当前位置: 仪器信息网 > 行业主题 > >

化工原理

仪器信息网化工原理专题为您提供2024年最新化工原理价格报价、厂家品牌的相关信息, 包括化工原理参数、型号等,不管是国产,还是进口品牌的化工原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合化工原理相关的耗材配件、试剂标物,还有化工原理相关的最新资讯、资料,以及化工原理相关的解决方案。

化工原理相关的资讯

  • 2024年太原理工大学化学与化工学院-“岛津杯”优秀论文评审会成功举办
    8月30日上午,太原理工大学化学与化工学院- “岛津杯”优秀论文颁奖仪式在太原理工大学迎西校区博学馆C座五层会议室举行。岛津企业管理(中国)有限公司(以下简称:岛津)分析计测事业部市场部部长胡家祥、营业部华北大区经理魏雅馨以及太原理工大学化学与化工学院党委书记张琤、副院长赵强出席仪式,全体获奖学生、辅导员及学生代表参加,仪式由太原理工大学化学与化工学院党委副书记李冬雪主持。会议现场岛津分析计测事业部市场部 胡家祥部长胡家祥部长代表岛津致辞,在致辞中介绍了岛津与化学与化工学院深厚的渊源与情谊,特别是2019年开始建立合作实验室,双方的合作迈入新的台阶。近年来,许多老师在岛津的XPS、二维气质等产品上取得了丰硕的研究成果,本次获奖的论文,正是双方合作双赢的重要见证。他表示,期望通过优秀论文奖学金的形式,鼓励学生勇于探索,助力科研开发,未来希望与学院加强合作,愿双方的友谊地久天长。太原理工大学化学与化工学院 李冬雪副书记李冬雪副书记代表化学与化工学院致辞,向岛津表示热烈欢迎和衷心感谢。他表示,本次优秀论文奖学金的设立为化学与化工学院培育创新优秀人才提供了强大助力,也彰显了企业对教育事业和人才培养的高度关注和大力支持,体现了一家百年跨国名企的社会责任、社会担当和社会情怀。后续也期待与岛津持续保持合作,共同培育高质量人才。会上,魏雅馨经理宣读本次优秀论文奖学金表彰决定,参会领导和嘉宾为获奖学生颁奖。姚瑞、赵陶、官修帅、赵丽晨代表获奖学生作了精彩的学术报告。岛津分析计测事业部营业部华北大区经理魏雅馨太原理工大学化学与化工学院-“岛津杯”优秀论文奖学金的设立,是双方加强合作实验室建设,实现优势互补、资源共享、合作共赢、拓展合作广度深度的重要一步。岛津一直致力于不断研发高端科研设备,为高校科研人员的研究带来便利、提供支持。本文内容非商业广告,仅供专业人士参考。
  • 瓶口边厚仪是如何测量瓶口边缘厚度的?基于何种技术或原理
    在现代工业生产中,瓶口边厚仪作为一种关键的质量控制设备,广泛应用于医药、化工、食品等多个领域,尤其在玻璃瓶、塑料瓶等包装容器的生产中发挥着至关重要的作用。本文将深入探讨瓶口边厚仪的工作原理、所采用的技术或原理。一、瓶口边厚仪的工作原理概述瓶口边厚仪是一种高精度测试设备,主要用于测量玻璃瓶或塑料瓶瓶口边缘的厚度。其工作原理基于机械接触式测量技术,通过精确的传感器和数据处理系统,实现对瓶口边缘厚度的准确测量。该设备不仅具有高度的测试准确性和重复性,还能在不对被测物体造成损伤的情况下完成测量,确保测试结果的可靠性。二、机械接触式测量技术详解1. 探头组件与传感器的作用瓶口边厚仪的核心部件包括探头组件和传感器。探头组件通常采用碳纤维等轻质高强度材料制成,确保在测量过程中既能稳定接触瓶口边缘,又不会对瓶子造成损伤。传感器则负责将探头接触到的物理信号(如位移、压力等)转换为电信号,供后续数据处理系统分析。2. 信号处理与显示转换后的电信号经过信号放大器放大后,进入数据处理系统。该系统利用先进的数字信号处理技术,对信号进行滤波、去噪、线性化等处理,最终得出瓶口边缘的厚度值。测量结果通过数字显示屏实时显示,便于操作人员读取和记录。三、高精度测量的实现1. 精密的机械结构设计为了实现高精度的测量,瓶口边厚仪的机械结构设计十分精密。探头组件与瓶口边缘的接触点需保持恒定且均匀的压力,以确保测量结果的准确性。同时,设备的整体结构需具备较高的刚性和稳定性,以抵抗外界干扰和振动对测量结果的影响。2. 先进的测量算法除了精密的机械结构外,瓶口边厚仪还采用先进的测量算法对信号进行处理。这些算法能够自动校正测量过程中的系统误差和随机误差,提高测量结果的精度和稳定性。同时,算法还能实现数据的实时处理和统计分析,为质量控制提供有力支持。四、非接触式测量技术的探索虽然机械接触式测量技术在瓶口边厚测量中占据主导地位,但非接触式测量技术也在不断发展和探索中。例如,基于激光或超声波的非接触式测量技术具有不损伤被测物体、测量速度快等优点,但其在瓶口边厚测量中的应用还需进一步研究和验证。五、应用实例与市场需求1. 医药行业的应用在医药行业中,瓶口边厚仪被广泛应用于药品包装容器的质量检测中。通过测量瓶口边缘的厚度,可以评估包装容器的密封性、耐压性等关键性能指标,确保药品在储存和运输过程中的安全性和有效性。2. 化工行业的需求化工行业对包装容器的要求同样严格。瓶口边厚仪在化工瓶罐的生产过程中发挥着重要作用,通过测量瓶口边缘的厚度,可以及时发现并纠正生产过程中的偏差和缺陷,提高产品的整体质量和市场竞争力。3. 市场需求与未来展望随着工业生产的不断发展和消费者对产品质量要求的不断提高,瓶口边厚仪的市场需求将持续增长。未来,随着技术的不断进步和创新,瓶口边厚仪将更加智能化、自动化和便携化,为各行各业提供更加高效、准确的质量控制手段。六、结语瓶口边厚仪作为现代工业生产中的重要质量控制设备,其工作原理和技术特点决定了其在多个领域中的广泛应用和重要地位。通过不断的技术创新和产品优化,瓶口边厚仪将不断提高测量精度和稳定性,为企业的质量控制和市场竞争提供有力支持。同时,我们也期待非接触式测量技术在瓶口边厚测量中的进一步发展和应用,为工业生产的智能化和自动化注入新的活力。
  • 太原理工大学化学工程与技术学科-岛津合作实验室正式挂牌成立
    2021年6月11日上午,太原理工大学化学工程与技术学科-岛津合作实验室签约挂牌仪式在太原理工大学省部共建煤基清洁高效利用国家重点实验室顺利召开。 太原理工大学是“211工程”重点建设大学,入选国家“双一流”重点建设高校。化学工程与技术学科早在2002年即入选国家重点学科。 太原理工大学省部共建煤基清洁高效利用国家重点实验室长期与岛津密切合作,配备有X射线光电子能谱、全二维气质联用仪、气相色谱、液相色谱、紫外光谱、红外光谱、热重分析、原子光谱等多套设备,有效服务于如针对煤、煤伴生物和煤衍生物的高效洁净转化,煤基含氧燃料及化学品合成、煤转化工程中的节能减排和能源战略等重大课题项目。 太原理工大学副校长吕永康发表致辞 在签约仪式上,太原理工大学副校长吕永康教授代表学校高度评价了岛津长期以来对太原理工大学的科研助力和技术服务,并表达了由衷的感谢。太原理工大学化学工程与技术学科作为国家重点学科,在高速发展的同时,对于高端科学仪器及专业技术服务的需求也日益增长,吕校长期待今后可以借助岛津全面的、高性能的仪器设备以及强大的技术背景,在煤化工研究中取得更多的突破及发展,在未来与岛津形成更加紧密而深入的合作。 岛津分析计测事业部市场部部长胡家祥发表致辞 岛津分析计测事业部市场部胡家祥部长代表岛津向合作实验室的成立发表致辞。胡部长提到,作为全球专业的分析仪器供应商,岛津一直致力于“以科学技术为社会做贡献”,不断加强技术创新,并热忱为科学研究领域提供服务。在国家能源转型和优化升级的背景下,煤科学技术将持续成为科学研究及产学研合作的重要方向。太原理工大学化学工程与技术学科的科研需求与岛津的分析技术理念高度一致。此次合作实验室的成立,将成为双方深化合作新的里程碑,未来双方将在前沿科技研究,应用开发,学术成果推广等多方面开展更为深入的合作,携手为煤化工技术进一步发展做出贡献。 吕永康副校长和胡家祥部长代表合作双方进行合作实验室的签约及揭牌仪式,宣告“太原理工大学化学工程与技术学科-岛津合作实验室”正式成立。 仪式结束后,双方就煤化工行业的最新研究进展进行了学术交流汇报。岛津分析计测事业部市场部化工行业担当李言老师分享了岛津在能源催化领域的解决方案和最新技术;太原理工大学博士生李旺分享了煤液化产品定性定量分析方法的最新研究成果。现场学术氛围浓厚,取得了良好的交流效果。 岛津分析计测事业部市场部化工行业担当李言原理工大学博士生李旺 会后胡部长一行参观了合作实验室,对于仪器设备使用,后续科研合作等话题进行了深入交流。 参观合作实验室与会专家合影留念
  • 低温培养箱的工作原理
    低温培养箱是一种能制冷,保存物品常态的低温保存箱。主要适用于科研院所、电子、化工等实验室,医院、血站、疾病防控,用于保存血浆、生物材料、疫苗等,也可用于电子器件及特殊材料的低温试验。 低温培养箱的工作原理: 制冷循环采用逆卡若循环,该循环出两个等温过程和两个绝热过程组成,其过程如下:制冷剂经压缩机绝热压缩到较高的压力,消耗了的功使排气温度升高,之后制冷剂经冷凝器等温地和四周介质进行热交换将热量传给四周介质。后制冷剂经截流阀绝热膨胀做功,这时制冷剂温度降低。最后制冷剂通过蒸发器等温地从温度较高的物体吸热,使被冷却物体温度降低。此循环周而复始从而达到降温之目的。本试验箱之制冷系统采用1套法国产泰康全封闭压缩机所组成的二元复叠氟利昂制冷系统。制冷系统的设计应用能量调节技术,既能保证制冷机组正常运行,又能对制冷系统的能耗及制冷量进行有效的调节,使制冷系统保持在最佳的运行状态。采用平衡调温(BTHC),既在制冷系统在连续工作的情况下,控制系统根据设定之温度点通过PID自动运算输出的结果去控制加热器的输出量,最终达到一种动态平衡。
  • 阿基米德原理自动柴油密度仪操作步骤
    一、概 述 SH102C全自动石油密度测定仪是采用阿基米德原理进行自动测量石油产品的密度,适用于测定石油产品、化工溶液、现化能源、石油燃料、精细化工的密度,仪器符合ASTM D1298标准规范,自动显示密度值、API度。二、功能特点 山东盛泰仪器有限公司厂家直销 镀金陶瓷电容传感器;标准的RS232数据输出功能,可连接打印机自动打印。;全自动零点跟踪、蜂鸣器报警、超载报警功能蓝色背光液晶显示;测量时间 约10秒三、步骤 山东盛泰仪器有限公司厂家直销 1. 将挂钩悬挂在液体专用架的正中央, 按下’ZERO’扣除挂钩的重量2.使用挂钩将标准的玻璃砝码钩起来,数值稳定后按ENTER保存。3.取50-60ml要测量的液体样品到烧杯中,并放在黑色的支撑板上4.使用挂钩将标准玻璃砝码钩起,悬挂在装满待测量液体烧杯中,要确保测量液体有高于玻璃砝码,而且玻璃砝码不可以碰到烧杯。5.数值稳定后,按下ENTER 自动显示被测液体的密度值。按MODE切换波美度.浓度按print打印出测量数字,按SET返回测试下一个样品.
  • 太原理工大学将建8个研究生创新中心
    3月9日讯从省教育厅传来消息:2012年前,太原理工大学将新建8个研究生教育创新中心与我省八大支柱产业对接,为企业科技创新提供强有力的智力和人力支撑。   目前,全省共有5个研究生教育创新中心,其中,太原理工大学有两个。今年开始,太原理工大学将再建8个研究生教育创新中心,包括煤炭、炼焦、冶金和电力四大传统支柱产业和煤炭化工、装备制造、材料和旅游四大新支柱产业。到2012年,8个研究生教育创新中心建成后,进入中心的研究生将达到300名。
  • 实验型冻干机的工作原理和应用
    实验型冻干机的工作原理和应用 随着科学技术的不断进步,各种新型实验仪器也层出不穷,其中实验型冻干机就是一种近年来应用越来越广泛的一种实验室设备。该产品可以将溶液、材料等在低温下冷冻成固体,然后在真空环境下将其中的水分蒸发掉,从而得到干燥的样品。下面我们来详细了解一下该产品的工作原理和应用。  一、工作原理  实验型冻干机的工作原理是利用制冷技术和真空技术相结合,将待处理物质在低温下冷冻成固体,然后在真空环境下对其进行加热升温,使其从固体状态变为液体状态,最后通过蒸发除去其中的水分,从而得到干燥的样品。具体步骤如下:  1. 预冻:将待处理物质放入该产品的容器中,然后在低温环境下进行预冻,使其变成固体状态。  2. 冻干:将预冻后的物质放入该产品的干燥室中,然后在真空环境下进行加热升温,使其从固体状态变为液体状态。此时,被冻结的水分会逐渐蒸发掉。  3. 重复以上步骤直至完成干燥过程。  二、应用  该产品广泛应用于生物医药、化学化工、食品等领域。以下是几个具体的应用案例:  1. 生物药品生产:该产品可以用于生物药品的生产过程中,如生产血浆、疫苗等。通过冻干处理,可以保证生物药品的质量和稳定性。  2. 化学试剂制备:该产品可以用于化学试剂的制备过程中,如制备氨基酸、维生素等。通过冻干处理,可以使化学试剂长期保存并且方便使用。  3. 食品加工:该产品可以用于食品加工过程中,如制作汤圆、饼干等。通过冻干处理,可以使食品保持原有的口感和营养成分。 冻干机冷冻干燥机LGJ-18N普通型亚星仪科主要特点:1、本机采用进口压缩机制冷,制冷迅速,冷阱温度低。2、冷阱开口大,无内盘管,带样品预冻功能,无需低温冰箱;3、采用7寸真彩触摸液晶屏控制系统,操作简单方便,且功能强大,作为人机界面,中文(英文)可转换界面,以曲线和数字形式显示工作时间、冷凝器温度、样品温度、真空度,并记录干燥曲线;。4、工业嵌入式操作系统,ARM9核心控制电路设计,32M内存128M FLASH,操作响应速度快,存储数据量大。本机可存储多次冻干数据,FAT32文件系统,EXCEL文件存储,可存储一个月以上测量数据128M FLASH,并配置USB通讯接口,实验数据U盘一键提取。 5、控制系统自动保存冻干数据,并能以实时曲线和历史曲线的形式查看,整个冻干过程清晰明了。6、干燥室采用无色透明一次注塑成型聚碳干燥室,耐腐蚀、不易碎、无粘接、透明度高、密闭性强、样品清楚直观,可观察冻干的全过程。7、真空泵与主机连接采用国际标准KF快速接头,简洁可靠。 总之,实验型冻干机作为一种新型的实验室设备,其应用领域越来越广泛,为企业提高产品质量和降低成本提供了有力的支持。
  • 太原理工大学推行场景式教学:围绕产业需求 厚植人才土壤
    在煤基甲醇转化制芳烃虚拟仿真实验室,同学们正佩戴VR头盔,手握交互手柄,聚精会神地“游戏闯关”;在仿真智能化工厂,部分学生正沉浸式体验煤化工自动化生产过程的情景……走进太原理工大学校园,越来越多的智能化学习场景映入眼帘,人们对化工实验室的固有印象正在不断刷新。山西是煤炭大省,太原理工大学近年来持续发挥在煤炭开采、煤化工、煤机装备制造、煤基新材料研发等专业的鲜明特色和优势,不断擦亮“煤炭”底色,培养“双碳”人才。“学院先后增设采矿工程专业煤矿机电方向、煤炭智能化方向,招收智能开采实验班,认定省级现代产业学院——智慧矿业学院,政产学研用多元主体协同推进,实践创新、合作探究、融合发展等多元能力协同培养。”太原理工大学矿业工程学院院长董宪姝介绍。晋能控股煤业集团麻家梁煤业公司的智能矿山,是山西省智能化示范煤矿,年产量1200万吨,拥有目前亚洲最大直径的立井。不久前,太原理工大学矿业工程学院采矿专业学生在这里开启了一场“地下探险”之旅。“智能化的采掘设备、自动化的系统运行、无人值守的井下中央变电所和水泵房、巡检机器人、5G网络覆盖等让我大开眼界。”震撼之余,学生李雨松更深深认识到高智能化程度对采矿作业的重要影响。智能化是矿业行业高质量发展的必然之路。近年来,矿业工程学院与晋能控股煤业集团、山西焦煤集团等大型煤炭企业共建了20余个智能化矿井校外实践基地,为学生深入了解煤矿智能化和走向国际化提供了新动力。去年暑假,太原理工大学矿业工程学院组织学生前往内蒙古鄂尔多斯市开展实践调研。通过参观调研鄂尔多斯市可复制能推广的智能矿业、绿色矿山典型,调研团队成员、资源勘查工程专业学生王闰说:“我所看到的是完全不一样的矿山,眼前的矿山与传统煤矿给人的‘黑色印象’完全不同,仿佛是一个旅游景点。”她表示,矿业系统智能化为自己未来的专业发展提供了目标和方向。近年来,太原理工大学矿业工程学院为培养高素质复合型矿业人才,探索“井下—地面、现实—虚拟、实地—云端、校内—校外、国内—国外”耦合驱动,推出模拟矿井实习、虚拟仿真实验、智能矿山实习与设计、云实习、矿业机器人开发等实践教学新形式,自主开发“矿业产学研实践创新系统”,创建112个野外实习视频和120个矿井的设计资源库。“我们建设了完善的智能矿井实习基地,校内4000米地热深井、矿业数字工场、华为5G+数字化人才产教融合基地等,提供矿业机器人创新实训室、矿业双创实训室、虚拟仿真实验室等实训场景,为学生提供先进完备的实践载体。”董宪姝告诉记者。“双碳”人才不仅需要扎实的科学素养,更需要跨界创新的视野和能力。“我们在课程设置上引入云计算、大数据、物联网和人工智能等新知识,增设了‘矿山大数据’‘矿物加工过程测控智能化’‘智慧矿山与智能采矿’等智能化课程,采矿工程专业增设‘智能采矿创新实验班’和‘煤炭智能化’专业方向,煤矿机器人团队也在世界机器人大赛中荣获奖项。”太原理工大学矿业工程学院党委书记巴大志介绍,学院打破传统矿业专业领域人才培养过程中欠缺智能化交叉知识与能力培养体系的局限,建立了“智慧课程+智能实践+创新竞赛”的教学培养体系,并将其贯穿人才培养改革路径,升级优质智能化教学实践资源。党的二十大报告指出,要实施科教兴国战略,强化现代化建设人才支撑。太原理工大学党委书记郑强表示,学校将在贯彻落实科教兴国、人才强国、创新驱动发展战略的过程中,聚焦国家重大需求、面向区域重大战略,深入落实立德树人根本任务,为实现“双碳”目标持续提供人才支持,努力把学习宣传贯彻党的二十大精神的成果转化为攻坚克难的力量和高质量发展的成就。
  • 捷锐中标太原理工大实验远程供气项目
    7月23日,太原理工大学实验室,主要用于金属材料及热处理、锻压、铸造、焊接专业及原材料学院无机非金属材料、高分子材料、冶金专业等,此次远程气路设施配置及改造项目进行公开招标采购。捷锐参与此次招标采购,智能供气系统在行业内,一经使用皆获得认同。此次在太原理工大学实验室中,同样使用智能供气系统,包括R14系列不锈钢减压器、金属软管、BV系列球阀、焊接接头、微型短焊接头等产品。 捷锐供气系统整体解决方案,为各行业实验室提供服务,包括大连化物所,北京大学,奥运会检测中心等。捷锐可为客户提供设计、选型、安装以及售后培训等一系列配套产品和服务,从客户角度出发,提供最节省成本、安全可靠、量身定做的系统方案,捷锐系统产品不但稳定耐用,且操作维护简便。关于捷锐 捷锐企业(上海)有限公司成立于1993年,专精研发制造高洁净之集中供气系统及流体控制相关零件、组件、系统设备、焊割器具、仪器仪表等。产品主要应用在半导体、气体、化工、生物科技、核电、航天、食品等行业。厂区内配备欧美最先进的高科技生产设备,并设置中央实验室、检测室及Class 10/100/1000无尘室。GENTEC?捷锐荣获ISO 9001,ISO13485,API SPEC Q1等国际质量体系认证,并获权使用美国UL及欧盟CE标志。 GENTEC?拥有全球40余年的市场、研发及制造经验,提供流体系统整体解决方案,遍布全球的行销服务网络,赢得全球用户的信赖。媒体联络人: 销售联系人:部门:市场部 部门:工业行销部联系人:汪蓉蓉 联系人:曹永年电话:021-67727123-116 电话:13701757351
  • 真空干燥箱:工作原理、特点、技术参数及使用方法
    真空干燥箱是一种常用的实验室设备,它通过降低环境气压和升高温度,快速有效地去除样品中的水分和溶剂。由于其具有干燥速度快、干燥效果好、使用方便等优点,真空干燥箱在科研、制药、化工、食品等领域得到了广泛应用。本文将介绍真空干燥箱的工作原理、特点、技术参数及使用方法等方面的知识。真空干燥箱的工作原理是利用真空泵将箱体内的空气抽出,降低气压,同时加热样品以促进水分和溶剂的蒸发。这种干燥方法可以在较低的温度下实现,从而避免了高温对样品的损害。此外,真空干燥还可以有效地防止氧化和污染,提高干燥效果和样品质量。上海和晟 HS-DZF-6021-MT 无油真空干燥箱真空干燥箱的优点包括:干燥速度快、效率高;可降低样品在高温下变质的可能性;可避免空气中的氧气对样品产生氧化作用;可减少能源消耗,因为可以在较低的温度下实现干燥。然而,真空干燥箱也存在一些不足之处,例如:需要定期维护和保养;对样品形状和大小有一定限制;不能干燥所有类型的样品。真空干燥箱的技术参数包括真空度、温度和湿度等。真空度指的是箱体内的气压,一般分为低真空、高真空和超高真空三种。温度是控制样品干燥速度的重要因素,可根据样品的特性和需要进行调节。湿度则表示箱体内的水分含量,对于某些样品需要严格控制湿度以避免水分的引入。使用真空干燥箱时,需按照以下步骤进行操作:将样品放入干燥箱内,并将干燥箱密封;连接真空泵并启动设备;调整真空度和温度等参数以满足样品干燥需求;记录干燥时间和观察干燥效果;干燥完成后,关闭设备并取出样品。在使用过程中,需要注意以下几点:真空干燥箱应放置在平稳的工作台上,避免震动和高温;使用前需检查设备的密封性能和管道连接是否良好;根据样品的特性和要求合理设置真空度和温度等参数;如果出现异常情况,应立即关闭设备并检查故障原因;定期对真空干燥箱进行维护和保养,保证其长期稳定运行。总之,真空干燥箱是一种高效的实验室设备,可快速有效地去除样品中的水分和溶剂。在使用过程中,应按照操作规程正确使用和维护保养设备,以保证其正常运行和使用寿命。同时,还需要注意安全问题,避免意外情况的发生。
  • 激光粒度原理及应用
    p   粒度仪是用物理的方法测试固体颗粒的大小和分布的一种仪器。根据测试原理的不同分为沉降式粒度仪、沉降天平、激光粒度仪、光学颗粒计数器、电阻式颗粒计数器、颗粒图像分析仪等。 /p p   激光粒度仪是通过激光散射的方法来测量悬浮液,乳液和粉末样品颗粒分布的多用途仪器。具有测试范围宽、测试速度快、结果准确可靠、重复性好、操作简便等突出特点,是集激光技术、计算机技术、光电子技术于一体的新一代粒度测试仪器。 /p p    strong 激光粒度仪的光学结构 /strong /p p   激光粒度仪的光路由发射、接受和测量窗口等三部分组成。发射部分由光源和光束处理器件组成,主要是为仪器提供单色的平行光作为照明光。接收器是仪器光学结构的关键。测量窗口主要是让被测样品在完全分散的悬浮状态下通过测量区,以便仪器获得样品的粒度信息。 /p p    strong 激光粒度仪的原理 /strong /p p   激光粒度仪是根据颗粒能使激光产生散射这一物理现象测试粒度分布的。由于激光具有很好的单色性和极强的方向性,所以在没有阻碍的无限空间中激光将会照射到无穷远的地方,并且在传播过程中很少有发散的现象。 /p p   米氏散射理论表明,当光束遇到颗粒阻挡时,一部分光将发生散射现象,散射光的传播方向将与主光束的传播方向形成一个夹角θ,θ角的大小与颗粒的大小有关,颗粒越大,产生的散射光的θ角就越小 颗粒越小,产生的散射光的θ角就越大。即小角度(θ)的散射光是有大颗粒引起的 大角度(θ1)的散射光是由小颗粒引起的。进一步研究表明,散射光的强度代表该粒径颗粒的数量。这样,测量不同角度上的散射光的强度,就可以得到样品的粒度分布了。 /p p   为了测量不同角度上的散射光的光强,需要运用光学手段对散射光进行处理。在光束中的适当的位置上放置一个富氏透镜,在该富氏透镜的后焦平面上放置一组多元光电探测器,不同角度的散射光通过富氏透镜照射到多元光电探测器上时,光信号将被转换成电信号并传输到电脑中,通过专用软件对这些信号进行数字信号处理,就会准确地得到粒度分布了。 /p p    strong 激光粒度仪测试对象 /strong /p p   1.各种非金属粉:如重钙、轻钙、滑石粉、高岭土、石墨、硅灰石、水镁石、重晶石、云母粉、膨润土、硅藻土、黏土等。 /p p   2.各种金属粉:如铝粉、锌粉、钼粉、钨粉、镁粉、铜粉以及稀土金属粉、合金粉等。 /p p   3.其它粉体:如催化剂、水泥、磨料、医药、农药、食品、涂料、染料、荧光粉、河流泥沙、陶瓷原料、各种乳浊液。 /p p    strong 激光粒度仪的应用领域 /strong /p p   1、高校材料 /p p   2、化工等学院实验室 /p p   3、大型企业实验室 /p p   4、重点实验室 /p p   5、研究机构 /p p   文章来源:仪器论坛(http://bbs.instrument.com.cn/topic/5163115) /p p br/ /p
  • 一文解读气体传感器原理、分类、用途
    所谓气体传感器,是指用于探测在一定区域范围内是否存在特定气体和/或能连续测量气体成分浓度的传感器。在煤矿、石油、化工、市政、医疗、交通运输、家庭等安全防护方面,气体传感器常用于探测可燃、易燃、有毒气体的浓度或其存在与否,或氧气的消耗量等。气体传感器主要用于针对某种特定气体进行检测,测量该气体在传感器附近是否存在,或在传感器附近空气中的含量。因此,在安全系统中,气体传感器通常都是不可或缺的。从工作原理、特性分析到测量技术,从所用材料到制造工艺,从检测对象到应用领域,都可以构成独立的分类标准,衍生出一个个纷繁庞杂的分类体系,尤其在分类标准的问题上目前还没有统一,要对其进行严格的系统分类难度颇大。气体传感器的分类从检测气体种类上,通常分为可燃气体传感器(常采用催化燃烧式、红外、热导、半导体式)、有毒气体传感器(一般采用电化学、金属半导 体、光离子化、火焰离子化式)、有害气体传感器(常采用红外、紫外等)、氧气(常采用顺磁式、氧化锆式)等其它类传感器。从使用方法上,通常分为便携式气体传感器和固定式气体传感器。从获得气体样品的方式上,通常分为扩散式气体传感器(即传感器直接安装在被测对象环境中,实测气体通过自然扩散与传感器检测元件直接接触)、吸入式气体传感器(是指通过使 用吸气泵等手段,将待测气体引入传感器检测元件中进行检测。根据对被测气体是否稀释,又可细分为完全吸入式和稀释式等)。从分析气体组成上,通常分为单一式气体传感器(仅对特定气体进行检测)和复合式气体传感器(对多种气体成分进行同时检测)。按传感器检测原理,通常分为热学式气体传感器、电化学式气体传感器、磁学式气体传感器、光学式气体传感器、半导体式气体传感器、气相色谱式气体传感器等。先来了解一下气体传感器的特性:1、稳定性稳定性是指传感器在整个工作时间内基本响应的稳定性,取决于零点漂移和区间漂移。零点漂移是指在没有目标气体时,整个工作时间内传感器输出响应的变化。区间漂移是指传感器连续置于目标气体中的输出响应变化,表现为传感器输出信号在工作时间内的降低。理想情况下,一个传感器在连续工作条件下,每年零点漂移小于10%。2、灵敏度灵敏度是指传感器输出变化量与被测输入变化量之比,主要依赖于传感器结构所使用的技术。大多数气体传感器的设计原理都采用生物化学、电化学、物理和光学。首先要考虑的是选择一种敏感技术,它对目标气体的阀限制或爆炸限的百分比的检测要有足够的灵敏性。3、选择性选择性也被称为交叉灵敏度。可以通过测量由某一种浓度的干扰气体所产生的传感器响应来确定。这个响应等价于一定浓度的目标气体所产生的传感器响应。这种特性在追踪多种气体的应用中是非常重要的,因为交叉灵敏度会降低测量的重复性和可靠性,理想传感器应具有高灵敏度和高选择性。4、抗腐蚀性抗腐蚀性是指传感器暴露于高体积分数目标气体中的能力。在气体大量泄漏时,探头应能够承受期望气体体积分数10~20倍。在返回正常工作条件下,传感器漂移和零点校正值应尽可能小。气体传感器的基本特征,即灵敏度、选择性以及稳定性等,主要通过材料的选择来确定。选择适当的材料和开发新材料,使气体传感器的敏感特性达到优。接下来是关于不同气体传感器的检测原理、特点和用途:一、半导体式气体传感器根据由金属氧化物或金属半导体氧化物材料制成的检测元件,与气体相互作用时产生表面吸附或反应,引起载流子运动为特征的电导率或伏安特性或表面电位变化而进行气体浓度测量的。从作用机理上可分为表面控制型(采用气体吸附于半导体表面而产生电导率变化的敏感元件)、表面电位型(采用 半导体吸附气体后产生表面电位或界面电位变化的气体敏感元件)、体积控制型(基于半导体与气体发生反应时体积发生变化,从而产生电导率变化的工作原理) 等。可以检测百分比浓度的可燃气体,也可检测ppm级的有毒有害气体。优点:结构简单、价格低廉、检测灵敏度高、反应速度快等。不足:测量线性 范围较小,受背景气体干扰较大,易受环境温度影响等。二、固体电解质气体传感器固体电解质是一种具有与电解质水溶液相同的离子导电特性的固态物质,当用作气体传感器时,它是一种电池。它无需使气体经过透气膜溶于电解液中,可以避免溶液蒸发和电极消耗等问题。由于这种传感器电导率高,灵敏度和选择性好,几乎在石化、环保、矿业、食品等各个领域都得到了广泛的应用,其重要性仅次于金属—氧化物一半导体气体传感器。这种传感器介于半导体气体传感器和电化学气体传感器之间,选择性、灵敏度高于半导体气体传感器,寿命长于电化学气体传感器,因此得到广泛应用。这种传感器的不足之处是响应时间过长。三、催化燃烧式气体传感器这种传感器实际上是基于铂电阻温度传感器的一种气体传感器,即在铂电阻表面制备耐高温催化剂层,在一定温度下,可燃气体在表面催化燃烧,因此铂电阻温度升高,导致电阻的阻值变化。由于催化燃烧式气体传感器铂电阻外通常由多孔陶瓷构成陶瓷珠包裹,因此这种传感器通常也被称为催化珠气体传感器。理论上这种传感器可以检测所有可以燃烧的气体,但实际应用中有很多例外。这种传感器通常可以用于检测空气中的甲烷、LPG、丙酮等可燃气体。四、电化学气体传感器电化学气体传感器是把测量对象气体在电极处氧化或还原而测电流,得出对象气体浓度的探测器。包含原电池型气体传感器、恒定电位电解池型气体传感器、浓差电池型气体传感器和极限电流型气体传感器。1、原电池型气体传感器(也称:加伏尼电池型气体传感器,也有称燃料电池型气体传感器,也有称自发电池型气体传感器),他们的原理行同我们用的干电池,只是,电池的碳锰电极被气体电极替代了。以氧气传感器为例,氧在阴极被还原,电子通过电流表流到阳极,在那里铅金属被氧化。电流的大小与氧气的浓度直接相关。这种传感器可以有效地检测氧气、二氧化硫等。2、恒定电位电解池型气体传感器,这种传感器用于检测还原性气体非常有效,它的原理与原电池型传感器不一样,它的电化学反应是在电流强制下发生的,是一种真正的库仑分析(根据电解过程中消耗的电量,由法拉第定律来确定被测物质含量)传感器。这种传感器用于:一氧化碳、硫化氢、氢气、氨气、肼、等气体的检测之中,是目前有毒有害气体检测的主流传感器。3、浓差电池型气体传感器,具有电化学活性的气体在电化学电池的两侧,会自发形成浓差电动势,电动势的大小与气体的浓度有关,这种传感器实例就是汽车用氧气传感器、固体电解质型二氧化碳传感器。4、极限电流型气体传感器,有一种测量氧气浓度的传感器利用电化池中的极限电流与载流子浓度相关的原理制备氧(气)浓度传感器,用于汽车的氧气检测,和钢水中氧浓度检测。主要优点:体积小,功耗小,线性和重复性较好,分辨率一般可以达到0.1ppm,寿命较长。主要不足:易受干扰,灵敏度受温度变化影响较大。五、PID——光离子化气体传感器PID由紫外光源和气室构成。紫外发光原理与日光灯管相同,只是频率高,能量大。被测气体到达气室后,被紫外灯发射的紫外光电离产生电荷流,气体浓度和电荷流的大小正相关,测量电荷流即可测得气体浓度。可以检测从10ppb到较高浓度的10000ppm的挥发性有机物和其他有毒气体。许多有害物质都含有挥发性有机化合物,PID对挥发性有机化合物灵敏度很高。六、热学式气体传感器热学式气体传感器主要有热导式和热化学式两大类。热导式是利用气体的热导率,通过对其中热敏元件电阻的变化来测量一种或几种气体组分浓度的。其在工业界的应用已有几十年的历史,其仪表类型较多,能分析的气体也较广泛。热化学式是基于被分析气体化学反应的热效应,其中广泛应用的是气体的氧化反应(即燃烧),其典型为催化燃烧式气体传感器,其主要工作原理是在一定温度下,一些金属氧化物半导体材料的电导率会跟随环境气体的成份变化而变化。其关键部件为涂有燃烧催化剂的惠斯通电桥,主要用于检测可燃气体,如煤气发生站、制气厂用来分析空气中的CO、H2 、C2H2等可燃气体,采煤矿井用于分析坑道中的CH4含量,石油开采船只分析现场漏泄的甲烷含量,燃料及化工原料保管仓库或原料车间分析空气中的石油蒸 气、酒精乙醚蒸气等。七、红外气体传感器一个完整的红外气体传感器由红外光源、光学腔体、红外探测器和信号调理电路构成。这种传感器利用气体对特定频率的红外光谱的吸收作用制成。红外光从发射端射向接收端,当有气体时,对红外光产生吸收,接收到的红外光就会减少,从而检测出气体含量。目前较先进的红外式采用双波长、双接收器,使检测更准确、可靠。优点:选择性好,只检测特定波长的气体,可以根据气体定制;采用光学检测方式,不易受有害气体的影响而中毒、老化;响应速度快、稳定性好;利用物理特性,没有化学反应,防爆性好;信噪比高,抗干扰能力强;使用寿命长;测量精度高。缺点:测量范围窄;怕灰尘、潮湿,现场环境要好,需要定期对反射镜面上的灰尘进行清洁维护;现场有气流时无法检测;价格较高。八、磁学式气体分析传感器在磁学式气体分析传感器中,常见的是利用氧气的高磁化特性来测量氧气浓度的磁性氧量分析传感器,利用的是空气中的氧气可以被强磁场吸引的原理。其氧量的测量范围宽,是一种十分有效的氧量测量传感器。常用的有热磁对流式氧量分析传感器(按构成方式不同,又可细分为测速热磁式、压力平衡热磁式)和磁力机械式氧量分析传感器。主要用途:用于氧气的检测,选择性极好,是磁性氧气分析仪的核心。其典型应用场合有化肥生 产、深冷空气分离、火电站燃烧系统、天然气制乙炔等工业生产中氧的控制和连锁,废气、尾气、烟气等排放的环保监测等。九、气相色谱式分析仪基于色谱分离技术和检测技术,分离并测定气样中各组分浓度,因此是全分析传感器。在发电厂锅炉试验中,已有应用。工作时,从进样装置定期采取一定容积的气样,在流量一定的纯净载气(即流动相)携带下,流经色谱柱,色谱柱中装有称为固定相的固体或液体,利用固定相对气样各组分的吸收或溶解能力的不同,使各组分在两相中反复进行分配,从而使各组分分离,并按时间先后流出色谱柱进入检测器进行定量测定。根据检测原理,气相色谱式分析仪又细分为浓度型检测器和质量型检测器两种。浓度型检测器测量的是气体中某组分浓度瞬间的变化,即检测器的响应值和组分的浓度成正比。质量型检测器测量的是气体中某组分进入检测器的速度变化,即检测器的响应值和单位时间进入检测器某组分的量成正比。常用的检测器有TCD热导检测器、FLD氢火焰离子化检测器、HCD电子捕获检测器、FPD火焰光度检测器等。优点:灵敏度高,适合于微量和痕量分析,能分析复杂的多相分气体。不足:定期取样不能实现连续进样分析,系统较为复杂,多用于 试验室分析用,不太适合工业现场气体监测。十、其他气体传感器1.超声波气体探测器这种气体探测器比较特殊,其原理是当气体通过很小的泄漏孔从高压端向低压端泄漏时,就会形成湍流,产生振动。典型的湍流气流会在差压高于0.2MPa时变成因素,超过0.2MPa就会产生超声波。湍流分子互相碰撞产生热能和振动。热能快速分散,但振动会被传送到相当远的距离。超声波探测器就是通过接收超声波判断是否有空气泄漏。这类探测器通常用于石油和天然气平台、发电厂燃气轮机、压缩机以及其它户外管道。2.磁氧分析仪这种气体分析仪是基于氧气的磁化率远大于其他气体磁化率这一物理现象,测量混合气体中氧气的一种物理气体分析设备。这种设备适合自动检测各种工业气体中的氧气含量,只能用于氧气检测,选择性极好。
  • 纳米粒度分析仪的原理及应用
    纳米粒度仪是应用很广泛的一种科学仪器,使用多角度动态光散射技术测量颗粒粒度分布 。动态光散射(DLS)法原理 :当激光照射到分散于液体介质中的微小颗粒时,由于颗粒的布朗 运动引起散射光的频率偏移,导致散射光信号随时间发生动态变化,该变化的大小与颗粒的布朗运动速度有关,而颗粒的布朗运动速度又取决于颗粒粒径的大小,颗粒大布朗运动速度低,反之颗粒小布朗运动速度高,因此动态光散射技术是分析样品颗粒的散射光强随时间的涨落规律,使用光子探测器在固定的角度采集散射光,通过相关器进行自相关运算得到相关函数,再经过数学反演获得颗粒粒径信息。纳米粒度仪的应用领域: 纳米材料:用于研究纳米金属氧化物、纳米金属粉、纳米陶瓷材料的粒度对材料性能的影响。 生物医药:分析蛋白质、DNA、RNA、病毒,以及各种抗原抗体的粒度。 精细化工: 用于寻找纳米催化剂的最佳粒度分布,以降低化学反应温度,提高反应速度。 油漆涂料:用于测量油漆、涂料、硅胶、聚合物胶乳、颜料、 油墨、水/油乳液、调色剂、化妆品等材料中纳米颗粒物的粒径。 食品药品:药物表面包覆纳米微粒可使其高效缓释,并可以制成靶向药物,可用来测量包覆物粒度的大小,以便更好地发挥药物的疗效。 航空航天 纳米金属粉添加到火箭固体推进剂中,可以显著改进推进剂的燃烧性能,可用于研究金属粉的最佳粒度分布。 国防科技:纳米材料增加电磁能转化为热能的效率,从而提高对电磁波的吸收性能,可以制成电磁波吸波材料。不同粒径纳米材料具有不同的光学特性,可用于研究吸波材料的性能。
  • 采用中和法原理的柴油汽油煤油酸度测定仪
    柴油汽油煤油酸度测定仪适用标准:GB/T264-83 GB/T7599-87 GB258-77, 用于检测变压器油,汽轮机油及抗燃油等样品的酸值分析测量。酸值是中和1克油品中的酸性物质所需要的氢氧化钾毫克数,用mgKOH/g油表示,它是油品质量中应严格控制的指标之一。该仪器通过机械、光学以及电子等技术的综合运用,采用微处理器,能够自动实现多样品切换、滴定、判断滴定终点、打印测量结果等功能,该系统稳定可靠,自动化程度高。可广泛运用于电力、化工、环保等领域。仪器特点1.液晶大屏幕、中文菜单、无标识按键;2.自动换杯、自动检测、打印检测结果;3.该仪器可对六个油样进行检测;4.采用中和法原理,用微机控制在常温下自动完成加液、滴定、搅拌、判断滴定终点,液晶屏幕显示测定结果并可打印输出,全部过程约需4分钟;5.用试剂瓶盛装萃取液和中和液,试剂在使用过程不与空气接触,避免了溶剂挥发和空气中CO2的影响。技术参数工作电源:AC220V±10% ,50Hz耗电功率: ﹤100W测定范围: 0.0001~0.9999mgKOH/g 分辨率: ≥0.0001 mgKOH/g测量准确度:酸值<0.1时 ±0.02 mgKOH/g酸值≥0.1时 ±0.05 mgKOH/g重复性: 0.004 mgKOH/g环境温度:10℃~40℃相对湿度:<85%
  • 薄膜摩擦系数仪新标准与旧标准在测试原理上的改进与新增测试方法
    在材料科学与工程领域,薄膜摩擦系数仪作为评估薄膜材料表面摩擦性能的关键设备,其测试标准的更新对于提高产品质量、优化工艺流程以及推动科技创新具有重要意义。近年来,随着科技的进步和测试需求的多样化,薄膜摩擦系数仪的测试标准也经历了从旧到新的演变。本文将从测试原理的角度,详细探讨新标准相比旧标准在测试原理上的改进及新增的测试方法。一、测试原理的基础变革1.1 传统测试原理的局限性旧标准下的薄膜摩擦系数仪主要基于库仑摩擦定律,即摩擦力与正压力成正比,与接触面积无关。这种传统的测试方法通过测量试样在摩擦过程中的摩擦力与正压力之比来计算摩擦系数,方法简单直接,但存在诸多局限性。例如,它难以全面反映薄膜材料在不同条件下的摩擦行为,特别是动态和复杂工况下的性能表现。1.2 新标准引入的先进测试原理新标准则引入了更为先进的测试原理,如动态摩擦测试、静态摩擦测试、滑动摩擦测试以及旋转摩擦测试等。这些新方法不仅丰富了测试手段,还提高了测试的全面性和准确性。动态摩擦测试能够模拟材料在实际使用过程中的动态摩擦行为,静态摩擦测试则关注材料在静止状态下的摩擦特性,而滑动摩擦测试和旋转摩擦测试则分别适用于不同类型的摩擦场景,为薄膜材料的摩擦性能评估提供了更多维度的数据支持。二、新增测试方法的详细解析2.1 动态摩擦测试动态摩擦测试是新标准中新增的重要测试方法之一。它通过模拟材料在实际使用中的动态摩擦过程,如包装膜在包装机械中的运动状态,来评估材料的动态摩擦性能。这种方法能够更真实地反映材料在实际工况下的摩擦行为,为产品的设计和优化提供更为可靠的依据。2.2 静态摩擦测试静态摩擦测试则关注材料在静止状态下的摩擦特性。它通过在试样与对磨副之间施加一定的正压力并保持相对静止,然后逐渐增加水平力直至试样开始滑动,来测量静态摩擦系数。这种方法对于评估材料的启动阻力和稳定性具有重要意义,特别是在需要精确控制摩擦力的场合,如精密机械和电子设备中。2.3 滑动摩擦测试与旋转摩擦测试滑动摩擦测试和旋转摩擦测试是两种常见的摩擦测试方法,它们在旧标准中已有应用,但在新标准中得到了进一步的优化和完善。滑动摩擦测试通过使试样在水平面上做直线运动来测量滑动摩擦系数,适用于评估材料的滑动性能和耐磨性。而旋转摩擦测试则通过使试样与旋转的摩擦轮接触并相对运动来测量旋转摩擦系数,这种方法更适用于评估材料在旋转部件中的摩擦性能。三、测试原理改进带来的优势3.1 提高测试的全面性和准确性新标准引入的先进测试原理和新增的测试方法使得薄膜摩擦系数仪的测试能力得到了显著提升。它不仅能够更全面地评估材料的摩擦性能,还能够提供更准确、更可靠的测试数据。这对于材料科学的研究和工程应用具有重要意义。3.2 促进技术创新和产业升级随着测试原理的改进和测试方法的丰富,薄膜摩擦系数仪在材料研发、产品设计、工艺优化等方面将发挥更加重要的作用。它不仅能够为科研人员提供更为精准的测试数据支持,还能够促进技术创新和产业升级,推动相关行业向更高质量、更高效率的方向发展。3.3 提升产品质量和市场竞争力通过采用新标准进行测试,企业可以更加准确地评估其产品的摩擦性能,从而在生产过程中采取相应的改进措施以提升产品质量。高质量的产品不仅能够满足用户的实际需求,还能够提升企业的市场竞争力,为企业带来更大的经济效益和社会效益。四、结论与展望综上所述,薄膜摩擦系数仪新标准相比旧标准在测试原理上进行了显著的改进和新增了多种测试方法。这些改进不仅提高了测试的全面性和准确性,还促进了技术创新和产业升级。未来,随着科技的不断进步和测试需求的不断变化,薄膜摩擦系数仪的测试标准还将继续发展和完善。我们期待在不久的将来能够看到更多先进的测试原理和方法被引入到这一领域中来,为材料科学的研究和工程应用提供更加全面、准确和高效的测试支持。
  • 石油化工在线分析软硬件并行——记CIOAE 2016“石油化工在线分析”主题报告
    仪器信息网讯 在线分析仪器又称过程分析仪器,直接安装在工业生产流程或其它源液体现场,对北侧物质的组成或物性参数进行自动连续测量的仪器,广泛应用在环境、化工、制药等领域。  2016年11月22-23日,在国家会议中心举办的CIOAE 2016上,众多来自石油化工企业、相关科研院所、仪器制造商等齐聚“石油化工在线分析”专题会议,从石油化工在线检测仪器技术最新发展、应用等方面进行了探讨。会议现场  目前,用于石油化工领域的仪器技术主要有光谱、色谱等,本次主题论坛上,多位嘉宾就相关仪器技术进展及用用进行了分享。其中来自中石化石油化工科学研究院褚小立教授为大家分享了近红外光谱分析技术进展。  近红外技术应用广泛,与人类生活产品的质控息息相关,成为快速、无损分析的首选技术。近红外技术的测量结果具有高重复性,在我过已有20多年的发展历史,是一种潜力巨大的仪器技术。  在当前信息化时代,数据库是未来应用的核心。以近红外技术为核心开发技术,结合互联网、移动等技术,可建立应用于农业、饲料等领域在线品控的大数据库。此外,随身式/便携式红外检测仪器已经完成了概念设计的工作,未来红外检测仪器或可类似于智能手环应用于人们的日常生活中,辅助人们把控生活品质。  褚小立在报告中指出,原油评价是一个非常复杂的过程,分析结果达到几百项,传统分析方法难以快速得到分析结果,近红外技术在国际上被广泛用于原油分析。对此,褚小立团队开发了定性算法与定量分析叠加的新方法,并指出,定性和定量方法的叠加可能是未来的原油分析的方法的发展趋势。  报告中,褚小立讲到,在线仪器技术的发展在我国有两次握手:一次是分析和分析仪器的握手,即硬件和软件的握手,目前已经融合到一定阶段 另一次握手是过程分析和过程控制的握手。褚小立指出,过程分析不是目的,真正的效益在过程控制即优化操作上产生。在我国,过程分析和过程控制的握手尚处起步阶段,未来还有许多工作要做。中石化石油化工科学研究院 褚小立  大连大特气体有限公司李福芬为与会者分享了“标准样品浓度的设计及使用”报告。报告从分析定量的原理讲起,并以外标法定量和矫正归一法定量为例,具体讲解了气体分析过程中标准样品浓度的设计和使用技巧。报告指出,标准样品的使用和设计应考虑到组成不同带来的差异,根据样品进样的相态,选择合适的计算公式,设计合适浓度的标准样品 或者换算成不会失误的浓度单位进行计算,之后再换算成需要的浓度单位。大连大特气体有限公司 李福芬  中国石化北京北化院燕山分院邱科鹏做“DCS与工业在线分析仪质检基于Modbus协议的串行通讯”精彩报告。  报告中指出,近年来,大量先进的在线分析检测仪器被越来越多的应用于化工装置的各种过程检测和自动化控制。与常规仪表相比,在线分析检测仪器最大的特点是与DCS控制系统进行数据交换的各种信号类型异常庞杂、信号数量较多。传统的传输方式对线缆等辅件的要求多且工作复杂。报告以“银催化剂中试评价装置及银催化剂工业侧线评价装置”为例,分析了Modbus协议、通讯方式、通讯硬件、通讯软件、存在的问题以及应用效果等。  来自E+H公司的沈宝良做了“拉曼光谱分析仪及其在煤化工领域的应用”报告。报告中指出KAISER拉曼光谱分析仪可应用在煤制甲醇、合成氨、煤制SNG/氢气等方面,目前全球已安装上百套。E+H公司 沈宝良
  • ​深圳三思纵横试验机|粉末压实密度仪:解析工作原理与应用领域
    在材料科学、化工、制药等众多领域中,粉末材料的处理与测试是不可或缺的一环。粉末压实密度仪作为一种专用的测试设备,在粉末材料的压实密度测量中发挥着至关重要的作用。本文深圳三思纵横试验机小编将探讨粉末压实密度仪的工作原理、应用领域以及未来发展趋势,大家一起来看下吧。一、粉末压实密度仪的工作原理粉末压实密度仪的工作原理主要基于粉末在受到外力作用下的压实过程。测试时,将一定量的粉末样品置于压实模具中,通过施加压力使粉末颗粒重新排列、相互接触并发生一定的塑性变形,从而达到压实效果。压实密度仪通过测量压实前后粉末的体积变化,并结合样品的质量信息,计算得出粉末的压实密度。二、粉末压实密度仪的应用领域粉末压实密度仪广泛应用于多个领域,尤其在材料科学、化工、制药等行业具有重要地位。1、材料科学领域粉末压实密度仪可用于评估粉末材料的可压性、流动性和成型性能,为材料制备和加工工艺的优化提供数据支持;2、化工领域粉末压实密度仪可用于测定催化剂、吸附剂等粉末材料的压实密度,为反应器的设计和操作提供重要参数;3、制药行业粉末压实密度仪可用于评估药物粉末的堆密度和压实性,为药物制剂的制备和质量控制提供有力保障。三、粉末压实密度仪的未来发展趋势随着科学技术的不断进步和应用需求的日益增长,粉末压实密度仪正朝着更加智能化、高精度和多功能化的方向发展。1、智能化与自动化未来的粉末压实密度仪将更加注重智能化和自动化的发展。通过引入先进的传感器和控制系统,实现测试过程的自动化操作和数据的实时采集、处理与分析。此外,智能化的粉末压实密度仪还将具备自我诊断和维护功能,提高设备的稳定性和可靠性;2、高精度化随着材料科学和制药等领域的不断发展,对粉末压实密度的测量精度要求也越来越高。因此,粉末压实密度仪将不断提高测量精度,采用更先进的测量技术和算法,以满足更精细的测试需求;3、多功能化除了基本的压实密度测量功能外,未来的粉末压实密度仪还将具备更多的测试功能。如可同时测量粉末的粒度分布、比表面积、孔隙率等参数,为研究者提供更全面的材料性能信息。此外,还可通过集成其他测试模块,实现一站式测试服务,提高测试效率和便捷性;4、绿色化与环保在环保意识日益增强的背景下,粉末压实密度仪的绿色化设计将成为未来的发展趋势。通过优化设备结构、采用环保材料和节能技术,降低设备在运行过程中的能耗和排放,实现可持续发展。三思纵横粉末压实密度仪作为粉末材料测试领域的重要工具,其原理、应用和发展趋势均体现了科技进步和市场需求的推动。随着技术的不断创新和市场的不断拓展,三思纵横粉末压实密度仪将在更多领域发挥重要作用,为材料性能评估、质量控制以及工艺优化提供有力支持。未来,我们可以期待三思纵横粉末压实密度仪在性能、功能和智能化方面取得更大的突破,为科研和工业生产带来更多便利和价值。
  • 看在线拉曼光谱技术与高分子材料研究的契合点——拉曼光谱监测原理与应用在线技术交流会
    p   曾有研究报告显示,2017-2023年全球过程分析技术市场将以12.9%的年复合增长率增长,预计2023年将达到40亿美元。过程分析设备可以洞察生产线过程中的关键点、产品特性等,实现最高级别的过程质控,可称为整个生产过程的“侦查兵”。随着日益重视的质量源于设计(QbD)和制造工艺效率,过程分析技术市场正在不断增长。 br/ /p p   作为一类优异的在线分析设备,在线拉曼光谱,以其物质指纹谱、检测速度快、无损、多组分、多通道、运行成本低等优点正逐渐广泛地用于制药、石油化工、高分子化工、能源、精细化工、食品等领域。拉曼光谱所能提供的及时、准确的分析数据为稳定生产、优化操作、节能降耗起到了不可替代的作用。 /p p   其实,早在2001年,FDA就建议要重视在线拉曼光谱等过程分析技术对工艺和生产过程的应用意义。在欧美、日本、新加坡等国家,在线拉曼光谱的过程分析已经成功应用了至少近20年。就国内而言,在线拉曼光谱技术也应用了很多年,但是普及度以及认识度还不够。不过,近几年,随着国内化工、制药等领域日趋激烈的竞争形式,高校科研、制药、化工等领域对在线拉曼光谱的需求日益增多。德国耶拿公司拉曼产品经理王兰芬博士表示,在线拉曼光谱未来一定是一个新的重要发展方向,非常具有发展潜力,该市场在中国每年至少以两位数的速度在递增! /p p   作为全球知名的过程拉曼光谱供应商,凯撒光学系统公司自2016年正式携手德国耶拿分析仪器股份公司进入中国市场以来,一直保持着强劲的发展势头。据王兰芬博士介绍,凯撒拉曼年销售额基本以倍增趋势增长。据悉,目前凯撒公司的在线拉曼产品在高校科研、化工以及制药等领域都具有了一定的市场,比如中科院化学所、中国科技大学、天津大学、中科院固体物理所、中科院青岛海洋研究所等单位的重点实验室已经利用凯撒公司的拉曼光谱仪开展了科学研究 在高分子化工、煤化工以及天然气化工领域,中化泉州、广东炼化、烟台万华、中海油惠州、神华内蒙、星火有机硅等大型化工厂也已经是凯撒公司在线拉曼的用户;另外,在线拉曼在制药领域也具有良好的发展趋势等。 /p p   其中,高分子化工对在线拉曼光谱而言是一个极具潜力的大市场。王兰芬博士解释说,高分子化工市场的重要性不言而喻,一方面,高分子材料与人类生活密不可分,另一方面,高分化工已经成为化学工业的主导产业,产值占整个石油化工的近70%,高分子材料的体积产量已远远超过钢铁和其他有色金属之和。 /p p   高分子材料本身具有非常强的拉曼信号,拉曼光谱可以很好地区分同分异构体,基于此,在线拉曼光谱已经成功用于高分子合成研究、产品质量检测(高分子密度、共聚物组份分析、结晶)、聚合过程监测等。而且,在线拉曼光谱用于HDPE生产装置的工艺方法也写进了高分子著名的工艺专利商CP的工艺包中。在该工艺应用中,可以通过在线拉曼光谱实时控制反应釜中的氢气、乙烯、α-烯烃的浓度,从而控制生产出所期望的具有一定密度以及分子量的聚乙烯。例如,通过实时控制α-烯烃单体的浓度,可以调整HDPE的短支链数量,从而控制HDPE的密度。据悉,基于高密度聚乙烯HDPE的生产工艺优化,凯撒公司已经开发了杜邦、雪弗龙、埃克森美孚公司、泉州石化、广州炼化等众多实际的应用案例。 /p p   为了让更多的同行解拉曼光谱与拉曼光谱在高分子化学与化工的应用,中科院物理所刘玉龙研究员和德国耶拿公司的王兰芬博士携手于3月27日就拉曼光谱原理以及在高分子化学化工的应用进行了报告分享。 /p p style=" text-align: center" img style=" max-width: 100% max-height: 100% width: 150px height: 206px " src=" https://img1.17img.cn/17img/images/202003/uepic/58499fb6-14b1-44d3-9ddb-9abeef2cd337.jpg" title=" 微信图片_20200331114509.jpg" alt=" 微信图片_20200331114509.jpg" width=" 150" height=" 206" border=" 0" vspace=" 0" / /p p style=" text-align: center " strong 报告人:中科院物理所 刘玉龙研究员 /strong /p p style=" text-align: center " strong 报告题目:拉曼散射原理与光谱分析应用 /strong /p p   在报告中,刘玉龙研究员不仅介绍了拉曼散射基本原理与特点,而且就分析拉曼光谱的必要条件,拉曼光谱在材料中的在线分析应用等方面内容进行了详细的阐述。据刘玉龙研究员介绍,大型实验室光谱仪与现场、在线测控实用级光谱仪器或系统,将会将数字化、智能化、高灵敏、高分辨、高速度与光谱及光学成像技术巧妙结合,发展出集成化光谱分析技术,将光谱技术“进化”到既能对物质完成定性、定量分析,又可进行定位分析的新科技,满足新世纪提出的看到物质与生物组织中化学、生化成分分布图等新要求。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/202003/uepic/4874cdac-a245-45fe-bc1d-ed6fb1e95561.jpg" title=" 微信图片_20200331114518.png" alt=" 微信图片_20200331114518.png" / /p p style=" text-align: center " strong 报告人:德国耶拿公司的拉曼产品经理王兰芬博士 /strong /p p style=" text-align: center " strong 报告题目:在线拉曼光谱在高分子化学化工中的应用 /strong /p p   王兰芬博士从高分子材料以及生产研究的目的、“RbD”设计理念讲起,介绍了拉曼光谱监测的优势,以及拉曼光谱在高分子化学化工中的应用。报告中,王兰芬博士还总结了在线拉曼光谱仪需要考虑的问题,并针对这些问题介绍了凯撒公司可以提供的在线拉曼光谱新技术及解决方案,如全谱直读的体相全息光栅新技术、轴向分光多色仪、多通道反应与过程同时监控技术、固定设计与智能恒温设计、原位共焦采样技术、多种多样的原位探测光学元件、浸入式采样光学元件设计等。 /p
  • 赫施曼助力石油化工废催化剂钴的测定
    石油化工废催化剂中往往含有一些有毒成分,主要是重金属和挥发性有机物,具有很大的环境风险。此外,废催化剂中有较高含量的贵金属或其他有价金属,可作为二次资源回收利用。因此,对于石油化工废催化剂的检测尤为重要。以石油化工废催化剂钴的测定为例,根据HG 5588-2019,用原子吸收分光光度法,其测定原理为:用原子吸收分光光度计,使用空气-乙炔火焰,于波长240.7nm处测定试料溶液中的氧化钴,用工作曲线法定量。主要步骤为:1、标准曲线的绘制。取5只50mL容量瓶,采用10ml规格的opus电子瓶口分配器,stepper模式设置4个体积分别为1、2、3、4mL,然后按分液键,将储备液(500μg/mL)分别加入4个容量瓶中(剩一个不加),然后定容,对应标准溶液中氧化钴的浓度分别为0、1、2、3、4μg/mL。按仪器工作条件,用空气-乙炔火焰,以不加氧化钴标准溶液的空白溶液调零,于波长240.7nm处测定溶液的吸光度。以氧化钴的浓度(单位为微克每毫升)为横坐标,氧化钴的吸光度值为纵坐标,绘制工作曲线或计算出线性回归方程。2、测定。量取一定量的试料溶液(5-10mL),置于50mL容量瓶中,再用瓶口分配器加入1mL盐酸溶液,用水稀释至刻度,摇匀。从工作曲线上查得或通过线性回归方程计算出被测溶液中氧化钴的浓度。 3、数据处理。计算氧化钴(Co0)质量分数:取平行测定结果的算术平均值为测定结果,平行测定结果的绝对差值应不大于0.20%。赫施曼的瓶口分配器是采用阶梯式量程原理,操作简单舒适、无人为误差。可代替量筒、刻度移液管,可便捷、安全地进行0.2-60ml的液体移取,带安全阀的ceramus型可应对盐酸、硝酸等易挥发、腐蚀性较强的特殊试剂。 赫施曼的10ml的opus电子瓶口分配器分辨率可达微升,不仅可用于常规的等体积分液,一次装液还可完成10个不同体积的连续分液,可用于毫升级的母液添加;大体积的型号可代替烧杯、玻璃棒,用于稀释液的快速、准确地添加,非常适合做标准曲线和毫升级大批量灌装。
  • 金陵论道 | 精细化工领域的废水监控与处理
    初春的南京,天高云淡远黛青,在美丽的玄武湖畔,今年的精细化工废水、废气处理技术交流会于3月15-16日如期举办。早上8点30分,200余人的会场已经坐无虚席,听众从全国各地专程赶到南京,参与到本届会议中,期待从两天的会议中有所收获。- 中国化工企业管理协会医药专委会副主任何志斌先生对到场的各位嘉宾表示欢迎,并致开幕辞。- 《流程工业》杂志编辑胡静女士介绍了拥有百年历史的弗戈媒体集团及根植中国19年的《流程工业》杂志。- 来自国家环境保护制药废水污染控制工程技术中心的任立人先生,在开幕演讲中,为现场听众详细介绍了目前制药行业污水处理的现状和问题、污染物排放标准、水污染控制技术、企业污染综合预防思路及未来制药废水处理的技术展望。- 北京化工大学传质与分离工程研究中心主任李群生教授介绍了高效分离技术的原理及其在精细化工废气、废水处理中的工业应用。◆ ◆ ◆GE Sievers 总有机碳TOC分析仪在化工废水处理中的应用本次会议特设了展台,方便在场听众随时与知名供应商进行技术交流。GE分析仪器在现场展示了Sievers InnovOx 实验室型总有机碳TOC分析仪。在石油化工行业有机物监控方面,Sievers InnovOx TOC分析仪是GE分析仪器的王牌产品,在检测工艺过程水和废水中的TOC时,突破性地体现出优良的可靠性,并能分析各种复杂的水样。采用专利的超临界水氧化技术(SCWO),InnovOx TOC分析仪十分耐用,能分析大批量的水样。在线使用可以连续检测水样中的有机物浓度,适用于监测各种排入或排出的水流,从蒸汽冷凝水到污水,测量浓度范围极广。具体应用如下:- 蒸汽冷凝水有机物泄漏监测- 冷却水原水污染监测- 热交换器泄漏监测- 生物污水处理厂前后有机物监测及优化- 废水排放监测,COD/BOD相互关系- 高盐海水和卤水有机物监测其优势在于:- 可靠性强:超临界水氧化技术,反应器自清洁,检测器设计简单,无复杂部件- 维护和操作成本低:6个月标定有效期,无需昂贵催化剂及石英管,仅需便宜的化学试剂以及每月半小时的推荐预防性维护- 应用范围广:不限制水样成分,高盐水样及复杂水样可直接进样,无需预处理及稀释,也不会增加仪器维护频率- 测量模式多:多种测量模式, 包括 TOC (TC-IC) 或NPOC- 多流路:最多可同时监测5路水样,仪器内部完成切换,方便布置下列视频,介绍了超临界水氧化技术(SCWO)的工作原理和InnovOx TOC分析仪的优势。如您对有机物监测有任何问题,欢迎与我们联系!
  • 萃取技术的奥秘揭秘——萃取实验装置助力学生掌握工业化工过程
    萃取是一种常用的分离和纯化技术,特别适用于分离提纯液体或乳浊液中的溶质。萃取原理类似于吸收,利用溶质在两相之间的溶解度差异进行分离操作。在化工类专业的实践教学中,萃取实验装置扮演着重要角色,通过实践操作装置,学生可以深入理解萃取技术的原理和应用。本文将介绍萃取实验装置在实践教学中的应用与成果,以及其特点和优势。 一、实践教学中的萃取实验装置应用 实践教学中的萃取实验装置主要用于验证性实验,如苯甲酸在水煤油中的萃取过程。装置包括萃取剂槽、水泵、流量计、塔部进料口、塔部出料口、油水液面控制管等。原料液则通过油泵、流量计,从塔部出料口流入设备。萃取剂和原料液在装置中进行接触,利用其密度差异和溶解度不同,实现苯甲酸的分离提取。 二、装置特点与优势 1. 萃取工艺的应用前景良好:萃取工艺成本较低,应用前景良好。实践教学中的萃取实验装置可以使学生了解并掌握萃取工艺的基本原理和操作技术,为将来的工作实践奠定基础。 2. 结构简单、操作方便:萃取实验装置采用欧标铝型材框架设计,整体结构简单紧凑,使用方便。硬质PVC透明管路设计使实验现象更直观,学生能够清晰观察和理解萃取过程。 3. 智能学习系统的配套:萃取实验装置配备智能学习系统,通过预习视频、3D仿真、在线考评测试等功能,培养学生的自主学习意识,激发学生的学习兴趣。同时,教师也可以借助该系统减轻教学压力,并提供学生个性化的辅导和指导。 4. 提供质保服务:为了解决用户后顾之忧,该装置提供6年质保服务,确保用户在使用过程中的顺利进行。这为教师和学生提供了更大的安心和保障。 总结: 萃取实验装置在化工类专业的实践教学中具有重要应用和优势。通过实践操作装置,学生可以了解萃取技术的原理和应用,提高实践动手能力、掌握分离原理和操作技巧,培养科学认识和实际工作能力。装置的特点和配套智能学习系统进一步增强了实践教学的效果和学习体验。为了确保用户的使用体验和满意度,该装置还提供质保服务。通过萃取实验装置的应用,将为化工类专业的学生提供更好的实践教学环境和机会,培养出更多优秀的化工人才。
  • 在线分析仪器在石油化工中的应用——CIOAE 2011报告系列
    仪器信息网讯 2011年11月9-10日,“第四届中国在线分析仪器应用及发展国际论坛暨展览会(CIOAE 2011)”在北京国际会议中心隆重召开。本次论坛吸引了600余名观众参加,50余家在线分析仪器厂商参展。本次论坛设有多个分会场,40余名来自石化、环保、食品等行业的专家学者做了报告。   为让广大网友更有针对性的了解本次论坛报告的内容,仪器信息网根据报告的内容,对报告进行分类,并将报告内容整理成文,以飨读者。以下是本次论坛中众多专家学者针对“在线分析仪器在石油化工中的应用”所作报告的合集。 中国石化工程建设公司 孙磊女士 报告题目:石油化工在线分析仪的现状及发展   孙磊女士在报告中介绍到在线分析仪表在石油化工领域的应用现状。在线分析仪表在石油化工装置中得到了广泛的应用,对石油化工企业的正常运行起到了非常大的作用。在线分析仪表投资高,约占仪表设备投资费用的9%-11%,但这些仪表因为采样处理设计不合理、分析仪表选型不合理、仪表维护费用昂贵、售后技术支持落后、高素质经验丰富的维护人员缺失等原因,其投用率却不到90%。   孙磊女士也希望在线分析仪表生产企业在未来能严把设计关,规范分析仪系统的设计,促进在线分析仪表在石油化工行业中的应用。 西门子(中国)有限公司 杨飞先生   报告题目:MicroSAM——开创了过程分析仪器的新世界   杨飞先生详细介绍了西门子的在线色谱MicroSAM的结构与技术特点、在各行业的应用等方面。   在线色谱经历了从简单到复杂、再从复杂到简单的发展过程,未来在线色谱仍会朝着更简单的方向发展。西门子MicroSAM采用MEMS技术,实现了仪器的模块化,同时又可以根据用户的需求进行个性化的定制。由于该产品采用了串行多检测器技术,可达成零死体积、分析快速的分析优势,且使得在线色谱的维护更简单,甚至可以实现免维护。其与西门子的MAXUM互为补充,为用户提供最佳的解决方案。   赛默飞世尔科技 Peter J Traynor先生   报告题目:乙烯裂解炉的实时优化   Peter J Traynor先生在报告中介绍了乙烯裂解炉运行面临的挑战以及扫描磁质谱在乙烯裂解炉运行优化中发挥的巨大作用。   通过对乙烯裂解炉进行优化,可更好的控制裂解深度和选择性,确保经济效益高的气体组份能被输送到下游的分离和回收工段。扫描磁质谱运用到乙烯裂解炉的优化中,能提供超一流的精度,在合理的时间内扩展分析,具有较高的适用性。其相比于在线色谱具有很大的成本优势。   中石化镇海炼化分公司 傅泽宏先生   报告题目:激光分析仪在石化业硫磺回收SRU的应用   傅泽宏先生在报告中详细介绍了激光分析仪的部件构成、性能优点及其在石化业的应用情况。   原位测量必须解决三个问题,即不受背景气体交叉干扰,不受测量现场粉尘等颗粒物干扰,不受气体参数变化的影响。激光现场气体在线分析仪采用半导体激光器作为光源,全固态设计,无运动部件,无易损件,无周期性消耗替换。具有高灵敏度、高精度、高稳定度、快速响应(时间小于1秒)、容易安装、坚固耐用等优点。此类仪器已经在美国、欧洲、日本等全球50多个国家的石化行业得到广泛的使用。   赛默飞世尔科技 Doug Frye先生   报告题目:总硫分析仪在催化剂保护和燃料油调和过程中的应用   Doug Frye 先生在报告中介绍了总硫分析的必要性及主要的分析方法。硫元素广泛应用于化工等诸多产业中,但是基于产品质量和催化剂保护等原因,监测装置进料和产品中总硫的含量已成为每一个企业和整个社会关注的重点。其中脉冲紫外荧光法是今天最受欢迎的总硫测量方法。   赛默飞世尔科技(Thermo Fisher)提供的SOLA II在线总硫分析仪,采用热裂解工艺和脉冲紫外荧光检测器测量总硫有非常宽的动态测量范围和优异重复性,能够同时检测脱硫装置进料和产品种的总硫含量。SOLA II以其卓越的品质和性能,众多经过验证的业绩,为石化、化工、制药等行业提供了完美的解决方案。   石油化工科学研究院 许玉棚先生   报告题目:在线近红外光谱分析技术在混合生产过程中的应用   许玉棚先生在报告中主要介绍了在线近红外光谱技术在石油化工等行业的混合加工过程的应用情况,并给出了我国在近红外光谱分析技术研发方面的一些建议。   从分析应用角度来看,我国当务之急仍是高性能近红外光谱仪器的研发,包括专用测量附件,例如用于固体测量的积分球等,并根据相关技术的发展不断提升仪器的性能指标和附件的可用性。从仪器的分光原理来看,傅里叶型的近红外光谱仪具有较为明显的优势,主要体现在波长的准确性和重复性上,这是保证仪器长期稳定性和仪器之间一致性的基本条件。对于在线近红外光谱产品,需要组建专业化的公司,针对不同的应用对象,研发高性能的取样与预处理系统,与光谱仪和化学计量学软件集成,形成完整成套的分析技术。在这一方向上尚有大量的工作要做,随着我国工业管理水平的提高,其应用推广前景也是诱人的。   横河电机(中国)有限公司 王继富高工   报告题目:GC8000在线色谱仪在石油化工中的应用   王继富高工在报告中主要介绍了工业色谱仪家族的最新成员GC8000的特点和及应用方面的内容。GC8000具有独特的GCM(GC单元)概念使多柱箱更加灵活 12.1英寸彩色触屏使操作更像平板电脑 采用以前色谱仪验证过的硬件技术确保其可靠性更好 虚拟技术员软件可以预测维护功能减少意外停机时间。   最后,报告中还谈到了GC8000在天然气、甲醇合成、乙烯装置等方面的应用。   中沙(天津)石化有限公司 柴明举先生   报告题目:PH计预处理系统在裂解装置上的应用   柴明举先生介绍了他所在的企业乙烯装置裂解炉PH计预处理系统的问题,针对高压汽包水质样品高温、高压的情况下进行了相应的改造。此改造达到了预期效果,样品经过新增换热器和原换热器两级降温后,满足了PH计的使用条件,既提高了仪表可靠性,又保证了样品分析数据的实时性,使之可以长周期运行,降低了日常维护成本以及维护量,为工艺的平稳生产提供了可靠的保障,同时也为相关设备、机组的腐蚀情况提供了参照。   通力分析自控技术有限公司 罗海涛先生   报告题目:石油炼制过程在线分析的意义及研究应用的未来趋势分析   罗海涛先生在报告中谈到石化企业是国家的支柱性产业,是高科技和新技术集中的载体,生产过程参量的在线化是必然的趋势。体现当今最新技术及方法的在线分析技术及产品主要有近红外在线成分分析和及核磁共振在线成分分析等。   不过,国内各炼厂装置馏出口等投用在线分析仪的厂家尚数极少数,国外品牌在线分析仪产品和技术全面进军国内市场,发展国产石化过程在线分析仪器势在必行。最后报告还介绍了发展国产石化过程在线分析仪器目前需要解决的问题及未来研究应用的趋势等。   中国石油化工股份有限公司北京燕山分公司研究院 段宝军先生   报告题目:核磁共振在线分析系统在常压蒸馏装置上的应用   段宝军先生在报告中介绍了核磁共振在线分析系统在常压蒸馏装置上的应用情况。核磁共振分析技术成功的应用于炼油工艺中原油调和,常减压蒸馏装置,催化裂化、加氢裂化装置,重整装置,烷基化装置,成品油调和工艺,以及乙烯裂解装置原料的实时在线分析中。   核磁共振在生产上可以为控制提供原料的前馈信息和产品质量的反馈信息,以保证生产装置工艺的稳定,并配合控制最大化的提高高附加值产品的收率,达到提高经济效益的目的。核磁共振技术实时在线快速原油评价,可以提高原油的管理水平,并摆脱对原油产品的依赖,降低原油的采购成本。   赛默飞世尔科技 王清华先生   报告题目:在线质谱仪对干扰组份中一氧化碳分析的改善   王清华先生在报告中说到:在钢铁、化工等行业,CO测量是众多质谱仪应用中需要分析的关键组份,它的测量也需要面对众多干扰组份的挑战。   赛默飞世尔科技的Prima Pro通过优化离子源的设计和质谱仪的运行环境能过增强CO测量的精度,达到很好的线性与重复性 将来如果能够了解导致质谱个体差异的原因,那么其性能还可以进一步改善。   中国石油化工股份有限公司北京化工研究院燕山分院 代武军先生   报告题目:在线质谱仪在环氧乙烷银催化剂评价中的应用   代武军先生介绍了质谱仪在银催化剂微反评价装置的应用、质谱仪与色谱仪的比较、磁扇式质谱仪的工作原理以及质谱仪在线分析ppm级组分(EDC)中的应用。   他在报告中指出:经过长期的实践,磁扇式质谱仪在北化院燕山分院银催化剂微反评价装置使用期间其精度达到实验要求 质谱仪在银催化剂微反评价装置的应用提高了工作效率,实现了自动化控制,加快了银催化剂的研发速度。   美国哈希公司 Satoshi Arakawa先生   报告题目:能量分散型X-射线荧光法(EDXRF)总硫分析仪   Mr.Satoshi Arakawa 在报告中比较了几种总硫分析方法的优缺点,并指出X-射线荧光分析法是目前最好的油品中总硫分析方法。能量分散型X-射线分析法不仅结构简单,而且能节省运行成本。   Mr.Satoshi Arakawa通过重油输送线的应用案例向大家介绍了SCA-200及HSCA-2000两种在线总硫分析仪。其中前者适用于重油的总硫分子,具有耐腐蚀性、耐高压等特点,后者适用于汽油、煤油等低硫浓度的应用。   美国PAC公司 John Ho先生   报告题目:MicroDist 在线馏程分析仪在石化行业中的应用   John Ho先生在报告中讲到在石油炼制过程中,馏程是控制炼油装置操作条件的重要判断依据,并介绍了目前国际上常用的几种在线馏程分析技术。随后后根据国际上的使用情况,着重介绍了新颖的在线馏程仪—MicroDist,MicroDist馏程仪采用ASTM D7345微馏程法原理设计,具有分析速度快、准确度高、维护量低、操作容易、可靠性高等优点。根据实际的使用效果来看,可以更快、更准、更方便的满足用户在线分析的需要。   中石化管道储运分公司 肖勇先生   报告题目:石油管线自动取样器国产化的探讨   肖勇先生在报告中从实用的角度选取了当前国内市场上有代表性进口和国产两种机型进行比对,阐明了发展促进石油管线自动取样器实用型国产化必要性。   石油管线自动取样器不仅要确保所取油样具有良好的代表性,机器本身的易操作性、安全性、良好性价比等诸多因素也被用户所关注。国外石油管线自动取样器不适应中国石油石化企业实际工作需要,不仅价格昂贵,而且不适用于高凝高粘、杂质多的原油。国内管线自动取样器生产企业有流通渠道少,间接费用低的优势,能够做到即时按用户需求调整产品结构,并且有可靠及时的售后服务,被石油石化企业认可,成为我国管线自动取样器的主流产品。   Extrel CMS公司 Jian Wei博士   报告题目:Quantitative Analysis with Process Quadrupole Mass Spectrometer   Jian Wei Ph.D.在报告中主要介绍了过程四级质谱仪的定量分析原理及其应用。报告中通过详实的数据和丰富的图表分析介绍了过程质谱分析方法的测量精度和响应线性度是过程控制质谱仪重要的性能参数。   中国寰球工程公司 王雪梅女士   报告题目:在线分析仪表及分析小屋在乙烯装置中的应用  王雪梅女士在报告中首先介绍了在线分析仪表及在线分析系统的构成,随后就乙烯装置中主要的分析仪表类型作了详细的介绍。   在报告中王女士结合乙烯工厂着重介绍了色谱、红外线分析仪、氧化锆、微量水、热值仪等在线分析仪表在乙烯装置内的应用和实施方案。最后介绍了在线分析仪表的样品预处理系统及分析小屋的设计等方面的内容。   重庆川仪分析仪器有限公司 梁明燕女士   报告题目:PS6600型过程分析成套系统在高炉炉顶煤气分析中的应用   梁明燕女士代熊彬烽先生作此报告。梁女士在报告中首选介绍了公司的主要产品系列:在线气体分析仪器及成套系统、在线水质分析仪器及成套系统、环境保护检测产品、实验室分析仪器等六大系列。   之后详细介绍了PS6600型过程分析成套系统在高炉煤气分析中的应用,主要介绍了系统的构成和原理。PS6600型过程分析成套系统解决了高炉炉顶高温、多尘、含湿极端恶劣条件下长期、稳定在线连续运行的难题。最后还简单介绍了该系统在应用中的问题和解决方法。   武汉华敏测控技术有限公司 孙阳总经理   报告题目:高炉炉顶煤气在线分析系统技术综述   孙阳总经理在报告中介绍了高炉炉顶煤气在线分析系统对于高炉生产的指导意义,阐述了两种不同的成分分析模式在生产实践中的应用,并对高炉炉顶煤气在线分析系统的工作原理等进行了阐述。   随后特别介绍了高炉炉顶煤气在线分析系统最核心的技术“海绵合金过滤器”,此技术采用的是“疏导、吸附、清除”的过滤方式,对于像高炉煤气这样杂质含量高,成分复杂的气体的过滤效果很好,再生能力很强。此外还介绍了非常规的“水稀释处理法”、多级过滤、就地排放等用于预处理的关键技术。   中国石油化工股份有限公司北京北化院燕山分院 梁汝军先生   报告题目:DCS与工业在线分析仪之间基于Modbus协议的串行通讯   梁汝军先生在报告中介绍了在银催化剂中试评价装置中通过利用MODBUS协议的RS-485串行通讯方式,可以实现DCS控制系统与质谱仪之间的数据通讯的数字化。并依此为基础,在银催化剂工业侧线评价装置上成功运用独特的双寄存器存储数据技术,提高DCS控制系统与质谱仪两套系统之间数据传输准确性和可靠性。实现了DCS控制系统对装置各系统的统一监控、控制、管理等功能,提高了装置的自动化水平和管理水平。   无锡康宁防爆电器有限公司 季海平先生   报告题目:BHVAC防爆加热通风空调机组在分析小屋上的应用   季海平先生在报告中介绍了分析小屋BHVAC防爆加热通风空调机组与普通防爆空调+防爆风机系统的应用比较,BHVAC防爆加热通风空调机组在线现场使用的技术特点。   目前国内在线分析系统的分析小屋,一般采用防爆空调,配以排气风扇,没有正压保护和室内换气要求,但由于没有强制正压和新风置换保护,一旦出现氮气泄漏或有毒气体泄漏,小屋内作业人员的生命就会受到威胁。石化企业安全生产始终受到各方重视,HVAC在现场分析小屋的应用体现了安全、健康、节能、环保理念和价值观。目前,国内石化企业分析小屋使用HVAC尚处在起步阶段,观念的转变需要一个过程。
  • 高低温交变湿热试验箱:基本原理、特点和应用场景
    高低温交变湿热试验箱是一种用于模拟不同环境条件的试验设备,可以在短时间内模拟出极端温度和湿度的环境,以测试各种材料和产品的性能。本文将从基本原理、特点和应用场景等方面对高低温交变湿热试验箱进行介绍。上海和晟 HS-80A 高低温交变湿热试验箱高低温交变湿热试验箱主要由箱体、温度控制单元、湿度控制单元、空气循环系统等组成。其中,温度控制单元和湿度控制单元是试验箱的核心部件。温度控制单元通过制冷系统和加热系统来控制试验箱内的温度,湿度控制单元则通过加湿系统和除湿系统来控制试验箱内的湿度。空气循环系统则用于将试验箱内的空气循环,以保证试验箱内的环境均匀。高低温交变湿热试验箱的适用范围非常广泛,可以应用于航空航天、汽车、电子、化工、医疗等各个行业。通过模拟不同环境条件,可以测试各种材料和产品的性能,如耐高低温、耐腐蚀、抗老化等。同时,高低温交变湿热试验箱还可以用于产品的研发和改进,以提高产品的性能和质量。高低温交变湿热试验箱的技术特点主要包括高精度温度控制、高精度湿度控制、快速温度变化速率、可靠的安全保护等。其中,高精度温度控制和湿度控制可以保证试验箱内的环境稳定,快速温度变化速率可以模拟出更加极端的环境条件,安全保护措施则可以保证试验箱的安全运行。在使用高低温交变湿热试验箱时,需要注意以下几点:首先,要严格按照试验箱的操作规程进行操作,避免出现意外事故;其次,要定期对试验箱进行维护和保养,以保证其正常运行;最后,要对试验箱的运行数据进行记录和分析,以便对试验结果进行准确的评估。综上所述,高低温交变湿热试验箱是一种重要的试验设备,可以模拟不同环境条件下的各种材料和产品的性能。随着科技的不断进步和应用领域的不断拓展,高低温交变湿热试验箱将会发挥更加重要的作用。
  • HunterLab积极参与新疆化工行业建设
    位于南疆重镇库尔勒,由美克投资集团有限公司控股的新疆美克化工股份有限公司于2008年8月建成投产了我国第一条以天然气为原料,采用炔醛法生产1,4-丁二醇的全套生产装置,开辟了国内规模化生产1,4-丁二醇的全新工艺模式。公司具备年产6万吨1,4-丁二醇和1.5万吨四氢呋喃的生产规模,是目前国内商品量最大的专业1,4-丁二醇产品供应商。其主打产品的颜色检测都选用了美国HunterLab的全自动分光原理的液体色度计,开创了新疆地区BDO项目颜色检测方法和标准于国际接轨的先例,彻底解决了困扰BDO颜色检测的难关。 作为美国HunterLab颜色管理公司中国总销售和服务商的上海韵鼎国际贸易有限公司,将在技术上全力配合美克化工的生产检测和技术革新,为西部大开发做出自己的贡献。
  • 专题|生命可贵!化工安全实践案例分享
    2017年,一共发生17起化工和危化品较大以上事故,导致77人死亡,分别上升41.7%、87.8%。事故起数超出2016年全年5起,死亡人数也比2016年全年多出36人。为加强精细化工企业安全生产管理,进一步落实企业安全生产主体责任,强化安全风险辨识和管控,提升本质安全水平,提高企业安全生产保障能力,有效防范事故,国家安全监管总局提出了关于加强精细化工反应安全风险评估工作的指导意见。精细化工生产中反应失控是发生事故的重要原因,开展精细化工反应安全风险评估、确定风险等级并采取有效管控措施,对于保障企业安全生产意义重大。开展反应安全风险评估也是企业获取安全生产信息,实施化工过程安全管理的基础工作,加强企业安全生产管理的必然要求。当前精细化工生产多以间歇和半间歇操作为主,工艺复杂多变,自动化控制水平低,现场操作人员多,部分企业对反应安全风险认识不足,对工艺控制不掌握或认识不科学,容易因反应失控导致活在、爆炸、中毒事故,造成群死群伤。通过开展精细化工反应安全风险评估,确定反应工艺危险度,以此改进安全设施设计,完善风险控制措施,能提升企业本质安全水平,有效防范事故发生。除常规化学反应分析仪器之外,还需要配备专业的热安全相关仪器设备,如反应量热仪、DSC或绝热量热仪。对反应中涉及的原料、中间物料、产品及反应体系等进行热稳定性测试,获取热稳定性评估所需的主要技术数据。主要数据包括物料热分解起始分解温度、分解热等,初步筛选得到工艺过程中的不稳定源,为后续进一步测量二次分解反应相关热量数据提供指导性参数,确保物料在工艺工程中的安全和稳定。全自动反应量热仪(RC1e)可以对反应过程进行实时监控,准确、详细的了解反应过程变化,能够在时间工艺条件下,测量真实工艺的放热速率及放热总量,得到工艺的最大放热功率、反应焓、绝热温升△Tad、MTSR、热转化率等重要热参数。RC1e配套的iControl软件功能非常强大,可以实时监控反应参数和曲线,并且具有强大的数据分析计算功能。iC safety模块能确定反应工艺危险度等级。差示扫描量热仪(DSC)可以检测样品在温度变化过程中的热量变化。在化工安全评估领域,DSC可对化工过程涉及的所有化学品及工艺流程进行快速的筛查,检测化学反应是否放热、放热焓及反应速率,评估化学工艺过程触发分解反应的可能性,并获得TMRad及TD24等数据。案例分享学术-南京理工大学陈网桦教授课题组南京理工大学化工学院安全工程系热安全课题组目前由2 名教授、1 名副教授和4 名讲师组成。该课题组在陈网桦教授的带领下,2004 年购入国内首套反应量热仪(RC1e),随后率先在国内开展了化学反应过程热安全研究。这些年来,该课题组从设备、软件、教材、教学队伍等方面不断探索,不断建设,构建了国内化工工艺热安全领域从测试评估到人才培养的一整套完整体系,形成了国内在化工工艺热安全领域一个重要基地。RC1e 是一款高效精密的反应量热仪器,通过模拟工艺过程,精确测量目标反应各阶段的放热情况。通过RC1e 测试所得的结果,可以定量评估目标反应失控的可能性和严重度,并根据评估结果,采取适当的措施保障工艺安全。将RC1e 测试结果与DSC、ARC 等量热仪测试联用,可对所测工艺的热失控危险等级进行评估。对于危险等级较高的工艺,可以根据RC1e 的测试结果,提出合理改进意见。 学术-天津大学卫宏远教授课题组天津大学-阿斯利康联合实验室于2008 年11 月,在天津大学领导和阿斯利康高层的大力支持下正式成立。联合实验室主要在过程安全、绿色化学、结晶过程,与阿斯利康进行全面的合作。目前阿斯利康和天津大学已共同投入联合实验室的建设,建立了多个用于过程安全检测的大型仪器测试平台和评价体系,并具备服务于社会和企业的软硬件设施。其中就购入了梅特勒托利多的全自动反应量热仪(RC1e)。以往在将合成工艺从实验室规模放大到生产规模的过程中,会遇到许多各种各样的问题。包括:① 热量传递,如:冷却系统的移热能力是否足够?加料速率是否过快?② 混合和质量传递,如:反应是否受混合效果影响?现有设备是否能够满足混合要求?③ 反应动力学,如:建立的模型是否能够准确预测大规模生产条件下的情况?但是有了RC1e,它能够在模拟实际生产过程的条件下对化学工艺进行评估和优化,是工艺放大和安全评估的黄金标准。RC1e 可以测量各种热据,精确测量热生成速率、反应热和实时的热转化率,能够识别反应进程,给出反应的起点、终点和动力学,能够用于工艺开发和优化,工艺放大( 缩小),工艺安全评估和小规模生产等。另外,RC1e 还可以与实时在线反应分析技术、实时在线颗粒分析技术联合使用,实现在线分析化学反应和在线颗粒表征。RC1e 为客户对反应进程、反应机理和反应失控原理的分析提供了强有力的帮助,不管是在科研方面,还是项目方面,都发挥着非常重要的作用。
  • 美国麦克仪器公司技术交流与合作系列活动之天津大学研究生《仪器分析测试原理与应用》课程
    日前,美国麦克仪器公司与天津大学化工学院联合授课活动于天津大学举行。通过此次课程,同学们学习了很多有关粉体材料表征的知识,感到受益匪浅,课程得到了老师同学们的广泛认可。钟华博士已连续多年应邀为天津大学化工学院研究生讲授《仪器分析测试原理与应用》等实用课程,受到广大同学的热烈欢迎,并于今年再次为新入学研究生授课。此外,钟华博士也曾于清华大学、北京大学、中国科学院等全国知名高校和科研院所举办技术讲座和学术课程,并在众多学术会议上做大会报告,受到了听众的广泛认可。值得一提的是,我公司长期致力于以各种形式开展和客户的技术交流与合作,例如为众多高校和科研院所的学生授课,与客户联合举办技术研讨会和行业用户会,共同申请研究基金、合作研究等活动。我们将通过各种渠道,增加与客户面对面交流的机会,并旨在解决您遇到的技术问题。如果您对我公司的技术交流与合作系列活动感兴趣,欢迎拨打电话联系我们:021-51085884,我们将尽快与您取得联系,并期待更广泛和深入的合作。
  • 动态光谱成像:化工安全监测的“火眼金睛”
    历时近3年,完成“看见并定位”气体泄漏的创新之举,丰富安全预警监测手段… … 在前不久落幕的全国大学生课外学术科技作品“挑战杯”上,由南京大学电子科学与工程学院教授曹汛带领的科研团队,凭借项目“化工气体泄漏智能眼——光谱视频相机及预警系统”荣获主体赛道一等奖。指导老师曹汛年轻有为,他不仅是最年轻的国家科技三大奖一等奖完成人之一、“80后”国家重大仪器项目负责人,还是今年“中国青年五四奖章”获得者。“从实验室阶段的技术路径调研、原理验证与光学系统搭建,到样机阶段设计完善硬件、进行算法研发,最后对系统进行测试与优化,历时近3年。最终,在曹汛老师的悉心指导下,团队成员们攻坚克难,完成了‘看见并定位’气体泄漏的创新之举。”信息与通信工程专业博一学生周凯来是南大计算成像实验室成员之一,从研究生阶段便跟着曹汛从事光谱成像领域的科学研究。“永远保持兴趣和热爱,凡事只要热爱,就不会觉得太苦闷。”这是曹汛对学生最常说的话。也正是凭着自己对科研的热爱,为了攻克动态光谱成像“卡脖子”难题,他甘坐“冷板凳”,始终保持专注,钻研处于空白地带的动态高光谱成像技术,推动光谱成像由“静”至“动”跨越,引领动态高光谱成像国际科技前沿。这项研究成果不仅得到诺贝尔奖得主的积极关注和引用,还被多个国际权威机构评价为该领域数十年以来的“革命性进展”。对于普通大众来说,动态光谱成像是个完全陌生的新名词,然而在化工企业领域,这项技术却扮演着化工安全监测“智能眼”的重要角色。气体泄漏是化工企业火灾爆炸事故的基本原因之一,传统监测技术存在易受环境影响、监测范围小、报警滞后等问题,新兴的光谱视频监测技术也面临着被国外所垄断的困境。气体监测最大的困难在于要监测的泄漏气体看不见、摸不着,形状在不断变化,也没有清晰的边界和颜色特征,所以比传统目标的监测难度大大增加。“经过不断试验打磨,我们针对常见的化工泄漏气体,专门设计了光谱智能预警监控系统,实现气体泄漏的快速感知、实时监测与及时预警,优先防范和化解化工生产和环境污染的重大危险源。”在很长一段时间里,曹汛和团队成员马不停蹄,跑遍了全国上百个化工生产园区,“目前该系统已成功应用于全国10余个省市的大型化工园区和重点企业,大大降低了各类化工安全生产重大事故的发生。”在课题组成员眼里,曹汛是他们的“科研领路人”,而在曹汛的科研探索道路上,也有一位令他印象深刻的“人生导师”——南大校友、“两弹一星”元勋程开甲院士。“作为南京大学的一名教师,程院士第一次踏入罗布泊后,把一生中最好的20多年时光献给了茫茫戈壁,为科研倾注了全部的心血和才智。如何做一个纯粹的青年科技工作者,在所在领域作出成绩,程院士就是最好的榜样。”曹汛说,除了科研,他最喜欢做的事便是和学生们一起,未来还将带领他们将个人发展与国家需求相结合,在科研领域继续“追光之旅”。
  • 祝贺冠亚水分仪公司与瓮福集团携手磷化工科研工作
    ----近日深圳冠亚水分仪科技有限公司和瓮福(集团)有限责任公司签订磷化工科研合作关系。 瓮福(集团)有限责任公司的前身是贵州宏福实业开发有限总公司,其主体贵州省瓮福矿肥基地是**“八五”、“九五”期间建设的五大磷肥基地之一。瓮福(集团)有限责任公司是集磷矿采选、磷复肥、磷煤化工、氟碘化工生产、科研、贸易和国际工程总承包为一体的国有大型磷化工企业。 深圳冠亚水分仪公司从1998年开始一直致力高端水分测定仪研发、生产、销售,目前国内一家专业的水分仪生产厂商,拥有自主知识产权产品已达几十项,同时拥有10项专利。冠亚快速水分测定仪于2005年已经获得外观专利保护,专利号2005301013706,该仪器具有温度设定、微调温度补偿及自动控制等功能, 采用目前国际通用的热解原理研制而成的新一代快速水分测定仪器。产品以其过硬的产品质量已经获得通过ISO 9001:2008质量管理体系认证,SFY系列水分测定仪引进进口自动称重显示系统,人性化系统操作, 自动校准功能、自动测试模式,取样、干燥、测定一机化操作。应变式混合气体加热器,短时间内达到加热功率,在高温下样品快速被干燥,测定精度高、时间短、无耗材、操作简便,不受环境、时漂、温漂因素影响,无需辅助设备等优点。 瓮福集团通过科研团队对测土配方,开展农化服务,提供科学、适宜的各种配方肥,进一步提高农作物生产效率。
  • 英麟机器2010年北京化工大学GPC交流会举办
    为了更好地为北京化工大学师生科研、教学工作服务,英麟机器北京代表处在化大研究生院的大力   支持下,于2010年4月21日在图书馆会议中心中心会议室成功举办了GPC交流会。   会上,英麟机器北京代表处经理朴花为参会师生介绍了GPC基本原理、日常维护和故障诊断等内容。   日本昭和电工工程师宋改云与参会师生一起分享了GPC样品前处理、谱图解析、色谱柱及标样选择等内容。   本次交流会受到了参会师生一致好评,起到了很好的实际效果。   在此,感谢北京化工大学材料学院和研究生工作办公室对本次交流会的大力支持。英麟机器承诺以更好   的服务为化大师生服务,感谢您的关注!
  • 同步斯坦福——SRI流变学系列讲座I——流变学原理、定量表征与前沿应用
    简介:流变学是研究物质流动和变形的科学,它从力学的一个分支,逐步发展成为一门交叉学科,融合了物理、应用数学、化学、生物和医学、工程技术等诸多学科,其应用范围涵盖材料加工(3D打印)、医药制造、医学工程、电子和半导体、机械、汽车、冶金、石油、橡胶、纺织、塑料、化工、涂料和喷漆、选矿、食品、轻工、造纸、污水处理与环境工程等各个领域。系统流变学研究所致力于流变学学术前沿研究、工业应用和人才培养,并通过举办系列SRI流变学讲座促进产学研的深度交流、融合和协同创新。首届SRI讲座教授由世界著名流变学家Gerald G. Fuller院士开讲。Fuller院士不仅前沿学术成果丰硕,还具有解决工业实际问题以及传授流变学知识和技能的丰富经验。在本次讲座中,他将从梳理基于聚合物、胶体、自组装表面活性剂、生物大分子凝胶等软物质分子和微结构的流变现象入手,使得与会者通过学习典型实际案例掌握流变学基本原理、定量表征技术、实验数据提炼和分析方法。 讲座时间:2017年1月4日-5日讲授语言:英语讲座地点:广州市大学城外环西路230号、广州大学图书馆附楼208会议室 讲座日程安排1月4日08:00注册08:30流变现象与物质函数09:30线性粘弹性10:30茶歇10:40粘弹性的物质微观结构基础11:40解析线性粘弹数据实践12:30午餐13:30粘性液体14:30剪切流变仪15:30茶歇15:40剪切变稀、剪切增厚的物质微观结构基础17:00休会1月5日08:30非线性粘弹性09:30拉伸流变仪10:30茶歇10:40非线性流变现象的物质微观结构基础11:40计算模拟12:30午餐13:30屈服应力、絮凝分散体14:30界面流变学15:30茶歇15:40生物流变学与食品流变学17:00休会 主讲教授简介:Gerald G.Fuller担任美国斯坦福大学化学工程系Fletcher Jones讲座教授,主要研究领域涉及光学流变仪、拉伸流变学和界面流变学,涵盖包括聚合物溶液和熔体、液晶、悬浮液和表面活性剂溶液等软物质材料。他曾获得流变学术界最高荣誉——Bingham奖。他是美国国家工程院院士、美国艺术与科学院院士,现任流变学国际委员会秘书长,并长期担任美国TA仪器资深流变顾问。 广州大学系统流变学研究所热忱欢迎各界流变学领域从业者热别是青年学生、教师和业界技术人员参加,并未参会人员提供免费的午餐、茶歇,但交通和住宿需自理。美国TA仪器也将全力支持本次活动!!名额有限。先报先得、额满为止!!请认真填写您的姓名、单位、职务、联系电话、电子邮箱,并于2016年12月30日(星期五)下午5:00之前发送至邮箱:vwang@tainstruments.com。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制