当前位置: 仪器信息网 > 行业主题 > >

电荷电压转换器

仪器信息网电荷电压转换器专题为您提供2024年最新电荷电压转换器价格报价、厂家品牌的相关信息, 包括电荷电压转换器参数、型号等,不管是国产,还是进口品牌的电荷电压转换器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电荷电压转换器相关的耗材配件、试剂标物,还有电荷电压转换器相关的最新资讯、资料,以及电荷电压转换器相关的解决方案。

电荷电压转换器相关的资讯

  • 德国研制出世界最小光电信号转换器
    光纤网络是现代信息传递的基础,光电信号转换器是其核心,德国卡尔斯鲁尔研究中心的科研人员研制出一种世界最小的光电信号转换器。其内部结构为平行排列的两个微小黄金电极,长度约29微米,两电极之间的间隙约为0.1微米,整个结构直径不到人头发的1/3,两电极之间引入变化的电压信号,其频率与传输的数据信号相关,在电极中间充填有特殊的塑料材料,其对光线的折射率随所施加的电压发生改变。在两电极的间隙中导入连续光束后,会激发出表面电磁波(表面等离子体),这种表面电磁波受到施加与电极间隙中充填的塑料材料中的电压信号的调制,而经过调制的表面电磁波又可影响穿过间隙的光束的相位,实现信息通过施加于两电极的电压信号调制光束而转换成光信号在光介质中的传输。经过实验验证,这种光电转换器可实现的数据转换速率达到40G比特/秒,可工作在目前宽带光纤网常用的红外光波长范围内(波长1480-1600纳米),工作温度可达85摄氏度,是目前世界上最小型化的高速光电信号(相位)转换器,可用目前成熟的微电子技术手段进行规模化生产,并集成在微电子芯片中,可实现信息的高速率低能耗传输。
  • 虹科车载以太网媒体转换器合集——带你走进物理层TX与T1的双向转换
    虹科车载以太网媒体转换器合集——带你走进物理层TX与T1的双向转换总述:Media Converter可在车载以太网连接 (100BASE-T1或1000BASE-T1或10GBASE-T1)和任何具有带RJ-45连接器的标准以太网网络接口卡 (NIC) 的设备之间建立物理层转换。在转换过程中,设备不存储或修改任何数据包,并具有高可靠性。 一个镀锌钢板的便携外壳,加上方便配置DIP开关,使用户可以毫不费力地与转换器交互。它的设计使它便于携带,易于安装在测试架上。金属外壳使其具有坚固的IP20保护性能。是理想的智能、易于管理的解决方案,协助高效处理车载以太网的工作。它使用车规级连接器,满足在下一代车辆系统中测试与验证最先进的通信技术解决方案日益增长的需求。Media Converter产品亮点1. 100BASE-T1 &bull 全双工100BASE-T1 (1 x非屏蔽双绞线-UTP) 快速转换为100BASE-TX&bull 应用BCM 100BASE-T1 PHY&bull 2 x DIP开关,便于配置 (Master/Slave HalfOut/FullOut) &bull 2 x状态指示灯 (包括Linkup和Data数据指示灯)2. 1000BASE-T1 &bull 应用Marvell 88Q2112 A2 PHY, 兼容100BASE-T1&bull 1 x RJ-45端口,用于100BASE-TX/1000BASE-TX&bull 1 x 100/1000BASE-T1端口,不同接口:MATEnet、HMTD (若ECU端带有四孔HMTD接口或需要其他接口,可以修改线束来匹配)&bull 4 x DIP开关,便于配置 (Master/Slave 100/1000 Mbit/s 传统/IEEE模式 帧生成)&bull 状态指示灯&bull MQS连接器&bull 输入信号用于启用“强制Slave模式”和“强制链路断开”&bull 输出信号用于通知“链路连接状态”3. 2.5/5/10GBASE-T1&bull 允许通过2.5/5/10GBASE-T1多千兆的车载以太网端口轻松地连接到ECU&bull 兼容车载以太网的PHY 88Q4364 2.5G/5G/10GBASE-T1 IEEE 802.3ch&bull 1 x H-MTD端口,用于10GBASE-T1&bull 1 x 标准 SFP+模块 (10GBASE-T,光学,直接连接电缆)&bull 4 x 状态指示灯&bull 4 x DIP开关,便于配置 (Master/Slave 10GBASE-T1/other 2.5GBASE-T1/5GBASE-T1)&bull I/O信号,易于与自动化系统接口&bull 输入信号用于启用“强制Slave模式”和“强制链路断开”&bull 输出信号用于通知“链路连接状态”Media Converter应用领域1. 具体用途有:激光雷达、相机等传感器数据采集;自动化在环HiL测试;下线测试EOL;DV和PV试验等。2. 针对性案例:车载以太网接口的传感器,通过转换器与PC上位机连接,进行数据传输。
  • 扩展即时处理功能:安捷伦添加均衡器至PCIe数字转换器
    仪器信息网讯 安捷伦科技近日宣布,PCIe数字转换器家族的成员将会拥有一项新的均衡器即时处理功能。新的均衡信号减少了随机的噪声效应,提升了信噪比、分辨率与动态范围。仅需单一触发器的一次采集,快速采样率就能达到3.2GS/s,而整个过程无需使用等效时间采样技术。由于均衡器的一次记录均衡了多达520,000个触发器,而该功能的自我触发模式有效的最小化了应用的同步模式噪音,安捷伦PCIe数字转换器的通用性得到了显著提升。    均衡器功能与新近推出的峰值检测和数字转换器即时处理功能一道,为安捷伦的用户提供完整而又颇为灵活的工具组合,使得用户的应用需求尽可能达到最佳分析效果。随数字转换器附赠的软件驱动可以让应用在多种信号处理功能间轻松转换。8位U5309A和12位U5303A的PCIe高速数字转换器现已配备均衡器功能。  &ldquo 由于我们频繁发布附加的即时处理功能,用户可以从不断增长的测量吞吐量中获益,&rdquo 安捷伦高速数字转换器运营经理DidierLavanchy说。&ldquo 通过使用U5340A FPGA开发套件,用户可以快速处理他们的开发需求。&rdquo
  • 催化转换器的回收:用于铂族金属分析的4个快速手持式荧光光谱仪技巧
    催化转换器是一种有助于汽车产生更清洁排放物的装置。催化转换器通过使用催化剂(一种加速化学反应的基质)将排气系统中的有害气体转化为污染较少的气体。这种设备还可以通过另一种方式 — 回收利用,起到保护环境的作用。催化转换器的回收除了能减少废物外,在经济性上也有所帮助,因为催化转换器中含有稀有金属。催化转换器内的催化剂成分通常是铂(Pt)、钯(Pd)和铑(Rh)的组合,这些都是稀有且昂贵的铂族金属(PGM)。通过对催化转换器废料进行适当的分类和处理,可将这些金属回收并重新用于制造新的催化转换器或其他设备。使用手持式荧光光谱仪识别催化转换器废料中的铂族金属回收工厂需要一种快速、准确的方法,在回收过程的多个步骤中识别这些令人们趋之若鹜的金属。手持式荧光光谱仪是一种有用的工具,可以在现场对催化转换器废料进行元素分析,以进行快速分拣和定价。虽然像Vanta系列这样的手持式XRF光谱仪可以快速提供答案,但遵循最佳做法以确保分析仪充分发挥其固有性能也比较重要。在回收厂,一名技术人员正在使用手持式XRF分析仪检测催化转换器废料要优化您的Vanta手持式XRF光谱仪,以便在催化转换器回收的过程中更快地检测并测量铂、钯和铑等元素,请采用以下快速技巧:检查您的仪器窗口首先,检查您的手持式XRF光谱仪上是否安装了正确的窗口。例如,我们根据Vanta型号和X射线管类型提供了不同的仪器窗口。另一个需要考虑的重要因素是窗口的状况。窗口是否完好无损? 您要检查窗口是否有任何刺破或撕裂的迹象。如果看到有孔洞,就该更换窗口了。要使分析仪正常工作,保持窗口清洁至关重要。在检测之前,请确保用酒精或湿巾清洁窗口。正确制备用于检测的样品为了使XRF分析获得具有代表性的准确结果,我们建议您通过研磨、筛滤、匀质处理方法,对催化剂废料进行适当的制备。将分析仪与便携式Vanta工作站结合在一起使用,在完全联锁的系统中测量铂族元素。按等级对废料进行分类在匀质处理催化剂废料之前,回收商应使用Vanta分析仪对废料进行分类和分离,将相同类型的材料放在一起。催化剂废料分为三个或四个等级,例如:氧传感器三路转换器双向转换器柴油微粒过滤器(DPF)核查检测时间在检测汽车催化转换器废料中的铂族元素时,确保使用正确的检测时间至关重要。以下是一些建议使用的检测时间:快速扫查,以探测铂、钯、铑:光束1 — 最长15秒。这是进行基本分类和确定是否存在铂族元素及钽(Ta)和硒(Se)添加物的不错选择。标准检测,以探测铂、钯、铑:光束1 — 最长30秒,光束2 — 最长15秒。这种检测方式非常适合于完全制备送至精炼厂的样品。全面扫查,以探测到所有元素:光束1 — 最长45秒,光束2 — 最长15秒。可用于优化精炼厂内的回收过程。建议Vanta手持式XRF光谱仪在测量铂、钯和铑元素时使用的检测时间随着全球对铂族金属需求的快速增长(分析师预测全球铂族金属市场将以4.38%的复合年增长率增长),催化转换器回收商需要高效工作,才能满足这种需求。
  • 国际首次!我科学家“拍摄”到光生电荷转移演化全时空图像
    太阳能高效利用是洁净能源研究的科学“圣杯”。10月12日,《自然》在线发表了一项关于太阳能光催化研究的重要进展。通过综合集成多种可在时空尺度衔接的技术,中国科学院大连化学物理研究所李灿院士、范峰滔研究员等科研人员,对光催化剂纳米颗粒的光生电荷转移进行了全时空探测,在国际上首次“拍摄”到光生电荷转移演化全时空图像。“这项研究为突破光解水催化剂电荷分离的‘瓶颈’,提供了新的认识和研究策略。”李灿强调。太阳能光催化反应可以实现分解水产生氢气、还原二氧化碳产生太阳燃料,有望为实现“双碳”目标提供重要的解决途径,受到全世界关注。“虽然在过去半个世纪的光催化研究中,人们在光催化剂制备和光催化反应研究方面做出了巨大努力,但由于光催化反应中光生电荷的分离、转移和参与化学反应的时空复杂性,人们对该过程的基本机制一直不清楚。”李灿坦言。光催化过程中,光照射到催化剂上时,催化剂内部会产生光生电荷,即光生电子和空穴。光生电子和空穴需要从微纳米的催化剂颗粒内部分离,并转移到催化剂的表面,启动化学反应。光催化过程的核心科学挑战在于如何实现光生电荷的高效分离和传输。由于这一过程跨越从飞秒到秒、从原子到微米的巨大时空尺度,揭开这一过程的微观机制极具挑战性。“长期以来,我们团队一直在致力于解决这一问题。在这项研究中,我们在时空全域追踪了光生电荷在光催化剂纳米颗粒中分离和转移演化的全过程。”李灿说。为更好地了解纳秒范围内光生电荷在催化剂内部的分离机制,研究人员使用了时间分辨光发射电子显微镜,发现了光生电子在亚皮秒时间尺度可以从一个表面移动到另一个表面。随后,为了直接观察光生电荷的转移过程,研究人员进行了瞬时光电压分析,发现随着时间尺度从纳秒到微秒的发展,空穴逐渐出现在催化剂表面含有缺陷的晶面。“通过集成结合多种先进的表征技术和理论模拟,包括时间分辨光发射显微镜、瞬态表面光电压光谱和表面光电压显微镜等,像接力赛一样,第一次在一个光催化剂颗粒中跟踪电子和空穴到表面反应中心的整个机制。”李灿说,时空追踪电荷转移的能力将极大促进对能源转换过程中复杂机制的认识,为理性设计性能更优的光催化剂提供了新的思路和研究方法。“这是基础研究的重大突破。未来,这个成果有望促进太阳能光催化分解水制取太阳燃料在实际生活中的应用,让梦想逐渐变为现实,为我们的生产和生活提供清洁、绿色的能源。”李灿说。
  • 科学家首次“拍摄”到光催化剂光生电荷转移演化的全时空图像
    太阳能光催化反应可以实现分解水产生氢气、还原二氧化碳产生太阳燃料,是科学领域“圣杯”式的课题,并受到全世界关注。在过去半个世纪的光催化研究中,科学家在光催化剂制备和光催化反应研究方面做出了努力,但光催化反应中光生电荷的分离、转移和参与化学反应的时空复杂性,因而关于该过程的基本机制一直不清楚。  日前,中国科学院院士、中科院大连化学物理研究所研究员李灿,研究员范峰滔等揭开了这一谜团。研究人员综合集成多种可在时空尺度衔接的技术,对光催化剂纳米颗粒的光生电荷转移进行全时空探测,揭示了复杂的多重电荷转移机制,“拍摄”到光生电荷转移演化全时空影像。该研究明确了电荷分离机制与光催化分解水效率之间的本质关联,为突破太阳能光催化反应的“瓶颈”提供了新的认识和研究策略。10月12日,相关研究成果发表在国际学术期刊《自然》(Nature)上。  光催化分解水的核心科学挑战在于如何实现高效的光生电荷的分离和传输。由于这一过程跨越从飞秒到秒、从原子到微米的巨大时空尺度,揭开这一全过程的微观机制颇具挑战性。“长期以来,我们的团队前赴后继致力于解决这一问题,在这个工作中,集成多种先进技术和理论,在时空全域追踪了光生电荷在纳米颗粒中分离和转移演化的全过程。”李灿说。  光催化过程中,光生电子和空穴需要从微纳米颗粒内部分离,并转移到催化剂的表面,从而启动化学反应。范峰滔介绍,在如此微小的物理尺度上,光催化剂往往缺乏分离电荷所需的驱动力,因此,实现高效的电荷分离需要一个有效的电场。为了在光催化剂颗粒中形成一个定向重排的电场,科研人员将一种特定的缺陷选择性地合成到颗粒的特定晶面,有效促进了电荷的分离。为了更好地剖析纳秒范围内高效电荷分离机制,科研人员使用了时间分辨光发射电子显微镜,发现了光生电子在亚皮秒时间尺度就可以选择性的转移到特定晶面区域,且电子在超快的时间尺度上可以从一个表面移动到另一个表面。  “长期以来光催化中的主导电荷分离机制很难解释跨越如此大空间尺度超快电荷转移。”范峰滔说,“我们将超快的电荷转移归因于新的弹道传输机制,其中载流子以极高的速度传播,在与晶格发生作用之前就已经跨越了整个粒子。”  进一步,为了直接观察电荷转移过程,研究人员进行了瞬时光电压分析,发现随着时间尺度从纳秒到微秒的发展,空穴逐渐出现在含有缺陷的晶面。研究表明,晶面上光生电子和空穴的有效空间分离是由于时空各向异性的电荷转移机制共同决定的,这一复杂机制可以通过各向异性晶面和缺陷结构来可控的调整。  “通过集成结合多种先进的表征技术和理论模拟,包括时间分辨光发射显微镜(飞秒到纳秒)、瞬态表面光电压光谱(纳秒到微秒)和表面光电压显微镜(微秒到秒)等,像接力赛一样,第一次在一个光催化剂颗粒中跟踪电子和空穴到表面反应中心的整个机制。”李灿说,“时空追踪电荷转移的能力将促进对能源转换过程中复杂机制的认识,为理性设计性能更优的光催化剂提供了新的思路和研究方法。”  “未来,这一成果有望促进太阳能光催化分解水制取太阳燃料在实际生活中的应用,让梦想逐渐变为现实,为我们的生产和生活提供清洁、绿色的能源。”李灿说。  该项工作得到国家自然科学基金委“人工光合成”基础科学中心项目、中科院稳定支持基础研究领域青年团队计划、国家重点研发计划及大连化学物理研究所创新基金等的支持。
  • 输韩LED灯转换器检测标准落定
    韩国上月发布公告称,将修改电子产品安全标准及运用要领,其中列明LED照明器具要求。这一改动将使东莞、中山为主的中国LED企业出口受到影响。  日前,省内外10名专家和10家LED龙头企业有关负责人聚集市科技博物馆,参加了“G/TBT/N/KOR/234、235号通报评议会”。评议会由中国WTO/TBT国家通报资讯中心主办,省质监局WTO/TBT通报咨询研究中心和市质量技术监督标准与编码所承办。  10月1日,韩国发出了关于电子安全标准的G/TBT/N/KOR/234、235号通报,这两项通报拟随着国际电工委员会(IEC)对照明电气电磁兼容性要求的改变而修订其国内相关标准,同时将LED照明器具单列出来,明确其具体要求。而据专家介绍,以往的相关标准并没有将LED等单独列出来做严格的规定。  广东省是我国LED产品的主要省份,其中东莞和中山等地均具有相当规模的LED产业集群。据不完全统计,东莞企业的年出口额达到10亿元,约占全国总量的20%。勤上光电、百分百科技等龙头LED企业,均相继在韩国设立销售处。  按照WTO框架下《技术性贸易壁垒协定》(TBT协定)中透明度原则,各成员可通过通报咨询机构对拟议中的技术性措施提意见,时间限定为60天。  因此,专家和各企业代表通过评议会就韩国拟修改的技术标准提出了意见和建议。不少成员认为,标准虽然对新增LED灯用转换器设置了技术要求,但是没有相应的检测方式,这可能是一大漏洞。主办方表示,将汇总这些意见后向韩国方面提交,以最大化方便LED出口企业。  韩国拟修改具体内容  1、k00015(照明器械类似器械的电磁干扰测试方法及测试限值)  2、K61547(普通照明器械——电磁兼容抗扰度要求事项)
  • 华羿微电“一种低栅极电荷屏蔽栅MOSFET器件及其制作方法”专利获授权
    天眼查显示,华羿微电子股份有限公司近日取得一项名为“一种低栅极电荷屏蔽栅MOSFET器件及其制作方法”的专利,授权公告号为CN117476770B,授权公告日为2024年7月19日,申请日为2023年11月16日。背景技术沟槽型功率MOS器件能够在节省器件面积的同时得到较低的通态电阻,因此具有较低的导通损耗,已经在中低压应用领域全面取代平面式功率MOS器件。但是采用密集而精细的沟槽栅后,由于沟道面积的增加导致栅极电荷增大,从而影响到器件的高频特性和开关损耗。特别是随着产品应用领域朝着薄,轻,小方向发展,要达到上述目的,就需要提升整个系统的开关频率,这样就导致普通的沟槽型功率MOS器件在开关特性的缺点表现的越来越明显,如何提高器件的开关速度和开关损耗以适应节能以及高频应用的需求具有十分重要的意义。造成开关损耗大和开关速度慢的主要原因是由于沟槽型功率MOS器件在栅-源之间和栅-漏之间存在有较大的寄生电容,即栅-源电容Cgs和栅-漏电容Cgd。功率MOS管在开和关两种状态转换时,Cgd的电压变化远大于Cgs上的电压变化,相应的充、放电量Qgd较大,所以Qgd对开关速度的影响较大。如华虹NEC在中国专利(专利申请号:200510026546.5)中提出了厚底栅氧技术(Thick Bottom Oxide),从而达到降低Cgd的目的。但是该技术的不足在于Cgd只能降低约30%,仍不能满足节能以及高频应用的需求。因此,如何进一步显著的降低栅漏寄生电容,而不影响器件导通电阻,从而大大提高沟槽型功率MOS器件的高频特性和降低开关损耗成为本技术领域人员的努力方向。而基于电荷平衡原理的SGT(屏蔽栅型)MOSFET器件在很大程度上改变了动态特性和导通电阻之间的关系,使得器件FOM值更低(将导通电阻(Rdson)和栅电荷(Qg)的乘积最优值(FOM)作为评价器件性价比的标准)。发明内容本发明公开了一种低栅极电荷屏蔽栅MOSFET器件及其制作方法,将器件有源区部分沟槽区域的源极多晶硅或者栅极多晶硅通过接触孔与源极金属层相连,使得该部分区域不参与整个器件的导通,能够有效降低器件的栅极电荷,同时由于沟槽下方屏蔽栅的存在可以保障器件有足够击穿电压。该器件在中高压领域具有极大优势,当器件有源区50%的区域采用此种技术将使得器件的FOM最优值降低~46.5%(以150V耐压器件为例),从而最终使得器件最优值FOM降低并且拥有更高的性价比。该器件的制作方法能够很好的与现有屏蔽栅型MOSFET器件制造工艺兼容,因此不会带来不可实现工艺的技术瓶颈,具有很高的转化价值。
  • 穿越“电荷纷飞”的寒冬,领略精准称量的“温暖”
    寒冷干燥的冬季,我们在日常生活总会遭到一些现象的“亲切问候”:清早的头发,总是越梳越乱;脱毛衣时,经常能听见人心惶惶的噼里啪啦声;衣服上的灰尘很多,却怎么也拍不掉;触摸门把手、窗户框等金属器物,甚至跟人握手时,手总会感到电击似的刺痛̷̷有时候这些无法逃避的日常事情真是让人烦恼不堪,痛苦不已。 原来这都是静电惹的祸——在我国大部分地区的冬季,由于空气湿度小,化纤衣物、地毯、坐垫等受到摩擦,就会产生静电。如果静电聚集达到一定的电压,人接触时,就会产生“触电”现象。 关于静电的常识你了解多少? 所谓静电,就是一种宏观上暂时处于静止状态的电荷,当这些电荷聚集在某个物体中或表面上的时候就形成了静电。由于电荷分为正电荷和负电荷两种,所以静电现象也分为正静电和负静电。但无论是哪种静电,当带静电的物体接触零电位的物体或与其有电位差的物体时,都会发生电荷转移,发生放电现象。 在我们的日常生活和工作中,各种原因都会导致静电的产生。最常见的原因是两种材料的接触和分离,比如人的走动,物品的搬运,工具的放置等。典型起电的方法就不同的物体相互摩擦,摩擦产生的电荷在导体上可迅速流失,而在诸如化纤、毛织物等不导电的绝缘体上则不会流失,形成静电。不要小看这些静电,静电荷积聚累积静电压,并产生静电引力,一般来说,这个引力对日常生活并无大碍,但是如果在制药厂或无菌尘的生化实验室等对环境要求苛刻的场所,静电会吸附尘埃导致样品纯度下降,同时干扰相关精密仪器的正常工作,对实验或生产结果造成不良影响。 此外,如果大量的静电荷积聚可造成巨大的静电压——在干燥的季节若穿着化纤衣服和绝缘鞋在绝缘的地面行走,人体身上的静电压可达几千伏甚至几万伏,而橡胶和塑料薄膜行业的静电更是可高达十多万伏。静电高压往往会引起火花放电,同时释放出能量,如果发生在加油站、造纸厂、粮食加工厂等易燃易爆的气体、蒸汽或粉尘存在的场合中,很有可能引发火灾或爆炸,酿成不堪设想的巨大灾祸。 在实验室称量中不得不说的那些事 如前所述,恼人的静电作为一种常见的物理现象,经常会使人抓狂不已,在实验室称量中也不例外。绝大多数情况下,静电会对称量过程本身或实验结果产生不良影响。因此,怎样将静电的影响降至最低,在实验室中具有重要的研究意义。 A. 静电——形影不离的“称量好基友” 通常,在称量物和诸如防风罩或外壳等不与秤盘相接的天平固定部件上会附着静电荷,从而在它们之间形成一个静电场,导致静电干扰力的产生,这很有可能会引起称量值读数的变化,小到毫克,大到克的范围内。对于天平这种精密的称量仪器来说,这显然是不能接受的。 然而,在实际操作中处理或传送样品时,摩擦过程是不可避免的,比如称量物本身的摩擦、称量物在容器或皮重容器上面的摩擦、干燥箱内空气对流时的摩擦、托架上过滤器的摩擦̷̷而发生摩擦的大多数都是如塑料、玻璃、过滤介质、粉末等导电性不高的材料,因而接收的电荷只能极其缓慢地传给外界环境。所以说静电或多或少总是存在的。 在称量时,如果不采用任何除静电的措施,我们除了要测量出错误的绝对称量值以外,更重要的是还要通过较大的称量值偏差和很差的重复性估算出称量结果。由于静电荷之间的相互作用力分为吸引力和排斥力两种,所以称量结果的偏差也有正值和负值之分。如果是吸引力作用,称量物显得比实际上的要轻,排斥力作用则反之。 B. 空气湿度的影响 对于形形色色的电子天平来说,称量材料的静电特性主要取决于居支配地位的空气湿度。之所以干燥的冬季比潮湿的夏季更容易产生静电,正是因为当空气的相对湿度在65~70%以上时,物体表面往往会形成一层极微薄的水膜,使表面电阻率大大降低,静电荷就不易积聚;而如果相对湿度降至45%或更低时,如同在我们所处纬度气候条件下的冬季或空调室内环境,静电荷不容易逸散,就有可能形成高电位。因此保持工作环境的相对湿度是实验室中最简单的预防静电产生的方法。 C. 辅助装置 事实上,空气湿度增大虽然能够降低静电的影响,但是过大的湿度也会导致另外的不良结果,如样品受潮变质。归根结底,通过控制空气湿度来消除静电不是长久之计。随着科学技术的发展,人们通过进行不同的静电与称量试验,尝试了在静电产生过程中进行干预的各种方法,主要都是关注在天平上安装辅助装置的问题。 为了增强空气电离,人们曾经设想了在防风罩里安装一种放射性金属的辐射器,起到对静电荷的中和作用。但是后来考虑到放射性辐射的危险性,再加上设备的高成本,这个计划就胎死腹中;又比如,使用基于电离法的反静电枪,在高压电源电极上进行电晕放电,或通过离子轰击使物体表面中和,并进行强制通风,可有效减少电荷积聚。但是该方法如果操作不当很容易引发触电危险。 另外,还有一些规避静电源的一些办法,比如实验人员禁止穿着化纤外衣,不要使用塑料、玻璃等易产生静电的材料作为容器来装盛样品等。 根除恼人静电,称量无懈可击! 读到这里,有人肯定要问除静电到底有没有安全省事的好办法啊?别着急,小编马上来给大家开开眼界。 (登陆“腾讯视频”搜索“EX5准微量天平”观看天平除静电实验视频) 视频中的这款天平堪称奥豪斯天平家族里身份最高大上的一款——Explorer准微量天平自动风罩门型号。为实现更加自动化的精准称量,此款天平设计了最大程度减震的自动风罩门,用户无需放下手中的样品,只需在感应器上方轻轻一挥,即可开启风罩门。特别值得一提的是,天平内部自带静电消除器,不断释放正负离子,来平衡被称量样品上的离子,从而消除静电,保证称量的准确性。 那么对于那些不带静电消除器的天平又如何摆脱静电的困扰呢?作为一家百年衡器品牌,奥豪斯早就为您想好啦!看到下面这幅图了吗?它可不是我们的T81电子称重仪表哦,而是奥豪斯专用的独立静电消除器ION-100A,跟我们的电子天平家族可是绝配哦!至于它有什么高端过人之处,快跟随小编一起来瞧瞧吧!A. 直流电晕放电在传统交流电晕放电过程中,单个放电针按一定时间间隔释放单一类型的正离子或负离子。离放电针越近,消除的静电才越多。而ION-100A采用直流电晕放电,两极放电针持续释放1×106/cm3正、负离子来平衡附着于样品上的电荷,且拥有10~40cm的宽泛距离来充分消除静电; B. 无风扇技术传统放电方法,由于设计功能上的局限,需要通过通风设备来吹走样品上附着的电荷,而ION-100A放电针采用无风扇技术,可消除容易上99%的静电,确保样品的完整; C. 结构设计,巧夺天工ION-100A拥有紧凑的机构,无需占用过多的实验台面空间,其高度和角度可根据需要调节到最佳位置。同时放电针持久耐用,可轻松替换,工作时限可达15,000个小时; D. 标配内置,选件伴侣Explorer准微量天平系列的自动门型号标配内置静电消除器,其他系列天平可外接选配此产品。相信您看了下面的视频一定会有更深刻的印象:(登陆“腾讯视频”搜索“天平静电消除器”观看静电消除器实验视频)怎么样,除静电的过程是不是变得安全而又简单?如果您想了解更多相关案例以及奥豪斯天平家族的产品信息,或正在寻求更专业细致的选型指导,请及时联系我们,我们的工程师们将会在第一时间为您提供专业的解答和建议!参考文献:托马斯 佩尔奇 [德国],王文革. 分析称量时的静电影响[J]. 衡器,2003年第1期
  • 穿越“电荷纷飞”的寒冬,领略精准称量的“温暖”
    寒冷干燥的冬季,我们在日常生活总会遭到一些现象的“亲切问候”:清早的头发,总是越梳越乱;脱毛衣时,经常能听见人心惶惶的噼里啦声;衣服上的灰尘很多,却怎么也拍不掉;触摸门把手、窗户框等金属器物,甚至跟人握手时,手总会感到电击似的刺痛̷̷有时候这些无法逃避的日常事情真是让人烦恼不堪,痛苦不已。 原来这都是静电惹的祸——在我国大部分地区的冬季,由于空气湿度小,化纤衣物、地毯、坐垫等受到摩擦,就会产生静电。如果静电聚集达到一定的电压,人接触时,就会产生“触电”现象。 关于静电的常识你了解多少? 所谓静电,就是一种宏观上暂时处于静止状态的电荷,当这些电荷聚集在某个物体中或表面上的时候就形成了静电。由于电荷分为正电荷和负电荷两种,所以静电现象也分为正静电和负静电。但无论是哪种静电,当带静电的物体接触零电位的物体或与其有电位差的物体时,都会发生电荷转移,发生放电现象。 在我们的日常生活和工作中,各种原因都会导致静电的产生。最常见的原因是两种材料的接触和分离,比如人的走动,物品的搬运,工具的放置等。典型起电的方法就不同的物体相互摩擦,摩擦产生的电荷在导体上可迅速流失,而在诸如化纤、毛织物等不导电的绝缘体上则不会流失,形成静电。不要小看这些静电,静电荷积聚累积静电压,并产生静电引力,一般来说,这个引力对日常生活并无大碍,但是如果在制药厂或无菌尘的生化实验室等对环境要求苛刻的场所,静电会吸附尘埃导致样品纯度下降,同时干扰相关精密仪器的正常工作,对实验或生产结果造成不良影响。 此外,如果大量的静电荷积聚可造成巨大的静电压——在干燥的季节若穿着化纤衣服和绝缘鞋在绝缘的地面行走,人体身上的静电压可达几千伏甚至几万伏,而橡胶和塑料薄膜行业的静电更是可高达十多万伏。静电高压往往会引起火花放电,同时释放出能量,如果发生在加油站、造纸厂、粮食加工厂等易燃易爆的气体、蒸汽或粉尘存在的场合中,很有可能引发火灾或爆炸,酿成不堪设想的巨大灾祸。 在实验室称量中不得不说的那些事 如前所述,恼人的静电作为一种常见的物理现象,经常会使人抓狂不已,在实验室称量中也不例外。绝大多数情况下,静电会对称量过程本身或实验结果产生不良影响。因此,怎样将静电的影响降至最低,在实验室中具有重要的研究意义。 A. 静电——形影不离的“称量好基友” 通常,在称量物和诸如防风罩或外壳等不与秤盘相接的天平固定部件上会附着静电荷,从而在它们之间形成一个静电场,导致静电干扰力的产生,这很有可能会引起称量值读数的变化,小到毫克,大到克的范围内。对于天平这种精密的称量仪器来说,这显然是不能接受的。 然而,在实际操作中处理或传送样品时,摩擦过程是不可避免的,比如称量物本身的摩擦、称量物在容器或皮重容器上面的摩擦、干燥箱内空气对流时的摩擦、托架上过滤器的摩擦̷̷而发生摩擦的大多数都是如塑料、玻璃、过滤介质、粉末等导电性不高的材料,因而接收的电荷只能极其缓慢地传给外界环境。所以说静电或多或少总是存在的。 在称量时,如果不采用任何除静电的措施,我们除了要测量出错误的绝对称量值以外,更重要的是还要通过较大的称量值偏差和很差的重复性估算出称量结果。由于静电荷之间的相互作用力分为吸引力和排斥力两种,所以称量结果的偏差也有正值和负值之分。如果是吸引力作用,称量物显得比实际上的要轻,排斥力作用则反之。 B. 空气湿度的影响 对于形形色色的电子天平来说,称量材料的静电特性主要取决于居支配地位的空气湿度。之所以干燥的冬季比潮湿的夏季更容易产生静电,正是因为当空气的相对湿度在65~70%以上时,物体表面往往会形成一层极微薄的水膜,使表面电阻率大大降低,静电荷就不易积聚;而如果相对湿度降至45%或更低时,如同在我们所处纬度气候条件下的冬季或空调室内环境,静电荷不容易逸散,就有可能形成高电位。因此保持工作环境的相对湿度是实验室中最简单的预防静电产生的方法。 C. 辅助装置 事实上,空气湿度增大虽然能够降低静电的影响,但是过大的湿度也会导致另外的不良结果,如样品受潮变质。归根结底,通过控制空气湿度来消除静电不是长久之计。随着科学技术的发展,人们通过进行不同的静电与称量试验,尝试了在静电产生过程中进行干预的各种方法,主要都是关注在天平上安装辅助装置的问题。 为了增强空气电离,人们曾经设想了在防风罩里安装一种放射性金属的辐射器,起到对静电荷的中和作用。但是后来考虑到放射性辐射的危险性,再加上设备的高成本,这个计划就胎死腹中;又比如,使用基于电离法的反静电枪,在高压电源电极上进行电晕放电,或通过离子轰击使物体表面中和,并进行强制通风,可有效减少电荷积聚。但是该方法如果操作不当很容易引发触电危险。 另外,还有一些规避静电源的一些办法,比如实验人员禁止穿着化纤外衣,不要使用塑料、玻璃等易产生静电的材料作为容器来装盛样品等。 根除恼人静电,称量无懈可击! 读到这里,有人肯定要问除静电到底有没有安全省事的好办法啊?别着急,小编马上来给大家开开眼界。 (登陆“腾讯视频”搜索“EX5准微量天平”观看天平除静电实验视频) 视频中的这款天平堪称奥豪斯天平家族里身份最高大上的一款——Explorer准微量天平自动风罩门型号。为实现更加自动化的精准称量,此款天平设计了最大程度减震的自动风罩门,用户无需放下手中的样品,只需在感应器上方轻轻一挥,即可开启风罩门。特别值得一提的是,天平内部自带静电消除器,不断释放正负离子,来平衡被称量样品上的离子,从而消除静电,保证称量的准确性。 那么对于那些不带静电消除器的天平又如何摆脱静电的困扰呢?作为一家百年衡器品牌,奥豪斯早就为您想好啦!看到下面这幅图了吗?它可不是我们的T81电子称重仪表哦,而是奥豪斯专用的独立静电消除器ION-100A,跟我们的电子天平家族可是绝配哦!至于它有什么高端过人之处,快跟随小编一起来瞧瞧吧!A. 直流电晕放电在传统交流电晕放电过程中,单个放电针按一定时间间隔释放单一类型的正离子或负离子。离放电针越近,消除的静电才越多。而ION-100A采用直流电晕放电,两极放电针持续释放1×106/cm3正、负离子来平衡附着于样品上的电荷,且拥有10~40cm的宽泛距离来充分消除静电; B. 无风扇技术传统放电方法,由于设计功能上的局限,需要通过通风设备来吹走样品上附着的电荷,而ION-100A放电针采用无风扇技术,可消除容易上99%的静电,确保样品的完整; C. 结构设计,巧夺天工ION-100A拥有紧凑的机构,无需占用过多的实验台面空间,其高度和角度可根据需要调节到最佳位置。同时放电针持久耐用,可轻松替换,工作时限可达15,000个小时; D. 标配内置,选件伴侣Explorer准微量天平系列的自动门型号标配内置静电消除器,其他系列天平可外接选配此产品。相信您看了下面的视频一定会有更深刻的印象:(登陆“腾讯视频”搜索“天平静电消除器”观看静电消除器实验视频)怎么样,除静电的过程是不是变得安全而又简单?如果您想了解更多相关案例以及奥豪斯天平家族的产品信息,或正在寻求更专业细致的选型指导,请及时联系我们,我们的工程师们将会在第一时间为您提供专业的解答和建议!参考文献:托马斯 佩尔奇 [德国],王文革. 分析称量时的静电影响[J]. 衡器,2003年第1期
  • 穿越“电荷纷飞”的寒冬,领略精准称量的“温暖”
    寒冷干燥的冬季,我们在日常生活总会遭到一些现象的“亲切问候”:清早的头发,总是越梳越乱;脱毛衣时,经常能听见人心惶惶的噼里啦声;衣服上的灰尘很多,却怎么也拍不掉;触摸门把手、窗户框等金属器物,甚至跟人握手时,手总会感到电击似的刺痛̷̷有时候这些无法逃避的日常事情真是让人烦恼不堪,痛苦不已。 原来这都是静电惹的祸——在我国大部分地区的冬季,由于空气湿度小,化纤衣物、地毯、坐垫等受到摩擦,就会产生静电。如果静电聚集达到一定的电压,人接触时,就会产生“触电”现象。 关于静电的常识你了解多少? 所谓静电,就是一种宏观上暂时处于静止状态的电荷,当这些电荷聚集在某个物体中或表面上的时候就形成了静电。由于电荷分为正电荷和负电荷两种,所以静电现象也分为正静电和负静电。但无论是哪种静电,当带静电的物体接触零电位的物体或与其有电位差的物体时,都会发生电荷转移,发生放电现象。 在我们的日常生活和工作中,各种原因都会导致静电的产生。最常见的原因是两种材料的接触和分离,比如人的走动,物品的搬运,工具的放置等。典型起电的方法就不同的物体相互摩擦,摩擦产生的电荷在导体上可迅速流失,而在诸如化纤、毛织物等不导电的绝缘体上则不会流失,形成静电。不要小看这些静电,静电荷积聚累积静电压,并产生静电引力,一般来说,这个引力对日常生活并无大碍,但是如果在制药厂或无菌尘的生化实验室等对环境要求苛刻的场所,静电会吸附尘埃导致样品纯度下降,同时干扰相关精密仪器的正常工作,对实验或生产结果造成不良影响。 此外,如果大量的静电荷积聚可造成巨大的静电压——在干燥的季节若穿着化纤衣服和绝缘鞋在绝缘的地面行走,人体身上的静电压可达几千伏甚至几万伏,而橡胶和塑料薄膜行业的静电更是可高达十多万伏。静电高压往往会引起火花放电,同时释放出能量,如果发生在加油站、造纸厂、粮食加工厂等易燃易爆的气体、蒸汽或粉尘存在的场合中,很有可能引发火灾或爆炸,酿成不堪设想的巨大灾祸。 在实验室称量中不得不说的那些事 如前所述,恼人的静电作为一种常见的物理现象,经常会使人抓狂不已,在实验室称量中也不例外。绝大多数情况下,静电会对称量过程本身或实验结果产生不良影响。因此,怎样将静电的影响降至最低,在实验室中具有重要的研究意义。 A. 静电——形影不离的“称量好基友” 通常,在称量物和诸如防风罩或外壳等不与秤盘相接的天平固定部件上会附着静电荷,从而在它们之间形成一个静电场,导致静电干扰力的产生,这很有可能会引起称量值读数的变化,小到毫克,大到克的范围内。对于天平这种精密的称量仪器来说,这显然是不能接受的。 然而,在实际操作中处理或传送样品时,摩擦过程是不可避免的,比如称量物本身的摩擦、称量物在容器或皮重容器上面的摩擦、干燥箱内空气对流时的摩擦、托架上过滤器的摩擦̷̷而发生摩擦的大多数都是如塑料、玻璃、过滤介质、粉末等导电性不高的材料,因而接收的电荷只能极其缓慢地传给外界环境。所以说静电或多或少总是存在的。 在称量时,如果不采用任何除静电的措施,我们除了要测量出错误的绝对称量值以外,更重要的是还要通过较大的称量值偏差和很差的重复性估算出称量结果。由于静电荷之间的相互作用力分为吸引力和排斥力两种,所以称量结果的偏差也有正值和负值之分。如果是吸引力作用,称量物显得比实际上的要轻,排斥力作用则反之。 B. 空气湿度的影响 对于形形色色的电子天平来说,称量材料的静电特性主要取决于居支配地位的空气湿度。之所以干燥的冬季比潮湿的夏季更容易产生静电,正是因为当空气的相对湿度在65~70%以上时,物体表面往往会形成一层极微薄的水膜,使表面电阻率大大降低,静电荷就不易积聚;而如果相对湿度降至45%或更低时,如同在我们所处纬度气候条件下的冬季或空调室内环境,静电荷不容易逸散,就有可能形成高电位。因此保持工作环境的相对湿度是实验室中最简单的预防静电产生的方法。 C. 辅助装置 事实上,空气湿度增大虽然能够降低静电的影响,但是过大的湿度也会导致另外的不良结果,如样品受潮变质。归根结底,通过控制空气湿度来消除静电不是长久之计。随着科学技术的发展,人们通过进行不同的静电与称量试验,尝试了在静电产生过程中进行干预的各种方法,主要都是关注在天平上安装辅助装置的问题。 为了增强空气电离,人们曾经设想了在防风罩里安装一种放射性金属的辐射器,起到对静电荷的中和作用。但是后来考虑到放射性辐射的危险性,再加上设备的高成本,这个计划就胎死腹中;又比如,使用基于电离法的反静电枪,在高压电源电极上进行电晕放电,或通过离子轰击使物体表面中和,并进行强制通风,可有效减少电荷积聚。但是该方法如果操作不当很容易引发触电危险。 另外,还有一些规避静电源的一些办法,比如实验人员禁止穿着化纤外衣,不要使用塑料、玻璃等易产生静电的材料作为容器来装盛样品等。 根除恼人静电,称量无懈可击! 读到这里,有人肯定要问除静电到底有没有安全省事的好办法啊?别着急,小编马上来给大家开开眼界。 (登陆“腾讯视频”搜索“EX5准微量天平”观看天平除静电实验视频) 视频中的这款天平堪称奥豪斯天平家族里身份最高大上的一款——Explorer准微量天平自动风罩门型号。为实现更加自动化的精准称量,此款天平设计了最大程度减震的自动风罩门,用户无需放下手中的样品,只需在感应器上方轻轻一挥,即可开启风罩门。特别值得一提的是,天平内部自带静电消除器,不断释放正负离子,来平衡被称量样品上的离子,从而消除静电,保证称量的准确性。 那么对于那些不带静电消除器的天平又如何摆脱静电的困扰呢?作为一家百年衡器品牌,奥豪斯早就为您想好啦!看到下面这幅图了吗?它可不是我们的T81电子称重仪表哦,而是奥豪斯专用的独立静电消除器ION-100A,跟我们的电子天平家族可是绝配哦!至于它有什么高端过人之处,快跟随小编一起来瞧瞧吧!A. 直流电晕放电在传统交流电晕放电过程中,单个放电针按一定时间间隔释放单一类型的正离子或负离子。离放电针越近,消除的静电才越多。而ION-100A采用直流电晕放电,两极放电针持续释放1×106/cm3正、负离子来平衡附着于样品上的电荷,且拥有10~40cm的宽泛距离来充分消除静电; B. 无风扇技术传统放电方法,由于设计功能上的局限,需要通过通风设备来吹走样品上附着的电荷,而ION-100A放电针采用无风扇技术,可消除容易上99%的静电,确保样品的完整; C. 结构设计,巧夺天工ION-100A拥有紧凑的机构,无需占用过多的实验台面空间,其高度和角度可根据需要调节到最佳位置。同时放电针持久耐用,可轻松替换,工作时限可达15,000个小时; D. 标配内置,选件伴侣Explorer准微量天平系列的自动门型号标配内置静电消除器,其他系列天平可外接选配此产品。相信您看了下面的视频一定会有更深刻的印象:(登陆“腾讯视频”搜索“天平静电消除器”观看静电消除器实验视频)怎么样,除静电的过程是不是变得安全而又简单?如果您想了解更多相关案例以及奥豪斯天平家族的产品信息,或正在寻求更专业细致的选型指导,请及时联系我们,我们的工程师们将会在第一时间为您提供专业的解答和建议!参考文献:托马斯 佩尔奇 [德国],王文革. 分析称量时的静电影响[J]. 衡器,2003年第1期
  • 大连化物所发展光催化中仿生电荷传输层的可控组装策略
    近日,中科院大连化物所催化基础国家重点实验室、太阳能研究部(DNL16)李灿院士,李仁贵研究员等在光催化水氧化研究方面取得新进展。   团队仿习自然光合体系中电荷传输链的原理,基于团队发现的半导体光催化剂晶面间光生电荷分离现象,在铬酸铅光催化剂光生空穴富集的氧化晶面上可控组装氧化石墨烯作为电荷传输层,进而将钴立方烷分子催化剂选择性组装到氧化石墨烯电荷传输层,实现了光生空穴从铬酸铅光催化剂至钴立方烷分子催化剂之间的快速传输,显著提升了光催化水氧化性能。   光催化分解水制氢是将太阳能转化为化学能的重要途径之一。其中,光生空穴参与的水氧化反应是涉及多电子多质子转移的复杂过程,是光催化分解水反应的关键。虽然负载合适的水氧化助催化剂有助于提高水氧化反应性能,但是半导体与水氧化助催化剂之间的界面势垒会阻碍光生电荷的传输和利用。李灿团队长期从事太阳能人工光合成过程中的关键基础科学问题研究,尤其在光催化分解水研究方面,先后在国际上提出双助催化剂策略(J. Catal.,2009;Catal. Lett.,2010;Acc. Chem. Res.,2013)、在光电催化分解水研究中发现部分氧化的石墨烯在水氧化催化剂和捕光半导体之间具有类似自然光合作用过程中酪氨酸的电荷传输功能(J. Am. Chem. Soc.,2018)、实验上确认了晶面间光生电荷分离效应(Nature Comm.,2013;Energy Environ. Sci.,2016;Angew. Chem. Int. Ed.,2020;Angew. Chem. Int. Ed.,2022)、提出可规模化太阳能分解水制氢的氢农场策略(Angew. Chem. Int. Ed.,2020),提出光催化完全分解水氢氧逆反应抑制新策略(Nature Catal.,2023)等,受到了国际学术界的广泛关注。   研究团队借鉴自然光合系统电荷传递链中酪氨酸等电荷传输媒介的作用,利用铬酸铅光催化剂光生电子和空穴在不同暴露晶面间的光生电荷分离性质,借助超声辅助的手段在铬酸铅光生空穴富集的氧化晶面上可控组装氧化石墨烯电荷传输层。   进一步,团队确认通过氧化石墨烯电荷传输层与钴立方烷水氧化催化剂之间强的范德华作用力,可以选择性地将钴立方烷分子催化剂吸附到铬酸铅的氧化晶面,从而实现了光生空穴从铬酸铅到钴立方烷分子催化剂的有效传输,显著提升了铬酸铅的光催化水氧化性能。   此外,团队通过表面光电压谱等手段证明,在铬酸铅氧化晶面与钴立方烷分子之间引入氧化石墨烯电荷传输媒介,可以有效抑制光生电荷在界面的复合,延长光生电荷的寿命,显著提升光催化水氧化反应性能。   该工作发展了基于仿生思路实现光生电荷传输和助催化剂可控构筑的策略,为微纳尺度上高效人工光催化剂的理性设计和构筑奠定了基础。   相关研究成果以“Graphene Mediates Charge Transfer between Lead Chromate and a Cobalt Cubane Cocatalyst for Photocatalytic Water Oxidation”为题,于近日发表在《德国应用化学》(Angewandte Chemie International Edition)。该工作的第一作者是503组联合培养博士研究生蒋文超。以上工作得到国家重点研发计划、国家自然科学基金委“人工光合成”基础科学中心项目等资助。
  • 质谱技术的新方向—电荷检测质谱法(CDMS)
    电荷检测质谱法是通过同时测量单个离子的质荷比和电荷数,进而算得离子质量m的单粒子统计方法,在测定超大分子离子的质量分布方面有独特的优势。现有质谱仪在超大分子量测量方面面临的挑战在质谱仪中,被分析物质首先被离子化,随后各种离子被引入真空中的质量分析器,在分析器中的电场磁场作用下,离子的运动特性随其质荷比不同而产生差异,因而造成时空上的分离,并由检测器依次检测出来,因此形成质谱。所以,目前的质谱仪测量的是离子的质荷比(m/z),而不是质量本身。经过一个多世纪的发展,质谱仪从原先只能分析无机元素和小分子,逐步发展到能够分析有机物分子、生物大分子直至具备生命体特征的病毒颗粒。2002年诺贝尔化学奖之一授予了用电喷雾电离(ESI)进行蛋白质质谱分析的创始人John Fenn。在电喷雾质谱对蛋白质进行分析时,溶液中的蛋白质样品被传送到加有高压的毛细管尖端,强电场促使样品溶液喷雾,喷雾中的液滴通过蒸发,库仑爆炸等过程,形成带有多个电荷的蛋白质离子,被引入处于真空中的质谱分析器。每个离子所带的电荷数的多少,取决于分子的大小、分子在溶液中的几何构象(折叠或打开)以及电喷雾尖端处的电压和气流等参数。通常对蛋白质这种大分子来说,ESI质谱中都会呈现多种价态的谱峰群,群落中的每一组为某个电荷态该蛋白质的各个同位素峰、盐峰以及加合物峰等。由于电荷态z通常是连续的整数分布(例如z = 11,12....21,22...),人们可以通过计算不同电荷数对应的群落m/z的间隔来推算各组的电荷数z,进而求出实际的质量m的分布,也可以用电脑程序退卷积得到m分布。对于分析较小(分子量在5万以下)、较简单纯净的蛋白样品,退卷积还是很有效的。然而,在实际应用中对蛋白和蛋白组的分析,特别是对天然蛋白和病毒颗粒的分析却不那么简单。随着分子量上升,分子结构越来越复杂,各种翻译后修饰使被测蛋白的分子量出现差异化(heterogeneity),很宽的质量m分布(可达上千Da)使得不同价态的峰群连接在一起。图1中,用高分辨质谱仪对二种病毒壳体的质量进行测定,由于各种价态的质谱峰群连城一片,根本无法辨别谱峰,得到样品分子的质量。同时,实际样品也可能因处理不善或自然裂解,使谱图混杂着不同大小的分子离子,它们各自的价态z分布可能导致它们的峰群在m/z轴上交叠在一起。目前对于很多糖蛋白,分子量超过3、4万就出现峰群交叠,无法用退卷积软件来获得分子量的分布信息。事实说明,对于大生物分子的质谱分析,仅靠提高仪器的分辨率是无济于事的。图1 ESI质谱对大型病毒壳体质量测定的困难。(a,b)晶体结构效果图 (c,d) 的“高分辨”质谱分析图。(摘自:Kafader, J. O., Nature methods, 17(4), 391-394)糖蛋白是生物制品中比例最大的一类药物,其糖修饰对其功能非常关键,准确解析此类药物的糖修饰是药物研发、报批和质量监控的关键内容。但它们在ESI-MS的质谱中,看到的好像是一堆杂草,无法辨别有什么蛋白组分。将一个糖蛋白药物中的各组分进行高分辨检测,是当前生物质谱面临的巨大挑战。电荷检测质谱仪的提出与技术发展早在上世纪90年代,美国西北太平洋国家实验室R.D.Smith组的 Bruce, J. E等就提出可以在傅里叶变换质谱仪中同时测量单个离子的电荷和质荷比,从而算出离子的质量m。随后,美国劳伦斯伯克利国家实验室W. H. Benner 发明了一种线形的静电离子阱,并用其测量单个高价离子的电荷数和质荷比,进而得到单个事件中的离子质量m。只要连续不断地进行大量的单个离子测量,就可以把总离子事件统计出来,形成按质量分布的直方图,而这就是一张电荷检测质谱。图2,Benner小组采用的直线形静电离子阱进行CDMS测量的原理图CDMS技术的关键是如何准确地测量单个离子的电荷。测量中,离子在静电离子阱内进行周期性运动并在电极上感应出“镜像电荷”信号。通过对信号的傅里叶变换,得到离子信号的频率从而决定离子的质荷比,而由频谱峰的强度得到离子所带的电荷数。虽然单个离子的镜像电荷频谱的峰强度与离子的电荷数成正比,它也同时与离子在阱内的轨道形状、离子存活时间有关,而这些参量都存在不定性;并且由于镜像电荷信号强度极弱,回路中的电子噪声对精确测量镜像电荷产生很大的影响,因此早期的电荷测量的RMS误差达2.2e以上,由此计算出的质量精度只比凝胶电泳好一点。近年来随着人们对天然、复杂蛋白分析的需求日益显现,CDMS技术也进一步得到了发展。美国印第安纳大学Jarrold小组通过对线形静电离子阱分析器的不断改进,特别是采用了低温前级信号放大器等优化设计后,实现了最小RMS 0.2 e的电荷测量误差,测量的样品包括2 MDa以上的蛋白复合体(protein complex)和20 MDa以上的病毒外壳。在这个RMS误差下,通过电荷数取整可以大概率获得精准的电荷值,从而得到精准的质谱分布。图3给出了用普通ToF质谱仪和CDMS测量天然态丙酮酸激酶(PKn)多聚体的效果比较。当3个以上四聚体组装在一起时,ToF质谱完全无法辨别其质量分布,而CDMS可以看到近10个四聚体组合的质量峰。图3.用常规ToF质谱(左)和用CDMS测量的丙酮酸激酶(PK)多聚体,使用相同样品和相同电喷雾条件。(摘自D. Keifer: Analyst, 2017,142,1654)目前,虽然用线形静电阱结合傅里叶变换可以得到较好的电荷测量精度,但该方法每次只能测一个离子,否则库伦相互作用会影响测量。在实际测试中,每次引入的离子数是随机分布的,需要用软件鉴别超过一个离子注入的事件,也要发现因为和残余气体碰撞而半路夭折的事件,并把这些“不良”记录剔除。考虑单次分析时间大约需要1s,得到一张良好统计的CDMS谱图需要几个小时甚至一天的数据积累。加利福尼亚大学E. Williams团队对线形静电离子阱分析器的设计和的数据处理方法进行了创新,能让宽能量范围的离子同时进入离子阱进行分析,避免了离子之间的空间电荷作用,可以在一个测量周期内测量10-20个离子,进而有望提高了检测效率。与此同时,其他尝试使用商业傅立叶FT质谱仪进行CDMS的研究团体也逐步浮现。美国西北大学Kelleher团队、荷兰乌得勒支大学的A.R.Heck团队先后使用热电公司的静电场轨道阱(Orbitrap) 系统,通过更新数据处理软件,对CDMS进行了应用研究。除了Orbitrap是成熟的商业化仪器这一优点外,轨道静电离子阱内的离子由于其轨道运动,导致电荷分布在中心电极周围,因此其空间电荷相互作用较小。Kelleher 在Nature Method上的论文声称,基于Orbitrap的CDMS可以同时分析100个离子。不过,在电荷测量精度上,Orbitrap-CDMS目前只达到RMS 1 e左右,较Jarrold的线形静电阱还有一定的差距,但Orbitrap对m/z的测量精度、分辨率远远超过ELIT,一定程度上帮助消除在多离子同时分析时可能出现的m/z相近离子的信号干涉效应。笔者在岛津公司的欧洲研发团队去年也在JASMS发表了用CDMS测量糖蛋白的尝试。该工作采用了一种盘状平面静电离子阱分析器,如图4,而这种分析器也能像Orbitrap那样获得超高分辨质谱。通过对测量硬件和软件进行改进,实现了CDMS实验。该报道给出了一种全新的CDMS数据处理方法,能够克服离子在分析过程中因碰撞夭折造成测量不准的问题,同时实验验证了该方法的有效性,还对多个离子同时分析时的信号干涉等问题提出分析和研判,为深入研究CDMS技术,消除造成电荷测量误差的障碍打下了基础。图4,用于CDMS 实验的平面静电离子阱系统 (A. Rusinov, L. Ding, JASMS, 32, 5, 2021)CDMS技术的应用现状目前,电荷检测质谱技术还处于早期发展阶段,还没有现成的商品仪器出售,只有能够自己开发质谱仪器硬件,或自己改编FTMS(含Orbitrap)软件的专家才能进行这样的实验。 今年初美国沃特世公司宣布成功收购专攻电荷检测质谱技术(CDMS)及服务的初创企业Megadalton Solutions Inc. Megadalton Solutions是由美国印第安纳大学的Martin Jarrold和David Clemmer两位教授于2018年创立,他们目前是研发的CDMS仪器最长久的团队并拥有最成熟的技术。沃特世曾于2021年将Megadalton的CDMS技术引进到了沃特世Immerse Cambridge创新和研究实验室,并应用于各项先进检测及研发工作。沃特世公司首席执行官Udit Batra博士表示要进一步开发Megadalton的CDMS技术并将其商业化。在国内,CDMS无论是仪器技术开发还是应用都属空白。虽然国内在复杂生物大分子结构与功能的研究、病毒载体空壳率监测方面对CDMS已经产生需求,但我们在高端质谱仪器研制方面远远落后于西方。CDMS在技术上是基于FTMS分析原理而演化产生的,但国内目前对FT类型的质谱仪器研究,除了少量理论分析与离子光学仿真工作外,还没有实质性的进展,也没有企业能够提供FTMS类商品仪器。针对这些需求,笔者打算在前期研究工作的基础上,研究开发静电离子阱分析器,并进一步结合开发CDMS特定的数据处理软件,建成一套拥有自主知识产权的新型质谱仪器。同时建立国内的研发应用合作机制,解决目前国内超大分子蛋白质生物药剂质量分析的问题。预测CDMS技术未来的市场空间如前所述,目前对复杂蛋白等大型生物分子进行质谱分析时,由于其分子量的差异性(heterogeneity), 存在着严重的多价态峰群重叠问题,导致无法通过质谱仪获得这些大分子在样品中的质量分布。而用电荷检测质谱仪,无需对电荷态退卷积,可以直接得到蛋白质、蛋白复合体、各种转译后修饰造成的特定质量分布图。因此,该仪器的发展在天然蛋白质、糖蛋白、病毒颗粒的成分和结构研究,抗原-抗体作用机理研究和疫苗研发方面有很大的未来市场空间,具体可以列举以下几个方面:(1)新型电荷检测质谱仪可实现复杂样品的蛋白离子精确分析,可时提供复杂样品中各蛋白分子的结构,密度分布等。(2)可直接测定糖蛋白及其它各种转译后修饰造成的特定质量分布图,为解释蛋白大分子及其转译后修饰分子量或结构表征变化信息等之间的关系,从而对糖蛋白相关的疾病诊断具有重要意义。(3)通过研究DNA等生物大分子离子的电荷分布,以及质量与电荷的关联,可以推断这些大分子的结构,比如它的聚合程度、纤维股数等。(4)在病毒研究中,可以用来确定病毒衣壳的蛋白复合体结构及其组装反应的过程,这将在抗病毒药物的研究中发挥作用。(5)在基因疗法研究和产品质控中,本项目研制的电荷检测质谱仪可以用来测定腺病毒载体的空壳率,检查载体内的基因完整度。推动现代临床医学的发展;(6)电荷检测质谱仪还可以用来测定纳米聚合物分子的聚合度和分散指数,推动材料科学的发展。值得关注的是新冠疫情给质谱分析带来了全新机遇,除了对新冠病毒本身的蛋白进行分析研究以外,也可以在灭活疫苗、病毒载体疫苗以及核酸疫苗产品的质量控制、效果评价、免疫机制研究以及载体类疫苗的体外模拟产物的评价等方面发挥优势。关于笔者:宁波大学材料科学与化学工程学院/质谱技术研究院 丁力1990年于复旦大学物理系获理学博士学位。先后工作于复旦大学材料科学系,以色列魏兹曼科学研究所,英国贝尔法斯特女王大学纯粹与应用物理系。1998年加入岛津欧洲研究所。2007年至2011年任岛津分析技术研发(上海)有限公司总经理。2011-2020年任岛津欧洲研究所高级研究员,研发二部经理。主要领导了多项质谱仪器的研发,是国际上数字离子阱质谱技术的创始人,在离子源,四极场离子阱,静电离子阱,飞行时间等分析器技术及其联用技术方面有很多创新和突破。发表论文、报告、专著一百余篇,有三十余项发明专利。领域:QIT、ToF、Quadrupole、MALDI、APMALDI、ESI、Digital Ion Trap、Linear Ion Trap、Electrostatic Ion Trap,FTMS、 CDMS、MSMS、ECD、Ambient Pressure Ion Sources 等。目前丁力在宁波大学组建团队,继续静电离子阱的设计和优化工作,已提出了静电“和谐阱”的设计概念,充分利用其高次谐波来提高质谱分析器的分辨本领。同时也在探索在国内实现这种精密分析器的加工和组装工艺,为下一步实现超高分辨质谱仪国产化做准备,也为在国内研制电荷检测质谱仪打好基础。
  • 电荷检测质谱是什么?为何如此引得质谱巨头关注?
    质谱法是一种强大的分析工具,其原理是测量带电粒子质量的方法,当分析样品进入质谱仪后,首先在离子源处使分析物进行游离化以转换为带电离子,进入质量分析器后,在电场、磁场等物理力量的作用下,探测器可测得不同离子的质荷比(m/z),从而从电荷推算出分析物的质量。传统质谱法难以分辨质量大于几百千道尔顿的物质(例如蛋白质复合物)的电荷状态。然而近些年,一种新的质谱方法出现,即电荷检测质谱 (Charge Detection Mass Spectrometry,CDMS) 。CDMS 是一种通过同时测量单个离子的质荷比(m/z)来确定单个离子质量的单粒子技术。确定数以千计的单个离子的质量,然后将结果合并提供质谱图。使用这种方法,可以测量通常不适合传统质谱分析的异质和高分子量样品的准确质量分布。最新发表的CDMS技术的应用就包括了高度糖基化的蛋白质、蛋白质复合物、蛋白质聚集体(如淀粉样蛋白纤维)、传染性病毒、基因疗法、疫苗和囊泡(如外泌体)。虽然到目前为止,CDMS 仍然是少数能够自制仪器的科研人员在应用。而随着生物医学的快速发展,研究人员分析分子量超大样品的需求快速增长,传统的质谱方法面临一定的限制,以CDMS为焦点的分析技术也许将成为下一个里程碑。前沿技术发生革新,行业巨头公司一定是反应最快的。日前,全球著名的质谱仪器公司Waters便发布公告,成功收购了一家专攻电荷检测质谱技术(CDMS)的初创企业,Megadalton Solutions。该公司由美国印第安纳大学的Martin Jarrold和David Clemmer两位教授于2018年创立。笔者进一步查询到,Martin F. Jarrold 本人在过去十年一直致力于 CDMS技术的研究,也于2015年发表了“Charge Detection Mass Spectrometry with Almost Perfect Charge Accuracy”相关文章。(DOI:https://doi.org/10.1021/acs.analchem.5b02324)。2021年还发表了关于CDMS在生物分子学和生物技术相关的应用进展文章“Applications of Charge Detection Mass Spectrometry in Molecular Biology and Biotechnology”。(DOI:https://doi.org/10.1021/acs.chemrev.1c00377)2018年,Martin Jarrold和David Clemmer教授因在离子淌度质谱技术上的开创性发明,共同获得了美国质谱学会颁发的质谱杰出贡献奖。不仅如此,David Clemmer教授还曾获得2006年的Biemann奖章。2018年ASMS质谱杰出贡献奖可以说,Megadalton Solutions公司是由两位质谱界大佬为了研发CDMS仪器创立的,技术实力很强硬。Waters公司的眼光也非常独到,于2021年就已经将Megadalton的CDMS技术引进到了Waters的Immerse Cambridge创新和研究实验室,并应用于各项先进检测及研发工作。(相关链接:沃特世收购电荷检测质谱技术 扩大细胞和基因治疗领域应用)此外,笔者还注意到了另外一家基于CDMS技术的初创企业,荷兰公司TrueMass。TrueMass 于 2020 年在荷兰成立,并在英国曼彻斯特设有制造工厂。这家私营投资公司已从天使投资人获得大量资金,公司的使命是提供新技术,帮助全球研究人员和临床实验室推进药物开发和材料技术的研究。该公司于2021年10月26日在宾夕法尼亚州费城举办的ASMS上推出了其研发的CDMS仪器。笔者也搜索了TrueMass创始人 John Hoyes博士相关的信息,以飨读者。TrueMass创始人 John Hoyes博士TrueMass 创始人 John Hoyes 博士在质谱行业拥有 30 多年的从业经验。他于 1989 年在曼彻斯特大学完成了激光物理学博士学位,并在该大学科学技术学院仪器与分析科学系 (DIAS) 担任了一年的博士后研究助理。 Hoyes博士1990 年首次加入 VG Analytical,担任曼彻斯特工厂的开发物理学家。在头两年致力于改进磁扇磁场质谱仪器后,他开始研究飞行时间 (TOF) 质谱仪器。他是 VG Analytical 第一台 TOF 仪器的项目负责人,该仪器采用了 MALDI 离子源。 1995 年,他领导开发了世界上第一台商用 Q-TOF 仪器,该仪器于1996 年底由Micromass(后被Waters收购)推出。 2000 年,他发明了高分辨率光学 TOF 几何结构,并被纳入下一代 Q-TOF 仪器的改进。 2003 年,Hoyes博士离开 VG,成立了一家名为 MS Horizons 的新公司,专门提升该领域现有 Q-TOF 仪器的性能。在此期间,Hoyes博士对离子淌度和飞行时间杂合质谱仪器产生了兴趣,并为此申请了专利。他于 2006 年回到 Micromass(后被Waters收购) 担任研究总监,并于 2010 年成为技术总监。在他任职期间,公司推出了 SYNAPT G2、Vion 仪器和 StepWave 离子源等产品。 2013 年,他成为Waters科学研究员,并于 2016 年在 HUPO(人类蛋白质组组织)获得“科学技术奖”。2018 年 4 月,Hoyes博士离开公司,成立了 HGSG Ltd咨询公司。2020年Hoyes博士创立了 TrueMass公司以实现他对商业电荷检测质谱仪器的想法。总体看来,CDMS技术在复杂生物分析中能够发挥质谱技术的精确性优势,不久之后,质谱巨头们关于CDMS技术一定会动作频频,仪器信息网也将持续带来最新报道,敬请关注。
  • 基于电荷检测质谱(CDMS)对AAV提取的DNA的分析揭示基因组的截断
    大家好,本周为大家分享一篇发表在Analytical Chemistry上的文章,Analysis of AAV-Extracted DNA by Charge Detection Mass Spectrometry Reveals Genome Truncations1,文章的通讯作者是来自印第安纳大学化学系的Jarrold, Martin F.教授。  腺相关病毒(AAV)是一种小的(26纳米)、无包膜二十面体病毒。由于其低免疫原性和高组织亲和性,AAV已成为一种很有前途的基因治疗载体。AAV衣壳包含三种病毒蛋白质,VP1、VP2和VP3。对于来自HEK细胞的重组AAV (rAAV),VP1-3的比例约为1:1:10。AAV包裹单链(ss)DNA基因组。野生型基因组的长度约为4.7 kB。基因组两侧有两个倒置末端重复序列(ITRs),它们在复制和基因组包装中起着重要作用。目前,主要用于rAAV研究的生产平台是人HEK293细胞的瞬时转染,然而其HEK293细胞的制造限制其大规模地用于AAV载体的生产。杆状病毒感染的Sf9细胞系已被发现是一种可行的生产方法,但是研究发现在生产过程中出现的ITR丢失和基因组截断现象,似乎成为了Sf9细胞系必须关注的一个问题。因为包裹着不完整的基因组的载体,会使得治疗的有效性降低。  在本研究中,作者提出了一种利用电荷检测质谱(CDMS)直接检测从AAV中提取的DNA的方法。CDMS可以使用静电线性离子阱(ELIT)同时检测单个粒子的电荷数和质荷比,从而直接获得粒子的质量。测量是在一个自制的仪器上进行的,简单地说,纳喷雾(Advion Triversa Nanomate)产生的离子通过金属毛细管进入仪器,然后通过几个不同真空区域。第一个区域包含FUNPET(an ion-funnel ion-carpet hybrid),随后是射频六极杆和分段射频四极杆。FUNPET会破坏气体通过毛细管时形成的气体射流,样品离子随即在六极杆中被热化,最终的离子能量由六极杆上的直流电位决定。离子束在分段四极杆中的径向分布被压缩,经过四极杆的离子通过非对称艾泽尔透镜聚焦到双半球形偏转能量分析器中,并设置传输具有较窄动能分布的离子(以100 eV/z为中心)。传输的离子被聚焦到ELIT中,其中一些离子被捕获并通过位于ELIT端帽之间的检测圆筒来回振荡。振荡离子产生的信号被电荷敏感放大器接收。信号被放大和数字化,然后用快速傅里叶变换(FFTs)进行分析。短时间窗口FFT通过每个捕获事件的信号进行转换,以确定离子是否在整个事件中被捕获。没有在整个事件中存活的离子信号将被丢弃。振荡频率与m/z有关,振幅与电荷成正比。用这种方法测量了数千个离子,并将其分成直方图以给出质量分布。    图1. 来自Sf9细胞的AAV8-CMV-GFP的CDMS测量。(a,b)未孵育样品的质量分布和电荷与质量散点图。电荷与质量散点图中的橙色线是球形离子瑞利电荷极限的预测。(c,d)在45°c孵育15分钟后测量的质量分布和散点图。(d)中的插图显示了基因组从衣壳挤出的示意图。(e,f) 80°C孵育15 min后的结果。绿色虚线表示释放的ssDNA GOI的序列质量,紫色虚线表示互补DNA链碱基对进入溶液后的序列质量。图1第一排的图片显示了用CDMS测量的Sf9细胞制备的AAV8-CMV-GFP的质量分布。在4.5MDa处的主峰是由于rAAV对GOI进行了包装,在5.2MDa处的峰值是由于异质DNA的包装达到了包装容量,在3.7处MDa的肩峰是由于空颗粒。对应的电荷-质量散点图如图1第二排所示。其中空颗粒和包装了DNA的颗粒在电荷上的数值比较接近是因为DNA被包裹到了衣壳的内部。图1c显示了AAV8-CMV-GFP在45°C孵育15min后测量的质量分布。rAAV已经开始分解,存在大量质量低于3 MDa的离子。在3.7 MDa处的空颗粒的数量也大幅增加,这表明基因组正在被释放。而在80℃孵育15min后可见AAV已经完全分解,对应峰也消失了,而剩下的峰与推测的互补DNA链的分子量相当。图2显示了培养后为提取GOI而测量的rAAV载体的CDMS质量分布和电荷-质量散射图。值得注意的是,AAV8-CMV-CRE和AAV8-CAG-GFP(来自Sf9细胞)的平均电荷约为400 e, AAV8-CMV-GFP(来自HEK细胞)的平均电荷约为900 e。平均电荷的差异可能反映了dsDNA的整体几何结构,电荷越高的GOIs具有更广泛的结构。    图2. 在80°C孵育15分钟后记录的代表性质量分布和电荷与质量散点图。结果显示AAV8-CMV-CRE、AAV8-CAG-GFP和AAV8-EF1a-GFP来源于Sf9细胞,AAV8-CMV-GFP来源于HEK细胞。紫色虚线显示dsDNA GOI的序列质量。插图显示了dsDNA GOI的峰值的扩展视图。图3a显示了测量到的dsDNA GOI与AAV样本序列质量的偏差的柱状图,对于大多数AAV样本,测量的dsDNA GOI大于序列质量。这种偏差可以用反离子来解释。DNA在中性溶液中带负电荷,因为它的一些主链磷酸被电离,dsDNA GOI有2219−3443个碱基对,因此它们可能有多达4438−6886个反离子。最可能的反离子是NH4+因为样品是用醋酸铵溶液电喷涂的。如果所有的dsDNA GOI主链磷酸都被电离并且有NH4+反离子,则附加质量(超出完全电离序列质量)为80 ~ 124 kDa。而有些dsDNA的分子量低于预测的序列质量,这是因为序列发生了截断导致的,图3d显示了为该样品测量的DNA峰值的扩展视图。峰宽可以提供截断分布的信息。如果所有的DNA链都损失了425 nt,峰值就会很窄。另一方面,如果截短长度分布较宽,则会产生较宽的峰值。图3d中的峰值相对较窄,说明分布较窄。有一个高质量拖尾,这可能表明一些基因组被截断了小于425 nt。    图3. 来自Sf9和HEK细胞的一系列GOIs的AAV8、AAV9和AAVDJ血清型的dsDNA质量测量总结。(a)测量质量与序列质量偏差的柱状图。(b)考虑反离子的测量质量与预期质量的偏差的柱状图。(c) AAV基因组结构示意图。(d)来自HEK细胞的AAV8-CMV-CRE的dsDNA GOI峰的扩展视图。最后,将CDMS测量的基因组截断与来自第三代测序方法的信息进行比较将具有指导意义。尽管CDMS测量可以判断基因组是否被截断以及缺失的数量,但它不能确定截断发生在哪里。关于截断发生位置的信息可以从第三代测序中获得,这些信息反过来可以深入了解其机制。因此,CDMS测量全基因组MW和第三代测序是互补的。CDMS测量可用于筛选截断的基因组,以便通过第三代测序进行后续深入分析。  撰稿:李孟效  编辑:李惠琳  文章引用:Analysis of AAV-Extracted DNA by Charge Detection Mass Spectrometry Reveals Genome Truncations  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  1. Barnes, L. F. Draper, B. E. Kurian, J. Chen, Y. T. Shapkina, T. Powers, T. W. Jarrold, M. F., Analysis of AAV-Extracted DNA by Charge Detection Mass Spectrometry Reveals Genome Truncations. Analytical Chemistry, 4310-4316.
  • 怎样避免静电压半衰期超标的问题?
    抗静电面料通常要考核电荷面密度和静电压半衰期。采用有机导电纤维生产抗静电面料时,会出现电荷面密度达标、而静电压半衰期超标的问题。企业往往会面临这个问题,其采用增加有机导电纤维用量的方法试图解决问题,但实际效果不理想。  这是由于我们在织物上采用了有机导电纤维后,织物的静电压已经下降,即电荷的逃逸势能下降,静电压可能从原来的上万伏见到几百伏,电荷在几百伏的势能下要比原来几万伏势能逃逸得更慢,即衰减到一半电压时所花的时间将更长,导致静电压半衰期变长。这时,若再增加有机导电纤维的用量只能起反作用,且增加成本。在这样的情况下,应该在染整定型前适度加一点抗静电剂,增加面料在各个地方的电荷逸散的便利程度,就可以很好地解决这个问题了。  资料转载自:http://www.kangjingdianshebei.com/jslist/list-3-1.html  标准集团(香港)有限公司
  • 揭秘:微型光谱仪之光子历程
    在微型光纤光谱仪中,光子会经历一个曲折而漫长的过程,从光子的产生、传输,光电转换,模拟信号到数字信号,再到通过电脑将光谱展示出来。过程是曲折的,但结局是美好的。那么光子在微型光纤光谱仪中都发生了些什么?  光子历程将从光的激发开始。光子可以来自于大自然中的太阳、星辰,日常生活中的光源、LED或者激光,也可以来自于荧光物质或者由拉曼散射产生。无论光子源于哪里,不同光子都能产生特定的光谱谱线,而光谱的形成伴随着光子的一生,从产生到消亡。   光子在到达狭缝前,会经历一个崎岖的旅程。光子在自由空间中传播时,会被传输过程中其他物质反射、透射或者吸收。不同的物质会在不同波长情况下相互作用的时候过滤、更改或者消除不同波长的光子。光纤作为最基本最简单的耦合工具,可以将光从一个单点耦合至另一器件中,并且能防止其他杂散光的进入。光子在到达狭缝前,通过光纤可以更顺利的到达光谱仪,减小损耗,降低噪音影响。  狭缝是光子进入光谱仪狭长细小的入口,它能保证光子尽可能有效地耦合到光谱仪内部。狭缝越大,通光量越大,但是光学分辨率越差,所以狭缝在选择大小尺寸时,需要权衡通光量和光学分辨率的大小。  光子通过狭缝进入光谱仪内部,仍在一个自由空间内传播,到达第一个元器件为准直透镜。由于准直镜可以保证所有光子都以平行路径到达下一个元器件,确保所需测量的光束不发散或者散射,所以可以使光束最大利用率的得到使用。  准直镜将光反射至衍射光栅上,光栅将不同波长的光进行分光。分光作为一个重要的阶段,将光束分为不同波长段,使光谱仪有效地检测不同波长的光信息。  衍射光栅发射出来的光再通过聚焦镜进行聚焦,保证每个波长的光都尽可能地投射到检测器上。一维线性排列的CCD或CMOS检测器,每个像元能够接收窄范围波长的光子。  每个像元以量子阱的形式工作,收集特定范围的光子。当积分时间开始时,量子阱开始接收满电压电荷。当一个光子撞击量子阱时,同一时间量子阱内电荷就得到释放。积分时间越长,每个像元就会接收到更多的光子。一旦电荷释放完成,单个像元阱就会饱和,那新的光子信号就不会被采集。当光子撞击检测器的同时,即转换成了电信号,这时光子能量完成释放,光信号转换为电信号的过程也随之结束。  之后进入到数字模拟阶段,积分时间完成时可以通过检测像元读出电荷水平值。读出的模拟信号通过AD(模拟-数字)转换器,可以将每个像元的电压值读出成特征的“counts”强度值。通过数字处理,由光子信号而来的电信号就转换成数字信号,即光子转换成数据。当光子在光谱仪中的旅程结束也就意味着另一个旅程的开始——电信号的转换,软件的输出。  当从光谱仪读出相关光谱后,希望读出的光谱数据是非常平滑且不失真的数据,这时候就需要利用光谱处理技术对原始光谱进行平滑和过滤:电子暗噪声扣除,由“光学暗像素”获得的平均电子暗噪声,可以校准读出噪音和温度躁动偏移 非线性校准,使用出厂校准7阶函数对光谱仪进行校准,确保每个像素点的响应成线性关系 平滑度,通过设置平滑次数,可以对每个像素和与之相邻像素的测量值进行平均 平均次数,通过增加平均次数提高信噪比。  处理后的光谱数据可通过USB从micro的转接口与电脑连接进行数据传输。在未来产品中,除了USB通讯连接,光谱仪还提供其他的通信方式,如蓝牙、太网、WiFi等。  从光子的产生、光谱仪中的传输、到达检测器像元,数据的处理及传输,光子经历了一段崎岖的旅程。微处理器,检测器和光纤光学的不断发展,使得光谱技术不仅仅局限于实验室中,微型光纤光谱仪将把光谱技术带到人们的日常工作中,改善人们的生活方式。(来源:海洋光学)
  • 自旋-轨道态选择的电荷转移反应研究取得进展
    碰撞电荷转移反应广泛存在于星际介质、行星大气、等离子体等复杂气相环境中。从分子层面探究电荷转移反应的机理对剖析这些复杂气相环境的物质演化和能量传递过程有重要作用。Ar++N2→Ar+N2+是经典的电荷转移体系,受到广泛的实验和理论研究。然而,不同研究之间无法相互吻合,存在争议。这主要是由于以往实验产物探测分辨率相对较低,反应物离子束同时含有基态Ar+(2P3/2)和激发态Ar+(2P1/2),实验中难以区分不同自旋-轨道态的Ar+离子对反应产物的贡献。   中国科学院化学研究所分子反应动力学实验室高蕻课题组自主设计搭建了一套量子态选择的离子-分子交叉束装置,其能量分辨率达到国际领先水平。研究通过共振增强多光子电离方法制备处于特定自旋-轨道态的Ar+(2P3/2)离子束。实验首次精确地测量了产物N2+离子的振动和转动态分布及其与散射角的相关性(图a、b)。美国新墨西哥大学郭华课题组对该体系开展了全维度trajectory surface hopping计算。计算结果与实验结果达到半定量吻合的程度,首次揭示了该反应两种完全不同的电荷转移机制(图c、d)。一是经典的由长程相互作用决定的Harpoon电荷转移机理,主要发生在N2+(v′=1)产物通道,产生的N2+离子集中在前向散射区域且转动激发较低(图c);第二种机理在N2+(v′=2)产物通道中起主导作用,而该通道产物主要分布在前向区域却具有很高的转动激发(图d),这与经典的硬球碰撞模型不符。理论计算表明,这是由两个反应物分子的长程吸引势和短程排斥势之间的微妙平衡引起的硬碰撞辉散射(Hard collision glory scattering)过程,这是科学家首次在电荷转移反应中观测到这种特殊的散射机理。   相关研究成果发表《自然-化学》(Nature Chemistry)上。研究工作得到中国科学院、北京市自然科学基金和北京分子科学国家研究中心的支持。该研究由化学所和新墨西哥大学合作完成。(a)产物N2+散射图,(b)理论计算的N2+不同振动能级的转动量子态分布以及N2+的v′ = 1(c)和v′ = 2(d)振动能级的转动激发与散射角的相关性图。
  • 赛默飞推出新一代专利产品离子色谱电荷检测器
    中国上海,2012年12月21日 &mdash &mdash 科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)近日与美国Arlington的Texas大学共同发表声明,其合作研发的离子色谱电荷检测器Dionex QD已被授予美国专利(#8,293,099)。该电荷检测器是由UT Arlington研究所专家Purnendu &ldquo Sandy&rdquo Dasgupta及其研究小组成员Bingcheng Yang和赛默飞Dionex团队技术总监Kannan Srinivasan共同研发而成,发明专利为赛默飞和UT Arlington研究所共同所有。这项专利产品将在2013年匹兹堡会议中面世。该检测器可配备在赛默飞Dionex ICS-4000离子色谱系统上使用,适用于环境监测实验室中聚磷酸盐、食品中有机酸、饮料行业以及化学制品中有机胺的检测。相比传统的抑制电导检测器,Dionex QD检测器更易进行峰识别、峰值纯度分析和量化,同时提供更多可参考的信息。赛默飞色谱化学副总裁Chris Pohl表示,&ldquo 这是一种变革,当电荷检测器与抑制电导检测器联合使用时,可以作为一种验证工具或互补的检测器以提供额外的分析信息。&rdquo 此外,Dionex QD电荷检测器还采用了创新膜技术,可根据待测离子的电荷和浓度进行检测,这为使用单一标准来衡量已知和未知的化合物带来可能性。UT Arlington研究所的副总裁Carolyn Cason表示:&ldquo 我们尤为自豪的是这一创新能够满足市场的需求。充满活力的研究型大学的特点之一就是具有与业界共同推进科学应用的能力,这就是Dasgupta博士所做的工作。&rdquo Dasgupta博士在离子色谱领域获得过大量美国国内及国际奖项,包括颇具盛名的Delaware Valley色谱论坛颁发的2012年Dal Nogare奖项和2011年美国化学会色谱奖。Dasgupta获得的研究津贴超过1,800万美元,并发表过超过400篇科技论文,其获得的最新美国专利是他本人的第23个发明专利。位于美国Arlington的Texas大学是一个综合性的研究机构,在Texas北部拥有超过33,200名学生,是整个Texas大学体系中第二大的成员单位。欲了解更多详情,请登录www.uta.edu。欲了解更多详情关于赛默飞Dionex离子色谱QD电荷检测器,请浏览www.thermoscientific.com/QD。 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额120亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com关于赛默飞中国赛默飞世尔科技进入中国发展已有30年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳、西安等地设立了分公司,目前已有2200名员工、5家生产工厂、5个应用开发中心、2个客户体验中心以及1个技术中心,成为中国分析科学领域最大的外资企业。赛默飞的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。赛默飞在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国技术中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;遍布全国的维修服务网点和特别成立的维修服务中心,旨在提高售后服务的质量和效率。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn
  • 近代物理所张瑞田团队在电荷交换绝对截面测量方面获进展
    作者:刘如楠 甘晓 来源:中国科学报近日,中国科学院近代物理研究所原子分子结构与动力学实验室研究员张瑞田团队及合作者在高电荷态离子与H原子电荷交换绝对截面研究方面取得进展,相关成果发表在Astrophysical Journal 上。高电荷态离子与H原子电荷交换过程是宇宙弥散软X射线的重要来源之一。当星风、超新星爆炸遗迹以及星系团等高离化态喷流与星际空间中中性原子分子相遇时,会发生电荷交换过程并释放软X射线。星际气体介质中H原子是最主要的成分。因此,高离化态喷流与H原子电荷交换尤为重要,相关过程的截面直接影响这些X射线的发射亮度。张瑞田等与美国橡树岭国家实验室科研人员合作,利用美国橡树岭国家实验室高电荷态离子与H原子合并束实验装置测量了keV/u 到 eV/u 能区N7+、O7+离子与H原子电荷交换绝对截面。张瑞田介绍,研究发现,随着能量降低,总截面呈现先减小然后增大的趋势;表明反应窗逐渐变窄,离子轨迹效应增强。这一测量结果不仅为基本的电荷交换理论提供了基准的电荷交换实验数据,而且将有助于X射线天文观测的准确建模。该工作获得了国家重点研发计划、中国科学院战略性先导科技专项(B类)的支持。美国橡树岭国家实验室高电荷态离子与H原子合并束实验装置 近代物理所供图N7+、O7+离子与H原子电荷交换总截面 近代物理所供图相关论文信息:https://iopscience.iop.org/article/10.3847/1538-4357/ac6876
  • 单克隆抗体标准物质电荷异构体研究
    p style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " 单克隆抗体药物(mAb)是通过基因工程生产的蛋白质药物,具有特异性高、作用机制明确、效果显著、经济效益大等优势,是近年来生物医药产业的重要增长点。br//pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "治疗性单克隆抗体(mAbs)的开发和制造是一个高度管制的过程,ICH的指导原则指出了相关产品质量参数允许的异质性水平。电荷异构体是单克隆抗体(mAb)的关键质量参数(CQA)之一,在药品稳定性研究、申报及放行等环节都必须检测、评估。抗体的电荷异构体是由细胞内的酶促和非酶促过程分泌到培养基后形成,电荷异构体可能具有明显不同的生物活性,影响单抗药物的功能、安全性及稳定性。导致电荷异质性的最常见变异之一是C末端赖氨酸剪切,随着一个或两个带正电荷的赖氨酸残基丢失,可导致碱性变异体的形成;另外,在N-和O-连接的聚糖上脱酰胺、糖化和带负电荷的唾液酸的存在都会导致负电荷增加和酸性变异体的形成。/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "电荷异构体的检测方法有很多种,如:聚丙烯酰胺凝胶电泳,虽然仪器设备相对便宜,但其分辨率低、操作繁琐,目前应用较少;毛细管等电点聚焦(cIEF)电泳可进行蛋白的等电点测定,现已开发出毛细管电泳与质谱联用的技术,该方法可从完整蛋白水平进行分析,暂未推广使用;离子交换色谱(IEX)在电荷异构体的分析中使用较多,有盐洗脱与pH梯度洗脱两种方式,后续收集各个成分进行质谱检测分析其分子量及翻译后修饰。现已有在线的LC-MS方法,此方法不使用传统的盐缓冲液,改为质谱可以耐受的有机盐缓冲液来进行电荷异构体的分离,但其质谱图谱质量及普适性还有待考量,且不能实现肽段水平翻译后修饰的解析。中国计量科学研究院研制了人源化IgG1 κ型单克隆抗体标准物质,与军事科学院军事医学研究院钱小红、应万涛课题组合作,建立了cIEF-WCID及SCX-HPLC两种方法分离检测了单克隆抗体标准物质中的电荷异构体。运用蛋白质组学技术,从完整的分子量分布、肽图分析、进一步延伸到糖肽分析,建立了逐步深入的分析方法来研究单克隆抗体电荷异构体形成的影响因素,此方法可推广应用于其他单抗类药物的电荷异质性分析与评价。/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em "img style="max-width: 100% max-height: 100% width: 600px height: 272px " src="https://img1.17img.cn/17img/images/202010/uepic/f26eb0c0-ed43-47b2-9965-eb69024d8360.jpg" title="图片1.png" alt="图片1.png" width="600" height="272" border="0" vspace="0"//pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "2020年11月10-12日,中国计量科学研究院和国际计量局拟联合举办span style="color: rgb(255, 0, 0) "strong第三届 “药物及诊断试剂研发与质控——测量与标准,质量与安全(TD-MSQS 2020)”/strong/span 国际研讨会,以期进一步促进该领域的学术交流和技术发展,提升企业的研发水平和产品质量。本次会议将在南京市政府的支持下,在江苏省南京市举行。/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "本次会议可通过官方网站http://tdmsqs.ncrm.org.cn注册或扫描二维码注册,注册成功后请填写参会回执发送至会议邮箱pptd@nim.ac.cn。/pp style="text-align: center text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em " /pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em "img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/11c12ff4-263b-48c2-aff9-f4640b0a1850.jpg" title="图片3.png" alt="图片3.png"//pp style="margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em text-align: center "strongspan style="text-indent: 0em "欢迎各位专家、同仁报名参会!/span/strong/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.75em "更多信息请关注会议官方网站:a href="http://tdmsqs.ncrm.org.cn。" _src="http://tdmsqs.ncrm.org.cn。"http://tdmsqs.ncrm.org.cn。/a /pp style="margin-top: 10px margin-bottom: 10px line-height: 1.75em text-indent: 0em text-align: right "供稿:崔新玲 胡志上span style="text-indent: 2em " /span/p
  • SurPASS 3 | 聚合物的表面电荷
    Zeta电位是一个检测聚合物表面活化作用和污染非常灵敏的指示。聚合物在现代工业的多个领域起着一个主导作用。它们的应用范围从塑料瓶和塑料袋、包装材料、容器、汽车行业、人造纤维到薄膜、生物材料和电子器件。通常,任一个未经处理的聚合物薄膜表面是憎水的,也就是所谓的疏水性。聚合物表面性质影响着表面电荷构成机理。高分子表面的疏水性会吸附氢氧根(OH-)和水合氢离子(H3O+),而优先吸附OH-,这使得中性pH下得到负的界面电荷。任何这种类聚合物特性行为均可以体现在基于流动电流和流动电势测试zeta电位上的变化。随着pH降低,惰性聚合物表面如聚甲基丙烯酸甲酯PMMA和聚对苯二甲酸乙二酯PET的负的zeta电位减小并且零电位点IEP在pH 4处。对检测经表面处理过的聚合物的活性和污染来说,这项非常灵敏的测试技术具有独特性。安东帕中国总部销售热线:+86 4008202259售后热线:+86 4008203230官网:www.anton-paar.cn在线商城:shop.anton-paar.cn
  • 从光到电的转换!新型光电探测器能模仿光合作用
    美国密歇根大学研究人员在《光学》期刊发表论文称,他们使用被称为极化子的独特准粒子开发了一种新型高效光电探测器,其灵感来自植物用来将阳光转化为能量的光合复合物。该设备将光能的远程传输与电流的远程转换相结合,有可能大大提高太阳能电池的发电效率。在许多植物中发现的光合复合物由一个大的光吸收区域组成,该区域将分子激发态能量传递到反应中心,在那里能量转化为电荷。极化子将分子激发态与光子结合在一起,赋予它类光和类物质的特性,从而实现远距离能量传输和转换。这种新型光电探测器是首次展示基于极化子的实用光电设备之一。  为了创建基于极化子的光电探测器,研究人员必须设计允许极化子在有机半导体薄膜中长距离传播的结构。此外,他们必须将一个简单的有机检测器集成到传播区域中,以产生有效的极化子到电荷的转换。  研究人员使用特殊的傅里叶平面显微镜来观察极化子传播,以分析他们的新设备。结果表明,新的光电探测器在将光转换为电流方面比硅光电二极管更有效。它还可从大约0.01平方毫米的区域收集光,并在0.1毫米的“超长”距离内实现光到电流的转换——这个距离比光合复合物的能量传递距离大3个数量级。  到目前为止,观察的大多数极化子为封闭腔中的静止准粒子,顶部和底部都有高反射镜。这项新研究揭示了极化子如何在单个镜子的开放结构中传播,新设备还允许首次测量入射光子转换为极化子的效率。
  • 雷迪美特为造纸行业提供胶体电荷滴定解决方案
    东莞市三力星造纸助剂有限公司是三力星集团旗下工厂,拥有数套造纸助剂生产线,是生产造纸助剂的专业厂家。公司主要生产Cr200D阳离子分散松香胶,P100D阴离子分散松香胶,Akd100D中/碱性AKD施胶剂,Akd200D中/碱性施胶剂,Pae100D造纸湿强剂等多种造纸助剂产品。 造纸行业中,浆料滤液和白水中胶体溶解电荷是造纸湿部化学反应的度量,因此胶体溶解电荷检测对造纸行业有着重要的意义。三力星研发质检部门在日常检测中,进行胶体电荷密度滴定实验时,由于指示剂颜色变化不容易判定,容易造成误差。鉴于该情况,我司技术部门通过与三力星工程师进行多次的技术交流探讨及现场实验验证,最后提出了采用光度滴定法作为胶体溶解电荷的测试方法。并通过实验验证了该方法的可行性。 目前,三力星采购自雷迪美特公司的TIM845自动电位滴定仪(配合专用光度电极套装)已顺利完成安装调试,并取得良好的实验结果。 更详细信息,请咨询雷迪美特中国有限公司:cherry_radiometer@126.com 020-32486709, 87683635。
  • 国家纳米中心等在分子自旋光伏器件研究中取得重要进展
    p  近日,中国科学院国家纳米科学中心研究员孙向南和西班牙巴斯克纳米科学中心教授Hueso等合作,在分子自旋电子学研究方面取得重要进展,提出并报道了全新的分子自旋光伏器件。相关研究成果于8月18日在《科学》(Science)杂志在线发表,并已申请国家发明专利(申请号:201611011759.5)。/pp  分子半导体材料由于具有丰富的光电性质,被广泛应用于分子电子器件的研究中,如光伏电池、发光二极管和场效应晶体管等。此外,由于分子材料较弱的自旋轨道耦合作用,其自旋弛豫时间可以达到毫秒级,使之成为极具吸引力的自旋输运材料。将分子半导体材料丰富的光电性质与优异的自旋输运性质有效结合,是探索构建全新功能性分子自旋电子器件,并实现分子自旋电子学研究领域突破的新途径。/pp  分子自旋光伏器件(MSP)是基于自旋阀器件结构和富勒烯(Csub60/sub)分子材料构建的一种新型器件。该器件可在外部光、磁复合场作用下实现电子自旋和电荷输出信号的相互耦合,进而实现全新的器件功能,包括:磁场调控太阳能电池开路电压,室温下利用特定操控模式实现可控完全自旋极化电流输出、磁控交流电信号输出、磁控电池开关等。/pp  MSP器件在自旋阀工作模式下,一个铁磁电极(Co)用于向Csub60/sub半导体层中注入自旋极化载流子,另外一个铁磁电极(NiFe)用于自旋检出,自旋极化的载流子通过Csub60/sub薄膜实现输运。在恒定偏压下,该器件输出电流随两个铁磁电极的相对磁化方向变化(即自旋阀效应),受该效应影响的输出电流百分比称为磁电流(MC)。另外,MSP器件在7.5Mw/cm2白光照射下可观察到微弱的光伏效应。在短路的条件下,Csub60/sub层中的光生载流子受内建电场的驱动扩散到两个铁磁电极产生输出电流,这些载流子因为通过磁性电极输出后在极短的时间内完全自旋弛豫,因此并不会产生自旋阀效应。该器件在开路时,外加电压将驱动电子从Co电极输运到NiFe电极实现电荷复合,因为Csub60/sub优异的自旋输运性质,此时复合电流将会受自旋阀效应的影响。如上所述,MSP器件在光、磁复合场作用下,输出电流与复合电流相异的自旋相关性是实现全新自旋器件功能性的关键。/pp  该研究提出的分子自旋光伏器件作为一种新型器件,在高灵敏度光、磁复合场传感器、单器件磁控电流转换器等方面具有潜在的应用价值,并且相较于传统的分子自旋阀,该器件获得相同磁电流响应信号的运行功率降低至1%以下。同时,该器件还可以应用于分子半导体材料自旋输运和自旋光电子学等研究领域的探索中。/pp  孙向南为文章第一作者,Hueso为通讯作者,国家纳米科学中心为第一完成单位。该工作得到了中科院“率先行动”百人计划、国家自然科学基金委面上项目和科技部重点研发计划的资助。/pp style="text-align: center "img title="W020170818634585794445.png" src="http://img1.17img.cn/17img/images/201708/insimg/5d19d7fb-2aaa-4c75-80fe-e46866ef0a9f.jpg"//pp style="text-align: center "strong分子自旋光伏器件示意图/strong/ppbr//p
  • 接触角测量仪表面电荷和接触角的关系
    接触角测量仪表面电荷和接触角的关系表面电荷和接触角之间存在一定的关系,表面电荷状态可以影响液体在固体表面上的润湿性质,从而影响接触角。以下是表面电荷和接触角之间可能的关系:表面电荷引起的电场效应: 表面电荷会在固体表面形成电场。这个电场可以影响液体分子在表面的分布,进而改变液滴在表面上的形状。在一些情况下,表面电荷可能导致电场效应使得液滴更容易在表面展开,从而使接触角减小。表面电荷和表面能: 表面电荷状态可以影响固体表面的表面能。一般而言,表面电荷越高,表面能越大。而表面能的变化会直接影响接触角,即固液界面的润湿性。高表面能通常与低接触角(液滴更容易湿润表面)相关。电荷导致的化学反应: 表面电荷可能引发固体表面与液体之间的化学反应,形成新的化合物。这些化合物的性质可能与原有的表面性质不同,从而改变了液体在固体表面上的润湿性,影响接触角。电荷中性化和润湿性质:表面电荷可能被中性化,特别是在高湿度环境下。这种中性化可能导致原先带有电荷的固体表面变得更加亲水(亲湿),从而减小接触角。电荷分布和表面纹理:表面电荷的分布可能影响固体表面的纹理。表面纹理是影响液滴在固体表面行为的重要因素,进而影响接触角。需要注意的是,表面电荷与接触角之间的关系是复杂的,取决于多种因素的相互作用,包括表面材料的性质、电荷密度、液体性质、环境条件等。在研究和应用中,需要综合考虑这些因素,以更好地理解和控制固液界面的性质。
  • 【安捷伦】单抗药物电荷异质性分析的新时代现已来临!
    2018 年,关于肿瘤免疫的那些事儿6 月:国内首款 PD-1 单克隆抗体药物获批,中国跨入肿瘤免疫时代10 月:诺贝尔生理学或医学奖授予美国科学家詹姆斯艾利森 (James Allison) 与日本科学家本庶佑 (Tasuku Honjo) ,以表彰他们在癌症免疫治疗方面所做出的贡献12 月:国内首款国产 PD-1 单克隆抗体药物获批,开启肿瘤免疫治疗“亲民”时代肿瘤免疫治疗的火爆让单克隆抗体药物(下文简称单抗)的研究越来越受到关注,今天我们就来聊聊单抗的一大特性——电荷异质性。抗体是指能与相应抗原特异结合的具有免疫活性的球蛋白,而单抗是由单一 B 细胞克隆产生的高度均一、仅针对某一特定抗原表位的抗体。同其它蛋白一样,单抗常常存在广泛的翻译后修饰和降解,如糖基化、碳端赖氨酸丢失、脱酰胺化、二硫键错配、糖化和氧化等。几乎这些所有的翻译后修饰都会直接或间接的引起单抗表面电荷的变化,这就是单抗的电荷异质性。电荷异质性影响单抗的体外及体内的活性、安全性、可行性和质量,在新药研发和生物类似药的开发中都非常重要。电荷异质性的检测通常采用基于电荷分离的技术手段,如离子交换色谱、毛细管等电聚焦(CIEF),以及成像毛细管等电聚焦(iCIEF)等。与主峰 (Main peak) 相比,这些变异体峰通常被称为酸性峰 (Acidic variants) 和碱性峰 (Basic variants) 。大部分的人源 IgGs 具有碱性的等电点,因此,阳离子交换色谱通常被用于分离。在主峰前面的峰通常称为酸性峰,因为其带有的正电荷较少,洗脱较快;在主峰后面的峰称为碱性峰。酸碱峰的鉴定采用离线收集鉴定或多维液相-质谱联机在线鉴定。图 1. 阳离子交换色谱分离酸碱峰示例图毛细管等电聚焦(CIEF)是电荷异质性表征的主要手段,但采用 CIEF 分离时收集馏分用于鉴定非常困难,所以 CIEF 通常用于监控电荷异质性而不能用于表征。质谱检测虽然广泛应用于单抗的表征,但是将 CIEF 和 MS 联机一直是非常大的挑战。质谱在线检测的缺失也限制了 CIEF 在蛋白电荷异质性的表征上的应用。将 CIEF 分离的高分辨特性和质谱的表征能力结合起来是电荷异质性表征迫切需要的技术。Agilent 7100 CE-QTOF 联机的特点无与伦比的毛细管分离的分辨率:甘油改性剂降低非 CIEF 电泳迁移和区带展宽两性电解质:兼顾电泳分辨率和质谱灵敏度质谱友好的阳极液和阴极液优化的鞘流液组成:有效的聚焦、迁移和电喷雾离子化纳流级别的鞘流液流速:基于电渗流技术的纳流鞘流液最大限度提高检测灵敏度优化的 CIEF 运行参数:进样量、电场强度、压力灵敏度高、抗污染的质谱:Agilent 6200 系列 TOF,6500 系列 Q-TOF图 2. Agilent 7100 CE-QTOF 联机图CIEF-MS 的方法可行性及卓越表现采用等电点标记物(pI markers)进行验证,等电点和迁移时间之间具有良好的线性相关性 (R^2=0.99)。此外,CIEF-MS 方法采集的四种单抗的电荷变异体分离的轮廓图也通过成像毛细管等电聚焦紫外方法比对验证一致。pI markers 的绝对迁移时间的相对标准偏差小于 5%(n=4)。贝伐单抗三次进样的相对迁移时间 RSD 小于 1%,绝对迁移时间小于 2.3%,峰面积的 RSD 小于 7%。并且,单抗的电荷变异体可通过质谱直接测得其分子量。CIEF-MS 采集的电荷变异体轮廓分布和 iCIEF-UV 检测具有高度的一致性。iCIEF-UV 通过全柱成像检测去除了等电聚焦后分析物迁移到检测器端的步骤,CIEF-MS 和 iCIEF-UV 检测结果的高度一致性证明了在线 CIEF-MS 分析单抗电荷变异体史无前例的高分辨率。除了高分辨率之外,该方法具有非常好的重现性。CIEF-MS 电荷异质性分析的应用实例大集结贝伐珠单抗的分析CIEF-MS 和 iCIEF-UV 分析得到的酸碱峰比例接近,分别为酸性峰: 主峰: 碱性峰= 23% : 72% : 5% 和 27% : 68% : 5%。除了 CE 的高分离度之外,质谱数据优异的原始谱图是实验分析制胜的关键,尤其是在鉴定跟主峰质量差别很小的变异体时,如在分析一个脱酰胺 (+1Da) 质量差时,一款性能优异的质谱是 CIEF-MS 分析的必备之选。贝伐珠单抗的主峰分子量为 149 202 Da,碱性峰 B1 和主峰之间的质量差为 +128 Da,和碳端赖氨酸 (+128 Da, +1K) 异质性匹配;碱性峰 B2 (?=-17Da) 和氮端焦谷氨酸环化修饰 (-17Da) 匹配;酸性峰 A1 (?= 1Da) 和脱酰胺修饰匹配。酸性峰 A1 和主峰只有 1 Da 的质量差别,虽然我们会担心质谱准确度因素带来的不确定性,但酸性峰的位置和正好 1 Da 的质量差让我们有理由相信酸性峰 A1 是脱酰胺的修饰峰。A2 峰的信号非常弱,可能是高糖基化修饰的峰。图 3. 贝伐珠单抗 CIEF-MS 分析结果图曲妥珠单抗的分析曲妥珠单抗和贝伐珠单抗的电荷异质性分布的差异较大。iCIEF-UV 测得的低含量碱峰在CIEF-MS上未检出,同时其对酸峰的分离效果也优于 CIEF-MS 分离。质谱检测结果清晰的展示了酸性峰中四种主要的糖型变异体。曲妥珠单抗的主峰分子量为148 224 Da,酸性峰 A1 (?m = +1Da) 和酸性峰 A2 (?m = +2Da) 和脱酰胺修饰匹配,并且和 2D CZE-MS 的结果一致。图 4. 曲妥珠单抗 CIEF-MS 分析结果图英夫利昔单抗的分析英夫利昔单抗的三个电荷变异体峰在 CIEF-MS 上有良好的分离。解卷积结果显示两个碱峰为碳端赖氨酸变异体,碱性峰 B1 (?m = +258 Da) 和两个赖氨酸匹配;碱性峰 B2 (?m = +129 Da) 和一个赖氨酸匹配;酸性峰 A (?m = +5 Da) 小的质量偏差显示其可能为脱酰胺的修饰。图 5. 英夫利昔单抗 CIEF-MS 分析结果图西妥昔单抗的分析西妥昔单抗是人鼠嵌合的 IgG-1 单抗,具有高度的微观不均一性,该特性主要源于高度复杂的糖基化修饰。西妥昔单抗重链的 Fab 和 Fc 上各有一个糖基化位点,同时有碳端赖氨酸的不完全剪切,这些高度的异质性会造成分离上的困难。采用 CIEF-MS 实现了八个电荷变异体的良好分离,不仅和 iCIEF-UV 的结果一致,同时也和文献报道一致。但是由于西妥昔单抗复杂的糖基化修饰,通过质谱获得的分子量信息不足以反应修饰的情况。图 6. 西妥昔单抗 CIEF-MS 分析结果图西妥昔单抗亚基水平的分析针对西妥昔单抗这类具有复杂异质性的抗体,通过 IdeS 酶切和 DTT 还原降低其复杂程度,更利于质谱检测。通过高分辨质谱检测,IdeS 酶切后的八个变异体峰及 IdeS 酶切同时 DTT 还原后得到的 11 个变异体都得以检测。研究发现,西妥昔单抗的电荷异质性主要源于 Fc 区末端赖氨酸的异质性、Fd’ 区 N-羟乙酰神经氨酸和可能存在的脱酰胺修饰。轻链上未发现有电荷异质性。图 7. 亚基水平 CIEF-MS 分析流程图安捷伦 CE-QTOF 解决方案不仅兼顾了毛细管电泳的高效分离,离子源接口的高灵敏度和高分离度,也实现了质谱的高灵敏高分辨检测。在完整蛋白分析的层次上增加亚基水平的解决方案,即使是具有高度复杂异质性的抗体分析也能轻松应对。访问安捷伦药典系列文章,了解更多信息。参考文献:1. 安捷伦应用文献 5994-0672EN2. Jun Dai,*,? Jared Lamp,? QiangweiXia,? and Yingru Zhang?, Capillary Isoelectric Focusing-Mass SpectrometryMethod for the Separation and Online characterization of Intact Monoclonal AntibodyCharge Variants. Anal Chem. 2018 Feb 6 90(3):2246-22543. Jun Dai, and Yingru Zhang, AMiddle-Up Approach with Online Capillary Isoelectric Focusing-Mass Spectrometryfor In-depth Characterization of Cetuximab Charge Heterogeneity. Anal. Chem.,2018, 90 (24), pp 14527–14534扫描下方二维码,关注“安捷伦视界”公众号,获取更多资讯。
  • 在线多维液相色谱-质谱法对单抗电荷变异的深度表征
    大家好,本周为大家分享一篇发表在Analytical Chemistry的文章,In-Depth Characterization of mAb Charge Variants by On-Line Multidimensional Liquid Chromatography-Mass Spectrometry[1]。本文的通讯作者是中国复宏汉霖生物制品有限公司的刘卓宇博士。  重组单克隆抗体(mAbs)正成为肿瘤和自身免疫性疾病最成功的治疗方法之一。与传统的小分子药物不同,抗体在电荷、大小和糖型上都非常不均匀。单克隆抗体的电荷异质性通常是由细胞培养、纯化和储存过程中发生的翻译后修饰(PTM)引起的。电荷变异由于其对单克隆抗体的安全性和有效性的潜在影响而引起了人们的注意。CEX通常用于组分收集,以收集纯化的变体进行结构征,然而,在CEX分离中使用的非挥发性离子试剂与MS检测器直接耦合时,往往会造成电离抑制和污染。为了避免这些问题,CEX馏分应在进一步LC-MS分析之前进行脱盐和浓缩。传统的峰收集、纯化和随后的组分表征方法是劳动密集型和耗时的,组分在这么长的时间里不稳定。此外,传统CEX-MS在分析分子量变化较小PTMs时难以进行表征。 在最近的研究中,基于CEX和MS的多维液相质谱技术,已经在研究电荷变异体上展现了诸多优点。通过CEX的组分收集和MS的分析,多维液相质谱实现了对电荷变异体的实时表征,在缩短了检测时间的同时,也减少了由于传统手工方法诱导的人工PTMs,并且能够得到之前无法检测到的不稳定的中间体。该技术具有较好的重现性和灵敏度,对PTM的序列可实现高覆盖率的表征。在所开发的方法中,在1D CEX上分离的11种电荷变体在自动进样器中被收集到96孔板中。随后,通过多次进样,将单个馏分装入二维柱上进行预浓缩,以收集适当的量。这种新方法能够自动收集低丰度的多种电荷变体,然后通过不同的在线过程进行彻底的表征,包括分子量分析、肽图谱和Fc-γ-RIIIa受体亲和力评估。  图1. mAb-A1和mAb-A2的CEX谱。通过优化的纯化工艺去除mAb-A1中的B5-B8峰,以消除信号肽相关变异,命名为纯化抗体mAb-A2。  如图1所示,mAb-A的CEX图谱显示出较高的电荷异质性,PTM引起的mAb-A1电荷异质性可能对产品的安全性和有效性构成潜在风险。虽然不需要的电荷变体可以通过下游净化过程消除,但变体的去除会显著降低产量,从而增加成本。因此,需要对mAb-A1电荷变体进行深入研究,以确定其对产品质量的影响,并为工艺优化提供信息。研究中,先通过2DLC(CEX × RP-C4)-MS分析鉴定了11个mAb-A1电荷变体,包括2个AP (A1和A2), 1个MP和8个BP (B1-B8)。一方面,2DLC(CEX × RP-C4)-MS方法具有时间效率,每个峰只需40分钟。另一方面,2DLC(CEX × RP-C4)-MS法省力。省去了传统脱机分析所需的超滤、预富集、脱机还原等人工操作。  变体在亚单位水平上通过高分辨率质谱初步鉴定。如图2所示,重链的TIC图谱在所有电荷变体中是一致的 通过对HC1和HC2峰的质谱分析,确定了HC上的PTMs,这些PTM是常见的,已报道对抗体的安全性和有效性影响不大。去卷积质谱显示,B5、B6、B7和B8的LC1峰被RVHS-LC2 (Arg-Val-His-Ser-LC2, MWLC2 + 479.5 Da)和TRVHS-LC2 (Thr-Arg-Val-His-SerLC2, MWLC2 + 580.6 Da)的信号肽相关变体所覆盖。由于这些物种在精氨酸残基位点易被色氨酸切割,因此可能在肽图谱中被错误地识别为含有VHS的变异。通过2DLC(CEX × RP-C4)-MS分析,可以很容易地在亚基水平上获得mAb-A1未截断的RVHS和TRVHS变体。  图2. 2DLC(CEX × RP-C4)-MS分析mAb-A1及其电荷变体的降低分子量。(A)总离子色谱图。(B) LC1的去卷积质谱。在mAb-A1的B5-B8变体中,LC1与未截断的RVHS和TRVHS分离。  通过4DLC(CEX × RP-C4 × Trypsin×RP-C18)-MS分析鉴定出7个mAb-A2的电荷变体,包括3个ap、1个MP和3个bp。在变体中获得的PTMs包括脱酰胺(图4B)、Pyro Q(图4C)、c端Lys截断/Pro酰胺化(图4D)和Met氧化(图4E)。所有ap均发现HC N55脱酰胺。据报道,HC N55的脱酰胺会影响抗原-抗体结合活性据报道,Fc氧化会影响FcRn结合,对药代动力学(PK)产生负面影响。4DLC(CEX × RP-C4 × Trypsin×RP-C18)-MS的数据采集在1天内完成,以小于0.5 mg的样品表征了mAb-A2的7个变体。mAb-A2的肽图谱序列覆盖率达到90%。  图3. 4DLC(CEX × RP-C4 × Trypsin×RP-C18)-MS在线肽图谱。(A)经鉴别的重叠色谱图mAb-A2主峰的肽段。(B)所有mAb-A2变异的HC N55脱酰胺。(C) N端谷氨酰胺环化成在所有mAb- A2变异体中HC Q1的焦谷氨酸。(D)在所有mAb-A2变体中,C端HC K450的赖氨酸截断和HC P448的脯氨酸酰胺化。(E) HC M255下蛋氨酸氧化。  由于Fc-γ-RⅢa的结合亲和力一般与ADCC效价具有良好的相关性,且Fc-γ-RⅢa的结合能力可以反映在Fc-γ-RvⅢa柱上,通过2DLC(CEX × Fc-γ-RⅢa)分析间接监测了mAb-a的电荷变体的生物活性。APs中峰3的丰度高于MP和bp,表明酸性峰具有更好的Fc-γ-RⅢa亲和力。对Fc-γ-RⅢa色谱中mAb-A2的三个峰进行分离,并进行离线N-聚糖分析,以获得准确的糖型分布结果。在峰1、峰2和峰3中观察到聚焦化和半乳糖基化的含量逐渐增加。集中化已被广泛报道可增强ADCC的活性有趣的是,观察到半乳糖基化对Fc-γ-RⅢa亲和力的积极影响,这与先前的研究一致。  图4 (A)Fc-γ-RⅢa亲和谱图2DLC(CEX×Fc-γ-RⅢa)分析。(B)mAb-A2的N-聚糖谱及其Fc-γ-RⅢa亲和组分 (峰1、峰2、峰3)。  综上,利用MDLC-MS系统深入表征电荷变体的结构和生物活性,包括分子量、PTMs和Fc-γ-RⅢa亲和力。该过程可以在发现和工艺开发阶段对单克隆抗体进行电荷变异分析。MDLC-MS可以在研发中发挥重要作用,使从DNA序列到新药研究(IND)申请的时间流程缩短。  撰稿:李孟效  编辑:李惠琳  文章引用:In-Depth Characterization of mAb Charge Variants by On-Line Multidimensional Liquid Chromatography-Mass Spectrometry  李惠琳课题组网址www.x-mol.com/groups/li_huilin  参考文献  1. Liu, Z., Y. Cao, L. Zhang, Y. Xu,Z. Zhang.(2023).In-Depth Characterization of mAb Charge Variants by On-Line Multidimensional Liquid Chromatography-Mass Spectrometry. Analytical chemistry.
  • 精准电镜观测揭示全固态电池空间电荷层的微观机理
    3月24日,国际著名学术期刊《Nature Communications》以“Atomic-scale study clarifying the role of space-charge layers in a Li-ion-conducting solid electrolyte”为题发表了中国科学技术大学马骋教授的最新研究成果。马骋教授团队通过球差校正电镜的原子尺度观测,研究了空间电荷层对全固态锂电池中离子传输的影响,并发现这一现象的微观机理和过往几十年的认知截然不同。相比于目前的商业化锂离子电池,全固态锂电池具有更好的安全性和更大的能量密度提升空间。在这种电池中,空间电荷层可以产生于各种固-固界面附近;只有深入理解了该现象对离子传输的影响,才有可能有针对性的进行界面优化。在之前的文献报道中,研究者普遍认为空间电荷层对离子迁移的影响只由锂离子的浓度决定:锂离子浓度高则有利于离子迁移,而锂离子浓度低则不利于离子迁移。这一认知存在两个问题。首先,该理论所提及的锂离子浓度波动并未受到实验观测验证。其次,锂离子的浓度改变常常会引起晶格扭曲、相变、锂离子/空位比例变化等一系列同样能显著影响固体中离子传输的因素,因此整体离子传输效率不一定像文献中普遍认为的那样简单随锂离子浓度的升高而升高,而是可能存在很复杂的相互关系。为了透彻的理解空间电荷层对离子传输的实际影响,研究者需要对材料进行原子尺度的直接观测。马骋教授团队发挥了球差校正透射电镜具有原子级分辨率的优势,以Li0.33La0.56TiO3这一经典固态电解质的晶界作为研究对象,揭示了空间电荷层对其离子传输的影响。在文献报道中,研究者普遍认为该材料之所以会具有过大的晶界电阻,是因为空间电荷层在晶界附近形成了锂离子浓度极低的区域,从而限制了离子迁移效率。不同于这一认知,马骋教授团队通过球差校正电镜观测发现晶界附近的锂离子浓度反而高于材料中的平均水平,并且精准确定了这些多余锂离子在晶格中的位置。在此基础上,研究者结合理论计算和电化学测试,发现这种晶体结构能实现相当高效的离子传输,和文献中被普遍接受的假想截然相反。这一发现修正了研究者关于空间电荷层的认知,也为全固态电池的界面优化提供了指导法则。审稿人认为本工作“具有重大新意”(the novelty is substantial),并且认为“(本工作所揭示的)晶界附近细致的原子结构信息对于理解固态电解质的物理性质和性能是必不可少的”(The information on the detailed atomic structures near the grain boundary is essential for understanding the physical properties of the solid electrolyte and the performance)。本论文的第一作者为中国科学技术大学博士生古震琦,共同第一作者为中国科学技术大学博士后马家乐和博士生朱峰,通讯作者为中国科学技术大学马骋教授和李震宇教授。该工作得到了中国科学院先导科技专项培育项目、科技部国家重点研发计划、国家自然科学基金、中国科学技术大学重要方向项目培育基金等项目的资助。图1 空间电荷层的锂离子浓度分布、晶体结构和离子迁移效率
  • 分子自旋光伏器件研究取得重要进展
    p  近日,中国科学院国家纳米科学中心研究员孙向南和西班牙巴斯克纳米科学中心教授Hueso等合作,在分子自旋电子学研究方面取得重要进展,提出并报道了全新的分子自旋光伏器件。相关研究成果于8月18日在《科学》(Science)杂志在线发表,并已申请国家发明专利(申请号:201611011759.5)。br//pp  分子半导体材料由于具有丰富的光电性质,被广泛应用于分子电子器件的研究中,如光伏电池、发光二极管和场效应晶体管等。此外,由于分子材料较弱的自旋轨道耦合作用,其自旋弛豫时间可以达到毫秒级,使之成为极具吸引力的自旋输运材料。将分子半导体材料丰富的光电性质与优异的自旋输运性质有效结合,是探索构建全新功能性分子自旋电子器件,并实现分子自旋电子学研究领域突破的新途径。/pp  分子自旋光伏器件(MSP)是基于自旋阀器件结构和富勒烯(C60)分子材料构建的一种新型器件。该器件可在外部光、磁复合场作用下实现电子自旋和电荷输出信号的相互耦合,进而实现全新的器件功能,包括:磁场调控太阳能电池开路电压,室温下利用特定操控模式实现可控完全自旋极化电流输出、磁控交流电信号输出、磁控电池开关等。/pp  MSP器件在自旋阀工作模式下,一个铁磁电极(Co)用于向C60半导体层中注入自旋极化载流子,另外一个铁磁电极(NiFe)用于自旋检出,自旋极化的载流子通过C60薄膜实现输运。在恒定偏压下,该器件输出电流随两个铁磁电极的相对磁化方向变化(即自旋阀效应),受该效应影响的输出电流百分比称为磁电流(MC)。另外,MSP器件在7.5Mw/cm2白光照射下可观察到微弱的光伏效应。在短路的条件下,C60层中的光生载流子受内建电场的驱动扩散到两个铁磁电极产生输出电流,这些载流子因为通过磁性电极输出后在极短的时间内完全自旋弛豫,因此并不会产生自旋阀效应。该器件在开路时,外加电压将驱动电子从Co电极输运到NiFe电极实现电荷复合,因为C60优异的自旋输运性质,此时复合电流将会受自旋阀效应的影响。如上所述,MSP器件在光、磁复合场作用下,输出电流与复合电流相异的自旋相关性是实现全新自旋器件功能性的关键。/pp  该研究提出的分子自旋光伏器件作为一种新型器件,在高灵敏度光、磁复合场传感器、单器件磁控电流转换器等方面具有潜在的应用价值,并且相较于传统的分子自旋阀,该器件获得相同磁电流响应信号的运行功率降低至1%以下。同时,该器件还可以应用于分子半导体材料自旋输运和自旋光电子学等研究领域的探索中。/pp  孙向南为文章第一作者,Hueso为通讯作者,国家纳米科学中心为第一完成单位。该工作得到了中科院“率先行动”百人计划、国家自然科学基金委面上项目和科技部重点研发计划的资助。(来源:中国科学院国家纳米科学中心)/pp  a href="http://science.sciencemag.org/content/357/6352/677" target="_self" title=""论文链接/a/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201708/noimg/1aa584a7-5115-423c-9fd4-a5ada8709ab2.jpg" title="1.png" width="532" height="253" style="width: 532px height: 253px "//pp style="text-align: center "分子自旋光伏器件示意图/ppbr//p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制