当前位置: 仪器信息网 > 行业主题 > >

规准仪原理

仪器信息网规准仪原理专题为您提供2024年最新规准仪原理价格报价、厂家品牌的相关信息, 包括规准仪原理参数、型号等,不管是国产,还是进口品牌的规准仪原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合规准仪原理相关的耗材配件、试剂标物,还有规准仪原理相关的最新资讯、资料,以及规准仪原理相关的解决方案。

规准仪原理相关的论坛

  • 【原创大赛】归一化法定量的原理和注意事项

    【原创大赛】归一化法定量的原理和注意事项

    [align=center][size=24px]归一化法定量的原理和注意事项[/size][/align][align=center]概述[/align]归一化法是较为常用的色谱定量方法,因其操作方法简便、获得数据报告速度较快的优点,在石油化工、普通化工、医药生产等行业的过程产物监测和产品分析等场合下得到广泛的应用。但是采用归一化法定量(包括面积归一化法和校正面积归一化法)时,需要对谱图的分离情况和相应强度进行整体综合考量,否则不容易获得准确度和精密度良好的分析结果。[align=center]第一节 归一化法定量的基本原理[/align]色谱法定量的基本原理——在一定范围内,待测物质的质量与该物质色谱峰的峰面积(或者峰高)成正比,如式1-1所示(以待测物质质量为例):[align=center] (1-1)[/align]式中 m —— 样品质量; f —— 校正因子; A —— 峰面积。例如某待测样品中总共含有四种物质(物质a、b、c、d),在某色谱分析条件下获得色谱数据,如图1所示:[align=center] [img]https://ng1.17img.cn/bbsfiles/images/2021/10/202110072204194960_9557_1604036_3.jpg[/img][/align][align=center]图1 某样品色谱图[/align]那么某种物质在该样品中的质量百分比含量即为: (1-2)式(1.2)即为校正面积归一化法的定量公式。当采用校正面积归一化法定量时,需要事先获得样品中所有组分的校正因子fi——一般需要通过实验测定或者通过文献检索获得。基于色谱定量的基本原理式(1-1),可以得知校正因子(以质量校正因子为例)为样品质量与峰面积的比值,如式(1-3)。色谱工作者需要使用标准样品进样测定之后,根据标准样品的质量与峰面积的比值计算目标物质的绝对校正因子f。 (1-3)显然在处理复杂样品分析时,实验员的工作量会比较大。另外部分情况下无法获得全部出峰组分的标准样品——某些组分甚至可能是未知物质。某些化学结构类似的物质具有数值接近的校正因子,当色谱工作者采用归一化法进行此类样品定量时,可以假定所有组分的校正因子均相同(例如令所有组分的校正因子fi = 1),那么某组分在样品中的质量分数可以表示为式1-4. (1-4)此即为面积归一化法,是校正归一化法的特例。实际的分析工作中,较难满足所有组分校正因子均相同这一条件。所以面积归一化法的分析准确度不太高,但操作简易、定量结果对进样体积重复性要求较低、对实验室的仪器硬件和操作人员水平要求不高。面积归一化法在化工分析中较为常见,例如石化行业采用fid检测器定量烃类的面积归一计算结果,比较接近质量百分比浓度。[align=center] 第二节 归一化法定量对样品的要求[/align]可以采用归一化法的待测样品中的全部组分应当在检测器上均可出峰,或者除去溶剂或者已知含量的组分之外的物质均可出峰。例如需要测定某固体样品的纯度,需要使用溶剂溶解样品,归一化定量时需要扣除溶剂峰面积。使用FID检测含水有机物时,因为水一般情况下在FID检测器上不能出峰,定量时需要扣除水含量再进行归一化计算。归一化法常用于常量分析,[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]的FID和TCD检测器是较为常见,其定量上限可以达到100%。ECD、FTD、FPD等选择性检测器,一般不会使用归一化法定量。[align=center]归一化法定量的准确性和重复性[/align]3-1 线性范围采用归一化法定量时,首先需要考虑的是分析方法的线性范围。归一化法常用于化工产品的纯度分析,要求对于接近100%含量的主成分和百万分之一左右的杂质同样可以准确定量,那么就要求分析方法需要有较大的线性范围。如果样品进样量过低,可能会造成杂质峰强度过低而难以检出,从而造成主峰归一化定量结果偏高,如图2所示。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/10/202110072204197567_9185_1604036_3.jpg[/img][/align][align=center]图2 进样量过低[/align]如果样品进样量过大,可能会造成主峰超载——色谱峰往往表现为平顶或者圆顶,或者说色谱峰高超出检测器的线性响应范围,此时归一化定量结果主峰含量会偏低,如图3所示。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/10/202110072204195319_5064_1604036_3.jpg[/img][/align][align=center]图3 进样量过高[/align]当使用线性范围较窄的模拟信号工作站时,获得平头峰是超载的标志。但是现今实验室常见的色谱仪,较多使用了宽量程检测器和辅助的数学处理技术,不容易观察到平顶峰,即使检测器已经出现过载。这种情况下需要对色谱图中的每个色谱峰进行仔细比对,考察是否存在线性范围问题。下面举例说明:某样品两次进样的面积归一含量差距较大。考察两色谱图时,以某杂质峰的强度为基准,将两次进样的谱图进行缩放比较,考察发现两数据主峰强度不同,虽然主峰并没有出现平顶或者圆顶的现象,怀疑存在主峰超出线性范围问题。降低进样量再次进行实验,结果重复性良好。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/10/202110072204201435_4065_1604036_3.jpg[/img][/align][align=center]图4 两次进样谱图的比较[/align]3-2 积分准确性此外需要注意色谱图的积分问题,采用归一化法定量时,色谱图的总峰面积的积分需要准确。色谱工作者在化工分析中经常会获得较为复杂的色谱图,分析的目的往往是某种或者某几种组分的含量,只要保证目标组分色谱峰积分正确,同时杂质色谱峰总面积和全体色谱峰总面积正确即可。如图5所示,2.5min左右的杂质峰积分只需要总体面积准确即可。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/10/202110072204203310_9539_1604036_3.jpg[/img][/align][align=center]图5 范例色谱图[/align]尽量避免采用峰谷连线方式积分,此方式会导致总峰面积偏低,从而影响归一化结果的准确,如图6所示。[align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/10/202110072204200338_3059_1604036_3.jpg[/img][/align][align=center]图6 峰谷联系方式积分[/align]3-3 谱图失真问题[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]方法使用归一化法,一般用于分流方式下采集数据,如果样品组成复杂,各组分沸点分布范围较宽,那么较为容易产生分流歧视问题,即样品失真。此外由进样方式或者进样技术问题,也会导致样品歧视的问题。3-4 定量结果的精密度与常规的分析方法不同,面积归一的定量结果精密度要求较高。例如常规的外标或者内标定量方法,连续测定中峰面积或者定量结果数值的相对标准偏差在1%附近,一般认为定量精密度尚可。但是面积归一定量结果实际评价的是各个色谱峰之间的总体对应关系,并不关注组分峰面积的重复性,在化工分析的实际工作中,结果精密度的控制往往会远小于1%。尤其是精细化工产品成品的分析,归一化含量99.6%的和含量99.3%的产品售价会相差较大,如果成品的连续两次分析出现上述的结果,此结果是会被认为有问题的。[align=center]小结[/align]归一化法定量原理虽然较为简单,但是色谱工作者在实际操作中,需要给予一定的注意。注: 原文有某些公式存在处理困难问题, 详见附件文件。

  • 硅钨酸重量法的原理

    如题,硅钨酸重量法测定维生素B1的含量,请问各位老师,其中的原理。整个过程哪些因素影响结果?维生素B1在酸性溶液中,与硅钨酸作用生成沉淀……维生素B1与硅钨酸摩尔比是多少?反应方程式是怎样的?酸性溶液中,那么酸性溶液如何控制?pH在什么范围最利于反应进行?反应时间是否需要控制?多长时间?

  • 【求助】求助计量标准技术报告(螺纹规类) 急!!

    公司实验室建标,编写计量标准技术报告,圆柱螺纹量规类的,不知道哪位高手能提供相关的资料。螺纹规类的计量标准技术报告其检定工作原理和组成不知道如何填写。不知道那位高人有螺纹规类的计量标准技术报告。急!!急!

  • 标准物质在仪器校准中应用的一般原理

    标准物质在仪器校准中应用的一般原理 在使用仪器方法进行化学成分分析时,目标量即特定基体中特定(被)分析物的含量,通常不是直接测量得到的,而是通过测量仪器的响应并将其转换为(被)分析物的含量。为确定仪器的响应与(被)分析物含量之间的关系,就需在整个量程范围内,测定(被)分析物含量已知的 标准物质 (校准物质或样品)的仪器响应。然后,比较测得的响应与(被)分析物含量参考值(认定值),导H{响应曲线的参数(如直线的斜率和截距),包括这些参数的不确定度。通过使用这些数据,可以从测得的响应推算出未知样品中的(被)分析物含量,同时也可从所测响应的不确定度和响应曲线参数的不确定度推算出(被)分析物含量的不确定度。ISO 11095(使用标准物质的线性校准)给出了使用标准物质设计校准实验以及在校准曲线是直线的情况下对常见个案的校准数据评价的一般描述。 现代仪器分析方法具有低检测限、高专一性、高精密度以及自动进样等很多优点,但在大多数情况下,仪器的输出信号(峰面积、计数、毫伏等)与被分析物的测量值(克、摩尔等)之间的关系是来自于某种经验公式。一般情况下,还没有经过详细研究的物理或化学理论来精确地描述被分析物的量与信号强度之间存在的某种关系。因此,测试样品中的被分析物的量无法用物理的或化学的基本原理准确测得。大多数分析测试仪器基于实验观测,仪器信号与被分析物的量存在下列函数关系 信号强度一K×(被分析物的量)” 仪器信号强度与被分析物的量之间常常是线性关系,n=1。由于没有合适的物理或化学理论支撑这些分析测量仪器的基本操作,上述公式中的比例常数K通常是未知的。 在这种情况下,实际分析测量工作中就有必要通过被分析物含量准确已知的特殊样品(通常为有证标准物质或校准物质)来校准仪器的输出信号。通过比较用校准物质获得的信号与测试样品获得的信号,并由下列公式计算测量样品中被分析物的量 样品中被分析物的量一蒺器×校准物中被分析物的量 当分析仪器信号随被分析物的量呈线性变化(即n一1)时,可以用该公式计算样品中被分析物含量。显然,当校准物质或样品和测试样品的n和K值都相同时,用以上公式计算测试样品中被分析物量的有效性取决于,z和K的值。换句话说,分析仪器对被分析物和校准物质的响应的程度必须相同。只有这样才能进行有效的比较,否则校准物质所产生的的信号与测试样品所产生的信号不具有可比性。如果仍然采用上述方法计量被分析物的量,就会产生错误的分析测量结果。因此,我们必须确定仪器的校准条件能适用于要分析测试的样品,正确选择和使用适当的分析仪器校准用有证标准物质(CRM)。 通常由于大多数分析测量样品的基体与校准用标准物质的基体存在着很大的差异,因此,由校准过程导出的不确定度估算一般是不全面的。所以,还必须另外使用与被测样品基体相匹配校准样品来测定,并最终修正由于校准中基体不匹配所引起的偏差。原则上讲,基体匹配的标准物质已经用于校准实践,但实际上只是在一些特定的领域应用较多,如气体分析领域中使用。很多情况下,人们使用由纯物质制备而得的校准溶液进行来校准分析仪器,并且使用基体匹配的标准物质来研究考察基体效应引起的偏差。这种状况甚至使一些分析测量工作者产生了一种错误看法,他们认为基体标准物质不能用于校准,而只能用于质量控制。 校准是建立溯源性的最根本的过程。只有通过校准,才能在实践中获得对适当参考标准的溯源性。 本文参考了国家标准物质网资料中心的相关资料

  • 仪器自动校准是什么原理,可靠吗

    请问,检测仪器的出厂校准和内部自动校准分别是什么意思;是否可以理解为出厂时候仪器已经做了校准我们可以直接使用;“内置自动校准系统,能够定期进行自我校准,确保测量结果的准确性和稳定性”是什么原理呢,比如台式的多参数氮磷分析仪,[url=https://www.hach.com.cn/product/nt6800]总磷在线自动监测仪[/url]什么的,自己不用校准了?

  • 类型标准化的工作原理

    看到斯派克MAX的类型标准化校准,发现不是简单的平移,请教下类型标准化的工作原理是什么?关于旋转和平移,主要是旋转,是怎么计算的?相对与平移有和特点,二者有何区别?

  • 【原创大赛】液态氧气中总烃和乙炔的分析系统原理介绍

    【原创大赛】液态氧气中总烃和乙炔的分析系统原理介绍

    [align=center][size=24px]液态氧气中总烃和乙炔的分析系统原理介绍[/size][/align][align=center][color=black]概述[/color][/align][color=black]液态氧气中的微量乙炔和总碳氢化合物的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱[/url]分析方案原理介绍[/color][align=center][color=black]一 背景介绍[/color][/align][color=black]液态氧的获得一般需要通过空气分离的手段,在空气冷却并液化的过程中,会有微量的碳氢化合物一同被液化。在空气的分馏过程中,这些液态或者固态的烃类会富集在液态氧中。较高含量烃类的存在会造成安全问题——尤其是微量的乙炔——会导致爆炸事故的发生。[/color][color=black]所以在空气分离生产过程中,必须对液氧中微量烃类(特别是乙炔)的含量进行监测,常用的手段是在线或者非在线的[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]。[/color][color=black]下面介绍一种采用非在线[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url]的简单分析方案。[/color][align=center][color=black]二 系统结构原理[/color][/align][color=black]采用Shimadzu 的GC-2014[url=https://insevent.instrument.com.cn/t/Mp]气相色谱仪[/url],自动十通阀双进样和FID火焰离子化检测器的方法,实现一次进样完成液氧中微量总烃和乙炔的分析,系统结构如图1所示。系统采用外标法定量,可以在5min左右完成分析。[/color][color=black]Col1为总烃色谱柱,样品在此色谱柱上保留极弱,Col2为有机担体色谱柱,可以将乙炔单独分离,碳氢化合物的出峰顺序为甲烷、乙烯、乙烷、乙炔。两根色谱柱的出口同时连接到FID检测器上,利用两根色谱柱的保留时间差异,完成所有组分的分离检测。[/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111022154365409_5247_1604036_3.jpg[/img][/align][align=center]图1 液氧分析系统结构图[/align][align=center][color=black]三 工作流程讲解[/color][/align][color=black]该系统采用自动十通阀双进样的连接方式,分析状态为取样和进样。[/color][color=black]1 取样状态[/color][color=black]如图1所示,此时将样品通入(样品流经sample in --- loop1 -- loop2 -- sample out),样品被积存于两个定量环(Loop1和Loop2)中。[/color][color=black]2 进样状态[/color][color=black]如图2所示,此时十通阀旋转36度(样品流经Carrier1 -- loop1 - col1 -- FID;Carrier2 - loop2 - col2 -fid),样品分别进入对应色谱柱,在FID上出峰。[/color][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111022154370510_1631_1604036_3.jpg[/img][/align][align=center]图2 进样状态图[/align]系统典型谱图如图3所示:[img=,690,349]https://ng1.17img.cn/bbsfiles/images/2021/11/202111022156507093_2889_1604036_3.jpg!w690x349.jpg[/img][align=center]图3 系统典型谱图[/align]

  • 【求助】液相归一化处理

    各位大虾好,近来用液相扫了一些图谱,下步准备进行归一化处理,但是没做过归一化,不知道怎么做,我用的仪器是waters,呵呵,还请各位指教,如果能够给出具体的操作和原理更好,先谢过大家了。

  • 农产品检测仪检测原理

    [size=18px]  农产品检测仪检测原理  农产品检测仪的检测原理主要可以归纳为以下几种:  一、光学原理  测量光在物质中的传输特性:农产品检测仪中的光学系统通过测量光在物质中的传输特性来检测农产品中的农药残留。这个过程包括光源照射农产品表面,样品吸收部分光线并反射部分光线。  光电转换:经过透镜聚焦后的光线进入检测器,被检测器转化为电信号。  信号处理:电信号经过处理,由计算机系统转化为数字信号。  结果分析:通过比对和分析这些数字信号,可以得出农产品中农药残留的含量。  二、化学原理  样品前处理:涉及样品分散、去杂、分储等步骤,目的是为后续的化学分析做好准备。  农药提取:将农产品中的化学成分(如农药)提取出来。  蒸发浓缩:将提取得到的溶液浓缩至一定体积,便于后续分析。  色谱分析:依据成分的物理化学特性分离并检测成分。通过色谱分析,可以准确检测出农产品中的农药残留。  三、酶抑制率法  抑制原理:基于有机磷和氨基甲酸酯类农药可以抑制昆虫神经中枢和四周神经系统中乙酰胆碱酯酶的活性。这种抑制率与农药浓度呈正相关。  反应过程:在正常情况下,酶催化神经传导代谢产物(乙酰胆碱)水解,其水解产物与显色剂反应,产生黄色物质。当存在农药残留时,酶的活性受到抑制,导致产生的黄色物质减少。  结果判定:通过测量吸光度随时间的变化值,计算出抑制率,从而判断出样品中是否含有有机磷或氨基甲酸酯类农药的残留。  四、光电比色法  光电比色法是在一定条件下,通过测量样品中特定物质的吸光度来定量分析其含量。在农药残留检测中,它主要用于检测有机磷和氨基甲酸酯类农药对胆碱酯酶的抑制程度,从而判断农药残留情况。  总结:农产品检测仪的检测原理主要基于光学原理、化学原理和酶抑制率法等多种方法。通过这些方法的综合运用,可以实现对农产品中农药残留的快速、准确检测,为农产品安全提供有力保障。[/size]

  • 标准物质在仪器校准中的应用:一般原理

    关键词:标准物质网站 国家标准物质网站 中国标准物质网站 标准物质中心 国家标准物质中心 中国标准物质中心 现代仪器分析方法具有低检测限、高专一性、高精密度以及自动进样等很多优点,但在大多数情况下,仪器的输出信号(峰面积、计数、毫伏等)与被分析物的测量值(克、摩尔等)之间的关系是来自于某种经验公式。一般情况下,还没有经过详细研究的物理或化学理论来精确地描述被分析物的量与信号强度之间存在的某种关系。因此,测试样品中的被分析物的量无法用物理的或化学的基本原理准确测得。大多数分析测试仪器基于实验观测,仪器信号与被分析物的量存在下列函数关系 信号强度一K×(被分析物的量)” 仪器信号强度与被分析物的量之间常常是线性关系,n=1。由于没有合适的物理或化学理论支撑这些分析测量仪器的基本操作,上述公式中的比例常数K通常是未知的。 在这种情况下,实际分析测量工作中就有必要通过被分析物含量准确已知的特殊样品(通常为有证标准物质或校准物质)来校准仪器的输出信号。通过比较用校准物质获得的信号与测试样品获得的信号,并由下列公式计算测量样品中被分析物的量 样品中被分析物的量一蒺器×校准物中被分析物的量 当分析仪器信号随被分析物的量呈线性变化(即n一1)时,可以用该公式计算样品中被分析物含量。显然,当校准物质或样品和测试样品的n和K值都相同时,用以上公式计算测试样品中被分析物量的有效性取决于,z和K的值。换句话说,分析仪器对被分析物和校准物质的响应的程必须相同。只有这样才能进行有效的比较,否则校准物质所产生的的信号与测试样品所产生的信号不具有可比性。如果仍然采用上述方法计量被分析物的量,就会产生错误的分析测量结果。因此,我们必须确定仪器的校准条件能适用于要分析测试的样品,正确选择和使用适当的分析仪器校准用有证标准物质(CRM)。 通常由于大多数分析测量样品的基体与校准用标准物质的基体存在着很大的差异,因此,由校准过程导出的不确定度估算一般是不全面的。所以,还必须另外使用与被测样品基体相匹配校准样品来测定,并最终修正由于校准中基体不匹配所引起的偏差。原则上讲,基体匹配的标准物质已经用于校准实践,但实际上只是在一些特定的领域应用较多,如气体分析领域中使用。很多情况下,人们使用由纯物质制备而得的校准溶液进行来校准分析仪器,并且使用基体匹配的标准物质来研究考察基体效应引起的偏差。这种状况甚至使一些分析测量工作者产生了一种错误看法,他们认为基体标准物质不能用于校准,而只能用于质量控制。 校准是建立溯源性的最根本的过程。只有通过校准,才能在实践中获得对适当参考标准的溯源性。 在使用仪器方法进行化学成分分析时,目标量即特定基体中特定(被)分析物的含量,通常不是直接测量得到的,而是通过测量仪器的响应并将其转换为(被)分析物的含量。为确仪器的响应与(被)分析物含量之间的关系,就需在整个量程范围内,测定(被)分析物含量已知的标准物质(校准物质或样品)的仪器响应。然后,比较测得的响应与(被)分析物含量参考值(认定值),导H{响应曲线的参数(如直线的斜率和截距),包括这些参数的不确定度。通过使用这些数据,可以从测得的响应推算出未知样品中的(被)分析物含量,同时也可从所测响应的不确定度和响应曲线参数的不确定度推算出(被)分析物含量的不确定度。ISO 11095(使用标准物质的线性校准)给出了使用标准物质设计校准实验以及在校准曲线是直线的情况下对常见个案的校准数据评价的一般描述。本文参考了国家标准物质网资料中心的相关资料!

  • 测量不确定度和测不准原理毛关系都没有!

    在看一些大咖写的测量不确定度的书,一上来就祭出量子力学的大旗,大谈量子力学中测不准原理,想给测量不确定度弄个高大上的出身;但是很可惜,测量不确定度其实是数理统计中的区间估计原理在测量中的应用,测不准原理是阐述粒子的波粒二象性的,两者毛关系都没有。[b][color=#ff0000]别人可以瞎说,但是咱们不能轻信。[/color][/b]

  • 【原创大赛】移液器原理、使用、维护、校准鉴定

    【原创大赛】移液器原理、使用、维护、校准鉴定

    第一部分:移液器相关基本常识移液器基本原理: 微量加样器(移液器)最早出现于1956年,由德国生理化学研究所的科学家Schnitger发明,其后,在1958年德国Eppendorf公司开始生产按钮式微量加样器,成为世界上第一家生产微量加样器的公司。这些微量加样器的吸液范围在1—1000~1之间,适用 于临床常规化学实验室使用。微量加样器发展到今天,不但加样更为精确,而且品种也多种多样,如微量分配器、多通道微量加样器等,其加样的物理学原理有下面两种:①使用空气垫(又称活塞冲程)加样;②使用无空气垫的活塞正移动(positive displacement)加样。上述两种不同原理的微量加样器有其不同的特定应用范围。 一、空气垫加样器 活塞冲程(空气垫)加样器可很方便地用于固定或可调体积液体的加样,加样体积的范围在小于1ul至l0ml之间。加样器中的空气垫的作用是将吸于塑料吸头内的液体样本与加样器内的活塞分隔开来,空气垫通过加样器活塞的弹簧样运动而移动,进而带动吸头中的液体,死体积和移液吸头中高度的增加决定了加样中这种空气垫的膨胀程度。因此,活塞移动的体积必须比所希望吸取的体积要大约2%~4%,温度、气压和空气湿度的影响必须通过对空气垫加样器进行结构上的改良而降低,使得在正常情况下不至于影响加样的准确度。一次性吸头是本加样系统的一个重要组成部分,其形状、材料特性及与加样器的吻合程度均对加样的准确度有很大的影响。 二、活塞正移动加样器 以活塞正移动为原理的加样器和分配器与空气垫加样器所受物理因素的影响不同,因此,在空气垫加样器难以应用的情况下,活塞正移动加样器可以应用,如具有高蒸汽压的、高黏稠度以及密度大于2.0g/cm3的液体;又如在临床聚合酶链反应(PCR)测定中,为防止气溶胶的产生,最好使用活塞正移动加样器。活塞正移动加样器的吸头与空气垫加样器吸头有所不同,其内含一个可与加样器的活塞耦合的活塞,这种吸头一般由生产活塞正移动加样器的厂家配套生产,不能使用通常的吸头或不同厂家的吸头。 三、多通道加样器、电子加样器和分配器 多通道加样器、电子加样器和分配器的原理与上述相同。多通道加样器通常为8通道或12通道,与8X12=96孔微孔板一致。多通道加样器的使用不但可减少实验操作人员的加样操作次数,而且可提高加样的精密度。电子加样器和分配器为半自动加样系统,电子加样器最大的优点是其具有很高的加样重复性,应用范围广。第二部分:移液器的使用规范以及注意事项1. 使用合适的吸头:为确保更好的准确性和精度,建议移液量在吸头的35%-100%量程范围内。2.设定移液体积从大量程调节至小量程为正常调节方法,逆时针旋转刻度即可从小量程调节至大量程时,应先调至超过设定体积刻度,再回调至设定体积,这样可以保证移液器的精确度3. 吸头的安装:对于大多数品牌的移液器,特别是多道移液器,安装吸头并非易事:为追求良好的密封性,将移液器垂直插入吸头,左右旋转半圈,上紧即可。也有人会用移液器反复撞击吸头来上紧,但这样操作会导致吸头变形而影响精度,严重的则会损坏移液器,所以应当避免出现这样的操作。有的多道移液器设有O型环,配合有前挡点的吸头,只需轻压一下即可达致理想密封。4.[/

  • 织物测试仪器 透气性测试仪测试原理及常规标准介绍

    透气性是指对于具有一定气体阻隔性能的材料进行特定的渗透性的检测,透气性作为物理性能检测的项目之一,用于检测的材料首先具有透气性能。常见的材料有纺织品、皮革、纸张、纸板、泡沫塑料、多空瓷砖等等。目前透气性测试仪主要分为两种测试原理的仪器:压差法和等圧法。其中最为广泛的是压差法,压差法透气性测试仪可检测的实验范围也比较广泛。今天主要介绍一下[b]测试原理及常规标准[/b]:纺织透气性测试仪的原理:样品通过设备的夹紧手柄固定在测试区域上, 通过按下夹紧手柄以开始进行测试,一个强有的吸泵便开始在一个圆形开口处通过可互换的测试头抽取空气。预设好的测试压力被自动启动并维持了数秒钟后;,受测试样的透气度就会以预设的测量单位显示出来。再按下夹紧手柄一秒钟后,测样品便被松开,抽吸泵关闭。常用标准:[align=left]AFNOR G 07-111法国标准协会 透气性测试[/align][align=left]ASTM D 737纺织织物透气率的标准试验方法[/align][align=left]ASTM D 3574软质多孔材料测试方法[/align][align=left]BS 5636英国标准 纺织品透气性的测定方法[/align][b]DIN 53887纺织物空气透气度的测定[/b][align=left]EDANA 140.1 欧洲用可弃和非织造布制造协会[/align][align=left]EN ISO 7231软质泡沫聚合材料.恒定压降下的空气流量评估方法[/align][align=left]EN ISO 9237纺织品.纤维织物透气性的测定[/align][align=left]JIS L 1096- A日本工业标准:一般织物试验方法[/align]TAPPI T 251多空纸,织物、手抄纸的透气性[align=left]GB/T5453纺织品 织物透气性的测定[/align][align=left]GB/T 22819高透气纸张透气性的测定[/align][align=left]仪器参数:[/align][align=left]测试单位: mm/s, cfm, cm3/cm2/s, l/m2/s, l/dm2/min,m3/m2/min, m3/m2/h, dm3/s[/align][align=left]测量精度: ± 2 % 显示值[/align][align=left]测试压力: 10~ 2,500 Pa[/align][align=left]测试面积: 20cm2 (标配),5, 25, 38, 50 and 100 cm2 (可选配)[/align]

  • 【求助】关于溶氧仪的温度补偿原理问题

    单位买了华科仪的HK-258溶解氧分析仪,但是我一直搞不明白到底什么是溶解氧的温度补偿,它的基本原理是什么,现在连用法我还没搞清楚。。。跪求各位大师关于溶氧仪的原理。。

  • 行业标准原油含水电脱水仪原理

    石油密闭脱水仪适用于原油油性分析时的脱水处理,尤其适用于稠油脱水。作为行业标准分析方法,该系列仪器已在全国各大油田的采油厂、采油计量站、地科院、采油工艺所、炼油厂(电脱盐)、有关科研和教学实验室等石油、石化地质化验部门得到广泛的推广和应用。工作原理含水原油多呈乳化状态,即石油中的水份分散成微小水珠悬浮在石油中,由于石油中含沥青质、胶质、环烷酸等成份,并且很容易被吸附在水珠表面,而形成一层坚韧的乳化膜,阻碍各水珠间的相互吸引聚集,同时,由于水珠极小,所受重力也极小,难以克服石油对它的粘滞阻力,因而自然沉降极为缓慢,致使油水乳化液能长期保持稳定而不分离。电脱法的核心是根据斯托克定律,通过电破乳技术来实现乳化状的油水分离,它利用非均匀的高频脉冲强电场对悬浮在油中的小水珠进行极化,被极化的小水珠在高频电场中剧烈运动,产生内摩擦热,不断克服膜强度与其它被极化小水珠相结合形成大水珠,在重力作用下加速沉降,使油水分离。另外,加入适量的破乳剂,可降低乳化膜强度;提高石油温度,可降低原油的粘滞阻力,从而加快油水分离速度,改善脱水效果

  • 【讨论】大家来讨论瓦里安FACT及铂精MSF或其他仪器中类似标准校正的原理及实用效果

    [em03] 大家来讨论瓦里安FACT及铂精MSF或其他仪器中类似标准校正的原理及实用效果,我在这里介绍下PE的做法:分析标准空白(无待分析元素及干扰元素、酸度匹配)分析高含量干扰元素标液(高纯单标,不含待分析元素)分析待分析元素标液(高纯单标,不含干扰元素)然后在方法中标示三次分析,调用该方法按正常分析可得扣除干扰后待分析元素光谱图并计算含量。

  • 食品防腐剂的原理和标准

    食品防腐剂的原理和标准

    食品防腐剂是可以抑制微生物活动,防止食品腐败变质的一类食品添加剂。要让食品有一定的保藏期,就得采用一些措施来防止微生物的感染与繁殖。实践证明,使用食品防腐剂是达到上述目的的最经济、最有效和最简捷的方法之一。[img=,450,337]https://ng1.17img.cn/bbsfiles/images/2019/08/201908161449571264_718_3980922_3.jpg!w400x300.jpg[/img]食品防腐剂的原理,大概有以下三种:1.干扰微生物的酶系,破坏其新陈代谢,抑制酶的活性;2.使微生物的蛋白质凝固和变性,干扰其生存、繁殖;3.改变细胞浆膜的渗透性,抑制其体内的酶类和代谢产物的排除,导致其失活。[img=,450,337]https://ng1.17img.cn/bbsfiles/images/2019/08/201908161450258137_7009_3980922_3.jpg!w550x412.jpg[/img]我国对防腐剂的使用有着非常严格的规定,防腐剂必须符合下列标准:1.合理的使用对人体无害;2.不会影响消化道菌群;3.在消化道内可以降解为食物的正常成分;4.不会影响药物抗菌素的使用;5.对食品热处理时不会产生有害成分。[img=,450,337]https://ng1.17img.cn/bbsfiles/images/2019/08/201908161450453004_918_3980922_3.jpg!w400x300.jpg[/img]我国只批准了三十二种可以使用的食品防腐剂,皆都为低毒、安全性较高的品种。它们在被批准使用前经过了非常多的科学实验,有动物饲养、毒性毒理试验和鉴定,已证实对人体不会产生危害。只要食品生产厂商使用的食品防腐剂品种、数量和范围都严格控制在国家《食品添加剂使用卫生标准》(GB2760-96)的规定范围内,就不会对人体健康造成损害,人们大可放心食用。但令人遗憾的是,依旧有很多食品生产厂商违规乱用、滥用食品防腐剂。[img=,450,337]https://ng1.17img.cn/bbsfiles/images/2019/08/201908161451101627_7121_3980922_3.jpg!w690x517.jpg[/img]科技的发展,使越来越多的仪器被应用于食品防腐剂的检测。如高效液相色谱、[url=https://insevent.instrument.com.cn/t/Mp]气相[/url]色潜、毛细管电泳、[url=https://insevent.instrument.com.cn/t/3p][color=#3333ff]离子色谱[/color][/url]及近年来发展迅速的液相色谱串联质谱。最为理想的方法应该能够同时对多种食品防腐剂进行检测。深圳宇冠检测(UONE)根据多年的检测经验,利用色谱、光谱、质谱相结合的检测方法,能够为客户提供权威,专业,高效,快速的检测服务。

  • 玩具安规标准

    在仪器信息网里我看到了许多热心的同学,为广大安规及检测人员提供了不少的帮助,其中也包括我在内都受到了很大的帮助。在此我要感谢他们(尤其是发哥),当然,为了让更多的人能分享到最新版本的专业标准,我相信还需要更多的热心同学站出来,提供更多的标准。由于工作较忙,常出差在外,本人挂线时间可能难以保证,但我会尽快的将手上人的标准分享给需要的同学。也希望能有机会向各位高手学习切磋玩具安全问题。

  • 【讨论】光泽度仪器原理及光泽度常见问题列表

    光泽度仪仪器,做为测试材料表面光泽度仪器,应用到油漆涂料、装潢材料、建筑材料、塑胶材料、陶瓷制品、石材制品、竹木制品、皮革制品、薄膜纸张、印刷油墨等等众多的行业。对于选用仪器的用户,估计会患上“选择恐惧症”,因为光泽度仪器品牌众多,国产的,进口的,大的,小的,贵的几万,便宜的几百元,而且都宣称测试准确,使用方便等等优点。选择起来,确实难度非常大。从原理上我们来分析一下光泽度仪,也许有助于您在购买时的选择。首先,我们看一看光泽度仪器的原理 在规定光源和接收器张角条件下,样品在镜面反射方向的反射光光通量与玻璃标样在该镜面反射方向的反射光光通量之比。折射率为1.567的抛光黑色玻璃在几何角度为60度下,设定其镜面光泽度值为100(光泽单位)。 从原理我们可以看出,光泽度仪器是一个需要和标准板作为参考的对比测试量。标准板不准确,其他测量数据就免谈。标准板容易受到划伤及灰尘的影响,仪器在设计上,需要考虑标准板得到很好的保护。其次,光泽度仪器的测量数据的线性度 从光泽度仪器的原理,我们可以推断出,仪器测量数据的线性度是关系到仪器好坏的重要因素。如果光泽度标准板准确,例如标准板的光泽度是95.5,那么测量光泽度在95.5附近的材料,一般测量数据是比较准确的,但测量远离标准板的光泽度的材料,测量数据是否准确,就需要仪器测量系统的线性度是否优良来保证。仪器测量采集系统的线性度是光泽度仪器设计的一个难点。第三,恒流源及温度补偿 仪器的光源的稳定性及是否有温度补偿功能,也是仪器是否稳定的一种重要因素。我们知道,光源不同温度和不同供电电流的情况下,发光效率是不一样的。所以一般光泽度仪器的光源,都需要采用恒流源及温度补偿电路,才能保证光源的稳定性。恒流源一般的光泽度仪器都能做到,只是在恒流源的精度上有差别。但是温度补偿功能,只有少数的光泽度仪器具有该功能。第四:光泽度仪常见问题列表1:问:仪器用什么电源?  答:锂充电电池14500,一次充满电,可连续使用50小时以上。2:问:可以自动校准吗? 答:仪器放入底座,开机具有自动校准功能。3:问:自动校准过程中,是否能判断标准板出现问题? 答:仪器具有自检功能,仪器自诊断到故障,如标准板污损,划伤。4:问:仪器测试是否准确? 答:每台仪器都可以通过国家一级计量标准,可以和BYK AG4446直接比较数据。5:问:可以有误差补偿功能吗? 答:恒流源及温度补偿电路,仪器的光源稳定性是仪器测量稳定性的一个重要保证。6:问:仪器的统计功能怎样实现?  答:仪器具有LCD显示界面直接智能统计功能和PC端软件统计功能7:问:标准板是否可用普通纸巾布料清洁?  答:不行,标准板是光泽度仪器准确的基础,必须用专用的镜头布擦拭清洁。8:问:是否每次测量前必须要用标准板校准仪器?  答:不是必须,仪器具有补偿功能保证长期稳定性。9:问:仪器不用时,怎样保管?  答:放入“底座”中,即保护标准板,也保护光学镜片免受粉尘及划伤影响。

  • 【转帖】测不准原理的奠基人-海森堡

    德国物理学家。1901年12月5日生于维尔兹堡,1976年2月1日卒于慕尼黑。1923年在慕尼黑大学A.索末菲的指导下获博士学位,同年赴格丁根随N.玻尔研究3年。  1924年,海森伯到哥本哈根在N.玻尔指导下研究原子的行星模型。1925年解决了非谐振子的定态能量问题,提出量子力学基本概念的新解释。矩阵力学就是M.玻恩和E.P.约旦后来又同海森伯一道在此基础上加以发展而成的。海森伯于1927年提出“不确定性”,阐明了量子力学诠释的理论局限性,对某些成对的物理变量,例如位置和动量,永远是互相影响的。虽然都可以测量,但不可能同时得出精确值。“不确定性”适用于一切宏观和微观现象,但它的有效性通常只限于微观物理学。1929年,他同W.E.泡利一道曾为量子场论的建立打下基础 ,首先提出基本粒子中同位旋的概念。1932年获诺贝尔物理学奖。  他帮助建立了量子力学的现代科学,从中提出了著名的不确定性原理。他对流体力学的湍流理论、原子核理论、铁磁性、宇宙线和基本粒子理论都有重要贡献;第二次世界大战后,他是设在卡尔斯鲁厄的西德第一台核反应堆的规划者。  在海森伯的哲学著作和方法论著作中可以看到,他深受N.玻尔和A.爱因斯坦的影响。从前者,他导出了科学发明的社会和对话性质的概念;宏观物理学和微观物理学之间的对应原理(实用主义和模型—理论的连续性);经典物理学的永恒性,但不一定有普适性;在微观物理学中,科学观测者的作用是相互的而不是被动的,因而微观物理学的定理有按照上下文而定的特点。从爱因斯坦那里,他导出自然界的中心规律的准则一定是简单的这一概念;科学的唯实论(即科学描写自然本身,而不仅是自然怎样可以被利用);还有理论应载满科学的各种观测。他也是玻尔的互补性哲学的合著者。在后期工作中,他构想自然界的中心规律包含一组普适的对称素,这些对称素对于各种不同的微粒物质系统而言,可以用一个数学方程来表达。作为社会活动家,在第二次世界大战后,他积极促进和平利用核能。1957年,他带领其他德国科学家反对用核武器武装西德军队。1954年,他曾是日内瓦欧洲核研究委员会(CERN,以后改称海森伯早年在慕尼黑大学A.索末菲指导下攻读物理学。他和他的同班同学 W.泡利是终身好友,也是合作者。他在1923年完成了关于流体流动中的湍流的博士论文。其后,海森伯跟着泡利到了格丁根大学,在M.玻恩指导下进行研究工作。1924年秋,他到了哥本哈根的理论物理研究所,在玻尔指导下工作。   海森伯对于原子的玻尔行星式模型很感兴趣,他对于这一模型的局限性的理解,促使他为建立一个新模型而寻找理论基础。玻尔的概念,在1913年以后被认为是旧量子论的核心部分,这一概念认定各电子在确定的绕核轨道上作经典的运动,并把量子的约束视为外加的;用此模型后,可使计算所得结果符合实验数据。作为已有实验的总结,和作为刺激进一步研究而言,玻尔的原子模型是很成功的,而且得到了高度评价,但新的研究结果越来越难以和这一简单模型计算所得相符。   1925年6月,海森伯由于害了花粉热病而在北海的黑尔戈兰岛休养。他在岛上解决了一个重要的物理问题,即如何求解非谐振荡器的稳定(离散)能态。由于这一问题和简单行星型原子问题相类似,所以,他所用的解法必然可以用来指导发展原子系统的量子力学(量子力学是处理有离散能态——如原子光谱所显示的离散能态——和其他形式的量子化能量,以及原子系统所显示的稳定现象的科学)。海森伯的这些结果是在几个月后以《量子论关于动力学和力学关系的新解释》为题发表在《物理学时报》上的。在这篇论文中他提出了对力学基础概念的一种最新解释的建议。   海森伯处理这一问题的观点和玻尔处理同一问题的观点相差很大,甚至与玻尔观点和19世纪信条的差别基本相仿。在原子中,粒子与粒子运动的路线都是测不出来的,海森伯情愿放弃这种离散的粒子在预定的路线上运动的思想,改用直接处理实验事实的理论,使量子条件不再是事先特设的约定,而是理论的结论。物理变量应该用一组数字来表示;在爱因斯坦关于相对论(1905)的论文影响下,他使这些变量不再代表隐藏、不可接近的结构,而代表可以观测(或可以测定)的量。玻恩看到这组数字服从矩阵代数的运算规律,玻恩、P.约旦和海森伯就把这一新理论用矩阵分析这一数学分支来表达,而新量子论就变成了矩阵力学。量子论的每一个矩阵 (一般是无限维度)是一个物理变量的一组可能的特定值,矩阵的每一项都能导出有关能态的发生概率和有关能态间的跃迁概率。海森伯利用了新的矩阵力学来解释氦原子的二重性光谱(亦即把两种形式的光谱叠加起来,其中一种光谱的两个电子的自旋平行,而另一种则是反平行的)。用这种方法,氢分子的光谱也应有类似的双重性。他和其他人在一起研究了不少原子光谱和分子光谱、铁磁现象和电磁性态。新量子论还有各种不同的重要形式,它们分别是由E.薛定谔在1926年提出的波动力学和P.A.M.狄拉克提出的变换论。   1927年,海森伯发表了不确定性原理。他在论文上发表的不确定性原理的形式,是为了说明矩阵力学如何能用经典力学大家直觉所能知道的概念来解释。如果g为电子在某一特定状态中的位置坐标,而"则为其动量,假定g和P可以在许多电子上独立测定,则海森伯证明:式中4Q为Q的测定的标准偏差,p为p的测定的标准偏差,而h为普朗克常量(等于 6.626176x10—21尔格秒)。不确定性原理是量子物理学的特性;这些原理说明,对任何一对不能对易的(即共轭的)变量而言,这是一个强加的和必须服从的理论限制条件。例如,分别代表位置和动量的两个矩阵就是这样一对共轭变量;在这种情况下,一种量的测量精度一定影响另一种量的测量精度。所有科学家都认识到不确定性原理的巨大意义;但怎样从物理学上理解它还无定论:它是不是为了使用直觉的经典的(或互补的)图像来解释量子系统而产生的?它是不是另外一种新的量子统计学的原理?从某种意义上讲,它是不是还通过所选用数学模型的一些特殊性质,来描写某些个别量子系统的特性?这些到现在还是争论不休的问题。玻尔认为,这一原理是用来说明一个量子系统的互补图像的,这些量子系统在经典的直觉空间内可以是一个粒子,也可以是一个波包;海森伯原来是用这原理说明量子系统的非直觉性质的,这种量子系统当然有别于经典系统。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制