当前位置: 仪器信息网 > 行业主题 > >

代谢检测

仪器信息网代谢检测专题为您提供2024年最新代谢检测价格报价、厂家品牌的相关信息, 包括代谢检测参数、型号等,不管是国产,还是进口品牌的代谢检测您都可以在这里找到。 除此之外,仪器信息网还免费为您整合代谢检测相关的耗材配件、试剂标物,还有代谢检测相关的最新资讯、资料,以及代谢检测相关的解决方案。

代谢检测相关的资讯

  • 硝基呋喃及其代谢物检测三大利器!
    硝基呋喃类抗菌药物是一种广谱抗生素,包括了硝基呋喃唑酮、呋喃它酮、呋喃妥因、呋喃西林,曾广泛应用于水产养殖业,用来治疗由大肠杆菌或沙门氏菌所引起的肠炎、疥疮、赤鳍病、溃疡病等。这类化合物对光敏感,衰减快,其母体化合物在动物体内及其产品中代谢很快,但其代谢物以蛋白结合物的形式存在可残留较长时间,目前各国均将硝基呋喃代谢物作为指示硝基呋喃类药物残留的标示物。因硝基呋喃类药物及其代谢物具有相当大的毒副作用,世界上绝大部分国家规定在食用动物组织中不允许有硝基呋喃药物残留;美国21CFR530.41规定食源性动物禁止食用呋喃唑酮和呋喃妥因;欧盟EEC2377/90将硝基呋喃类药物及其代谢物列为A类禁用药物;我国也于2002年颁布了禁用硝基呋喃类抗生素的禁令。2017年3月9日,农业部办公厅发布关于开展2017年水产品质检机构检测能力验证工作的通知,提到硝基呋喃类代谢物的检测方法依据为《水产品中硝基呋喃类代谢物残留量的测定-液相色谱-串联质谱法》(农业部783号公告-1-2006),使用内标法定量。First Standard® 推出硝基呋喃及其代谢物检测三大利器,确保您的实验全程无忧!它们是:4种硝基呋喃混标帮助您节省实验前的准备时间,浓度100ppm,可配制多组工作液Cat.No中文名称规格/CAS#1ST9262-100M4种硝基呋喃混标100ppm1ST4207呋喃唑酮67-45-81ST4208呋喃它酮139-91-31ST4209呋喃妥因67-20-91ST4210呋喃西林59-87-04种硝基呋喃类内标溶液许多客户反馈内标难找,我们这里4种内标齐全,1支混标搞定!Cat.No中文名称规格/CAS#1ST9230-100M4种硝基呋喃类内标混标100ppm1ST4226氨基脲-13C,15N2盐酸盐1173020-16-01ST4203D53-氨基-5-吗啉甲基-2-噁唑烷酮-d51017793-94-01ST4201D43-氨基-2-噁唑烷酮-d41188331-23-81ST4204C31-氨基-2-乙内酰脲-13C3957509-31-84种硝基呋喃代谢物衍生化混标不用担心标品衍生不成功或衍生不完全影响实验,我们提供衍生好的混标!Cat.No中文名称规格/CAS#1ST9283-100ppm4种硝基呋喃代谢物衍生化混标(以代谢物计)100ppm1ST42152-NP-呋喃妥因代谢物623145-57-31ST42172-NP-呋喃它酮代谢物183193-59-11ST42192-NP-呋喃唑酮代谢物19687-73-11ST42212-NP-呋喃西林代谢物16004-43-6如需订购请联系天津阿尔塔科技有限公司或各地经销商。
  • 新型NADH荧光探针问世 实现细胞代谢实时检测与成像
    p style=" text-align: center" img src=" http://img1.17img.cn/17img/images/201708/insimg/8285de06-fab1-432b-acd4-3147494e96d5.jpg" title=" tpxw2017-08-10-03_副本.jpg" / /p p   在国家自然科学基金重大研究计划、国家杰出青年科学基金项目和面上项目的资助下,华东理工大学杨弋教授团队开发了一系列特异性检测还原型烟酰胺腺嘌呤二核苷酸磷酸(NADPH)的高性能遗传编码荧光探针iNap,相关研究成果以“Genetically encoded fluorescent sensors reveal dynamic regulation of NADPH metabolism”(遗传编码的荧光探针揭示NADPH代谢的动态调节)为题于2017年6月5日以“研究长文”的形式在线发表在Nature Methods,2017年7月28日正式刊出。陶荣坤博士、赵玉政研究员和初环宇博士为共同第一作者。华东理工大学杨弋教授和中国科学技术大学刘海燕教授为文章的共同通讯作者。 /p p   烟酰胺腺嘌呤二核苷酸(NADH/NAD+)及其磷酸化形式(NADPH/NADP+),作为生物体内两对最重要的辅酶和核心代谢物,常被用作评价细胞代谢状态的关键指标,与衰老及相关疾病如癌症、糖尿病、肥胖症、心脑血管疾病、神经性退行性疾病等的发生发展密切相关。长久以来,细胞代谢的检测主要依赖酶学、色谱、质谱等,这些方法不仅破坏了细胞或生物体的完整性,更难以应用于高通量筛选。为了解决这一重要科学难题,2011年,杨弋教授团队利用合成生物学方法开发了一系列遗传编码的NADH荧光探针,实现了在活细胞及各种亚细胞结构中对NADH分子的实时动态、特异性的检测与成像(Cell Metabolism, 2011, 14, 555)。2015年,该团队又报道了可同时检测NAD+,NADH及其比率的第二代细胞代谢荧光探针NADH氧化还原比率探针(SoNar),像火眼金睛一样,可察觉到癌细胞与正常细胞的微细代谢差异(Cell Metabolism, 2015, 21, 777)。并进一步建立了细胞代谢荧光探针在单细胞、活体动物成像及高通量药物筛选方面的系统研究方法(Nature Protocols, 2016, 11, 1345)。 /p p   NADH和NADPH的荧光光谱相似,但是二者的生理功能却显著不同。NADH主要参与物质能量代谢,而NADPH主要参与合成代谢以及抗氧化,传统的自发荧光分析方法很难区分这两种小分子。该研究团队在第二代NADH荧光探针SoNar的基础上,通过对底物结合蛋白的理性设计和改造,开发了一系列高性能遗传编码荧光探针iNap,特异性检测NADPH,实现了在活体、活细胞及各种亚细胞结构中对NADPH代谢的高时空分辨检测与成像。该研究首次报道了癌细胞内不同亚细胞结构中游离的NADPH水平,发现了氧化应激时癌细胞内NADPH代谢受葡萄糖水平动态调节。研究团队也进一步发现人体内源性类固醇激素DHEA通过抑制G6PD活性和激活AMPK活性,对NADPH代谢实现双向调节作用。鉴于AMPK信号通路在衰老、糖尿病、肥胖症以及癌症中的重要角色,这一研究结果有望破解DHEA作为一种药物和膳食补充剂在这些疾病方面发挥出的有益作用。NADPH作为细胞内的还原力,在生理或病理条件下发挥重要角色。该研究报道的细胞代谢荧光探针iNap,不仅可应用于抗氧化、AMPK、脂肪酸合成等代谢途径与通路分析,也可用于衰老及相关疾病创新药物的发现。 /p
  • 岛津水产品中硝基呋喃类代谢物残留LCMSMS检测方案
    硝基呋喃类药物(Nitrofurans)是一类合成的抗菌药物,它们作用于微生物酶系统,抑制乙酰辅酶A,干扰微生物糖类的代谢,从而起抑菌作用。目前在医疗上应用较广者有:呋喃西林、呋喃妥因和呋喃唑酮。呋喃西林只供局部应用,后两者则可供系统治疗应用。目前在医疗上应用较广者有:呋喃西林、呋喃妥因和呋喃唑酮。呋喃西林只供局部应用,后两者则可供系统治疗应用。 硝基呋喃类药物很不稳定,很容易生成代谢物。硝基呋喃类药物在动物体内迅速分解产生代谢物,代谢物在体内与细胞膜蛋白结合成结合态。由于代谢物比较稳定也有致癌作用,所以在食品安全的检测中检测硝基呋喃代谢物。常见的硝基呋喃代谢物的衍生物有如下四种,包括:3-氨基-2-恶唑酮(AOZ)、5-吗啉甲基-3-氨基-2-恶唑烷基酮(AMOZ)、1-氨基-乙内酰脲(AHD)和氨基脲(SEM)。 本方案建立了一种使用岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8030联用检测水产品中硝基呋喃类代谢物的残留量的测试方法。样品经处理后,用超高效液相色谱LC-30A在4.0 min内完成分离,三重四极杆质谱仪LCMS-8030进行定量分析。对四种硝基呋喃类代谢物残留的线性、精密度、检出限(LOD)、定量限(LOQ)进行了验证。3-氨基-2-恶唑酮(AOZ)、5-吗啉甲基-3-氨基-2-恶唑烷基酮(AMOZ)、1-氨基-乙内酰脲(AHD)和氨基脲(SEM)在1~200 &mu g/L内线性良好,相关系数均大于0.999;分别用浓度为1 µ g/L、10 µ g/L和50 µ g/L的混合标准溶液进行了精密度实验,实验结果表明连续6次进样保留时间和峰面积相对标准偏差分别在0.28 ~ 0.07%和4.76 ~ 1.68%间,仪器精密度良好。满足《GB/T 21311-2007 动物源性食品中硝基呋喃类药物代谢物残留量检验方法 高效液相色谱串联质谱法》的检测要求。 了解详情,请点击《超高效液相色谱三重四极杆质谱联用法测定水产品中硝基呋喃类代谢物残留》。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。
  • 重磅推荐|临床质谱检测-新生儿遗传代谢病筛查标准物质
    新生儿疾病筛查是指在新生儿期对严重危害新生儿健康的先天性、遗传性疾病施行专项检查,提供早期诊断和治疗的母婴保健技术。采用串联质谱技术检测新生儿血中数十种氨基酸、游离肉碱及酰基肉碱的水平,筛查氨基酸代谢障碍、有机酸血症及脂肪酸氧化代谢障碍等多种遗传代谢病,不仅在欧美已广泛应用,我国医疗健康行业也于2019年发布了《新生儿疾病串联质谱筛查技术专家共识》,促进了临床质谱技术在我国新生儿疾病早期筛查中的应用和快速发展。阿尔塔科技作为CNAS认可的国产标准物质生产者,结合国内外相关国家及行业检测标准,不仅可提供新生儿遗传代谢病筛查常用混标、目标物及其同位素内标标准物质,还可根据客户需要研制特性化混标,定性定值准确,具有完整溯源链,保证规范性筛查工作的开展,更好的守护宝宝们的健康。相关产品推荐:了解更多产品或需要定制服务,请联系我们关于我们天津阿尔塔科技有限公司成立于2011年,是中国领先的具有标准物质专业研发及生产能力的国家级高新技术企业,公司坚守“精于标准品科技创新,创造绿色安全品质生活“的企业愿景,秉持”致力于成为全球第一品牌价值的标准品提供者”的企业使命。是国家市场监督管理总局认可的标准物质/标准样品生产者(通过ISO 17034/CNAS-CL04认可),并通过了ISO9001:2015质量管理体系认证。公司于2022年获批筹建“天津市标准物质与稳定同位素标记技术研究重点实验室”,并先后被认定为国家高新技术企业、天津市“专精特新”企业、“瞪羚”企业等,成立了博士后科研工作站和院士创新中心,建立了国家食品安全重大专项稳定同位素产业基地,主持完成和参加了多项天津市重大科研支撑项目和在研国家重点研发计划重点专项,处于我国标准品和稳定同位素标记内标行业的领先地位。经过10余年的努力,阿尔塔科技以其卓越的品质和全方位的技术支持与服务受到全球客户的广泛认可和良好赞誉,成长为行业内国产高端有机标准品的知名品牌。2022年底,阿尔塔成功携手杭州凯莱谱精准医疗检测技术有限公司(迪安诊断旗下子公司),进一步开拓医药和临床检测标准品,为多组学创新技术以及质谱标准化的解决方案提供技术保障,为广大人民的健康生活做出贡献,真正实现From Medicare to Healthcare。
  • 260万!华南理工大学活细胞代谢检测分析仪采购项目
    项目编号:GZZJ-ZFG-2023061项目名称:华南理工大学活细胞代谢检测分析仪采购项目预算金额:260.0000000 万元(人民币)最高限价(如有):260.0000000 万元(人民币)采购需求:序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)最高限价万元(人民币)1活细胞代谢检测分析仪1套主要用于实时侦测包括有氧呼吸以及糖酵解作用的细胞能量代谢的状态和动态,能同时进行活体细胞内线粒体耗氧速率和糖酵解产酸速率的实时、定量、全自动测定和分析。细胞能量代谢技术近年来已经发展成为细胞相关研究中的重要工具,该设备可广泛应用于食品科学、生命科学和医学的前沿领域:能量代谢学,线粒体,生理、生化,免疫功能和监控研究,干细胞研究,药理学和新药筛选,环境监控,神经生物学,血液学,肿瘤学等260经政府采购管理部门同意,本项目(活细胞代谢检测分析仪设备)允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品,具体详见采购需求。本项目采购标的所属行业为:工业合同履行期限:国内供货:在合同签订后(30)天内完成供货、安装和调试并交付用户单位使用;境外供货:收到信用证后(90)天内。本项目( 不接受 )联合体投标。对本次招标提出询问,请按以下方式联系。1.采购人信息名称:华南理工大学地址:广州市天河区五山路381号联系方式:文老师020-871129622.采购代理机构信息名称:广州中经招标有限公司地址:广州市越秀区寺右一马路18号泰恒大厦14楼1409室联系方式:陈小姐、庄小姐 020-87385151、020-37639369、020-87371812、020-873722963.项目联系方式项目联系人:陈小姐、庄小姐电话:020-87385151
  • 【国抽应对】水产品中硝基呋喃代谢物的检测(GB 31656.13-2021)难点解析
    近期,2022版食品安全监督抽检实施细则发布,其中指定GB 31656.13-2021《水产品中硝基呋喃类代谢物多残留的测定 液相色谱-串联质谱法》,为淡水鱼、淡水虾、海水鱼等基质硝基呋喃代谢物的检测标准(表1)。 表1 2022版国抽细则水产品中硝基呋喃代谢物检测项目01标准亮点 ▶ 细化了适用范围。适用于鱼、海参、鳖等水产品可食组织中硝基呋喃类代谢物 AOZ、AMOZ、AHD 和 SEM 残留量的测定;虾和蟹等甲壳类可食组织中 AOZ、AMOZ和 AHD的测定,这里不包括SEM,因为此类基质中,可能存在SEM这种内源性物质,从而导致结果假阳性。▶ 提高了HCl溶液的浓度,为0.5mol/L,水解更彻底。▶ 提高了提取、净化步骤中的离心转速,分别为6000、14000r/min,简化了前处理步骤。▶ 采用1次提取即可,更高效。 众所周知,硝基呋喃代谢物检测在兽残检测中属于较难做的项目,下面我们也来梳理一下实际做样过程中应该注意哪些方面。 02注意事项 ▶ 部分标准品(如SEM)较难溶,可借助超声波助溶。▶ 2-硝基苯甲醛现配现用,标准品与样品同步衍生。▶ 衍生后的目标物不稳定,前处理过程注意避光。▶ 注意pH的调节,pH为7.0-7.5时,目标物提取效果好。▶ 注意SEM的假阳性问题。除了上述可能存在内源性物质干扰外,还有几个方面可能造成SEM的假阳性——塑料包装材料中使用的偶氮甲酰胺,在高温下受热可分解产生SEM;采用次氯酸钠对水产品进行消毒和漂白也可以产生SEM。 小编认为,注意了以上细节,硝基呋喃的检测应该不会有太大问题啦。接下来,再为大家介绍岛津的应对方案。 03鱼肉中硝基呋喃类代谢物的测定岛津LCMS-8045三重四极杆液质联用仪 ▶ 检测仪器:岛津LCMS-8045▶ 色谱柱:Shim-pack GISS C18 Column(2.1 mm I.D.×100 mm L., 1.9 μm)▶ 流动相:A相:(0.01%甲酸)水, B相:(0.01%甲酸)乙腈▶ 流速:0.50 mL/min▶ 柱温:40℃▶ 进样体积:10 µL▶ 洗脱方式:梯度洗脱,初始比例10%B 表2 通用梯度洗脱程序图1 标准样品的MRM色谱图(0.5 ng/mL) 表3 校准曲线参数图2 鱼肉加标样品色谱图(1.0ng/mL) 本文内容非商业广告,仅供专业人士参考。
  • 科学岛团队开展代谢组学模型动物GC-MS检测分析研究
    近日,中国科学院合肥物质院健康所采用顶空固相微萃取气相色谱质谱(HS-SPME-GC-MS)非靶向分析方法,检测大鼠器官挥发性有机物(VOCs),获得了相关器官代谢VOCs生物信息。研究结果被遴选为正封面文章发表在分析领域TOP期刊Analytical Chemistry上(图1)。探测人体代谢物中的VOCs,有望发展成为体内器官病变无创筛查诊断新技术。然而,正常器官是否有VOCs、不同器官VOCs是否存在差异仍然是亟待探究的问题。为此,本研究系统地开展了大鼠离体器官检测分析研究(图2),采用HP-SPME-GC-MS技术,测量了12种器官组织释放的VOCs,共获得147个色谱峰,基于Mann-Whitney U检验与变化倍数(FC2.0)准则,非靶向分析发现:与其他器官相比,7种器官存在差异性VOCs,并对他们可能的代谢途径以及作为疾病生物标志物的潜力进行了广泛讨论;此外,通过正交偏最小二乘判别分析(OPLS-DA)结合受试者工作特征曲线(ROC)特性,发现肝脏、肾脏、脾脏和盲肠的差异性VOCs可以作为相应器官识别的指纹特征。本研究获得的健康器官组织VOCs图谱可以作为基线,为气体活检或者呼气试验无创筛查诊断、疾病治疗监测与疗效评估等科学研究提供参考。   本文第一作者为健康所2022级博士生刘玥和葛殿龙博士后,通讯作者为储焰南研究员,陆燕副研究员和李盼副研究员。本工作得到了中国科学院合肥物质院院长基金“融合专项”、国家自然科学基金项目等课题的支持。图1 Analytical Chemistry正封面图2 检测分析实验过程示意图
  • 关于《食品中氟虫腈及其代谢物残留检测液质联用》的公示
    p style=" text-align: justify "  根据《中华人民共和国食品安全法》有关规定,我委按照《2018年广西食品安全地方标准项目计划》,组织广西食品安全标准审评委员会进行了《食品中氟虫腈及其代谢物残留检测 液相色谱-串联质谱法》食品安全地方标准制定工作,形成了标准征求意见稿(见附件1-2),现进行公示并公开征求意见。如有意见,请于2018年11月20日前将意见反馈表(格式见附件3)以传真或电子邮件形式反馈我委。 /p p   联系人:宋振华 /p p   电 话:0771-2823593 /p p   传 真:0771-2805181 /p p   邮 箱:gxwjwspc@163.com /p p   附件: /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/201811/attachment/6603b2b8-b1ba-4f8a-a382-d5c64318b1da.doc" title=" 广西壮族自治区食品安全地方标准制修订征求意见反馈表.doc" 广西壮族自治区食品安全地方标准制修订征求意见反馈表.doc /a /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/201811/attachment/03bbcc4c-d054-47f7-be8e-d83be79960e9.docx" title=" 广西壮族自治区食品安全地方标准 食品中氟虫腈及其代谢物残留检测 液相色谱-串联质谱法 (征求意见稿).docx" 广西壮族自治区食品安全地方标准 食品中氟虫腈及其代谢物残留检测 液相色谱-串联质谱法 (征求意见稿).docx /a /p p style=" line-height: 16px " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_doc.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/201811/attachment/f5a2109c-d8a7-4ba4-9c25-d821f6ef25bc.doc" title=" 广西壮族自治区食品安全地方标准 食品中氟虫腈及其代谢物残留检测 液相色谱-串联质谱法 编制说明 (征求意见稿).doc" 广西壮族自治区食品安全地方标准 食品中氟虫腈及其代谢物残留检测 液相色谱-串联质谱法 & nbsp 编制说明 (征求意见稿).doc /a /p p br/ /p
  • 170万!南方科技大学代谢组学高分辨质谱检测系统采购项目
    项目编号:3324-DH2231H4121(SZDL2022001442)项目名称:代谢组学高分辨质谱检测系统采购项目预算金额:170.0000000 万元(人民币)最高限价(如有):170.0000000 万元(人民币)采购需求:标的名称数量单位简要技术需求(服务需求)代谢组学高分辨质谱检测系统采购项目1套详见招标文件 合同履行期限:详见招标文件。本项目( 不接受 )联合体投标。
  • 805万!北京工业大学超高分辨小分子代谢物分析检测系统采购项目
    项目编号:11000022210200024081-XM001项目名称:科技创新服务能力建设-卓越青年科学家-分析化学其他专用仪器仪表采购项目预算金额:805 万元(人民币)最高限价:805 万元(人民币)采购需求:包号分包名称是否接受进口采购数量技术指标、数量概述01包超高分辨小分子代谢物分析检测系统是1套适用单细胞代谢组学:通过超高分辨实现对小分子代谢物的准确鉴定……(其他详见招标文件第五章采购需求)CA项目编号:11000022210200024081-XM001项目总预算(万元):805超出预算金额的投标文件将视为无效投标。合同履行期限:合同签订后4个月内。本项目不接受联合体投标。0774-招标公告.docx
  • 359万!山东大学动物能量代谢监测系统采购项目
    项目编号:SDQDHF20220127-H074项目名称:山东大学动物能量代谢监测系统采购项目预算金额:359.0000000 万元(人民币)最高限价(如有):359.0000000 万元(人民币)采购需求:标包货物名称数量简要技术要求1动物能量代谢监测系统 1套详见公告附件合同履行期限:详见招标文件要求。本项目( 不接受 )联合体投标。山东大学动物能量代谢监测系统采购项目公开招标公告.pdf
  • 复旦大学采购3460万目标代谢组群超灵敏定量检测分析系统
    p & nbsp & nbsp 近日,为更好的开展代谢组学科学研究工作,复旦大学在中国政府采购网发布招标信息,预算3460.0万元采购一批仪器设备。具体信息如下: /p p 项目名称:复旦大学目标代谢组群超灵敏定量检测分析系统等采购国际招标 /p p 项目编号:0705-1840182008AI /p p 项目预算:3460.0万元 br/ /p p 投标截止时间:2018年09月14日 10:30 /p p 开标时间:2018年09月14日 10:30 /p p style=" text-align: left " 采购项目的名称、数量、简要规格描述或项目基本概况介绍: /p table style=" border-collapse:collapse " tbody tr class=" firstRow" td style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " width=" 22" valign=" top" 序号 /td td style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " width=" 126" valign=" top" & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 产品名称 /td td style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " width=" 28" valign=" top" 数量 /td td style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " width=" 268" valign=" top" & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 简要技术规格 /td td style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " width=" 111" valign=" top" & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp & nbsp 预算 /td /tr tr td style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " width=" 22" valign=" top" 1 /td td style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " width=" 126" valign=" top" 目标代谢组群超灵敏定量检测分析系统 /td td style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " width=" 28" valign=" top" 1项 /td td style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " width=" 268" valign=" top" 含1套“目标代谢组群超灵敏定量检测分析系统” /td td style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " width=" 111" valign=" top" & nbsp & nbsp & nbsp & nbsp & nbsp 165万元 /td /tr tr td style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " width=" 22" valign=" top" 2 /td td style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " width=" 126" valign=" top" 挥发性代谢组快筛及精密定量分析系统等 /td td style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " width=" 28" valign=" top" 1项 /td td style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " width=" 268" valign=" top" 含1套“挥发性代谢组快筛及精密定量分析系统”、1套“非靶向代谢组全局精密测量系统” /td td style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " width=" 111" valign=" top" & nbsp & nbsp & nbsp & nbsp & nbsp 145万元 /td /tr tr td style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " width=" 22" valign=" top" 3 /td td style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " width=" 126" valign=" top" 代谢标志物群超灵敏快速定量分析系统等 /td td style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " width=" 28" valign=" top" 1项 /td td style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " width=" 268" valign=" top" 含2套“体液功能代谢组超灵敏精准定量系统”、2套“高覆盖极性中心碳代谢组定量分析系统”、2套“代谢标志物群超灵敏快速定量分析系统”、2套“多代谢途径中所有代谢物同步定量系统”、2套“固醇及类花生酸等特异代谢物群同步定性与定量系统”、 2套辅助设备“质谱用氮气制备辅助系统” /td td style=" border: 1px solid rgb(204, 204, 204) word-break: break-all " width=" 111" valign=" top" & nbsp & nbsp & nbsp & nbsp & nbsp 3150万元 /td /tr /tbody /table p 项目联系方式: /p p 项目联系人:张老师 /p p 项目联系电话:86-21-65641327 /p p br/ /p
  • 岛津的抗肿瘤药物及其代谢物LCMSMS检测方案
    目前,在全球处方药市场中,抗肿瘤药物增长势头最快,有报告预计在近1-2年其将超过降血脂药成为市场销售冠军。抗肿瘤药分为烷化剂、抗代谢类、抗生素类、天然来源类、激素类和其他类等多种。本方案分析的对象HD和HD-M属于天然来源类抗肿瘤药物,分子量分别为490和314,其中HD-M是HD的代谢物。目前处于新药研发过程中,化合物名称和结构属于保密阶段。方案中使用岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8030联用快速测定抗肿瘤药物HD和HD-M,给出了线性范围、重复性和灵敏度测试结果。 本方案中使用岛津超高效液相色谱仪LC-30A与三重四极杆质谱仪LCMS-8030联用系统。具体配置为LC-30AD× 2输液泵,DGU-20A5在线脱气机,SIL-30AC自动进样器,CTO-30AC柱温箱,CBM-20A系统控制器,LCMS-8030三重四极杆质谱仪,LabSolutions Ver.5.41色谱工作站。岛津三重四极杆质谱仪LCMS-8030超快速分析装置实现最大500通道/秒(最小驻留时间1msec,最小延迟时间1msec)、 正负极性切换时间15msec的超快速MRM测定,最高15000 u/sec的超快速扫描测定。在高速分析中,可抑制串扰的UFsweeper® 碰撞室与NexeraTM LC-30A组合,改善分析的通量,提高用户的分析效率。配备高可靠性离子化接口,在长时间的测定中,获得稳定可靠的数据。准确捕捉超快速LC分析中的尖锐色谱峰,提高重现性。碰撞室串扰最小化保证高定量精度。 岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8030联用系统 本方案使用岛津超高效液相色谱仪LC-30A和三重四极杆质谱仪LCMS-8030联用快速测定了抗肿瘤药物(代号HD)及其代谢物(代号HD-M)。样品用超高效液相色谱LC-30A分离,三重四极杆质谱仪LCMS-8030进行外标法定量分析,在1.2分钟内完成检测。HD在0.05~50 &mu g/L,HD-M在0.1~10 &mu g/L浓度范围内线性良好,标准曲线的相关系数均在0.999以上;对0.5 &mu g/L、5 &mu g/L和50 &mu g/L混合标准溶液进行精密度实验,连续6次进样保留时间和峰面积相对标准偏差分别在0.182%和2.780%之下,系统精密度良好;HD定量限为0.005 &mu g/L,HD-M定量限为0.1 &mu g/L。 欲知详情请点击超高效液相色谱三重四极杆质谱联用法测定抗肿瘤药物及其代谢物。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有12个分公司,事业规模正在不断扩大。其下设有北京、上海、广州分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 我国科学家开发用于检测汗液代谢物的可穿戴金属有机框架传感器
    汗液中包含了很多人体健康信息,利用可穿戴式汗液传感器可以从中收集各种生理数据用于监测人体健康。金属有机框架(MOFs)作为传感器一种新型的电子活性材料,将MOFs直接集成到柔性电子装置中用于可穿戴汗液传感仍然具有挑战性。   近期,中国科学院福建物质结构研究所联合南洋理工大学的科研团队实现了将MOFs直接集成到柔性电子装置中用于可穿戴汗液传感的研究。研究成果发表在《Advanced Materials》期刊,论文的标题为“Wet-adhesive On-skin Sensors Based on Metal-Organic Frameworks for Wireless Monitoring Metabolite in Sweat”。   该研究通过将cMOF Ni3HHTP2-层状薄膜电极集成到柔韧透气的纳米纤维素基底上,提出一种湿粘式表皮汗液传感器。该传感器可以自适应地粘附在人体皮肤上,利用固有的导电性、高度多孔的结构和活跃的催化特性,选择性地准确检测汗液中的维生素C和尿酸等代谢物。该研究证明,Ni3HHTP2传感器的检测结果与高效液相色谱法(HPLC)的检测结果相同,在实际应用中具有可靠性。同时,该研究提出了一种无线表皮营养跟踪系统,用于监测日常活动过程中汗液中维生素C的动态变化,对于常规监测人体营养状况,避免营养不良的不良反应具有重要意义。   这项研究为将多功能MOFs集成到柔性电子器件中,实现高性能无创生物传感应用提供了新思路,有助于基于多功能MOFs的柔性电子装置在个性化医疗监测方面的发展。
  • 【安捷伦】一种评估细胞代谢的创新方法——安捷伦 Seahorse XF 底物氧化检测
    什么是能量代谢?代谢,是生命最基本的特征之一,机体从外界摄取营养物质,包括碳水化合物、脂肪、蛋白质、微量元素、水及维生素等,同时经过体内分解吸收将其中蕴藏的化学能释放出来转化为组织和细胞可以利用的能量,再通过利用这些能量来维持正常的生命活动。我们把这种代谢过程中所伴随的能量的释放、储存和利用称为能量代谢。细胞,作为构成生命体最基本的结构和功能单位,对其功能的研究,比如细胞的增殖,分化等,可以为多个研究领域提供有价值的信息,包括癌症、免疫功能障碍、心血管疾病、神经退行性疾病等。在过去的若干年中,涌现出大量文章及数据,说明能量代谢如何支持细胞生物学的各个方面,以及代谢的变化如何影响重要的细胞功能。安捷伦 Seahorse XF 技术,作为目前细胞能量代谢检测的金标准,可以在不侵入,不破坏样本的前提下,实现实时、高通量、多样本来源的活细胞能量代谢检测,从而为评估细胞功能及研究代谢机制,提供了强有力的技术手段。除了细胞样本,安捷伦 Seahorse XF 技术可以支持多种类型的样本检测,包括新鲜的组织切片,微生物,模式动物等等。当下新冠状病毒肆虐,我国针对病毒的疫苗及特效药的研发也在争分夺秒的进行中,安捷伦 Seahorse 技术同时可以为抗病毒药物和疫苗的研发奠定理论基础。我们已经在之前两篇系列文章(具体请参见文末推荐阅读)中介绍了安捷伦 Seahorse 助力抗病毒研究的相关内容。为什么要研究细胞底物氧化水平?细胞能量代谢与多种疾病息息相关,因此,许多领域的研究人员都对研究能量代谢产生了浓厚的兴趣,其中了解并知道在代谢过程中满足细胞能量需求所依赖的燃料成为了一个重要的研究方向。众所周知,生物体所需的三大营养物质为脂肪、糖类和蛋白质,对于细胞来说,长链脂肪酸(LCFA),葡萄糖(glucose)/丙酮酸(pyruvate)和谷氨酰胺(glutamine)是提供能量的三种最主要的底物。许多领域(例如癌症、免疫学、干细胞生物学)的研究人员已经证明这些底物的氧化水平会对细胞命运、功能以及适应性产生深远影响。癌症研究人员对研究癌细胞对于底物的依赖性很感兴趣,最常见的是癌细胞对于谷氨酰胺的依赖[1,2],这种依赖性可以揭示癌细胞的弱点,从而为找到药物靶点提供依据;免疫学研究人员则对研究诱导免疫细胞分化和激活的底物感兴趣,最常见的是脂肪酸氧化[3]。很多研究发现不仅提供了新的生物学见解,而且还揭示了干预和开发成功疗法的新方法。免疫代谢研究领域领军人物 Dr.Erika L. Pierce 的团队发表在 Trends in Immunology 上的综述性文章[4] 就是这样一个例子。在本文中,他们着重讨论了通过调控 T 细胞代谢(包括脂肪酸氧化)从而治疗癌症和免疫疾病的各种方法,为现在热门的免疫治疗提供了重要依据。文章提到代谢重编程对于 T 细胞激活和功能是必须的,比如抑制氨基酸的转运,可以限制效应 T(effector T)细胞的扩增;抑制脂肪酸的合成,可以削弱 Th17 细胞的分化并且促进调节性 T 细胞(Treg)的发展;增强脂肪酸氧化可以促进调节性 T 细胞或者记忆 T 细胞(T memory)的发展。因此,调控 T 细胞的代谢是提高靶向 T 细胞功能的一种方法。再来看一篇来自癌症研究领域,2019 年发表在 Nature Metabolism 上的文章。美国贝勒医学院的科学家揭示了前列腺癌,这种常见于中老年男性泌尿生殖系统癌症类型的发生机制,其中有部分前列腺癌与雄性激素分泌紊乱有关[5]。文章中指出雄激素受体驱动的前列腺癌细胞所需的能量来源依赖于线粒体丙酮酸氧化,其中 Seahorse 数据证实了抑制负责将丙酮酸转运到线粒体内的转运子(MPC),可以有效抑制细胞的氧化磷酸化水平,揭示了这种癌细胞的底物利用机制,从而提示 MPC 可能是这种前列腺癌的潜在治疗靶点。如何检测细胞底物氧化水平前面我们已经介绍了研究细胞对于底物氧化依赖的重要性,安捷伦 Seahorse 为此提供了一套完整的检测方法,可通过评估活细胞的耗氧速率(OCR)变化来测定细胞底物的氧化水平。这些快速而对样本无侵入损伤的检测方法使研究人员能够研究细胞如何氧化三种主要的底物:长链脂肪酸,葡萄糖/丙酮酸和谷氨酰胺。利用特定底物氧化通路的抑制剂,结合 Seahorse XF 线粒体压力测试,可以对线粒体功能进行全面评估,在底物需求较少(即基础呼吸)和底物需求较多(即最大呼吸)的条件下研究细胞功能,其中在底物需求较多时细胞更多地依赖特定底物(图 1)。该测定方法基于已被广泛熟知并认可的 Seahorse XF 线粒体压力测试,可提供直观的功能性参数,非常适合研究细胞在基础条件下以及在压力状态下能否升高对底物的需求,从而对细胞底物的偏好性以及依赖性进行全方面评估。使用这些试剂盒能够更方便快速的研究活细胞中特定底物的氧化过程,从而有助于研究细胞如何转换对于特定底物的依赖,以执行关键的细胞功能。图 1. 安捷伦 Seahorse XF 底物氧化压力测试曲线。在添加或不添加抑制剂时,连续添加化合物,测定基础呼吸参数、对抑制剂(Etomoxir、UK5099 或 BPTES)的急性响应以及最大呼吸参数。值得注意的是,虽然在基础条件下可以检测到较小的变化,即急性响应,但在高底物需求条件下(如 FCCP 的加入),往往会出现更大的响应,从而显示出细胞氧化所研究底物的能力的差异。产品信息:每个试剂盒均包含三个一次性试剂袋。每个试剂袋包含各一瓶以下试剂:底物通路抑制剂(Etomoxir 或 UK5099 或 BPTES),寡霉素(oligomycin),FCCP 和鱼藤酮/抗霉素 A(rotenone/antimycin A)混合物。每个试剂袋包含足够的试剂,可用于一块完整的 XF96 或 XF24 测试板。为了获得最佳实验结果,建议使用 pH 7.4 的 Seahorse XF DMEM 或 RPMI 检测液和 Seahorse XF 底物(葡萄糖,丙酮酸和谷氨酰胺)。Seahorse XF 底物氧化压力测试与 XF/XFe96 和 XF/XFe24 分析仪兼容。推荐阅读:1. 战胜新冠病毒可用之利器 | 安捷伦 Seahorse 助力抗病毒研究 https://www.instrument.com.cn/netshow/SH100320/news_522313.htm2. 抗击新型冠状病毒,安捷伦核酸/蛋白质质量控制产品从这些方面入手! https://www.instrument.com.cn/netshow/SH100320/news_521879.htm3. 聚焦代谢,安捷伦 Seahorse 在病毒免疫研究中的应用 https://www.instrument.com.cn/netshow/SH100320/news_523220.htm关注“安捷伦视界”公众号,获取更多资讯。
  • 【专刊论文推荐】新加坡南洋理工大学王玉兰教授:色谱质谱技术在亲水性代谢物检测中的挑战
    p style=" text-align: justify line-height: 1.75em text-indent: 0em "    strong 仪器信息网讯 /strong 本期推荐的是发表在《Journal of Analysis and Testing》2020年第3期的 strong 新加坡南洋理工大学王玉兰教授 /strong 和 strong 复旦大学人类表型组研究院唐惠儒教授团队 /strong 综述论文 strong “色谱质谱技术在亲水性代谢物检测中的挑战” /strong 。 /p p style=" text-align: justify line-height: 1.75em text-indent: 0em "    /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 600px height: 211px " src=" https://img1.17img.cn/17img/images/202007/uepic/75de4350-7053-4abe-9bad-2f233ecee85d.jpg" title=" 1111111.jpg" alt=" 1111111.jpg" width=" 600" height=" 211" border=" 0" vspace=" 0" / /p p style=" text-align: center line-height: 1.75em text-indent: 0em "    strong 色谱质谱技术在亲水性代谢物检测中的挑战 /strong /p p style=" text-align: justify line-height: 1.75em text-indent: 0em "   亲水性代谢物是代谢组学研究中一类重要代谢物,通常包括胆碱(Choline)、短链脂肪酸(Short-chain fatty acids),多元羧酸(Polyarboxylic acids),糖(Sugars)及磷酸糖(Sugar Phosphates),核苷酸(Nucleotides)等。覆盖包括氨基酸代谢,核苷酸代谢,中心碳代谢,水溶性维生素与叶酸代谢,辅酶与辅因子代谢等,具有重要的生物学意义。 /p p style=" text-align: justify line-height: 1.75em text-indent: 0em "   然而,此类代谢物由于较强的亲水性,在反相色谱保留能力较差 而阴离子代谢物的质谱检测灵敏度较低,传统的反相色谱-质谱联用技术往往无法获得良好的定量能力。同时,部分亲水性代谢物例如ATP,酮酸稳定性较差,生理浓度低,造成色谱质谱分析的巨大挑战。 /p p style=" text-align: justify line-height: 1.75em text-indent: 0em "   本综述介绍了亲水性代谢物的结构分类和生理功能,探讨了其结构和分布因素造成的检测困难的原因。详细分析了包括亲水相互作用色谱-质谱(HILIC-MS)、毛细管电泳-质谱(CE-MS)、离子对反相色谱-质谱(IPRPLC-MS)和离子色谱-质谱(IC-MS)等新型色谱分离技术在解决亲水性代谢物保留问题的进展和缺陷 同时,基于化学衍生化技术实现亲水性代谢物色谱保留和质谱响应性质改造的策略也成为本综述的一项重要议题。最后,通过对多种色谱分离技术和化学衍生化策略的对比,本文对亲水性代谢物的质谱检测提出了新的思考和展望。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/6aeb29c6-389d-47bc-a16d-5a87d4bd2db7.jpg" title=" 22222222222222222222.jpg" alt=" 22222222222222222222.jpg" / /p p style=" text-align: justify line-height: 1.75em text-indent: 0em "   Figure 1. Concentration range of partial hydrophilicmetabolites in human serum and urine, Data source is from HMDB. /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/929404b2-97a8-4712-b2a2-a0677640f8b3.jpg" title=" 33333333.jpg" alt=" 33333333.jpg" / /p p style=" text-align: justify line-height: 1.75em text-indent: 0em "   Figure 2. The stationary and the mechanism of HILIC. a.thepacking materials of stationary phase commonly used for HILIC analysis b.theschematic diagram of retention mechanism. /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/7c063e97-9d66-4849-869b-3855fe447e5a.jpg" title=" 5555555.jpg" alt=" 5555555.jpg" / /p p style=" text-align: justify line-height: 1.75em text-indent: 0em "   Figure 3. The parallel column regeneration method for analysisof metabolites and lipids consecutively. The blue line and red line representthe two independent flow-paths. Among them, the blue line with 11 min is HILICelution of hydrophilic metabolites to MS, followed by RP elution of lipids inthe red line. During running of each column, the other column undergoesre-equilibration to a waste bottle. Reprinted with permission from[123].Published by The Royal Society of Chemistry(RSC). /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/095d736c-c0a0-42d8-8405-5e13b84d997c.jpg" title=" 66666.jpg" alt=" 66666.jpg" / /p p style=" text-align: justify line-height: 1.75em text-indent: 0em "   Figure 4. Electric double layer model and Zeta potential, whichwas drawn by Microsoft PowerPoint. /p p style=" text-align: justify line-height: 1.75em text-indent: 0em "    /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/e94de102-7e0a-4279-800d-d300989c3e22.jpg" title=" 77777777.jpg" alt=" 77777777.jpg" / /p p style=" text-align: justify line-height: 1.75em text-indent: 0em "   Figure 5. The IC-MS for analysis of hydrophilic metabolites. a.ThermoCapIC-Orbitrap Q/Extractive MS structure. Reprinted with permission from[157]. b. CapIC/HILIC/RPLC-MS extracted ion map ofhexose phosphate in UM1 oral cancer cells. The explanation of figure number inoriginal figure is: (A) Cap IC, (B) UHPLC, (C) Cap-LC, (D) ZICpHILIC, and (E)Cap-HILIC. Reprinted with permission from[157]. Copyright 2014 American Chemical Society(ACS). /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/a2ba277f-8b58-4fff-b7a1-91457130d1f7.jpg" title=" 888888888.jpg" alt=" 888888888.jpg" / /p p style=" text-align: justify line-height: 1.75em text-indent: 0em "   Figure 6. Ion pairing chromatography mechanism. a.The dynamic ion exchange process is the green arrows part the ion pairingmechanism is the pink arrows part. b. the thermodynamic processes ofthese two mechanisms. /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/b439781a-d924-408d-bf08-9794df259b8e.jpg" title=" 9999999999999.jpg" alt=" 9999999999999.jpg" / /p p style=" text-align: justify line-height: 1.75em text-indent: 0em "   Figure 7. Structuraldesign of an amino acid derivatization reagent . (ref.[194]). /p p style=" text-align: right line-height: 1.75em text-indent: 0em "   (感谢论文第一作者胡庆宇博士提供翻译) /p p style=" text-align: justify line-height: 1.75em text-indent: 0em " span style=" text-indent: 0em " br/ /span /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " span style=" text-indent: 0em " 全文:Hu, Q., Tang, H. & amp Wang, Y. Challenges in Analysis of Hydrophilic Metabolites Using Chromatography Coupled with Mass Spectrometry. J. Anal. Test. (2020). a href=" https://doi.org/10.1007/s41664-020-00126-z" _src=" https://doi.org/10.1007/s41664-020-00126-z" https://doi.org/10.1007/s41664-020-00126-z /a /span /p p style=" text-align: justify line-height: 1.75em text-indent: 2em " span style=" text-indent: 0em " /span /p p style=" line-height: 16px text-indent: 2em " img style=" vertical-align: middle margin-right: 2px " src=" /admincms/ueditor1/dialogs/attachment/fileTypeImages/icon_pdf.gif" / a style=" font-size:12px color:#0066cc " href=" https://img1.17img.cn/17img/files/202007/attachment/4e8afcc9-8721-4bb3-9df0-7c1ea50d6cdd.pdf" title=" 10.1007@s41664-020-00126-z.pdf" 10.1007@s41664-020-00126-z.pdf /a /p p style=" text-align: center line-height: 1.75em text-indent: 0em "   唐惠儒教授简介 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/4221a99a-dc1c-454d-8316-e2eaf19f93c6.jpg" title=" 图片 1.png" alt=" 图片 1.png" / /p p style=" text-align: justify line-height: 1.75em text-indent: 0em "   唐惠儒教授是复旦大学特聘教授、国家杰出青年科学基金获得者、重点研发计划首席、新世纪百千万人才工程国家级人选、英国皇家化学会会士 曾在英国帝国理工学院、中科院、复旦大学等科研院所从事代谢研究30年、代谢组学研究21年 在Nature、PNAS等上发表SCI论文180余篇,被引用8千余次,部分工作被Science、Nature及系列期刊专文评述。 /p p style=" text-align: justify line-height: 1.75em text-indent: 0em "   唐惠儒教授现任ENC执委会执委、中国生物物理学会代谢组学分会会长,Nutri Metabol、J Integrated Omics 副主编,Metabolomics、CurrMetabolomics、ArchPharm Res等学术期刊编委 曾任J Proteome Res 编委、973项目及蛋白质科学/纳米科学重大研究计划项目函评/会评专家。 /p p style=" text-align: justify line-height: 1.75em text-indent: 0em "   复旦大学人类表型组研究院唐惠儒教授课题组主页: /p p style=" text-align: justify line-height: 1.75em text-indent: 0em "   a href=" http://hupi.fudan.edu.cn/people/tanghuiru" target=" _blank"  http://hupi.fudan.edu.cn/people/tanghuiru /a /p p style=" text-align: center line-height: 1.75em text-indent: 0em "    strong 王玉兰教授简介 /strong /p p style=" line-height: 1.75em text-indent: 0em " strong /strong /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202007/uepic/fab220db-b9e9-4aec-925b-371e1b25af6e.jpg" title=" Prof Wang Yulan (Custom).jpg" alt=" Prof Wang Yulan (Custom).jpg" / /p p style=" text-align: justify line-height: 1.75em text-indent: 0em "   王玉兰教授是新加坡南洋理工大学李光前医学院教授,新加坡表型中心主任,帝国理工大学名誉教授。1993年获莱斯特大学的硕士学位,1997年获University of East Anglia大学的博士学位。2008年入选中国科学院“项目百人计划”,任中国科学院武汉物理与数学研究所研究员、博士生导师和代谢学学科带头人,先后主持“973”课题、基金委面上项目和中科院重要方向性项目等。 /p p style=" text-align: justify line-height: 1.75em text-indent: 0em "   王玉兰教授长期从事生物代谢组分析方法的发展和应用研究。发展了体液和组织代谢组分析及代谢组与转录组数据整合分析等系列研究方法 建立了肠炎和克朗氏病及可传染性脑病的代谢组学诊断方法 揭示了肠道菌群和寄生虫及与细菌共感染的的规律及与菌群的相关性 研究了衰老、应激、营养干预以及药物对动物代谢组的影响 研究了乙肝感染导致糖代谢、脂代谢和谷氨酸代谢重组的新规律,为认识复杂生物系统的代谢基础、相关疾病的机制及早期诊断提供了信息和新思路。 /p p style=" text-align: justify line-height: 1.75em text-indent: 0em "   王玉兰教授共发表PNAS,Molecular Systems Biology andAna Chem等SCI论文百余篇,获国际专利3项。曾担任核磁共振历史最悠久的“实验核磁共振大会”执委(2012-2017)。目前担任metalbolomics, scientific reportand current metabolomics 等杂志的编委。 /p p br/ /p
  • 中国计量测试学会发布《益生菌活菌计数及代谢活力检测 拉曼光谱法》团体标准征求意见稿
    各有关单位:根据国家标准化管理委员会、民政部印发的《团体标准管理规定》及《中国计量测试学会团体标准管理办法》有关规定,经中国计量测试学会批准立项,由青岛星赛生物科技有限公司等单位牵头起草的《益生菌活菌计数及代谢活力检测拉曼光谱法》团体标准现已完成征求意见稿的编制,为保证标准的科学性、严谨性和适用性,现面向社会广泛公开征求意见。请各有关单位及专家对上述标准提出宝贵意见和建议,于2024年3月28日前将《征求意见反馈表》反馈至以下联系方式。联 系 人:周玭 电 话:17196019888地 址:山东省青岛市崂山区株洲路187-1号崂山智慧产业园2号楼1101邮 编:266000 电子邮箱:zhoupin@singlecellbiotech.com 1.《益生菌活菌计数及代谢活力检测拉曼光谱法》征求意见稿2.《益生菌活菌计数及代谢活力检测拉曼光谱法》编制说明3.征求意见反馈表 中国计量测试学会2024年2月27日附件1 《益生菌活菌计数及代谢活力检测拉曼光谱法》征求意见稿.pdf附件2 《益生菌活菌计数及代谢活力检测拉曼光谱法》编制说明.pdf附件3 征求意见反馈表.doc
  • 1210万!华南理工大学活细胞代谢检测分析仪、原位X射线衍射仪等采购项目
    一、项目基本情况1.项目编号:ZZ0230049项目名称:华南理工大学原位X射线衍射仪采购项目预算金额:365.0000000 万元(人民币)最高限价(如有):365.0000000 万元(人民币)采购需求:序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)最高限价(万元/套)1原位X射线衍射仪1套主要用于原位电化学和变温情况下,分析材料物相和晶体结构分析。365经政府采购管理部门同意,本项目允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品。本项目采购标的所属行业为: 工业 合同履行期限:合同签订之日至质保期结束。本项目( 不接受 )联合体投标。2.项目编号:GZZJ-ZFG-2023604项目名称:华南理工大学多元粉料热机械加工和发酵特性检测系统采购项目预算金额:130.0000000 万元(人民币)最高限价(如有):130.0000000万元(人民币)采购需求:包组号序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)最高限价万元(人民币)11多元粉料热机械加工和发酵特性检测系统1套多元粉料热机械加工和发酵特性检测系统由多元粉料热机械加工特性检测系统(混合试验仪)和面团发酵过程检测系统(流变发酵仪)组成,可独立和协同使用。混合试验仪揭示谷物蛋白和淀粉的加工特性,一次测定包括吸水率、形成时间、稳定时间、弱化度、淀粉糊化和回生特性等。设备含多个内置测试协议和校准方法,可依据粉料种类和热加工工艺定制测试协议。流变发酵仪聚焦发酵力、面团发酵过程流变特性,对被测定样品的发酵速率、发酵稳定性、发酵力、面团体积、产气速度等进行量化和特性评定。人民币130万元 经政府采购管理部门同意,本项目允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品,具体详见采购需求。本项目采购标的所属行业为:工业合同履行期限:国内供货:在合同签订后(30)天内完成供货、安装和调试并交付用户单位使用。境外货物:办理免税证明后(90)天内。本项目( 不接受 )联合体投标。3.项目编号:GZZJ-ZFG-2023602项目名称:华南理工大学活细胞代谢检测分析仪采购项目预算金额:255.0000000 万元(人民币)最高限价(如有):255.0000000 万元(人民币)采购需求:序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)最高限价万元(人民币)1活细胞代谢检测分析仪1套主要用于实时侦测包括有氧呼吸以及糖酵解作用的细胞能量代谢的状态和动态,能同时进行活体细胞内线粒体耗氧速率和糖酵解产酸速率的实时、定量、全自动测定和分析。细胞能量代谢技术近年来已经发展成为细胞相关研究中的重要工具,该设备可广泛应用于食品科学、生命科学和医学的前沿领域:能量代谢学,线粒体,生理、生化,免疫功能和监控研究,干细胞研究,药理学和新药筛选,环境监控,神经生物学,血液学,肿瘤学等255 经政府采购管理部门同意,本项目(活细胞代谢检测分析仪设备)允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品,具体详见采购需求。本项目采购标的所属行业为:工业合同履行期限:国内供货:在合同签订后(30)天内完成供货、安装和调试并交付用户单位使用;境外供货:收到信用证后(90)天内。本项目( 不接受 )联合体投标。4.项目编号:0809-2341HGG14049项目名称:华南理工大学大功率激光白光与近红外光源测试系统采购项目预算金额:200.0000000 万元(人民币)最高限价(如有):200.0000000 万元(人民币)采购需求:序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)最高限价万元(人民币)1大功率激光白光与近红外光源测试系统1套具体详见采购需求200.00本项目(大功率激光白光与近红外光源测试系统)只允许采购本国产品,具体详见采购需求。本项目采购标的所属行业为: 工业 交付地点:华南理工大学五山校区。合同履行期限:在合同签订后(30)天内完成供货、安装和调试并交付用户单位使用本项目( 不接受 )联合体投标。5.项目编号:ZZ0230047项目名称:华南理工大学分子与元素分析系统采购项目预算金额:160.0000000 万元(人民币)最高限价(如有):160.0000000 万元(人民币)采购需求:序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)单项最高限价(万元/人民币)1元素分析设备1套可实现有机分子C、N、H、S等元素比重分析952在线质谱仪1台可实现0-300amu分子量在线分析,包括实现差分电化学质谱分析65 经政府采购管理部门同意,本项目(包组)允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品。本项目采购标的所属行业为: 工业 合同履行期限:合同签订之日至质保期结束。本项目( 不接受 )联合体投标。6.项目编号:ZZ0230053项目名称:华南理工大学全自动表面积和孔隙率分析系统采购项目预算金额:100.0000000 万元(人民币)最高限价(如有):100.0000000 万元(人民币)采购需求:序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)最高限价(万元/套)1全自动表面积和孔隙率分析系统1套比表面与孔隙度分析仪是材料表征的基本手段之一,通过静态物理吸附法测定比表面积和孔径分布,揭示材料微观孔隙结构和表面特性。该设备可以对化学、材料、环境分析等领域的样品进行材料的比表面和孔结构进行分析及研究。100经政府采购管理部门同意,本项目允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品。本项目采购标的所属行业为: 工业 合同履行期限:合同签订之日至质保期结束。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年09月08日 至 2023年09月14日,每天上午9:00至12:00,下午12:00至17:30。(北京时间,法定节假日除外)地点:https://www.zztender.com/方式:详见本招标公告“六、其他补充事宜”。售价:¥0.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:华南理工大学     地址:广州市天河区五山路381号        联系方式:文老师020-87112962      2.采购代理机构信息名 称:广东志正招标有限公司            地 址:广州市天河区龙怡路117号银汇大厦5楼            联系方式:罗小姐020-87554018 85165610            3.项目联系方式项目联系人:李小姐、滕小姐电 话:  020-85165610
  • 许国旺团队合作成果:糖尿病视网膜病变可通过血液代谢标志物检测与发现
    p style=" text-align: justify text-indent: 2em line-height: 1.75em " 近日,中国科学院大连化学物理研究所研究员许国旺团队与上海交通大学附属第六人民医院贾伟平团队、中科院上海生命科学研究院研究员吴家睿团队合作,在糖尿病视网膜病变的早期发现方面取得新进展,发现了12-羟基花生四烯酸(12-HETE)和2-哌啶酮(2-piperidone)适用于糖尿病视网膜病变的诊断,尤其适合早期筛查。相关研究近日发表于Advanced Science。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202010/uepic/b2ace437-6b49-465c-af3b-35195092e4ec.jpg" title=" 11111.jpg" alt=" 11111.jpg" / /p p style=" text-align: center " 糖尿病视网膜病变可通过血液代谢标志物的检测 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 糖尿病在世界各地的发病率不断上升,造成社会、财政和医疗系统负担不断加重。国际糖尿病联合会预计,到2045年全球糖尿病患病人数将高达7亿人。中国糖尿病的患病人数已高居全球首位。糖尿病视网膜病变是糖尿病最常见、最严重的微血管并发症之一,也是成年人视力降低和致盲的主要原因,严重影响着全球成千上万人的生活质量。糖尿病视网膜病变的筛查和早期诊断对该病的预防和治疗尤为重要。目前的筛查和诊断仍依赖于视网膜成像,该方法人力、物力、财力消耗大,且依赖专业眼科医生的操作及对视网膜图像的判读,不利于大规模的快速筛查。因此,探索一种快速、高效、简便的体外诊断技术对糖尿病视网膜病变的早期发现和诊断有重要价值。 /p p style=" text-align: justify text-indent: 2em line-height: 1.75em " 本项研究共纳入905名受试者的血清样本,基于多平台代谢组学数据,全面揭示了糖尿病视网膜病变发生发展过程中异常的代谢特征和紊乱的代谢通路。通过多变量/单变量统计分析,研究人员发现并验证了一个新型组合标志物(12-HETE和2-piperidone),实现了糖尿病视网膜病变的快速、精准的体外诊断,其灵敏度高达80.5%~89.4%、特异性高达91.9%~93.3%,受试者工作曲线下面积AUC=0.928-0.946。该组合标志物在疾病的早期诊断中也表现出明显优势,其灵敏度高达81.6%~92.9%、特异性高达90.1%~93.3%、AUC=0.925-0.958,使糖尿病视网膜病变只需要进行血液检测就可快速及早发现病变原因,为糖尿病视网膜病变血液检测提供了可靠、高效、便捷的新方法。 /p p style=" text-indent: 2em " 点击链接了解原文: a href=" https://onlinelibrary.wiley.com/doi/10.1002/advs.202001714" target=" _blank" https://onlinelibrary.wiley.com/doi/10.1002/advs.202001714 /a /p
  • 803万!赛默飞中标北京工业大学超高分辨小分子代谢物分析检测系统采购项目
    一、项目编号:11000022210200024081-XM001二、项目名称:科技创新服务能力建设-卓越青年科学家-分析化学其他专用仪器仪表采购项目三、中标(成交)信息中标成交供应商名称:北京合众汇美国际贸易有限公司中标成交供应商地址:北京市朝阳区光华路7号13层16B1号中标金额:803万元供应商名称供应商地址统一信用代码中标金额北京合众汇美国际贸易有限公司北京市朝阳区光华路7号13层16B1号91110105681203929J803 万元四、主要标的信息供应商商品名称规格型号数量单价总价服务要求北京合众汇美国际贸易有限公司超高分辨小分子代谢物分析检测系统Orbitrap Eclipse1803万元803万元满足招标文件要求详见附件下载0774-中标结果公示.docx
  • 鸡蛋中氟虫腈及其代谢物基于岛津LCMS-8060的快速检测方案
    目前,欧洲多国正在经历一场食品安全危机,造成危机的问题食品竟然是几乎人人都会日常食用的鸡蛋。荷兰、德国、比利时的食品监管部门都在鸡蛋中检出了违禁杀虫剂氟虫腈。消息一经传出,立即引发了广泛担忧。氟虫腈残留问题在我国也引起了广泛的关注。中国的国家标准GB2763-2016《食品中农药最大残留限量》中规定,氟虫腈在植物源性食品中限量在0.02-0.1mg/kg之间,其中鸡蛋的限量为0.02mg/kg,日本肯定列表中规定鸡蛋中氟虫腈最大残留限量为0.02mg/kg,欧盟最严格,在(EU)No.1127/2014中规定蛋类中氟虫腈的残留限量为0.005mg/kg。本文介绍北京市疾控中心基于岛津液相色谱质谱联用仪LCMS-8060的氟虫腈残留检测方案,其灵敏度高、检测快(5min内),完全满足国标要求。 岛津液相色谱质谱联用仪LCMS-8060 了解详情,敬请点击《LCMS-8060检测鸡蛋中的氟虫腈及其代谢物》关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。
  • 低价细胞外流量分析仪新品让每个实验室都能检测得起新陈代谢
    用于测量细胞新陈代谢的新陈代谢分析仪和细胞外流量(Extracellular Flux,简称:XF)压力测试盒的供应商 Seahorse Bioscience 推出 XF 产品平台的低价产品 XFp 细胞外流量分析仪 (XFp Extracellular Flux Analyzer)。新的低价仪器将让更多的实验室可以获得 Seahorse 独特的技术。   Seahorse 细胞外流量分析仪对两大产生能量的细胞路径 -- 线粒体呯吸和糖解进行实时压力测试、检测新陈代谢方面的重大变化,正如在1000多份同行互查的出版物中报道的那样。XFp 分析仪快速简便地提供与细胞外流量细胞线粒体应激试验 (XF Cell Mito Stress Test)、细胞外流量糖解压力测试盒 (XF Glycolysis Stress Test ) 和细胞外流量新陈代谢开关试验 (XF Metabolic Switch Test) 标准相同的新陈代谢试验。   Seahorse Bioscience 推出 XF 产品平台的低价产品 XFp 细胞外流量分析仪。新的低价仪器将让更多的实验室可以获得 Seahorse 独特的技术。Seahorse Bioscience 行政总裁 Jay Teich 说:&ldquo 细胞外流量技术被快速採用与新发现激增同步发生。这些新发现涉及细胞新陈代谢、研究中的疾病和治疗,如癌症、免疫学、肥胖、糖尿病和神经煺行变性。我们发现许多科学家需要我们的技术,但却无法要求得到一个单独的 Seahorse 产品。 低价的 XFp 分析仪改变了这种情况。&rdquo   阿拉巴马大学伯明翰分校 (University University of Alabama Birmingham) 线粒体医学实验室 (Mitochondrial Medicine Laboratory) 负责人、病理学教授 Victor Darley-Usmar 博士说:&ldquo Seahorse 细胞外流量技术让主流科学家更容易了解新陈代谢的未解之迷。XFp 平台是为仅需要少量样本的实验定制的,这些实验可以让人终身为细胞的新陈代谢研究着迷。&rdquo   XFp 拥有一块正在申请专利的小片,这让它更适合将病人样本或与其它动物身上获得的珍贵样本进行两两比较。紧凑好用的 XFp 分析仪拥有直觉型、基于触摸屏的软件和改进过的工作流,这些令设计和运行细胞外流量试验变得简单和直接。细胞外流量分析仪和压力测试盒为细胞的新陈代谢测量设定的标准,让科学家可以将基因与蛋白质生物学数据和细胞功能联系起来。   Seahorse Bioscience 简介   Seahorse Bioscience 的新陈代谢分析仪和细胞外流量压力测试盒在细胞新陈代谢研究领域是行业标準。全球的科学家都清楚细胞新陈代谢在推进他们的研究上的作用。Seahorse Bioscience 成立于2001年,总部位于美国的麻省,在丹麦和中国设有办事处。更多信息请登入 www.seahorsebio.com。
  • 1019万!中原研究中心农药代谢检验检测平台和黑龙江省质量监督检测研究院仪器设备采购项目
    一、项目一(一)项目基本情况 1、项目编号:豫财招标采购-2024-997 2、项目名称:中原研究中心农药代谢检验检测平台专用仪器设备采购项目 3、采购方式:公开招标 4、预算金额:6,800,000.00元 最高限价:6800000元 5、采购需求(包括但不限于标的的名称、数量、简要技术需求或服务要求等) 5.1 采购内容:现需采购一批设备,主要包括超高效液相色谱-四极杆串联飞行时间质谱联用仪1台、超高效液相色谱-三重四极杆液质联用仪1套、同位素磷屏成像仪1套、超高效液相色谱同位素检测仪1套等仪器设备5.2 交货期:自合同签订之日起 45 日历天内供货、安装、调试完毕5.3 交货地点:采购人指定地点5.4 质量保证期:自验收合格之日起 1 年5.5 质量要求:符合国家及行业相关质量要求,满足采购人需求 6、合同履行期限:合同签订至质量保证期满 7、本项目是否接受联合体投标:否 8、是否接受进口产品:是 9、是否专门面向中小企业:否(二)获取招标文件 1.时间:2024年09月18日 至 2024年09月24日,每天上午00:00至12:00,下午12:00至23:59(北京时间,法定节假日除外。) 2.地点:河南省公共资源交易中心平台系统(http://www.hnggzyjy.cn/) 3.方式:凭CA密钥市场主体登录并在规定时间内按网上提示下载招标文件及资料;投标人需要完成信息登记及CA数字证书办理,才能通过省公共资源交易平台参与交易活动,具体办理事宜请查阅河南省公共资源交易中心网站公共服务-办事指南-新交易平台使用手册(培训资料)。 4.售价:0元 (三)凡对本次招标提出询问,请按照以下方式联系 1. 采购人信息 名称:中原研究中心 地址:河南省新乡市平原示范区红旗渠路28号2#展厅东厅 联系人:徐晴晴 联系方式:0373-6035728 2.采购代理机构信息(如有) 名称:中海域安项目管理咨询有限公司 地址:河南省郑州市金水区中州大道1188号置地广场3号楼12层63号 联系人:宋芳芳、张建森 联系方式:0371-85512909-811 3.项目联系方式 项目联系人:宋芳芳、张建森 联系方式:0371-85512909-811 二、项目二(一)项目基本情况项目编号:[[230001]SC[LHCS]20240005]项目名称:2024年度提升检验检测能力暨食源性兴奋剂检测仪器设备购置采购方式:公开招标预算金额:3,390,000.00元采购需求:合同包1(黑龙江省质量监督检测研究院2024年度提升检验检测能力暨食源性兴奋剂检测仪器设备购置的第1包):合同包预算金额:1,666,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他仪器仪表全自动高通量浓缩仪1(台套)详见采购文件80,000.00-1-2其他仪器仪表多维气相色谱仪1(台套)详见采购文件700,000.00-1-3其他仪器仪表液相原子荧光光谱仪1(台套)详见采购文件450,000.00-1-4其他仪器仪表二氧化硫测定仪1(台套)详见采购文件46,000.00-1-5其他仪器仪表氧化安定性仪1(台套)详见采购文件70,000.00-1-6其他仪器仪表液相色谱仪1(台套)详见采购文件320,000.00-本合同包不接受联合体投标合同履行期限:自合同签订之日起3个月内。合同包2(黑龙江省质量监督检测研究院2024年度提升检验检测能力暨食源性兴奋剂检测仪器设备购置的第2包):合同包预算金额:1,724,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)2-1其他仪器仪表恒温恒湿精密空调1(台套)详见采购文件31,000.00-2-2其他仪器仪表全自动水分测定仪1(台套)详见采购文件32,000.00-2-3其他仪器仪表液体自动进样器1(台套)详见采购文件78,000.00-2-4其他仪器仪表气相色谱仪串联质谱仪1(台套)详见采购文件1,550,000.00-2-5其他仪器仪表测厚仪1(台套)详见采购文件33,000.00-本合同包不接受联合体投标合同履行期限:自合同签订之日起3个月内。(二)获取招标文件时间: 2024年09月15日 至 2024年09月24日 ,每天上午 00:00:00 至 12:00:00 ,下午 12:00:00 至 23:59:59 (北京时间,法定节假日除外)地点:公告期内凭用户名和密码,登录黑龙江省政府采购管理平台(http://hljcg.hlj.gov.cn/),选择“交易执行-应标-项目投标”,在“未参与项目”列表中选择需要参与的项目,确认参与后即可方式:在线获取售价: 免费获取(三)对本次招标提出询问,请按以下方式联系。1.采购人信息名称:黑龙江省质量监督检测研究院地址:哈尔滨市道外区南通大街25号联系方式: 0451-519691252.采购代理机构信息名称:黑龙江省政府采购中心地址:黑龙江省哈尔滨市南岗区长江路130-6号联系方式:0451-859757093.项目联系方式项目联系人:赵岩电话:0451-85975709
  • LC-MS/MS在新生儿筛查与代谢性疾病检测方面的应用——访复旦大学附属中山医院检验科副主任郭玮
    p    span style=" font-family: 楷体,楷体_GB2312, SimKai " 临床检验由临床实验室将患者的血液、体液、分泌物、排泄物等标本进行定性或定量分析,为临床医学提供一系列实验室检测工作和项目的结果,用于疾病的诊断。近几十年来,有关基础科学飞速发展,新的分析检测的方法和仪器不断涌现,大大推动了临床检验的发展,使临床检验在疾病的预防、诊断和治疗中发挥着越来越大的作用。上海中山医院临床检验在国内始终走在前沿,也是首批采用 LC-MS/MS 技术的国内医院之一。 /span /p p span style=" font-family: 楷体,楷体_GB2312, SimKai "   此次我们邀请上海中山医院检验科副主任郭玮来和大家谈谈LC-MS/MS技术在新生儿筛查与代谢性疾病检测方面的应用。 /span /p p style=" text-align: center " img title=" guowei.jpg" style=" width: 296px height: 400px " src=" http://img1.17img.cn/17img/images/201708/insimg/c6f058fe-e7ba-4217-9172-460540380144.jpg" height=" 400" hspace=" 0" border=" 0" vspace=" 0" width=" 296" / /p p style=" text-align: center " strong 上海中山医院检验科副主任& nbsp 郭玮 span style=" font-family: 楷体,楷体_GB2312, SimKai " /span /strong /p p    span style=" color: rgb(84, 141, 212) " strong 作为卫生部部属的综合性医院,目前贵医院采用液相色谱串联质谱(LC-MS/MS)开展了哪些临床检验项目? /strong /span /p p    strong 郭玮: /strong 目前,我们医院主要使用LC-MS/MS进行激素类物质的检测,包括血浆间甲肾上腺素类物质、尿儿茶酚胺、25羟基维生素D及治疗药物浓度等的相关检测。 /p p    strong span style=" color: rgb(84, 141, 212) " 与传统的免疫学方法相比,LC-MS/MS在哪些项目上的应用突显了其价值? /span /strong /p p    strong 郭玮: /strong 人体内某些激素、小分子药物含量十分稀少,甚至仅为pmol/L这样低浓度的数量级,通过LC-MS/MS的检测,能准确地得到结果,并且能避免化学结构类似物的干扰。因此,在儿茶酚胺或者类固醇激素的检测上,LC-MS/MS方法发挥了重要作用。传统的免疫学方法因方法学的限制,无法得到准确的结果。此外,LC-MS/MS技术可以一次进样得到多个结果。例如,遗传代谢性疾病筛查或者治疗药物浓度监测。 /p p    strong span style=" color: rgb(84, 141, 212) " 据您的了解,目前LC-MS/MS在国内医疗机构的应用覆盖范围是怎样的?应用前景如何? /span /strong /p p    strong 郭玮: /strong 目前,国内大部分的省级妇幼保健院,甚至市级妇幼保健院都在使用LC-MS/MS对新生儿遗传代谢性疾病进行筛查。北京、上海等一线城市的三甲医院,其检验科、药剂科也已经开始逐渐关注LC-MS/MS在临床中的应用。我相信拥有IVD认证的LC-MS/MS会在临床诊疗领域中发挥越来越重要的作用。 /p p    span style=" color: rgb(84, 141, 212) " strong 临床应用上使用LC-MS/MS,医院检验科的人员能够短时间内就掌握这项检测技术? /strong /span /p p    strong 郭玮: /strong 我觉得任何一个新技术的出现都会带来一些挑战,医院检验科会对人员进行系统性的培训,操作人员也需要通过专业认真的学习和经验的积累,才能正确掌握LC-MS/MS这项技术。我们使用的是Waters的LC-MS/MS系统,厂家也会派应用专家也会对我们的操作人员进行培训,协助方法开发。 /p p    strong span style=" color: rgb(84, 141, 212) " LC-MS/MS用于遗传代谢性疾病检测,对所得的结果具体怎样进行分析,以及对检测出阳性的指标要如何进行后续的干预呢?此项技术是否真的能很好的应用于临床研究呢? /span /strong /p p    strong 郭玮: /strong 目前,美国和欧洲大部分的国家和地区已采用LC-MS/MS进行新生儿遗传代谢性疾病筛查,并且已经有十余年的历史了,覆盖率达到90%以上。在国内,北京、上海、浙江等地区也早已开展此类检测项目。在进行遗传代谢性疾病筛查时一般会通过专门的应用软件,分析新生儿(或儿童)血液中氨基酸或者酰基肉碱的含量,确定是否有阳性结果。对于阳性样本会再进行一次复检,之后通过电话通知家长或者就诊医生,及时进行后续的确诊检查,并采取有针对性的治疗措施。 /p p    strong span style=" color: rgb(84, 141, 212) " LC-MS/MS对不同检测,其结果要如何确认?临床如何对LC-MS/MS所提供的数据进行疾病分析? /span /strong /p p    strong 郭玮: /strong 目前,LC-MS/MS在临床中主要用于新生儿遗传代谢性疾病、小分子药物、体内较微量类固醇激素等物质的检测。该技术具有灵敏度高,准确度好的特点。LC-MS/MS方法检测得到的数据仍需要临床医生结合患者相应的临床表现,综合进行判断。 /p
  • 许国旺负责国家重点研发计划“精准医学研究”专项项目“应用于临床样本检测的超灵敏、高覆盖代谢组定量分析技术研发”通过绩效评价验收
    p style=" text-indent: 2em " span style=" text-align: justify text-indent: 2em " 日前,科技部发布了关于 /span span style=" text-align: justify text-indent: 2em " 国家重点研发计划“精准医学研究”重点专项2020年度部分项目综合绩效评价结论公示的通知。 /span /p p style=" text-indent: 2em text-align: justify line-height: 1.5em " 根据《国家重点研发计划项目综合绩效评价工作规范(试行)》等相关文件要求,经过课题绩效评价和项目综合绩效评价等程序,国家重点研发计划“精准医学研究”重点专项已完成2020年度部分项目的综合绩效评价工作。 /p p style=" text-indent: 2em text-align: justify line-height: 1.5em " 其中,中科院大连化学物理研究所生物分子高分辨分离分析及代谢组学研究组(1808组)许国旺研究员负责承担的国家重点研发计划“精准医学研究”专项项目“应用于临床样本检测的超灵敏、高覆盖代谢组定量分析技术研发”,顺利通过国家卫生健康委医药卫生科技发展研究中心组织的项目综合绩效评价验收。 /p p style=" text-align: justify line-height: 1.5em "   精准医学是医学科技发展的前沿方向,“精准医学研究”被科技部列为2016年优先启动的重点专项之一。该项目对应的指南方向是“应用于临床样本检测的超灵敏、高覆盖代谢组定量分析技术研发”,旨在针对临床样本检测需求,发展代谢组分析的新理论与新策略,创建超灵敏、高覆盖代谢组精密测量与定量的综合分析技术体系,并实现原位无创定量,建立超灵敏代谢物探针库。 /p p style=" text-align: justify line-height: 1.5em "   在项目绩效评价中,专家组认为该项目立足于研发应用于临床样本检测的超灵敏、高覆盖代谢组定量分析技术,项目总体进展顺利,达到预期目标和成效;项目管理规范,注重沟通协作与一体化实施,按照规定要求,较好地完成科技报告、数据汇总及档案归档等工作。 /p p style=" text-align: justify line-height: 1.5em "   “应用于临床样本检测的超灵敏、高覆盖代谢组定量分析技术研发”项目由中科院大连化学物理研究所牵头承担,华东理工大学、中国科学院昆明植物研究所、上海交通大学附属第六人民医院、中国人民解放军第二军医大学东方肝胆外科医院、清华大学参与共同完成。 /p p style=" text-indent: 2em " br/ /p
  • 珀金埃尔默覆盖40多种新生儿遗传代谢病的串联质谱检测试剂盒上市
    珀金埃尔默重磅推出新一代串联质谱检测试剂盒NeoBaseTM2。该检测试剂盒(国械注准20223400429)拥有独家的检测指标物和病种覆盖,可精准、快速、便捷地进行四十多种新生儿遗传代谢病的筛查,为及时有效的诊断和针对性治疗提供强有力的支撑。遗传代谢病是影响儿童智力和体格发育的严重疾病,其防治关键在于早筛查、早诊断、早治疗。目前通过采集新生儿足跟血进行串联质谱检测可以早期对这些危及生命的遗传代谢病进行筛查,通过早期诊断和治疗,大部分患儿可以控制病情,避免重要器官出现不可逆的损害,以保障儿童正常的身体发育和智力发育。珀金埃尔默此次发布的NeoBaseTM2可检测57种指标物,具有更出色的疾病筛查特异性和准确性。除了主要的三大类遗传代谢病(即氨基酸代谢病、有机酸代谢病和脂肪酸氧化代谢病)筛查外,新增了两种疾病类型,过氧化物酶体病——X连锁肾上腺脑白质营养不良(X-ALD)和嘌呤代谢病——腺苷脱氨酶缺乏症ADA-SCID(ADAD)。这两种疾病均为致死率很高的罕见病,通过早期诊断和干预,可明显提高患者存活率和生活质量,为罕见病群体带来福音。浙江大学医学院附属儿童医院主任医师,中华预防医学会出生缺陷预防与控制专业委员会新生儿遗传代谢病筛查学组组长赵正言教授指出:“新生儿疾病筛查作为出生缺陷防控的第三道防线,有效地促进和保障了儿童健康。在过去的多年里,通过同仁们在筛查、诊断和治疗上的努力,让无数的新生儿能够无忧无虑地成长,也让他们身后的家庭拥有幸福的生活。这些离不开每个家庭父母亲的全心付出,离不开同仁们对工作的高质量要求,也离不开工作中所使用到的质量过硬的各种设备和试剂。NeoBaseTM2试剂盒在全球和国内都是独家,希望新一代的串联质谱试剂盒能够让我们的新生儿筛查工作走得更远,让更多的孩子和家庭受惠,创造更好的未来。”上海交通大学医学院附属新华医院小儿内分泌、遗传代谢病研究室主任、上海市儿童罕见病诊治中心主任顾学范教授指出:“新生儿疾病筛查作为公共卫生健康的手段之一,是保证一个国家新生儿人群未来健康的重要措施。新华医院儿研所从上世纪80年代开始首次在国内开始新生儿疾病筛查的研究,从苯丙酮尿症到先天性甲低再到四病筛查,随着检测技术的进步,从这个世纪初开始,我们也用上了串联质谱技术进行多种遗传代谢病筛查,随着技术的更新换代,我们的工作更加高效,能够筛查的病种也是越来越多,这样就造福了越来越多有出生缺陷问题的新生儿家庭,通过新生儿疾病筛查尽量减少了因为疾病带来的伤害和家庭经济负担。珀金埃尔默本次推出的新产品NeoBase2试剂盒在筛查病种上更加丰富了,这无疑是为我们未来的工作提供了更有力的工具。”据了解,肾上腺脑白质营养不良(x-linked adrenoleukodystrophy,ald)是x染色体上(xq28)abcd1(adenosine triphosphate-binding cassette d1)基因突变引起的过氧化物酶体功能异常而导致的脂代谢异常的罕见病,发病率1/21 000~1/15 500。临床主要表现为大脑白质进行性脱髓鞘病变和肾上腺皮质功能不全。该病有两种遗传方式:①常染色遗传,新生儿期发病,较为少见;②x连锁隐性遗传,儿童或青年期发病,主要以听觉和视觉功能损害、智能减退、行为异常、运动障碍为主要表现,预后差。如果在患儿出现临床症状之前早期诊断、积极干预,可提高患者生活质量,延长患者生命。已有临床研究证实,早期患者经造血干细胞移植后5年生存率高达95%,而未经造血干细胞移植的患者5年生存率只有54%。腺苷脱氨酶缺乏症ADA-SCID(ADAD)是由腺苷脱氨酶(ADA)缺陷引起的免疫缺陷病,可导致重症联合免疫缺陷病(SCID),因为严重的复发性感染,在婴儿期通常是致命性的。如果在患儿出现临床症状之前早期筛查,则可实现早期诊断和早期干预治疗。已有的临床研究证实,患者在3.5个月内进行造血干细胞移植,可大大提高患者存活率。目前开展SCID新生儿筛查的方法以TREC分子检测为主,如将串联质谱技术与TREC分子检测相结合,可迅速指明是ADAD或其他类型的SCID,也更有利于检测晚发型ADAD(约占ADAD的~15%-20%)。珀金埃尔默大中华区诊断事业部总经理徐晔女士表示:“我们选择母亲节之际发布NeoBaseTM2串联质谱检测试剂盒,是希望给每个新生儿宝宝扫除成长路上的潜在风险,让宝宝们健康快乐的成长,更让妈妈们安心。我们期许在社会各界的努力下,在专家们的指引下,通过技术的进步造福更多的遗传代谢病患者。未来珀金埃尔默也将继续秉承为创建更健康的世界而持续创新的公司愿景和使命,坚持研发新的产品,为中国新筛事业贡献自己的力量。”
  • 饮食对代谢健康和抗衰更有利
    澳大利亚一项临床前研究表明,在控制糖尿病、中风和心脏病等疾病方面,调整饮食结构可能比服用药物更有效。研究显示,营养(包括总热量和常量营养平衡)对衰老和代谢健康的影响比3种常用糖尿病和延缓衰老药物更大。日前,相关成果发表于《细胞—代谢》。  这项研究建立在该团队在小鼠和人类身上进行的开拓性工作基础上,证明了饮食以及蛋白质、脂肪和碳水化合物的特定组合对衰老、肥胖、心脏病、免疫功能障碍和代谢性疾病(如Ⅱ型糖尿病等)风险的保护作用。  人们一直在努力寻找不改变饮食情况下改善代谢健康和衰老的药物。“饮食是一剂良药。然而,目前给药时没有考虑它们能否以及如何与饮食成分相互作用——即使这些药物的作用方式和营养信号通路与饮食相同。”论文通讯作者、悉尼大学查尔斯帕金斯中心学术主任教授Stephen Simpson说。  因此,研究人员着手研究药物或饮食在重塑营养感知和其他代谢途径方面是否更有效,以及药物和饮食间的相互作用是否使其更有效。  研究团队设计了一项复杂的小鼠研究,包括了40种不同方法,每种方法的蛋白质、脂肪和碳水化合物、卡路里和药物含量都不同。该研究旨在检测3种抗衰老药物对肝脏的影响,肝脏是调节新陈代谢的关键器官。  这项研究的一个关键优势是使用了Simpson和同事David Raubenheimer开发的营养几何框架。这个框架使研究人员能够考虑不同营养成分的混合及相互作用如何影响健康和疾病,而不是单独关注任何一种营养成分——这是其他营养研究的局限所在。  “我们发现,饮食结构比药物的作用要大得多。药物在很大程度上抑制了人们对饮食的反应,而不是重塑它们。”Simpson表示,“考虑到人类和老鼠本质上有相同的营养信号传递途径,研究表明,与服用药物相比,人们通过改变饮食改善新陈代谢健康会获得更好的效果。”  研究结果有助于理解“我们吃什么”与“我们如何变老”之间的机制。  研究发现,饮食中的卡路里摄入和常量营养素(蛋白质、脂肪和碳水化合物)的平衡对肝脏有很大的影响。蛋白质和总热量的摄入对代谢途径以及控制细胞功能的基本过程有着特别大的影响。例如,摄入蛋白质的量会影响线粒体的活动,后者是细胞中产生能量的部分。  这就产生了一种下游效应,因为蛋白质和饮食能量的摄入会影响细胞将其基因转化为不同蛋白质(帮助细胞正常运作和生成新细胞)的准确性,而这两个基本过程都与衰老有关。  相比之下,药物的作用主要是抑制细胞对饮食的代谢反应,而不是从根本上重塑它们。  然而,研究人员也发现了药物的生化效应和饮食成分之间的一些更具体的相互作用。一种抗衰老药物对由膳食脂肪和碳水化合物引起的细胞变化有更大的影响,而一种癌症药物和另一种糖尿病药物都能阻断膳食蛋白质对产生能量的线粒体的影响。  论文作者之一、查尔斯珀金斯中心教授David Le Couteur表示,尽管这项研究非常复杂,但它表明同时研究多种不同的饮食是多么重要,而不仅仅是比较几种不同的饮食。“我们都知道吃什么会影响健康,但这项研究表明,食物会显著影响人体细胞的许多过程。这让我们深入了解饮食如何影响健康和衰老。”  相关论文信息:https://doi.org/10.1016/j.cmet.2021.10.016
  • 一次性单细胞蛋白质组和代谢组同步分析策略
    细胞异质性作为细胞系统中一种普遍存在的现象,受到生物研究领域的日益关注。在传统的群体分析中,单个细胞的独特差异往往被整体的平均值所掩盖,而这些被忽略的细节恰恰构成了细胞分化过程中的关键线索。随着微阵列芯片、核酸测序、质谱等技术的进步,对单一细胞进行基因组、转录组、代谢组和蛋白组分析已不再遥不可及。特别是核酸扩增技术的进步极大地推动了基因组、转录组在单细胞层面的测序技术的应用。尽管取得了这些进步,但在单细胞层面对蛋白质和代谢物的分析仍然面临重大挑战,这主要是由于它们的量有限且缺少有效的扩增手段。本文提出了一种新的策略,通过一次性单细胞蛋白质组和代谢组分析(scPMA),可以在单次LC-MS/MS分析中同时获取单个细胞的蛋白质和代谢物信息。通过这种策略,研究人员能够整合单个细胞的多组学数据,以深入理解细胞内部相互作用的网络和调控细胞状态的复杂机制。scPMA策略共包括以下三个部分(图1):单细胞捕获及分离、纳升级样品预处理、一次性LC注入和质谱检测。前两个环节都是基于课题组前期自制的机械装置操作完成的,最后一部分才是scPMA策略的亮点。在常规分析流程中,由于蛋白质组和代谢组在物理化学特性上的根本差异,它们通常需要匹配不同的质谱检测技术。因此,在传统的样本预处理阶段,蛋白质和代谢物会被分离,随后各自经历特定的处理流程,并最终分别进行LC-MS/MS检测。然而,这些额外的分离和处理步骤不仅增加了分析的复杂性,而且往往不可避免地会导致样本的损失,特别是在处理单细胞水平的微量样本时,这种损失尤为显著,可能对研究结果的准确性和可靠性造成影响。基于此,作者希望能够开发一种易于使用的方法来实现同一单细胞个体的蛋白质组和代谢组同步分析。图1 一次性单细胞蛋白质组和代谢组同步分析示意图实际上,代谢物和蛋白酶切后的肽段在C18反相色谱柱上的保留时间是存在差异的。如图2所示,在作者设置的45 min梯度下,大部分A549细胞酶切的肽段在9至17 min的范围内就已流出(图2a),而此时流动相中乙腈的最高含量仅为40%。而A549细胞产生的代谢物则主要分布在17 min之后,只有极少部分是在17 min以前流出(<10)(图2b)。导致这些现象的根本原因是肽段与代谢物之间疏水性的差异,因此,该策略更适合蛋白组与有一定疏水性的代谢物分析。得益于C18的有效分离,可以在色谱梯度的不同时间段针对不同的样本成分(肽段/代谢物)设置不同的质谱检测参数(图2c)。有效的色谱分离加与之匹配的双区域质谱检测便可实现一次性单细胞蛋白质组和代谢组双重分析。与之前的单组学的结果相比,scPMA策略在定量深度上并无明显差异(图2d-f)。图2 单蛋白质组和代谢组分析与scPMA的性能比较 通过scPMA策略,研究者们能够对单个肿瘤细胞(包括A549、HeLa和HepG2细胞)进行双重组学分析,平均定量了816、578和293个蛋白质以及72、91和148个代谢物。并利用UMAP聚类和随机森林机器学习模型,基于单细胞的蛋白质组、代谢组和双重组学信息,实现了对细胞类型的初步分类(图3、4)。根据结果可得知,细胞在代谢组中的异质性要大于蛋白组。图3 scPMA策略分析单个肿瘤细胞(包括A549、HeLa和HepG2细胞)图4 基于单细胞的蛋白质组、代谢组和双重组学信息对细胞进行分类随后,作者还利用scPMA方法在单细胞水平上研究了多柔比星对肿瘤细胞的诱导作用(图5)。对比药物处理组的各个单细胞样本发现给药后不同的单细胞在蛋白质表达上存在着异质性,这也是在群体分析中无法观察到的现象。与未给药的细胞相比,给药组共鉴定出255个差异蛋白(图5b、c),一些肺癌细胞中过表达的蛋白显著降低。大部分的差异蛋白涉及的通路与DNA、染色质、核小体的合成有关(图5g)。同样,给药组和未给药组中鉴定出的代谢物也被用于UMAP聚类(图5d)和差异分析。差异分析结果(图5e、f)显示,93种代谢物有差异表达。其中,多柔比星仅在给药组检测到。值得注意的是,在给药组的各个细胞中,多柔比星丰度有明显的离散分布,甚至有10倍的丰度差异。这一结果表明不同的细胞个体具有不同的药物吸收水平,从而表现出明显的细胞异质性,这可能为进一步深入探索提供启发。基于差异蛋白质组和代谢组信息,利用MetaboAnalyst 5.0进行联合通路分析,分别富集出62条和234条相关通路。其中有37条显著相关的通路涉及的差异蛋白和代谢物与核糖体、DNA复制等药物作用机制有关(图5i)。图7.氘代差异分析流程示意图这些结果展示了scPMA策略在单细胞分析中的潜力,尤其是在药物干预研究中的应用前景。同时,这项工作也证明了一次性获取单细胞蛋白质组和代谢组信息的可行性,为未来在细胞分化、衰老和肿瘤免疫等领域的研究提供了新的工具。本文2024年发表在Analytical Chemistry上,One-Shot Single-Cell Proteome and Metabolome Analysis Strategy for the Same Single Cell。该文章的通讯作者是来自浙江大学化学系微分析系统研究所的方群教授。
  • 代谢组学,妙手何来?|迈理奥,开拓代谢组学新科技的先锋
    今天要讲到的代谢组学妙手来自何方? 来自我们优秀的用户——迈理奥(Meliomics)。迈理奥的快速崛起,源自于他们对代谢组学领域的深刻理解和持续创新,而安捷伦出色的仪器和解决方案也为其提供了重要支持。日前,我们有幸采访到了迈理奥首席科学家厉良教授(加拿大皇家科学院院士)和学术总监李佳博士,深入了解了代谢组学领域及其检测环节所面临的挑战与机遇。厉良教授是享誉国际的质谱和代谢组学专家,加拿大皇家科学院院士、加拿大国家代谢组学研究创新中心联合主任、加拿大阿尔伯塔大学终身教授、人类代谢组计划联合发起人、人类代谢组学数据库 HMDB 联合创始人,积累了丰富的学术成果,获得诸多行业赞誉。图 1. 厉良教授正在接受采访 什么是代谢组学? 随着人们生活水平的提高,健康已成为重要关注点。常规体检通过检测肌酐、尿酸、胆红素等代谢物来评估健康状态。然而,对于某些复杂的疾病,常规检测方法可能无法提供足够的信息,需要更先进的技术来辅助。以新生儿筛查为例,代谢组学技术能在几分钟内快速识别 40 多种遗传代谢病的生物标志物。那么,什么是代谢组学呢?代谢组学是通过质谱等高通量技术手段,研究和发现特定生理时期内生物体的所有低分子量的物质,并进行定性和定量分析,探索代谢物变化与生物过程之间的有机联系。简单来说,代谢组学就是研究生物体内所有小分子代谢物的科学。癌细胞为了满足自身快速增殖的能量需求,通常会加速和增加生物能量代谢途径,包括通过糖酵解提高葡萄糖摄取以及引起三羧酸循环的变化。想象一下,借助代谢组学技术,我们有望在癌症早期进行发现和干预,避免病情发展到晚期扩散才进行治疗。这种早期诊断和干预策略,能够显著提升治疗效果,改善患者的生存质量。 图 2. 葡萄糖、乳酸和三羧酸循环对抗肿瘤免疫的影响 质谱检测在代谢组学领域面临哪些挑战?如何应对? 代谢组学领域的研究在检测环节面临很多挑战,厉良教授介绍到,代谢物常用质谱进行检测,但检测方法还有几个层面亟待提升。迈理奥正在通过颠覆性的创新技术克服常规代谢组学方法的瓶颈,从而提升检测的准确性和效率。 01 代谢物的检测覆盖率:很多代谢物电离效率不高或难以在色谱柱上保留,导致质谱不容易捕捉到这些物质。针对这一问题,迈理奥巧妙运用了化学衍生化的方法,使代谢物拥有疏水基团和叔胺结构,显著提高其色谱柱的保留性能和离子化效果,结合安捷伦高分辨质谱仪器,提升代谢物检测灵敏度 10-1000 倍,可检测8000-13000 个色谱峰对,极大地提升了代谢物的检测效率。使得更多的代谢物能够被准确、全面地检测到。 02 代谢物的定量分析:代谢物的准确定量应使用其对应的同位素内标矫正,但并不是所有代谢物均有同位素内标,或即使有,价格往往非常昂贵。针对这一难题,迈理奥采用同位素双标记的方法,为每种代谢物生成一一对应的同位素内标,进行精确的定量分析。代谢组学研究中很多时候不需要绝对定量检测,仅需要通过相对定量检测确定代谢物的变化趋势,即可为进一步研究和转化提供重要参考。 03 代谢物的鉴定:质谱灵敏度较高,因此会检测到很多离子信号,但是如何鉴定其为具体的某种代谢物,这方面能力仍然需要提升。 为了得到更准确的代谢物鉴定结果,迈理奥建立了专业的三层级代谢物鉴定数据库,实现了1400+个代谢物的精准鉴定和7000+个代谢物的可靠推定。为了进一步提高代谢物的鉴定能力,迈理奥正在构建基于 AI 的规模更大、更专业化的数据库,此举旨在提高鉴定精度,确保检测结果的准确性,从而为科学研究和临床应用提供更加可靠的支持。图 3. 迈理奥技术人员进行代谢组学实验 在代谢组学研究领域,质谱仪需要满足哪些要求? 在代谢组学研究领域中,质谱仪发挥着非常重要的作用,因此厉良教授认为,质谱仪需要尽量满足以下要求:1灵敏度,确保能够检测出样本中浓度很低的化合物,使多种代谢物的峰强度和面积都能得到很好的体现; 2分辨率,确保能够区分并准确识别具有接近质量数的多种代谢物;3稳定性,确保从样品前处理、液相分离、到质谱检测等各个环节都保证较高的稳定性,从而确保大队列和长时间的检测项目都能保证检测输出的一致性; 4数据处理能力,确保有软件能便捷地把各种峰型的结果进行分析汇总。图 4. 安捷伦仪器安捷伦的高端质谱仪器,在灵敏度、分辨率、稳定性和数据处理方面都可以满足需求,而且在性价比方面也占有一定优势,方便将来向更多的实验室推广整套技术和解决方案。图 5. 安捷伦软件界面 代谢组学的临床转化和应用前景? 在基因组-转录组-蛋白质组-代谢组的系统生物学框架内,代谢组学处于最下游,最接近生物表型,比其他组学更具时间敏感性,因此可以更容易直接与表型建立关系。通俗点讲,就是我们的基因可能不会经常变化,但是代谢物却在一直变化,观察整个代谢组的变化,可以评估人体的健康或疾病状态,例如最常见的就是糖检测和诊断糖尿病之间的联系。 图 6. 系统生物学与人体表型之间的联系目前,代谢组学在临床领域的应用主要有三个方面:1疾病生物标志物的发现:代谢组学可以帮助识别与特定疾病相关的生物标志物,这些标志物可用于疾病的早期诊断、疾病的分型或预后评估。这对于提高疾病的检测精度和患者管理具有重要意义。 2药物代谢与反应监测:在药物开发的临床试验阶段(包括一期、二期和三期),代谢组学通过分析代谢组的变化,帮助明确药物的作用机制。此外,它还可以用于评估不同人群对治疗的响应水平,支持精准医疗的实施。3疾病预防和健康管理:通过观察多种代谢物(如指纹图谱)的变化,代谢组学可以评估个体的整体健康状况,并预测潜在的疾病风险。这为早期干预提供了依据,有助于预防疾病的发生。 迈理奥是谁?作为开拓代谢组学新科技的先锋,迈理奥在首席科学家厉良教授的全程指导下,组建了以归国博士赵爽为核心的专业团队,创建了全球领先的 DeepMarker MT 代谢组学平台和 DeepMarker LT 脂质组学平台,专注于全方位、个性化、一站式的科研服务和创新医疗诊断技术的开发,推动生物标志物探索、健康检测等生命科学领域的创新与变革。 颠覆性的技术创新突破了常规方法的瓶颈,已应用于数百项研究,涉及疾病诊断、健康监测、药物研发、中医药研究、食品农业、环境监测等领域,助力高水平的科学研究以及高效的临床转化,成果显著,如阿尔茨海默症(加拿大脑计划)生物标志物的探索、乌帕替尼(艾伯维)的新适应症疗效评估、食品发酵过程监测等,体现了更高灵敏度、高覆盖率、高精准定量、高稳定性的全方位、多层面的领先优势。结语代谢组学作为后基因组时代发展最快、最热门、极具潜力的组学新兴学科,广泛应用于生命科学各领域,为发现生物标志物、探寻疾病机制等提供了强大的技术平台。感谢迈理奥一直走在突破代谢组学技术瓶颈、助力千亿级疾病早筛市场的道路上。安捷伦也将继续与迈理奥及各位行业合作伙伴通力协作,通过提供尖端、稳定、高性能的产品平台,以及专业的服务和支持,助力更多本土企业实现创新和发展。
  • 空间代谢组学:单细胞空间代谢流分析新方法
    空间代谢组学:单细胞空间代谢流分析新方法原创 飞飞 赛默飞色谱与质谱中国 关注我们,更多干货和惊喜好礼刘甜生物体内的代谢物和脂质不仅是细胞的关键组成模块,它们在信号传导、表观基因组调控、免疫、炎症和癌症发展中同样具有重要作用和意义。代谢组学分析是我们了解、评估生物体、器官和细胞状态的重要方式。而单细胞技术通过展示组织内部甚至单克隆细胞之间的细胞异质性,将生物学研究推进至新维度。质谱成像(MSI)技术可以从样品中创建特定化合物的图像,这些图像是由样品表面获得的数千个质谱生成的。每个记录的质谱都会为图像贡献一个像素,而每个质谱中的峰都可以生成一个图像。与其他成像方法相比,MSI无需化合物标记,可实现非靶向分析。本次与大家分享的是一篇最新发表于bioRxiv上的有关单细胞空间代谢流分析方法的文章[1]。研究人员基于AP-SMALDI Orbitrap平台开发了一种命名为“13C-SpaceM”的新方法,通过13C标记的葡萄糖示踪葡萄糖依赖性脂肪酸从头合成途径(glucose-dependent de novo lipogenesis)。本方法应用超高分辨率的基质辅助激光解吸/电离实现了单细胞质谱成像,并通过全离子碎裂模式(AIF)模拟了脂肪酸分析前处理过程中的皂化反应,对包括甘油磷脂在内的主要脂质中的脂肪酸部分实现了共同分析。超高灵敏度、高分辨质谱检测器为单细胞内脂肪酸同位素检测提供了准确的定性、定量结果。研究人员通过鼠肝癌细胞的常氧-低氧模型,对检测方法进行了验证,确认方法的有效性。之后应用本方法分别检测了ATP柠檬酸裂解酶基因敲降(ACLY knockdown)鼠肝癌细胞以及携带异柠檬酸脱氢酶(IDH)突变的小鼠胶质瘤脑组织切片,通过比较脂肪酸的同位素丰度变化评估脂肪酸从头合成比例以及外源性脂肪酸摄取的变化。分析结果揭示了在脂肪酸从头合成过程中,乙酰辅酶A池(Acetyl-CoA pool)中存在大量的空间异质性,这表明在微环境适应过程中发生了代谢重编程。01研究背景脂质在生物体生命过程中承担着多种重要作用,多数脂质是由脂肪酸合成而来。成年哺乳动物体内的细胞通常由血液中摄取脂肪酸,而脂肪、肝脏以及癌细胞还可以Acetyl-CoA为底物,从头合成脂肪酸[2]。Acetyl-CoA经过一系列代谢反应,可以生成含有16个碳的饱和脂肪酸棕榈酸(16:0),之后棕榈酸发生碳链延长或去饱和反应生成不同的饱和、不饱和脂肪酸,从而影响脂质组成。而Acetyl-CoA同样有多种来源,除了葡萄糖经由TCA循环生成的柠檬酸在ACLY作用下生成Acetyl-CoA以外,在缺氧环境下,葡萄糖后续代谢产物丙酮酸会转化为乳酸,从而无法合成Acetyl-CoA、进入脂肪酸合成途径。在此情况下,谷氨酰胺可通过还原羧化反应生成柠檬酸,进而合成Acetyl-CoA [3,4] 。另有文献报道,缺氧环境下的癌细胞还可以将乙酸作为脂肪酸合成的前体 [5,6] 。而Acetyl-CoA除了作为脂肪酸合成底物以外,对于蛋白翻译后修饰、基因表达等均有重要作用。通过监控脂肪酸合成和Acetyl-CoA代谢间的互动可以帮助我们深入理解癌细胞的生存状态。02分析方法大气压MALDI成像分析是通过AP-SMALDI5离子源配合Q Exactive plus高分辨质谱仪实现的。激光像素设置为 10×10 µ m,激光衰减器角度设置为33°。质谱在负离子模式下采用一级全扫描和全离子碎裂(AIF)扫描模式。AIF模式的隔离范围为 m/z 600-1000,扫描范围为m/z 100-400,分辨率 140k,最大注入时间500 ms,碰撞能量NC 25%。(图1)图1. 单细胞代谢流质谱成像分析流程(点击查看大图)MALDI分析前后,分别应用显微镜检测,确定细胞影像位置及MALDI消融标记位置。通过检测MALDI的消融标记,将其与细胞影像叠加,并通过应用数学公式进行解卷积,从而整合显微镜图像和MALDI图像。实现了应用MALDI成像质谱检测到的单细胞分子轮廓。(图2)图2. 整合显微镜和MALDI-MS分析结果实现单细胞质谱成像(点击查看大图)03鼠肝癌细胞常氧-低氧模型单细胞成像分析鼠肝癌细胞在添加25 mM的12C-葡萄糖或U-13C-葡萄糖后,用含1mM醋酸、2 mM谷氨酰胺和10%透析胎牛血清的无葡萄糖DMEM细胞培养基培养,在37°C、5% CO2的培养箱中在常氧(20% O2)或低氧(0.5% O2)条件下培养72小时。选择72小时的时间点是为了确保棕榈酸的同位素标记已经达到稳态。(图3)在低氧条件下培养的细胞被表达绿色荧光蛋白(GFP)标记。在共培养实验中,常氧和低氧细胞使用胰酶分离,每种条件下混合10000个细胞,在同一张玻璃片上进行培养,并在固定之前允许其附着3小时。图3. 由稳定同位素标记的13C6-葡萄糖生成细胞质Acetyl-CoA以及后续的脂肪酸和脂质合成途径(点击查看大图)通过质谱一级全扫描分析,质谱成像共检测到64种脂质,包括磷脂酸(PA)、磷脂酰肌醇(PI)、磷脂酰乙醇胺(PE)、磷脂酰丝氨酸(PS)等。具体脂质鉴定结果经过了常规LCMS脂质分析确认。在AIF模式下,检测到了11种含量最高的脂肪酸,相应检测结果同样与常规LCMS分析结果相符。为了验证本方法,研究人员检测了常氧-低氧培养的鼠肝癌细胞混合样本。通过对氨基酸同位素峰的定量分析,发现13C标记的棕榈酸(M0)主要在正常细胞中检出,而缺氧细胞中的棕榈酸以未标记状态(M+0)为主。通过GFP标记结果的对照,证明了本方法可以通过同位素峰分布有效识别不同培养状态的细胞。图4. 在常氧(GFP阴性)和低氧(GFP阳性)条件下的原代鼠肝癌细胞共培养模型的显微镜和质谱成像结果(点击查看大图)图5. 通过GFP标记验证识别不同培养模式细胞的准确性(点击查看大图)04单细胞Acetyl-CoA池标记水平分析研究人员使用了两种表达不重叠的shRNA序列(ACLYkd oligo1和ACLYkd oligo 2)细胞系以及一个对照组细胞系。通过使用1 μg/mL的四环素处理细胞72小时实现了ACLY沉默。质谱成像数据是以10 μm的像素大小获得的,每个细胞的平均面积为550μm2,平均每个细胞有12个像素。通过应用二项式模型计算每个细胞的acetyl-CoA池标记程度p值,从而量化细胞质中acetyl-CoA池中从葡萄糖衍生的同位素标记acetyl-CoA的比例。测试结果与预期相符,ACLYkd细胞中的acetyl-CoA池标记水平低于对照组。值得注意的是,两种ACLYkd细胞之间的差异非常明显。ACLYkd oligo1的结果呈双峰分布,p值的差异明显较大,表明该细胞系存在两个亚群体。其中一个模式显示的p值与对照组相近,说明存在一个“沉默失败”的细胞亚群。ACLYkd oligo1第二个模式具有的p值明显则低于ACLYkd oligo 2,表明ACLYkd oligo 1中还存在一个“强沉默”的亚群,在这些细胞中,沉默效率非常高,导致acetyl-CoA同位素标记比例大幅降低。在ACLYkd oligo 2中,acetyl-CoA池的标记程度以及GFP报告基因强度显示出更均一的分布。M+2峰是最能表现出ACLYkd oligo1细胞中“强沉默”群体的低acetyl-CoA标记表型的质谱峰。M+8峰则为对照组细胞的特征标记峰。M+2和M+8之间的差异可以作为显示异质性的指标,用于展示葡萄糖对细胞质中acetyl-CoA的相对贡献。因此,13C-SpaceM能够检测ACLY敲降细胞中的异质性,并识别不同的亚群体。这种单细胞和空间异质性无法通过整体分析揭示,显示了13C-SpaceM方法的独特优势。图6. 细胞ACLY敲降后acetyl-CoA的同位素标记程度分析(点击查看大图)05肿瘤组学中氨基酸合成异质性的空间组学分析研究人员分析了从横向植入表达突变型异柠檬酸脱氢酶(IDH)和红色荧光蛋白(RFP)的GL261胶质瘤细胞的小鼠大脑组织切片。在采集组织前的48小时,小鼠被喂食未标记的或含有U-13C葡萄糖的液体饮食。首先,研究人员分析了12C-葡萄糖饮食的肿瘤携带小鼠大脑切片中的酯化脂肪酸组成。通过比较质谱TIC与显微镜明场和荧光成像,发现整个大脑(包括肿瘤区域)的质谱离子响应很高(图7a)。测试过程中,肿瘤区域与组织切片的其余部分分别采用10μm和50μm激光分辨率进行分析。对不同脂肪酸的空间分析揭示了在非肿瘤携带的脑半球组织中,脂肪酸丰度存在高度的异质性,我们可以仅根据它们的脂肪酸组成来识别的某些结构,如胼胝体和前连合部,这两个区域都富含油酸(18:1)且棕榈酸(16:0)、硬脂酸(18:0)和花生四烯酸(20:4)的含量低。有趣的是,尽管棕榈酸、油酸、硬脂酸和花生四烯酸在肿瘤和周围的大脑组织中的含量相似,肉豆蔻酸(14:0)和棕榈酸(16:1)在肿瘤组织中则明显增加。与大脑其它部分相比,肿瘤中必需脂肪酸亚麻油酸(18:2)和α/γ亚麻酸(18:3)也明显增高。之后,研究人员分析了喂食含有U-13C葡萄糖饮食的小鼠肿瘤组织,从肿瘤组织中选择性分离出的5种主要从头合成的脂肪酸的同位素分布(图7c)。三种饱和脂肪酸肉豆蔻酸(14:0)、棕榈酸(16:0)和硬脂酸(18:0)的13C摄入丰度较高,同位素分布最大分别可至M+10,M+12和M+14。其中,肉豆蔻酸M+0的强度极低,几乎完全源自脂肪酸从头合成。由于肉豆蔻酸对一些重要信号蛋白的翻译后修饰很重要,这一发现表明胶质瘤可能选择性地上调肉豆蔻酸的合成以促进自身生长。相比之下,两种单不饱和脂肪酸,棕榈酸(16:1)和油酸(18:1)的M+0同位素的相对丰度较高。硬脂酸和油酸的M+2同位素丰度明显增加,表明它们是由未标记的前体(即棕榈酸和棕榈酸)延长形成的。研究人员进一步利用棕榈酸的同位素分布计算acetyl-CoA池中源自葡萄糖的比例,发现肿瘤组织内的该比例同样具有显著的空间异质性(图7d)。图7. 小鼠脑胶质瘤组织内部脂肪酸代谢空间异质性分析(点击查看大图)总结本文作者开发了一种全新的单细胞代谢流成像检测方法,将超高激光分辨率的大气压MALDI与高分辨率、高灵敏度的质谱检测器相结合,对细胞和肿瘤组织内的葡萄糖依赖性脂肪酸从头合成途径实现单细胞层面的空间分析。不仅为单细胞水平空间探测代谢活动提供了新的方法,还为正常和癌症组织中的脂肪酸摄取、合成和修饰分析提供了前所未有的视角。参考文献:1. Buglakova E, Ekelö f M, Schwaiger-Haber M, et al. 13C-SpaceM: Spatial single-cell isotope tracing reveals heterogeneity of de novo fatty acid synthesis in cancer. Preprint. bioRxiv. 2024 2023.08.18.553810. Published 2024 Feb 28. doi:10.1101/2023.08.18.5538102. Rö hrig F, Schulze A. The multifaceted roles of fatty acid synthesis in cancer. Nat Rev Cancer. 2016 16(11):732-749. doi:10.1038/nrc.2016.893. Metallo CM, Gameiro PA, Bell EL, et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature. 2011 481(7381):380-384. Published 2011 Nov 20. doi:10.1038/nature106024. Wise DR, Ward PS, Shay JE, et al. Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α-ketoglutarate to citrate to support cell growth and viability. Proc Natl Acad Sci U S A. 2011 108(49):19611-19616. doi:10.1073/pnas.11177731085. Kamphorst JJ, Chung MK, Fan J, Rabinowitz JD. Quantitative analysis of acetyl-CoA production in hypoxic cancer cells reveals substantial contribution from acetate. Cancer Metab. 2014 2:23. Published 2014 Dec 11. doi:10.1186/2049-3002-2-236. Schug ZT, Peck B, Jones DT, et al. Acetyl-CoA synthetase 2 promotes acetate utilization and maintains cancer cell growth under metabolic stress. Cancer Cell. 2015 27(1):57-71. doi:10.1016/j.ccell.2014.12.002如需合作转载本文,请文末留言。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制