粒度仪原理

仪器信息网粒度仪原理专题为您提供2024年最新粒度仪原理价格报价、厂家品牌的相关信息, 包括粒度仪原理参数、型号等,不管是国产,还是进口品牌的粒度仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合粒度仪原理相关的耗材配件、试剂标物,还有粒度仪原理相关的最新资讯、资料,以及粒度仪原理相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

粒度仪原理相关的仪器

  • AD-305型测定仪(平均粒度仪)使用说明书 一、仪器简介及应用范围AD-305为第四代透过法粒度测定仪法(平均粒度仪),是测定金属、非金属及其化合物粉末的比表面积和粒度的装置。可广泛应用于粉末冶金、精细化工、硅酸盐工业、食品、制药、核工业、以及表面技术的各种粉末粒度和比表面积的测定。本仪器结构简单,操作方便,仪器有快速计算板,不需要复杂计算,测定一次只需3~5分钟。本仪器运用的测定方法为“空气透过法”,该方法是测定金属及其化合物粉末比表面积和粒度的国家标准:GB11107-89和国际标准:ISO10070-91,荣获国家发明奖。仪器带有速计算板,无须复杂计算,可直接读出粒径值,使用操作非常方便。AD-305型带有游标卡尺,可测量粉末床的厚度及水柱高度,大大提高了测量范围和精度。二、技术参数1、粒度测量范围:0.2μm(微米)─50μm(微米) 2、孔隙度范围:0.25-0.40、0.40-0.80、0.80-0.95 3、精度:3% 4、工作环境:相对湿度不大于80%,温度:25±10℃ 5、电源:∽220±22v50-60Hz 6、功率:2w 7、重量:12kg8、外型尺寸:755*400*260三、工作原理及结构 本仪器是基于稳定空气流动下,气体透过粉末压缩床,气体的透过率受粉末的粒度、形状和床的有效孔隙度的影响。当已知粉末形状、孔隙度并测出其透过率时,就可以计算出粉末的粒度和各种比表面积。仪器由空气泵、干燥器、水柱稳压器、垂直压力计、泄气阀、试样管、粉末压缩装置、试样管夹紧装置、U型压力计、精密阀、游标卡尺和仪器计算面板等组成。
    留言咨询
  • 品牌:久滨型号:JB-N9名称:纳米粒度仪 一、产品概述:  JB-N9是我公司推出的基于动态光散射原理的纳米粒度仪。它采用高速数字相关器和专业的高性能光电倍增管作为核心器件,具有快速、高分辨率、重复及准确等特点,是纳米颗粒粒度测定的产品。控制系统原理图如下:光子相关纳米粒度仪基本原理图二、原理: 本仪器采用动态光散射原理和光子相关光谱技术,根据颗粒在液体中的布朗运动的速度测定颗粒大小。小颗粒布朗运动速度快,大颗粒布朗运动速度慢,激光照射这些颗粒,不同大小的颗粒将使散射光发生快慢不同的涨落起伏。光子相关光谱法就根据特定方向的光子涨落起伏分析其颗粒大小。因此本仪器具有原理先进、精度极高的特点,从而保证了测试结果的真实性和有效性;是纳米激颗粒粒度测定仪器。  此款纳米粒度仪已经达到国外纳米粒度仪的测试水平!三、主要技术参数:规格型号JB-N9执行标准GB/T 29022-2012/ISO 22412:2008测试范围1-10000nm(与样品有关)浓度范围0.1mg/L-100mg/L准确度误差1%(国家标准样品平均粒径)重复性误差1%(国家标准样品平均粒径)激光λ=532nm,LD泵浦激光器(独有带温控保护)探测器HAMAMATSU光电倍增管(PMT),使用单模保偏光纤散射角90°数字相关器ASIC研制的高速光子相关器样品池10mm*10mm , 4ml(带温控保护)数据处理拟合累积分析法和改进正规化算法,可给出平均粒径及粒度分布曲线软件功能一键式测量,自动优化测量参数,轻松生成测试报表输出项目平均粒径、多分散系数、粒度分布曲线、粒度分布表等温度范围8-45℃(温度精确到0.1℃)测试速度1Min/次(不含样品分散时间)仪器体积390mm×255mm×240mm电源AC100~260V, 50/60Hz, *大功率80W使用环境温度:15~40℃,湿度20~70%。无冷凝
    留言咨询
  • 品牌:久滨型号:JB-N9名称:纳米粒度仪 一、产品概述: JB-N9是我公司推出的基于动态光散射原理的纳米粒度仪。它采用高速数字相关器和专业的高性能光电倍增管作为核心器件,具有快速、高分辨率、重复及准确等特点,是纳米颗粒粒度测定产品。  控制系统原理图如下:光子相关纳米粒度仪基本原理图二、原理: 本仪器采用动态光散射原理和光子相关光谱技术,根据颗粒在液体中的布朗运动的速度测定颗粒大小。小颗粒布朗运动速度快,大颗粒布朗运动速度慢,激光照射这些颗粒,不同大小的颗粒将使散射光发生快慢不同的涨落起伏。光子相关光谱法就根据特定方向的光子涨落起伏分析其颗粒大小。因此本仪器具有原理先进、精度极高的特点,从而保证了测试结果的真实性和有效性;是纳米激颗粒粒度测定的仪器。  此款纳米粒度仪已经达到国外纳米粒度仪的测试水平!三、主要技术参数:规格型号JB-N9执行标准GB/T 29022-2012/ISO 22412:2008测试范围1-10000nm(与样品有关)浓度范围0.1mg/L-100mg/L准确度误差1%(国家标准样品平均粒径)重复性误差1%(国家标准样品平均粒径)激光λ=532nm,LD泵浦激光器(独有带温控保护)探测器HAMAMATSU光电倍增管(PMT),使用单模保偏光纤散射角90°数字相关器ASIC研制的高速光子相关器样品池10mm*10mm , 4ml(带温控保护)数据处理拟合累积分析法和改进正规化算法,可给出平均粒径及粒度分布曲线软件功能一键式测量,自动优化测量参数,轻松生成测试报表输出项目平均粒径、多分散系数、粒度分布曲线、粒度分布表等温度范围8-45℃(温度精确到0.1℃)测试速度1Min/次(不含样品分散时间)仪器体积390mm×255mm×240mm电源AC100~260V, 50/60Hz, *大功率80W使用环境温度:15~40℃,湿度20~70%。无冷凝
    留言咨询

粒度仪原理相关的方案

粒度仪原理相关的论坛

  • 不同原理的粒度仪与粒径

    由于颗粒形状的复杂性,颗粒测量只能采用等效粒径的概念,和间接测量的方式。不同原理的粒度仪器,采用不同的等效粒径:激光衍射(散射)仪器采用的是散射粒径,近似等于等效截面粒径。沉降粒度仪采用的斯托克斯粒径(沉降速度与同质球体等效)。库尔特(电阻法)粒度仪采用的是体积等效粒径。 如果使用球形颗粒,各种仪器测量结果应该相同。 对于非球形颗粒,各种仪器测量结果差别不可预测,因为颗粒形状太复杂。但是对同一种非球形颗粒,不同仪器测量结果有规律可循。为此微纳公司研制了数据校准软件。根据用户提供的样品和相关目标仪器的粒度分布数据,交给具有一定的学习功能软件,今后遇到同类样品即使大小不同,也可给出相关性令人满意的结果。

  • 激光粒度仪的测试原理

    激光粒度仪一般采用米氏散射原理。米氏散射理论是对处于均匀介质中的各向均匀同性的单个样品,在单色平行光照射下的Maxwell方程边界条件的严格数学解;当微粒半径的大小接近于或者大于入射光线的波长时,大部分的入射光线会沿着前进的方向进行散射,这种现象被称为米氏散射。与其他光学散射理论相比,米式散射的程度跟波长是无关的,而且光子散射后的性质也不会改变,因此在测量精度要求高的测试仪器中应用广泛。济南微纳等激光粒度仪生产厂家都是采用的这种原理~

粒度仪原理相关的耗材

  • 平均粒度仪费氏粒度仪空气透过法粒度测定仪
    AODE-305费氏粒度仪参数 一、仪器简介及应用范围 AODE-305系列为第四代透过法粒度测定仪法(平均粒度仪),是测定金属、非金属及其化合物粉末的比表面积和粒度的装置。可广泛应用于粉末冶金、精细化工、硅酸盐工业、食品、制药、核工业、以及表面技术的各种粉末粒度和比表面积的测定。本仪器结构简单,操作方便,仪器有快速计算板,不需要复杂计算,测定一次只需3~5分钟。本仪器运用的测定方法为“空气透过法”,该方法是测定金属及其化合物粉末比表面积和粒度的国家标准:GB11107-89 /GB 3249-82/GBT 11107-2018/GB3249-2009和国际标准:ISO10070-91.仪器带有快速计算板,无须复杂计算,可直接读出粒径值,使用操作非常方便。二、技术参数1、粒度测量范围:0.2μm(微米)─50μm(微米) 2、孔隙度范围:0.25-0.40、0.40-0.80、0.80-0.95 3、精度:3% 4、工作环境:相对湿度不大于80%,温度:25±10℃ 5、电源:∽220±22v50-60Hz 6、功率:2w 7、重量:12kg8、外型尺寸:755*400*260三、工作原理及结构 本仪器是基于稳定空气流动下,气体透过粉末压缩床,气体的透过率受粉末的粒度、形状和床的有效孔隙度的影响。当已知粉末形状、孔隙度并测出其透过率时,就可以计算出粉末的粒度和各种比表面积。仪器由空气泵、干燥器、水柱稳压器、垂直压力计、泄气阀、试样管、粉末压缩装置、试样管夹紧装置、U型压力计、精密阀、游标卡尺和仪器计算面板等组成。
  • 平均粒度仪配件
    平均粒度仪技术参数l 粒度测量范围:0.2μm(微米)─50μm(微米)l 孔隙度范围:0.25-0.40μm(微米)、0.40-0.80μm(微米)、0.80-0.95μm(微米)l 精度:3%l 工作环境:相对湿度不大于80%,温度:25±10℃l 电源:220v/50-60Hzl 功率:25wl 重量:12kgl 外型尺寸:755*400*260l 测试原理:空气通过法l .标准: GB 11107/GB 3249l 读取方式:读数板或数显平均粒度仪特点l 采用进口美式针阀控制气体流量l 直接读取数值或由测量软件读取数值l 静音稳压泵无振动,可持续提供稳定的测试压力l 对团聚的有吸附性或磁性的粉末也可以测量(只有费氏粒度仪)l 配置DPSK针盘式扭力计获得最佳孔隙度,解决了不同操作者压制粉末试样时的力量误差,使测量数据更趋准确。 平均粒度仪简介及应用范围AODE-305系列为第四代气体透过法粒度测定仪(平均粒度仪),是测定金属、非金属及其化合物粉末的比表面积和粒度的装置。可广泛应用于粉末冶金、精细化工、硅酸盐工业、食品、制药、核工业、以及表面技术的各种粉末粒度和比表面积的测定。本仪器结构简单,操作方便,仪器有快速计算板,不需要复杂计算,测定一次只需3~5分钟。本仪器运用的测定方法为“空气透过法”,该方法是测定金属及其化合物粉末比表面积和粒度的国家标准:GB11107-89 /GB 3249-82/GBT 11107-2018/GB3249-2009和国际标准:ISO10070-91.仪器带有快速计算板,无须复杂计算,可直接读出粒径值,使用操作非常方便。Aode-305型平均粒度测试仪改进了在对被测粉末试样施压时使用无科学依据的压力校正器,采用DPSK针盘式扭力计,可使任何操作人员在对粉末测试过程中均可达到相同的压制力,得到同一种佳孔隙度,消除了人为误差,使被测粉末粒径更加准确,同时本仪器配有双向扩展读数板,孔隙度范围由原来的0.80—0.40μm(扩到0.95—0.80μm、扩到0.40—0.25μm),满足了对各种粉末的测试需求。平均粒度仪工作原理及结构本仪器是基于稳定空气流动下,气体透过粉末压缩床,气体的透过率受粉末的粒度、形状和床的有效孔隙度的影响。当已知粉末形状、孔隙度并测出其透过率时,就可以计算出粉末的粒度和各种比表面积。仪器由空气泵、干燥器、水柱稳压器、垂直压力计、泄气阀、试样管、粉末压缩装置、试样管夹紧装置、U型压力计、精密阀、游标卡尺和仪器计算面板等组成。
  • 平均粒度仪 费氏粒度仪 空气透过法
    PSI-4型测定仪使用说明书 一、仪器简介及应用范围PSI-4系列为第四代透过法粒度测定仪,是测定金属、非金属及其化合物粉末的比表面积和粒度的装置。可广泛应用于粉末冶金、精细化工、硅酸盐工业、食品、制药、核工业、以及表面技术的各种粉末粒度和比表面积的测定。本仪器结构简单,操作方便,仪器有快速计算板,不需要复杂计算,测定一次只需3~5分钟。本仪器运用的测定方法为“张瑞福法”,该方法是测定金属及其化合物粉末比表面积和粒度的国家标准:GB11107-89和国际标准:ISO10070-91,荣获国家发明奖。PSI-4A型带快速计算板,无须复杂计算,可直接读出粒径值,使用操作非常方便。PSI-4B型带有游标卡尺,可精确测量粉末床的厚度及水柱高度,大大提高了测量范围和精度。本仪器由张瑞福先生亲自监制。 二、技术性能PSI-4APSI-4B仪器设计精度0.010.01粒度测量精度0.030.02粒度测量范围Dk0.1~100μm0.02~120μmDv0.02~1μm0.002~0.5μm比表面积测量Sk0.06~60(m2/g)0.05~300(m2/g)Sv6~300(m2/g)12~3000(m2/g)Sw2~150(m2/g)0.2~1.5×103(m2/g)注:Dk为包络比表面粒度,也称粘性流透过粒度;Dv为全比表面粒度;Sw为质量全比表面积 Sk为粉末包络比表面积; Sv为粉末全比表面积,也称粉末吸附全比表面积。工作环境: 干燥,无腐蚀,温度25±12℃,相对湿度<80%电 源: 220ACV,50Hz,20W外型尺寸: 755×400×260 mm3净 重: 12 kg三、工作原理及结构本仪器是基于稳定空气流动下,气体透过粉末压缩床,气体的透过率受粉末的粒度、形状和床的有效孔隙度的影响。当已知粉末形状、孔隙度并测出其透过率时,就可以计算出粉末的粒度和各种比表面积。仪器由空气泵、干燥器、水柱稳压器、垂直压力计、泄气阀、试样管、粉末压缩装置、试样管夹紧装置、U型压力计、精密阀、游标卡尺和仪器计算面板等组成。仪器的气流及测压系统。

粒度仪原理相关的资料

粒度仪原理相关的资讯

  • 从纳米粒度仪、激光粒度仪原理看如何选择粒度测试方法
    1. 什么是光散射现象?光线通过不均一环境时,发生的部分光线改变了传播方向的现象被称作光散射,这部分改变了传播方向的光称作散射光。宏观上,从阳光被大气中空气分子和液滴散射而来的蓝天和红霞到被水分子散射的蔚蓝色海洋,光散射现象本质都是光与物质的相互作用。2. 颗粒与光的相互作用微观上,当一束光照在颗粒上,除部分光发生了散射,还有部分发生了反射、折射和吸收,对于少数特别的物质还可能产生荧光、磷光等。当入射光为具有相干性的单色光时,这些散射光相干后形成了特定的衍射图样,米氏散射理论是对此现象的科学表述。如果颗粒是球形,在入射光垂直的平面上观察到称为艾里斑的衍射图样。颗粒散射激光形成艾里斑3. 激光粒度仪原理-光散射的空间分布探测分析艾里斑与光能分布曲线当我们观察不同尺寸的颗粒形成的艾里斑时,会发现颗粒的尺寸大小与中间的明亮区域大小一般成反相关。现代的激光粒度仪设计中,通过在垂直入射光的平面距中心点不同角度处依次放置光电检测器进行粒子在空间中的光能分布进行探测,将采集到的光能通过相关米氏散射理论反演计算,就可以得出待分析颗粒的尺寸了。这种以空间角度光能分布的测量分析样品颗粒分散粒径的仪器即是静态光散射激光粒度仪,由于测试范围宽、测试简便、数据重现性好等优点,该方法仪器使用最广泛,通常被简称为激光粒度仪。根据激光波长(可见光激光波长在几百纳米)和颗粒尺寸的关系有以下三种情况:a) 当颗粒尺寸远大于激光波长时,艾里斑中心尺寸与颗粒尺寸的关系符合米氏散射理论在此种情况下的近似解,即夫琅和费衍射理论,老式激光粒度仪亦可以通过夫琅和费衍射理论快速准确地计算粒径分布。b) 当颗粒尺寸与激光波长接近时,颗粒的折射、透射和反射光线会较明显地与散射光线叠加,可能表现出艾里斑的反常规变化,此时的散射光能分布符合考虑到这些影响的米氏散射理论规则。通过准确的设定被检测颗粒的折射率和吸收率参数,由米氏散射理论对空间光能分布进行反演计算即可得出准确的粒径分布。c) 当颗粒尺寸远小于激光波长时,颗粒散射光在空间中的分布呈接近均匀的状态(称作瑞利散射),且随粒径变化不明显,使得传统的空间角度分布测量的激光粒度仪不再适用。总的来说,激光粒度仪一般最适于亚微米至毫米级颗粒的分析。静态光散射原理Topsizer Plus激光粒度分析仪Topsizer Plus激光粒度仪的测试范围达0.01-3600μm,根据所搭配附件的不同,既可测量在液体中分散的样品,也可测量须在气体中分散的粉体材料。4. 纳米粒度仪原理-光散射的时域涨落探测(动态光散射)分析 对于小于激光波长的悬浮体系纳米颗粒的测量,一般通过对一定区域中测量纳米颗粒的不定向地布朗运动速率来表征,动态光散射技术被用于此时的布朗运动速率评价,即通过散射光能涨落快慢的测量来计算。颗粒越小,颗粒在介质中的布朗运动速率越快,仪器监测的小区域中颗粒散射光光强的涨落变化也越快。然而,当颗粒大至微米极后,颗粒的布朗运动速率显著降低,同时重力导致的颗粒沉降和容器中介质的紊流导致的颗粒对流运动等均变得无法忽视,限制了该粒径测试方法的上限。基于以上原因,动态光散射的纳米粒度仪适宜测试零点几个纳米至几个微米的颗粒。5.Zeta电位仪原理-电泳中颗粒光散射的相位探测分析纳米颗粒大多有较活泼的电化学特性,纳米颗粒在介质中滑动平面所带的电位被称为Zeta电位。当在样品上加载电场后,带电颗粒被驱动做定向地电泳运动,运动速度与其Zeta电位的高低和正负有关。与测量布朗运动类似,纳米粒度仪可以测量电场中带电颗粒的电泳运动速度表征颗粒的带电特性。通常Zeta电位的绝对值越高,体系内颗粒互相排斥,更倾向与稳定的分散。由于大颗粒带电更多,电泳光散射方法适合测量2nm-100um范围内的颗粒Zeta电位。NS-90Z 纳米粒度及电位分析仪NS-90Z 纳米粒度及电位分析仪在一个紧凑型装置仪器中集成了三种技术进行液相环境颗粒表征,包括:利用动态光散射测量纳米粒径,利用电泳光散射测量Zeta电位,利用静态光散射测量分子量。6. 如何根据应用需求选择合适的仪器为了区分两种光散射粒度仪,激光粒度仪有时候又被称作静态光散射粒度仪,而纳米粒度仪有时候也被称作动态光散射粒度仪。需要说明的是,由于这两类粒度仪测量的是颗粒的散射光,而非对颗粒成像。如果多个颗粒互相沾粘在一起通过检测区间时,会被当作一个更大的颗粒看待。因此这两种光散射粒度仪分析结果都反映的是颗粒的分散粒径,即当颗粒不完全分散于水、有机介质或空气中而形成团聚、粘连、絮凝体时,它们测量的结果是不完全分散的聚集颗粒的粒径。综上所述,在选购粒度分析仪时,基于测量的原理宜根据以下要点进行取舍:a) 样品的整体颗粒尺寸。根据具体质量分析需要选择对所测量尺寸变化更灵敏的技术。通常情况下,激光粒度仪适宜亚微米到几个毫米范围内的粒径分析;纳米粒度仪适宜全纳米亚微米尺寸的粒径分析,这两种技术测试能力在亚微米附近有所重叠。颗粒的尺寸动态光散射NS-90Z纳米粒度仪测试胶体金颗粒直径,Z-average 34.15nmb) 样品的颗粒离散程度。一般情况下两种仪器对于单分散和窄分布的颗粒粒径测试都是可以轻易满足的。对于颗粒分布较宽,即离散度高/颗粒中大小尺寸粒子差异较大的样品,可以根据质量评价的需求选择合适的仪器,例如要对纳米钙的分散性能进行评价,关注其微米级团聚颗粒的含量与纳米颗粒的含量比例,有些工艺不良的情况下团聚的颗粒可能达到十微米的量级,激光粒度仪对这部分尺寸和含量的评价真实性更高一些。如果需要对纳米钙的沉淀工艺进行优化,则需要关注的是未团聚前的一般为几十纳米的原生颗粒,可以通过将团聚大颗粒过滤或离心沉淀后,用纳米粒度仪测试,结果可能具有更好的指导性,当然条件允许的情况下也可以选用沉淀浆料直接测量分析。有些时候样品中有少量几微米的大颗粒,如果只是定性判断,纳米粒度仪对这部分颗粒产生的光能更敏感,如果需要定量分析,则激光粒度仪的真实性更高。对于跨越纳米和微米的样品,我们经常需要合适的进行样品前处理,根据质量目标选用最佳质控性能的仪器。颗粒的离散程度静态光散射法Topsizer激光粒度仪测试两个不同配方工艺的疫苗制剂动态光散射NS-90Z纳米粒度仪测试疫苗制剂直径激光粒度仪测试结果和下图和纳米粒度仪的结果是来自同一个样品,从分布图和数据重现程度上看,1um以下,纳米粒度仪分辨能力优于激光粒度仪;1um以上颗粒的量的测试,激光粒度仪测试重现性优于纳米粒度仪;同时对于这样的少量较大颗粒,动态光散射纳米粒度仪在技术上更敏感(测试的光能数据百分比更高)。在此案例的测试仪器选择时,最好根据质控目标来进行,例如需要控制制剂中大颗粒含量批次之间的一致性可以选用激光粒度仪;如果是控制制剂纳米颗粒的尺寸,或要优化工艺避免微米极颗粒的存在,则选用动态光散射纳米粒度仪更适合。c) 测试样品的状态。激光粒度仪适合粉末、乳液、浆料、雾滴、气溶胶等多种颗粒的测试,纳米粒度仪适宜胶体、乳液、蛋白/核酸/聚合物大分子等液相样品的测试。通常激光粒度仪在样品浓度较低的状态下测试,对于颗粒物含量较高的样品及粉末,需要在测试介质中稀释并分散后测试。对于在低浓度下容易团聚或凝集的样品,通常使用内置或外置超声辅助将颗粒分散,分散剂和稳定剂的使用往往能帮助我们更好的分离松散团聚的颗粒并避免颗粒再次团聚。纳米粒度仪允许的样品浓度范围相对比较广,多数样品皆可在原生状态下测试。对于稀释可能产生不稳定的样品,如果测试尺寸在两者都许可的范围内,优先推荐使用纳米粒度仪,通常他的测试许可浓度范围更广得多。如果颗粒测试不稳定,通常需要根据颗粒在介质体系的状况,例如是否微溶,是否亲和,静电力相互作用等,进行测试方法的开发,例如,通过在介质中加入一定的助剂/分散剂/稳定剂或改变介质的类别或采用饱和溶液加样法等,使得颗粒不易发生聚集且保持稳定,大多数情况下也是可以准确评价样品粒径信息的。当然,在对颗粒进行分散的同时,宜根据质量分析的目的进行恰当的分散,过度的分散有时候可能会得到更小的直径或更好重现性的数据,但不一定能很好地指导产品质量。例如对脂质体的样品,超声可能破坏颗粒结构,使得粒径测试结果失去质控意义。d) 制剂稳定性相关的表征。颗粒制剂的稳定性与颗粒的尺寸、表面电位、空间位阻、介质体系等有关。一般来说,颗粒分散粒径越细越不容易沉降,因此颗粒间的相互作用和团聚特性是对制剂稳定性考察的重要一环。当颗粒体系不稳定时,则需要选用颗粒聚集/分散状态粒径测量相适宜的仪器。此外,选用带电位测量的纳米粒度仪可以分析从几个纳米到100um的颗粒的表面Zeta电位,是评估颗粒体系的稳定性及优化制剂配方、pH值等工艺条件的有力工具。颗粒的分散状态e) 颗粒的综合表征。颗粒的理化性质与多种因素有关,任何表征方法都是对颗粒的某一方面的特性进行的测试分析,要准确且更系统地把控颗粒产品的应用质量,可以将多种分析方法的结果进行综合分析,也可以辅助解答某一方法在测试中出现的一些不确定疑问。例如结合图像仪了解激光粒度仪测试时样品分散是否充分,结合粒径、电位、第二维利系数等的分析综合判断蛋白制剂不稳定的可能原因等。
  • 激光粒度原理及应用
    p   粒度仪是用物理的方法测试固体颗粒的大小和分布的一种仪器。根据测试原理的不同分为沉降式粒度仪、沉降天平、激光粒度仪、光学颗粒计数器、电阻式颗粒计数器、颗粒图像分析仪等。 /p p   激光粒度仪是通过激光散射的方法来测量悬浮液,乳液和粉末样品颗粒分布的多用途仪器。具有测试范围宽、测试速度快、结果准确可靠、重复性好、操作简便等突出特点,是集激光技术、计算机技术、光电子技术于一体的新一代粒度测试仪器。 /p p    strong 激光粒度仪的光学结构 /strong /p p   激光粒度仪的光路由发射、接受和测量窗口等三部分组成。发射部分由光源和光束处理器件组成,主要是为仪器提供单色的平行光作为照明光。接收器是仪器光学结构的关键。测量窗口主要是让被测样品在完全分散的悬浮状态下通过测量区,以便仪器获得样品的粒度信息。 /p p    strong 激光粒度仪的原理 /strong /p p   激光粒度仪是根据颗粒能使激光产生散射这一物理现象测试粒度分布的。由于激光具有很好的单色性和极强的方向性,所以在没有阻碍的无限空间中激光将会照射到无穷远的地方,并且在传播过程中很少有发散的现象。 /p p   米氏散射理论表明,当光束遇到颗粒阻挡时,一部分光将发生散射现象,散射光的传播方向将与主光束的传播方向形成一个夹角θ,θ角的大小与颗粒的大小有关,颗粒越大,产生的散射光的θ角就越小 颗粒越小,产生的散射光的θ角就越大。即小角度(θ)的散射光是有大颗粒引起的 大角度(θ1)的散射光是由小颗粒引起的。进一步研究表明,散射光的强度代表该粒径颗粒的数量。这样,测量不同角度上的散射光的强度,就可以得到样品的粒度分布了。 /p p   为了测量不同角度上的散射光的光强,需要运用光学手段对散射光进行处理。在光束中的适当的位置上放置一个富氏透镜,在该富氏透镜的后焦平面上放置一组多元光电探测器,不同角度的散射光通过富氏透镜照射到多元光电探测器上时,光信号将被转换成电信号并传输到电脑中,通过专用软件对这些信号进行数字信号处理,就会准确地得到粒度分布了。 /p p    strong 激光粒度仪测试对象 /strong /p p   1.各种非金属粉:如重钙、轻钙、滑石粉、高岭土、石墨、硅灰石、水镁石、重晶石、云母粉、膨润土、硅藻土、黏土等。 /p p   2.各种金属粉:如铝粉、锌粉、钼粉、钨粉、镁粉、铜粉以及稀土金属粉、合金粉等。 /p p   3.其它粉体:如催化剂、水泥、磨料、医药、农药、食品、涂料、染料、荧光粉、河流泥沙、陶瓷原料、各种乳浊液。 /p p    strong 激光粒度仪的应用领域 /strong /p p   1、高校材料 /p p   2、化工等学院实验室 /p p   3、大型企业实验室 /p p   4、重点实验室 /p p   5、研究机构 /p p   文章来源:仪器论坛(http://bbs.instrument.com.cn/topic/5163115) /p p br/ /p
  • 纳米粒度分析仪的原理及应用
    纳米粒度仪是应用很广泛的一种科学仪器,使用多角度动态光散射技术测量颗粒粒度分布 。动态光散射(DLS)法原理 :当激光照射到分散于液体介质中的微小颗粒时,由于颗粒的布朗 运动引起散射光的频率偏移,导致散射光信号随时间发生动态变化,该变化的大小与颗粒的布朗运动速度有关,而颗粒的布朗运动速度又取决于颗粒粒径的大小,颗粒大布朗运动速度低,反之颗粒小布朗运动速度高,因此动态光散射技术是分析样品颗粒的散射光强随时间的涨落规律,使用光子探测器在固定的角度采集散射光,通过相关器进行自相关运算得到相关函数,再经过数学反演获得颗粒粒径信息。纳米粒度仪的应用领域: 纳米材料:用于研究纳米金属氧化物、纳米金属粉、纳米陶瓷材料的粒度对材料性能的影响。 生物医药:分析蛋白质、DNA、RNA、病毒,以及各种抗原抗体的粒度。 精细化工: 用于寻找纳米催化剂的最佳粒度分布,以降低化学反应温度,提高反应速度。 油漆涂料:用于测量油漆、涂料、硅胶、聚合物胶乳、颜料、 油墨、水/油乳液、调色剂、化妆品等材料中纳米颗粒物的粒径。 食品药品:药物表面包覆纳米微粒可使其高效缓释,并可以制成靶向药物,可用来测量包覆物粒度的大小,以便更好地发挥药物的疗效。 航空航天 纳米金属粉添加到火箭固体推进剂中,可以显著改进推进剂的燃烧性能,可用于研究金属粉的最佳粒度分布。 国防科技:纳米材料增加电磁能转化为热能的效率,从而提高对电磁波的吸收性能,可以制成电磁波吸波材料。不同粒径纳米材料具有不同的光学特性,可用于研究吸波材料的性能。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制