当前位置: 仪器信息网 > 行业主题 > >

浸没式检测

仪器信息网浸没式检测专题为您提供2024年最新浸没式检测价格报价、厂家品牌的相关信息, 包括浸没式检测参数、型号等,不管是国产,还是进口品牌的浸没式检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合浸没式检测相关的耗材配件、试剂标物,还有浸没式检测相关的最新资讯、资料,以及浸没式检测相关的解决方案。

浸没式检测相关的资讯

  • 尼康发布ArF浸没式光刻机,整体产率提升10-15%
    NSR-S636E ArF浸没式光刻机12月6日,日本尼康公司官网发布新闻稿,宣布推出NSR-S636E ArF浸没式光刻机。NSR-S636E是尼康历史上所有光刻系统中生产率最高的产品,是一款用于关键层的浸没式光刻机,可提供卓越的覆盖精度和超高吞吐量。NSR-S636E是尖端半导体(包括3D器件)中使用的许多不同结构的最佳图形化解决方案。该型号产品将于明年2月正式发售。开发背景随着数字化转型的加速,能够更快地处理和传输大量数据的高性能半导体变得越来越重要。电路图案小型化和 3D 半导体器件结构是技术创新的关键推动因素,而 ArF 浸没式光刻机对于这两种制造工艺都至关重要。与传统半导体相比,晶圆翘曲和失真在3D半导体制造过程中更容易发生,因此需要比以往任何时候都更先进的光刻机校正和补偿功能。NSR-S636E ArF浸入式扫描器采用增强型iAS(inline Alignment Station的缩写。该系统可以高速、高精度地测量晶圆,并在不降低曝光系统吞吐量的情况下实现网格误差校正)在曝光前执行复杂的晶圆多点测量。这种创新系统使用高精度测量和广泛的晶圆翘曲和畸变校正功能,提供更高水平的覆盖精度,同时保持最大的光刻机吞吐量。与当前一代系统相比,该光刻机的整体输出也高出 10-15%(这可能因使用条件和其他因素而异),从而优化了尖端半导体器件生产的效率。尼康将继续提供NSR-S636E等宝贵的解决方案,以引领IC生产并支持数字社会的发展。主要优点在各种生产工艺中都具有出色的性能,包括容易发生晶圆变形的 3D-IC在曝光前执行晶圆多点测量的 iAS(inline Alignment Station) 的精度更高,可以提高测量晶圆翘曲和变形等变形的精度。先进的测量和补偿功能可提高过程的稳健性,并提供卓越的覆盖性能,而不会影响生产率。这些创新对于各种制造工艺来说是非常宝贵的,包括需要超高堆叠精度的3D-IC,并将继续开发以实现前所未有的半导体性能。在所有尼康半导体光刻系统中生产率最高NSR-S636E ArF浸没式光刻机通过全面提高吞吐量和优化日常生产力,与现有型号相比,将整体产量提高了10-15%。这是尼康半导体光刻系统整个历史上最高的生产力水平。尼康致力于通过NSR-S636E等行业领先的解决方案继续突破光刻的极限,以支持客户在未来许多年的制造目标。性能概览分辨率≤ 38 nmLens-NA(数值孔径)1.35波长ArF 193 nm微缩比例1:4最大曝光面积26 mm × 33 mm套刻精度MMO: ≤2.1nm吞吐量≥ 280 wafers/hour (96 shots)MMO(混合搭配叠加):相同型号的机器之间的叠加精度(例如 S636E #1 至 S636E #2)
  • 晶瑞股份ArF浸没式光刻机顺利搬入实验室
    2021年1月19日,晶瑞股份ArF浸没式光刻机顺利搬入实验室。公司核心管理层、光刻胶核心团队、业务伙伴代表及媒体代表参加了搬入庆祝仪式。为开展集成电路制造用高端光刻胶研发项目,晶瑞股份于2020年10月顺利购得ASML XT 1900 Gi型浸入式光刻机一台,可用于研发最高分辨率达28nm的高端光刻胶。该设备于2020年11月19日从原厂断电停机,于2021年1月19日运抵苏州并成功搬入公司高端光刻胶研发实验室。晶瑞团队对内目标一致、上下同欲,对外多方协商、积极运作,历时短短2个多月完成了光刻机的顺利搬入,充分体现了晶瑞团队的凝聚力和高效执行力。目前公司完成中试的KrF光刻胶已进入客户测试阶段,达到0.15μm的分辨率。本次光刻机的顺利入驻可以保障公司集成电路制造用高端光刻胶研发项目关键设备的技术先进性,对加快产品研发项目进度有积极影响,有助于公司将光刻胶产品序列实现到 ArF 光刻胶的跨越,并最终实现应用于 12 英寸芯片制造的战略布局。有利于进一步提升公司光刻胶产品的核心竞争力,对于提高公司可持续发展能力具有重大意义。
  • 力学设备检测血液病毒首获成功
    据《自然》杂志网络版近日报道,爱尔兰科学家宣称,他们使用类似微小“跳板”的生物传感器能直接探测液体中的病毒,该发现能改进血液测试的效果,同时也为新药药效提供了一种更灵敏的检测方式。该研究成果发表在最新一期《自然纳米技术》杂志上。   看起来像“跳板”的微小悬臂仅0.5毫米长、1微米厚,它会对不同的压力作出不同的颤动和弯曲反应。通过测量这些细小木板颤动频率的变化,研究人员将其变成了超灵敏的病毒检测尺。   但这些生物传感器也有许多限制———病毒依附的细胞膜蛋白质很难黏附于这个悬臂,并且当它们被从细胞中移除时,容易停止活动。同时,液体的湿度也会改变频率,所以很多试验只能在空气中进行。爱尔兰应用纳米技术中心的纳米技术学家马丁和格领导的国际研究团队制造了一个悬臂阵列,探测到了液体中病毒黏附的膜蛋白质。   为了确保大肠杆菌膜蛋白质FhuA(同T5病毒捆绑在一起)不停止活动,和格和同事在大片像膜一样的小泡上再造了FhuA,接着他们将这些小泡喷在悬臂阵列选定的悬臂上,就像印刷过程中的喷墨技术一样。研究人员测量了高频出现的震动变化,也克服了液体湿度的影响。   当阵列被浸没在一个包含T5的液体中时,通过测量悬臂震动频率的变化,研究人员探测到了依附于FhuA的病毒。   和格说:“这是人类首次利用力学设备来检测血液中的病毒。”并表示,这样的生物感应系统只有一个金属箍大小,能够很灵敏地探测血液中的病毒。而且当涂层蛋白质改变形状时,悬臂会弯曲,该感应器也能被用来检测新药物是否能激活某种特定蛋白质。(
  • 百灵达(Palintest)推出新型重金属检测仪
    百灵达的新款SA1100检测仪应用了一项特殊的检测技术,大大简化了重金属检测过程。经过多年研究,百灵达开发出一种一次性电极,能够迅速而准确地在各种水样中检测铅、铜和镉等有害重金属的浓度。      下载高清晰图像:http://img1.17img.cn/17img/old/UploadFile/20097/200972195542762.jpg (570 KB)   这些物质的残留物或泄漏沉淀物带有毒性,会成为严重的隐患 多年来,立法工作不断加大力度,与这种隐患进行斗争。百灵达研发的这项新技术,可以在现场进行精确地检测,并且只需很少的时间——大部分试样不超过60秒,即便是饮用水检测也只需3分钟。它还可以检测油漆、粉尘、空气和土壤中的铅,饮用水中的铅和铜,以及陶瓷浸出液中的镉和铅。   所有测量项目的检测过程都非常简单,可以借助液晶屏上显示的提示和菜单操作程序。使用调节药片对试样进行预处理后,将一个经过校准的一次性传感器插入仪器,然后浸没在试样內,一分之内即可完成检测。除了可以即时显示检测结果,还可以在设备内存中存储多达500条结果,并且可以通过防水的USB连接下载到计算机。仪器的正常工作由4节AA电池供电,从而可以实现轻松高效的便携性。
  • 密度测定三步曲(压轴曲) | 塑料成品检测还可以这样操作?奥豪斯AX分析天平一步到位!
    密度测定三步曲(压轴曲)| 塑料成品检测还可以这样操作?奥豪斯AX分析天平一步到位! 一、你真的了解塑料吗?塑料——这毁誉参半的新型高分子材料,在我们的生活中无处不见。看看你手边的物品,塑料制品已经占据半壁江山。1. 可口可乐瓶2. 各种规格的食品包装袋3. 印制了精美图案的手机外壳4. 会变色的太阳镜片 在我们不常接触的高科技领域,塑料也无处不在。如人造卫星上使用的多层绝缘材料中,就含有厚度约6微米的聚酰亚胺或聚酯膜。二、塑料的命运密码——密度同样都是塑料,怎么命运如此不同?原来,这里面学问可大着呢! 塑料有很多不同品种,不同品种的塑料在耐疲劳性、耐热性、抗冲击性、耐腐蚀性等特性上各有优劣势。 塑料的品种不同,密度也因之不同。 例如,可以制造汽车灯罩等的PS是一种无色透明的塑料,密度为1.03~1.07 g/cm3;而具有自阻燃的特性、常用于防火应用的PVC,密度为1.35~1.45g/cm3。 塑料的密度不仅取决于其加工工艺,还与其成分有关。 调整塑料的成分比例,就可以改变其性能,以适应不同应用要求。 例如,ABS塑料由丙烯腈(A)-丁二烯(B)-苯乙烯(S)三组分构成,密度为1.04~1.06 g/cm3。当三组分以不同比例混合时,其密度也随之改变,同时性能也发生变化,由普通ABS变为高抗ABS、耐热ABS、高光泽ABS等。 因此,相比于用热解实验和燃烧试验来鉴别塑料品种,或鉴别塑料厂生产的产品是否达标,利用密度测定的方法真的非常省时省力! 三、塑料的密度,不难测啦!某知名生产塑料制品厂商的QC部门,需要对生产的产品进行抽样检测,以鉴别其产品批次是否达标。 该检测试验共有五批塑料成品的样品,均为密度小于1g/cm3 的某种塑料,其在颜色、大小、形状上都极其相似,凭经验很难判别哪个样品是合格产品。(因此我们先给样品做了编号标记以加区分) 经过严格的检测实验及评估,最终该企业选用了奥豪斯带有密度直读功能的Adventurer AX 系列分析天平,进行塑料密度测定。只用两步,就能得到塑料的密度啦! 实验器材:奥豪斯 Adventurer AX 124 密度组件测定步骤:塑料的密度测定方法与上期玻璃密度的测试方法类似。首先分别在空气中和水中称量样品,得出重量,再由天平内部计算公式得出密度结果,直接在显示屏上读取即可。在空气中称重在水中称重(-0.3906g)密度结果直读显示用AX天平测试密度,非常简单,但是也有很多小细节要注意,才能确保结果完美哦! 注意:1. 用于测试密度小于水的样品,我们需选用漂浮固体挂篮。篮网向上凸起,可以覆盖住浮起的样品。如样品未完全浸没,可使用外加砝码帮助样品保持完全浸没于水中的状态。 2. 在水中称量塑料时,我们需要用镊子轻压塑料,小心将其挪至漂浮固体挂篮下方的中心位置。 四、小奥解惑时间:测试结果不理想,到底是什么原因?有用户反应,完全按照以上步骤进行测量,但测试结果并不理想,结果的重复性很差: 无论是在空气中的重量还是在液体中的重量,每次的称重读数都不相同。明明是浮于水的样品,密度结果却大1g/cm3。这到底是什么原因呢?让小奥帮你揭开谜底! 看,是气泡在作怪!不信,你凑近仔细观察观察。原来浸入水中的挂篮上还有塑料样品上都附着肉眼难以察觉的气泡——个子小小,力气很大。要知道,直径1mm气泡会产生0.5mg的气泡,而直径2mm气泡产生的浮力可以高达4mg!每次称量时,塑料样品上附着的气泡的数量和大小也时有变化,影响称量结果,重复性自然不佳。 那怎么解决这个问题呢?其实很简单。 你只需拿细毛刷扫一扫,再轻轻抖动挂篮,即可去除影响称量效果的小小气泡们。去除气泡后,再看密度结果——可靠又稳定!塑料的密度测定之旅,就完成啦。 快拿着测量结果去看看哪款塑料才是合格产品吧! 参考文献:本文章中摘录文献出自百度百科——塑料(高分子聚合物)百度百科——ABS塑料 如果您想了解更多奥豪斯的电子天平及实验室称量产品,请访问奥豪斯官方网站,我们的专业工程师将竭诚为您服务!
  • 东方晶源深耕电子束量测检测核心技术 “三箭齐发”新一代EOS上“机”
    电子束量测检测设备是芯片制造装备中除光刻机之外技术难度最高的设备类别之一,深度参与光刻环节、对制程节点敏感并且对最终产线良率起到至关重要的作用。其最为核心的模块为电子光学系统(Electron Optical System,简称EOS),决定设备的成像精度和质量, 进而决定设备的性能。作为电子束量测检测领域的先行者、领跑者,东方晶源始终坚持自主研发,不断深化研发投入、加速技术创新步伐,致力于为客户带来更加卓越的产品。日前,东方晶源自主研发的新一代EOS“三箭齐发”,取得突破性成果,成功搭载到旗下电子束缺陷复检设备(DR-SEM)、关键尺寸量测设备(CD-SEM)、电子束缺陷检测设备(EBI),率先实现国产EOS在高端量测检测领域的应用,助力产品性能实现进一步攀升的同时,为国产电子束量测检测技术的发展进一步夯实了基础。新一代DR-SEM EOS:多场景 高精度DR-SEM是一款基于超高分辨率电子束成像技术对缺陷进行复检分析的设备,包括形貌分析、成分分析等,因此其搭载的EOS需要高分辨、高速的自动化复检能力,并提供多样化的信号表征手段。东方晶源新一代DR-SEM EOS采用适配自研多通道高速探测器、支持多信号类型分析检测的电子光学设计方案,兼容EDX成分分析功能,能够覆盖广泛的缺陷复检应用场景。此外,新一代DR-SEM EOS搭配高精度定位技术,检测精度和速度可以匹配业界主流水准。新一代CD-SEM EOS:高精度 高速度CD-SEM作为产线量测的基准设备,对EOS的核心技术需求在于高分辨、高产能(Throughput)和高稳定性。东方晶源新一代CD-SEM EOS为实现高成像分辨率和高量测精度,采用球色差优化的物镜、像差补偿技术、自动校正技术等新方案,目前已达到业界一流水平。同时,自研探测器针对频响和信噪比优化,支持快速图像采集,结合高速AFC技术,可以在不损失精度的情况下大幅提升量测产能。新的技术方案确保了更稳定、一致的产品表现。通过上述各方面的技术突破,新一代CD-SEM EOS在性能和稳定性上取得大幅提升。新一代EBI EOS:多场景 高速度针对国内领先的逻辑与存储客户产线检测需求,EBI EOS要在保证检测精度的前提下,重点提升检测速度。东方晶源最新研发的EBI EOS通过四大技术手段在检测精度和速度上进行了显著的优化与提升。(1)超大束流的电子束预扫描技术和大范围电子产率调节技术,满足不同产品多样化检测需求;(2)兼容步进式和连续式扫描模式,提供具有竞争力的产能指标;(3)采用业界领先的高速大束流检测方案,采样速率达到行业先进水平;(4)浸没式电子枪,支持更大的束流调节范围。随着半导体工艺水平的飞速发展,电子束在线量测检测越来越重要,设备的产能必须有质的飞跃才能满足这一需求。更高的成像速率或多电子束并行检测技术就是业界竞相攻克的焦点。东方晶源在高速成像和多电子束技术均已取得重要突破,实现了相关技术的原理验证。未来,东方晶源将不断进行技术深耕,将关键核心技术牢牢掌握在自己手中,以更加卓越的技术和产品引领电子束量测检测领域的发展,解决客户痛点问题,为我国集成电路产业的发展和进步贡献更多力量。
  • 药品铝塑泡罩密封性检测仪的应用重要性
    药品铝塑泡罩密封性检测仪的应用重要性在现代制药行业中,药品包装不仅承载着保护药品免受外界污染、保持药品稳定性的重任,还直接关系到用药的安全性与有效性。其中,药品铝塑泡罩作为一种广泛应用的包装形式,以其优良的阻隔性、美观性和便于携带的特点,成为了众多药品,尤其是固体口服制剂的首选包装材料。药品铝塑泡罩通过铝层的高阻隔性和塑料层的韧性相结合,有效阻止了氧气、水分、光线及微生物的侵入,从而延长了药品的保质期。为什么要对药品铝塑泡罩进行密封性测试?尽管药品铝塑泡罩在设计上已经充分考虑了密封性能,但在实际生产、运输及储存过程中,由于材料缺陷、加工不当、环境温湿度变化等因素,仍有可能导致包装密封性受损。一旦密封失效,外部空气、水分及微生物就可能侵入包装内部,引发药品氧化、受潮、变质甚至污染。因此,对药品铝塑泡罩进行严格的密封性测试,是确保药品质量与安全不可或缺的一环。测试目的与意义三泉中石的药品铝塑泡罩密封性检测仪MFY-05S,主要目的在于评估药品铝塑泡罩包装的实际密封效果,确保其在整个生命周期内都能有效阻隔外界环境,保护药品不受污染。通过测试,可以及时发现并解决包装密封性问题,防止不合格产品流入市场。药品铝塑泡罩密封性检测仪的色水法原理在密封性检测中的应用在众多密封性检测方法中,色水法因其操作简便、直观有效而广受欢迎。该方法利用真空室中放置的含有色水(如亚甲基蓝溶液)的环境,通过对真空室抽真空,使试样内外产生压差,模拟包装在实际使用中可能遇到的压力变化。在释放真空后,观察试样的形状恢复情况及色水是否渗入包装内部,以此判断试样的密封性能。具体操作为:首先,将待测药品铝塑泡罩样品放置于装有亚甲基蓝溶液的真空室中,确保样品完全浸没或部分接触色水。随后,启动真空泵对真空室进行抽气,使室内压力低于外界大气压,此时若包装存在泄漏,内外压差将驱动色水渗入包装内部。待达到预定真空度并保持一段时间后,释放真空,观察并记录样品的形状恢复情况、是否有色水渗入及渗入程度。根据观察结果,可以准确判断药品铝塑泡罩的密封性能是否符合要求。药品铝塑泡罩密封性检测仪的应用重要性防止污染与变质:药品铝塑泡罩作为药品的直接包装,其密封性直接关系到药品是否会受到外界空气、水分、光线及微生物的污染。MFY-05S药品铝塑泡罩密封性检测仪,能够准确评估泡罩包装的密封性能,确保药品在储存和运输过程中免受污染,保持其原有的质量和疗效。良好的密封性能可以有效隔绝外部环境对药品的影响,延缓药品的氧化、分解等化学反应过程,从而延长药品的保质期。这对于需要长期储存的药品尤为重要。综上所述,药品铝塑泡罩密封性检测仪及其所采用的色水法原理,是保障药品质量与安全的重要技术手段。作为专业从事药品包装玻璃安瓿检测仪器的行业领先者-济南三泉中石实验仪器有限公司,紧跟国家标准的要求,也参与部分国家药包材标准的制定工作。利用自身在药品包装检测领域多年的技术积累和行业应用经验,为标准的制定工作提供数据和理论的支持,为国家标准体系的建立添砖加瓦。
  • 赛莱默水质监测解决方案之WTW UVCOD(二)
    1、概述上文介绍了在线COD监测方法对比,赛莱默WTW水质在线监测仪实施方案优点以及WTW UVCOD全光谱探头特点。本文将重点介绍WTW在线UVCOD分析仪性能特点、安装方式以及相关的应用案例。 本方案是依据现场需求,结合国家相关技术标准及要求制定。本方案仅用于相关技术交流,最终解释权归赛莱默所有。2、TW在线UVCOD分析仪技术描述在线UVCOD分析仪由控制器(变送器)和传感器二部分组成。在线UVCOD分析仪的型号为:德国WTW DIQ/S 282 +Carbovis 70X IQ在线UVCOD分析仪,其产品主要性能为:DIQ/S 282控制器(变送器)282 是一种模块化、多参数的测试系统,它由通用型变送器 DIQ/S282 和内置的电源组件构成,它包括三组继电器输出和三组模块电流输出,可方便地接入现有的 PLC 控制系统中, 使用电源为220VAC。COD传感器技术指标(CarboVis 701 IQ)性能特点利用一定波长的光线对特定物质的吸收作用,采用光谱测量技术,直接对介质中的COD、BOD、TOC、DOC、SAC254溶解、SAC254总、UVT等指标进行在线检测监控,实时显示结果,无须采样、预处理以及任何化学试剂和消耗品。光谱测量范围覆盖200-720nm区间,进行256个波长测试。宽波段范围的优化补偿能抑制浊度对测量的影响。内置超声波清洗系统,高效率、低维护,终身无需消耗品。3、安装方式介绍针对不同的安装环境,可以选用不同的安装方式及附件。最简单的是浸没式安装。WTW采用独特的链式支架,可以有效利用本身摆动达到清洗目的。标配的塑胶保护套,可以有效防止探头撞击带来的损伤。 4、实际应用案例1)Neuruppin德国污水厂Neuruppin德国污水厂采用光谱探头,进行污水处理厂出水TOC在线监测,并在进行为期半个月的在线与实验室值比对,比对结果如下,在线监测结果与实验室测试结果具有非常高的一致性。2)Salzgitter Nord 德国污水厂欧洲一般不用铬法进行在线COD检测,此污水厂采用UVCOD监测入水、出水有机物浓度,根据实时数据调整污水厂运行工艺。从数据图中可以看出,UVCOD可以准确监测入水峰值,而且出水的COD值测试稳定。3)天利实业天利实业有限公司主要经营石油石化产品的生产。在厂区内有多个小型预处理站,经预处理站处理后的水排入厂区总污水处理厂。在小型预处理站总排口(即总污水厂前的进口)安装UVCDO,根据COD在线值随时调整后续工艺,杜绝后续污水厂超负荷运行,保护菌种,保证总出水水质达标,运行良好。4)伊利乳业黑龙江大庆市林甸伊利公司工业污水厂进水UVCOD:预警作用,联动控制。超过4000 mg/l时,通过联动阀门,调整进水流向工业污水厂。生化厌氧池UVCOD:监测UVCOD峰值,保证出水质量。运行良好。关于具体的WTW UVCOD监测仪表选型方案,请联系区域销售经理或者拨打热线4008150062垂询。
  • 西安交大杨树明团队精进铸就半导体芯片检测“大国重器”
    近日,中国科协发布了首批“科创中国”创新基地认定名单,西安交通大学牵头组织建设的“半导体芯片检测技术创新基地”入选产学研协作类创新基地。该创新基地将聚焦国家急需解决的半导体芯片检测领域关键技术及装备,通过与半导体芯片制造企业建立产学研合作,推动科技成果转化及产业化进程。“从国家重大需求出发,在半导体芯片检测技术和设备方面,通过产学研协作,努力解决半导体芯片检测领域的技术难题,这是一件特别有价值的事情,值得长期坚持做。”担任创新基地负责人的西安交大教授杨树明对采访记者说。杨树明教授半导体芯片是二十世纪最伟大的发明之一,促进人类进入到了信息时代,可应用于所有的电子产品,在我们的生活里处处可见。而集成电路芯片是信息时代的基石,集成电路制造技术代表着当今世界超精密制造的最高水平,集成电路产业已成为影响社会、经济和国防安全保障与综合竞争力的战略性产业。杨树明教授介绍,2014年出台的《国家集成电路产业发展推进纲要》,将半导体产业新技术研发提升至国家战略高度。近些年,随着物联网、区块链、汽车电子、5G、AR/VR及AI等创新应用发展,半导体行业一直保持高景气度。但长期以来,我国高端芯片检测设备主要依赖进口。数据显示,全球半导体芯片高端检测设备市场基本由美国、日本等国外公司垄断,尽快实现芯片高端检测设备国产化被称为是发展集成电路产业的关键之一,这关系到我国能否拥有产业自主权。“在半导体制造过程中,芯片检测则是重中之重,是提升产品良率和效率的重要环节。并且,随着半导体芯片技术的不断发展,其制作工艺越来越复杂,半导体芯片逐步向尺寸微缩方向发展,使得测试的复杂度不断升级,这些都对检测设备的检测精度提出了新的更高要求。而目前国内半导体行业技术积累与国外先进水平差距仍然较大,不能完全满足国内半导体产业现阶段的发展需求。”杨树明教授说。国家曾对于半导体设备国产化提出明确要求,在 2025年之前,20纳米至14纳米工艺设备国产化率达到30%,实现浸没式光刻机国产化;到 2030 年,实现18英寸工艺设备、EUV 光刻机、封测设备的国产化。“提升‘核芯技术’自主化率、实现国产半导体高端设备替代进口,这无疑对于国内相关半导体设备研发领域和制造企业来说是重大机遇,并面临挑战。”杨树明教授认为。(杨树明教授和团队成员在讨论工作)我国在半导体芯片高端检测设备领域的迫切需求,正是西安交大建立“半导体芯片检测技术创新基地”的初衷。创新基地将高校、科研院所的前沿基础研究和企业的实际需要相结合,实现资源共享和优势互补,探索产学研可持续协作机制,建立成为产学研协作相结合的创新平台,为社会经济高质量发展提供动能。创新基地凭借西安交通大学是国家教育部直属综合研究型重点大学,位列国家“双一流”,有中国西部科技创新港,正在布局建设世界一流大科学装置群和新型协同创新研究实体,瞄准未来科学、技术和现代产业,政产学研形成紧密链条;并依托学科与人才培养及机械制造系统工程国家重点实验室的微纳加工和测试条件等优势资源;同时,华中科技大学、南开大学、复旦大学、中国科学院长春光学精密机械与物理研究所提供技术支持。据了解,在入选“科创中国”创新基地之前,杨树明教授带领的科研团队开展了多项产学研合作,并取得了一些列成果。如:通过西安交大国家技术转移中心与江苏宏芯亿泰智能装备有限公司等单位进行合作,将企业的实际需求与科研工作有机结合,开发了芯片关键尺寸测量装备,推动科技成果转化和产业化进程;与上海隐冠半导体有限公司等企业建立了合作育人基地和长期科研合作,促进企业与高校在科研领域的协同发展。(半导体芯片检测技术创新基地)杨树明教授是国家杰出青年科学基金获得者、国家重点研发计划项目首席、陕西省重点科技创新团队带头人、国际纳米制造学会会士等,专注于微纳制造与测量领域的科研工作已有20多年。承担国家及省部级重大重点项目20余项,发表学术论文170多篇;授权/公开国际国内发明专利90多件,获省部级和国家行业学会等科技奖励7项;担任亚洲精密工程与纳米技术学会理事、中国计量测试学会常务理事等;在国际学术会议应邀做大会报告和特邀报告30余次,还是JMS、IJPEM-GT、IJRAT、NMME、MST、PE、IJAMT、Photonics等国际期刊编委和客座编委。基于长期的产学研协作实践,杨树明教授负责完成的“大长径比纳米探针可控制备技术及应用”,入选2020年中国科协首届“科创中国”先导技术榜单。提出的“如何解决三维半导体芯片中纳米结构测量难题”入选中国科协2021十大工程技术难题。“积厚成器,对于半导体芯片检测来说,我们不仅要关注单项高端检测设备的研发,还要针对芯片制造技术的发展,不断精进创新,形成系列成套设备。”杨树明告诉记者,未来,创新基地将积极按照中国科协相关要求,主动服务科技企业,切实推动创新基地融入“科创中国”创新网络,加强与其他高校、科研院所、企业等的合作、交流、对接、验证和转化工作,预计到2024年底,创新基地达到一定规模。大国重器,中国半导体芯片检测高端装备任重道远,“科创中国”半导体芯片检测技术创新基地正迈向新征程。
  • 气相色谱仪检测器的常见问题,有没有戳到你?
    在气相色谱分析中,待测组分经色谱柱分离后,通过检测器将各组分的浓度或质量转变成相应的电信号,经放大器放大后采集记录数据得到色谱图,然后根据色谱图中出峰时间、峰面积或峰高,对待测组分进行定性和定量分析。因此,检测器是检测样品中待测组分含量的部件,是气相色谱的重要组成部分。如何选择合适的检测器?气相色谱检测器是气相色谱分析法的重要部分,它所涉及的内容应包括两方面:一是检测器的正确选择和使用,二是其他有关条件的优化。一个好的气相色谱检测器,应该是这两方面均处于zui佳状态。①检测器的正确选择和使用建立气相色谱检测方法首先要针对不同样品和分析目的,正确选用不同的检测器,并使检测器的灵敏度、选择性、线性及线性范围和稳定性等性能得到充分的发挥,即处于zui佳状态。通常用单一检测器直接检测,必要时可衍生化后再检测,或用多检测器组合检测。检测器正确选用和性能达到zui佳,不仅得到的定性和定量信息准确、可靠,而且还可简化整个分析方法。反之,不仅得不到有关信息,浪费了时间和精力,而且可能损坏检测器。②其他条件的优化一个良好的检测方法除考虑检测器本身性能外,还应该检测到的色谱峰或信号不失真、不变形。因此,要求柱后至检测器峰不变宽、不吸附,以色谱峰宽度保持柱分离状态进入检测器为佳。还要求检测器产生的信号在放大或变换的过程中,或信号传输至记录器、数据处理系统过程中,或在数据处理过程中不失真。另外,为了充分发挥某些检测器的优异性能,还要求正确掌握某些化合物的衍生化方法等等。如何提高FID的灵敏度?因为FID硬件方面对灵敏度的影响,在色谱仪出厂时已经基本确定,对于操作者而言,已经不能改变。下面主要从操作方面介绍如何提高FID检测器的灵敏度。①氮气/氢气(N2/H2)流量比N2/H2流量比将明显影响灵敏度,各生产厂家的结构设计不同,N2/H2比zui佳值也不同,可用实验来确定,一般情况下,N2流量比H2流量大些,一般N2∶H2是1∶1.5或1∶1为宜。若喷嘴孔径为φ0.4mm的,载气流量可在20-30mL/min之间;若喷嘴孔径为φ0.6mm以上的,流量可在40-50 mL/min左右为佳。其中,毛细管色谱的尾吹气,除了减少组分的柱后扩散效应外,另一个主要作用是保证zui佳N2/H2比,用来保证zui佳灵敏度。②空气流量空气流量小于200mL/min时,流量大小对灵敏度有一定影响,一般大于250mL/min条件下,空气流量对检测器灵敏度太大的影响。③放大器输入电阻与输出电路衰减值放大器输入电阻与输出电路衰减示意图,见下图。放大器输入电阻的大小决定放大器的电流放大倍数,影响FID灵敏度,输入电阻大,灵敏度高,但噪音会增大,在调节放大器输入电阻大小时,要兼顾仪器的信噪比。放大器的输出电路衰减值,有1/10、1/25、1/50,各生产厂家不同,内衰减比例也不同,改变或调节内衰减,也可改变FID灵敏度。如瓦里安公司的FID检测器的灵敏度,可设定为9、10、11、12。数字愈大代表灵敏度愈佳,数值差1代表讯号以10倍增减。当然,前提是要保证放大器基线稳定。④进样口、色谱柱、气路和FID喷嘴的清洁度进样口、气路或FID喷嘴污染,都会导致FID检测器的灵敏度下降,因此在使用过程中需要保持进样口、色谱柱、FID 喷嘴和气路的清洁,定期更换进样垫,衬管和石英棉,同时对FID检测器进行清洗。当FID被污染了应如何清洗?下面提供四种清洗FID检测器的方法,但在清洗检测器前,需仔细阅读所用气相色谱对应的说明书,以确保不会造成检测器损坏:①当喷嘴只是轻微被污染时,可以略微加大载气流量,同时增大检测器的温度,点火后,走基线,此时不要进样。因为FID检测器所检测的对象,大多为有机化合物,喷嘴上的残留以有机物为主,有机物可以通过燃烧生成水(气态)和二氧化碳(气体)被赶走。② 若喷嘴污染较严重,但还未完全堵住时,可以用专用工具小心拆下,置于预先盛有乙醇或丙酮的玻璃烧杯中(溶剂需浸没喷嘴),于超声波中超声清洗。如果超声清洗后还不行,可以用通针小心插入喷嘴孔中,轻轻抽拉,再用洗耳球将乙醇或丙酮从喷嘴的底座挤进去,让溶剂从喷嘴喷出(这会形成一定的压力,可以将喷嘴孔壁的附着物清除)。然后,再次重复上述超声波清洗操作,用超声波清洗。③当喷嘴表面积碳(一层黑色物质),这也会影响灵敏度。可用细砂纸轻轻打磨表面除去。然后按照上述②的方法将喷嘴进行清洗。④如果检测器是因为积水造成的污染,先升高检测器的温度,运行一段时间,看能否恢复正常;如果积水过多,则需要将检测器拆下,先用脱脂棉擦干,然后按照上述②的方法将检测器处理一边即可恢复使用。⑤清洗后的各部件,要用镊子取,勿用手摸。烘干后装配时也要小心,否则会再度沾污。装入仪器后,先通载气半小时,再点火升高检测室温度,zui好先在120℃保持几小时之后,再升至工作温度。TCD,如何确定物质相对校正因子?采用TCD作为检测器时,确定物质相对校正因子通常有下面几种方式:①从文献上查找相对校正因子对于常规组分,通常可以在色谱相关书籍或文献上查到,如李浩春编写的《分析化学手册(第5分册)气相色谱分析》。对热导检测器(TCD)而言,常用的标准物为苯,所用载气为氦气。②实验测定相对校正因子对于某些比较特殊,在文献上查不到相对校正因子的物质或者为了更准确的测定某一物质的校正因子,通常采用实验测定的方法获得。但在用实验法测定物质的相对校正因子时,要注意配置标样的准确性,否则会出现试验测得校正因子与文献值相差甚大的情况。一些分析者测得的相对校正因子之所以与文献值不符, 并非操作参数的变动引起,而是由于测量误差造成,如标准物纯度不够、制样方法不当、室温下组分挥发、峰面积测量不准、得到的峰很不对称或分离不完全等。对于易挥发组分的分析, 制样的影响尤为显著。③利用规律对校正因子进行估算目前能对校正因子进行估算的,只有气相色谱用的热导检测器和氢火焰离子化检测器。当从文献中查不到适当数据,又没有已知准确含量的样品进行测定时,可按相关参考书上介绍的方法进行估算,如同系物在热导检测器上的相对摩尔响应值(RMR)与其分子中的碳数或摩尔质量呈线性关系。但该方法在实际操作中应用不多。采用TCD,产生负峰的原因有哪些?采用TCD检测器进行样品分析时,如果色谱峰出现负峰,先查阅一下色谱载气与所测气体的的导热系数,如果样品导热系数大于载气导热系数,色谱峰就会呈现为负峰。这时需要做的是按照色谱说明书上的说明将TCD检测器的极性更换一下即可。如果所测多组分样品时色谱峰有正峰也有负峰,这是因为所测多组分中,部分物质的导热系数大于色谱载气的导热系数,部分组分的导热系数小于色谱载气的导热系数,这时如果更换TCD检测器的极性的话,原来的负峰变为正峰,原来的正峰变为了负峰,还是不能彻底解决问题。如果出现这种情况,并且确实需要对样品的全组分进行定量分析的话,就选择色谱工作站上数据处理中的“负峰处理”即可。FPD运行中出现熄火?信号异常?当出现FPD检测器在运行过程中出现火焰熄灭、信号过高或过低等异常现象时,应以检测样品、气路系统、检测器温度控制系统、仪器设置、FPD检测器为主要检查对象,逐步排查可能存在的问题24小时客服如果您对以上色谱分析仪器感兴趣或有疑问,请点击联系网页右侧的在线客服,瑞利祥合——您全程贴心的分析仪器采购顾问.------责任编辑:瑞利祥合--分析仪器采购顾问版权所有(瑞利祥合)转载请注明出处
  • 新型冠状病毒感染肺炎疫情期间的水质应急监测
    1月30日中国生态环境部办公厅下发了《关于做好应对新型冠状病毒感染肺炎疫情生态环境应急检测工作的通知》,通知中特别指出除61项常规指标的监测外,增加余氯与生物毒性2项疫情防控特征指标的监测。2月2日,下发的《关于做好新型冠状病毒感染的肺炎疫情医疗污水和城镇污水监管工作的通知》同样指出了关于余氯等消毒剂以及粪大肠菌群数等相关参数的浓度控制。针对通知中指出的余氯检测,下面为您介绍一些哈希现场检测方案,希望能为相关人员测定水质有所帮助。为什么要检测余氯?当前公共场所和家庭为防控疫情多采用含氯消毒剂进行消毒,一方面需要保证足够的消毒剂浓度,保证达到消毒效果;另一方面,排入城镇污水处理厂的污水余氯量可能偏高,影响生化处理单元正常运行。同时,也有过高的余氯量也有可能影响地表水、地下水和生活饮用水水源地,对生态环境和饮用水水源造成影响。测定水中余氯含量和存在状态,对消毒效果、环境水质质量和保证饮用水安全极为重要。哈希DR300便携式比色计DR300便携式比色计传承哈希比色计20多年的成功经验和口碑。外观坚固防护等级IP67,小巧轻便,产品操作简单、数据可靠有效,配合哈希余氯测试粉枕包,现场只需要1-2分钟即可获得余氯浓度,特别适合各类户外现场的余氯测量。哈希检测试纸?哈希试纸家族产品使用方便,即插即用,检测成本低,完全可满足您对水质预判、初筛、应急监测的要求。针对余氯检测有高低两种量程范围(0-600mg/L, 0-10 mg/L)的试纸产品可选,另有可测量余氯、总氯、硬度、碱度、pH五大参数的多参数检测试纸。经济快捷助您快速了解水质情况。SL1000多通道便携式水质分析仪?SL1000多通道便携式水质分析仪采用了哈希创新配件-Chemkeys专利测试棒(美国专利#9012234,#9052302,#9180449,#9182353,#9180449)。可测化学参数:余氯、总氯、游离氯、一氯胺、碱度、亚硝酸、盐、总氨、铜、硬度、铁、磷酸盐、过氧乙酸,电化学参数:pH、电导、溶解氧、温度,orp,离子。测试方法符合EPA要求,试剂封装,方便运输与携带。仅需微量水样,快速检测,绿色环保,无废液处理之忧。同时产品便于携带操作简便快速,插有Chemkey的仪器浸没样品杯中,余氯1分钟内即可完成测量,并且支持多参数同时检测,快速检测及结果屏显,6个参数同时测量最多只需要8分钟。操作过程简单易上手,帮您轻松了解水质情况。数字滴定器
  • 助力半导体检测,赛默飞将发布全新Helios 6 HD 双束电镜和Metrios 6透射电镜
    “赛默飞材料与结构分析中国”公众号显示,赛默飞将于11月23日发布全新Helios 6 HD 双束电镜和Metrios 6透射电镜。公众号截图据了解,Helios 6 HD 双束电镜(FIB-SEM)利用新型数字偏转装置实现快速、精确的终点监控;采用浸没式FIB提高精准终点控制能力,提高样品制备的可重复性;搭载最新的AutoTEM 6提升了TEM样品制备产能、效率和易用性;配套新型设计的EasyLift纳米机械手提高了样品制备的可用性和效率。Helios 6 HD 双束电镜可以为用户带来更高效的TEM样品制备工作流,更卓越的TEM样品质量、更优秀的产能,更一致的产出,解决各种TEM样品制备挑战。Metrios 6(S) TEM是新一代全自动计量解决方案,可提高生产率和数据质量,用于大容量TEM计量。Metrios 6(S)TEM具有新设计的基于硬件和机器学习的功能,与上一代解决方案相比,生产率平均提高了20%。Metrios 6(S) TEM包括新的Smart Stage、Ultra-X EDS探测器、高亮度X-CFEG源选项和Smart Automation软件。这种组合通过数据完整性、快速元素分析和无配方自动化提高了生产力,实现了可扩展的实验室操作和资源优化。
  • 因关键检测设备采购周期延长,南大光电光刻胶项目延期
    南大广电日前发表公告称,公司募投项目“光刻胶项目”(以下简称“项目”)总投资额为66,000.00万元,计划使用募集资金15,000.00万元,原计划于2021年12月31日完成建设。项目实施主体为公司控股子公司宁波南大光电材料股份有限公司(以下简称“宁波南大光电”)。但南大光电在公告中指出,项目在实际投入过程中受到新冠疫情、客户验证需求变化、公司实际经营情况等多重因素的影响,尤其是项目所需的缺陷检测等关键设备采购周期延长,安装、调试工作也相应后移,导致该项目建设进度不及预期。公司在保持募集资金投资项目的实施主体、投资总额和资金用途等均不发生变化的情况下,根据募集资金投资项目当前的实际建设进度,计划将该项目的建设完成期限由原计划2021年12月31日延长至2022年12月31日。公司将继续通过统筹协调全力推进,力争早日完成该项目建设。他们同时强调,截至2021年12月31日,项目已累计投入45,316.28万元,全部由公司自有资金出资。宁波南大光电在2021年具体实施项目时,为满足项目建设所需采购的付款进度需要,优先使用了自有资金投入建设。本项目剩余资金缺口,公司将继续使用募集资金15,000.00万元满足其投资需求。根据公司与宁波南大光电的约定,上述募集资金使用将通过向宁波南大光电提供借款的方式进行,同时为了防止出现宁波南大光电以明显偏低成本占用上市公司资金从而损害投资者利益,还约定了该等借款将参考届时银行同期贷款利率计算利息。公告同时指出,公司扩建2,000吨/年三氟化氮生产装置项目按原计划继续进行,建设期不变。公告表示,本次募投项目的延期,是公司充分考虑了项目建设进度的实际情况做出的审慎决定。该事项仅涉及项目建设进度变化,未调整募投项目的实施主体、投资总额和资金用途,不存在改变或变相改变募集资金投向和其他损害股东利益的情形。本次公司募投项目的延期,不会对公司当前的生产经营造成重大影响。由于在项目后续具体建设过程中,仍可能存在各种不可预见因素,敬请广大投资者注意投资风险。在日前接受投资者提问的时候,南大广电表示,公司目前已经建成了两条arf光刻胶生产线,合计产能为25顿。而公司的arf光刻胶也有少量发货。南大光电“02专项”项目前程提要在2018年,南大光电曾发表关于实施国家“02专项”ArF光刻胶产品的开发 与产业化的可行性研究报告。报告指出,江苏南大光电材料股份有限公司(以下简称“南大光电”、“公司”、 “本公司”)成立于2000年12月,注册资本27,346.88万元,为全球MO源主要供应商之一。南大光电经过多年的技术积累及创新,已经拥有完全自主知识产权的MO源独特生产技术。作为全球MO源的主要供应商,产品在满足国内需求时,已远销日本、台湾,韩国、欧洲和美国。公司获得了ISO9001质量认证体系、ISO14001环境认证体系及OHSAS18001职业健康体系的认证。公司2012年8月7日在深圳证券交易所创业板成功上市。公司目前拥有MO源、电子特气、光刻胶三大业务板块,努力成为国际一流的MO源供应商、国内领先的电子特气供应商和国内技术最领先的光刻胶供应商并力争在五到十年内发展成为国际上优秀的电子材料生产企业。而公司拟投资65,557万元实施“193nm(ArF)光刻胶材料开发和产业化”项目,项目实施主体宁波南大光电材料有限公司是本公司的全资子公司。按照他们所说,193nm(ArF)光刻胶和MO源都属于高纯电子材料,在生产工艺、分析测试等方面有一定的相似性,公司现有的很多生产技术和管理经验可以直接应用到此项目中。南大光电经过多年的技术积累及创新,已经拥有完全自主知识产权的MO源独特生产技术。在产品的合成、纯化、分析、封装、储运及安全操作等方面均已经达到国际先进水平。同时,为了此次项目的开发,南大光电已完成1500平方米研发中心的建设工作。根据规划,公司将通过3年的建设、投产及实现销售,达到年产25吨193nm(ArF干式和浸没式)光刻胶产品的生产规模。产品满足集成电路行业需求标准,同时建成先进光刻胶分析测试中心和高分辨率光刻胶研发中心,为公司新的高端光刻胶产品的研发和产业化提供技术保障。目前本项目的主要建设内容为生产车间、分析测试中心、研发中心、仓库、水电、道路等配套设施的建设。他们在报告中指出,作为集成电路制造最为关键的基础材料之一——高档光刻胶材料(如:ArF光刻胶),几乎完全依赖于进口。这种局面已经严重制约了我国集成电路产业的自主发展。更有甚者,我国集成电路工业使用的高档光刻胶中,80%以上都是从日本一个国家进口(剩余的部分从美国进口)。这样垄断式的依赖格局使得中国集成电路产业在我国发生严重自然灾害、政治冲突、商业冲突或军事冲突时受到严重的负面影响。从产品性质方面分析,相较于可以长时间保存(3年左右,甚至更长)的大硅片和先进制造设备, 高档光刻胶的保质期很短(6个月左右,甚至更短)。一旦遇到上述的自然灾害或冲突,我国集成电路产业势必面临芯片企业短期内全面停产的严重局面。因此,尽快实现全面国产化和产业化高档光刻胶材料具有十分重要的战略意义和经济价值。但南大光电也强调,ArF光刻胶产品的配方包括成膜树脂、光敏剂、添加剂和溶剂等组分材料。是否能够将各个组分的功能有效地结合在一起,关系到光刻胶配方的成败,这是调制光刻胶配方的最大挑战和难点,也是一个光刻胶公司技术能力的基本体现。国际上只有为数很少的几家光刻胶公司可以做到产品级 ArF光刻胶配方的调制。针对此种情况,一方面,我们可以进行外部引“智”,从光刻胶技术先进的美国和日本等国家引进相关领域的专家。另一方面,我们应该进行内部寻“智”,联合国内光刻胶的研究单位,积极培养国内的光刻胶研发人才。通过人才的“内外结合”,我们将自主研发出国产ArF光刻胶产品。同时,我们又可以此团队为基础,建设属于我国自己本土的光刻胶人才队伍,为公司先进光刻胶产品的升级换代和我国集成电路行业的后续发展奠定基础。
  • 电子束缺陷检测设备(EBI)与SEM的区别和联系
    一、技术应用背景1.行业痛点在半导体制造过程中,需要对半导体进行微观缺陷的观察。所需要查看的缺陷不仅来自半导体器件的表面,也来自半导体内部。例如存储器件芯片领域,即我们常说的内存,当二维尺度存储单元的尺寸被降低至无法继续缩小,但芯片的存储容量仍然不能满足需求时,三维存储器工艺3D NAND应运而生(图1)。简单来说,该技术机理为将二维存储器堆叠成多层三维结构,相同面积芯片上存储单元被成倍增加,从而达到在不增加存储器面积的前提下增加存储容量的效果。在其它器件领域,此类立体布线的芯片制作技术和工艺也被广泛应用。图1 二维存储器和三维存储器示意图但这类工艺也增加了缺陷检查的难度。在二维器件时代,技术人员只需要对平面上存在的缺陷进行检查,但是当工艺迭代至三维空间,对芯片内部数十层甚至数百层线路进行缺陷检查就变成了一件很有挑战性的工作。X射线具有一定的穿透能力,但是分辨能力无法达到检查要求;电子束的分辨能力强,但是又难以穿透到芯片内部检查线路缺陷。 常规的直接检测手段效果不佳,这时就产生了一些间接检查的手段。由于内部线路缺陷检测主要关注内部线路的通断,而电子束作为一种成像介质,不仅可以用于获取显微影像,也可以向材料内部充入电子,而电子本身就是判断导电线路通断的关键手段。电子束缺陷检查设备EBI(E-Beam Inspection)就是一类专门用于快速分析此类缺陷的专用设备。 EBI设备源自于SEM,其工作原理同样基于电子束与物质相互作用产生的二次电子(主要)/背散射电子效应,这些二次电子/背散射电子的数量和能量分布与材料表面的物理和化学性质密切相关,特别是与表面的缺陷情况有关。通过收集和分析这些二次电子/背散射电子,可以构建出待测元件表面的电压反差影像,从而实现对缺陷的检测。2. EBI设备的详细工作机理介绍由电子束激发的二次电子产额δ(发射的二次电子数与入射电子数之比)与入射电子束能量Ep的关系如图2所示。δ曲线随能量快速递增至最大值,再缓慢递减。这是因为当能量较低时,激发的二次电子数目较少,随着能量的增加,激发的二次电子数目越来越多,但能量越大,入射电子进入到固体内部越深的地方,虽然产生大量的二次电子,但这些二次电子很难从固体内部深处运动到固体表面逸出。对于大多数材料来说,二次电子产额δ都符合这条曲线的规律。图2 二次电子产额δ与入射电子束能量Ep的关系示意图如图3所示,当EⅠ1,此时试样表面呈正电荷分布。发射的二次电子大部分小于10 eV,由于受到试样表面正电荷的吸引作用,二次电子的发射会受到阻碍。当Ep=EⅠ或Ep=EⅡ时,δ=1,此时试样表面呈电中性。当EpEⅡ时,δ图3试样表面电荷累计示意图以上就是电子束检测中的正电位模式(Positive model)和负电位模式(Negative model)。正电位模式常用于检测由于电子累积而导致的电性缺陷,如短路或漏电。在检测过程中,在特定试样下,亮点可能表示待测元件存在短路或漏电问题,因为这些区域会吸引并累积更多的电子,形成较高的电位,而暗点则表示断路。负电位模式则与正电位模式相反。 以6T SRAM中的接触孔缺陷成像分析为例,在正电荷模式下的接触孔影像和接触孔断路缺陷影像如图4所示。正电荷分布模式下接触孔断路缺陷的影像会受到表面正电荷异常增加,而导致的电子束缚能力增强,接收器接收到的电子数量变少,接触孔影像变暗而出现缺陷信号,如图4中右图所示。而在负电荷分布模式下的接触孔断路缺陷影像如图5所示,接触孔断路缺陷表面负电荷无法从基底流走,排斥更多的负电荷,使接触孔影像变亮而出现缺陷信号。图4 正电荷模式下的接触孔影像(左图)和接触孔断路缺陷影像(右图)图5 负电荷模式下的接触孔断路缺陷影像二、EBI设备的技术特点1. EBI设备电子枪技术策略芯片内部线路通断信号的判定通常不需要在较高的加速电压下进行,电子束的着陆能量调节范围也无需过大,通常0.2kV-5kV的着陆能量即可覆盖芯片样品的电荷积累极性,从而达到判断内部线路通断的目的。因此EBI设备通常采取额定电压的电子枪技术,这样一方面节省成本,另一方面降低了电子枪的制作和装调难度。 从应用角度举例,仍以6T SRAM接触孔缺陷检测为例(图6),当着陆能量为300 eV和500 eV时,试样表面呈正电荷分布;当着陆能量为1800 eV时,试样表面呈电中性;当着陆能量为2000 eV和3000 eV时,试样表面呈负电荷分布。对于这种特定试样来说,在电子束着陆能量较低时,产生的二次电子信号量太少,图像的衬度较差,接触孔缺陷较难判断;电子束着陆能量为2000 eV时,接触孔断路处由于负电荷迅速积累而变亮,此时接触孔缺陷清晰可见。图6 入射电子束不同着陆能量下接触孔缺陷检测图2. EBI设备着陆电压控制策略常规SEM通常使用在镜筒内部设置减速电极、减速套管等方式实现对着陆电压的精确控制,统称为镜筒内减速技术。该技术的核心思路是电子束在镜筒中一直维持着较高的能量,保持较低的像差,电子束在到达极靴出口之前恰好降低至目标电压,从而轰击样品。该技术的优势是在保证低电压高分辨能力的同时,不干扰各类仓室内探测器的使用。镜筒内减速技术综合考虑了各类材料的观测工况,适用性强,不存在明显的技术短板,代表了当代电子光学的较高水平,但其装配调试难度相对较高,故多搭载于成熟品牌SEM的高端机型。(镜筒内减速技术的发展和详解本篇文章不过多展开,请继续关注本公司后续技术文章)EBI设备则不同,由于该设备主要用于观测大尺寸平整晶圆,通常不需要考虑样品存在起伏的情况,在这种工况下为了精确控制电子束与晶圆发生碰撞瞬间的入射电压,EBI设备最常采用样品台减速的设计思路,即在样品台表面设置可调节的减速电位,这样晶圆表面也分布有处处均等的减速电势。当电子束下落至晶圆表面,电子的速度便恰好被降低到目标入射电压,以此达到精确控制晶圆表面电荷积累的极性的目的。例如:(图7)电子枪的发射电压为15 kV,电子束以15 keV的能量在镜筒内运动,在样品台上施加一个-14 kV的反向电场,这样电子束到达样品的瞬间着陆能量恰好被减速到1 keV。图7 样品台减速模式示意图样品台减速技术对样品的平整度要求很高,样品不平整会直接导致减速场分布的不均匀,从而直接影响成像质量和检测精准度。但是对于EBI设备,被检测对象单一且均匀,采用样品台减速的设计路线就极为合适。通常EBI厂商会采用固定电压的电子枪配合可调节电压的样品台减速,实现对着陆电压的精确控制,这种技术策略与常规SEM相比,一定程度上降低了设计和装配的难度,也节约了生产成本。3. EBI设备物镜的设计在常规的SEM中,物镜也被称为外镜物镜,如图8所示。它位于电子枪底部,用于汇聚初始电子束。常规SEM需要观测形状各异的样品,同时需要安插各类探测器来获取不同种类的信号以增加成像分析的维度,这种锥形物镜的设计允许样品在较大的范围内自由移动和倾斜旋转,也极大程度上便利了各类探测器的扩展性。图8 常规SEM物镜示意图然而在EBI设备的应用场景中,样品通常为平整的大尺寸完整晶圆,多数情况下仅做水平方向的移动观察,这就意味着样品与物镜发生碰撞的概率被大大减小。因此在设计EBI设备物镜时,就可以采用一些更小的工作距离的设计思路,从而突破使用传统物镜导致的分辨能力的极限。 半浸没物镜是EBI设备经常采用的一种类型,通过特殊设计的磁场分布(如图9所示),将强磁场“泄漏”到物镜空间下方的样品区域,这样相当于获得了无限短的工作距离,物镜对平整晶圆表面线路的分辨能力得到了大幅度提升。这种设计通常还会将电子探测器布置在物镜内部,以增加信号电子的收集效率。不过由于工作距离短,磁场外泄的设计,在此类型物镜基础上插入其它类型的信号探测器并不容易。例如,正光轴外置背散射电子探测器,通常无法在常规的使用工况中发挥作用,为了防止外露磁场的均一稳定,使用镜筒内二次电子检测器时,需要将该背散射检测器移出磁场;仓室内的二次电子探测器(ET)也会受到泄露磁场的影像导致无法收到信号。图9 半镜内物镜示意图三、EBI与SEM的区别和联系电子束检测设备EBI与扫描电子显微镜SEM在半导体检测领域各有侧重,但又相互关联、相互补充。EBI是针对单一应用场景特殊优化过的SEM设备,通常使用额定加速电压,样品台减速控制落点电压和半内透物镜技术策略,主要用于半导体晶圆的缺陷检查,特别是内部线路中的电性缺陷。其利用二次电子/背散射电子成像技术捕捉并分析缺陷,能够做到线上实时检测缺陷状况,无须借助接触式电极即可完成线路通断检查。SEM的适用领域则更广,不仅限于半导体领域,还广泛应用于材料科学、生命科学、能源化工、地址勘探等多种基础、前沿科学技术领域的微观研究。SEM具有更宽泛的电压调节能力,更灵活多变的工作高度,更大的成像景深,更多种探测器的部署方式,更灵活的采集模式,同时兼容各种类型的原位观察、原位加工附件。参考文献及专利[1] Scholtz, J. J., D. Dijkkamp, and R. W. A. Schmitz. "Secondary electron emission properties." Philips journal of research 50.3-4 (1996): 375-389.[2] Patterson, Oliver D., et al. "The merits of high landing energy for E-beam inspection." 2015 26th Annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC). IEEE, 2015.[3]王恺.28纳米技术平台接触孔成型工艺的缺陷检测与优化研究.2019.上海交通大学,MA thesis.doi:10.27307/d.cnki.gsjtu.2019.004052.[4]常天海,and 郑俊荣."固体金属二次电子发射的Monte-Carlo模拟."物理学报 61.24(2012):149-156.[5]Xuedong Liu, et al."System and method to determine focus parameters during an electronbeam inspection."US7705298.2010-04-27.
  • 小酌怡情,但如何检测藏在葡萄酒及其软木塞的TCA?
    1、为保证内容正常显示,图片请使用本地上传。2、新闻内容不得添加电话、邮箱、QQ、网址、二维码等任何联系方式,新闻底部会自动添加联系我们的功能“默克分析化学”公众号为您提供全面的分析化学行业应用和解决方案。我们将定期邀请行业专家,分享前沿技术解读、行业应用和热门科研分析。本期我们邀请到的是中国食品发酵工业研究院有限公司高红波老师背景介绍:2,4,6-三氯苯甲醚(TCA)是霉菌代谢含有三氯苯酚等一系列含氯的化合物经过复杂的反应后产生的化学副产物[1],一般认为高于10 ng/L超痕量TCA就会对葡萄酒的风味和品质产生影响,使葡萄酒产生一种类似潮湿地下室或湿报纸的霉味[2]。TCA是非常稳定的化合物,灌瓶后渗透到葡萄酒中的TCA比葡萄酒本身更稳定[3]。每年给葡萄酒工业带来巨大的经济损失。由于这种污染主要是由封装葡萄酒的软木塞引起的,橡木塞由于其特殊的性能又很难用其他的螺旋塞等代替,因此建立一套能对葡萄酒和软木塞中TCA进行检测与分析定量的既精确又高效的方法就愈发的重要,从而对葡萄酒在生产和储藏过程中的每一个环节进行有效地质量控制,达到控制污染水平的目的。分析方法简介样品前处理技术是葡萄酒和软木塞中TCA检测的关键,目前国内外软木塞中TCA的方法主要是固相萃取(SPE)、固相微萃取(SPME)、离子迁移谱等[4-10]。 本文对固相微萃取技术测定TCA样品前处理条件进行研究,并通过方法学评价,建立了固相微萃取-GC-ECD法测定软木塞及葡萄酒中超痕量TCA的方法,并开展了不同类型葡萄酒用软木塞和葡萄酒中TCA含量的测定,为葡萄酒企业开展葡萄酒用软木塞的测定提供有效途径。1材料与方法 1.1仪器与试剂气相色谱仪;固相萃取头:涂层厚为100 µm的聚二甲硅烷氧烷纤维头(PDMS)。乙醇(色谱纯);2,4,6-三氯苯甲醚;2,4-二氯苯甲醚(DCA)氯化钠(分析纯)葡萄酒样品(厂家提供),1.2实验方法1.2.1葡萄酒样品测定取5mL葡萄酒样品于20ml顶空瓶中,加入1.5 gNaCI,100μL 50μ/L的DCA标准液,压盖,进样。1.2.2软木塞处理 取10~15 个软塞子于 500 mL试剂瓶,加入300 mL12 %乙醇水溶液,使塞子完全浸没,浸泡24 h±2 h。取 5 mL 浸泡液于 20 mL 顶空瓶中,以下步骤同1.2.1。1.2.3 萃取及色谱条件 固相微萃取条件:将顶空瓶置于恒温加热磁力搅拌器中,40℃平衡10min,将固相微萃取头插入顶空瓶,在40℃持续搅拌下萃取30min,然后在气相色谱进样口260℃解析时间:5 min。 气相色谱条件:色谱柱:HP-5毛细管色谱柱(30 m×0.25 mm×0.25 μm)或等效色谱柱;柱温:初温50℃,保持2 min,以9.0℃/min升到150℃,保持1 min,以20℃/min升到260℃,保持3 min;进样口温度:260℃;电子捕获检测器温度:330℃;载气流量:1.0 mL/min;进样方式:不分流进样;2 结果与讨论2.1 固相微萃取条件的优化2.1.1 NaCI添加量的选择无机盐NaCl的添加量对TCA的萃取效果具有重要影响。在溶液中加入NaCl,溶液的粒子强度增加,使有机分析物的非极性相对增强并使其在水溶液中的溶解度下降,萃取量得到增加,同时NaCl的加入还会影响基质粘度,降低分析物的扩散速度,产生盐的负效应。本实验选择5mL样品,萃取温度40℃,对NaCl的加入量进行优化,发现随着NaCl量增加,TCA和DCA峰面积逐渐升高然后降低,当加入1gNaCl时两者峰面积达到最大,结果见图1 因此选择加入1.5gNaCl。图1 NaCl的添加量对萃取效果的影响2.1.2 萃取温度的选择萃取温度对萃取效果的影响具有两面性:一方面,温度升高有利于有机组分从液体扩散到顶空部分另一方面,温度升高又会使有机组分在吸附填料与样品中的分配系数降低,从而降低对被分析组分的吸附量。本文固定其它条件对吸附温度进行优化,由图2可见,吸附温度升高时吸附量有所增加,当温度由40℃提高到50℃时峰面积有所降低,所以选择40℃作为吸附温度。图2 萃取温度对萃取效果的影响2.1.3 萃取时间的优化SPME萃取时间对待测组分的萃取效果有较大的影响,固定萃取温度及溶液离子强度等其它条件不变,对不同萃取时间进行比较。取40ppt的TCA标准溶液加入1.5g氯化钠, 100µl 工作液(2.0ppt) 分别萃取10min 、20min 、30min 、40min(样品平衡时间均为5min)进行比较。由图3可见,吸附时间加长时TCA吸附量有所增加,当萃取时间到30min时峰面积平稳,所以选择30min作为萃取时间。图3 萃取时间对萃取效果的影响2.2 测定条件优化 采用程序升温对TCA色谱测定条件进行了优化,DCA及TCA与样品基质的干扰组分得到良好的分离见图1 图1 TCA标准品及样品谱图2.3 方法学评价2.3.1 线性范围及检出限分别配制2.0ng/L~50 ng/L 5个不同质量浓度的TCA种标准溶液,按上述确定的实验条件进行测定,质量浓度为横坐标,以TCA峰面积与DCA峰面积之比为纵坐标、绘制出测定曲线,线性回归方程y=18.947x,相关系数R2 =0.9989,信噪比大于10时,定量下限为0.60 ng/L。2.3.2回收率的测定在软木塞浸泡液及葡萄酒中加入不同浓度的TCA标准溶液,按照实验方法测定计算方法回收率,结果如表2,TCA的回收率在80.0%~113.75%之间,说明说明该法具有很好可靠性和准确性。表1 方法的加标回收率样品样品浓度(ng/L)加标量(ng/L)测得回收量(ng/L)回收率(%)软木塞2.24.03.792.508.09.1113.75葡萄酒5.34.03.280.08.06.783.752.3.3重复性测定 取同一样品6份按照实验方法进行测定TCA含量,计算方法相对标准偏差,结果见表2,方法的重复性小于10%,说明此方法可靠,数据准确。表2 方法重复性测定测量次数123456平均值RSD%测量值(ng/L)9.28.510.39.411.28.7 9.789.782.4 样品中TCA的测定按照实验方法对本次测试3种个不同类型的橡木塞及7个葡萄酒样品,标品及样品的谱图样品结果如下表3:表3 软木塞及葡萄酒中TCA检测结果 (ng/L)聚合塞8#聚合塞2#聚合塞3#天然塞4#天然塞5#贴片塞6#贴片塞7#6.32.34.4NDND3.82.1葡萄酒1#葡萄酒2#葡萄酒3#葡萄酒4#葡萄酒5#葡萄酒6#葡萄酒7#10.22.45.22.4NDNDND注:ND表示未检测出这3种木塞类型代表了国内葡萄酒高中低当葡萄酒的封装材料,由上表可以看出测试的原木塞没有检测出TCA,生产原木的原料控制的很好,原木经过消毒加工过程中也没有受到很多污染。1+1贴片塞检出了TCA,与 遭受污染跟使用的粘合剂,加工方式,以及碎木屑的种类以碎木屑的卫生状况有关;检测的7种葡萄酒中有4种检测出TCA,说明我国葡萄酒存在一定量的TCA污染。3 结 论建立了固相微萃取-气相色谱法测定软木塞及葡萄酒中超痕量2,4,6-三氯苯甲醚(TCA)的分析方法。对萃取温度、盐浓度及萃取时间等条件进行了优化。确定最佳条件:5ml样品,加入1.5g 氯化钠,萃取温度为40℃,40℃平衡10min,萃取时间30min。待测组分经过萃取富集后,气相色谱-电子捕获检测器检测,内标法进行定量。该方法在2.0~50.0ng/L范围内线性良好,定量限为0.6ng/L,回收率在 80.0 %113.75 %之间,相对标准偏差(n=5)小于10.0%,满足葡萄酒及软木塞中超痕量TCA测定的需要。参考文献 [1] Prak S, Gunata Z, Guiraud J P, et al. Fungal strains isolated from cork stoppers and the formation of 2, 4, 6-trichloroanisole involved in the cork taint of wine[J]. Food microbiology, 2007,24(3):271-280. [2] Tindale C R, Whitfield F B, Levingston S D, et al. Fungi isolated from packaging materials: Their role in the production of 2, 4, 6‐trichloroanisole[J]. Journal of the Science of Food and Agriculture, 1989,49(4):437-447. [3] Andrewes P, Bendall J G, Davey G, et al. A musty flavour defect in calcium caseinate due to chemical tainting by 2, 4, 6-tribromophenol and 2, 4, 6-tribromoanisole[J]. International Dairy Journal, 2010,20(6):423-428.[4] 赵英莲,牟德华,李艳. 顶空固相微萃取联合气相色谱-质谱检测葡萄酒中2,4,6-三氯苯甲醚[J]. 食品科学 , 2016,10:219-225. [5] 刘卿,钟其顶,李敬光,固相微萃取-气相色谱-负化学源质谱法测定葡萄酒中2,4,6-三氯苯甲醚[J].卫生研究. 2012,04:642-645.[6] 张素娟 超声波辅助-顶空固相微萃取-气相色谱法测定软木塞中痕量2,4,6-三氯苯甲醚[J].食品工程. 2015,02:38-40.[7] Vlachos P, Kampioti A, Kornaros M, et al. Matrix effect during the application of a rapid method using HS-SPME followed by GC-ECD for the analysis of 2, 4, 6-TCA in wine and cork soaks[J]. Food chemistry, 2007,105(2):681-690.[8] Henryk H. Jeleń,Mariusz Dziadas,Małgorzata Majcher. Different headspace solid phase microextraction – Gas chromatography/mass spectrometry approaches to haloanisoles analysis in wine[J]. Journal of Chromatography A, 2013:185-193. ASEIMEDLINEWA[9] Ariel R. Fontana,Jorgelina C. Altamirano. Sensitive determination of 2,4,6-trichloroanisole in water samples by ultrasound assisted emulsification microextraction prior to gas chromatography–tandem mass spectrometry analysis[J]. Talanta , 2010,81(4):1536-1541.[10] Isabel Márquez-Sillero,Soledad Cárdenas,Miguel Valcárcel. Headspace–multicapillary column–ion mobility spectrometry for the direct analysis of 2,4,6-trichloroanisole in wine and cork samples[J]. Journal of Chromatography A, 2012,1265:149-154 . 。
  • 通过TOC实时监测获得水处理数据洞察,以改进工艺控制、质量与合规性
    水和污水处理的运营决策取决于所采用的有机物检测工具,如生物需氧量(BOD)、化学需氧量(COD)和总有机碳(TOC)准确评估有机污染。为了符合规定和优化处理步骤,节省时间和金钱,了解和理解有机负荷以及有机脱除效率作为关键控制工具,是非常有价值的。BOD和COD是传统实验室测定有机物含量的参数,TOC是相对较新的检测指标。虽然这些参数测定的是水中不同的物质,但它们的测定结果有所重叠,都提供有关水和污水样品中相对有机“浓度”的信息。美国和欧洲法规框架中,为了证明出水符合限值标准,大部分都要求BOD和COD这两个数据。增加TOC数据作为补充,可以快速发现机会,调整工艺,优化操作。仅使用COD或BOD,这些机会很可能会被忽略。在线TOC分析利用实时数据对有机负荷进行定量,使操作人员能够依据观察到的波动,根据数据快速做出处理决策。01BOD和CODBOD测定水中有机污染物微生物降解的需氧量。样品在20°C培养5天得到结果,由于各种因素,如干扰(微生物抑制剂、消毒剂、氯、盐等)和操作人员的操作,重现性受到限制(+/-20%)。COD是一种比较普遍的BOD替代补充检测,其主要优势是检测时间仅需2小时。COD测定水中化合物化学氧化的需氧量。该检测需要使用危险有毒的化学试剂,如溶于50%硫酸溶液中的重铬酸钾,并且干扰氯化物、亚硝酸盐和铁离子。虽然BOD和COD是必须测定的参数,但它们的缺点不符合用户的期望,我们一直是在寻求更好的测定有机物浓度的替代方法。02TOC在短期调整和即时结果很重要的领域,越来越多的水和污水厂运营商在有机物监测体系中增加了对TOC的监测。与BOD和COD不同的是,TOC可以在实验室与/或在线检测,每隔几分钟就得到一个检测结果。TOC分析仪测定水和污水样品中总有机物质的含量。分析仪的类型很多,但都是将有机碳氧化为二氧化碳(CO2),然后,采用检测方法测定产生的CO2。氧化方法包括燃烧、紫外(UV)过硫酸盐、超临界水氧化,而检测方法包括非色散红外(NDIR)法和膜电导法。在线分析的主要好处是其利用实时数据对有机负荷变化进行量化,使操作人员能够依据观察到的波动,根据数据快速做出处理决策,节省时间和金钱。在线TOC分析仪通常一年中需要多次维护,更换易耗品。但更新型的TOC分析仪使用简单,每个季度仅需维护一次,每6至12个月校正一次。也许TOC最大的重要性是其准确检测工艺变化的灵敏性,以及对低含量和高含量有机污染都能精确定量。03案例下面列出了美国三家采用在线TOC作为监测工具,快速做出处理决策的城市饮用水和污水处理厂。TOC分析帮助这些运营商优化了工艺和操作。科罗拉多州博尔德市公共工程污水处理设施2008年,第75街污水处理厂(WWTF)将其除磷脱氮工艺升级到改良型Ludzack-Ettinger(MLE)工艺。该活性污泥工艺将出水中氨和硝酸盐的浓度成功降低到合规水平,直到2017年该区域实行了最新的每日最大限值。由于存在违规风险,该污水处理厂进行了在线检测和工艺建模,从而确定了脱氮不完全的原因:该污水处理厂MLE工艺缺氧区的碳限制。在使用Sievers® InnovOx在线TOC分析仪后,其提供的数据证明,碳和氮的日变化足以抵消对污水处理厂碳限制的作用。这提供了原先被忽略的许多优化机会,因为原先是以天为基础考虑碳/氮比。通过这一信息,该厂选择氮升级来缓解这个问题。氮解决方案将使操作人员能够通过平衡碳/氮比日变化,减少外部碳用量。它还支持该厂满足营养物废水排放新法规的要求。科罗拉多工厂在线TOC分析仪的特点是稳健的样品处理能力和拥有专利技术的超临界水氧化技术。其双通道或可选的5通道配置能够连续监测多种水流来源,同时可以针对不同颗粒含量进行配置,不需要维护过滤系统,使其用于污水应用非常理想。加州圣马科斯市双橡树谷水处理厂该零排放浸没式膜超滤(UF)水处理厂的源水是95%地表水和5%再生水(主要是超滤膜反洗水)。现场循环水工艺从均化开始,然后加入促凝剂/絮凝剂,然后在Lamella+板式沉降器中沉降。沉降的水与原水汇合,送往超滤膜。该厂对板式沉降器的进水和出水实施TOC监测,以了解板式沉降器的有机物脱除效率。它们还想了解UF膜的有机污染情况,从而能够调整处理工艺,防止污染发生。使用Sievers® InnovOx在线TOC分析仪后,在线分析表明TOC初始脱除效率是大约40-50%。虽然尝试了各种不同的处理方案,但TOC在线分析对处理效率提供了接近实时的数据。此时,控制pH实现的TOC脱除效率优于加入不同絮凝剂的效果。但是,确保合适的平衡需要连续正确监测有机物脱除情况。因此该厂持续进行TOC监测,确保最佳操作和连续试验新技术,改善有机物脱除,防止膜污染。科罗拉多州恩格尔伍德市水处理厂该饮用水处理厂处理当地河流的地表水。为了改进工艺和寻找节约成本的机会,该市将其杯罐实验法的工艺数据从浊度扩展到TOC。为了确保符合消毒副产物(DBP)条例要求,在开展试验之前,他们的化学试剂添加量是比较盲目的。DBP条例要求在其分配系统最远端脱除TOC和减少DBP形成。该市使用Sievers® M5310 C TOC分析仪进行TOC监测。该分析仪特别设计用于饮用水应用,通过自动计算进水和出水或样品的TOC百分脱除率,符合DBP条例要求。该系统预先校准,小巧独立,维护要求低。该厂使用的M5310 C分析仪是便携式的,不需要从连续样品源拆下仪器或改变样品进口配置,即可采集样品。TOC分析通过自动计算进水和出水或样品的TOC百分脱除率,以符合消毒副产物DBP(disinfection by-product)条例。通过TOC监测,该市在几步优化中降低了运营成本。这些优化包括:改变pH、改变絮凝剂类型或絮凝剂用量已获得最佳效果,确保有机物脱除,以及了解何时再生颗粒活性碳(GAC)。04结论TOC监测帮助推动智能型、信息型的快速决策,改进饮用水和污水处理厂的工艺控制。TOC分析对水处理设施而言是一个强大的工具,可以帮助运营商持续有效地进行水处理,对处理成本也有着积极影响,以满足目前和未来的法规要求。原文英文版刊登于《WaterWorld》杂志2018年6月刊作者:CéLINE ASSMANN、AMANDA SCOTT◆ ◆ ◆联系我们,了解更多!
  • 食品酸价怎么测?雷磁电位滴定仪来帮忙
    食安无小事,抽检不松弦。市场监督管理局每年都会多次对食品进行抽检,其中酸价(以脂肪计)是食品常规理化检测中非常重要的检测项目之一,在曝光的不合格食品中不少样品的不合格项是酸价抽检不合格。比如一些常见的零食,手工煎豆片、面包、兰花豆、切片型马铃薯片、江米条、麻油馓子(糕点)、饼干等以及小磨麻油等。一、食品酸价是什么酸价,主要反映食品中的油脂酸败的程度,酸价超标会导致食品有哈喇味,超标严重时所产生的醛、酮、酸会破坏脂溶性维生素,长期摄入会对健康有一定影响,导致肠胃不适。酸价检测值超标的原因,可能是企业在原料采购环节上把关不严、生产工艺不达标、产品储藏运输条件不当,特别是在夏季,受气候环境影响因素更大,易导致食品中脂肪的氧化酸败。二、食品酸价怎么测食品中酸价的测定,国家标准GB 5009.229-2016《食品安全国家标准 食品中酸价的测定》第二法:冷溶剂自动电位滴定法。常温下能够被冷溶剂完全溶解成澄清溶液的食用油脂样品和含油食品中提取的油脂样品均适用此检测方法。具体样品包括:食用植物油(包括辣椒油)、食用动物油、食用氢化油、起酥油、人造奶油、植脂奶油、植物油料、油炸小食品、膨化食品、烘炒食品、坚果食品、糕点、面包、饼干、油炸方便面、坚果与籽类的酱、动物性水产干制品、腌腊肉制品、添加食用油的辣椒酱等。三、自动电位滴定法食品中酸价的测定,推荐雷磁的ZDJ-5B型自动滴定仪或ZDJ-4B型自动滴定仪,配套982211非水溶液pH滴定电极和防扩散毛细管。检测试剂:乙醚-异丙醇混合液(1:1)和0.1mol/L氢氧化钾标准滴定溶液测定过程:1) 样品按照GB 5009.229-2016《食品安全国家标准 食品中酸价的测定》中试样制备对样品进行前处理2) 测定:称取的制备的油脂试样置于滴定杯中,加入乙醚-异丙醇混合液50mL~100mL,再加入1颗干净的聚四氟乙烯磁力搅拌子,将滴定杯放在滴定仪上,以适当的转速搅拌至少20s,使油脂试样完全溶解并形成样品溶液,维持搅拌状态。将已连接在自动电位滴定仪上的电极和滴定管插入样品溶液中,注意应将电极的玻璃泡和滴定管的防扩散头完全浸没在样品溶液的液面以下,避免与烧杯壁、烧杯底和旋转的搅拌子触碰,设置好滴定仪相关参数及计算公式后,用标准滴定溶液滴定至终点。自动电位滴定仪自动计算结果并显示滴定曲线,保存结果。样品酸价滴定曲线四、典型客户雷磁自动电位滴定仪在食品安全检测领域中一直得到良好的应用,小肥羊调味品、大红袍调味品、明冠食品、南方黑芝麻、亲亲物语食品、方广食品、思念食品、王小卤食品、盼盼食品、金龙鱼粮油、崔婆婆火锅底料等食品公司都是我们的忠实客户,其中不乏谱尼、华测、SGS等第三方检测公司以及省市级市场监督管理局的检测所。
  • Sigma-Aldrich SPME + GCMS 快速、灵敏检测邻苯二甲酸酯
    SPME + GCMS 快速、灵敏检测邻苯二甲酸酯 &mdash &mdash Sigma-Aldrich/Supelco 应对方案 下载详细资料请至: http://www.instrument.com.cn/netshow/SH101420/down_170241.htm 关键词:起云剂 邻苯二甲酸酯 SPME 固相微萃取 气相色谱 前言 邻苯二甲酸酯类物质常被用于增塑剂、起云剂等添加到柔软的聚氯乙烯类产品中,从而增加塑料材质的韧性、通透度、强度和寿命。近期研究发现,邻苯二甲酸酯类物质主要会引起内分泌紊乱(女孩性早熟,男性生殖损害),致癌(乳腺癌)和肝毒性等方面的健康危害。出于公众健康方面的考虑,邻苯二甲酸酯类已经在美国、加拿大和欧盟等地域的部分产品中禁用。 最为常见的邻苯二甲酸酯类物质为:邻苯二甲酸(2-乙基己基)酯(DEHP),邻苯二甲酸二异癸酯(DIDP),邻苯二甲酸二异壬酯(DINP),邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP) 、邻苯二甲酸二丙酯(DPrP)、邻苯二甲酸丁基苄基酯(BBP)、邻苯二甲酸二丁酯(DBP) 、邻苯二甲酸二戊酯(DPP)、邻苯二甲酸二环己酯(DCHP )、邻苯二甲酸二己酯(DHP)。 Sigma-Aldrich公司的Supelco SPME 摈弃传统前处理的两大缺点:较长时间的样品前处理及大量的溶剂耗费,带给您更快速、灵敏及方便的分析检测方案。 检测方法: SPME 萃取头:7 &mu mPDMS (货号:57302) 萃取方式:直接浸没,15分钟,快速搅拌 载气:氦气 流速:40 cm/sec; 质谱:45 - 465 m/z 进样口温度:280 ° C 色谱柱:PTE-5, 30 m × 0.25 mm I.D × df0.25 &mu m (货号:24135-U) 柱温:60 ° C (3 min) -320 ° C(10 ° C/min) 检测结果: 结论: 通过使用7 &mu m 聚二甲基硅烷(PDMS)纤维萃取头的样品前处理,对加标样品浓度10~200ppb进行考察(方法625和8060)。实验结果数据中,稳定的响应因子和浓度值表现出良好的线性,多点加标(n=5)相对方差(RSD)和标准方差反映了实验卓越的重现性和SPME令人满意的表现。 (表1. 使用7 &mu m 聚二甲基硅烷(PDMS)纤维萃取头实验结果相应因子) 订购信息: 产品描述 货号 SPME 萃取手柄(初次购买需要购置手柄,手柄非耗材,可反复使用) 适用于手动进样 57330-U 适用于自动进样器或SPME/HPLC 接口 57331 SPME萃取头套装#3 100 &mu m PDMS(适合分析挥发性物质)   用于手动进样 57300-U 适用于自动进样器或SPME/HPLC 接口 57301 30 &mu m PDMS(适合分析非极性半挥发物质) 用于手动进样 57308 适用于自动进样器或SPME/HPLC 接口 57309 7 &mu m PDMS(适合分析中等极性到非极性的半挥发物质) 用于手动进样 57302 适用于自动进样器或SPME/HPLC 接口 57303 65 &mu m PDMS/DVB (适合分析极性物质) 用于手动进样 57310-U 适用于自动进样器或SPME/HPLC 接口 57311 60 &mu m PDMS/DVB (适合分析不挥发性物质)   适用于自动进样器或SPME/HPLC 接口 57317 75 &mu m Carboxen&trade /PDMS (适合分析气体样本和小分子类物质) 用于手动进样 57318适用于自动进样器或SPME/HPLC 接口 57319 85 &mu m PA (聚丙烯酸酯,适合分析极性半挥发物质) 适用于手动进样 57304 适用于自动进样器或SPME/HPLC 接口 57305 SPME萃取头套装#1 (其它套装请查询目录) 85 &mu m PA,100 &mu m 和7 &mu m PDMS各一支   用于手动进样 57306 适用于自动进样器或SPME/HPLC 接口 57307 SPME/HPLC 进样装置和Rheodyne® 阀 57353 气相色谱柱 PTE-5,30 m× 0.25 mm I.D × df 0.25 &mu m 24135-U SLB&trade -5ms,30 m× 0.25 mmI.D × df 0.25 &mu m 28471-U SLB&trade -5ms,30 m× 0.25 mm I.D × df 1.00 &mu m 28476-U 气相附件耗材(衬管、隔垫、石墨压环、石英棉、微量进样器、气体净化设备等)请垂询热线 标准品 英文名 货号 包装 邻苯二甲酸二甲酯DMP Dimethyl phthalate 36738-1G 1g 邻苯二甲酸二乙酯DEP Diethyl phthalate 36737-1G 1g 邻苯二甲酸二异丁酯DIBP Diisobutyl phthalate 152641-1L 1L 邻苯二甲酸二丁酯DBP Dibutyl phthalate 36736-1G 1g 邻苯二甲酸二(2-甲氧基)乙酯DMEP Bis(2-methoxyethyl) phthalate 36934-250MG 250mg 邻苯二甲酸二戊酯DPP Dipentyl phthalate 442867 1g 邻苯二甲酸丁基苄基酯BBP Benzyl butyl phthalate 442503 1g 邻苯二甲酸二环己酯DCHP Dicyclohexyl phthalate 36908-250MG 250mg 邻苯二甲酸二(2-乙基)己酯DEHP Bis(2-ethylhexyl) phthalate 36735-1G 1g 邻苯二甲酸二苯酯 Diphenyl phthalate 36617-1G-R 1g 邻苯二甲酸二正辛酯DNOP Di-n-octyl phthalate 31301-250MG 250MG 邻苯二甲酸二壬酯DNP Dinonyl phthalate 80151-25ML 25ML 邻苯二甲酸二异壬酯DINP Diisononyl phthalate 376663-1L 1L 邻苯二甲酸异癸酯DIDP Diisodecyl phthalate 80135-10ML 10ML 47643-U 11种邻苯二甲酸酯类混标 2000&mu g/ml溶于二氯甲烷 1ml BBP 双-(2-氯乙氧基)甲烷 双(2-氯乙基)醚 DEHP 4-溴联苯醚 4-氯二苯醚 双(2-氯异丙基)醚 DBP DEP DMP DNOP 48741 6种邻苯二甲酸酯类混标 200 &mu g/ml 溶于甲醇 1ml BBP DEHP DBP DEP DMP DNOP 47973 7种邻苯二甲酸酯类混标 500 &mu g/mL 溶于甲醇 1ml BBP 己二酸二(2-乙基己)酯 DEHP DBP DEP DMP 五氯苯酚 48223 6种邻苯二甲酸酯类混标 500 &mu g/ml溶于甲醇 1ml BBP 己二酸二(2-乙基己)酯 DEHP DBP DEP DMP 48805-U 6种邻苯二甲酸酯类混标 2000 &mu g/ml溶于甲醇 1ml DEHP BBP DBP DNOP DEP DMP 48231 6种邻苯二甲酸酯类混标 2000 &mu g/ml溶于己烷 1ml DEHP BBP DBP DNOP DEP DMP 110 7种邻苯二甲酸甲酯定制混标 1000 ppm 溶于二氯甲烷 1 ml 邻苯二甲酸二异壬酯 68515-48-0 DINP 邻苯二甲酸二正辛酯 117-84-0 DNOP 邻苯二甲酸二(2-乙基)己酯 117-81-7 DEHP 邻苯二甲酸二异癸酯 26761-40-0 DIDP 邻苯二甲酸丁基苄基酯 85-68-7 BBP 邻苯二甲酸二丁酯 84-74-2 DBP 邻苯二甲酸二异丁酯 84-69-5 DIBP 110 16种邻苯二甲酸酯类混标 1000ug/ml 溶于正己烷 1 ml 邻苯二甲酸二甲酯 131-11-3 DMP 邻苯二甲酸二乙酯 84-66-2 DEP 邻苯二甲酸二异丁酯 84-69-5 DIBP 邻苯二甲酸二丁酯 84-74-2 DBP 邻苯二甲酸二(2-甲氧基)乙酯 117-82-8 DMEP 邻苯二甲酸二(4-甲基-2-戊基)酯 146-50-9 BMPP 邻苯二甲酸二(2-乙氧基)乙酯 605-54-9 DEEP 邻苯二甲酸二戊酯 131-18-0 DPP 邻苯二甲酸二己酯 84-75-3 DHXP 邻苯二甲酸丁基苄基酯 85-68-7 BBP 邻苯二甲酸二(2-丁氧基)乙酯 117-83-9 DBEP 邻苯二甲酸二环己酯 84-61-7 DCHP 邻苯二甲酸二(2-乙基)己酯 117-81-7 DEHP 邻苯二甲酸二苯酯 84-62-8 邻苯二甲酸二正辛酯 117-84-0 DNOP 邻苯二甲酸二壬酯 84-76-4 DNP 41F/ K. Wah Centre / 1010 Huai Hai Zhong Road / Shanghai 200031 / China Ordering Email: orderCN@sial.com Toll-Free(免费订购电话): 400 620 3333, 800 819 3336
  • ChinaPlas 2019|解读赛默飞聚合物检测领域六大产品线
    p   在聚合物检测领域,赛默飞可提供全面聚合物和塑料解决方案,具体产品线包括:线测厚仪、流变仪、粘度计、手持式塑料分析仪、电镜、双螺杆挤出机等。以及聚合物和塑料完整解决方案,力求通过先进的技术和产品组合,为客户创造卓越的聚合物检测体验。2019年国际橡塑展(Chinaplas),赛默飞展出了旗下在线测厚仪、流变仪、粘度计、手持式塑料分析仪等产品,下面就来详细了解一下这些产品技术与解决方案。 br/ /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 338px " src=" https://img1.17img.cn/17img/images/201906/uepic/1da87d8e-ac58-456a-87fe-5223d7ddb06c.jpg" title=" 1.jpg" alt=" 1.jpg" width=" 450" height=" 338" border=" 0" vspace=" 0" / /p p    strong 赛默飞世尔科技 在线非金属 测厚解决方案 /strong /p p   可靠、可维护和低运营费用是赛默飞 在线测厚系统的传统优势。无论是安装还是开车,我们都能通过量身定制且完全符合您个别需求的服务计划,快速而有效率地进行。我们的技术包括核技术、X 射线、红外和光学测量传感器,加上先进的控制产品组合以及直观式的操作员界面,您所需要用来管理运作的所有产品我们都应有尽有。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 300px height: 246px " src=" https://img1.17img.cn/17img/images/201906/uepic/efb04b60-2ba6-48db-a046-eda9c3b7fd5d.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 300" height=" 246" border=" 0" vspace=" 0" / /p p style=" text-align: left "    span style=" color: rgb(0, 176, 240) " 产品应用: /span /p p   ◇挤出薄膜和片材 /p p   ◇双向拉伸薄膜和片材 /p p   ◇复合材料 /p p   ◇挤出涂布、辊/ 刮刀涂布 /p p   ◇建筑材料 /p p   ◇非织造布 /p p   ◇橡胶和PVC 压延 /p p   我们拥有一套完整的产品和服务体系来支持客户的测量和控制需求。无论是延长传统平台的使用寿命、满足传统非金属和金属测厚需求,还是调整模块来解决新的应用, 我们一直走在行业的前沿。 /p p   迄今为止已有超过15,000套赛默飞世尔科技的测量和控制解决方案被运往世界各地。每种解决方案都在各自的应用领域帮助用户节省原材料并提高生产线效率。 /p p    strong 赛默飞世尔科技 microPHAZIR& #8482 PC手持式塑料分析仪 /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/a3d76af5-381c-4d98-aeee-8584142a303d.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p   在工业和消费废品材料的合理分类和回收方面,塑料和聚合物的准确鉴别至关重要。Thermo Scientific& #8482 microPHAZIR& #8482 PC 是一款具有成本效益的手持式聚合物鉴别分析仪,它可以简化检验而又不失精准。 /p p    span style=" color: rgb(0, 176, 240) " 主要优点: /span /p p   ◇节省时间:在几秒钟内快速获得准确的结果并显示。 /p p   ◇易于使用:专为非专业用户而设计,分析仪可全自动操作,无需用户输入。 /p p   ◇便携:体积小、重量轻,可在现场或分拣设施处实现快速材料鉴别。 /p p   ◇安全:无需进行样品制备或燃烧试验。采用近红外光可实现快速、安全及无损检测。 /p p    strong 赛默飞世尔科技& nbsp Process 11 双螺杆挤出机 /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 336px " src=" https://img1.17img.cn/17img/images/201906/uepic/661a6492-95d3-499d-8969-4a22dcf47f72.jpg" title=" 4.jpg" alt=" 4.jpg" width=" 450" height=" 336" border=" 0" vspace=" 0" / /p p   台式一体化平行同向双螺杆挤出机,为昂贵材料、纳米混合物及新型聚合物配方研发和工艺而设计。仅需少量材料,即可开展多次试验,极大降低材料研发和工艺摸索的时间和金钱成本。 /p p    span style=" color: rgb(0, 176, 240) " 产品特点: /span /p p   ◇占地空间小,高模块化,集成式操作和喂料,产量20g/h到2.5kg/h /p p   ◇上下开启蛤式机筒,配合近红外联用,易于观察加工区间状态和清洁 /p p   ◇自由调整喂料,螺杆组合及成型方式,加工参数易于中试和放大生产。 /p p    strong 赛默飞世尔科技 ApreoTM 多功能超高分辨率场发射扫描电镜 /strong /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 450px height: 282px " src=" https://img1.17img.cn/17img/images/201906/uepic/f75d2d4d-7650-4474-a934-8994a6a0ec77.jpg" title=" 5.jpg.png" alt=" 5.jpg.png" width=" 450" height=" 282" border=" 0" vspace=" 0" / /p p   功能丰富的高性能场发射扫描电镜:具有静电和磁浸没复合透镜技术实现超 高分辨和材料衬度,可以高分辨率观察磁性样品,创新的Trinity& #8482 镜筒内探测器系统,单次扫描可以同时 获得材料的形貌衬度、成分衬度及电位衬度等信息。 br/ strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/94233d4f-5544-446a-99c2-65c0467b8ec2.jpg" title=" 6.jpg" alt=" 6.jpg" / /p p    span style=" color: rgb(0, 176, 240) " A4纸张,左图为成分衬度像,中图为表面形貌像,右图为表面形貌像加成分衬度像混合加伪彩 Apreo 特有的NiCol& #8482 电子镜筒实现高真空低电压不导电样品高分辨成像 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/66f7ae5a-e57b-4e4e-a1dc-3a8a53eee66b.jpg" title=" 7.jpg" alt=" 7.jpg" / /p p    span style=" color: rgb(0, 176, 240) " 高分子聚合物上的四氧化三铁纳米颗粒,Apreo 特有的复合透镜实现高分辨,高衬度成像,T1适用于不导电,对电子束敏感样品的高分辨成分衬度成像 /span /p p    strong 服务中国 /strong /p p   赛默飞世尔科技进入中国发展已超过35年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳、西安、南京、武汉、昆明等地设立了分公司,员工人数约为5000名。企业的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。 /p p   为了满足中国市场的需求,现有7家工厂分别在上海、北京、苏州和广州等地运营。企业在全国还设立了7个应用开发中心以及示范实验室,将世界级的前沿技术和产品带给中国客户,并提供应用开发与培训等多项服务 位于上海的中国创新中心结合中国市场的需求和国外先进技术,研发适合中国的技术和产品 我们拥有遍布全国的维修服务网点和特别成立的中国技术培训团队,在全国有超过2600名专业人员直接为客户提供服务。 /p p   企业使命是帮助客户使世界更健康、更清洁、更安全。为此我们将更加努力,迎接未来每一天的挑战。用足以影响世界的先进科技,在工业领域持续提供更高效的安全生产,为所有人创造更加美好的未来。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201906/uepic/d99c12bf-4365-488a-b473-206d8297ece5.jpg" title=" 8.jpg" alt=" 8.jpg" / /p p br/ /p
  • ASD | ASD Fieldspec 4 光谱仪在塑料污染探测方面的应用
    随着人类活动的增加,塑料垃圾在我们的日常生活中越来越常见。塑料污染对环境和生态造成了严重的影响,对人类的健康也有潜在的威胁。在这个背景下,如何高效地探测和处理塑料垃圾成为了全球环保领域的重要研究课题。传统的塑料垃圾控制方案难以完全根除塑料垃圾的影响。近年来,新的探测方式已经成为塑料垃圾问题的热门解决方案。其中,遥感探测技术日益成为新的研究方向,今天我们来了解一篇相关论文,希望能够增强人们对光谱技术在塑料垃圾探测和处理中的认识和了解,同时也提高大家对环保问题的意识和重视。ASD Fieldspec 4 光谱仪在塑料污染探测方面的应用近年来,人们将重点放在利用卫星、飞机和无人机的光学传感器等遥感技术探测塑料垃圾。随着对这些技术需求的不断增加,至关重要的是,不仅要了解原始塑料的诊断光谱特性,而且要了解代表各种环境塑料的风化和生物污染塑料的诊断光谱特性。目前,干塑料的光谱反射率已知,并已经应用于材料回收领域,但其仅限于干塑料测量的评估项目。为了能够识别河流、港口和海洋等水生环境中的塑料垃圾,需要获取塑料潮湿时或被淹没时的光谱特征。此外,其他水成分,如沉积物或藻类,也可能会进一步影响塑料物品的反射信号。迄今为止,只有有限数量的高质量数据集被发布在开放获取的存储库中,数据集中包括潮湿塑料垃圾和水中塑料垃圾的高光谱测量。由于环境中的塑料在聚合物类型、颜色、透明度、厚度、状态(原始的、生物污染的、风化的、皱褶的)和湿度(干燥的、潮湿的、浸没的)方面非常多样化,因此在科学界内构建能代表塑料在许多不同方面的可靠数据集至关重要。图片来源于网络,如有侵权请联系删除基于此,在本研究中,由比利时奥斯坦德法兰德斯海洋研究所、比利时根特大学水生生态学研究小组、佛兰德技术研究所(VITO)、比利时布鲁塞尔自然与森林水产管理研究所、研究基金会-佛兰德斯(FWO),比利时布鲁塞尔组成的一组研究团队收集了安特卫普港码头和特姆斯桥附近谢尔特河自然条件下的原始、风化和生物污染的塑料制品和塑料碎片样品,同时选择纯原始塑料聚合物,进行塑料样品人工风化模拟、生物污染模拟,利用ASD FieldSpec 4地物光谱仪规范测量由不同聚合物组成的塑料样品的干燥光谱反射率、潮湿和水下环境中(人工模拟环境)的光谱反射率,提出了一个利用ASD FieldSpec 4地物光谱仪获得的宏观塑性样品的高光谱反射率数据集。在人工风化实验中使用的紫外线室的参数在原始塑料标本上进行诱导生物膜生长实验的水族馆装置实验装置:(a)实验室设置(b)筒仓罐设置【结果】光谱(b)显示低均匀场样品的伪重复,光谱(c)是所有伪重复的均值聚合物概述及研究期间进行的处理【结论】本研究创建了一个数据集,其中包含10种塑料聚合物的光谱数据,这些聚合物经过了人工风化和人工生物污染处理,以及现场采集的塑料样品光谱数据。采集到的光谱可以作为未来遥感塑料检测技术的参考,有助于通过光谱分析了解塑性检测的复杂性。并不是所有可能的场景都可以以实验的方式进行测量,因此该数据集可以进一步用于比较和补充数值模拟。本文中所描述的数据集旨在通过增加关于原始塑料样品、人工风化和被生物污染的塑料样品的高光谱反射率的新信息,来补充现有的数据集。此外,该数据集提出了在各种水浊度条件下获得的塑料光学特征,通过在选定浓度的水中添加沉积物或藻类而获得。总之,遥感技术可用于海洋塑料污染的探测、观察和监测。然而,由于缺乏对环境塑料光学特征的了解,在设计适合检测塑料污染的算法方面就可以迈出一小步。所提出的高光谱数据集是在了解塑料碎片暴露于自然介质(如紫外线辐射或生物污染)时的光学特征方面向前迈进了一步。此外,根据所提供的数据,可以研究生物污染和风化对不同聚合物的影响。最后,在本数据集中还描述和评估了塑料聚合物的条件(即干燥、潮湿或浸没在不同浊度下)。因此,本研究预计该数据集将有助于光谱波段的释义,并协助开发用于在(半)操作环境中观察、监测和识别塑料的算法。请点击下方链接,阅读全文:https://mp.weixin.qq.com/s/Sz09bsTy4p4ywo6PYBbSWw
  • 电镜学堂丨扫描电子显微镜的结构(二) - 探测器系统
    这里是TESCAN电镜学堂第五期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能!第二节 探测器系统扫描电镜除了需要高质量的电子束,还需要高质量的探测器。上一章中已经详细讲述了各种信号和衬度的关系,所以电镜需要各种信号收集和处理系统,用于区分和采集二次电子和背散射电子,并将SE、BSE产额信号进行放大和调制,转变为直观的图像。不同厂商以及不同型号的电镜在收集SE、BSE的探测器上都有各自独特的技术,不过旁置式电子探测器和极靴下背散射电子检测器却较为普遍,获得了广泛的应用。§1. 旁置式电子探测器(ETD)① ETD的结构和原理旁置式电子探测器几乎是任意扫描电镜(部分台式电镜除外)都具备的探测器,不过其名称叫法很多,有的称为二次电子探测器(SE)、有的称为下位式探测器(SEL)等。虽然名称不同,但其工作原理几乎完全一致。这里我们将其统一称为Everhart Thornley电子探测器,简称为ETD。二次电子能量较小,很容易受到其它电场的影响而产生偏转,利用二次电子的这个特性可以对它进行区分和收集,如图3-25。在探测器的前端有一个金属网(称为法拉第笼),当它加上电压之前,SE向四周散射,只有朝向探测器方向的少部分SE会被接收到;当金属纱网加上+250V~350V的电压时,各个方向散射的二次电子都受到电场的吸引而改变原来的轨迹,这样大部分的二次电子都能被探测器所接收。图3-25 ETD的外貌旁置式电子探测器主要由闪烁体、光电管、光电倍增管和放大器组成,实物图如图3-26,结构图如图3-27。从试样出来的电子,受到电场的吸引而打到闪烁体上(表面通常有10kV的高压)产生光子,光子再通过光导管传送到光电倍增管上,光电倍增管再将信号送至放大器,放大成为有足够功率的输出信号,而后可直接调制阴极射线管的电位,这样便获得了一幅图像。图3-26 旁置式电子探测器的工作原理图3-27 Everhart-Thornley电子探测器的结构图一般电镜的ETD探测器的闪烁体部分都使用磷屏,成本相对较低,不过其缺点是在长时间使用后,磷材质会逐步老化,导致电镜ETD的图像信噪比越来越弱,对于操作者来说非常疲劳,所以发生了信噪比严重下降的时候需要更换闪烁体。而TESCAN全系所有电镜的ETD探测器的闪烁体都采用了钇铝石榴石(YAG)晶体作为基材,相比磷材质来说具有信噪比高、响应速度快、无限使用寿命、性能不衰减等特点。② 阴影效应ETD由于在极靴的一侧,而非全部环形对称,这样的几何位置也决定了其成像有一些特点,比如会产生较强的阴影效应。ETD通过加电场来改变SE的轨迹,而当样品表面凹凸较大,背向探测器的“阴面”所产生的二次电子的轨迹不足以绕过试样而最终被试样所吸收。在这些区域,探测器采集不到电子信号,而最终在图像上呈现更暗的灰度。而在朝向探测器的阳面,产生的信号没有任何遮挡,呈现出更亮灰度,这就是阴影效应。如图3-28,A和B区域倾斜度相同,按照倾斜角和产额的理论两者的二次电子产额相同。但是A区域的电子可被探测器无遮挡接收,而B区域则有一部分电子要被试样隆起的部分吸收掉,从而造成ETD实际收集到的电子产额不同,显示在图像上明暗不同。图3-28 ETD的阴影效应阴影效应既是优点也是缺点,阴影效应给图像形成了强烈的立体感,但有时也会使得我们对一些衬度和形貌难以做出准确的判断。如图3-29,左右两者图仅仅是图像旋转了180度,但试样表面究竟是球形凸起还是凹坑,一时难以判断,可能会给人视觉上的错觉。图3-29 球状突起物还是球状凹坑不过遇到这样的视觉错觉也并非无计可施,我们可以利用阴影效应对图像的形貌做出准确的判断。首先将图像旋转至特定的几何方向,将ETD作为图像的“北”方向,电子束从左往右进行扫描。如果形貌表面是凸起,电子束从上扫到下,先是经过阳面然后经过阴面,表现在图像上则应该是特征区域朝上的部分更亮。反之,如果表面是凹坑,则图像上朝上的部分显得更暗。由此,我们可以非常快速而准确的知道样品表面实际的起伏情况。(后面还将介绍其它判断起伏的方法)图3-30 利用阴影效应进行形貌的判断③ ETD的衬度在以前很多地方都把ETD称之为SE检测器,这种叫法其实不完全正确。ETD除了能使得SE偏转而接收二次电子,也能接收原来就向探测器方向散射的背散射电子。所以在加上正偏压的情况下,ETD接收到的是SE和BSE的混合电子。据一些报道称,其中BSE约占10-15%左右。如果将ETD的偏压调小,探测器吸引SE的能力变弱,而对BSE几乎没有什么影响。所以可以通过改变ETD的偏压来调节其接收到的SE和BSE的比例。如果将ETD的偏压改为较大的负电压,由于SE的能量小于50eV,受到电场的斥力,不能达到探测器位置,而朝向探测器方向散射的BSE因为能量较高不易受电场影响而被探测器接收,此时ETD接收到的完全是背散射电子信号。如图3-31,铜包铝导线截面试样在ETD偏压不同下的图像,左图主要为SE,呈现更多的形貌衬度;右图全部BSE,呈现更多的成分衬度。图3-31 ETD偏压对衬度的影响所以不能把使用ETD获得的图像等同于SE像,更不能等同于形貌衬度。这也是为什么作者更倾向于用ETD来称呼此探测器,而不把它叫做二次电子探测器。④ ETD的缺点ETD是一种主动式加电场吸引电子的工作方式,它不但能影响二次电子的轨迹,同时也会对入射电子产生影响。在入射电子能量较高时,这种影响较弱,但随着入射电子能量的降低,这种影响越来越大,所以ETD在低电压情况下,图像质量会显著下降。此外,ETD能接收到的信号相对比较杂乱,除了我们希望的SE1外,还接收了到了SE2、SE3和BSE,如图3-32。而后面三种相对来说分辨率都较SE1低很多,尤其SE3,更是无用的背底信号,这也使得ETD的分辨率相对其它镜筒内探测器来说要偏低。图3-32 ETD实际接收的信号§2. 极靴下固体背散射探测器背散射电子能量较高,接近原始电子的能量,所以受其它电场力的作用相对较小,难以像ETD探测器一样通过加电场的方式进行采集。极靴下固体背散射电子探测器是目前通用的、被各厂商广泛采纳的技术。极靴下固体背散射电子探测器一般采用半导体材料,位置放置在极靴下方,中间开一个圆孔,让入射电子束能入射到试样上,如图3-33。原始电子束产生的二次电子和背散射电子虽然都能达到探测器表面,不过由于探测器表面采用半导体材质,半导体具有一定的能隙,能量低的二次电子不足以让半导体的电子产生跃迁而形成电流,所以二次电子对探测器无法产生任何信号。而背散射电子能量高,能够激发半导体电子跃迁而产生电信号,经过放大器和调制器等获得最终的背散射电子图像,如图3-34。图3-33 极靴下背散射电子信号采集示意图图3-34 半导体式固体背散射电子探测器极靴下固体背散射电子探测器属于完全被动式收集,利用半导体的能带隙,将二次电子和背散射电子自然区分开。探测器本身无需加任何电场或磁场,对入射电子束也不会有什么影响,因此这种采集方式得到了广泛运用。有的固体背散射电子探测器被分割成多个象限,通过信号加减运算,可以实现形貌模式、成分模式和阴影模式等,有关这个技术和应用将在后面的章节中进行介绍。极靴下固体背散射电子探测器除了使用半导体材质外,还有使用闪烁体晶体的,比如YAG晶体。闪烁体型的工作原理和半导体式类似,如图3-36。能量低的二次电子达到背散射电子探测器后不会有任何反应,而能量高的背散射电子却能引起闪烁体的发光。产生的光经过光导管后,在经过光电倍增管,信号经过放大和调制后转变为BSE图像。闪烁体相比半导体式的固体背散射电子探测器来说,拥有更好的灵敏度、信噪比和更低的能带宽度,见图3-35。图3-35 不同材质BSE探测器的灵敏度图3-36 YAG晶体式固体背散射电子探测器一般常规半导体二极管材质的灵敏度约为4~6kV,也就说对于加速电压效应5kV时,BSE的能量也小于5kV。此时常规的半导体背散射电子探测器的成像质量就要受到很大的影响,甚至没有信号。后来半导体二极管材质表面进行了一定的处理,将灵敏度提高到1~2kV左右,对低电压的背散射电子成像质量有了很大的提升。而YAG晶体等闪烁体的灵敏度通常在500V~1kV左右。特别是在2015年03月,TESCAN推出了最新的闪烁体背散射电子探测器LE-BSE,更是将灵敏度推向到200V的新高度,可以在200V的超低电压下直接进行BSE成像。因为现在低电压成像越来越受到重视和应用,但是以往只是针对SE图像;而现在BSE图像也实现了超低电压下的高分辨成像,尤其对生命科学有极大的帮助,如图3-37。图3-37 LE-BSE探测器的超低电压成像:1.5kV(左上)、750V(右上)、400V(左下)、200V(右下)§3. 镜筒内探测器前面已经说到ETD因为接收到SE1、SE2、SE3和部分BSE信号,所以分辨率相对较低,为了进一步提高电镜的分辨率,各个厂商都开发了镜筒内电子探测器。由于特殊的几何关系,降低分辨率的SE2、SE3和低角BSE无法进入镜筒内部,只有分辨率高的SE1和高角BSE才能进入镜筒,因此镜筒内的电子探测器相对镜筒外探测器分辨率有了较大的提高。不过各个厂家或者不同型号的镜筒内探测器相对来说不像镜筒外的比较类似,技术差别较大,这里不再进行一一的介绍,这里主要针对TESCAN的电镜进行介绍。TESCAN的MIRA和MAIA场发射电镜都可以配备镜筒内的SE、BSE探测器,如图3-38。图3-38 TESCAN场发射电镜的镜筒内电子探测器值得注意的是InBeam SE和InBeam BSE是两个独立的硬件,这和部分电镜用一个镜筒内探测器来实现SE和BSE模式是截然不同的。InBeam SE探测器设计在物镜的上方斜侧,可以高效的捕捉SE1电子,InBeam BSE探测器设计在镜筒内位置较高的顶端,中心开口让电子束通过,形状为环形探测器,可以高效的捕捉高角BSE。镜筒内的两个探测器都采用了闪烁体材质,具有良好的信噪比和灵敏度,而且各自的位置都根据SE和BSE的能量大小和飞行轨迹,做了最好的优化。而且两个独立的硬件可以实现同时工作、互不干扰,所以TESCAN的场发射电镜可以实现镜筒内探测器SE和BSE的同时采集,而一个探测器两种模式的设计则不能实现SE和BSE的同时扫描,需要转换模式然后分别扫描。§4. 镜筒内探测器和物镜技术的配合镜筒内电子探测器分辨率比镜筒外探测器高不仅仅是由于其只采集SE1和高角BSE电子,往往是镜筒内探测器还配了各家特有的一些技术,尤其是物镜技术。TESCAN和FEI的半磁浸没模式、日立的磁浸没式物镜和E×B技术,蔡司的复合式物镜等,这里我们也不一一进行介绍,主要针对使用相对较多半磁浸没式透镜技术与探测器的配合做简单的介绍。常规无磁场透镜和ETD的配合前面已经做了详细介绍,如图3-39左。几乎所有扫描电镜都有这样的设计。而在半磁浸没式物镜下(如MAIA的Resolution模式),向各个方向散射的二次电子和角度偏高的背散射电子会在磁透镜的洛伦兹力作用下,全部飞向镜筒内。二次电子因为能量低所以焦距短,在物镜附近盘旋上升并快速聚焦,如图3-39中。因此只要在物镜附近上方的侧面放置一个类似ETD的探测器,只需要很小的偏压,就能将已经聚焦到一处的二次电子全部收集起来,同时又不会对原始电子束产生影响。所以镜筒内二次电子探测器与半浸没式物镜融为一体、相辅相成,提升了电镜的分辨率,尤其是低电压下的分辨率。背散射电子因为能量高,焦距较长,相对高角的背散射电子能够聚焦到镜筒内,在物镜附近聚焦后继续向上方发散飞行。此时在这部分背散射电子的必经之路上放置一个环形闪烁体,就可以将高角BSE全部采集,如图3-39右。图3-39 常规无磁场物镜和ETD(左)、半浸没式物镜和镜筒内探测器(中、右)§5. 扫描透射探测器(STEM)当样品很薄的时候,电子束可以穿透样品形成透射电子,因此只要在样品下方放置一个探测器就能接收到透射电子信号。一般STEM探测器有两种,一种是可伸缩式,一种是固定式,如图3-40。固定式的STEM探测器是将样品台与探测器融合在了一起,样品必须为标准的φ3铜网或者制成这样的形状(和TEM要求一样)。图3-40 可伸缩式STEM(左)与固定式STEM(右)STEM探测器和背散射电子探测器类似,一般也采用半导体材质,并分割为好几块,如图3-41。其中一块位于样品的正下方,主要用于接收正透过样品的透射电子,即所谓的明场模式;还有的位于明场探测器的周围,接收经过散射的透射电子,即所谓的暗场模式。有的STEM探测器在暗场外围还有一圈探测器,接收更大散射角的透射电子,即所谓的HAADF模式。不过即使没有HAADF也没关系,只要样品离可伸缩STEM的距离足够近,暗场探测器也能接收到足够大角度散射的透射电子,得到的图像也类似HAADF效果。图3-41 STEM探测器结构§6. 其它探测器除了电子信号探测器外,扫描电镜还可以配备很多其它信号的探测器,比如X射线探测器、荧光探测器、电流探测器等。不过电镜厂家相对来说只专注于电子探测器,而TESCAN相对来说比较全面,除了X射线外,其它信号均有自己的探测器。X射线探测器将在能谱部分中做详细的介绍。① 荧光探测器TESCAN的荧光探测器按照几何位置分为标准型和紧凑型两种,如图3-42。标准型荧光探测器类似极靴下背散射电子探测器,接收信号的立体角度较大,信号更强,不过和极靴下背散射电子探测器会有位置冲突;而紧凑型荧光探测器类似能谱仪,从极靴斜上方插入过来,和背散射探测器可以同时使用,不过接收信号的立体角相对较小。图3-42 标准型(左)和紧凑型(右)荧光探测器如果按照性能来分,荧光探测器又分为单色和彩色两类,如图3-43。单色荧光将接收到的荧光信号经过聚光系统进行放大,不分波长直接调制成图像;彩色荧光信号经过聚光系统后,再经过红绿蓝三原色滤镜后,分别进行放大处理,再利用色彩的三原色叠加原理产生彩色的荧光图像。黑白荧光和彩色荧光和黑白胶片及数码彩色CCD原理极其类似。一般单色型探测器由于不需要滤镜,所以有着比彩色型更好的灵敏度;而彩色型区分波长,有着更丰富的信息。为了结合两者的优势,TESCAN又开发了特有的Rainbow CL探测器。在普通彩色荧光探测器的基础上增加了一个无需滤镜的通道,具有四通道,将单色型和彩色型整合在了一起,兼顾了灵敏度和信息量。图3-43 黑白荧光和彩色荧光探测器阴极荧光因为其极好的检出限,对能谱仪/波谱仪等附件有着很好的补充作用,不过目前扫描电镜中配备了阴极荧光探测器的还不多。图3-44含CRY18(蓝)和YAG-Ce(黄)的阴极荧光(左)与二次电子(右)图像② EBIC探测器EBIC探测器结构很简单,主要由一个可以加载偏压的单元和一个精密的皮安计组成。甚至EBIC可以和纳米机械手进行配合,将纳米机械手像万用表的两极一样,对样品特定的区域进行伏安特性的测试,如图3-45。图3-45 EBIC探测器与纳米机械手配合检测伏安特性 第三节、真空系统和样品室内(台)电子束很容易被散射,所以SEM电镜必须保证从电子束产生到聚焦到入射到试样表面,再到产生的SE、BSE被接收检测,整个过程必须是在高真空下进行。真空系统就是要保证电子枪、聚光镜镜筒、样品室等各个部位有较高的真空度。高真空度能减少电子的能量损失,提高灯丝寿命,并减少了电子光路的污染。钨灯丝扫描电镜的电子源真空度一般优于10-4Pa,通常使用机械泵—涡轮分子泵,不过一些较早型号的电镜还采用油扩散泵。场发射扫描电镜电子源要求的真空度更高,一般热场发射为10-7Pa,冷场发射为10-8Pa。场发射SEM的真空系统主要由两个离子泵(部分冷场有三个离子泵)、扩散泵或者涡轮分子泵、机械泵组成。而对于样品室的真空度,钨灯丝和欧美系热场的要求将对较低,一般优于2×10-2Pa即可开启电子枪,所以换样抽真空的时间比较短;而日系热场电镜或者冷场电镜则要达到更高的真空度,如9×10-4Pa才能开启电子枪。为了保证换样时间,日系电镜一般都需要额外的交换室,在换样的时候,利用交换室进行,不破坏样品室的真空。而欧美系电镜普遍采用抽屉式大开门的样品室设计。两种设计各有利弊,抽屉式设计一般样品室较大,可以放置更大更多的样品,效率高。或者对于有些特殊的原位观察要求,大开门设计才可能放进各种体积较大的功能样品台,如加热台、拉伸台;交换室相对来说更有利于保护样品室的洁净度,减少污染。不过大开门式设计也可以加装交换室,如图3-46,达到相同的效果,自由度更高。图3-46 大开门试样品室加装手动(左)和自动(右)交换室而且一些采用了低真空(LV-SEM)和环境扫描(ESEM)技术的扫描电镜的样品室真空可分别达到几百帕和接近三千帕。具备低真空技术的电镜相对来说真空系统更为复杂,一般也都会具备高低真空两个模式。在低真空模式下一般需要在极靴下插入压差光阑,以保证样品室处于低真空而镜筒处于高真空的状态下。不过加入了压差光阑后,会使得电镜的视场范围大幅度减小,这对看清样品全貌以及寻找样品起到了负面作用。样品室越大,电镜的接口数量也越多,电镜的可扩展性越强,不过抽放真空的时间会相对延长。TESCAN电镜的样品室都是采用一体化切割而成,没有任何焊缝,稳定性更好;而一般相对低廉的工艺则是采用模具铸造。电镜的样品台一般有机械式和压电式两种,一般有X、Y、Z三个方向的平移、绕Z的旋转R和倾斜t五个维度。当然不同型号的电镜由于定位或者其它原因,五个轴的行程范围有很大区别。一般来说机械马达的样品台稳定性好、承重能力强、但是精度和重复性相对较低;压电陶瓷样品台的精度和重复性都很好,但是承重能力比较弱。样品台一般又有真中央样品台和优中心样品台之分。样品台在进行倾转时都有一个倾转中心,样品台绕该中心进行倾转。如果样品观察的位置恰好处于倾转中心,那么倾转之后电镜的视场不变;但如果样品不在倾转中心,倾转后视场将会发生较大变化。特别是在做FIB切割或者EBSD时,样品需要经过五十几度和七十度左右的大角度倾转,电镜视场变化太大,往往会找不到原来的观察区域。在大角度倾转的情况下如果进行移动的话,此时样品会在高度方向上也发生移动,不注意容易碰撞到极靴或者其它探测器造成故障,这对操作者来说是危险之举。而优中心样品台则不一样,只要将电子束合焦好,电镜会准确的知道观察区域离极靴的距离,在倾转后观察区域偏离后,样品台能自动进行Y方向的平移进行补偿,保持观察的视野不变,如图3-47。图3-47 真中央样品台与优中心样品台【福利时间】每期文章末尾小编都会留1个题目,大家可以在留言区回答问题,小编会在答对的朋友中选出点赞数最高的两位送出本书的印刷版。【本期问题】半导体材质的探测器和YAG晶体材质的探测器哪个更有利于在低加速电压下成像,为什么?(快关注微信回答问题领取奖品吧→)简介《扫描电子显微镜及微区分析技术》是由业内资深的技术专家李威老师(原上海交通大学扫描电镜专家,现任TESCAN技术专家)、焦汇胜博士(英国伯明翰大学材料科学博士,现任TESCAN技术专家)、李香庭教授(电子探针领域专家,兼任全国微束分析标委会委员、上海电镜学会理事)编著,并于2015年由东北师范大学出版社出版发行。本书编者都是非常资深的电镜工作者,在科研领域工作多年,李香庭教授在电子探针领域有几十年的工作经验,对扫描电子显微镜、能谱和波谱分析都有很深
  • 《场发射扫描电镜的理论与实践》新书发布会圆满召开!
    北京师范大学测试中心研究员李永良,从事扫描电镜的教学和测试工作30多年,从最初的钨灯丝扫描电镜到现在的场发射扫描电镜,深刻感受到扫描电镜技术进步带来的巨大变化。很多新技术的出现,如新型场发射电子枪、浸没式物镜、穿镜二次电子探测器、模拟背散射等,大大提高了扫描电镜整体性能,但目前在国内论述场发射扫描电镜的专著较少。因此李永良老师撰写了《场发射扫描电镜的理论与实践》,希望为读者正确理解扫描电镜提供帮助。4月29日,仪器信息网联合北京师范大学测试中心研究员李永良召开了《场发射扫描电镜的理论与实践》新书发布会,近4000名来自行业内的相关专家和学者线上参与了此次会议,共同探讨了场发射扫描电镜的前沿技术与应用,总观看人数超过了6000次,会议氛围热烈。北京师范大学测试中心 研究员 李永良《场发射扫描电镜的理论与实践——理论部分》场发射扫描电镜的出现,标志者扫描电镜进入一个崭新的时代,扫描电镜取得的巨大进步:新型电子枪、浸没式物镜、穿镜二次电子探测器、模拟背散射、E×B和电子束减速等新技术的应用,极大地提高了扫描电镜的性能,场发射扫描电镜已经成为各类分析测试实验室必备的仪器。系统地论述了扫描电镜中电子束和样品的相互作用、场发射扫描电镜的结构和成像原理,通过实操案例详细地介绍了场发射扫描电镜的调试过程和工作参数的选择,重点介绍了样品制备及场发射扫描电镜在生物、环境和材料等领域的应用。燕山大学亚稳材料制备技术与科学国家重点实验室 高级实验师 张兵《电子背散射衍射技术及其新进展》电子背散射衍射是利用装配在扫描电镜上的附件对晶体材料的微区取向以及结构进行分析的一种表征手段。日前,电子背散射衍射技术有了新进展,不仅涵盖了测试方式、硬件设备以及标定算法的变化,更拓宽了其应用范围广泛应用于多个领域,包括织构、取向分析;晶粒尺寸和形状分析;晶界、亚晶及孪晶性质的分析;局部应力分析;变形行为及方式分析;材料失效分析;物相分析及鉴定等,可见电子背散射衍射技术将在材料科学领域发挥更加重要的作用。布鲁克(北京)科技有限公司 应用科学家 陈剑锋《拓展电镜的检测领域——微纳尺度里高端元素分析及表征技术》主要介绍了布鲁克的纳米分析仪器的技术特色及应用领域。其中,XFlash7具备一系列技术特色,、包括Slim-line技术、最大化探测器立体角、高达1000kcps的输出计数率、无与伦比的信号处理速度、可视化谱峰剥离、EDS空间分辨率估算等,可广泛应用于多个领域。北京师范大学测试中心 研究员 李永良《场发射扫描电镜的理论与实践——实践部分》首先详细讲解了扫描电镜的新技术:新型电子枪、浸没式物镜、穿镜二次电子探测器、模拟背散射、E×B和电子束减速。接着指导了读者如何进行像散校准,要仔细调试电子束电磁对中、找出消像散时的初始位置、一边消像散,一边微调聚焦,时刻保持图像清楚。在校正像散过程中从2万倍开始(如像散太大,还要降低倍数),再校正5万、10万、15万和20万像散。当聚集时图像不会出现拉长现象,只会在模糊和清晰之间来回变化,就表示像散校准完成。最后介绍了场发射扫描电镜在植物花粉、纳米材料、PM2.5、建材、沉积膜、磁性粉末和纳米催化剂等方面的应用。各位专家的精彩讲解视频将实时同步至会议页面:https://www.instrument.com.cn/webinar/meetings/fesem240429/ ,一旦视频回放上线,我们将第一时间通过会议平台及官方渠道告知各位。您也可以通过仪器信息网-视频号观看回放,随时回顾专家的精彩见解。
  • Photonic Measurement发布便携式COD/TOC/BOD测定仪新品
    UV254 Dip Probe配备全彩色便携式IP65显示屏,可检测天然有机物(NOM)。该探头浸没在水中,无需昂贵试剂。检测TOC,BOD和COD;通过测量UVA,UVT和SUVA *,进而检测芳香族有机物,从而对三卤甲烷(THM)等消毒副产品采取应对措施。 n UV254 Dip Probel 配有遮光罩,可消除周围环境光对测量负面影响。 根据应用需求,可配置20或50mm的光程长度。l 可以根据需要在不同位置进行移动测量,也可以左侧固定在明渠或浮筒上进行连续测量。l 探头可以根据需要采用不同的材料,如铝。 n 控制显示器全彩色触摸屏显示器,带有友好界面的图标驱动菜单系统;存储数据,测量快速。 n 数据查阅可以查阅最近一千个测量值,并查阅每个测量值随时间变化的趋势。 每个测量值以.csv格式存储,并可以导出到另外设备。 *由于水里存在溶解的有机碳,SUVA的测量需要定期更换探头。 COD曲线 屏幕图片 数据查询屏幕创新点:可检测天然有机物(NOM) 便携式COD/TOC/BOD测定仪
  • 从“小破厂”到全球一哥,光刻机巨头ASML的周期逆袭史
    随着2022年疫情起伏,一些城市进入封闭和静态管理节奏,很多创业公司也进入经营的艰难时刻。穿越周期对任何公司来说都并不容易,此刻我们想梳理和研究一些公司,它们或是某个硬科技领域的隐形冠军,或是一些重要赛道的著名公司,来看看艰难时期它们是怎么成长的。  第一篇我们选择了阿斯麦ASML,“光刻机”作为一个赢者通吃的硬科技领域,在它身上显现了太多科技公司发展的要素——如何押注正确的技术路径?是选择渐进式创新还是颠覆式创新?如何在短时间内做出正确的战略决策?如何发挥出高效的执行力?……这些也都是当下硬科技公司所需要面对的难题。ASML从一个被抛弃的研发项目,屡次走在破产边缘,到如今成为全球光刻机霸主,它如何度过那些绝境时刻?如何小心翼翼地穿越周期?尽管很多公司的成功不可复制,但这样的故事依然是引发思考的绝佳养料。  “他们不来了?他们不来了?他们不能这样做!” ASML总裁兼首席技术官马丁范登布林克差点把他的电话机砸烂。1991年因为海湾战争的爆发,出于安全考虑很多跨国公司禁止高管乘坐飞机。  “他们”指的是IBM,因为这样的禁令,IBM的高管无法来与ASML进行最后的合同谈判。但此时ASML的财务状况几乎进了ICU,如果拿不到IBM的订单,1991年的ASML就会破产。ASML压上了全部身家,为了IBM的订单疯狂努力了好几年,这些努力,都会因为这场跟他们毫无关系的战争而化为泡影。  1991年的ASML,还远不是我们今天看到的ASML。今天ASML风光无限,光刻机被称为现代工业皇冠上的明珠,是制造芯片的核心设备,全世界只有少数几家公司拥有这样的技术。中国芯片产业最大的短板就是EUV光刻机,而这家荷兰公司占有45nm以下高端光刻机80%的市场,而在极紫外光(EUV)领域,ASML是全球独家生产者。  但曾经的ASML,无数次走在资金链断裂的边缘,小心翼翼地穿越经济周期。贯穿始终的,是ASML对技术路径的卓越把握和几乎无止境的研发投入。从推出PAS 2500在光刻机领域站稳脚跟,随后经过改进的PAS 5500进入头部行列,到与台积电合作成果研制浸没式光刻机系列,一举奠定霸主地位。  再到2010年推出第一台EUV光刻机原型,以及通过外延并购形成整体光刻产品组合,从ASML的发展历程中可以看出,要想做出一家战略级硬科技公司,是需要冒多么大的风险,有着多么大的决心,花费多么大的资金,才有可能成长起来。  我们通过书籍、券商研报、媒体报道等资料,研究了ASML的发展史,并结合对硬科技的投资逻辑总结了一些观点。以下,Enjoy:  经济危机救了ASML:我们看到ASML是怎么小心翼翼地穿越经济周期,回过头来看惊诧地发现,其实经济危机救了它   硬科技的艰难抉择——押注改进还是颠覆:ASML真正的崛起里程碑,是选对了技术路径,但有时候成功来自于渐进式创新,有时候又来自于颠覆式创新,选对了一飞冲天,选错了万丈深渊,我们来看看ASML的启示   关键转折点——贵人相助与敌人犯错:企业要想成功,离不开盟友助力与敌人犯错,台积电是ASML的贵人,两家力推的浸没式光刻技术,打败了当时流行的干式光刻技术,这也源自敌人尼康、佳能的错误。当运气来了,要怎么抓住它,看看ASML是怎么做的   合作才能走得更远:今天的ASML 90%的零件其实是外购的,它是一家集成商,背后是美国、日本、欧洲、中国台湾、韩国多家公司与研究所的技术支撑,最终才能量产出极度复杂的EUV光刻机,合作与形成利益共同体是长远之道。  1  经济危机救了ASML  “坐视我们这种高风险企业快速倒闭,是典型的荷兰人做法。如果我们办公室的灯连续13个晚上亮着,政府劳工检验员会要求查看我们的工作许可证。但我们要把一个关键的战略产业拱手让给美国和日本吗?那我只能说,你们以后就去快乐地挤牛奶、搅黄油和种郁金香吧。” 德尔普拉多曾愤愤不平地在接受媒体采访时说。  德尔普拉多是ASM的创始人,他在1984年接手了被飞利浦抛弃的光刻机研发团队,成立了合资公司ASML。ASM是制造芯片生产设备的,但无论从技术和规模上,飞利浦都看不上ASM,所以在寻找接手方时,连谈判的机会都没有给它。  德尔普拉多是个猛人,他几乎吃饭、睡觉和呼吸都在ASM,他的魅力、野心和无畏展露无遗。ASM有欣欣向荣的一面,但也有深陷泥沼的一面。欣欣向荣的是,ASM是荷兰经济惨淡景象中的一颗璀璨明珠,正从一家设备分销公司转型为独立设备制造商,收入开始增长 但深陷泥沼的一面是连年的亏损、不大的规模、面临众多技术先进的竞争对手……普拉多一直在用“芯片是战略产业”这一点来吸引荷兰政府资金的投入,但政府耐心也有限。  直到1983年,飞利浦在其他人那里碰了一鼻子灰,在经历了和3家公司谈判失败后,所有人都士气低落。而ASM在纳斯达克的成功上市,令飞利浦看到也许ASM还是有钱的。在飞利浦高层再一次明确必须放弃像光刻机这样的非核心业务后,必须抓住最后一次机会来挽救光刻机团队,阻止裁员的发生。  飞利浦光刻机项目早期的产品SiRe1 图片来源:Lithography giant:ASML's rise  于是,ASM作为最后一根稻草,会谈开始了。这场会议只持续了1个小时15分钟。“对不起,失陪一小会儿。”普拉多与飞利浦光刻机团队负责人克鲁伊夫聊了15分钟后,他走出房间与团队商量。将近一个小时过去了,他才回来,然后说:“让我们一起做吧。”  光刻机业务符合普拉多的雄心壮志,他制造了芯片生产过程中每一道工序所需要的机器,但唯独缺乏最具战略性的光刻机。  但合并一个光刻机团队也是巨大的冒险。在这场谈判的一年前,ASM的收入才3700万美元,然而仅新一代步进光刻机的研发费用,就将远远超过5000万美元。并且与光刻机所需的先进技术相比,ASM以前掌握的技术简直不值一提。  一家小公司与巨头合作,话语权往往落在谁更需要谁。先进技术令飞利浦在新成立的合资公司ASML中享有很大话语权,为了获得飞利浦Natlab技术实验室的后续访问权限,ASM不得不答应在新公司中与飞利浦平分股权。  飞利浦在交易中还想尽可能节约资金,财务部门起草了一份详细的合资企业必须支付的费用清单,包括为制造20台步进光刻机所需订购的零件和材料费用,以至于“这家新公司买杯咖啡就会破产”。  这就是ASML艰难的成立史,它像一艘好不容易凑齐水手、仍在四处漏水的小船,一边修补一边扬帆起航。这个艰难的开始,与后面ASML所要面临的困难相比,也只是九牛一毛。  从ASML成立的1984年开始,后面连续3年遭遇了市场长时期衰退,行业增长陷入停滞。但研究ASML的学者们提出了一种观点,市场崩溃最终证明是对公司的天赐之物。  为什么说经济危机救了ASML?  荷兰高科技学院(HTI)的董事总经理瑞尼雷吉梅克,以及诸多ASML的早期员工都认为,经济危机打击了当时的巨头,但奇迹般地给了ASML喘息的时间,让它有足够的时间来重塑其研发和生产部门,因为当时刚刚起步的ASML,走错了油压技术路线、装配厂也还根本无法生产真正的大订单。那时如果芯片设备市场特别好,而ASML却卖不出光刻机,那么ASML会立刻失败。  另一方面,由于ASML的定位是光刻机集成商,一些零部件还需要依靠上游生产商,比如镜头,就需要德国蔡司生产,但蔡司当时的产能情况也非常糟糕。如果市场在1984年高速增长,蔡司都无法满足当时光刻机老大GCA的需求,更不可能给ASML足够的供应。  当然,这些认知是用后视镜来看,由ASML早期管理层总结出来的。但在1987年秋天,当时没有人能够感受到这种奇迹。  在经济衰退的这三年,刚刚起步的ASML主要在修炼内功,从一个士气低落、被抛弃的团队,逐渐变成一个自力更生的开发团队,物流和大规模生产系统也趋于成熟,销售和营销也已成为一股重要力量。  这种艰难开局还奠定了一个坚实的心理基础——要坚持熬过周期,在后来ASML多次濒临破产边缘时,都跟ASML在第一天就面临的困难一样。  工人正在超净室里组装 图片来源:Lithography giant:ASML's rise  2  硬科技的艰难抉择——押注改进还是颠覆  “等你卖了20台光刻机后,再回来找我谈。”  时任ASML CEO斯密特在加州一场世界一流的芯片设备展上备受打击,他到处宣扬飞利浦的光刻机项目起死回生了,但得到的反馈寥寥无几。当时的光刻机巨头是美国GCA和新崛起的日本尼康,装机量(在客户工厂中运行的机器数量)是所有人关心的关键指标,GCA和尼康已经达到数百台,而ASML还是零。  这个指标之所以重要,是因为光刻机过于复杂,以至于光刻机供应商需要配备大量服务工程师,以应对突发情况。一些微小的因素就会导致光刻机出现问题,实践经验非常重要。  带着绝望的心情,斯密特回到了荷兰,他除了觉得芯片行业充满活力之外,其他都是沮丧的消息。绝境逼人思考,当他回顾在整个差旅中看的一切时,似乎在黑暗中有一丝光线若隐若现。  当时,整个芯片行业即将跨越一个难关,这为设备制造商创造了机会。在加州的展会上,每个人都在谈论摩尔定律,谈论下一代机器——从大规模集成电路(LSI)到超大规模集成电路(VLSI)。  显然在未来几年内,芯片线路将缩小到1/1000毫米以下,光刻机处理的将不再是4英寸的晶圆,而是6英寸的晶圆。  随着这个转变,超大规模集成电路需要新一代光刻机,这种机器要能够将0.7微米的细节成像到晶圆上,并实现更紧密的微电子集成。在所有的坏消息中,唯一的好消息就是,还没有人找到制造这种光刻机的方法。  大门虽关闭,但窗户已打开。斯密特与团队一起探讨,如果ASML成功开发出新一代光刻机,那么半导体行业就会被他拿下。  斯密特之所以有这样的信心,是因为新一代光刻机必须在光学、对准和定位等几乎每个方面都大幅改进。当时的行业巨头佳能、GCA、尼康和Perkin-Elmer公司制造的机器仍然使用导程螺丝杆来移动晶圆台,这意味着他们的图像细节达不到小于1微米的定位精度,而这正是ASML技术的优势所在。  斯密特也是一位有远见的人。他以前研究过航空业的整合行动,在他还在上大学的时候,世界上有50家飞机制造厂,当他拿到博士学位后,就只剩下几家了。他还在上一份工作经历中见证过电信业的技术变革。他知道一家新公司,在成熟市场是没有机会的,除非这家新厂商选择对了技术路径。Lithography giant:ASML's rise  技术路径深刻影响了光刻机公司们的起起伏伏,我们总结了三个重要启示:  早期优势有可能会转化为阻碍  ASML由于承袭了飞利浦的光刻机技术,在一开始采用的是油压驱动,而非电动。  在1973年,当爱德鲍尔在飞利浦制造了第一台步进光刻机时,这个基于油压驱动的晶圆台遥遥领先于时代。当时油压是一项卓越的技术,如果没有受到挑战是很难被放弃的。  油压装置提供了稳定性和精度极高的定位系统,但它有一个问题,就是机油如果泄漏,则会对芯片制造过程造成严重破坏。在80巴的压力下,即使是最微量的泄漏也会将整个房间喷上油雾,污染将使芯片生产停滞数月,油在芯片生产过程中是“毒药”。  并且,机油系统还会产生很多噪声,需要定制外壳来减少噪声。这些问题导致了油压驱动的光刻机没有客户。  但由于技术依赖的惯性,飞利浦没有改进这个问题,直到剥离光刻机项目。而到了ASML,也没有在一开始就重视这个问题,斯密特仍希望将这种油压设备,硬卖给那些想要尝试其高级对准系统的客户。  当然,结果肯定是失败的。虽然ASML有一张技术王牌——能够实现精准套刻的对准技术,但由于这项技术被应用于油压驱动的机器中,就是没有人买。最终斯密特决定放弃油压,改为电动晶圆台,这意味更多的研发经费、更短的研发时间、和一定的失败几率,但也不得不迎难而上。  渐进式创新的影响力可能超出想象  20世纪80年代,ASML在光刻机领域还算不上最头部的公司。当时的老大要属美国GCA。但GCA在80年代中期就迅速衰败了。  当时导致GCA失败的最终因素,主要是蔡司的g线镜头,一种光线漂移问题严重。在开始时一切都很好,但随着光刻机运行的时间变长,图像质量就会下降。因为急于向客户交付光刻机,所以GCA在把镜头安装在机器上之前不会对镜头进行检查,这导致GCA交付了数百台带有故障镜头的光刻机,而蔡司多年来对这个问题一无所知,只有不到10%的镜头被送回进行维修。  更大的问题是GCA的光刻机无法自动纠正此类错误,工程师们也不知道问题出现的确切原因。  此时,一种渐进式创新出现了。GCA的日本竞争对手(尼康)设法改进了光刻机的聚焦系统。尼康依次开发出了具有较大数值孔径的g线目镜,这种组合令尼康的系统,能够更清晰地将微小图案成像到光刻胶的薄层上。  这项渐进式创新,令尼康斩获颇丰。当时有很多厂商正在大规模投入g线技术向i线技术革新。但客户们都很看好尼康的改进,因为他们只需要换掉GCA的光刻机,而不是是重新创建一个全新的基础设施。在制造更好芯片的同时,还节省了大量资金。  在技术转型期要格外小心这些因素,尼康对g线镜头的微小创新只是其中一个。当现有技术的寿命延长,对昂贵新技术的需求就会减弱,这意味着投入时机的重要性。  要探索技术路径的迷雾,赛马制可能是不错的手段  ASML也一样会面临抉择,到底是逐步改善现有技术,还是投入新的?ASML里程碑式的光刻机PAS 5500,就是在这样的抉择中诞生的。  工程师要做的不仅是机器的物理设计,他们还必须在初期选择技术路径,然后再扩展物理设计。如果机器架构从一开始就不可靠,那么以后各个环节都会遇到麻烦,问题还将持续多年。  例如晶圆台精度就是一个不确定因素。当时,ASML在其机器中使用带有直线电动机的H型晶圆台,但随着市场对“对准精度”的要求越来越高,很难说这种技术路径的产品能在市场上存活多久。  此时,摆在面前的问题是,ASML应该选择逐步改善,还是彻底革新?如果选择逐步改善,这种技术路径很可能最终无法满足市场的新需求 另一种选择是使用革命性的长冲程、短冲程发动机寻求突破,但研发会有风险。  ASML PAS 5500的首席架构师范登布林克没有直接做出决定,其实他也很难判断到底孰优孰劣。由于这个决策意义重大,他决定在这两条路上分别试验6-9个月,两个团队分别在自己的技术路径上赛马。  最后,技术竞赛证明旧H型晶圆台,有足够的潜力定位8英寸的晶圆,所以ASML选择了这条保险的路线。长短冲程发动机被暂时雪藏,但也可作为更新换代的备选方案。  PAS 5500对于ASML来说,是一款决定性的产品,ASML把所有希望寄托在它身上,PAS 5500也的确推动ASML走向光刻机世界的舞台中心。所以在这种重大的决策上,多花点研发经费是划算的,技术路径的赛马机制是值得的。  经历了多年的苦心经营,ASML在步进扫描光刻机时代走到了巨头行列,当时的市场形成了三家独大的局面:ASML、尼康、佳能。  但令ASML真正登上霸主宝座,弯道超车打败另外两家的契机,来自于颠覆式创新,来自于台积电的一个发明。  3  关键转折点——贵人相助与敌人犯错  技术赛马制之所以重要,就在于当颠覆式创新的机会来临时,提供支撑勇气的判断。  ASML最大的弯道超车,发生在193nm制程到157nm制程的升级过程。过去步进扫描光刻机采取的技术路线都是干式法,通过用更高级的曝光光源,来支撑技术进步到下一代。为了追求更高的分辨率,光源波长从最初的365nm,到248nm,再到193nm,但再往下走时,这条技术路径出现了困难。  当时业内又面临是押注改进还是颠覆的抉择。大部分企业选择了在原有技术路径上改进,比如两大巨头尼康、佳能,都选择进一步研发157nm波长的光源,但遇到了困难。  这时候,一种全新的技术理念出现在市场上——浸没式。这个思路由台积电的华裔越南科学家林本坚提出,他创造性的用水作为曝光介质,光源波长还是用原来的193nm,但通过水的折射,使进入光阻的波长缩小到134nm。  以前的干式法中,曝光介质用的是空气。它们的区别在于折射率,193 nm光源在空气中的折射率为1,在水中折射率为1.4,这也就意味着相同光源条件下,浸没式光刻机的分辨率可以提高1.4倍。  当时很多人认为浸没式技术难度太大,首先水可能会把镜头上的脏东西洗出来,影响工作效能 还有人担心水中的气泡、光线明暗等因素,会影响折射效果。林本坚也在着手攻克这些问题,比如用去离子水和其他手段,来保持水的洁净度和温度,使其不起气泡。  但理论归理论,能不能从实验室真正到工厂,还需要经验丰富的设备商一起开发。林本坚去美国、日本、德国、荷兰跑了一大圈,向光刻机厂商兜售浸没式光刻的想法。但是,绝大部分大厂都不买账。  不买账的原因除了这项技术走得太“鬼才”,还有不少想法需要验证之外,另一个原因就是改变的沉没成本太高。当时主流的研发思路,都是在157nm的干式光刻技术路径上。诸多公司已经耗费了大量财力、人力、物力,如果用这种“加水”的想法,各个研究团队就得全部重新开始,推翻原有的大部分设计。  所以巨头们对林本坚的态度,不仅仅是不理睬,而是封杀。尼康甚至向台积电施压,要求雪藏林本坚。在现实利益面前,这样的事情还发生过很多,比如柯达其实是最早研发出数码相机的公司,但缺乏自我颠覆的勇气,因为恐惧它威胁到自己的胶片业务,反而是雪藏了数码相机。  终于当林本坚跑到了荷兰时,ASML愿意做第一个吃螃蟹的勇士。虽然ASML也是从干式光刻机起家,但它想通过赛马制来赌一把,既然尼康、佳能都在死磕干式法157nm光源,且进展不顺利,那这支“奇兵”的意义就是巨大的。  最终浸润式成功了。2003年,ASML和台积电合作研发的首台浸没式光刻设备——TWINSCAN XT:1150i出炉,第二年又出了改进版。同年,研发进度拖慢的尼康,终于宣布了157nm的干式光刻机产品样机出炉。  但此时胜负已定,一面是用原来193nm光源但通过水进化到132nm波长的新技术,一面是157nm波长的样机,浸润式技术的优势不言而喻,这一技术成为此后65、45和32nm制程的主流,推动摩尔定律往前跃进了三代。  颠覆式创新的毁灭力也是巨大的。尼康、佳能由于对技术路径的判断失误,不仅意味着几百亿研发资金打了水漂,更是在与ASML的竞争中彻底落败。在2000年之前的16年里,ASML虽然跻身第一梯队,但是第一梯队里最小的玩家,占据的市场份额不足10%。  但自浸没式技术出现后,一路摧枯拉朽,全面碾压昔日巨头尼康、佳能,2008年市场占比超过60%。整个日本的半导体厂商,以及IBM等巨头,也都迅速衰落。  4  合作才能走得更远  为了进一步巩固战果,ASML开始打造上下游利益共同体。  由于浸没式技术的独家性,ASML要求所有合作伙伴必须投资它,否则就不合作。Intel、三星、台积电等等都投资了ASML,大半个半导体行业成为了ASML一家的合作伙伴,形成了庞大的利益共同体,大家都绑在了一条船上。  值得注意的是,在研发浸没式光刻设备的同时,ASML还早期布局了EUV技术,可谓走一步看三步。中国现在买不到的EUV光刻机,就是这种最前沿的产物。  我们在前文提到,尼康开发干式157nm光源遭遇了困难,就是因为不停缩小光源波长越来越困难,浸没式光刻技术虽然通过水的折射率暂时领先,但在未来,也一样会面临需要不停缩小波长的问题。  极紫外光(EUV)就像曾经的浸没式技术一样,拥有另辟蹊径的潜力,因为它的光波长极小,可以创造出比传统光刻小得多的电路。从1990年代末开始,直到2017年推出第一台商用EUV机器,这个项目共耗资90亿美元。  EUV代表产生电路的极紫外光 图片来源:New York Times  资金只是一方面,EUV的量产并不是一家公司的能力,而是多方合作的共同结果。美国政府之所以对ASML拥有影响力,就是因为美国政府和美国科研力量,是开发中极其重要的一环。  早在1997年,英特尔认识到进一步缩小光源波长的困难,渴望通过EUV来另辟蹊径。英特尔说服了美国政府,组建了“EUV LLC”的组织,包含了商业力量和政府科研力量,例如摩托罗拉、AMD、英特尔等,还汇集了美国三大国家实验室,美国成员构成了主体。  在对外国成员的选择上,英特尔和白宫产生了分歧,英特尔想让在光刻机领域有实力的ASML和尼康入局,但白宫认为如此重要的先进技术研发不该有”外人”入局。  此时ASML展示出了惊人的技术前瞻性,一定要挤进EUV LLC,虽然这个组织的目标是为了论证EUV技术的可行性,而不是量产它。ASML强力游说,开出了很难拒绝的条件——由ASML出资在美国建工厂和研发中心,并保证55%的原材料都从美国采购。  几百名全球顶尖的研发人员,经过了6年时间,终于论证了EUV的可行性,于是EUV LLC的使命完成,于2003年解散,各个成员踏上独自研发之路。  此时的ASML刚在浸润式技术上奇兵致胜,然后就立即投入到EUV的研发中。ASML每年将营业收入的15%用于研发,比如2017年的研发费用就高达97亿人民币。越投入技术越强,竞争对手都逐渐跟不上了。  EUV的技术难度非常高,在先进的EUV光刻机中,为了产生波长13.5nm超短波长的光,需要持续用20kw的激光轰击从空中掉落的金属锡液滴,液滴直径只有20微米,而且同一个液滴需要极端时间内连续轰击两次,第一次冲击是将它们压平,第二次冲击是将它们汽化,才能产生足够强度的极紫外光。为了保证光的持续性,每秒要轰击5万次。  EUV光刻机被誉为人类制造的最复杂机器之一,各个环节的高度专业性也汇集了全球的尖端产业,其中要用到来自德国的反射镜,以及在圣地亚哥开发的硬件,这种硬件通过用激光喷射锡滴来产生光,重要化学品和元件则来自日本。ASML还于2012年收购了顶级光源企业Cymer。  EUV光刻机绝对是人类制造的最精密复杂的设备之一  运输该机器需要40个集装箱、20辆卡车和三架波音747飞机 图片来源:New York Times  ASML其实是一个集大成者(集成商),也是全球化的受益者。ASML 90%的零部件来自于外购,再由最理解客户需求和产业发展趋势的ASML集成。ASML的背后是美国、日本、欧洲、中国台湾、韩国的技术支撑,最终才能量产出极度复杂的EUV光刻机。  这就是尖端供应链全球化的典型例子,如果中国想在芯片领域取得大幅进步,那就不得不面对一个由多方构成、缺一不可的全球尖端供应链。  早在ASML成立最初的几个月里,就确定了它合作的基因。ASML只进行研发和组装,并不什么都由自己制造。这种理念在1984年是十分超前的,因为当时欧洲流行的信念是“你最好什么都自己做才能控制一切”,当时很多人都认为ASML疯了:“培养合作伙伴与把钥匙交给别人是同一种意思,这是在自找麻烦,你会完全失去控制权。”  但事实证明合作才能走得更远。
  • 广电计量上海、长春实验室获红旗新能源外部实验室认可
    近日,经过严格审查,广电计量上海、长春两地实验室获得红旗新能源外部实验室认可,充分表明了合作伙伴对广电计量技术能力、实验设备、人才团队、质量管控等全方位综合实力的肯定,为后续深入合作打下了重要基础。上海实验室认可能力范围长春实验室认可能力范围随着汽车电子电气架构的发展,车载以太网已承担着越来越重要的角色,因此,行业对选择车载以太网测试的第三方检测机构非常严格。本次上海实验室认可范围较全面地覆盖车载以太网测试项目,除了基于OPEN TC8规范定义的协议一致性测试,还包括红旗自定义的诊断、刷写、路由、相关故障等项目。认可过程严格按照红旗的要求,完成了用例对齐、测试步骤完善、测试脚本开发调试及现场能力考察。电子电器测试贯穿汽车开发过程,可充分验证各零部件、子系统、整车的功能,保障汽车安全性和舒适性。长春实验室认可范围覆盖电气负荷、机械负荷、气候负荷、化学负荷等电子电器测试项目,成为国内极少数可以执行红旗新能源电子电器测试能力的第三方检测机构实验室之一。在智能网联新能源汽车产业领域,广电计量构建了从材料到整车的全产业链检测能力,能为客户提供涵盖整车、新能源、智能网联与智能驾驶、传统零部件、芯片及元器件、车载软件、汽车信息安全、车用材料的汽车全寿命周期计量检测认证及培训技术服务,帮助客户从容应对来自质量、环保与安全方面的压⼒,快速实现产品的改进升级。目前,广电计量已获得吉利、福特、小鹏等近50家主机厂商的认可,覆盖欧美、日韩及国内主流品牌;服务12000余家汽车及零部件企业;牵头、参与多项国家级、省部级科研项目。未来,广电计量将持续围绕智能网联新能源汽车产业,紧密结合行业客户需求,构筑高端技术能力和差异化优势,切实帮助企业提高产品质量;向每一位希望感受驾驶乐趣的购车人传递质量信任,做智能汽车美好生活的“守护者”。关于上海广电计量上海广电计量是国家高新技术企业,已完成嘉定区计量检测技术公共服务示范平台、智能汽车检测公共服务平台建设,2022年承建的大规模集成电路分析测试平台获上海市科委专业技术服务平台立项;先后获得“嘉定区四大产业集群企业”“嘉定区质量基础设施‘一站式’服务试点”“上海市检验检测创新案例”“上海市创新型中小企业”“上海市专精特新中小企业”等资质荣誉。上海汽车检测实验室关于长春广电计量长春广电计量环境与可靠性实验室占地面积约1500平方米,是具有中国合格评定国家认可委员会(CNAS)等认可的专业实验室,专注于为汽车零部件产品提供环境可靠性保障,拥有先进的可靠性试验设备及各类仪器共计1100余台,具备ISO 16750、GB/T 28046及各大主机厂的电子电器产品测试能力。具有流动混合气体腐蚀试验、冰水冲击-水飞溅试验、冰水冲击-浸没试验、凝露试验、盐雾试验、温度循环试验、电性能试验等能力,可为电子电器产品提供一站式测试服务。长春汽车检测实验室关于红旗新能源中国第一汽车集团有限公司(简称中国一汽)是国有特大型汽车企业集团。前身为第一汽车制造厂,是国家“一五”计划重点建设项目之一。中国一汽经过七十年的发展,建立了东北、华北、华东、华南、西南等五大生产基地,构建了全球化研发布局,拥有红旗、解放、奔腾等自主品牌和大众(奥迪)、丰田等合资品牌,累计产销汽车超过5700万辆。秉承红旗品牌一贯的核心理念,红旗新能源品牌进一步明确了“领航新能源关键核心技术,树立新能源民族高端汽车品牌,开创新时代中国新能源高端品牌汽车产业创新发展新道路”的品牌使命。
  • Copley 2020 款溶出仪上市,快来线上围观
    Copley日前发布了2020年新款溶出仪,快来围观。Copley的DISi系列符合中国、美国和欧洲药典的新规范,新款溶出度测试系统具有可靠和实惠的优点,设计时考虑了固体剂型测试性能的高标准。具有全新工业设计,直观的触摸屏设计,美观而操作方便,旨在减少用户培训和日常设备维护的负担,简化了溶出度测试过程。具有6杯的8杯的配置可选,满足不同需求。DISi系列溶出仪,具有带密码保护的温度校准功能。可以在同一台仪器上,通过不同的配置,实现篮法、桨法、桨碟法、小杯法、转筒法、软膏池法(浸没池法)、固有溶出度法等溶出方法。配置防挥发性溶出杯盖,可实现自动投药。选配浸没池套件,实现对半固体制剂的浸没池法溶出检测。Copley 可提供用于固有溶出度检测方法的冲模套装以及手动压片机。对于只含有少量药物的剂型,或者较昂贵的样品,可提供100mL和200mL小杯法适配套装,实现小杯法检测。性能验证测试(PVT),由美国药典(美国马里兰州罗克维尔)提供的标准品可用于帮助检验异常情况的来源,通过在标准溶出试验条件下实验溶出度检测的优良。可提供丰富全面的溶出配件,如溶出杯架、篮桨储存架、取样针等等。产品信息如下所示
  • 除菌过滤指南解读(二):过滤器供应商管理注意要点
    跟着刘老师一起解读指南(二)对过滤器供应商进行管理时要注意哪些要素?“ 《指南》提到“药品生产企业在选择除菌过滤器供应商时,应审核供应商提供的验证文件和质量证书,确保选择的过滤器是除菌级过滤器。药品生产企业应将除菌过滤器厂家作为供应商进行管理,例如进行文件审计或工厂现场审计、质量协议和产品变更控制协议的签订等。”那么对过滤器供应商进行管理为什么如此重要?在管理时需要注意哪些要素呢?”药品生产企业为了控制生产风险,会对供应商进行风险评估,根据评估的结果来决定供应商的管理策略。除菌过滤是生产工艺中的重要环节,因此对除菌过滤器的供应商进行科学合理的管理是保障药品生产质量和安全的重要环节。接下来我们从三个方面介绍对过滤器供应商进行管理时的重点考虑要素。1.过滤器供应商管理总述药品生产企业对除菌过滤器供应商的管理通常会进行文件审计、工厂现场审计、质量协议和产品变更控制协议和签订等。文件审计可以包括质量管理系统ISO证书、工厂质量管理的自我评估文件、除菌过滤器的验证指南、除菌过滤器的质量证书等文件的评估。工厂现场审计可以包括工厂质量管理系统、生产验证、仓储管理和供应商管理等内容。质量协议签订保障了使用者的权利,明确了供应商的质量职责。质量协议的范围可以包括产品的生产过程控制、变更控制、质量记录、质量证书、产品投诉和召回处理流程、产品保修/责任范围等。产品变更控制协议的签订,可以及时获取供应商的产品变更信息,评估变更带来的风险以及采取相应的措施。变更通知协议中可以约定变更通知的时间,变更的范围。2.除菌过滤器生产过程介绍除菌过滤膜的生产是整个过滤器装置生产中的重要环节。最常见的过滤膜生产是采用浸没铸造工艺,也有一些膜采用热致相分离工艺和膜拉伸工艺。下面是浸没铸造工艺的介绍。除菌过滤膜是通过浸没铸造方式将高分子聚合物铺在薄膜上。高分子聚合物铸模液需要进行混合、脱气和过滤,去除颗粒和气泡。然后通过精确控制的凹槽铺展到浇铸滚筒上的薄膜表面。薄膜通过滚筒的滚动进入浸没液的池中,使浇铸液中的有机溶剂扩散出去。聚合物则经过成核、生长和聚集形成的孔径结构。对于复合结构的膜,通常是两种铸模液先后铺入薄膜上形成复合结构的膜。形成的膜随后将被清洗去除残留的有机溶剂,并且进行表面化学修饰。其中浇铸液的成分、浸没液成分、浇铸的厚度、浇铸的速度、浸入池的温度和流速等是整个铸模生产过程的关键控制参数。图: 聚合物膜的铸造流程除菌过滤膜准备后,将进入过滤器装置的生产。根据不同的滤芯形式和尺寸,对膜进行切割和折叠,然后将过滤器的各个配件用热熔和或者有机溶剂熔和的方式进行组装。组装后的除菌过滤器用水冲洗润湿后进行完整性测试,测试通过的过滤器将被烘干、贴标签和包装。在生产过程中,每根过滤器的信息将会被记录用于追溯。对于无菌包装的除菌过滤器将会被送往进行辐照。辐照的剂量是经过验证的,通常是25-40KGy。辐照后的无菌过滤器要达到10^-6的无菌保证水平(SAL)。出厂前检验过滤器生产商必须进行相关的验证并结合批次放行之前的质量检验来保证除菌过滤器的性能。除菌过滤器的包装里通常都附带质量证书来保证每个放行的过滤器的生产、检测和放行都遵循验证中得到的参数标准。药品生产企业应该审核供应商提供的验证指南和质量证书来确保选择的过滤器就是除菌过滤器。同时了解各个检测项目,选择高质量的除菌过滤器提高除菌过滤的保障。另外一方面药品生产企业在使用除菌过滤器时不要超过过滤器验证的条件。除菌过滤器的质量标准和验证项目通常包含生产质量标准、动物来源申明、微生物截留测试、完整性测试、USP生物安全测试(毒性测试和内毒素测试)、流速测试、水压测试、多次灭菌测试、洁净度测试(可提取物测试、颗粒释放测试和纤维脱落测试)等。其中过滤器的批次放行检验通常是抽样检验,检验项目可能包括:细菌截留测试、USP细菌内毒素测试、完整性测试、水压测试、流速测试和可提取物测试。3.过滤器生产主要缺陷和影响除菌过滤器是除菌过滤无菌保证的关键,它的生产工艺和过程直接决定它的细菌截留性能和完整性。药品生产企业通过了解供应商的潜在生产缺陷,做好使用前物料质量检测工作,避免带来生产过程中的损失。滤膜生产过程中的很多因素都会影响到膜孔径结构的形成,从而影响膜的细菌截留能力。比如滤膜铸造时温度和湿度的控制、浇铸薄膜层的拉伸速度、浸没液的流动速度等,这些参数都需要研究并且精确控制。如果这些参数在生产过程中,有微小波动,都会导致膜的孔径和厚度不均匀,甚至孔径变大。由于膜的细菌截留检测是抽样检测,这些波动引起的膜的质量问题可能将不会被检测发现,导致无菌产品出现污染。这些参数的控制问题也会引起不同批次间膜的差异,并在过滤时表现不稳定。除菌过滤器生产中,也有可能存在缺陷导致过滤器完整性测试失败。如膜在折叠过程中可能会出现折叠处开裂,而导致膜不完整。膜和过滤器后盖热熔时,高的热熔温度可能会导致膜的边缘出现质量问题。另外过滤器各个组件热熔时,粘合接缝处可能会有微细孔道或者气泡,导致过滤器不完整。如果生产商不对过滤器进行完整性测试,就有可能导致现场使用前就存在完整性测试失败。除菌过滤器生产中原料的控制和环境的控制都会影响过滤器的质量。如膜生产或者过滤器装置生产中用到的水质如果没有良好控制,可能会影响过滤器的性能。例如过滤器内毒素检测失败的一个常见原因就是生产过程中的水质问题。而过滤器生产环境洁净度如颗粒、粉尘以及不同原料的交叉污染如果不能有效控制,也都会影响到过滤器成品的洁净度,并对产品料液造成污染。
  • 文献速递|多模式动物活体成像系统在鱼疫苗研发中的应用
    病毒性疾病爆发是水产养殖业最严重的问题,具有传播快、发病快和致死率高等特点,对水产养殖业造成了巨大的经济损失;而疫苗免疫是对其进行防控的最有效措施。在水产动物免疫途径中,注射方式效果较好,但不适合渔业生产;浸浴免疫操作简单,适合在鱼苗和鱼类大规模养殖中推广使用,但是浸浴疫苗的应用需要克服生物屏障等阻碍作用,才能使疫苗发挥出理想的免疫效果。 研究发现,纳米载疫苗靶向递呈技术是解决水产养殖产业实现疫苗高效免疫保护最安全有效的手段之一;单壁碳纳米管(SWCNTs)是一种高效的疫苗载体,具有高穿透性、高承载力、易修饰性和安全性等特性;甘露糖受体(Mannose receptor)是抗原呈递细胞上的标志性受体,能够结合甘露糖修饰的抗原物质,可以作为疫苗的靶点。 近日,西北农林科技大学动物科技学院朱斌教授课题组运用纳米载疫苗靶向递呈技术,构建靶向性碳纳米管载疫苗系统,选择高效的疫苗载体(单壁碳纳米管)来突破生物屏障的限制,并利用合适的佐剂(甘露糖修饰的抗原物质)来增强疫苗的免疫效果,使疫苗充分发挥治疗和免疫保护效果。这些研究成果相继发表在期刊Vaccines和Journal of Nanobiotechnology,可以为其它水产动物纳米载疫苗系统的研究、应用奠定理论基础,对渔业的可持续发展和水产品食品安全生产具有重要意义。文章一 草鱼呼肠孤病毒(GCRV)已被公认为是所有水生病毒物种中最具致病性,VP7作为GCRV的外衣壳蛋白,是一种可以诱导宿主免疫反应的主要抗原。通过构建靶向浸没疫苗递送系统(CNTs-M-VP7),该系统由SWCNTs作为疫苗载体,GCRV VP7蛋白作为抗原,甘露糖作为抗原呈递细胞靶向部分。结果表明CNTs-M-VP7疫苗可通过粘膜组织(皮肤,腮和肠)进入鱼体内,呈现给免疫相关组织,显著诱导的成熟和呈递过程,从而引发强大的免疫反应。a、CNTs-M-VP7纳米疫苗的制备过程;b、巨噬细胞对纳米疫苗的吸收;c、鱼组织中纳米疫苗的摄取;d、用博鹭腾多模式动物活体成像系统检测接种鱼体内和体外荧光的分布;e、草鱼接种后,用GCRV人工攻击后的相对存活百分比(每组n =100)。文章二 鲤春病毒血症(Spring viremia of carp,SVC)是危害最严重的水产病毒性疾病之一,SVCV作为SVC的病原,其表面糖蛋白(G)被认为是一种主要抗原,可以诱导原发性宿主免疫反应。通过化学修饰的方法将SVCV的抗原蛋白(G)、功能化单壁碳纳米管和功能化甘露糖进行结合,构建了靶向性碳纳米管载疫苗系统(SWCNTs-MG)。结果表明SWCNTs-MG通过提高疫苗进入鱼体的含量,并增强对抗原呈递细胞的靶向呈递作用,进而提高疫苗浸浴免疫的效果。a、SWCNTs-MG纳米疫苗的制备过程;b、纳米疫苗在体内和体外的安全性评估;c、鲤鱼巨噬细胞体外纳米疫苗的摄取;d、鱼组织中纳米疫苗的摄取;e、用博鹭腾多模式动物活体成像系统检测接种鱼体内和体外荧光的分布;f、在接种的鲤鱼中用SVCV人工攻击后的相对存活百分比。TipsAniView 100多模式动物活体成像系统 AniView 100多模式动物活体成像系统作为广州博鹭腾生物科技有限公司推出的高灵敏度动物活体成像系统,其采用全密闭抗干扰暗箱,避免外界光源及宇宙射线对拍照影响的同时,配合零缺陷、科研级高灵敏背部薄化、背部感应型冷CCD相机,极大地提高成像的灵敏度。AniView 100可以检测到参考文献:1、Zhang C , Wang G X , Zhu B . Journal of Nanobiotechnology, 2020, 18(1).2、Zhu B, Zhang C, Zhao Z, Wang GX. Vaccines(Basel). 2020 8(1):87. 3、张晨.[D]. 西北农林科技大学,2019.
  • 【瑞士步琦】对蒸发工艺产生巨大影响的小秘诀
    对蒸发工艺产生巨大影响的小秘诀实验室级的旋转蒸发仪作为一款基础的样品前处理设备,无需太多的诀窍和工艺摸索,就可以完成绝大多数样品的高效浓缩。但是当我们放大到工业级的旋转蒸发仪时,不管是蒸发时间,样品性质的缺陷还是能耗方面的问题,都会被放大好几倍。今天我们会给大家带来几个工业级旋转蒸发仪的小秘诀,帮助大家了解如何全方位优化蒸发工艺。问如何节约更多能耗?答合理设置冷却温度冷却的秘诀温度差(冷却 - 蒸汽)至少 10°C(最好是 20°C)出口冷却温度至少比蒸汽温度低 5°C冷却介质的冰点比设定温度低 10°C使用随附的蒸汽温度传感器测量蒸汽温度。使用选购的冷却温度传感器测量冷却剂出口温度。问如何节约更多的时间?答应用自动化技术提高时间效率定时器:到达设定的时间后,旋转自动停止,系统切换至待机模式,加热停止,且水浴锅自动降低。自动方法:编程并存储不同的方法 (SOP)。应用程序:从任意位置通过智能手机或平板电脑对过程进行监测。蒸馏完成或出现错误时将收到推送通知。自动结束:当蒸发烧瓶内没有溶剂或预设时间已过时自动停止蒸馏。溶剂库和动态蒸馏:如果要蒸发的溶剂是已知溶剂,使用溶剂库选择溶剂,然后系统将为您完成剩下的工作。借助于动态蒸馏技术,系统将根据水浴和冷却循环机的实际值调整应用的真空(即使尚未达到设定的水浴和冷却循环机温度)。问如何选择正确的冷凝器配置?答选择匹配特定应用的玻璃器皿玻璃配置在每个浓缩和纯化步骤中都至关重要,其选择极大依赖于所需的应用(产品、溶剂或任何限制因素)。问如何根据具体应用调整工艺?答针对每个产品类型应用不同的操作方式取决于具体的产品,可以优化操作方式以发挥系统的最大功效:高粘度样品或粉末的干燥:保持低旋转速度,以防止产品粘附到烧瓶上。紫外光敏产品:使用选购的琥珀色烧瓶以过滤紫外光。起泡样品:使用泡沫传感器可检测上升的泡沫,并触发短时曝气脉冲来消除泡沫。问如何利用旋转蒸发仪执行冷萃取?答考虑多功能紧凑型仪器考虑使用可在一台仪器上实现多种可能性的工业级旋转蒸发仪。例如,配备冷萃取玻璃器皿的工业旋转蒸发仪 R-220 Pro Extraction可以执行蒸馏和冷萃取,而无需在有限空间内安装两台仪器。问如何优化工艺?答为你的工作流程设置理想的压力最佳压力速率对蒸发性能有积极的影响。利用以下诀窍测定理想压力值:缓慢开始。逐渐将压力降至所需的设定值,以避免暴沸或起泡。选择正确的工作压力 - 使用溶剂表或集成的溶剂库查找相应溶剂的建议值。保持压力一致- 压力突变将导致蒸馏停止或导致暴沸。拥有真空控制界面的系统可避免此类事件发生。确保真空泵有很好的抽吸能力,以便快速达到设定的真空值。问如何避免蒸馏初期出现问题?答通过正确的方式开始蒸馏,取得良好开端要顺利地开始蒸馏,遵循以下程序:抽真空通过进料阀吸取样品至蒸发瓶尺寸的 ¹ /3 至 &half 容积缓慢开始旋转将蒸发瓶深深浸没在液体中,以增加蒸发瓶的外壁有效加热面积根据具体应用将旋转速度设定至尽可能高的水平如果对我们其他产品的工艺优化感兴趣,请通过下方联系方式联系我们,了解更多。也可以关注我们的公众号,我们会定期发布更多实用的小诀窍。
  • 南大光电完成国家科技重大专项,芯片光刻胶已验收
    7 月 29 日,南大光电官方发布公告:“关于公司承担的国家科技重大专项(02 专项)”已通过专家组验收。其中包括极大规模集成电路制造装备及成熟工艺、先进 7 纳米光刻胶产品开发与光刻胶供给链产业化。据南大光电披露,公司收到极大规模集成电路制造装备及成套工艺实践管理办公室下发的项目综合绩效评价结论书,公司作为牵头单位,承担的“极大规模集成电路制造装备及成套工艺”之光刻胶项目通过了专家组验收。据悉,光刻胶项目总体目标是开发高端集成电路制造用 ArF 干式与浸没式光刻胶成套工艺技术,形成规模化生产能力;构建与集成电路行业国际先进水平接轨的技术和管理人才团队等等。项目分为三个子课题,南大光电控股子公司宁波南大光电材料有限公司(以下简称宁波南大光电)承接了其中的“ArF 光刻胶产品的开发和产业化”课题。专家组评定后认为,通过项目的实施,宁波南大光电掌握了 ArF 干式和浸没式系列光刻胶产品的原材料制备、配胶、分析检测、应用验证等关键技术,在知识产权和人才培养等方面取得重要进展。形成了由 51 人组成的 ArF 光刻胶研发与生产管理团队,建成了 ArF 光刻胶产品的质量控制平台、年产 5 吨的干式 ArF 光刻胶及年产 20 吨的浸没式 ArF 光刻胶产业化生产线。实现 ArF 光刻胶产品销售,完成了任务合同书规定的主要考核指标。ArF 光刻胶材料是集成电路制造领域的关键材料,可以用于 90nm~14nm 甚至 7nm 技术节点的集成电路制造工艺,主要应用于高端芯片制造。目前我国在 ArF、KrF 光刻胶领域中的市场占比较少,全球大多数的光刻胶市场都被美国、日本垄断。需要注意的是,有关 7 纳米 ArF 光刻胶的应用,南大光电目前只是小规模投产,与之相关的生产线正在构建当中。在公告中,南大光电也表示,ArF 光刻胶的复杂性决定了其在稳定量产阶段仍然存在工艺上的诸多风险,不仅需要技术攻关,还需要在应用中进行工艺的改进、完善。同时,ArF 光刻胶产品国产化替代受品质、客户的严格要求,后续是否能取得下游客户的大批量订单,能否大规模进入市场仍存在较多的不确定性。这些都会影响 ArF 光刻胶的量产规模和经济效益。据了解,5 月末以来,南大光电公司股价累计涨幅超过 150%。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制