电极零点校正器

仪器信息网电极零点校正器专题为您提供2024年最新电极零点校正器价格报价、厂家品牌的相关信息, 包括电极零点校正器参数、型号等,不管是国产,还是进口品牌的电极零点校正器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电极零点校正器相关的耗材配件、试剂标物,还有电极零点校正器相关的最新资讯、资料,以及电极零点校正器相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

电极零点校正器相关的厂商

  • 四川零点自动化系统有限公司成立于2003年,拥有16年自动化控制和工业通讯技术经验,是专业从事工业通讯产品研发,工业自动化控制系统设计、集成及技术服务的科技型企业,是国家高新技术企业,产品通过了ISO9001认证、知识产权管理体系贯标认证。与中科院沈自所、电子科大、西南科技大学等多所高等院校人才达成战略伙伴合作。零点同时是国际通讯标准组织PROFIBUS & PROFINET协会(PIChina)、EtherCAT技术协会、CC-Link会员单位,OPC国际基金会组织、中国通信工业协会CCIA、工业互联网联盟、边缘计算产业联盟成员。 近年来,公司着力在非标自动化系统集成、自主产品销售、智慧工厂、数据采集三方面全面发力:目前和阿里云、腾讯云、航天云网等工业云平台公司在云网关方面开展合作,和MES厂商合作,在纺织、汽车零配件、食药、电子、CNC加工等行业全面开花,为软件商提供一体化数据采集和传输解决方案。产品涵盖:工业云网关、协议转换器、智能分布式I/O、工业交换机、工业无线、嵌入式模块、通讯附件等。
    留言咨询
  • 公司简介:四川零点自动化系统有限公司成立于2003年,拥有16年自动化控制和工业通讯技术经验,是专业从事工业通讯产品研发,工业自动化控制系统设计、集成及技术服务的科技型企业,是国家高新技术企业,产品通过了ISO9001认证、知识产权管理体系贯标认证。与中科院沈自所、电子科大、西南科技大学等多所高等院校人才达成战略伙伴合作。零点同时是国际通讯标准组织PROFIBUS & PROFINET协会(PIChina)、EtherCAT技术协会、CC-Link会员单位,OPC国际基金会组织、中国通信工业协会CCIA、工业互联网联盟、边缘计算产业联盟成员。
    留言咨询
  • 留言咨询

电极零点校正器相关的仪器

  • 日立发布的200kV球差校正透射电镜HF5000,具有高稳定冷场发射电子枪,自动球差校正器,可一键操作实现自动球差校正,HAADF-STEM分辨率可以达到0.78埃;可配置EDS双探头,固体角最大可达2.0sr;具备TEM、STEM,SEM和电子衍射等多种图像观测模式;镜筒和样品台经过了重新设计,显著提升了仪器的性能和稳定性......HF5000将是材料学、生命科学、半导体制造、石油煤炭等研究领域的可靠助手。特点:  1、高度自动化球差校正,尽量减少人员介入,适用于繁忙的分析测试中心或设备平台   2、三位一体呈现(TEM、STEM、SEM),内部结构成像和表面结构成像可同时进行同时获取   3、EDS超大球面角,无窗口探头。可实现快速,高灵敏度化学成分分析   4、前瞻性平台总体设计,为性能扩增预留选项,例如可扩增为气体环境电镜。参数配置:
    留言咨询
  • 68400电极校正器 400-860-5168转1886
    68400电极校正器此电极角度校正器能使电极快速而准确的在任意角度,包括直角和复角完成立体定位。使用该矫正器能确定前后、水平及垂直方向的坐标位置,能选择角度并水平移动到正确的坐标位置。仅适用68000系列定位仪。
    留言咨询
  • 余弦校正器 400-860-5168转6044
    余弦校正器 YOP-1026-01 描述余弦校正器是一种用于光谱辐射取样的光学元件,用于收集180°立体角内的光,从而消除了其它取样装置中由于光收集取样几何结构限制所导致的光学耦合问题。YOP-1026-01余弦校正器可以直接耦合 SMA905 接口,与光纤或光谱仪连接。有效直径3.9mm,采用进口PTFE材料,波长范围200~1100nm。可用于测量太阳辐射光、LED光、激光、环境光、以及对其它发光光源进行分析测试。特点可收集180°视场角的光采用聚四氟乙烯漫射材料可方便与光纤进行耦合应用测量UV-A和UV-B太阳辐射光、LED光、激光、环境光、以及 对其它发光光源分析测试。技术参数 更多精彩内容,请关注下方!
    留言咨询

电极零点校正器相关的资讯

  • 哈希年终盛典 双十二零点开启
    哈希年终盛典 双十二零点开启哈希公司 5 days ago哈希年终盛典,12.12零点开启爆款机型再次特价来袭下单即送精美礼品买越多,礼越壕年终盛典,狂欢再袭!点击【阅读原文】进入活动专区!
  • 进步零点几微米!他们研制出超精密加工全新利器
    超精密机床基础部件与应用技术的突破,能为制造业的生存和发展提供强大技术支撑。然而此前我国的超精密机床及关键基础部件主要依赖进口。轴类零件外圆圆度加工方面,国内外基本是靠超精密的外圆磨床实现。以磨削直径100毫米、长300毫米的轴芯为例,我国的外圆磨床大概能够磨到1至2微米的水平,而国外可达到0.3至0.5微米的水平。为破解机床和关键部件“卡脖子”技术难题,国防科技大学教授戴一帆科研团队历时5年,提出轴类零件外圆圆度确定性修形加工工艺技术,使轴芯加工圆度精度提升到0.1微米,并成功研制出超精密空气静压主轴,近日经中国计量科学研究院测试,该静压主轴相关参数达到国际先进水平,这将使我国超精密加工精度有效提升。像铁锹整地那样研磨超精密零件我国超精密机床及关键基础部件此前主要依赖进口,最大的技术难题在于缺少加工核心零件的“工作母机”。所谓“工作母机”,就是制造机器和机械的机器,又称工具机,包括车床、磨床、刨床、钻床等,是制器之器、工业自强之基。一般的机械加工是将机床精度“复印”到零件的过程,也就是说,没有精度高的机床就加工不出精度高的零件。没有精度高的零件,也就组装不出精度高的部件和机床。没有制造高精度零件的工作母机,就限制了整个超精密机床行业的发展。戴一帆科研团队长期从事现代光学制造技术研发,他们发现光学零件的最终制造精度远超出所使用的加工设备精度,而光学制造的基本原理是逐步将误差高点去除的一种精度进化加工原理,团队尝试将这种“精度进化”原理的加工方法用于机械零件高精度加工,最终通过加工原理的创新提出轴类零件外圆圆度确定性修形工艺技术,突破高精度“工作母机”的限制。芯轴多传感器在位测量。国防科技大学 供图确定性修形工艺是如何工作的?“好比使用铁锹平整一块地,就是将看上去凹凸不平的地方铲去适量的土,如此反复直到获得非常平整的地。”戴一帆说,这个过程依靠的是成套数字化设备,比如采用了高精度圆度仪获取圆柱形貌;发明了专用的控时磨削机床实现材料去除量的数字化精确可控;采用专用计算机程序计算获得磨削工具需要在特定空间位置停留的精确时间。机械取代有经验的工人师傅借助新工艺,戴一帆科研团队突破了基于精度进化原理的控时磨削加工技术,形成了圆柱类零件在位加工检测一体工艺方法,成功研制出超精密空气静压主轴。中国计量科学研究院测试结果显示,该空气静压主轴径向跳动小于15纳米、端面跳动小于15纳米。这个跳幅相当于头发丝直径的六千分之一。如果是地球这么大一根主轴的话,回转运动造成的振幅不会超过1米。测试结果还显示,空气静压主轴径向静刚度大于200N/μm、轴向静刚度大于200N/μm。通俗地说,就是主轴可以在20公斤的重力载荷下纹丝不动,变形量不会超过1微米,即头发丝直径的百分之一。对比代表美国超精密领域最高水平Precitech公司的产品手册,上述技术指标与其相当甚至更高。当前,国内外可将轴类零件外圆圆度加工研磨到零点几微米的水平,如果再要提升只能靠手工研磨修整。“我们的新技术可以摆脱对极其有经验人工师傅的依赖,能很容易地按照现代工业化的模式组织生产,促进超精密基础部件的大批量、高效率生产和应用。”戴一帆表示,超精密机床基础部件与应用技术的突破,将为制造业的生存和发展提供强大技术支撑,完善高端机床产业链配套,大幅增强高性能功能部件竞争力,促进高端精密与超精密机床方面实现国产化。他补充说,这些突破还将有效解决探测制导关键零部件超精密加工面临的超精密装备和核心工艺难题,进一步助力国防领域高端核心零件超精密加工批量化生产,实现科研成果向生产力和战斗力的快速转化。系列成果获得了湖南省十大技术攻关等项目的支持。相关成果先后发表于Materials、Micromachines等期刊上,戴一帆为通讯作者。为支撑超精密加工,促进精密测量技术发展和应用,助力制造业高质量发展,仪器信息网联合哈尔滨工业大学精密仪器工程研究院,将于2023年12月14-15日举办第二届精密测量技术与先进制造网络会议,邀请业内资深专家及仪器企业技术专家分享主题报告,就制造中的精密测量技术等进行深入的交流探讨。点击图片直达会议页面
  • 像差校正电镜四位传奇老人获科维理奖:一段60年理论-实验-商业化典范
    p style=" text-indent: 2em " strong style=" text-indent: 2em " 仪器信息网讯 /strong span style=" text-indent: 2em " 5月27日,2020年度科维理奖(Kavli Prize)揭晓,本年度科维理天体物理奖、纳米科学奖和神经科学奖,三个奖项分别授予七位科学家,以表彰他们在天体物理学、纳米科学和神经科学领域作出的杰出成就。其中,纳米科学奖授予了对像差校正电镜技术的发展做出巨大贡献的四位欧洲科学家:Maximilian Haider, Knut Urban, Harald Rose, Ondrej L. Krivanek。 /span br/ /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 346px " src=" https://img1.17img.cn/17img/images/202006/uepic/83325f9d-30af-42e2-a151-13dcd1110736.jpg" title=" 1.png" alt=" 1.png" width=" 600" height=" 346" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " span style=" text-indent: 2em " 作为诺贝尔奖的补充,卡弗里奖是世界最高的科技奖之一,由挪威科学与文学学院、美国卡弗里基金会和挪威教育科研部联合成立。自2008年起,卡弗里奖每两年颁发一次,由三个学术委员会从世界各地提名的科学家中评选出该领域的获奖者,奖金为100万美元,奖金以外,每位获奖者还获得一块纯金的奖章。候选者则由各国享有盛名的科研机构推荐,这些科研机构包括中国科学院、法国科学院、德国马克普朗克学院、美国科学院、英国皇家科学院等。 /span /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 578px " src=" https://img1.17img.cn/17img/images/202006/uepic/1d799119-7443-4b26-90fa-4728b7d3aa31.jpg" title=" 2.jpg" alt=" 2.jpg" width=" 500" height=" 578" border=" 0" vspace=" 0" / /p p br/ /p p style=" text-indent: 2em " 在奖项设置上,诺奖涉及领域比较广,其分设物理、化学、经济学、文学等6个奖项。而卡弗里奖则只关注纳米科学、神经科学和天体物理三个细分领域,也是这三个科学领域中最具有权威性的奖项之一。 /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " 2020年度科维理奖宣传片: /span /p script src=" https://p.bokecc.com/player?vid=D8801874C0BE8E5D9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script p style=" text-indent: 2em " 纳米科学科维理奖授予了对像差校正电镜技术的发展做出贡献的四位欧洲科学家: /p p style=" text-indent: 2em " strong Harald Rose /strong (德国乌尔姆大学和达姆施塔特工业大学) /p p style=" text-indent: 2em " strong Maximilian Haider /strong (德国CEOS GmbH公司联合创始人,于1996年和Joachim Zach共同创立CEOS GmbH公司,目的是商业化生产像差校正器。目前是该公司高级顾问) /p p style=" text-indent: 2em " strong Knut Urban /strong (德国于利希研究中心) /p p style=" text-indent: 2em " strong Ondrej L. Krivanek /strong (美国Nion公司联合创始人,1997年,他与Niklas Dellby创立了Nion公司,他目前仍是该公司总裁。同时也是Gatan公司研发总监) /p p style=" text-indent: 2em " 以表彰他们20世纪90年代在 “用电子束进行亚埃级分辨率成像及化学分析” —— 即研制亚埃级电子显微镜方面的开创性工作。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/noimg/abb8cdf0-0b58-4e05-a0a3-4cbd0d1db1af.gif" title=" 3.gif" alt=" 3.gif" / /p p style=" text-align: center " span style=" text-indent: 2em color: rgb(0, 176, 240) " 左至右:Maximilian Haider, Knut Urban, Harald Rose, Ondrej L. Krivanek /span /p p style=" text-indent: 2em " 眼见为实促进了科学的进步。2020年科维里纳米科学奖表彰了四位先驱,他们使人类能够在前所未有的微小尺度上看到材料的三维结构和化学成分。 /p p style=" text-indent: 2em " 纳米科学的主要目标是创建原子级精度组装的材料和设备,以获得新颖的功能。原子的大小约为一个埃米(0.1纳米)。因此,亚埃规模的材料和设备的成像和分析至关重要。经典显微镜的分辨率受到用于成像的探针波长的限制。因为可见光的波长大约是原子的5000倍,所以光学透镜无法对原子成像。在20世纪初期,具有原子级波长的电子束变得可用,从而促成了1931年电子显微镜的发明。然而,由于透镜像差的限制,制造理想的电子透镜成为一个重大的理论和实验问题。60多年来,人们一直在为此而奋斗!通过不懈努力、独创性以及对20世纪90年代计算能力提高的利用,获奖者们构造了像差校正透镜,并将亚埃成像和三维化学分析作为标准的表征方法。 /p p style=" text-indent: 2em " span style=" color: rgb(0, 112, 192) " 三位获奖者共同创立了两家公司,并将他们的像差校正镜片商业化,进一步促进了他们科学工作的重大影响 /span 。从那时起,他们的显微镜及技术在基础科学和技术领域发挥了巨大的作用,并被半导体、化学和汽车等行业广泛使用。 /p p style=" text-indent: 2em " 科维理纳米科学奖评审委员会认为,四位获奖者对像差校正电镜发展的贡献分别为: /p p style=" text-indent: 2em " Harald Rose:提出了一种新颖的镜头设计,即Rose校正器,这使得透射电子显微镜中的像差校正技术应用于常规和扫描透射电子显微镜成为可能。 /p p style=" text-indent: 2em " Maximilian Haider:在Harald Rose设计的基础上,打造出第一个六极校正器,并为首台像差校正常规透射电子显微镜的实现做出了突出贡献。 /p p style=" text-indent: 2em " Knut Urban:为首台像差校正常规透射电子显微镜的实现做出了突出贡献。 /p p style=" text-indent: 2em " Ondrej L. Krivanek:发展了四极八极校正器,并打造首台亚埃分辨率的像差校正扫描透射电子显微镜,非常适合于高空间分辨的化学分析。 /p p style=" text-indent: 2em " strong 科维里纳米科学奖委员会 /strong /p p style=" text-indent: 2em " Bodil Holst(主席),卑尔根大学,挪威 /p p style=" text-indent: 2em " Gabriel Aeppli,保罗谢勒研究所,瑞士 /p p style=" text-indent: 2em " Susan Coppersmith,新南威尔士大学,澳大利亚 /p p style=" text-indent: 2em " 李述汤,苏州大学,中国 /p p style=" text-indent: 2em " Joachim Spatz,德国马克斯· 普朗克医学研究所 /p p style=" text-indent: 2em " span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " strong 逐个原子的查看物质内部 /strong /span /p p style=" text-indent: 2em " 纳米技术和纳米技术的最终目标是在很小的范围内操纵物质——甚至精确到移动单个原子——以创建具有新功能的粒子和设备。因此,如果没有允许以原子分辨率研究材料和设备的成像技术,这些都将无法实现。 /p p style=" text-indent: 2em " 在授予奖项时,科维里纳米科学奖委员会选出了以上四位科学家,他们为两种类型的仪器的开发和使用做出了贡献,这两种仪器通常被称为像差校正透射电子显微镜,可以提供亚埃级分辨率有关结构和其他性质的信息,即可以获得单个原子信息。 /p p style=" text-indent: 2em " 光学显微镜最多只能分辨几百纳米的尺度,因此需要一种不同的方法来区分单个原子。 1980年代发明的扫描隧道显微镜和原子力显微镜实现了原子分辨率,但是,它们都只能在暴露的表面上起作用,对于大多数纳米级结构,必须研究不同材料或同一材料的不同相之间的掩埋界面。最有希望的途径是优化Ernst Ruska于1931年发明的透射电子显微镜。这种仪器的原理是利用一束电子直接照射到给定材料的薄样品上,电子束与材料中原子的相互作用产生电子散射。利用散射电子,显微镜的电磁物镜和附加镜头形成一个放大的图像,并用CCD或CMOS相机记录。Ruska的设计今天被称为CTEM,用于传统的透射电子显微镜。“常规”是指,除了利用电子辐射外,CTEM还遵循光学显微镜的设计。1937年, Manfred von Ardenne发明了扫描透射电子显微镜STEM。在这种情况下,用细电子束扫描样品,并通过电磁透镜将其准直,并且穿过样品的电子被收集在样品后面。然后通过在视频屏幕上显示这些电子的强度来创建图像。 /p p style=" text-indent: 2em " STEM的一个独特优势是,对于电子束所聚焦的材料的每一个点,它也可以分析当电子束从材料中的原子散射时,电子所损失的能量。这种技术被称为电子能量损失光谱学(EELS),可以提供材料内部原子组成和电子状态的信息。 /p p style=" text-indent: 2em " 虽然到20世纪80年代末,CTEM和STEM的分辨率都达到了埃米级,但要解决大多数材料的详细原子排列是不可能的。问题是使用的电磁透镜比光学透镜有更多的像差。举例来说,穿过透镜的电子远离透镜的中心,聚焦的距离与穿过透镜的电子靠近透镜中心的距离不同,从而使图像变得模糊。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 333px " src=" https://img1.17img.cn/17img/images/202006/uepic/70eb2c83-548b-486e-9c1b-5abb84cff363.jpg" title=" 4.png" alt=" 4.png" width=" 500" height=" 333" border=" 0" vspace=" 0" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) text-align: center text-indent: 0em " Harald Rose在1990年的论文中的像差校正器示意图。 Optik 85,19-24(1990) & copy Elsevier GmbH /span /p p style=" text-indent: 2em " 1990年,任职达姆施塔特大学的Harald Rose在先前有关各种像差校正技术工作的基础上,设计了一种基于电磁六极杆的透镜系统(上图),可以对其进行调整以消除标准电子透镜的像差,这对CTEM和STEM均适用。在随后的几年中,Rose与当时位于海德堡的实验员Maximilian Haider和位于Jü lich的Knut Urban合作,以实验方式实现了他对CTEM的提议。1998年,这项合作发表了第一批使用像差校正CTEM改进的图像。 1996年,Haider和Joachim Zach一起创建了德国CEOS GmbH公司(相关电子光学系统),以使“Rose校正器”商业化,如今,这种校正器已在CTEM和STEM中广泛使用。 /p p style=" text-indent: 2em " 在过去20年中,像差校正CTEMs有了长足的发展,分辨率现已达到0.5埃米。因此,与未经校正的TEM相比,相对于电子波长的分辨率可以提高7倍。查看晶格中单个原子的能力已使局部原子结构与原子性质之间的关系成为可能。要研究的材料。下图显示了一个漂亮的例子,图中使用像差校正的TEM直接将经典铁电材料中原子的位置与极化方向的变化联系起来。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 295px " src=" https://img1.17img.cn/17img/images/202006/uepic/5f5a10bf-6174-4e26-b218-076702c9bd4b.jpg" title=" 5.jpg" alt=" 5.jpg" width=" 500" height=" 295" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " span style=" text-indent: 2em color: rgb(0, 176, 240) " 通过像差校正的TEM获得的材料PZT中不同铁电畴的原子结构。两相中原子(O,蓝色,Pb,黄色,Zr / Ti,红色)的位置可以直接与极化方向(Ps)关联。摘自C.-L. Jia et al. Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nature Μater. 7, 57–61 (2008) & copy Springer Nature Ltd /span /p p style=" text-indent: 2em " 当Rose,Haider和Urban在开发像差校正CTEM的同时,一位长期从事电子光学和EELS的专家Ondrej Krivanek于1995年开始在英国剑桥与Mick Brown和Andrew Bleloch合作开发STEM的像差校正。1997年,Krivanek与Niklas Dellby一起创立了Nion公司,以商业方式开发像差校正的STEM。2002年,Krivanek,Dellby和他们的IBM同事Phil Batson发布了使用Nion四极八极STEM校正器获得的亚埃分辨率分辨率图像(下图)。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 736px " src=" https://img1.17img.cn/17img/images/202006/uepic/53af0e89-ff35-41da-8356-3c6d72b118e0.jpg" title=" 6.jpg" alt=" 6.jpg" width=" 500" height=" 736" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " span style=" text-indent: 2em " 非晶碳衬底上的Au岛的原子分辨率图像。该岛被金的单原子簇包围。岛周围不同区域的衍射图表明,这些簇在邻近已建成岛的各种结构中有序排列。Nature 418, 617-620 (2002) & copy Springer Nature Ltd. /span /p p style=" text-indent: 2em " 在过去的20年中,STEM的发展更加迅速。如前所述,STEM可用于执行EELS,并且此组合已用于获取有关材料化学组成(下图)甚至原子之间键合类型的信息。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 500px height: 498px " src=" https://img1.17img.cn/17img/images/202006/uepic/685d3129-54a8-497c-923d-e8c17190020f.jpg" title=" 7.jpg" alt=" 7.jpg" width=" 500" height=" 498" border=" 0" vspace=" 0" / /p p style=" text-indent: 2em " span style=" text-indent: 2em color: rgb(0, 176, 240) " 使用EELS在STEM上获得的(La,Sr)MnO3 / SrTiO3多层膜的原子分辨率化学图,显示了La(绿色),Ti(蓝色)和Mn(红色)原子。白色圆圈表示La列的位置;视场3.1 nm。自D. A. Muller et al. Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 1073–1076 (2008)。 /span /p p style=" text-indent: 2em " Rose,Haider,Urban和Krivanek的开创性工作促进TEM和STEM成为研究实验室常规使用的仪器。得益于相关技术的进步,首先是最重要的是实现了高度灵敏的电子探测器,这两种仪器现在都可以用于非常精细的样品,包括例如石墨烯和其他二维材料。一些仪器被用作小型实验室,其中化学反应是在直接的原子分辨率观察下原位进行观察。也有团队尝试超越成像,并操纵晶格内的单个原子。在工业上,这些仪器经常用于监视设备的质量和可靠的制造。 /p p style=" text-indent: 2em " 正如卑尔根大学的Bodil Holst教授和纳米科学委员会科维理奖主席所说:“今年的科维理奖的背后是60多年的理论和实验斗争。这是科学创造力,奉献精神和坚持不懈的完美典范。我们向四位获奖者致敬,他们使人类得以看到我们以前看不见的地方。” /p p style=" text-indent: 2em " a href=" https://www.instrument.com.cn/webinar/meetings/iCEM2020/" target=" _blank" strong span style=" color: rgb(192, 0, 0) " 【近期相关电子显微学在线讲堂推荐】 /span /strong /a /p p style=" text-align: center" a href=" https://www.instrument.com.cn/webinar/meetings/iCEM2020/" target=" _blank" img style=" max-width: 100% max-height: 100% width: 600px height: 256px " src=" https://img1.17img.cn/17img/images/202006/uepic/12067d80-b34c-4523-9321-7bc0bc78a0d3.jpg" title=" dzxwx1125_480(1).jpg" alt=" dzxwx1125_480(1).jpg" width=" 600" height=" 256" border=" 0" vspace=" 0" / /a /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/8906587b-e68b-4d40-bd11-fa2cb7bd5f69.jpg" title=" 1590032360.png" alt=" 1590032360.png" / /p p style=" text-align: center text-indent: 0em " strong span style=" color: rgb(192, 0, 0) " /span /strong a href=" https://www.instrument.com.cn/webinar/meetings/iCEM2020/" target=" _blank" style=" color: rgb(0, 176, 240) text-decoration: underline " span style=" color: rgb(0, 176, 240) " 40余位电镜知名专家在线讲堂邀您线上参加 strong 【扫码或点击免费报名】 /strong /span /a /p p style=" text-indent: 2em " span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " strong 获奖人简介与自传 /strong /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/20fb159f-7c22-4e42-a6f3-07cee486be23.jpg" title=" 8.jpg" alt=" 8.jpg" / /p p br/ /p p style=" text-align: center text-indent: 0em " span style=" color: rgb(0, 176, 240) " Maximilian Haider,德国CEOS GmbH公司,奥地利 /span /p p style=" text-indent: 2em " strong 【简介】 /strong /p p style=" text-indent: 2em " Maximilian Haider是奥地利物理学家。在基尔大学获得学位后,他移居达姆施塔特(Darmstadt)攻读博士学位,并于1987年获得博士学位。仅仅两年后,他加入了海德堡欧洲分子生物学实验室(EMBL),在那里从事了博士学位的实验工作,成为物理仪器计划的组长,直到现在。 /p p style=" text-indent: 2em " 他的研究兴趣集中在开发提高透射电子显微镜分辨率的方法上。在EMBL任职期间,他根据Harald Rose的理论工作开发了透镜系统原型,并开始与Rose和Knut Urban合作,拍摄了第一张经晶格校正的原子结构的TEM图像,成果于1998年发表。 /p p style=" text-indent: 2em " Haider于1996年在海德堡联合创立了CEOS GmbH公司,其目的是商业化生产像差校正器。他仍然是该公司的高级顾问,自2008年以来,他还是卡尔斯鲁厄工业大学的名誉物理学教授。 /p p style=" text-indent: 2em " 他的工作获得了许多奖项,包括与Rose和Urban共同获得的Wolf奖和BBVA基础科学知识前沿奖,他还是英国皇家显微镜学会的荣誉院士。 /p p style=" text-indent: 2em " strong 【自传】 /strong /p p style=" text-indent: 2em " 1950年,我出生在奥地利的一个历史小镇,我的父母Maximilian Haider和Anna Haider在那里拥有一家钟表店。我父亲接管他父亲商店, 长兄也继承他们的职业,成为一个钟表匠。为了扩大业务,在我童年的早期,我就同意成为一名眼镜师& #8230 & #8230 a href=" https://www.instrument.com.cn/news/20200608/540683.shtml" target=" _self" style=" text-decoration: underline color: rgb(0, 176, 240) " span style=" color: rgb(0, 176, 240) " 【点击查看自传全文】 /span /a /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/91b36629-908d-449c-8019-9fb14da2dc83.jpg" title=" 9.jpg" alt=" 9.jpg" / /p p style=" text-align: center " span style=" text-indent: 2em color: rgb(0, 176, 240) " Ondrej Krivanek,美国Nion 公司,英国和捷克共和国 /span /p p style=" text-indent: 2em " strong 【简介】 /strong /p script src=" https://p.bokecc.com/player?vid=C5FEDAA47F2B90169C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script p style=" text-indent: 2em " Ondrej Krivanek是居住在美国的捷克和英国国籍的物理学家。他出生于布拉格,于1960年代后期移居英国,并在利兹大学获得学位,然后移居剑桥,与Archie Howie一起在电子显微镜领域攻读博士学位。 /p p style=" text-indent: 2em " 在剑桥大学毕业后,Krivanek在京都、贝尔实验室和加州大学伯克利分校担任博士后职位。在伯克利任职期间,他对电子能量损失光谱学产生了兴趣,并建立了自己的光谱仪。他于1980年成为亚利桑那州立大学国家科学基金会NSF HREM设施的助理教授兼副主任,与此同时,他开始与Gatan公司合作,首先是担任顾问,然后永久加入公司并成为其研发总监。 /p p style=" text-indent: 2em " 1995年,他获得皇家学会的资助返回剑桥,与Mick Brown和Andrew Bleloch合作进行电子透镜像差校正。他的成就帮助他与Niklas Dellby于1997年创立了Nion公司,他目前仍是该公司的总裁。在Niklas Dellby和IBM的Phil Batson协助下,他通过扫描透射电子显微镜获得了亚埃的分辨率,该结果于2002年发表。 /p p style=" text-indent: 2em " Ondrej Krivanek是电子显微镜和电子能量损失光谱学的知名专家之一。他获得了许多奖项,包括Duddell Medal和英国物理学会奖,以及国际显微镜学会联合会的Cosslett Medal。他是皇家学会,美国物理学会,美国显微学会和美国物理学会的会员,也是皇家显微学会的名誉会员。 /p p style=" text-indent: 2em " strong 【自传】 /strong /p p style=" text-indent: 2em " 我出生于捷克斯洛伐克的布拉格(现为捷克共和国),当时苏联和其他社会主义国家为自己的科学技术成就和教育体系感到自豪。 1961年4月,Yuri Gagarin成为第一个绕地球轨道飞行的人时,我们受到鼓励,在宇航员中成立了俱乐部,我和学校里的朋友们也成立了一个俱乐部& #8230 & #8230 【关注仪器信息网后续报道】 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/9f37a0dd-f804-444e-a93e-d44c6afe39df.jpg" title=" 10.jpg" alt=" 10.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) text-indent: 0em " Harald Rose,乌尔姆大学,德国 /span /p p style=" text-indent: 2em " strong 【简介】 /strong /p p style=" text-indent: 2em " Harald Rose是德国物理学家。他在达姆施塔特大学学习,并获得了博士学位,在Otto Scherzer的指导下从事理论电子光学工作,他在1930年代做了一些电子显微镜的开创性工作。 /p p style=" text-indent: 2em " Rose的研究生涯与达姆施塔特大学和他在美国的任命有着密切的联系。在达姆施塔特大学,从1980年到2000年退休,一直担任教授。在1970年代初期,他在STEM的发明者Albert Crewe的实验室里工作过一段时间。自1970年代后期以来,他在美国各机构担任过多个职位,包括芝加哥的阿贡国家实验室。 /p p style=" text-indent: 2em " 他的研究主要集中在电子透镜的像差校正。在1990年,他设计了一种可行的透镜系统来提高TEM分辨率。然后,他与Maximilian Haider和Knut Urban合作,于1998年,以实验方式实现了他的建议。 /p p style=" text-indent: 2em " 自2009年以来,Rose一直担任乌尔姆大学的蔡司高级教授。他获得了多个著名的奖项,包括与Haider和Urban一起获得沃尔夫物理学奖和BBVA基础科学知识前沿奖。他还是英国皇家显微镜学会的荣誉院士。 /p p style=" text-indent: 2em " strong 【自传】 /strong /p p style=" text-indent: 2em " 我于1935年2月14日出生在不来梅,是我父母Anna-Luise和Hermann Rose的第二个孩子,他们俩都是数学天才。我父亲在一个家里长大,家里的每个人都在演奏一种乐器,我父亲弹钢琴。他开始学习数学,但在20世纪20年代初,他的父亲因为恶性通货膨胀失去了财产,他被迫从商。& #8230 & #8230 【关注仪器信息网后续报道】 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202006/uepic/00a314d6-767a-4fac-b80f-c3a9ad87f226.jpg" title=" 11.jpg" alt=" 11.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) text-indent: 0em " Knut Urban,德国于利希研究中心,德国 /span /p p style=" text-indent: 2em " strong 【简介】 /strong /p p style=" text-indent: 2em " Knut Urban是德国物理学家。他曾就读于斯图加特大学,并于1972年获得物理学博士学位,之后前往斯图加特的马克斯· 普朗克金属研究所。 /p p style=" text-indent: 2em " 1986年,他被任命为德国埃尔兰根-纽伦堡大学材料性能教授,仅一年后,他成为亚琛工业大学实验物理系主任和尤利希奥地利维也纳大学微结构研究所所长。在此期间,他与Harald Rose和Maximilian Haider合作获得了第一个像差校正的透射电子显微镜结果,该结果于1998年发表。 /p p style=" text-indent: 2em " 随后,Urban致力于将像差校正的透射电子显微镜应用于材料科学,尤其专注于晶格内原子的精确排列与材料物理特性之间的联系。 /p p style=" text-indent: 2em " 2004年,他被选为厄恩斯特· 鲁斯卡电子显微镜和光谱学中心的主任之一,自2012年以来,他一直是亚琛工业大学的JARA高级教授。 Urban已获得多项荣誉,这些奖项包括美国材料研究学会的冯· 希佩尔奖,并与Rose和Haider共同获得了沃尔夫物理学奖,本田生态技术奖和BBVA基础科学知识前沿奖。他还是包括美国材料研究学会,德国物理学会和日本金属与材料学会在内的多个科学机构的荣誉会员。 /p p style=" text-indent: 2em " strong 【自传】 /strong /p p style=" text-indent: 2em " 我成长于战后早期的德国斯图加特。这个城市以其汽车工业和大量的中小型工业公司而闻名。我的父亲是一名电气工程师,他经营一家生产小型电动机的工厂。在过去的几十年里,他以自己的一系列发明为公司定下了基调& #8230 & #8230 【关注仪器信息网后续报道】 /p p style=" text-indent: 2em " strong span style=" background-color: rgb(112, 48, 160) color: rgb(255, 255, 255) " 关于科维理奖的故事 /span /strong /p script src=" https://p.bokecc.com/player?vid=D3F66A9BB31443E49C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=false& width=600& height=350& playerid=621F7722C6B7BD4E& playertype=1" type=" text/javascript" /script p style=" text-indent: 2em " 如果我们能了解宇宙的起源呢?如果我们可以通过控制原子结构来改善生活呢?如果我们能真正理解人类大脑的复杂性呢? /p p style=" text-indent: 2em " 科维理奖背后的故事始于20世纪30年代,一个名叫Fred的好奇男孩在挪威埃里斯峡湾的高山中长大。对自然和宇宙的好奇心一直伴随着Fred,贯穿了他在美国学习物理和创业的整个过程。 /p p style=" text-indent: 2em " 直到他最终建立了一个慈善基金会,以推进科学造福人类为愿景。该基金会的首批活动之一便是从2008年开始的科维理奖的成立。该奖项由卡维里基金会、挪威科学与文学院和挪威教育与研究部合作,每两年颁发一次。 /p p style=" text-indent: 2em " 三个国际奖项的奖金都是100万美元和一枚金牌,由挪威王室成员在奥斯陆主持的颁奖仪式上颁发。 /p p style=" text-indent: 2em " 挪威科学院以提名委员会的建议选出Kavli奖得主,该委员会由来自天体物理学,纳米科学和神经科学这三个科学领域的来自世界上最著名的六个科学学会和研究院的领先国际科学家组成。 /p p style=" text-indent: 2em " 科维理奖的获奖者是由挪威科学院根据评奖委员会的推荐选出的,评奖委员会由来自世界上六个最著名的科学学会和学院的领先国际科学家组成,他们来自三个科学领域:天体物理学、纳米科学和神经科学。 /p p style=" text-indent: 2em " 分别代表宏观、微观、复杂。 /p p style=" text-indent: 2em " 科维理奖有四个最终目的:表彰杰出的科学研究,表彰富有创造力的科学家,促进公众对科学家及其工作的理解和欣赏,促进科学家之间的国际合作。 /p p style=" text-indent: 2em " 我们一次又一次地看到,实现这些目标对于使世界变得更美好至关重要。科维理奖继续受到Fred Kavli的敬畏感和好奇心的驱使,他在最壮美的大自然中成长,体验着宇宙的浩瀚。 /p p style=" text-indent: 2em " br/ /p

电极零点校正器相关的方案

  • 哈希应用案例---溶解氢表在工业锅炉和发电机组上的应用
    自21世纪以来,随着发电厂装机容量日益提高,机组运行参数监督越来越严格。特别是超临界机组及超超临界机组,水冷壁、过热器和再热器在高温和高压环境下,氧化皮问题日趋严重,成为困扰电厂安全运行的一大难题。目前,溶解氢的研究仍然是各大电力科学研究院以及大型电厂主攻的重要方向。美国EPRI、德国VGB、华北电科院、西安热工院、江苏电科院都在从事溶解氢的研究,我国2015年颁布的《电力行业标准:化学监督导则》(DL/T 246-2015)也推荐对蒸汽氢值进行测量,来反映炉前和锅炉系统中的腐蚀活性。哈希公司的Orbisphere 3655 以及 510 系列溶解氢分析仪具有最低检出限低( 0.03 ppb), 以及专利的护圈和底座技术来保证零点不发生漂移, 能够很好的满足客户对溶解氢的测量需求。关于Orbisphere 溶解氢分析仪在工业锅炉和发电机组上的实际应用以及更多精彩内容,请下载后查看。
  • ATAGO(爱拓)MASTER系列手持糖度计校准方法
    仪器的一要定期进行校准,或对测量数据有怀疑时,也可以对仪器进行校准。校准可用蒸馏水或玻璃标准块,如测量数据与标准有误差,可用钟表螺丝刀通过色散校正手轮中的小孔,小心旋转里面的螺丝钉,使分析板上交叉线上下移动,然后在进行测量,知道测量数据复合要求为止,样品为标准块时 ,测量数据要复合标准块上面所标定的数据,对于刻度式的折光仪,由于折光仪的刻度盘上的标尺的零点有时候会发生移动,所以也必须加以校正。在校正时可用一种已知折光率的玻璃,转动手枪使标尺读数等于折射率,在消除色散,然后用调节扳手旋动目镜前凹槽中的调整螺丝,使敏感分界线与十字线先相较于一点即可
  • 使用微型光谱仪进行等离子体监测
    在其他气体和纳米颗粒被引入到等离子体腔室时,可以使用Ocean HDX光谱仪测量氩等离子体的发射变化。在封闭反应室中的等离子体的光谱数据,将通过光谱仪,光纤和余弦校正器从腔室外的小窗口收集的发射光谱而得到。Ocean HDX光谱仪为UV-Vis配置,采用400μ m抗老化的光纤耦合余弦校正器进行采样。选择抗老化光纤是为了避免由等离子体的强UV光引起的光纤内涂层降解。选择余弦校正器从等离子腔室获取数据可解决等离子体强度的差异和测量窗口的不均匀结垢。准直透镜也可作为等离子体监测测量中余弦校正器的常用备选方案。

电极零点校正器相关的资料

电极零点校正器相关的试剂

电极零点校正器相关的论坛

  • LCR测试仪的零点校正和负荷校正

    电阻、电容、电感是电子线路中必定使用的零部件。在进行电子线路的设计的基础上,准确地测量这些零部件的值是极其重要的。测量这些零部件的值,一般使用LCR测试仪。LCR测试仪不仅能自动判断元件性质,而且能将符号图形显示出来,并显示出其值,还能测量Q、D、Z、Lp、Ls、Cp、Cs、Kp、Ks等参数,且显示出等效电路图形。用LCR测试仪来测量零部件时,误差是难免的,一般我们有两种校正。 其一就是,零点校正。当LCR测试仪的零点漂移对于测量值不能忽略时,就需要进行零点校正。因为零点漂移会随着电缆和电极的物理配置不同而变化,所以进行开路和闭路的零点校正时,必须与连接零部件时的电缆布线、电极间隔等相同。 其二就是,负荷校正。为了进行负荷校正,首先需要准备好标准器具或者已知准确值的零部件。在进行了零点校正之后,再测量已知准确值的标准阻抗Zstd,如果得到的测量值为Zms,那么就按照以下公式来求出校正系数。LCR测试仪除了测量夹具等不同所引起的零点漂移以外,如果还有不能够忽略的测量误差,那么可以进行负荷校正,以提高测量精确度。即使对于没有负荷校正功能的LCR测试仪 ,也能够对各个阻抗量程和频率求取校正系数,自己进行校正。

  • GC—2014的零点校正和零点释放在哪里?

    年前一切都好、今年重新开机烧了挺长时间了、不知道为什么就是不出峰、氧峰都没有、启动峰也不正常看网上遇到相同问题的人说原来是在主机上点了零点校正,后来点了零点释放就一切正常了、所以请问:零点校正和零点释放在哪里呢…………拜托。。。。

电极零点校正器相关的耗材

  • 余弦校正器 余弦矫正器 光谱辐照度
    余弦校正器1 产品介绍.余弦校正器(余弦矫正器)是一种用于光谱辐射取样的光学元件,用于收集180°立体角内的辐射(光线),从而消除了其它取样装置中由于光线收集取样几何结构限制所导致的光学耦合问题。可用于光谱辐照度的测量,例如:LED光源。2 产品参数型号CC余弦校正器接口SMA 905 波长范围200-2500 nm视场角180°
  • 海洋光学用于辐射光采集的余弦校正器
    海洋光学的余弦校正器可与光纤和光谱仪连接,用于相对光谱强度和绝对光谱强度测量、发射光谱测量,以及对LED光源和激光光源进行分析。 可选的探头 将CC-3和CC-3-UV装在光纤未端,余弦校正器和光纤就组成了一个辐射探头。该探头与海洋光学的光谱仪相连接用于测量探头表面光线的辐射强度。 可直接连接 CC-3-DA可直接与USB2000、HR4000或S2000光谱仪的SMA 905接头连接,从而组成一个完整的无连接线的光谱仪系统,不需要使用光纤。 散射材料:UV-VIS或VIS-NIR 余弦校正器的散射材料可以是一个乳白色的、薄的玻璃圆盘((350-1100 nm)或 Spectralon (200-1100 nm) ,位于不锈钢套管的末端。 CC-3 CC-3-UV CC-3-DA 散射材料: 乳白玻璃 Spectralon Spectralon 波长范围: 350-1000 nm 200-1100 nm 200-1100 nm 外形尺寸: 6.35 mm OD 6.35 mm OD 12.7 mm OD 视场 180° 180° 180°
  • CellOx 325溶解氧电极 德国WTW
    CellOx 325溶解氧电极 德国WTW 一、详细介绍(1)StirrOx-G自搅拌溶氧电极自搅拌溶氧电极,同时搅拌测试!!1、操作一步到位,便于实现多次快速测试;2、流量唯一,保证了良好的再现性;3、可以立即测试,无需极化;4、低耗氧,只有0.008ug h-1 (mg/l)-1;5、无零点漂移,不必校正零点;6、标准配备OxiCal® -ST贮存校正套;7、服务周期长,一次填充电解液可用6个月;8、IMT温度补偿,带2个温度探头;9、薄膜穿孔监测,可提示薄膜损坏。 (2)Cellox 3251、立即测试,无需极化;2、无零点漂移,不必校正零点;3、标准线长1.5米,IP67接头;4、标准配备OxiCal® -SL贮存校正套;5、服务周期长,一次填充电解液可用6个月; 6、IMT温度补偿,带2个温度探头;7、另有不同电极线长度供选;8、可选配搅拌器RZ300。 (3)DurOx 325-31、立即测试,无需极化;2、IMT温度补偿,带2个温度探头;3、服务周期长,一次填充电解液可用6个月;4、低流速要求;5、无零漂,不必校正零点;6、防水(IP 68--2巴);7、线长3米,标准防水插头(IP 67);8、标准配备OxiCal® -D贮存校正套;9、标准保护罩SK-D。 二、选购指南(1)电极选型货号型号说明应用201570DurOx325-3DurOx325-3电极组件电缆线长3米污水曝气池等比较脏的水质分辨率0.1mg/l只适合于手提表201571DurOx325-6DurOx325-3电极组件电缆线长6米201533CellOx® 325CellOx® 325电极组件电缆线长1.5米常规水质分辨率0.01mg/l台式手提表都适合201545CellOx® 325-3CellOx® 325电极组件电缆线长3米201425StirrOx® -G自搅拌溶解氧\BOD测试电极组件主要用于台式表201300FDO925荧光法电极组件电缆线长1.5米目前与手提表Oxi3315配套使用201301FDO925-3荧光法电极组件电缆线长3米 (2)电极附件选型货号型号说明201578ZBK-DDurOx325-3电极耗品含三个膜头一瓶电解液一瓶清洗液202706ZBK-325CellOx® 325电极耗品含三个膜头一瓶电解液一瓶清洗液202710ZBK-STStirrOx® -G电极耗品含三个膜头一瓶电解液一瓶清洗液202740WP3-DDurOx325-3电极3个更换盖式膜头202725WP90/3CellOx® 325电极3个更换盖式膜头202738WP3-STStirrOx® -G电极3个更换盖式膜头205204RL/G30ml清洗溶液205217ELY/G50ml电解溶液201310SC-FDO925FDO925荧光帽
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制