics — Determination of thermal conductivity and thermal diffusivity — Part 2: Transient plane heat ource (hot disc) method[18] ISO 22007-3, Plastics – Determination of thermal conductivity and thermal diffusivity – Part 3: Temperature wave analysis method.[19] A. J. Angstrom, Ann. Physik Leipzig 114, 513 (1861).[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 国内电池包测试高低温实验箱

    国内电池包测试高低温实验箱

    电池包测试高低温实验箱是电池行业必备的试验设备,因为能够快速帮期间鉴定出产品在长期使用之后的性能,进而采取更加有效的抗老化措施,以提高产品的试验寿命,在产品的设计、改进、鉴定、创新中起到非常重要的作用。不过国内很多电池包测试高低温实验箱都是仿制进口设备的,并且在生产的过程中有偷工减料,导致质量远远不及进口设备。而很多用户也因为购买了这些试验箱之后很难相信国内的试验箱品牌。[align=center][img=,400,400]http://ng1.17img.cn/bbsfiles/images/2018/03/201803131559035153_7838_3222217_3.jpg!w400x400.jpg[/img][/align]  其实国内电池包测试高低温实验箱早期确实步入进口试验设备,这是因为国内环试行业才刚刚发展起来,而国外的环试行业已经发展成熟。而且早期刚开始发展的时候很多企业只会一味模仿进口设备,但是由于很多比较机密的构造不是特别清楚,导致试验设备质量次于进口设备。不过由于这几年个别环境试验设备厂家的不断创新改进,也从国外引进许多先进技术,让国内部分试验箱厂家也能够为企业提供可靠的电池包测试高低温实验箱以及其他设备。只不过现在比较可靠的电池包测试高低温实验箱厂家数量较少,寻找起来比较麻烦,但是相信以后用户对环境试验设备的要求会越来越高,淘汰掉滥竽充数的环境试验设备厂家,留下真正愿意做高质量设备的厂家。相信最后能够让国内数量众多的工业企业能够使用到质量可靠,故障频率低的试验设备。

  • 高镍正极半电池循环过程中切换倍率后电压充不上去

    高镍正极半电池循环过程中切换倍率后电压充不上去

    材料是NCM9622,电池在0.1C倍率下循环3圈活化,活化后想在1C跑长循环,但是充到3.9V左右电池电压就很难充上去。几乎所有电池都有这个问题,这可能是什么原因导致的呢?电解液是LP57,极片经过了正常的辊压步骤,活性物质载量大约3.4mg/cm2。[img=充放电曲线,611,600]https://ng1.17img.cn/bbsfiles/images/2023/08/202308031123459587_2177_5982351_3.jpg!w611x600.jpg[/img]

  • 汽车电池冷却水循环机换热器需要考虑哪些方面?

    汽车电池冷却水循环机一直是大家比较受欢迎的设备之一,其换热器管路中设计也是需要进行设计的,那么汽车电池冷却水循环机换热器需要考虑哪些方面呢?  汽车电池冷却水循环机换热设备的类型很多,对每种特定的传热工况,通过优化选型都会得到一种比较合适的设备型号,如果将这个型号的设备使用到其他工况,则传热的效果可能有很大的改变。对汽车电池冷却水循环机管壳式换热器的设计,有以下因素值得考虑:  流速是汽车电池冷却水循环机换热器设计的重要变量,提高流速则提高传热系数,同时压力降与功耗也会随之增加,如果采用泵送流体,应考虑将压力降尽量消耗在换热器上而不是调节阀上,这样可依靠提高流速来提高传热效果。  选择较大的压力降可以提高汽车电池冷却水循环机换热器流速,从而增强传热效果减少换热面积。但是较大的压力降也使得泵的操作费用增加。合适的压力降值需要以换热器年总费用为目标,反复调整设备尺寸,进行优化计算而得出。  主要根据汽车电池冷却水循环机流体的操作压力和温度、可以利用的压力降、结构和腐蚀特性,以及所需设备材料的选择等方面,考虑流体适宜走哪一程。  汽车电池冷却水循环机换热终温一般由工艺过程的需要确定。当换热终温可以选择时,其数值对换热器是否经济合理有很大的影响。在热流体出口温度与冷流体出口温度相等的情况下,热量利用效率比较高,但是有效传热温差比较小,换热面积比较大。  对于汽车电池冷却水循环机一定的工艺条件,首先应确定设备的形式,例如选择固定管板形式还是浮头形式等,在换热器设计过程中,强化传热总的目标概括有:在给定换热量下减少换热器的尺寸;提高现有换热器的性能;减小流动工质的温差;或者降低泵的功率。  汽车电池冷却水循环机换热器在传热的过程中,可以根据具体的工艺要求来选择具体的汽车电池冷却水循环机换热器。

  • 用于动力电池系统测试的新能源汽车电池有哪些?

    动力电池系统测试用于新能源汽车的电池测试中,但是现代新能源汽车的电池种类也不少,那么,具体有哪些呢?都有什么特点呢?  三元锂电池,是指正极材料为锂镍钴锰三元正极材料的锂电池,相对于钴酸锂电池,三元锂电池安全性更高,更适合未来新能源汽车电池的发展趋势,适合北方天气,低温时电池更加稳定,但是电压太低,能量密度介于磷酸铁锂电池和钴酸锂电池之间,代表车型有:北汽新能源EV200、北汽新能源EU260、特斯拉Model 3等。  镍氢电池,是由氢离子和金属镍合成的,电池能量储备大,重量更轻,使用寿命更长,并且对环境无污染。但是动力电池系统测试提醒,制造成本太高,性能方面比“锂电池”差,其中代表车型有:丰田prius、福特汽车Ford Escape、雪佛兰Chevroiet Malibu等。  钴酸锂电池,是电子产品中比较常见的电池,常用于笔记本电脑电池,作为电芯使用,生产技术成熟,能量比高,能量比大约是磷酸铁锂电池的两倍,但在高温状态下,稳定性相比镍钴锰酸锂电池、磷酸铁锂电池稍差,代表车型有:特斯拉。  酸磷铁锂电池,是用酸磷铁锂作为正极材料的锂离子电池。(锂离子电池的正极材料主要有钴酸锂、锰酸锂、镍酸锂、三元材料和磷酸铁锂等),稳定性是目前车用锂电池中比较好的。但是,能量密度较三元锂电池、钴酸锂电池仍有不小的差距,还有就是当温度低于-5℃的时候,充电效率有所降低。以及在温度过低的情况下,会影响电池的电容。磷酸铁锂电池应用的车型,不适合在北方行驶,尤其是东北等极寒地带,因为那里冬天的温度实在是太低了,会影响磷酸铁锂电池的使用寿命,代表车型有:比亚迪e6、比亚迪秦、比亚迪唐等。  石墨烯电池又称黑金子:就是锂电池内添加石墨烯,从而开发出的一种新能源电池。石墨烯电池一般用于航空航天等方面,这种新能源电池可把数小时的充电时间压缩至不到一分钟。由于锂电池内添加了石墨烯,可以帮助锂电池降低产能时的热量,达到减少能量损失的目的,避免了大量能量被浪费,减少了热量对电池的损害,提高了电池的使用寿命,但这种电池成本太过昂贵,目前无法大规模应用。  新能源汽车的动力电池种类比较多,为了保证新能源电池的运行效率,所以动力电池系统测试也是需要大家慎重选择的。

  • 电池测试设备制冷加热控温过程中影响制冷量的因素有哪些?

    电池测试设备是应用于新能源汽车电池、电机测试过程中使用的,在电池电机控温的过程中使用,那么,在制冷加热过程中,影响无锡冠亚电池测试设备制冷量的因素有哪些呢?  电池测试设备制冷系统中电池测试设备压缩机的功率越大,制冷量越高,根据电池测试设备机型大小选配机构形式不一样的压缩机,例如小型电池测试设备选用活塞式,中型选配涡旋式。电池测试设备水温(蒸发温度不一样,制冷量不一样)越高时,制冷量越大,水温越低时,制冷量越小。电池测试设备水泵功率水循环量的多少,直接影响传热速度,蒸发器,冷凝器的形式,分为水箱盘管试,壳管式,不锈钢板式等,需要我们按照一定的需求进行配置,热材质中铜管传热比较好。  影响电池测试设备制冷量外部因素也有,电池测试设备大部分是风冷式散热,所以外部环境温度需要在一个合理的范围之内,冷凝温度不能超过45度,一旦超过制冷量会明显减弱,也不能太低,电池测试设备空气是不是对流也很重要,散热口不能有阻挡物,参考标准出风口周围1米内不能有障碍物。  电池测试设备的制冷量关系到整个电池测试设备运行过程,所以,电池测试设备的制冷量一定要有所保证,使得电池、电机在制冷加热的过程中很好的运行。

  • 太阳能电池全套测试系统

    太阳能电池(光电材料)I-V特性测试系统 目前,石油、天然气等不可再生能源价格的居高不下,使得人类对太阳能电池(光电材料)的研究开发进入了一个新的阶段,国内很多实验室和科研院校也都加紧了对太阳能电池材料(光电材料)的研究和开发。 太阳能电池(光电材料)测试作为太阳能电池(光电材料)研究开发的一个环节,至关重要,需要专业的测试系统来完成。针对当前人们对太阳能电池材料(光电材料)的研究和开发,以及太阳能电池(光电材料)研究人员搭建太阳能电池(光电材料)测试系统的耗时耗力,我公司特推出太阳能电池(光电材料)测试系统,并已在很多太阳能电池材料(光电材料)研究、测试实验室广泛使用。 一、我公司太阳能电池(光电材料)测试系统的优势: 1. 技术服务全面 我公司始终把客户需求摆在首要位置,针对客户特殊需求量身定做,为客户提供全套解决方案,终身提供技术服务,为客户节省了搭建太阳能电池(光电材料)测试系统所消耗的时间和人力物力,同时也得到了客户的一致好评。 2. 针对性强 凭借雄厚的光电技术知识和行业经验,针对不同类型的太阳能电池(光电材料)以及客户对测试系统的不同需求,我公司对太阳能电池(光电材料)测试系统也做出了相应的调整,以达到较好的测试效果。目前,针对硅太阳能电池、多元化合物为材料的太阳能电池、功能高分子材料制备的大阳能电池、纳米晶太阳能电池等不同的太阳能电池,我公司也都搭建了不同的测试系统。 3. 性价比高 我公司太阳能电池(光电材料)测试系统采用国外知名公司仪器集成,信噪比高,性能稳定,技术先进,对太阳能电池(光电材料)的测试过程实现自动化,过程简单方便,测试结果在行业内也会具有一定的权威性和说服力。同时,我公司推出的整套太阳能电池(光电材料)测试系统具有很高的性价比。 4. 成熟的太阳能电池(光电材料)测试系统 凭借测试系统的高性价比以及全面的技术服务,我公司太阳能电池(光电材料)测试系统已在国内很多单位的实验室投入使用,包括清华大学等知名大学、国家权威的太阳能计量单位、中国科学院等研究机构以及众多的太阳能相关企业,经过大量客户对我公司太阳能电池(光电材料)测试系统的使用,证明了我公司的太阳能电池(光电材料)测试系统的成熟。 二、太阳能电池(光电材料)光谱响应测试系统简介 太阳能电池(光电材料)光谱响应测试,或称量子效率QE(Quantum Efficiency)测试,或光电转化效率IPCE (Monochromatic Incident Photon-to-Electron Conversion Efficiency) 测试等,广义来说,就是测量光电材料的光电特性在不同波长光照条件下的数值,所谓光电特性包括:光生电流、光导等。我公司的光谱测试系统由宽带光源、单色仪、信号放大模块、光强校准模块、计算机控制和数据采集处理模块组成。我们可以与用户密切协作,根据用户需要测试的样品的类型、测试指标、测试条件,设计和组建最适合每个客户测试需要的系统。 三、太阳能电池I-V特性测试系统简介 我公司太阳能电池I-V特性测试系统主要用来测试太阳能电池的I-V特性等。光源光谱和强度特性可模拟各种条件下的太阳光谱(AM0、AM1.0、AM1.5、AM1.5Global、AM2.0、AM2.0Global),稳定性高,均匀性好,均可达到A类标准,多种光照射面积尺寸;样品台可控温;高精度表头、可调负载和配套软件组成的系统能够通过计算机对测试参数进行设置,并且读取数据,在计算机内进行数据处理,绘制I-V和曲线和显示其它参数并打印输出;系统还可根据客户的具体情况和特殊需求进行相应的系统扩展太阳能电池(光电材料)IPCE/QE/量子效率/光谱响应测试系统   太阳能电池测试行业长期的经验,使得我公司太阳能电池(光电材料)IPCE/QE/量子效率/光谱响应测试系统始终处于行业领先位置。符合IEC, JIS, ASTM标准规定,我公司太阳能电池(光电材料)IPCE/QE/量子效率/光谱响应测试系统具有很高的稳定性和重复性。   作为光伏器件厂商和科研工作者,为了获得高效的产品,就需要一套高性能太阳能电池(光电材料)IPCE/QE/量子效率/光谱响应测试系统来帮助完成产品改进。我公司太阳能电池(光电材料)IPCE/QE/量子效率[font=宋体, MS So

  • 太阳模拟器光源等级对太阳能电池测试的影响

    光伏行业发展初期,晶体硅电池和组件达到批量化生产时,BAA级的模拟器被行业普遍使用,但随着行业的发展和科学技术的进步,尤其是现在各种不同技术类型和不同规格的光伏电池/组件的产品的涌现,其B级光谱的限制性和对多标准板的要求以及测试误差的过大,对AAA级的模拟器成为行业的必然需求,即  A(光谱等级)A(辐照不均匀度等级)A(辐照不稳定性等级,通常指LTI)。  1.光谱对测试结果的影响  不同基材的电池光谱响应差别很大。实际上,即使基材相同的电池在生产过程中由于晶体生长或其它条件和工艺等的差异,也会导致光谱响应的差异,由于无法保证校准设备时使用的标准电池和其它被测电池的绝对一致性,因此如果要得到更为准确的结果,就需要高等级光谱的太阳模拟器。  2.光强均匀性对测试结果的影响  晶体硅太阳电池组件中单体电池之间焊接不良及同串单体电池IV特性不匹配等因素会导致输出功率降低。在工业上,为了防止由以上原因造成的热斑效应和功率消耗,在组件制造时一般都会在每十几片串联的电池片两端并上旁路二极管。这样做虽可降低组件的热斑效应,但同时也可能会使组件的IV特性曲线出现畸变。造成热斑效应的原因有很多,其中两个主要的原因是:一是电池组件本身工艺或品质造成的单体电池IV特性不匹配,二是遮盖等外界原因造成的组件受光不均匀。  因此,一个光强均匀性良好的太阳模拟器,可以通过测试从一定程度上反映出太阳电池组件的单体电池IV特性不匹配的问题。  模拟器的光均匀性还会影响测试结果的FF,如果模拟器的光均匀度不好,一般情况下,测试IV曲线的FF就会比实际值偏小。  3.辐照不稳定度对测试结果的影响  辐照稳定度对测试结果的影响是很容易理解的,模拟器辐照不稳定,就必然会造成测试结果不稳定,辐照稳定度保证了所测试的I-V特性是在同一条件下量测的,为数据的可参考性提供了前提。

  • 【求助】循环伏安法测试电池正负极片

    现用上海正方的ZF系列测试循环伏安曲线,但是多次测试后均显示数据混乱,而且测试老是显示过载,实际显示电流并未超出量程200mA,请各位高手帮忙处理,本人不甚感谢

  • 电池测试冷水机运行中蒸发温度说明书

    电池测试冷水机在目前新能源汽车电池测试设备中使用比较多,其中电池测试冷水机蒸发温度对设备有一定的影响,那么,具体有什么影响呢?  当电池测试冷水机热负荷增大时,其它条件不变的情况下,蒸发温度就会升高,低压压力也会升高,吸气的过热度也会加大。这种情况下电池测试冷水机只能开大膨胀阀,增大制冷剂的循环量,而不能因为低压压力升高关小膨胀阀,降低低压压力。电池测试冷水机这样做将会使吸气过热度更大,排气温度升高,运行条件恶化。调节电池测试冷水机膨胀阀时,每次调节量不应过大,调节后必须经过一定时间的运行,才能反映出热负荷与制冷量是否平衡。  电池测试冷水机压缩机能量的变化对蒸发温度的影响,当增加制冷压缩机的能量时,压缩机的吸气量就相应增加,在其它条件不变的情况下,就会出现高压升高,低压降低,蒸发温度也会随之下降。电池测试冷水机为了继续保持生产工艺需要的蒸发温度,就要开大膨胀阀,使低压压力上升到规定范围。  电池测试冷水机传热面积主要是指蒸发器的蒸发面积,传热面积的变化主要是指蒸发面积大小发生的变化。电池测试冷水机在完整的制冷装置中,蒸发面积通常是固定不变的,但是在实际运行操作中,由于供液不足或者蒸发器内积油,蒸发面积是不断发生变化的。电池测试冷水机蒸发面积的增、减对蒸发温度的影响与热负荷的增、减对蒸发温度的影响是基本相似的。当蒸发面积增加时,蒸发温度就会升高,当蒸发面积减少时,蒸发温度就会降低。为了保持需要的温度,就应调节能量和膨胀阀,对蒸发器进行放油清理,以保持传热面积与制冷量的相对平衡。  在电池测试冷水机制冷剂流量一定时,蒸发温度越低,那么与热负荷(热风)的温差就越大,制冷量越大,换言之,蒸发压力越低制冷量就越大,并且相同质量的同一制冷剂,在不同的温度下蒸发,其蒸发潜热也不相同,蒸发温度越低,蒸发潜热也越大,吸热 能力越强。  电池测试冷水机蒸发温度和很多部件的运行都息息相关,用户在运行新能源汽车电池测试系统的时候,这些都需要注意的。

  • 【原创】锂离子电池正极材料磷酸铁锂发展分析

    电动汽车行业发展可为风起云涌,而车用动力电池作为其中的重要组成部分,已经引起学术界、投资界和产业界的高度关注。目前,已经在各种车辆上实现应用的电池种类主要有铅酸电池、镍氢电池与锂离子电池3种,由于铅酸电池污染大、克容量小,其成本优势不足以抵消其劣势,故在车辆动力方面至今仅在小型电动自行车等领域得以应用;镍氢电池现为混合动力汽车领域应用的主要产品,其制造工艺成熟,购置和使用成本较低,故而在短期内仍将是混合动力汽车的首选,但其自放电率高、比能量较小,记忆效应和充电发热等方面的问题直接影响到该电池的使用,这些缺点的存在使镍氢电池可能只是作为过度产品存在;锂离子电池是90年代发展起来的高容量可充电电池,能够比镍氢电池存储更多的能量,比能量大、循环寿命长、自放电率小、无记忆效应,能够满足对体积、寿命、功率等要求较高的乘用车方面的需求,已成为今后纯电动汽车应用的理想产品。锂离子电池的正极材料种类较多,主要品种有钴酸锂、锰酸锂、镍锰钴三元材料及磷酸铁锂等,其中钴酸锂是现有正极材料中工业化程度最高、技术最成熟、产量最大的品种,主要用于手机、数码产品等小型电池领域,但由于原材料钴和镍金属的价格高昂,污染较重,且电池在大型化后,会有过热着火或爆炸的危险。故相对而言,正极材料为锰酸钾、三元材料和磷酸铁锂的锂离子电池安全性能更好,成本更为低廉,所以目前产业的投入主要集中于这几种材料之上。其中,磷酸铁锂由于具有另外两种材料所不具备的循环寿命和材料成本方面的潜在优势,而被业界普遍看好,代表着动力电池正极材料的未来发展方向。国际上主要的磷酸铁锂电池材料生产厂商有加拿大Phostech、美国Valencn、美国A123、台湾地区的台塑长圆能源科技、立凯等,其中,前3家企业掌握着较为成熟的量产技术。2008年全球磷酸铁锂出货量为1500吨左右,其中美国A123公司供应750吨,几乎占了一半的份额,国内厂商供应量只有几百吨,2009年全球磷酸铁锂出货量约为1600吨,2010年全球磷酸铁锂出货量为1370吨左右。据悉,目前国内磷酸铁锂正极材料厂商超过60家,实现批量生产的企业接近20家,呈现“诸侯混战”的局面。从公开资料统计来看,全国磷酸铁锂总产能约6400吨/年,但实际产量远低于产能(不足产能的1/10)。总体来说,我国磷酸铁锂的产业化发展与国际基本同步,目前国内部分产品的成本比国外同类产品要低,在性能、单位产能方面的差异并非遥不可及,但也该冷静的看到,国内目前尚未诞生真正的领军企业,行业缺乏原始创新技术,低端跟风模仿风气较盛,整体来看,磷酸铁锂材料行业处于产业化临界点之下。未来随着磷酸铁锂生产技术的不断完善,其市场前景依然为产业界所看好,除电动汽车、自行车、代步车和电动工具市场外,磷酸铁锂电池在风电、太阳能发电储能装置,矿灯电源和植入性医疗器械领域也有着广泛的应用前景。通过静态测算可以得出结论,磷酸铁锂电池在未来5-7年内,若根据10%-20%的产品渗透率计算,国内仅仅在电动汽车、电动工具、电动自行车和电动代步车这4个领域就拥有大约150亿元的市场规模,其中磷酸铁锂材料本身占到电池成本的30%左右,对应约45亿元的市场规模,年需求量可望达到3万吨。

  • 【原创】关于电池测试

    电池测试主要在于拆分.根据2006/66/EC,对电池的定义是“任何从化学能直接转化成电能的装置”,即意味着所谓的电池指参与能量转化的电池芯部分,也意味着不直接参与能量转化的电池的其它部分只能作为电池芯以外的附件,不适用电池指令。如:1、柱状电池。去除热缩膜、密封圈等,进行测试。见附件标准。[img]http://www.instrument.com.cn/bbs/images/affix.gif[/img][url=http://www.instrument.com.cn/bbs/download.asp?ID=91849]电池测试标准[/url]2、电池组。电池组上的连接线、焊点、外封套等不属于电池。3、手机锂电池。外壳、PCB板、元件等也不属于电池。4、太阳能电池不属于将化学能转化为电能的装置,不适用电池指令。个人认为,电池按电池指令,附件按ROHS指令。

  • 【原创大赛】SGS分享: 机器人自动化技术在电池检测的发明及应用

    【原创大赛】SGS分享: 机器人自动化技术在电池检测的发明及应用

    [align=center][b]SGS分享: 机器人自动化技术在电池检测的发明及应用 [/b][/align][align=center][b]作者: 林滨涛、竺曌颖[/b][/align][b][color=#3333ff]背景技术[/color][/b] 由于IT产品的迅速发展(智能手机、平板、笔记本及相关配件),中国2016年的消费类电池测试和认证的市场规模已达到2亿人民币,并呈现以每年20%的年增长速度。消费类电池测试主要是关于可靠性、性能和安全测试。然而,由于环境、效率、设备的局限性,电池测试所占市场份额仍然很小。基于实验室所研发的STAS系统(安规测试自动化系统)能够优化设备利用率,简化工作流程、减少人工操作和人为误差,使测试数据数字化;同时,增加机械手自动上下料操作实现电池测试实现全自动化24小时运作,提高测试效率,降低测试成本。因此,若能提供一种基于机器人的根据联合国《关于危险品货物运输的建议书试验和标准手册》第38.3章节(以下简称UN38.3)的电池自动化测试系统,将具有非常重要的意义。 消费类电池测试主要是关于可靠性,性能和安全测试。然而,由于环境、效率、设备的局限性,所占市场份额仍然很小。SGS EEC实验室所研发的BATAS系统能够优化设备利用率,简化工作流程、减少人工操作和人为误差,使测试数据数字化;同时,增加机械手自动上下料操作实现电池测试实现全自动化24小时运作,提高测试效率,降低测试成本。[b][color=#3333ff]自动化检测应用内容[/color][/b]本自动化检测技术的应用目的在于提供一种基于机器人的根据UN38.3的电池自动化测试系统,以解决上述背景技术中提出的问题。为实现上述目的,本机器人自动化检测技术提供如下技术方案,包括:[b][color=windowtext]1. [/color][color=windowtext]开关门机构改造[/color][/b]工作现场中的低气压箱、高低温箱的箱门结构均为传统机械式,必须通过人员推/拉操作,使门与箱体的卡扣闭合/分离,实现自动关门、开门目的。为了实现开关门自动执行动作,必须对箱门结构进行改造。通过增加电气装置和机械装置,从而实现对电信号到机械动作的执行转换,大大提高流程中的执行效率。[b]2. 测试设备的通讯改造[/b]现场中提供的低气压箱、高低温箱、短路仪均不具备通讯能力。尽为了使项目测试流程化,需要将设备进行通讯改造至符合要求,同时要求相关厂家开放相关函数,以便系统调用。[b]3. 电池预处理/过充/过放测试自动化系统[/b]目前电池的预处理机制是通过人员将电池安置于充放电柜,对每个电池进行预处理时间进行配置,最后执行完成。该过程中,放/取电池时间约为1min/pcs,每批次样品数量有45pcs,人员耗费大量时间在放/取电池。通过夹具设计、STAS、机械手应用,实现上下料的自动化,并自动采集数据。[b]4. 电池低气压(温度循环)测试自动化系统[/b]样品经过预处理,分批流向不同测试环节。低气压箱、温度循环高低温箱提供不同测试环境。尽管物料通过工装夹具的辅助,通过料盘实现整体一致,且机械手能够准确进行夹取、放置等复杂动作,但由于低气压测试、高低温测试耗时不一,造成测试环节局部堆积现象。[b]5. 电池振动/冲击测试自动化系统[/b]人员需将电池样品放入相关夹具中,机械手负责上料,将电池样品放入振动台、冲击台中,依次进行振动测试、冲击测试。测试结束后,机械手并将物料取下置于指定位置。[b]6. 料仓状态监控系统[/b] 机械手负责在料仓指定位置上下料。机械手实时监控料仓状态,在接受放置指令后,判断料仓状态,再决定是否放置,如果该位置有物料,则系统报警。如无,则放置物料并完成,形成闭环系统,防止物料相撞发生事故。[b] 优选方案是[/b]:所述控制器为 STAS。STAS系统(通标安规检测自动化系统,专利号:ZL 2016 2 0459386.7),是我司自主研发并拥有知识产权的一种应用于电气安全测试领域的数据采集及运动控制平台。本系统的创新性在于将自动控制技术的理念应用到安规检测,利用一个控制平台与包括供电系统、各种测试仪器及外围辅助装置在内的各种设备建立连接及通讯,并将标准要求的测试方法、判断逻辑以及操作流程,编译成机器语言,通过上位机控制软件,实现检测指令收发、检测数据采集以及测试结果判断的闭环控制及自动化操作。 [b]优选方案是[/b]:机械手。机械手是能模仿人手的某些动作功能,并按固定程序抓取、搬运物件或操作工具的自动操作装置。其结构形式简单,专用性强在构造和性能上兼有人和机器各自的有点,有很强的作业准确性和对各种环境的适应性;项目使用的机械手采用运动轨迹的控制方式,在使用前先对机械手进行编程,实现各个位置的校准,以此来保证高度的动作一致性。[b][color=#3333ff]包括以下步骤:[/color][/b]S1,样品及设备的连接:将测试样品置于测试前上料架中;S2,程序设定:通过PC机进行程序设定,设定测试样品的输入输出参数,并选择所需进行的测试项目;S3,程序启动:通过PC机启动测试程序;S4,测试结束:待测试结束,对检测结果进行查看,并换上下一批测试样品。 与现有技术相比,本发明的有益效果是:本机器人自动化技术检测的应用,通过PC机进行操作程序设定,可以对电池根据UN38.3标准进行自动化测试,自动化数据记录,测试结果判断。整个测试流程中,测试人员只需操作以下步骤:S1样品及设备的连接;S2程序设定;S3程序启动;S4测试结束。自动化测试系统会自动完成以下操作:充放电预处理、高空模拟测试、温度循环测试、振动测试、机械冲击测试、过充测试、过放测试、自动记录测试数据。本发明降低对人员的依赖,减轻了测试人员的工作压力,使测试连贯,质量同效率都有较大的提高。[b][color=#3333ff]附图说明[/color][/b]图1和图2为本机器人自动化技术检测的应用的原理方框图。图3为本机器人自动化技术检测的应用的控制器正面图;图4为本机器人自动化技术检测的应用的控制器背面图;图5和图6为本机器人自动化技术检测的应用的现场实物图。[b]关于SGS:[/b]SGS是一个综合性的检验机构,可进行各种物理、化学和冶金分析,包括进行破坏性和非破坏性试验,向委托人提供一套完整的数量和质量检验以及有关的技术服务,提供装运前的检验服务,提供各种与国际贸易有关的诸如商品技术、运输、仓储等方面的服务,监督跟购销、贸易、原材料、工业设备、消费品迁移有关联的全部或任何一部分的商业贸易暨操作过程。在SGS内部,按照商品分类,设立了农业服务部,矿物化工和冶金服务部,非破坏性试验科,国家政府合同服务部,运输和仓库部,工业工程产品服务科,风险和保险服务部等部门。[align=center][img=,547,531]http://ng1.17img.cn/bbsfiles/images/2018/07/201807171410001705_4613_2883703_3.png!w547x531.jpg[/img][/align][align=center]图1,原理方框图-1[/align][align=center][img=,430,496]http://ng1.17img.cn/bbsfiles/images/2018/07/201807171410368342_7981_2883703_3.png!w430x496.jpg[/img][/align][align=center]图2,原理方框图-2[/align][align=center][img=,690,327]http://ng1.17img.cn/bbsfiles/images/2018/07/201807171410595864_2282_2883703_3.png!w690x327.jpg[/img][/align][align=center]图3,控制器正面图[/align][align=center][img=,690,378]http://ng1.17img.cn/bbsfiles/images/2018/07/201807171411253130_9173_2883703_3.png!w690x378.jpg[/img][/align][align=center]图4, 控制器背面图[/align][align=center][img=,690,381]http://ng1.17img.cn/bbsfiles/images/2018/07/201807171412047558_2167_2883703_3.png!w690x381.jpg[/img][/align][align=center]图5,自动化区域-1[/align][align=center][img=,690,405]http://ng1.17img.cn/bbsfiles/images/2018/07/201807171412351549_9629_2883703_3.png!w690x405.jpg[/img][/align][align=center]图6,自动化区域-2[/align][align=center][b][/b][/align]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制