当前位置: 仪器信息网 > 行业主题 > >

东兴化学模拟仪

仪器信息网东兴化学模拟仪专题为您提供2024年最新东兴化学模拟仪价格报价、厂家品牌的相关信息, 包括东兴化学模拟仪参数、型号等,不管是国产,还是进口品牌的东兴化学模拟仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合东兴化学模拟仪相关的耗材配件、试剂标物,还有东兴化学模拟仪相关的最新资讯、资料,以及东兴化学模拟仪相关的解决方案。

东兴化学模拟仪相关的资讯

  • 中国科大在超冷化学量子模拟领域取得突破
    p  日前,中国科学技术大学潘建伟教授及其同事赵博、陈宇翱等在超冷分子和超冷化学量子模拟研究领域取得重要进展,他们首次在实验上直接观测到超低温度下弱束缚分子与自由原子间发生的态态的化学反应,实现了可控态态反应动力学的探测,从而向基于超冷分子的超冷量子化学的研究迈进了重要一步。7月4日,这一重要研究成果以研究长文的形式发表在国际权威学术期刊《自然· 物理学》上[Nature Physics 13, 699–703 (2017)]。/pp  据了解,量子计算和模拟具有强大的并行计算和模拟能力,不仅为经典计算机无法解决的大规模计算难题提供有效解决方案,也可有效揭示复杂物理系统的规律,为新能源开发、新材料设计等提供指导。对化学反应和材料进行建模是量子计算最先可能的应用之一。借助量子模拟,研究者可以在人工可控的环境中研究数百万计的候选,大幅减少在真实材料中开展试验而投入的时间和资金。如同诺贝尔物理学奖获得者、麻省理工学院的Frank Wilczek教授在《今日物理》(Physics Today)发表的专题报道“未来百年的物理学”中所指出的,量子模拟“将成为化学和材料科学的核心工具。”/pp  在该项研究成果中,中国科学技术大学的研究团队首次成功观测到了超低温下弱束缚的分子和原子发生的可控态态的化学反应。在实验中,他们巧妙的利用弱束缚分子的束缚能可以调节的特性,精确控制反应中释放的能量,实现了对反应产物的囚禁。在此基础上,他们利用精密的射频场操作技术,成功探测了反应的分子产物和原子产物,并进一步研究了态态反应动力学。实验结果证实了弱束缚分子之间化学反应通道的选择性,验证了W. Stwalley约40年前的预言。/pp  该实验的重要意义在于,这是第一次在超冷化学反应中观测到态态的化学反应,从而将化学反应动力学的实验研究推进到量子水平。这一工作得到了《自然· 物理》审稿人的高度评价:“探测超冷化学反应的产物是目前该领域的重大研究目标,本工作向这个目标迈出了第一步” “该工作是超冷化学领域的一个重要的里程碑,将引起化学和物理研究者的广泛兴趣”。/pp  该研究工作得到了自然科学基金委、科技部、中科院等单位的支持。/pp  相关知识:/pp  可控化学反应动力学的一个重要方向是对弱束缚分子化学反应的研究,这一问题可以追溯到约40年前。早在1978年,化学家W. Stwalley就曾指出弱束缚分子具有非同寻常的反应性质,它的反应会选择性通过一个反应通道进行。但由于弱束缚分子常温下不能存在,长期以来这一预言一直无法得到实验检验。近年来,随着超冷原子分子技术的发展,超低温的弱束缚分子可以从接近绝对零度的原子气中被制备出来,从而使得对其化学反应性质的实验研究成为可能。/pp  在接近绝对零度的温度下,分子的德布罗意波长远大于相互作用的尺寸,因此化学反应完全由量子力学所主导,诸如量子散射、量子统计等量子效应将显著的改变化学反应的行为。超冷化学的研究为探索化学反应的机理和动力学提供了前所未有的量子态分辨率、能量分辨率和可调控性。近年来,超冷化学反应的研究取得了系列重要实验进展,例如,2010年,美国科学院院士D. Jin和叶军的联合实验小组观测到了超低温下铷钾基态分子之间的化学反应 奥地利因斯布鲁克大学的R.Grimm小组报道了弱束缚铯分子发生的化学反应等。然而,这些实验都只能测量反应物的损失,而无法对反应的产物的进行观测。迄今为止,超低温下态态化学反应尚未被实验实现。/p
  • 电化学储能市场增长 德州仪器专为储能推出BMS模拟芯片
    今年以来,宁德时代、晶科能源等原本优势业务为动力电池、光伏组件的厂商频频布局储能系统,随着储能市场活跃,第一财经记者了解到,产业链也感受到变化。芯片厂商德州仪器技术经理檀瑞安近日告诉第一财经记者,储能市场从去年至今需求上涨,公司储能系统方面的客户相比以往有所增多,其中一些厂商以往不直接做储能系统。  德州仪器是模拟芯片和嵌入式芯片厂商,为电化学储能系统提供BMS(电源管理系统)芯片,供给下游客户生产储能系统。檀瑞安感受到储能系统玩家增多,源于电化学储能需求迅猛增长下,电芯、光伏等厂商将业务延伸至储能系统。  国家能源局数据显示,截至今年上半年,国内可再生能源装机突破13亿千瓦,同比增长18.2%,历史性超过煤电。中国化学与物理电源行业协会储能应用分会数据则显示,今年上半年投运新型储能项目154个,其中电化学储能项目投运143个。随着电化学储能市场增长,储能系统安全性问题受到业内重视。储能市场活跃  德州仪器近期专门为储能领域推出一款BMS模拟芯片。檀瑞安告诉第一财经记者,电源管理芯片通常是汽车和储能共用的,但在汽车、储能场景需求都很大的情况下,德州仪器希望把AFE(模拟前端)分成储能、汽车两部分。  德州仪器对储能场景的重视具有代表性。集邦咨询数据显示,电源管理芯片海外IDM大厂以德州仪器、ADI、英飞凌、瑞萨、安森美、意法半导体、恩智浦为代表,IDM厂合计市占率63%,其中德州仪器市占率达22%。从集邦咨询的市场预估看,多类消费电子电源管理芯片需求不振,陷入降价,今年上半年仅少量工业与车用需求维持稳定,而工业和车用领域电源管理芯片有83%掌握在IDM大厂手上。  除上游芯片需求受行情催化外,中游的储能系统市场活跃度也较高。据梳理,今年以来完成新一轮融资的相关厂商包括上海电气储能、麦田能源、奇点能源、海辰储能、揽海能源等,多起融资金额过亿元,海博思创还在冲刺科创板上市。  不少储能系统厂商“跨界”而来。檀瑞安告诉第一财经记者,入局做储能系统的厂商可分为三类:储能品牌商、锂电池厂商和从风电、光伏跨界的厂商,市场此前以储能品牌商和锂电池厂商为主流,后来,随着市场盘子越来越大,做逆变器、光伏和风电的厂商也延伸至储能系统领域,以前这些逆变器、光伏厂商是给储能做配套的功率变换系统。  “以前做BMS的就做BMS,做Power(包括solar inverter和Power conversion system,光伏逆变器和储能逆变器)的就只做Power,现在大家都想扩展,市场越来越活跃。” 檀瑞安表示。  从市场格局看,据中关村储能产业技术联盟数据,去年中国储能系统集成商出货量排名前五是海博思创、中车株洲所、阳光电源、天合储能和远景能源,前十名的多家厂商出货量差距不大。TrendForce集邦咨询新能源总监王健告诉第一财经记者,储能系统集成格局较分散,竞争激烈,储能集成系统处于竞争初期,目前储能系统头部厂商排名变化较大,竞争格局处于演变重塑期。  王健表示,储能系统集成商向上游对接大量设备供应商,将各子系统集成为储能系统产品,向下游交付并提供后续质保服务,技术、渠道、资金构筑了行业壁垒,单个项目投资大、周期长,对资金实力要求高。预计技术领先、客户资源丰富、供应链整合能力强的企业市占率有望进一步提高。安全成为关键  从需求较大的储能场景看,檀瑞安告诉第一财经记者,欧洲家储(家庭储能)市场较成熟,国内以电网储能为主的大储(大功率储能)应用更多,电网储能增长形势较好。工商储(工商业储能)需求未来也可能爆发。  安全性则是储能行业发展的关键问题。在电芯厂商通过技术优化提高电芯安全性的同时,管理及维护电池单位、监管电池状态的电源管理BMS也是关键一环。  第一财经记者了解到,储能电池关注充放电次数,有使用寿命的要求,但瞬态充放电速度要求没有汽车那么高,系统方面,储能系统电池电压范围较宽。汽车和储能两个场景对BMS的要求有所不同。据檀瑞安介绍,针对储能系统,温度采样时公司会建议预留每颗电芯单独采样,而在汽车场景中一般不会。  檀瑞安表示,从家储到工商储、大储,电池容量从几千瓦时上升至几兆瓦时,随着容量增大,安全的重要性更加凸显。从保障电池安全性的角度,德州仪器的芯片会进行失效分析和寿命分析,以减少芯片失效风险,同时也在系统端助客户设计,通过合理失效分析避免单个器件失效影响整体系统安全性。  目前BMS已在汽车动力电池、储能电池中广泛应用。据国际能源网数据,电池占储能系统成本约60%,逆变器约占20%,BMS占5%。  檀瑞安表示,单纯从成本看,BMS占比不高,但没有BMS系统,储能系统就无法运转,一些储能站发生危险事故的案例,背后是因BMS没有做好。电化学储能最核心的问题是安全,大家现在关注储能电池能否安全运行10年、15年甚至20年。如果能长时间安全运行,且减少后期维护成本,成本实际上也会被摊薄。  国联证券研报指出,储能装置能量比动力电池系统高1~2个数量级,锂电池储能系统火灾的严重性远大于电动汽车电池火灾,今年7月,储能新国标开始实施,储能安全标准已趋严。储能电站系统由储能电池、储能逆变器、温控系统、消防系统、BMS和其他设备集成,系统集成商作为储能安全的第一责任人,对系统安全的重识或也将提高其竞争壁垒。
  • 新型植物性“模拟肉”产品的研究——人造肉的物理化学表征、FTIR光谱和结构特征分析
    目前的研究旨在用脉冲蛋白取代肉蛋白,并确定植物蛋白-肉类似物商业化的加工方法的适用性。采用碱性/等电沉淀法从青豌豆、马豌豆和豇豆中提取脉冲蛋白浓缩物(PPCs)。对PPCs进行物理化学、形态、GC–MS和热分析。将青豌豆、马豌豆与豇豆的PPCs按(20:20:20)T1、(30:15:15)T2和(15:20:15)T3的比例制备油炸肉丸。所有PPC都表现出塌陷和褶皱的表面。马豌豆蛋白浓缩物表现出最高变性温度(Td°C)89.50 ± 2.57和焓(ΔH(J g−1))(287.73 ± 9.64),与其他样品相比,迭代出更好的热稳定性。FTIR光谱表明,羊肉油炸丸子存在O–H伸缩宽带(3321.22 cm−1)和植物油炸肉丸(3288.28 cm−1),而PPC在(3275–3278)cm−1区域)。在1600–1700区域观察到两条C-H带和PPCs的主要二级结构成分,如α-螺旋、β-片状、β-转弯和无规螺旋 cm−1.酰胺N–H弯曲(1400–1500 cm−1)和C–O伸缩带(1000–1300 cm−1)。以20:20:20(T1)的比例配制的植物性油炸肉丸在感官特性(颜色、质地、多汁性和整体可接受性)、颜色特性(L*和b*)以及质地特性(如硬度、粘附性和内聚性)方面与羊肉油炸肉丸密切相关。这些发现将开辟这一领域的新研究视野,并为肉类替代品的商业化铺平道路,这将减少对环境的影响和碳足迹。Penchalaraju,M,Poshadri,A,Swaroopa,G等人。利用印度脉冲蛋白制作植物性模拟肉III:肉类似物的物理化学表征、FTIR光谱和质地特征分析。国际食品科学技术杂志2023。https://doi.org/10.1111/ijfs.16828• 文章来源:Leveraging Indian pulse proteins for plant-based mock meat III: physicochemical characterisation, FTIR spectra and texture profile analysis of meat analogue(利用印度脉冲蛋白制作植物性模拟肉III:人造肉的物理化学表征、FTIR光谱和质地特征分析). Wiley Online Library供稿:符 斌
  • 世界最先进大气环境模拟平台开工
    8月26日,“大气霾化学”基础科学中心启动会暨“大气环境模拟系统”开工仪式在山东大厦举行。“大气霾化学”基础科学中心、“大气霾化学”基础科学中心—清华大学分中心、“大气霾化学”基础科学中心—中国科学院化学研究所分中心同时揭牌,“大气环境模拟系统”同日正式开工。“大气霾化学”基础科学中心是目前我国环境领域唯一的基础科学中心,拟开展大气霾化学基础研究,聚焦环境化学领域的国际前沿,围绕细颗粒物和臭氧协同控制的迫切科技需求,建立霾化学理论。中心将通过大气科学、环境化学等相关领域高端创新资源的聚集,建设成为国际一流的科研平台,同时也将形成高水平人才技术交流和协同创新创业平台。“大气环境模拟系统”是目前世界上最先进、功能最全的大气环境模拟平台。系统将通过外场观测获得大气污染状况和气象参数,通过实验研究我国典型区域大气污染化学机制、健康影响和气候效应及其关键参数,结合大气化学模拟和地球数值模拟装置等宏观模型,为我国大气污染预测、诊断、控制决策及防治提供科技支撑。
  • 飞纳台式扫描电镜入驻长兴化学材料(珠海)有限公司
    飞纳台式扫描电镜的用户遍及高校,企业,科研机构,近年来,企业的用户数量有明显的上升趋势。有越来越多的企业开始接触到台式扫描电镜,台式扫描电镜的设计原理与传统落地式的大型扫描电镜一样,用途都是观察材料表面的微观形貌。材料的微观结构显著影响材料的性质。对企业来说,选才很关键,同样,选“材”也很关键。选择一款操作方便,性能优越的科研仪器对企业来说是至关重要的。台式扫描电镜相比于传统落地式的大型扫描电镜来说,具有占地面积小,操作简单,维护方便等特点。长兴化学材料(珠海)有限公司为台湾长兴工业集团旗下子公司,隶属于集团特殊化学品事业部,主要生产及销售光固化类 UV 树脂和单体及相关特种涂料原材料,生产基地位于珠海。此次飞纳电镜在长兴化学材料(珠海)有限公司的用户主要做 LED 灯罩中光扩散剂有机硅颗粒的生产和研发工作,该颗粒的纯度对生产流程的顺利进行影响较大,客户希望观察该颗粒是否掺杂了其他形态的颗粒,以及掺杂了多少其他形态的颗粒。有机硅光扩散颗粒有机硅颗粒中可见掺杂的杂质颗粒客户选择飞纳台式扫描电镜前,对比了不同扫描电镜拍摄的样品结果,发现飞纳电镜拍摄的图片亮度非常好,图片清晰度高,分辨率可以满足所有待观测样品的测试需求。这是因为飞纳电镜采用了高亮度的 CeB6 灯丝,灯丝的亮度是钨灯丝的 10 倍,因此图像的信号充足。同时,CeB6 灯丝的使用寿命为 1500 小时,不用频繁更换灯丝,用户更倾向选择寿命长的灯丝,可以避免在紧急情况下,更换灯丝带来扫描电镜无法使用的状况。飞纳电镜的抽真空时间只有 15 秒,效率是最高的。同时,飞纳台式扫描电镜的操作非常简单,第一次现场看机器后就可以自己亲自操作。飞纳台式扫描电镜具备了光学导航和低倍电子导航,可以快速定位目标区域,通过点击目标区域,该区域就会移至视野中央,点击自动聚焦,拍照,就可以获得高质量的 SEM 图片。防震性也很好,可以不用额外配防震台,工程师在演示的时候,即使拍桌子,桌面上的台式扫描电镜仍可以稳定运行,正常取照,没有丝毫震纹。用户亲自操作飞纳电镜用户顺利拿到培训合格证书感谢长兴化学材料(珠海)有限公司的用户对飞纳台式扫描电镜的信赖,相信飞纳台式扫描电镜可以帮助该用户研发和生产出更优异的有机硅光扩散剂。注明:此新闻素材长兴化学材料(珠海)有限公司仅授权复纳科学仪器(上海)有限公司使用,如需转载,请注明出处。
  • 安捷伦科技推出可模拟沃特世 Alliance 液相色谱系统的新版智能系统模拟技术
    安捷伦科技推出可模拟沃特世 Alliance 液相色谱系统的新版智能系统模拟技术 2012 年 12 月 6 日,北京&mdash &mdash 安捷伦科技公司(纽约证交所:A)宣布了推出最新版革命性的智能系统模拟技术。新版的 ISET 可以模拟沃特世 Alliance 液相色谱系统。 拥有 ISET,科学家们能够将沃特世 Alliance 液相色谱系统所使用的传统方法无缝转移至最新的 Agilent 1290 Infinity 液相色谱平台上。利用这种独一无二的性能,Alliance LC 的用户现在可以用 Agilent 1290 Infinity 液相色谱系统更换他们的旧仪器,并能继续使用他们的传统方法获得相同的色谱结果。 1290 Infinity 液相色谱与 ISET 的联合可使用户:只需单击鼠标,即可模拟其他 (U)HPLC 仪器。运行现有 (U)HPLC 方法,无需修改方法或系统。与现有变通方法(例如,增加一个等度保持)相比,方法模拟更为出色,可得到相同的保留时间和峰分离度。 对于需要在使用不同液相色谱仪器的不同部门和地点之间进行液相色谱方法转移的实验室来说,仪器到仪器的方法转移就显得特别重要。在严格监管的环境中,例如制药行业的质量控制,液相色谱方法的转换可能是一个挑战,因为需要避免对原始方法作出任何修改。 &ldquo 我们已经售出了 1000 多份 ISET 许可证,目前正在处理我们客户工作流程中的主要差距,&rdquo 安捷伦 1290 Infinity 液相色谱产品经理 Christian Gotenfels 说道。&ldquo 我们将通过模拟其他供应商(例如岛津和戴安)的液相色谱仪器继续扩展 ISET 的性能。&rdquo 关于安捷伦科技 安捷伦科技 (NYSE:A)是全球领先的测试测量公司,同时也是化学分析、生命科学、诊断、电子和通信领域的技术领导者。公司拥有 20,500 名员工,遍及全球 100 多个国家,为客户提供卓越服务。在 2012 财年,安捷伦的净收入达到 69 亿美元。如欲了解关于安捷伦的详细信息,请访问:www.agilent.com.cn。
  • 2016年分子模拟学习体验日(免费)
    尊敬的老师和同学,您好! 近20年来,诺贝尔化学奖已两次授予计算化学学科(1998年度和2013年度),这充分说明了理论计算和模拟在科学研究中的重要性,不仅在化学和生命科学领域,科学计算和模拟结合高性能计算机,已经成为认识和解决所有复杂的科学和工程问题的重要方法。Discovery Studio(简称DS),作为面向生命科学领域的综合性分子模拟平台,通过高质量的图形界面、经多年验证的科学算法以及集成的环境,为科研工作者提供了易用高效的药物设计与大分子模拟技术和工具,从而得到了广大用户的认可与青睐。 2015年创腾科技有限公司在北京成功举办了Discovery Studio4.5体验日,共吸引超过120多位相关领域的科研工作者。为满足更广大客户的学习需求,我们计划于2016年在全国(暂定五大区:成都、沈阳、武汉、西安、南京)继续举办该学习体验活动,为更多科研人员提供一个免费交流学习Discovery Studio软件在药物设计和生物大分子模拟领域应用的机会与平台,帮助更多的科研人员了解Discovery Studio软件的应用并学以致用。 随着Discovery Studio2016版本的正式发布,本年度活动将以Discovery Studio2016软件为依托,介绍Discovery Studio2016新功能,并围绕经典的模拟技术手段进行介绍和案例分享,内容涵盖:基本界面和入门操作、分子对接、药效团模型、蛋白质理性设计等,从而帮助大家系统了解该模拟技术并应用于蛋白(核酸)-小分子相互作用机理解释、化合物的虚拟筛选、化合物构效关系的分析、反向找靶、抗体设计和酶设计等方面。活动具体信息如下: 一、活动城市和时间:二、活动日程安排: 详情见创腾科技网站活动页面(www.neotrident.com)三、参加对象: 对分子模拟感兴趣、希望了解分子模拟并将模拟技术应用于药物研发、蛋白结构功能研究、抗体研究或酶研究领域的高校或企业科研人员;对Discovery Studio软件感兴趣、希望了解Discovery Studio软件的高校或企业科研人员。 四、活动费用:免费活动(食宿交通等费用自理) 五、学习电脑: 学习体验日现场涉及上机操作,需自带电脑(具体会有后续通知)。请在活动开始前自行下载并安装DS软件。学员可根据自己手提电脑配置自行下载所对应的版本: Windows 32bit下载 链接: http://pan.baidu.com/s/1i4ho54x 密码: 4n4u Windows 64bit 下载 链接: http://pan.baidu.com/s/1qXtR8SG 密码: qh5m Linux 64bit下载 链接: http://pan.baidu.com/s/1qXiwsby 密码: bixs 六、报名方式:请填报名回执并发送到market@neotrident.com信箱,提交回执后3个工作日内会收到一封确认邮件,敬请留意!注:1)自通知发布后接受报名,以报名先后顺序安排座位,因场地名额限制,额满为止! 2)若临时取消报名,务必提前通知工作人员;活动当日请提早报到,若活动开前5分钟仍不到现场,为您预留的座位将由旁听席学员顶替。 报名邮箱:market@neotrident.com
  • 实现对生物、化学和物理环境条件的完美模拟——BINDER携多款创新产品亮相BCEIA2017
    p span style="font-family: 楷体,楷体_GB2312, SimKai " 2017年10月10日,第十七届北京分析测试学术报告会及展览会(BCEIA 2017)在北京国家会议中心隆重开幕,吸引了来自世界各地的500家仪器企业参展。/span/ppspan style="font-family: 楷体,楷体_GB2312, SimKai "  全球著名科学和工业实验室用模拟箱制造公司——BINDER携多款创新产品亮相本次展会。BINDER 亚洲区主管Karyo Ariizumi先生接受了仪器信息网(以下简称“Instrument”)的现场采访,就广大实验室用户关心的问题作了解答。/span/pp style="text-align: center "img title="1.jpg" src="http://img1.17img.cn/17img/images/201710/insimg/b12263cd-8553-458a-83a2-0a173c601d82.jpg"//pp style="text-align: center "strongBINDER亚洲区主管 Karyo Ariizumi/strong/pp  strongInstrument/strong:与市场上同类产品相比,BINDER的产品有何特点?/pp strong Karyo Ariizumi/strong:BINDER作为家族企业全身心专注于模拟箱。我们是全球最大的科学和工业实验室用模拟箱制造公司之一。我们已推出的 BINDER 设备系列包括培养箱、植物培养箱、超低温冰箱、干燥箱和烘箱以及各类人工气候箱,可满足行业与市场的众多需求。成熟的尖端技术、独具前瞻的创新以及绝对的精确性铸就了 BINDER 高端的品牌形象。我们致力于为众多行业实现对生物、化学和物理环境条件的完美模拟。BINDER 模拟箱具有绝对的可靠性,完全胜任复杂的实验室任务。BINDER 产品的开发和制造均在位于德国南部高科技地区的图特林根市总部基地完成。从精密的冲压、弯曲、焊接工艺到隔离处理,再到仔细的装配工作,我们所有的生产步骤都是在我们的德国工厂完成,从而保证整条生产线的质量。我们严格的质量检查工作确保达到严苛的 BINDER 标准,而且我们每年向全球供应约 22,000 套优质设备。/pp  本次展会我们带来了全新一代恒温恒湿箱、高温烘箱等产品。恒温恒湿箱作为宾德的明星产品,进入中国市场多年,积累了广大的用户基础并享有极高的声誉。全新一代恒温恒湿箱搭载超大触摸式控制面板,方便用户调整及实时监测实验数据。出于对数据信息安全的考虑,还设置了密码锁及分级管理等一系列安全设置。同时亮相的还有广受好评的宾德高温烘箱及二氧化碳培养箱。高温烘箱采用全新一代APT Line技术,高效的热循环系统较上一代产品可有效节能约30%。二氧化碳培养箱则采用一体式无缝内腔、高温灭菌、独特的双盘加湿等方式大大降低了污染风险,帮助用户轻松完成细胞培养。/pp  strongInstrument/strong:BINDER在全球及中国分别有怎样的市场和产品策略?/pp  strongKaryo Ariizumi/strong:“为您的成功创造最好的条件”是BINDER的理念,我们致力于为客户提供卓越的产品、一流的服务以及专业的咨询。我们的市场策略是根据不同市场的具体情况向用户重点推介具体产品。比如,在中国我们的恒温恒湿箱一直受到广大用户的青睐,恒温恒湿箱的销售额占BINDER中国总销售额的50%,在中国一度到达80%的市场占有率。但我们在全球获得广泛成功的二氧化碳培养箱产品在中国的销量相对还有提升空间,那么接下来我们希望在中国市场投入更多的资源来让客户了解我们的产品,最终购买并使用我们的二氧化碳培养箱及其他尖端设备。/pp  在产品策略方面,BINDER一直是高端的品牌形象,但现在我们也希望赢得广泛的客户群。比如,我们在制药市场一直处于领导地位,制药行业对恒温恒湿箱的产品要求最为严格,而针对食品、电子电器、汽车等其他的行业不同要求,我们之后会将恒温恒湿箱的产品线再扩宽一点,推出覆盖高、中、低端市场的产品,以满足不同用户需求。/pp  strongInstrument/strong:BINDER在中国的用户群体和市场有什么特点?/pp  strongKaryo Ariizumi/strong:就具体产品而言,中国的恒温恒湿箱用户比较偏向于选择外国的品牌,原因是中国的很多本土品牌的产品不满足ICH、PIC/S等国际标准的要求。比如制药企业,假如他们的产品出口,他们就必须使用符合国际标准的恒温恒湿箱,因此他们会倾向购买BINDER的产品。假如中国用户的产品不需要出口,那他们在购买时第一看重的是价格。其实很多用户只考虑产品单价,而忽略了使用寿命、能源消耗、操作便利性、技术创新等方面的考量。事实上,我们的产品虽然在单价上要较本土品牌贵一些,但我们的性价比更好。比如我们的超低温冰箱在噪音控制和能耗方面做得都非常出色。超低温冰箱一般使用寿命在10年左右,前五年节省的电费就可以抹平差价了,而后五年的使用事实上是帮用户节省了成本。BINDER成立于1983年,我见过有很多客户还在使用我们1983年推出的产品,这足以说明我们卓越的产品品质。/pp  此外,以前中国的采购流程相对不够透明,但是现在已经变得越来越透明了。我相信采购透明化会给用户带去更多更好的产品。/pp  strongInstrument/strong:今后BINDER会注重哪些新的应用领域的拓展?/pp  strongKaryo Ariizumi/strong:我们的产品广泛应用于汽车、生物科技、化工、电子/半导体、人类诊断、试管受精、美妆品、航空航天、食品/饮品、医学研究和制药等领域。我们也注重新市场的拓展。恒温恒湿箱的应用领域较为广泛,用户只要做稳定性测试就会需要恒温恒湿箱。但也有一些新的行业需要用到二氧化碳培养箱,比如细胞制药行业是我们正在积极开拓的领域。/pp strong Instrument/strong:请介绍BINDER有怎样的价值观?/pp  strongKaryo Ariizumi/strong:我们认为自己是社会的一份子。作为一家家族企业,通过国际化核心业务,不断完善的产品,在人类健康和安全方面,我们为世界各个地区与人们做出了积极贡献。/pp  strongInstrument/strong:2017年截止到目前,BINDER的产品在中国的市场表现如何?/pp  strongKaryo Ariizumi/strong:今年到目前为止已经迎来了破纪录的增长,超过了2016年全年的销售额,预期今年可达到最少10%以上的增长。在过去几年中,我们整体上都有很不错的增长。BINDER80%的市场在海外,而中国更是BINDER海外单一国家市场中最大的,且仅次于德国本土的全球第二大市场。我们的产品进入中国超过二十年,在稳健拓展中,中国本土市场销售量及销售额呈逐年稳步增长的态势。/p
  • 新品上市|涂料管道模拟方案---剪切应力模拟器
    剪切应力模拟器polyshear----模拟液体涂料和油漆的剪切效应在涂装车间或喷涂线上,涂料需从不同口径、不同排布的管道、减压器和泵中输送。此过程中会产生剪切力,这些剪切力可能会导致涂料的降解,变质,粘度和色彩的改变。通过使用德国orontec公司生产的polyshear剪切应力模拟器,可以判断某种涂料原料是否会在输送管道和搅拌中产生问题,降低风险。德国orontec公司制造的polyshear剪切应力模拟器可模拟合理测试时间中的剪切应力。包括与工业环境相关联的涂料管道。剪切应力模拟器polyshear仅使用确定的剪切力元件,装置体积小巧且有优秀的重复性。剪切应力模拟器polyshear客户剪切应力模拟器polyshear广泛运用在涂料,汽车油漆,以及工业喷涂线等领域,发挥出重要的作用。部分客户如下:polyshear剪切应力模拟器工作原理---泵跟剪切应力元件是剪切应力两个重要影响因素油漆在喷漆车间的管道中循环时,会在管道内的各种元件流动,在剪切力的作用下发生粘度和颜色改变,从而造成喷涂时的质量问题。使用剪切应力模拟器,可以重现这过程,为进料检验,产品优化提供快速有效的方法。☞ 泵以活塞泵为例,如下图所示,剪切应力总是发生在重要部位上(直径最小的位置),剪切率可以达到15000 1/s。以齿轮泵为例,如下图所示,剪切应力总是发生在重要部分上(齿轮口边缘),剪切率可以达到10000 1/s。☞ 剪切应力元件德国orontec的剪切应力模拟器中有个重要的剪切应力元件,可以模拟涂料在管道中受到的压力情况,如下图左所示,关闭剪切应力元件上的膜时引起的压力变化。压力的变化会改变流速,如下图右所示,剪切应力元件上膜关闭后,流速为0.12kg/s。剪切应力元件也可以很好的模拟涂料在管道中受到的剪切率,如下图所示,剪切应力元件可以达到大于10000 1/s的剪切率。涂料的颜色受到剪切应力的影响,如下图所示,在泵的作用下,涂料颗粒大小的分布发生了变化,因此模拟涂料在管道中受到的剪切应力,可以帮助客户对进料进行检验。剪切应力模拟器polyshear的基础模块由一个小机动柜组成,只需一个6条的压力线即可运行。喷涂材料充满小罐(1l)后,在泵的作用下通过剪切应力元件流动。其循环流动次数与涂装输送管道有良好的相关性,且相关性已被研究证明。在测试过程中或在测试后,都可以检测样品的粘性和颜色(使用液体涂料色浆测色系统lcm),由此可得出剪切应力与材料降解的相关性。与此同时,在基础模块上可额外添加额外的配件,例如有自动停功能的循环次数计数器、温度传感器。此外,还有另一型号可测试5升样品,此型号可装在手推车上并可以移到如喷涂机器人等装置上。剪切应力模拟器polyshear特点✔专为实验室研制,机动性强且占用空间小。✔涂料测试量仅为1l✔高重复性与与重现性✔与工业喷涂线有优秀的关联性(例如automotive oem paint shops)✔较短的循环周期✔模块化安装,基础模块可以通过更高级的在线测量传感器扩展✔可实现与模拟软件相结合✔可与lcm液体测色系统实现无缝联接✔德国fraunhofer ifam, bremen开发并获得专利剪切应力模拟器polyshear基础型号内部结构说明剪切应力模拟器polyshear基础型号技术参数材质不锈钢外壳和连接器用于测试观察和控制的玻璃窗尺寸长: 400 mm,宽: 660 mm,高: 640 mm重量约56kg压力锅体积约1 l最大压力输入6 bar最大材料压力21 bar泵比约3.5:1翁开尔是德国ORONTEC中国总代理,欢迎咨询剪切应力模拟器更多产品信息和技术应用
  • 上海仪迈模拟旋光仪退市 数字旋光仪全线推出
    p  今年是上海仪迈仪器科技有限公司成立五周年,这五年来,上海仪迈取得了哪些业绩?又有哪些运营心得?日前,借第十六届北京分析测试学术报告会暨展览会(BCEIA 2015)召开之际,仪器信息网视频采访了上海仪迈市场总监郑炜以及产品经理(PM)王彤。/pscript type="text/javascript" src="https://p.bokecc.com/player?vid=0EAD6B58BDF35CCF9C33DC5901307461& siteid=D9180EE599D5BD46& autoStart=true& width=600& height=490& playerid=621F7722C6B7BD4E& playertype=1"/scriptp  郑炜介绍说,上海仪迈成立这五年来,始终专注于物理光学与电化学仪器的研发与推广,并采用了国产仪器企业少有的PM负责制进行产品管理,坚持打造本土精品仪器。/pp  王彤则对上海仪迈PM负责制深有体会,对这种先进的产品管理模式表示十分认同。同时她表示,借助这种PM管理模式,上海仪迈先后推出了数字平台digi600、digi300系列以及120digi系列旋光仪,可以满足国内高中低端用户的全部应用需求,“就如同模拟电视向数字电视的转变一样,现在我们借本届BCEIA宣布,上海仪迈模拟平台旋光仪正式退市,接下来将是数字平台旋光仪的时代,上海仪迈现有产品已经可以替代市场中的所有产品。”/p
  • 第九届国际分子模拟与信息技术应用学术会召开
    蒋华良院士作报告大会会场 为期3天的第九届国际分子模拟与信息技术应用学术会议,5月17日在太原理工大学召开,400多位国内外科学工作者进行了学术交流,中科院上海药物研究所所长蒋华良院士作了题为《原创药物研发新策略与新技术》的首场学术报告。开幕式由太原理工大学发展规划处处长王宝俊教授主持。开幕式上,北京大学徐筱杰教授致开幕词,太原理工大学副校长吕永康教授代表太原理工大学校长黄庆学院士致欢迎词。 据悉,本次大会由太原理工大学、中科院上海药物研究所、中国化学会计算(机)化学专业委员会和北京创腾科技有限公司联合举办,大会邀请了剑桥大学、北京大学、清华大学、复旦大学、法国达索公司、中科院上海药物所、中科院过程工程所、中科院山西煤化所等国内外50多所高校和研究机构的专家作专题报告,探讨如何利用分子模拟技术、量子化学计算技术和大数据技术推动化工、能源、材料、生命科学、生物制药等相关产业的创新发展。 据北京创腾科技有限公司总经理曹凌霄介绍,这次会议的目标,一是推动分子模拟和量子化学计算技术从广度和深度上得到应用;二是通过云平台和云计算提升科学实验数字化采集的应用体验,帮助研究人员加速研发,得到更多一流研究成果。 太原理工大学拥有教育部和山西省煤科学与技术重点实验室,在量子化学计算与分子模拟技术应用于煤科学和煤化工研究方面,实力较强,并取得多项研究成果。该校王宝俊教授告诉记者,这次会议也为省内相关高校和科研院所提供了难得的学习和交流机会,对山西相关研究领域的创新与发展有建设性积极作用。 本届会议六个分会,涵盖生命科学和材料科学两大领域,大会特设了企业分会,为产学研提供对接平台,来自中国石化、比亚迪、中船重工和罗氏制药的企业代表参与了交流。为解决煤化工产业中的关键科学问题,大会还特设煤科学与技术专场分会,就量子化学计算和分子模拟在煤科学和煤化工中的应用等问题进行了深入研究探讨。来源:科学网
  • 模拟光合作用的光动力催化剂问世
    美国麻省理工学院研究人员通过模拟光合作用,即植物用来生产糖分的光驱动过程,设计了一种可以吸收光并用光来驱动各种化学反应的新型光催化剂。该研究成果15日发表在《化学》杂志上。  这种新型催化剂被称为生物混合光催化剂,其含有一种采光蛋白,可吸收光并将能量转移到含金属的催化剂上。然后,这种催化剂利用能量进行反应,这些反应可用于合成药物或将废物转化为生物燃料及其他有用的化合物。  研究资深作者、麻省理工学院化学副教授加布里埃拉施劳-科恩表示,光催化可使药物、农用化学品和燃料合成更加高效和环保。研究表明,新型光催化剂可显著提高他们尝试的化学反应的产量,且与现有的光催化剂不同,新催化剂可吸收所有波长的光。  在之前进行的关于光催化剂的工作中,研究人员使用一种分子来进行光吸收和催化。该方法有局限性,因为大多数使用的催化剂只能吸收某些波长的光。为了创建新催化剂,研究人员模拟光合作用并将两种不同的元素结合起来:一种用于采集光,另一种用于催化化学反应。对于光采集部分,他们使用了一种在红藻中发现的被称为R-植物红素的蛋白质。他们将这种蛋白质连接到含钌催化剂上,该催化剂以前曾被单独用于光催化。  联合展开研究的普林斯顿大学团队测试了催化剂在两种不同类型的化学反应中的性能。一种是硫醇—烯偶联,将硫醇和烯烃连接起来形成硫醚,另一种是肽偶联后用甲基取代剩余的硫醇基团。  普林斯顿团队的研究表明,与单独的钌光催化剂相比,新的生物混合催化剂可将这些反应产量提高十倍。他们还发现,这些反应可在红光照射下发生,这是现有光催化剂难以实现的,其对组织的破坏更小,因此有可能用于生物系统。  研究人员说,这种改进的光催化剂可被纳入上述两种反应的化学过程中。硫醇—烯偶联可用于创建蛋白质成像、传感、药物输送和生物分子稳定性所需的化合物。例如,它可用于合成脂肽,使新设计的抗原疫苗更容易被吸收。研究人员测试的另一种反应是西苯脱硫,它在肽合成中有许多应用,包括可用于生产艾滋病治疗药物恩夫韦地。  这种类型的光催化剂还可用于驱动一种被称为木质素解聚的反应,有助于从木材或其他难以分解的植物材料中产生生物燃料。
  • 宁波材料所在AI 材料计算模拟领域取得系列进展
    基于量子力学的原子层级模拟计算是材料学中一种直观有效且常用的研究方法,它可以研究材料的空间原子结构、电子结构,以及由此带来的各种宏观物理、化学性质。长期以来,材料计算模拟的发展受到计算尺度的严重制约,例如描述理想周期结构、完美晶格的密度泛函理论仅可求解百原子量级的体系。   然而真实的材料体系是不完美并且非常复杂的,材料中存在缺陷、晶畴界、表界面、非晶无序等结构特征,处于非平衡态的材料体系同时具有动力学演化行为,这些复杂体系的特征行为体现在更大的时间和空间尺度,因此需要大尺度的模拟计算才能描述。基于传统物理“规则驱动”的计算技术已难以从理论框架突破尺度限制。   针对这一问题,中国科学院宁波材料技术与工程研究所柔性磁电功能材料与器件团队利用并发展了AI+材料计算模拟方法。基于“数据驱动”的AI是从数据和观测值出发,寻找数据之间的特征和关系,从而发现一些定理和规律。AI与科学的结合带来了新的科研范式,给材料计算模拟带来全新的思路和视角。Deep-Potential(DP)是一种具有代表性的AI技术,它运用深度神经网络技术,采用大量小原胞(数十个原子)的密度泛函理论计算数据作为训练集,训练完成的网络可以高效准确地预测出大原胞(最高可计算百万个原子)的总能以及原子受力,从而实现大时间空间尺度(微米/纳秒)的动力学模拟。   钟志诚研究员带领研究小组近期开展了一系列DP相关的研究:1)通过研究SrTiO3的结构相变,发现了DP模型具有超高精度,与密度泛函理论计算得到的能量误差可达到meV/atom以内[Phys. Rev. B 105,064104(2022)];结合DP势函数和位错解析理论,在大尺度下准确描述Cu的位错芯结构以及位错间的长程弹性相互作用[Comput. Mater. Sci. 218,111941 (2023)]。上述两个工作证实了DP在大尺度下的高精度以及描述位错等复杂结构的有效性。2)利用DP,解释了ZrW2O8的负热膨胀现象以及压力诱导的非晶现象[Phys. Rev. B 106, 174101 (2022)],该工作表明DP势函数能够有效描述复杂动力学行为以及非晶无序结构。3)晶格量子效应对热力学等性质的求解至关重要,而却往往因为其较高的计算成本在模拟计算中往往被忽略。团队以SrTiO3的量子顺电现象为例,提出了结合DP+QTB高效地研究材料中的晶格量子效应方案[Phys. Rev. B 106, 224102 (2022)]。   以上工作为未来材料计算模拟研究提供了全新范式,为复杂材料体系的高精度大尺度模拟提供了具体思路。此外,结合AI+材料计算模拟进行大尺度及复杂效应的计算,有望解决一系列复杂材料体系中的微观机制、宏观性能等问题。例如多元体系中的高熵合金、固液界面;机制复杂的摩擦、张力、非晶、表面重构;化学反应的表面吸附、催化、燃烧等问题。   以上工作参与者包括中科院宁波材料所博士后何日、邓凤麟,博士研究生吴宏宇,合作者包括南京大学物理学院卢毅教授,西湖大学理学院刘仕教授,深势科技首席科学家张林峰博士。以上工作得到了国家重点研发计划(2021YFA0718900和2022YFA1403000)、国家自然科学基金(11974365和12204496)、中国科学院前沿科学重点研究计划(ZDBS-LY-SLH008)以及王宽诚教育基金(GJTD-2020-11)的支持。图1 (a) 通过密度泛函理论所计算的大量空间构型(约百原子级别)的能量和力;(b)DP训练所得的深度神经网络;(c)和(d)训练好的深度神经网络能应用于预测超胞(约百万原子级别)的能量和受力,其精度和密度泛函理论一致图2 课题组近期各工作。左上:DP势函数的精度展示;右上:DP方法描述位错间对数形式的长程弹性相互作用;左下:ZrW2O8的压力诱导非晶现象;右下:DP+QTB预测的SrTiO3结构相变
  • 锂电池安全性多尺度研究策略:实验与模拟方法
    作者:甘露雨 1,2 陈汝颂 1,2潘弘毅 1,2吴思远 1,2禹习谦 1,2 李泓 1,2第一作者:甘露雨(1996—),男,博士研究生,研究方向为锂离子电池安全性,E-mail:ganluyu@qq.com;通讯作者:禹习谦,研究员,研究方向为高比能锂电池关键材料、电池先进表征与失效分析,E-mail:xyu@iphy.ac.cn。单位: 1. 中国科学院物理研究所,北京 100190;2. 中国科学院大学材料科学与光电技术学院, 北京 100049DOI:10.19799/j.cnki.2095-4239.2022.0047摘 要 作为新一代电化学储能体系,锂离子电池在消费电子产品、交通动力系统、电网储能等领域具有重要的应用价值。然而,在锂离子电池的商业化进程中,安全性事故时有发生,影响了锂离子电池的大规模应用。本文从电池安全性的三个研究尺度:材料、电芯、系统,综述了与之对应的重要研究方法,其中每个尺度均包括基于物理样品的实验方法和基于计算机数学模型的模拟方法。本文介绍了这些方法的基本原理,通过典型案例展示了这些方法在安全性研究中的适用场景和作用,并探讨了实验和模拟方法之间的联系,着重介绍了材料热分析、材料加热过程中结构分析、电芯加速度量热分析、电芯安全性数值模拟等方法。基于对多尺度研究策略的系统综述,认为安全性研究需要在各个尺度联合同步开展。最后,展望了下一代锂电池,如固态电池、锂金属电池等,可能面临的电池安全性问题。这些新体系的安全性研究仍处于早期,其材料和验证型电芯的安全性研究是当前阶段值得关注的重要课题。关键词 锂离子电池;安全性;实验方法;数值模拟;固态电池;锂金属电池锂离子电池的研究始于1972年Armand等提出的摇椅式电池概念,商业化始于1991年SONY公司推出的钴酸锂电池,经历超过三十年的迭代升级,已经成熟应用于消费电子产品、电动工具等小容量电池市场,并在电动汽车、储能、通信、国防、航空航天等需要大容量储能设备的领域中展现出了巨大的应用价值。然而,自锂离子电池诞生开始,安全性便一直是限制其使用场景的重要问题。早在1987年,加拿大公司Moli Energy基于金属锂负极和MoS2正极推出了第一款商业化的金属锂电池,该款电池在1989年春末发生了多起爆炸事件,直接导致了公司破产,也促使行业转向发展更稳定地使用插层化合物作为负极的锂离子电池。如图1所示,锂离子电池进入消费电子领域后,多次出现了因电池火灾隐患而开展的大规模召回计划,2016年韩国三星公司的Note7手机在全球发生多起火灾和爆炸事故,除了引起全球性的召回计划外,“锂电池安全性”再次成为广受关注的社会话题。在电动交通领域,动力电池的安全性事故伴随着新能源汽车销售量的提升逐渐增加,据统计,中国在2021年有报道的电动车火灾、燃烧事故超过200起,电动汽车安全性成为消费者和电动车企最关心的问题之一。在储能领域,韩国在2017—2021年期间发生了超过30起储能电站事故,2021年4月16日北京大红门储能电站爆炸事故除导致整个电站烧毁外还造成2名消防员牺牲、1名员工失踪。随着锂离子电池的应用场景日益扩大,其安全性在工业界和学术界均引发了广泛的讨论和研究。图1 锂离子电池近年引起的安全事故在锂电池发展的早期阶段,产业界和学术界更关注锂电池发生安全性事故的本质原因,基于长期的认识积累,锂电池发生安全事故的本质可以总结为:电池在过充、过热、撞击、短路等异常使用条件下温度异常升高,引发内部一系列化学反应,引起电池胀气、冒烟、安全阀打开,同时这些反应会大量释放热量使整个电池温度进一步升高,最终各个化学反应剧烈发生,电池温度不可控地迅速上升,引起燃烧或爆炸,导致严重的安全事故,这一过程也被称为电池的“热失控”。电池从异常升温到热失控过程中存在多个重要的化学反应,它们与温度的对应关系如图2所示。图2 锂离子电池热失控的诱发机制随着锂离子电池的广泛应用,关于锂离子电池安全性的研究逐渐深入,从早期简单的描述现象和定性预测,发展为在多个尺度、采用多种手段研究安全性机理,基于精准测量和数值化模型准确预测电池安全性表现,最终提出应用化解决方案的综合性研究策略。如图3所示,目前对于电池安全性的研究一般从理解锂离子电池电芯的热行为出发,包括利用各类滥用条件测试确定电池的安全使用极限和失效表现,利用绝热量热等手段具体分析电池的热失控行为和特征温度,以及利用热失控数值模拟方法模拟电池的热失控表现;在认识电芯热行为的基础上,需要深入材料本质,利用热分析、物质结构和化学成分分析、理论计算等方法理解电芯发生热失控在材料层面的反应机制,从而为设计制造高安全性的电池提供基础理论的指导;此外,电芯作为电池系统的基础,其热失控行为的精准测量和准确模拟也为在系统层面设计更高安全性的电池系统和管理预警方案提供了理论指导。本文从材料热稳定性、电芯热安全性和大型电池系统热安全性三个尺度介绍安全性研究策略,着重介绍几种实验和模拟方法。基于商用体系锂离子电池的研究策略和成果,进一步探讨了这些方法对于产学研各界研发下一代锂电池所具有的重要意义。图3 锂离子电池安全性研究策略1 材料热稳定性研究锂离子电池发生热失控的根本原因是电池中的材料在特定条件下不稳定,从而发生不可控的放热反应。目前商业化使用的电池材料中,与安全性关系最密切的主要是充电态(脱锂态)过渡金属氧化物正极、充电态(嵌锂态)石墨负极、碳酸酯类电解液和隔膜,其中前三者在高温下均不稳定且会发生相互作用,在短时间内释放大量的热量,而现行常用的聚合物隔膜则会在140~150 ℃熔融皱缩,导致电池中的正负极直接接触,以内短路的形式快速放热。研究人员自20世纪末开始进行了大量材料热稳定性的研究工作,发展了以热分析认识材料热行为,结合形貌、结构、元素成分和价态表征综合研究内在机理的研究方法。近年来计算材料学的发展也为从原子尺度模拟预测材料的稳定性提供了新的方法和手段。1.1 热分析方法热分析是最直接和直观认识材料热行为的方法,指在一定程序控温(和一定气氛)下,测量物质的某种物理性质与温度或时间关系的一类技术。对于电池材料来说,一般关注其质量、成分、吸放热行为随温度的变化关系。质量与温度的关系可通过热重分析获得,吸放热与温度的关系可通过差示扫描量热法获得,TG和DSC可以设计在同一台仪器中同步测试,该种方法又被称为同步热分析。TG、DSC、STA等仪器通常采用线性升温程序,通过热天平、热流传感器等记录样品的质量、吸放热变化,由于发展时间较早,测试技术和设备工程化水平较为成熟,已成为认识材料稳定性最重要的测试手段之一。基于热分析结果可以确定材料发生相变、分解或化学反应的起始温度、反应量和放热量,但在锂离子电池中,往往更关心充电态材料在电解液环境下的稳定性和反应热。良好的热稳定性是电池材料进入应用的必要条件,而产热量和产热速度则影响电池热失控的剧烈程度。用于常规热分析样品的坩埚一般为敞口氧化铝材质或开孔的铝金属材质,为了研究材料在易挥发电解液中的热表现,需要使用自制或设备厂商专门提供的密封容器。Maleki等通过STA系统研究了钴酸锂/石墨圆柱电池中各种材料的热分解行为,由于电解液采用高沸点的EC溶剂,所以仅在敞口容器中便可以测试,研究发现全电池截止电压4.15 V时,脱锂态钴酸锂在178 ℃发生分解,产生的氧气和电解液反应释放大量热量,释放的能量达到407 J/g,嵌锂态负极的SEI会优先分解,温度在125 ℃之前,之后会出现持续的放热反应,释放能量为697 J/g,而当负极发生析锂后释放能量会上升到827 J/g,这一结论有力支持了近年来析锂电池安全性下降的报道。Yamada等利用DSC确认了充电态磷酸铁锂(LiFePO4)的稳定性很好,与电解液的反应温度大于250 ℃,放热量仅为147 J/g,显著低于层状氧化物材料。Noh等利用密封容器系统研究了不同Ni含量的三元正极材料Li(NixCoyMnz)O2,比较热分析结果发现脱锂态三元材料的热稳定性与Ni含量呈现负相关性,且在x0.6之后加速下降。材料经过改性后,其稳定性需要通过热分析进行确认,研究人员基于DSC发现核壳浓度、包覆等方法均能不同程度地提高正极材料的热稳定性。需要注意的是,热分析的数据质量与实验条件、样品制备方法密切相关,目前并没有严格一致的测试规范,文献中不同单位之间的测试结果横向对比性很差,很多电池材料的热稳定性尚缺乏准确定量的结论。除了DSC、TG外,还有一类特殊的热分析方法是利用加速度量热仪研究反应的起始温度。与常规热分析采用线性升温不同,ARC使用的升温程序是加热-等待-检索模式,即步进式地在每个温度点保持恒温,如果检索程序发现样品的升温速率超过0.02 K/min,则通过同步样品的升温速率保持样品处于绝热状态,从而跟踪样品的自加热升温过程,否则开始加热至下一个温度点进行恒温、检索。不难发现,ARC获取的是样品近似热力学上的失稳温度,由于检测精度高,获得的失稳温度往往比DSC、TG等方法获得的低很多。Dahn课题组基于ARC测试了大量材料-电解液体系的反应起始温度,基本均低于DSC数据中的放热主峰。事实上,Wang等在低升温速率的DSC测试中也发现充电态材料与电解液的放热起始点远早于剧烈的放热峰。这些信息表明材料失稳到完全失控的过程并不是突变式的,整个体系动态演变的过程仍然缺乏深入的研究认识。图4 (a) DSC基本原理;(b) 脱锂态正极-电解液的DSC测试结果1.2 物相分析技术电池材料在升温过程中发生相变和化学反应,其形貌、结构、成分和元素价态都有可能发生变化,这些变化需要基于对应的方法进行表征分析,如利用扫描电子显微镜观察材料热分解前后的形貌变化,利用X射线衍射和光谱学研究材料结构和元素价态演变。由于材料热分解和热反应存在显著的动力学效应,在加热过程中原位测试可以最大程度地还原物相变化的真实过程。目前较为成熟的原位表征技术主要有两类:一类是与热分析仪器串联使用的质谱、红外光谱等,可以实时监测物质分解产生的气体类型,判断材料加热过程中化学组成的变化;另一类是原位X射线衍射技术,通过特制的样品台,可以在升温过程中实时、原位测定材料的结构变化,目前全球多数同步辐射光源和一些实验室级的X射线衍射仪上都可以实现原位变温XRD测试。Nam等利用变温XRD发现脱锂态LiNi1/3Co1/3Mn1/3O2结构在350 ℃向尖晶石转变,而加入电解液后该转变温度会下降至304 ℃。Yoon等在LiNi0.8Co0.2O2中发现了类似的规律,并发现MgO包覆可以改善脱锂态正极在电解液中的相变。图5展示了变温XRD和MS的联用技术,系统研究了不同Ni含量的脱锂态NCM三元正极在升温过程中的结构和成分变化,研究发现三元正极失稳释放氧气的过程与结构在高温下转化为尖晶石相的行为直接对应,且这一过程的起始温度随镍含量的上升显著下降,NCM523的起始相变温度约为240 ℃,NCM811则小于150 ℃,从体相结构的本征变化解释了高镍正极在电池应用中热安全性差的原因。以上工作都是基于同步辐射光源实现的,由于同步辐射提供的光源质量高、扫谱速度快,更适用于研究与时间相关的动力学问题。除此之外,近年来基于X射线谱学以及拉曼光谱实现同步表征的方法均有所发展。结合通过热分析手段观察得到的材料热行为信息,并对升温过程中材料物相变化的研究,可以更深刻地理解材料演变以及电池体系热失稳的动力学过程,为材料的安全性改良提供理论指导。图5 基于原位XRD和质谱对镍钴锰酸锂结构稳定性的研究1.3 计算材料学基于材料原子结构计算预测材料的全部性质是计算材料学家的终极追求。材料的热力学稳定性可以基于密度泛函理论计算。DFT中判断材料稳定性的依据是反应前后的能量差ΔE是否小于0,如果ΔE小于0,反应能发生,则反应物不稳定,反之同理。Ceder等在1998年就计算了LiCoO2脱锂过程结构相变的过程,计算结果与实验结果吻合良好。然而目前大多数热力学计算不考虑温度效应,且热力学只能作为反应进行方向的判据,无法预测反应速率等动力学问题,考虑温度和动力学计算则需要使用成本较高的分子动力学、蒙特卡洛或者过渡态搜索方法。相对于材料本身的稳定性,计算材料学对于计算预测两种材料间的界面稳定性存在一定优势。Ceder等计算了不同正极和固态电解质之间的稳定性,为选取界面包覆的材料提供理论指导。Cheng等利用AIMD模拟Li6PS5Cl|Li界面,发现界面副反应会持续发生,材料界面之间的副反应是自发发生的,与通常认为的界面钝化效应有所差异。此外,正极材料中的相变析氧、过渡金属迁移等问题的计算模拟也都处于初期开发阶段,仍需持续探索。总的来说,目前阶段材料层级的理论模拟技术与实验技术的差距仍然较远,需要研究人员的持续努力。2 电芯热安全性研究电芯指电池单体,是将化学能与电能进行相互转换的基本单元装置,通常包括电极、隔膜、电解质、外壳和端子。电芯的热安全性特征是电池工业界最关注的内容之一,它是电池材料热稳定性的集中表现,也是制定规模化电池系统安全预警和防护策略的基础。由于电芯内部具有一定的结构,其安全性会呈现一些在纯材料研究中不被讨论的特点,使得电芯安全性具有更广泛的外延和认识角度。工业上一般通过滥用实验来研究和验证电芯产品的安全性,近年来基于扩展体积加速度量热仪(又称EV-ARC)的安全性测试方法有较快发展,此外电芯安全性模拟方法也从早期的定性分析发展到可以准确仿真预测热失控进展的水平。2.1 滥用测试国际电工委员会(IEC)、保险商实验室(UL)和日本蓄电池协会(JSBA)最初定义了消费电子产品电芯的滥用测试,模拟电芯工作可能遇到的极端条件,通常分为热滥用、电滥用和机械滥用。常见的热滥用为热箱实验,电滥用包括过充电和外部短路实验,机械滥用包括针刺、挤压、冲击和振动等。企业和行业标准一般将电池对滥用测试的响应描述为无变化、泄漏、燃烧、爆炸等,也可基于附加的传感器和检测系统记录温度、气体、电压对滥用的响应。电芯通过滥用测试的标准是不燃烧、不爆炸。锂电池应用早期研究人员大量研究了电池对各类滥用测试的响应与使用条件、材料体系、充电电量等的影响,提出了各类滥用机制引发电池热失控的机理。滥用测试中最难通过的项目是针刺测试,近年来关于针刺测试的存废引起了较大争议,但提高电芯的针刺通过率仍是锂电池安全性研究的重要课题之一。由于滥用测试针对的是商用成品电芯和贴近真实的使用条件,目前更多作为电池行业的安全测试标准而非研究手段。2.2 EV-ARC测试早期的ARC只适用于研究少量材料样品的热失控行为,Feng等发展了利用EV-ARC研究大体积电芯绝热热失控行为的方法,研究的方法原理和结论如图6所示,由于EV-ARC的加热腔更大,所以需要更精准的控温技术和更严格的校准方案。基于EV-ARC测试可以定量标定出电芯热失控的特征温度T1、T2和T3,分别对应电芯自放热起始温度、电芯热失控起始温度和电芯最高温度,为评价电芯安全性提供了更精确定量的评价指标,标准化的测试条件可以帮助建立统一可靠的电芯热失控行为数据库,分析了不同体系电芯的热失控机理。Feng等利用EV-ARC首次提出正负极之间的化学串扰会引起电芯在不发生大规模内短路的情况下热失控,说明脱锂正极释氧是现阶段影响电芯安全性的关键因素。Li等研究快充后的电芯发现快充析锂导致T1大幅下降,说明析锂同样是电芯安全监测中需要重点关注的问题。以上这些问题都是在常规的滥用测试中难以定量验证的。图6 基于EV-ARC对电芯热失控的研究相比于普通的加热滥用实验,EV-ARC实验环境的温度由程序精确控制,获得的测试结果重复性更好、数据可解读性更高,近年来已成为评价和研究电芯安全性的重要手段。然而EV-ARC模拟的绝热热失控环境与真实的电池滥用工况仍有所差异,评价电芯的实际安全性仍需大量模拟真实严苛工况的测试手段。2.3 高速成像技术为了更直观地理解热失控过程中电池内部物质、结构的演化,研究人员发展了结合红外测温以及原位针刺等辅助功能的透射X射线显微方法如图7(a)~(c)所示。由于热失控往往是在极短的时间内发生剧烈的反应,同时伴随剧烈的物相、结构变化。这一特点给TXM表征方法提出了相当高的时间分辨率的要求。实验室X光源能够发射出的X射线光电子数量有限,采集一组TXM影像数据需要较长的时间。为了观察剧烈变化的热失控过程,Finegan等在欧洲同步辐射实验室(ESRF)使用同步辐射光源将TXM的曝光时间降低至44 μs,配合针内预埋的热电偶温度传感器,实现了对针刺发生时电池内部形貌与刺入点温度的同步监控。该团队利用这种手段研究了刺针纵向与径向刺入18650商业圆柱电池时电池内部热失控行为的差异。Yokoshima等采用实验室光源进行连续实时的透射X射线照相技术,也得到了软包电池在针刺过程中结构随时间变化的一组透射投影图。该方法以4 ms的时间分辨率较为清晰地观察到了针刺入软包电池后电池内部每一层材料的形变过程,以及针刺深度与热失控程度的对应关系。图7 基于X射线成像技术对电芯热失控的研究由于透射投影图只能反映某一方向上二维的信息,如果要对真实三维空间中物质的分布做精确地定量,需要借助计算机成像技术。如图7(d)所示,Finegan等利用同步辐射光源X射线高亮度的特征,在欧洲同步辐射装置(ESRF)的线站上搭建了一套集合原位红外加热、红外测温与高速CT的装置。使用红外加热,实现在线的18650电池升温,同时进行连续的X射线CT成像。连续扫描的TXM投影图能够反映极高时间分辨率的热失控电池内部情形。基于每500张TXM重构得到1个X射线CT结果能够达到2.5帧每秒,实现了一定时间分辨率的电池内部空间分布成像。通过CT结果能够清晰地看到热失控过程中各个阶段的电池材料变化,如电极活性物质层破损、铜集流体融化再团聚等。结合TXM技术获得的投影图和高速X射线CT结果,可以清晰认识热失控过程中电池内部不同位置各个材料的反应、产气、结构破坏等失效行为。另一方面,配合诸如针刺、红外加热、挤压、拉伸等原位实验,可以帮助研究与理解电池的各类宏观失效行为。2.4 电芯热失控数值模拟电芯安全测试的维度广、涉及的测试项目多,通过实验评价电芯安全性需要大量样品和时间成本。同时,产品级电芯的研发周期长、成本高,安全性评估往往处于电芯研发周期的后端。通过数值模拟方法预测电芯安全性测试表现可以大幅度降低实验成本,且在产品研发的前期便对体系的安全性做出判断,大大提高研发效率。电芯热失控数值模型的核心是准确描述电芯热失控过程中的化学反应及吸放热量,从而基于能量守恒模拟电池温度在不同条件下的动态变化。化学反应的吸放热一般通过Arrhenius公式描述 (1)式中,图片指反应的产热量;图片为反应物的质量;图片为反应单位质量的吸放热;α为反应的归一化反应量;图片为机理函数;图片为反应的指前因子;图片为反应活化能。通过热分析实验可以测定求解以上参数,这也是热分析动力学的基本问题。电芯升温过程中内部会发生多个反应,它们对电芯升温的贡献可以看作线性叠加,通过准确描述所有反应即能较为精准地预测电芯在不同条件下的温度变化行为 (2)上述方程中,图片为电芯密度;图片为等压比热容;图片、图片、图片为电芯中沿各个方向的热导率;图片为对所有化学反应的产热速率求和;图片为电池与环境换热所引起的能量变化。预测温度变化需要求解二阶含时偏微分方程,如果认为电池中的反应和空间无关,电芯温度均匀上升且电芯体系与外界无热交换,也可简化为一阶微分方程 (3)基于该理论,Hatchard等将电池中主要的化学反应总结为SEI分解、负极-电解液反应、正极-电解液反应、电解液分解反应,计算了方形和圆柱电芯在热箱中的热行为。Spotnitz等总结了早期文献中的反应动力学参数,并基于均一电芯模型系统预测了不同材料体系的电芯在各类滥用测试中的表现。通过理论模拟,可以仅基于少量小规模实验数据对实际电芯的安全性表现进行系统预测。Feng等、Ren等基于热分析动力学和非线性优化算法重新标定了电池中关键反应的动力学参数并进行了更准确的热失控模拟,他们的模型利用DSC测试获得的参数准确预测了电池在ARC中的热失控表现,可以进一步用于预测热箱、短路等条件下的安全性。需要指出的是,不同材料体系、配方和工艺的电芯中涉及的反应机制和动力学可能存在差异,如近年来电芯内短路、正极-电解液反应和正负极化学串扰三者是否均在热失控过程中主导发生的问题引起了广泛争论,安全性的数学模拟并非空中楼阁,而是建立在具体实验和对电池内部化学反应深刻理解的基础上。由于算力的限制,早期的安全性仿真工作大多不考虑温度空间分布或只计算一维分布,而空间分布在大容量电池和真实工况中是不可忽略的,Kim等、Guo等较早提出了描述热失控温度分布的三维电池模型。近年来数值计算方法的发展和商业计算软件的成熟大幅降低了安全性模拟仿真的难度,Feng等利用商业化的有限元计算软件Comsol Multiphysics建立了大容量三元方形锂离子电芯的热失控仿真模型,可以模拟电芯在短路状态下热失控过程和温度的分布,与实测有较好地拟合结果。除了电芯的热行为,电滥用和力学失效对安全性也存在一定的影响,目前,通过构建电-热耦合模型研究电池非等温电化学性能和短路热失效表现的方法目前已较成熟[59-60],而力学失效如碰撞、针刺等引起热失控的数值模型仍需要持续地开发。3 系统热安全性研究电池系统的安全性是目前锂电池应用面临的最直接问题,其研究重点是系统中热失控的扩展规律与抑制、预警措施。目前商品化电芯的热失控无法完全避免,在系统层面防止热失控扩展是可能的安全性解决方案。在系统层级开展实验研究的成本较高,但难以避免,在模拟仿真的辅助下可以提前预测优化系统设计,降低实验成本。3.1 热失控扩展和火灾危险性测试电池系统热扩展的实验研究成本和危险性较高,主要方法是通过加热、过充、针刺等方式诱发电芯单体的热失控,并利用接触式热电耦、红外测温等手段研究温度在系统中的分布和变化,这种方式只能获得局部多点的热失控信息。Wang团队在国内首次开发了全尺寸锂离子电池火灾危险性测试平台,用来测量大尺寸动力电池及电池组的燃烧特性,除了可以获得电池温度变化外,还可以获得电池组失控过程中的质量变化、火焰温度等信息,同时基于锥形火焰量热等技术可以测定大型电池系统宏观燃烧所释放的能量。与电芯EV-ARC等方法获得的信息不同,在真实环境下实验得到的电池系统燃烧行为往往更加复杂,包含多个加速失重和喷射火焰的阶段。通过以上测试可以在实用层面评价大型电池组的安全性和失控风险,为安全性改良、预警、消防和灾害处置提供重要信息。3.2 灾害气体研究和预警方案设计电池实际使用和安全失效的过程中,气体的成分与生成规律是重要的研究课题,与电池热失控早期预警、爆炸、火灾蔓延等表现密切相关。从材料本质上看,电池中的有机电解液在高温下气化、活性组分高温副反应均会释放气体,加热条件下产生的混合气体可以通过气相色谱-质谱联用技术、傅里叶变换红外光谱等手段分析成分。目前这些气体检测技术已较为成熟,但在安全性研究过程中,气体的收集和定量仍需要特制的容器或取样器辅助实现。一般来说,电池热失效气体组分中除了惰性的CO2外还包括大量未完全反应的电解液溶剂、CO、H2和有机小分子,兼具可燃性和生物毒性,Ahmed等发现可燃气体的释放是加剧锂电池系统热失控扩散、诱发大规模火灾事故的重要原因。由于气体的扩散速度快,检测手段较成熟,气体监测有望成为电池系统安全预警的关键手段,Cui等利用同位素标记-质谱技术发现充电态电池在加热失控的早期负极的SEI分解会产生H2,促进电池的热失控。Jin等发展了一种通过小型MS监测H2实现模组过充热失控早期预警的手段,在8.8 kWh的磷酸铁锂-石墨电池包中进行了实验验证,发现可以在产生烟雾的10分钟之前发出安全预警。3.3 系统安全性模拟仿真相对于实验研究,模拟仿真消耗的实物资源少,在系统安全性研究中更具优势。系统热安全模拟一般建立在完备准确的电芯热失控数值模型的基础上,在由多个电芯单体构成的复杂电池系统中,每个单体内部温度均独立地遵循前文所述的电芯热失控模型,电芯之间交换热量通过热传导、对流和辐射形式进行,可以分别通过相应的公式进行描述,电芯热失控产热方程和传热方程共同构成了描述整个系统空间的温度场的数学模型。通过求解建立的数学模型,研究人员和工程师可以研究系统大小、空间布局、热管理模式等对电池系统稳定性、安全极限温度、热失控扩散表现等的影响。由于电池系统的结构往往较复杂,系统热安全模型往往需要在成熟的商业模拟仿真软件中进行,常用的软件平台有Comsol Multiphysics、ANSYS、Siemens Star-ccm+等。Feng等利用Comsol Multiphysics构建了由6个标准方形电芯组成的小型模组的热失控规律,研究了不同参数对热失控扩展的影响,提出了4 种抑制热失控扩展的方案,并对增加隔热层的方案进行了实验验证。Zhai等提出了18650锂离子电池模组热失控传播的多米诺预测模型,在Matlab中构建了较为简化的二维模型,预测模组中热失控传播的路径和概率,解释了模组中不同热失控初始位置对热失控传播行为的影响。目前学术界关于大型电池系统热安全性的研究仍然较少,作为一个工业界和学术界共同关心的问题,系统层级的安全性研究需要产学研的深入合作。4 下一代锂电池的安全性研究电池安全的预防、预警、预测依赖对从系统到电芯再到材料热失控构效关系的深刻理解。纵观近年来引起广泛关注的锂电池起火事件,大部分发生在新技术和新材料的初步应用阶段,如近几年多起采用高镍三元电池的电动汽车起火事件,而当大量事故引起广泛关注后,关于该电池体系的安全性研究才随之增多,电池安全研究于电池电化学性能研究的滞后性是电池安全研究中的一个鲜明特点。为了满足电动化浪潮带来的高安全、高能量密度要求,人们期望在锂离子电池中采用不可燃电解质或固态电解质,以彻底解决电池的安全性问题同时达到高能量密度。然而,电池安全性不仅与电池内部材料本身的热稳定性相关,还与材料之间的相互作用、电池内部的复杂环境息息相关。近期中国科学院物理研究所Chen等的工作显示,即使是采用了具有高热稳定性的固态电解质,在与金属锂接触的情况下,高温依然会发生热失控,且金属锂会受到温度的驱动,向固态电解质内部生长,进一步降低热失控的临界温度。清华大学Hou等报道了采用不可燃新型电解液的电池,由于锂盐和嵌锂态负极的剧烈反应,电池在高温下依然会发生热失控。这些结果说明,单维度提升锂电池安全性的设想往往是片面的,新体系的引入很有可能导致电池热失控反应链条的重构,从而使原本的安全预防预警措施不再生效,也很可能是新型锂电池体系容易出现安全事故的深层次原因之一。综上所述,为了在发展高能量密度电池的同时保证电池的安全性,研究者们需要在优化电芯电化学性能的同时,尽快同步地开展前瞻性电池安全性验证和研究。只有清晰全面地认识电池热失效机制和各个维度安全性的影响因素,才能在应用阶段做好电池的有效安全预防。图8给出了电池领域新材料和新技术从基础研究到规模量产的技术成熟周期。可以看出,一个新型技术的大规模应用需要投入巨额的人力物力,花费数十年的时间,才能真正实现量产。然而,电池的安全性验证却往往在电池接近量产的阶段才展开,且往往以通过电池安全测试标准为目的,无法系统深入地了解电池在全生命周期、实际复杂工况下的安全行为和内在机理,为日后的安全事故埋下隐患。对于早期的电池体系,由于能量密度不高,安全性问题并不突出,而最新的锂离子电池电芯能量密度已经可以达到300 Wh/kg以上,产学界广泛关注的锂电池新技术和新体系能量密度更高。这些具有高能量密度特性的新技术和新体系面临着更为严峻的安全性挑战,因此,将电池的安全性研究和验证步骤尽可能提前,在基本确定电芯结构后尽可能早地开展电池安全测试与机理研究工作,才有望在真实量产阶段前期就做好准备,摸清其安全性特征与行为,设计好对应的防护、预警措施。图8 电池领域新技术的成熟周期与高能量密度新体系的安全性研究目前,下一代化学储能电池的材料体系尚未有定论,可能用于新一代锂离子电池的新材料包括富锂材料、无锂高容量正极材料、硅基负极材料、锂金属负极材料、固态电解质等,如果考虑使用锂金属负极,锂电池概念的外延还可进一步扩展。然而从学术报道来看,与新材料热行为和新体系实用安全性相关的内容却鲜有报道,目前对绝大部分新型锂电池体系的安全性认知尚处于未知或初期阶段。本文所综述的研究方法既可以用于研究现有商业化锂离子电池的安全性,也可以从材料层级提前理解新型锂电池材料体系的热稳定性,并基于模拟仿真方法预测其电芯和系统的安全性,这对选定下一代锂电池的技术路线,保障高能量密度锂电池新技术平稳落地,具有重要指导意义。
  • 布鲁克推出动态EBSD图像模拟软件包
    2014年8月4日,在2014显微镜及显微分析年会(M&M 2014)上,布鲁克推出了ESPRIT DynamicS软件包,一个高度复杂和强大的软件工具,用于获取更真实的高分辨率电子背散射衍射(EBSD)模拟图像。  EBSD依赖于利用扫描电镜进行样品显微分析得到的菊池电子衍射花样。ESPRIT DynamicS是第一款利用电子衍射的动力学理论计算菊池图像的商用软件。电子衍射的动力学理论将图案生成的所有物理效应和参数考虑在内,例如晶格参数、电子束的能量,晶体结构的对称性和化学成分等。基于这款革命性的软件,充分利用计算能力,可在令人难以置信的短时间内提供具有丰富细节的高分辨率模拟图像。  ESPRIT DynamicS适用于所有品牌的EBSD。轻松模拟菊池图案是它最基本的功能,它还可以进行精确的晶体取向分析和准确的物相鉴定,同时也是优化系统校准的非常有用的工具,以及获取其他方法无法得到的模拟细节,如高阶劳厄区(HOLZ)环或非中心对称晶体图案。  ESPRIT DynamicS支持以各种格式定义的晶相的输入,如ESPRIT XML相列表,晶体学信息文件(CIF),或者PowderCell文件(CEL)。任意的电子背散射衍射图案可以通用图形格式导入。模拟结果以主文件的形式进行存储,包括特定晶相的完整衍射数据,使得后续的针对模拟数据进行投射、旋转操作变得简便。(编译:秦丽娟)
  • 德国宾得Binder环境模拟箱促销信息
    BINDER是完美的模拟生物、化学和物理环境条件领域的领导者。多年来,其气候测试箱被认为是世界最好的。因其提供的产品品种齐全,使之不仅适用于常规的用途,也能满足非常特殊项目的应用要求。 BINDER闻名于世的是,在研发、制造和品质保证等各方面,一直保持着最高水准,在加热和制冷技术、气体测定和控制技术、照明技术、真空技术和气体模拟始终坚持做到最好。东南科仪与BINDER公司的长期合作,将最先进的环境模拟箱引进国内,推动着生命科学各个领域的加速发展。 即日起,购买如下相关产品: KMF系列 MK系列 MKF系列 MKT系列 MKFT系列KMF全系列产品MK 全系列产品MKF全系列产品MKT全系列产品MKFT全系列产品都将标准配置单机版集中管理软件(APT.COM)一套。欢迎广大用户登录www.sinoinstrument.com或拨打全国免费电话400-113-3003了解详情!!联系我们
  • 超导量子芯片模拟多种陈绝缘体研究取得进展
    量子霍尔效应是凝聚态物理学中的基本现象。科学家发展了拓扑能带理论来研究此类拓扑物态,发现了量子霍尔系统的能带结构和系统的边界态密切相关即存在体相与边缘的对应,并利用陈数(Chern number)来区分不同的拓扑结构,以陈绝缘体来描述相关拓扑物态。陈绝缘体材料可通过第一性原理计算预测以及实验合成并检测,过去几年出现了系列创新性成果,有望发展出具有实用价值的器件。随着量子系统调控技术的发展,研究利用各种人工可控量子系统来模拟陈绝缘体并揭示其性质。超导量子计算系统具有运行稳定、通用性强的优势,将是模拟陈绝缘体的理想平台。近日,中国科学院物理研究所/北京凝聚态物理国家研究中心,与北京量子信息科学研究院、南开大学、华南理工大学、日本理化学研究所等合作,利用集成有30个量子比特的梯子型量子芯片,实现了具有不同陈数的多种陈绝缘体的模拟,并展示了理论预测的体边对应关系。该团队制备了高质量的具有30比特的量子芯片,在实验中精确控制其量子比特之间的耦合强度,并降低比特间串扰,(图1、2),实现了一维和梯子型比特间耦合的构型。 该团队设计模拟方案,将二维陈绝缘体格点模型的一个维度利用傅里叶变换映射为人工控制相位,从而用一维链状量子比特来实现其模拟(图3)。 基于同样的思想,双层二维陈绝缘体则可以利用两个一维链状平行耦合,形成梯子型比特间耦合的量子芯片实现,而人工维度相位控制还可实现双层陈绝缘体不同的耦合方式。这样便实现了不同陈数的陈绝缘体。该工作通过激发特定量子比特、测量不同本征态能量的方案,直接测量拓扑能带结构(图4)并观测系统拓扑边界态的边界局域的动力学特征,在超导量子模拟平台证实了拓扑能带理论中的体边对应关系(Bulk-edge correspondence)(图5)。此外,利用全部30个量子比特,在超导量子模拟平台上通过模拟双层结构陈绝缘体,实验上首次观察到具有零霍尔电导(零陈数)的特殊拓扑非平庸边缘态(图6)。此外,实验上探测到具有更高陈数的陈绝缘体。该研究通过精确控制超导量子比特系统及读出的技术方案,实现对量子多体系统拓扑物态性质的复现与观测,并表明30比特梯子型耦合超导量子芯片的精确可控性。相关研究成果以Simulating Chern insulators on a superconducting quantum processor为题,发表在《自然-通讯》【Nature Communications 14,5433 (2023)】上。研究工作得到国家自然科学基金委员会、科学技术部、北京市自然科学基金和中国科学院战略性先导科技专项等的支持。图1. 30比特梯子型量子芯片耦合强度信息。(a)15比特实验中测量到的量子比特间(最近邻和次近邻)的耦合强度信息。(b)30比特实验中测量到的量子比特间(最近邻、次近邻和对角近邻)的耦合强度信息。图2. Z串扰矩阵。Z串扰系数矩阵,每个元素代表着当给横轴比特施加1 arb.units幅度的 Z方波时,纵轴比特感受到的方波幅度,后续将根据该系数矩阵进行Z方波矫正。图3. 30比特梯子型量子芯片以及映射AAH模型的实验波形序列。(a)超导量子处理器示意图,其中30个量子比特构成了梯子型结构。(b)通过在y轴进行傅里叶变换,将二维霍夫施塔特(Hofstadter)模型映射为一系列一维不同配置的 Aubry-André-Harper (AAH) 模型的集合。(c)通过改变合成维度准动量Φ用以合成一系列AAH模型的量子比特频率排布,其中b=1/3。(d、e)用以测量动力学能谱(d)和单粒子量子行走(e)的波形序列。图4. 动力学光谱法测量具有合成维度的二维陈绝缘体的能谱。(a)对应于Q8的随时间演化的数据,其中b=1/3,Δ/2π=12MHz,Φ=2π/3。(b)利用15个量子比特响应函数得到的傅里叶变换振幅的平方。(c)沿着比特维度将傅里叶变换振幅的平方求和。(b)利用15个量子比特参数数值计算求解的二维陈绝缘体的能带结构,其中,b=1/3,Δ/2π=12MHz。(e、f)对于不同的Φ,实验(e)和数值模拟(f)得到的能谱对比。图5. 拓扑边界态的动力学特征以及拓扑电荷泵浦。(a1-3)分别激发Q1(a1)、Q8(a2)、Q15(a3)测量到的激发态概率的时间演化,其中,b=1/3,Δ/2π=12 MHz,Φ=2π/3。(b1-3)分别利用Q1(b1)、Q8(b2)、Q15(b3)作为目标比特测量得到的能谱部分信息。(c1-c3)激发中间比特Q8,测量得到的对应于向前泵浦(c1),不泵浦(c2)和向后泵浦(c3)的激发态概率演化,其中,Δ/2π=36MHz,初始Φ0= 5π/3。(d)根据图(c1-c3)计算得到的质心随着泵浦周期T的变化。图6. 利用全部30个量子比特模拟双层陈绝缘体。(a、b)实验测量的对应于相同Δ↑(↓)/2π=12 MHz(a)和相反 Δ↑/2π=-Δ↓/2π=12 MHz(b)周期性调制的两条AAH一维链的构成的双层陈绝缘体的能谱,黑色虚线为对应的理论预测值,其中,b=1/3。霍尔电导定义为对所有被占据能带的陈数Cn的求和:σ= ∑nCn ,其中定义e2/h=1。(c、d)选择Q1,↑和Q1,↓为目标比特测量到的对应于Δ↑(↓)/2π=12 MHz(c)和相反Δ↑/2π=-Δ↓/2π=12 MHz。(d)周期性调制系统的能谱的部分信息。(e-g)当激发边界比特(Q1,↑ 或 Q1,↓),测量到的对应于Δ↑(↓)/2π=0 MHz(e),Δ↑(↓)/2π=12 MHz(f)和 Δ↑/2π=-Δ↓/2π=12 MHz(g)的占据概率时间演化。
  • 安捷伦隆重发布智能化系统模拟技术ISET
    安捷伦隆重发布智能化系统模拟技术  创造市场上首个通用 LC/HPLC/UHPLC 系统  2011 年 3月 15 日,北京 — 安捷伦科技公司(纽约证交所:A)今日宣布隆重推出革命性的智能化系统模拟技术(Intelligent System Emulation Technology-ISET)。ISET 借助 Agilent 1290 Infinity LC 较宽的工作范围以及一流的精度与性能来模拟其它系统,实现不同品牌的液相色谱之间方法的无缝转换。  这一先进功能使得 1290 Infinity LC 成为世界上首个真正通用的 液相色谱系统,它可以运行其它高效和超高效液相色谱方法,并能提供与原仪器或原方法完全相同的色谱结果。  1290 Infinity LC 与 ISET 完美结合,可使研究者实现以下操作:   只需单击鼠标,即可模拟其它UHPLC 和 HPLC 仪器。   运行现有 UHPLC 和 HPLC 方法时无需调整方法或系统。   方法转换结果更出色,可得到相同的保留时间和色谱峰分离度。  ISET 促进并方便了实验室间 LC 方法的转换。QA/QC 实验室如今可以为未来做一项安全的投资了:因为实验室在继续运行传统方法的同时还能够充分利用1290 Infinity LC 的UHPLC 速度、分离度与灵敏度。现在,实验室能够通过 UHPLC 性能加快方法开发速度,并通过模拟目标系统对新方法进行微调,使方法更可靠地按照预期来运行。  安捷伦 1290 Infinity LC 产品经理 Christian Gotenfels 表示:“仪器间的方法转换通常是有困难的,尤其是在严格受法规制约的行业,因为要避免对仪器和原方法进行任何修改。安捷伦是全球首家提供方法无缝转换的公司,可在 1100 系列、1200 系列和新的 1220/1260 Infinity LC 之间实现方法无缝转换。”  安捷伦液相分析事业部高级市场总监 Stefan Schuette 说道:“这宣告了一个新纪元的到来。开发实验室、QA/QC 部门以及合同研究和生产机构如今可以在一台仪器上自由地开发、验证并运行所有的方法。”  配备 ISET 的 1290 Infinity LC 将于 2011 年第三季度面世。现有的 1290 Infinity LC 系统完全兼容并可升级到 ISET。  要了解更多信息,请访问: www.agilent.com/chem/1290:cn 。  关于安捷伦科技  安捷伦科技公司(纽约证交所:A)是全球领先的测量公司,同时也是通信、电子、生命科学和化学分析领域的技术领导者。公司的 18500 名员工为 100 多个国家的客户提供服务。在 2010 财政年度,安捷伦的业务净收入为 54 亿美元。要了解安捷伦科技的信息,请访问:www.agilent.com.cn。
  • 托摩根—AO1000模拟生物降解仪新品上线!
    模拟生物降解仪AO1000适用于生物降解性实验, 符合DIN/DEV38412-L24和OECD 303A实验要求,可用于实验室小规模污水处理。 AO1000AO1000模拟生物降解仪利用活性污泥对有机废物的分解消化作用,通过厌氧发酵,好氧生物降解,沉淀分离等流程,来达到对污水的模拟生物降解。托摩根将一如既往,将产品质量放在第一位,加大研发投入,为用户带去更优质的仪器、更完善的服务,为中国的科研事业添砖加瓦!Thmorgan产品咨询热线:4000-688-151. 市场部2017年4月26日
  • 日本模拟陨石撞击合成出生命物质
    最近,日本物质材料研究机构与日本东北大学的联合研究小组通过实验模拟确认,陨石高速坠入海洋时引发的化学反应,可以很容易地合成地球生命不可缺少的氨基酸等有机物质。这是世界上首次成功地根据目前掌握的原始地球大气构成合成生命物质。该成果发表在12月7日出版的《自然地球科学》杂志网络版上。   氨基酸是含有氨基和羧基的一类有机化合物的通称,是构成地球生物体蛋白质并与生命活动有关的最基本物质,揭开生命物质氨基酸的起源之谜一直以来是科学家梦寐以求的目标。  关于氨基酸的起源,美国化学家米勒曾于1953年在装有氨、甲烷和氢气的实验瓶内通过放电实验,首次合成了氨基酸。但是构成原始大气的主要成分,并不是当时认为的氨气、甲烷,而是以二氧化碳、氮气和水蒸气为主成分。用这些成分实验并不能产生米勒那样的化学反应。因此生命物质来源再次成为一个谜。  联合研究小组在实验中,在充满氮气的金属筒中封入水、碳和铁。用以每秒1公里高速飞行的塑料块撞击使金属筒内部大气压瞬间急剧升高,再现了陨石撞击海面的场景。实验结果发现,撞击产生了甘氨酸(氨基酸的一种)、羟酸和胺等构成生物体的基本分子。
  • MBR艺市污水处理模拟装置
    MBR艺市污水处理模拟装置 型号:H27986H27986 MBR艺市污水处理模拟装置术参数:设备本体材质:池体由有机玻璃制成;处理水量:10~18L/h;BOD去除率:95%~99%、COD去除率:90%~96% 、SS去除率:99%、NH3-N去除率:75%~83%、T-P去除率:94%~98%、MLSS:3000~15000mg/L;设备外形尺寸:1900mm×500mm×1400mm;电源 220V 率600W。H27986 MBR艺市污水处理模拟装置设备配置:1、200L原水箱(含提升泵1台、软管1套);2、格栅(8cm宽、3mm间距格栅网1套、机械转动电机1套);3、曝气沉砂池1套,10L;4、竖流式初沉池1套,20L;5、30L中间水箱1台;6、100L膜生物反应器(自动控制);7、水泵1台、液体流量计2台、曝气泵1台、曝气流量计1台、曝气管道1套、平板膜组件1套(PVDF平板膜,面积:0.1m2/片,共10片),出水蠕动泵1台,出水流量计1台、出水真空表1台等;8、混合液回流装置:回流泵1台、回流管道1套;9、30L有机玻璃清水池;10、紫外杀菌装置1套:紫外灯1套、有机玻璃柱1根、遮光铝铂纸1套;11、电控箱1只、漏电保护开关、按钮开关、连接管道和阀、带移动轮子不锈钢台架等组成
  • 通过3D打印制备模拟人舌基底应用于口腔软摩擦研究
    浙江工商大学食品与生物工程学院陈建设教授课题组设计并制作了兼备人舌表面微结构与化学性质的柔性仿生人舌基底应用于口腔软摩擦研究,相关研究成果在口腔软摩擦的体外模拟测试研究中具有重要的应用前景。该成果以“Development of a simulated tongue substrate for in vitro soft “oral” tribology study”为题发表于《Food Hydrocolloids》期刊。尽管近年来在将摩擦学装置应用于口腔摩擦学方面的研究取得了很大进展,但目前广泛应用的体外口腔摩擦学测试技术常使用具有光滑表面的金属与弹性体,对真实舌面的复杂特征及其物理性能的模拟仍不完全。哺乳动物舌表面有着复杂的几何结构,其粗糙度通常在数百微米,主要由富含味蕾细胞的菌状乳突以及底部包含机械感受神经末梢的丝状乳突随机分布构成。人舌的高变形性和复杂的拓扑结构结合唾液的润湿,控制着食物/口腔黏膜和人舌之间的摩擦和润滑。 研究团队在之前研究中,利用结构光学技术对于舌面分区的粗糙度进行人群统计,基于以上研究背景,该团队进一步探究舌面乳突形貌与舌面粗糙度的关系,基于此,设计模型丝状乳突微结构并依据人群特征,制作三类模拟丝状乳突微结构与分布的人舌基底。研究团队采用面投影微立体光刻3D打印技术(nanoArch S140,摩方精密)高效、精准地实现了上述设计微结构的模具制备。图一模拟人舌基底三维模型及利用PDMS浇铸脱膜后的基底的微结构(模具尺寸:79 mm×39 mm由三块25 mm×35 mm区域构成,其中T1,T2,T3区分别分布4900,3760,2600个模拟乳突)图二 T3类模拟人舌基底的体外软摩擦测试结果(T1,T2显示相同趋势)摩擦试验结果显示不同黏度近黏度流体可构建完整构建Stribeck曲线,除此之外,利用模拟人舌基底测试时,边界润滑层获得表观摩擦系数值相较于使用光滑基底出现显著降低(≈1),与团队原位摩擦测试结果更为接近,证明应用具备一定人舌扑拓结构的基底于体外摩擦测试具有更好的模拟真实口腔软摩擦行为的潜力。 该工作得到国家自然科学基金面上项目、国家自然科学基金青年科学基金的支持。原文链接:https://doi.org/10.1016/j.foodhyd.2021.106991官网:https://www.bmftec.cn/links/10
  • 胡伟教授团队在分子光谱的人工智能模拟方面取得研究进展
    齐鲁工业大学(山东省科学院)化学与制药学部胡伟教授团队,在分子光谱的人工智能模拟方面取得研究进展。研究成果以“A Deep Learning Model for Predicting Selected Organic Molecular Spectra”为题,在Nature子刊 《自然-计算科学》(Nature Computational Science)杂志上在线发表。论文第一单位为齐鲁工业大学(山东省科学院),化学与制药学部2019级本科生邹子涵为第一作者,化学与制药学部胡伟教授、光电科学与技术学部张玉瑾副教授、中国科学技术大学罗毅教授和江俊教授为本文的共同通讯作者。分子光谱作为“分子指纹”,被广泛地应用于物理、化学、生物、材料、医学、食品、环境、化工等领域。传统的分子光谱模拟采用量子化学方法,涉及昂贵的电子结构计算和复杂的光谱模拟,导致效率低下。针对该难题,胡伟教授团队结合E(3)-等变几何组、自注意机制,开发了一套深度学习模型:DetaNet,从而建立了更高效、更准确、更快速的分子性质和分子光谱的人工智能模拟方法。研究团队首先建立了包含 13万余种分子的红外、拉曼、紫外-可见吸收、核磁共振光谱数据库:QM9S 数据集;其次,通过传递高阶几何张量信息,使得DetaNet 能够预测各种分子的标量(能量、原子电荷等)、矢量(电偶极矩、原子力等)以及高阶张量(Hessian矩阵、电四极矩、极化率、电八极矩、第一超极化率等)性质。在此基础上,开发了通用模块用来预测四种重要的分子光谱,即红外光谱、拉曼光谱、紫外可见吸收光谱、核磁共振光谱。通过测试,研究团队发现DetaNet的计算效率比量子化学快3-5个数量级。本研究成果提供了原创的深度学习模型:DetaNet,在世界上首次提出直接预测分子张量性质的机器学习算法,开发了多种分子光谱的人工智能模拟算法,对分子高通量筛选、光谱辅助结构鉴定等重要的领域提供了坚实的理论基础和高效的软件工具。本课题受到国家自然科学基金、山东省泰山学者计划、济南市高校20条等项目支持。
  • 地震模拟试验技术与装备
    地震模拟试验技术是集机、电、液与计算机控制等多学科知识为一体的综合性技术,是土木工程、岩土工程、结构工程中大型结构试件抗震减灾、性能验证和破坏机理研究的核心技术手段。该技术以电液伺服控制技术、自动控制理论、模拟电子技术和信号处理等课程为技术基础。8月16日,由仪器信息网、中国仪器仪表行业协会试验仪器分会联合主办的第二届试验机与试验技术网络研讨会将召开。届时,哈尔滨工业大学副教授杨志东将在线分享报告,介绍国内外地震工程与工程振动领域的地震模拟试验技术研究成果与相关技术。欢迎业内人士报名听会,在线交流。附:第二届试验机与试验技术网络研讨会 参会指南为帮助业内人士了解试验技术发展现状、掌握前沿动态、学习相关应用知识,仪器信息网携手中国仪器仪表行业协会试验仪器分会于2023年8月16日组织召开第二届“试验机与试验技术”网络研讨会,搭建产、学、研、用沟通平台,邀请领域内科研与应用专家围绕试验机行业发展、试验技术研究、试验技术应用等分享报告,欢迎大家参会。1、进入会议官方页面(https://www.instrument.com.cn/webinar/meetings/testingmachine2023/)进行报名。2、报名开放时间为即日起至2023年8月15日。3、报名并审核通过后,将以短信形式向报名手机号发送在线听会链接。4、本次会议不收取任何注册或报名费用。5、会议联系人:高老师(微信号:iamgaolingjuan 邮箱:gaolj@instrument.com.cn)6、赞助联系人:周老师(微信号:nulizuoxiegang 邮箱:zhouhh@instrument.com.cn)
  • 浅谈国际模拟环境试验设备发展趋势
    p style="text-align: justify text-indent: 2em "span style="font-size: 16px "环境试验设备经历了由单一环境因素模拟向多环境因素模拟,从静态模拟到动态模拟,由简单控制到微机全自动控制的发展过程。目前的发展方向是“更快、更好、更省”,并呈现以下特点:/span/pp style="text-align: justify text-indent: 2em "span style="font-size: 16px "(1)试件尺寸:从小尺寸向大尺寸、全尺寸方向发展,试样从材料向构件、整机发展;/span/pp style="text-align: justify text-indent: 2em "span style="font-size: 16px "(2)提高环境因素模拟精度:如目前模拟太阳辐射的光源主要是氙灯,尽管氙灯的光谱与太阳光谱接近,但光谱上某些点段相差较大。实践表明这些差别对有些材料样品的试验结果有影响,国外一些厂家在积极寻找新的光源。另外对氙灯光强的控制正在由点段控制向全光谱段控制方向发展。/span/pp style="text-align: justify text-indent: 2em "span style="font-size: 16px "(3)自然环境试验从典型环境向严酷与极端环境发展,向自然环境加速试验发展,向实验室模拟自然环境加速试验发展,并开始应用计算机数字仿真技术。/span/pp style="text-align: justify text-indent: 2em "span style="font-size: 16px "(4)采用新的控制技术:大量采用计算机领域内的新技术,如显示触摸屏技术、span style="font-size: 16px font-family: " times="" new=""PLC/span技术、现场总线技术等。试验过程的检监测技术已向现场连续观察与检测方向发展,并对观察与检测结果实现远程传输。/span/pp style="text-align: justify text-indent: 2em "span style="font-size: 16px "(5)更接近于实际环境的综合箱:如振动试验箱已经发展成为三综合(温度、湿度、振动)、四综合(温度、湿度、低气压、振动)试验箱,并且出现了多维振动试验箱;腐蚀试验箱由单一腐蚀试验向循环腐蚀试验(腐蚀-湿热-干燥-腐蚀)箱方向发展。/span/pp style="text-align: justify text-indent: 2em "span style="font-size: 16px "(6)大型综合专用设备:为适应各行各业的需要,研发制作大型综合专用的环境试验设施,如美国陆军阿伯丁靶场的兵器环境试验设备能让车辆在行驶道路条件下,模拟低温、高温、湿热、低气压等多参数组合环境。该设备有span style="font-size: 16px font-family: " times new roman" "1000msup3/sup/span、span style="font-size: 16px font-family: " times new roman" "145msup3/sup/span和span style="font-size: 16px font-family: " times new roman" "45msup3/sup/span三个环境试验室,采用一套空气制冷系统和各自独立的电加热设备。在大型环模设备中首次成功采用了空气制冷。该设备最大试验室空间尺寸为span style="font-size: 16px font-family: " times new roman" "16m× 8m× 8m/span(长× 宽× 高),温度范围为常温span style="font-size: 16px font-family: " times new roman" "~50℃/span,相对湿度可到span style="font-size: 16px font-family: " times new roman" "85× (1± 0.05)%RH(≤40℃)/span,模拟的最大太阳辐射强度为span style="font-size: 16px font-family: " times new roman" "1kW/msup2/sup/span,模拟的最大风速为span style="font-size: 16px font-family: " times new roman" "35m/s/span。/span/pp style="text-align: justify text-indent: 2em "span style="font-size: 16px "(7)重视各种试验数据的管理和应用:发达国家以数据库、数据手册、标准规范等集成性成果作为其共享与保护的手段,同时为研究、设计和技术改进提供了科学依据,避免了设计的盲目性。美军在自然环境试验中,经过长期系统的环境试验数据积累,出版了腐蚀手册,开发了新的耐候材料和产品,并制定了大量的材料生产、产品设计、工程设计等一系列标准和规范。美国制定的各类环境试验方法标准,为世界各国普遍采用,其中不少已成为国际标准。如美国著名的《尤利格腐蚀手册》、《军工材料与构件环境适应性数据汇编》等集成性成果已在全世界推广应用,形成了一种独立的知识产权,实现了材料与产品环境试验数据面向全社会的共享与服务。日本也十分重视自然环境适应性数据共享与保护。他们大约有span style="font-size: 16px font-family: " times new roman" "40/span个大气环境试验站,并形成网络体系,通过对原始数据的分析处理,建立共享服务数据库,面向社会为国家重点工程、项目研究、材料生产与应用部门提供数据服务。英国共有各类大气暴露场span style="font-size: 16px font-family: " times new roman" "40/span个左右,仅钢铁研究协会就有span style="font-size: 16px font-family: " times new roman" "8/span个,其中最大的是卡林顿暴露场。对于各试验站产生的环境试验数据,他们通过环境数据采集自动化、测试数据数字化和数据汇交格式标准化,建立完善的国家试验站网计算机网络。以关键材料、通用零部件、核心元器件等基础产品为对象,系统积累它们在各类环境中的环境因素及环境适应性数据,研究其与这些环境相互作用、性能演变及失效机理。为环境严酷度评估、装备产品环境适应性评价、实验室加速试验方法研究、环境试验标准制定、数据共享等提供技术支撑和服务。如英国皇家化学会数据库span style="font-size: 16px font-family: " times new roman" "(RCS)/span等,都通过大型数据库实现数据资源的有偿使用,有力促进了数据资源的推广与应用。/span/pp style="text-align: center text-indent: 0em "span style="font-size: 16px "img style="max-width: 100% max-height: 100% width: 280px height: 250px " src="https://img1.17img.cn/17img/images/201908/uepic/07635131-5027-48ed-a1c9-48fd8d31b2ed.jpg" title="试验箱.jpg" alt="试验箱.jpg" width="280" height="250" border="0" vspace="0"//span/pp style="text-align: justify text-indent: 2em "strongspan style="text-indent: 2em " /spanspan style="text-indent: 2em "环境试验设备发展趋势/span/strong/pp style="text-align: justify text-indent: 2em "1. 提高加速性和相关性/pp style="text-align: justify text-indent: 2em "加速性和相关性本身是相互矛盾的,提高加速性一般会牺牲相关性。从试验技术的角度来看,提高加速性并不难,难就难在同时提高加速性和相关性。不管从客户要求或技术发展方面看,提高加速性和相关性是气候环境试验技术的重要发展方向。/pp style="text-align: justify text-indent: 2em "2. 开发多因素综合试验/pp style="text-align: justify text-indent: 2em "由于材料在自然环境中受到多种复杂因素的综合作用,因而要更真实地再现材料在自然环境中的腐蚀和老化,必须尽可能综合考虑多种自然环境因素。近几年,模拟海洋性气候环境的加速试验方法向多因素试验方向发展。多因素模拟加速试验方法分为多因素组合循环模拟加速试验方法和多因素模拟加速试验方法。多因素模拟加速试验方法由于考虑两个或两个以上主要环境因素的同时作用,能更真实地模拟多种环境因素的协同效应。/pp style="text-align: justify text-indent: 2em "3. 开发环境适应性仿真/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "1992/span年span style="font-family: " times new roman" "7/span月,美国国防部研究与工程署在《美国国防部核心技术计划》中,将“环境影响”列为112项核心技术之一,span style="font-family: " times new roman" "2005/span年的技术目标是对大气、海洋、地球和空间环境在自然和人工平台(如飞机、导弹、舰船等)两方面的影响进行研究、建模和仿真。在建模和仿真的研究方面,美国陆军在阿伯丁试验场、红石试验中心、达格威试验场和尤马试验场,开展自然环境和诱发环境对装备及其材料性能影响的虚拟试验场研究。在环境适应性规律分析和建立数学模型方面,我国学者创造了灰色理论,并在环境影响规律方面得到成功的应用;神经网络仿真模型理论被成功地应用于环境行为规律的建模和仿真。在积累大量可靠基础数据的基础上,实现对装备环境适应性进行仿真是装备环境工程的发展方向和目标。/ppbr//p
  • 生成式AI与模拟工具:正掀起科学仪器研发变革
    在科技飞速发展的时代,仪器研发正经历深刻变革。传统研发过程耗费大量时间、人力和资源,而生成式AI和模拟工具的引入,正在改变这一局面。生成式AI通过学习大量设计数据,迅速生成多种创新设计选项,不仅节省设计时间,还能在早期发现潜在问题,减少后期修改。无论是外观设计、功能布局还是材料选择,生成式AI都以超高速度和精度完成任务。确定设计方案后,模拟工具可以快速将其转化为可行产品。研发人员在虚拟环境中测试设计的可行性,从物理特性到操作性能,再到耐用性和安全性,模拟工具可以在制造前完成所有验证,降低研发成本,加快产品上市速度。当生成式AI与模拟工具结合,研发效率大幅提升。生成式AI提供多样设计选择,模拟工具帮助筛选最优方案。两者协同工作,使从创意到产品的全过程更加流畅,缩短研发周期,提升创新频率。生成式AI和模拟工具的结合,正改变仪器研发的规则,为企业带来前所未有的竞争优势。未来,随着技术进步,仪器研发将更加智能化和自动化,推动行业迈向新高峰。  在创新型仪器的研发过程中,涉及多个关键阶段,如设计与优化、原型制造以及设计验证测试(DVT)。每个阶段都至关重要,帮助研发团队从概念到产品的完整开发流程得以实现。分析维度内容 设计思路 以用户需求和市场需求为导向,结合前沿技术,提出创新型设计理念。 概念设计 通过头脑风暴、市场调研和用户反馈,确定仪器的功能、外观、材料等初步设计方案。 详细设计 使用CAD软件(如SolidWorks、AutoCAD)进行详细的结构设计、组件选型和系统布局。 性能优化 通过仿真与模拟(如热力学、流体力学、结构力学分析)优化设计,提高仪器性能和可靠性。 可制造性优化 考虑生产过程中的制造成本、装配便捷性、可维护性,优化设计以提高生产效率并降低成本。  在设计与优化阶段,研发人员基于用户需求和市场需求,结合前沿技术,提出了创新型设计理念。首先,研发团队通过头脑风暴、市场调研和用户反馈,确定仪器的功能、外观和材料的初步设计方案。接着,他们使用CAD软件(如SolidWorks和AutoCAD)进行详细的结构设计,定义零部件的精确尺寸和位置,确保所有组件的装配和互操作性。通过有限元分析(FEA)进行结构强度与应力分析,确保设计的安全性与可靠性。此外,团队还使用仿真工具进行热管理与散热设计,模拟设备内部的热流和温度分布,优化散热结构,以确保设备在安全的温度范围内运行。分析维度内容 原型开发 基于详细设计图纸,制造功能样机,通常使用3D打印、CNC加工或快速原型制造技术。 材料选择 选择适合的材料(如塑料、金属、复合材料)以平衡成本、重量、耐用性和功能需求。 部件制造与装配 制造和装配各个部件,构建完整的原型仪器,测试各个组件的互操作性。 功能测试 对原型进行初步的功能测试,确保仪器的基本功能符合设计预期,如电气测试、机械测试等。  原型制造阶段开始时,研发团队基于详细的设计图纸制造功能样机,这通常采用3D打印、CNC加工或其他快速原型制造技术。在这一过程中,他们仔细选择适合的材料,以平衡成本、重量、耐用性和功能需求。随后,团队制造和装配各个部件,构建完整的原型仪器,并对其进行初步的功能测试,以确保仪器的基本功能符合设计预期,包括电气和机械测试。分析维度内容 测试规划 制定详细的测试计划,包括测试目的、测试标准、测试方法和测试工具的选择。 环境测试 在极端环境条件下(如温度、湿度、震动)测试仪器的稳定性和耐用性,验证其是否能在实际工作环境中可靠运行。 性能测试 测试仪器的关键性能指标(如精度、速度、灵敏度),确保其达到或超出设计要求。 安全测试 进行电气安全、机械安全、软件安全等方面的测试,确保仪器在操作中不会对用户和环境造成危害。 合规测试 确保仪器符合相关行业标准和法规(如ISO、CE、FDA等),获取必要的认证和许可。 测试结果分析 收集和分析测试数据,评估仪器的性能和质量,识别并解决设计中的潜在问题。 设计迭代与优化 根据DVT测试结果进行设计优化,修正问题,进行设计迭代,并在必要时制造新的原型进行重新测试。  设计验证测试(DVT)阶段是确保产品质量的关键。首先,团队制定详细的测试计划,明确测试目的、标准、方法和工具选择。在极端环境条件下(如温度、湿度、震动),对仪器进行环境测试,以验证其稳定性和耐用性。此外,团队还会进行性能测试,确保仪器的关键性能指标(如精度、速度、灵敏度)达到或超出设计要求。为了保证安全,团队还进行电气、机械和软件安全测试,确保仪器在操作中不会对用户和环境造成危害。最后,合规测试确保仪器符合相关行业标准和法规,获取必要的认证和许可。测试结果分析后,团队会根据DVT测试结果进行设计优化,修正问题,并在必要时制造新的原型进行重新测试。分析维度内容 定型设计 经过多次迭代和优化,最终确定设计方案,为批量生产做准备。 生产工艺确定 确定量产过程中使用的生产工艺、设备和流程,确保产品的一致性和质量稳定性。 生产验证 通过试生产验证生产线的可靠性,确保产品质量满足量产要求。 市场反馈收集 初期产品投放市场后,收集用户反馈,进行必要的产品改进和升级。  在最终定型与量产准备阶段,经过多次迭代和优化后,研发团队最终确定设计方案,为批量生产做准备。这包括确定量产过程中使用的生产工艺、设备和流程,确保产品的一致性和质量稳定性。在试生产阶段,团队验证生产线的可靠性,以确保产品质量满足量产要求。最后,在产品投放市场后,团队还会收集用户反馈,进行必要的产品改进和升级。设计步骤关键任务详细内容1. 结构设计 概念建模 创建初步的3D模型 根据设计需求,建立设备的初步3D模型,定义整体外观和结构。 详细结构设计 完成详细的几何建模 设计内部结构,包含零部件的精确尺寸和位置,确保所有组件的装配和互操作性。 强度分析 结构强度与应力分析 通过有限元分析(FEA)评估结构的应力分布,确保结构的安全性与可靠性。 热管理设计 热管理与散热设计 模拟设备内部的热流和散热情况,优化散热孔布局和冷却系统。2. 组件选型 电子元件选型 电子元器件选择 选择符合设计需求的电源模块、处理器、传感器、连接器等电子元件,并在设计中标注其位置。 机械部件选型 标准机械件选型 选择标准机械部件,如螺钉、螺母、轴承、齿轮等,并集成到设计中。 材料选型 材料选择与应用 根据力学、热学及其他性能要求,选择合适的材料(如铝合金、塑料、复合材料等)。 采购件选型 外购件选型 选择市场上可采购的标准件或外购件(如显示屏、接口模块等),并与制造商对接,确保供应链的可行性。3. 系统布局设计 内部布局设计 内部元件布局优化 根据功能需求和物理空间,优化内部元件的排列,确保结构紧凑、操作便捷及热管理合理。 电气系统布局 电路和布线设计 设计内部电路布局,包括信号线、供电线和地线的位置,确保电气系统的安全和高效运行。 接口与连接设计 接口模块与外部连接设计 设计设备的输入输出接口布局,包括电源接口、数据接口、冷却系统接口等,并确保连接方便、牢固。 人机交互布局 控制面板与用户界面设计 设计用户界面布局,如控制按钮、显示屏的位置,确保用户操作的便捷性和界面的直观性。4. 装配与制造准备 装配设计 装配顺序与工艺流程设计 确定各组件的装配顺序,优化装配流程,减少制造时间和成本,确保装配的可靠性。 制造工艺设计 制造工艺与加工方案 制定加工方案,选择合适的制造工艺(如CNC加工、3D打印),并在设计中考虑制造公差和装配间隙。 设计验证 仿真验证与优化 通过仿真工具验证整个系统的设计,包括结构强度、热管理、振动和冲击测试等,确保设计满足所有技术要求。5. 技术文档与图纸输出 工程图纸生成 工程图纸与BOM表输出 输出详细的2D工程图纸,包括各零部件的尺寸标注、装配关系图、材料清单(BOM)等,供生产和采购使用。 技术文档编制 制造与装配说明文档 编制详细的制造与装配说明文档,包括每个工艺步骤的描述、注意事项、质量控制要求等。 版本管理与修订 设计版本管理与修订 通过PDM系统管理设计文件的版本,跟踪设计变更,确保所有团队成员使用最新的设计文件。  为了实现这些步骤,研发团队使用多种软件工具支持设计过程。首先,在结构设计中,SolidWorks和AutoCAD被用于初步的3D建模和详细的几何建模,确保设备的整体外观和内部结构合理。随后,通过SolidWorks Simulation进行结构强度与应力分析,确保设计的安全性。此外,团队使用SolidWorks Flow Simulation进行热管理设计,模拟热流和散热情况,以优化散热系统。接下来,组件选型阶段涉及选择电子元件、机械部件和材料,这些选择影响到最终产品的性能和制造成本。团队还会利用AutoCAD Electrical进行电气系统布局设计,确保信号线、供电线和地线的布线合理且高效。在系统布局设计阶段,研发人员优化内部元件的排列,设计设备的接口模块与外部连接,并确保人机交互界面的设计便捷直观。最后,装配与制造准备阶段中,团队通过SolidWorks进行装配设计,确定组件的装配顺序和工艺流程,并通过仿真工具验证整个系统的设计,确保结构强度、热管理、振动和冲击测试结果达到所有技术要求。在工程图纸生成和技术文档编制方面,研发团队使用SolidWorks和AutoCAD输出详细的工程图纸和材料清单(BOM),并编制制造与装配说明文档,确保生产过程的顺利进行。  整个设计与研发过程不仅依赖于软件工具的支持,还通过多学科优化工具(如ModeFrontier)进行综合性能优化,结合热力学、流体力学和结构力学的仿真结果,确保每次设计迭代都能提升设备的整体性能和可靠性。通过这些详细的步骤和方法,创新型仪器的研发得以高效进行,并最终实现从概念到产品的完整转化。在这一复杂的研发过程中,每个阶段都扮演着至关重要的角色,从设计概念的初步构思到最终的产品定型和量产准备。每一个环节都要求精细的操作和严密的协同,以确保研发过程的顺利推进。在设计与优化阶段,概念建模是研发工作的开端。使用SolidWorks等CAD软件,团队根据设计需求建立初步的3D模型。这一步骤的目标是定义设备的整体外观和结构,以便在后续阶段进行更详细的设计工作。接着,详细结构设计进一步精细化设备内部结构,确保所有零部件的尺寸和位置精确无误,并且组件之间能够顺利装配和互操作。这些工作需要SolidWorks和AutoCAD等软件的支持,以保证设计的准确性和可行性。  在这个阶段,强度分析也是不可或缺的一部分。通过有限元分析(FEA),研发团队能够评估设计中可能存在的应力分布问题,确保设备的结构在各种工作条件下都能保持安全和稳定。与此同时,热管理设计通过SolidWorks Flow Simulation进行,研发人员模拟设备内部的热流和温度分布,优化散热系统,确保设备在运行过程中能够有效地控制温度。组件选型是研发中的另一关键步骤。团队需要根据设计需求选择适当的电子元件和机械部件,如电源模块、传感器、螺钉、轴承等。这些部件不仅影响到设备的性能,还对生产成本和制造难度产生重要影响。在材料选型过程中,团队必须权衡力学、热学等多方面性能要求,选择最适合的材料,如铝合金、塑料或复合材料。这一过程还涉及外购件的选择,团队需要确保这些外购件与整体设计的兼容性,并与供应商对接,确保供应链的顺畅运作。系统布局设计阶段,研发团队进一步优化设备内部的元件布局,确保结构紧凑、操作便捷,尤其是在涉及热管理的情况下,布局优化显得尤为重要。电气系统布局设计需要特别考虑信号线、供电线和地线的布线位置,以保证电气系统的安全和高效运行。接口与连接设计则专注于设备的输入输出接口布局,确保连接方便、牢固,并满足使用环境的需求。人机交互布局设计通过控制面板和用户界面的合理安排,提升设备的操作便捷性和用户体验。在装配与制造准备阶段,研发团队必须制定装配顺序和工艺流程,确保每个组件能够顺利装配,减少制造时间和成本。通过仿真工具验证整个系统的设计,确保设计满足所有技术要求,如结构强度、热管理、振动和冲击测试等。工程图纸生成是这一阶段的重要任务,团队需要输出详细的2D工程图纸,包括零部件的尺寸标注和装配关系图,这些图纸是生产和采购的基础。技术文档编制也是装配与制造准备阶段的核心工作之一。团队需要编制详细的制造与装配说明文档,描述每个工艺步骤的具体操作、注意事项和质量控制要求。通过版本管理与修订工具,如PDM系统(如SolidWorks PDM),团队可以管理设计文件的版本,跟踪设计变更,确保所有团队成员使用最新的设计文件。仿真与模拟类型关键任务详细内容热力学分析(SolidWorks Flow Simulation, ANSYS) 热源识别与建模 识别并建模关键热源 确定设备内部发热元件(如处理器、激光器)的热源位置,建立热源模型,分析热量产生与传递路径。 散热设计与优化 散热系统设计与仿真 设计散热方案,如散热片、风扇、液冷系统,模拟热流和温度分布,优化散热结构,确保设备运行温度在安全范围内。 热管理策略优化 热管理系统优化 通过仿真分析设备在不同工作条件下的温度变化,优化热管理策略,如主动冷却、被动散热等,提升设备的可靠性。流体力学分析(ANSYS Fluent, SolidWorks Flow Simulation) 空气流动分析 内部空气流动模拟与优化 模拟设备内部空气流动情况,评估空气流动对散热效果的影响,优化风道设计,确保空气流动的均匀性和效率。 冷却液流动分析 液冷系统流动分析 模拟液冷系统中冷却液的流动情况,分析冷却液在热源处的流动速度和散热效率,优化管路布局和泵的选择。 密封与防护设计 防水防尘设计与验证 模拟设备在湿度、粉尘等恶劣环境下的密封性能,确保设备能够防水防尘,避免外界环境对内部元件的损害。结构力学分析(ANSYS Mechanical, SolidWorks Simulation) 应力应变分析 结构强度与应力分布分析 通过有限元分析(FEA),模拟设备在外力作用下的应力和应变分布,优化结构设计,避免应力集中和结构失效。 振动与冲击分析 振动与冲击响应分析 模拟设备在运输和操作过程中的振动和冲击,优化支撑结构和缓冲材料,确保设备的抗振性和抗冲击性。 疲劳分析与寿命预测 结构疲劳寿命预测 通过疲劳分析,预测设备在长期使用中的疲劳寿命,优化关键部件的设计,延长设备使用寿命,减少故障率。综合优化与迭代(Multidisciplinary Optimization Tools (MDO)) 多学科优化 综合性能优化 结合热力学、流体力学和结构力学分析结果,通过多学科优化工具(MDO)进行综合性能优化,提升设备整体性能。 设计迭代与验证 基于仿真结果的设计迭代 根据仿真结果进行设计修改和迭代,重新验证修改后的设计性能,确保每次迭代都能够提升设备的可靠性和性能。  在整个研发过程中,仿真与模拟技术为设计优化提供了重要支持。例如,热力学分析通过识别和建模设备内部的关键热源,帮助团队优化散热设计。流体力学分析则用于模拟设备内部空气和冷却液的流动情况,确保散热系统的高效性和设备的密封性能。结构力学分析通过应力应变分析、振动与冲击分析、疲劳分析等手段,评估设备在不同条件下的结构强度和使用寿命,帮助研发团队在设计过程中避免潜在的结构失效。通过多学科优化工具(如ModeFrontier),团队能够将热力学、流体力学和结构力学的仿真结果综合起来,进行全方位的性能优化。这样的多学科优化不仅提高了设备的整体性能,还减少了设计迭代的次数,加快了研发进程。设计迭代是研发过程中的常规步骤。基于仿真和测试结果,团队不断调整设计,修正问题,并通过制造新的原型进行重新测试。这一过程确保了最终产品在各个方面都达到了设计要求和质量标准。最终,在经过多轮设计迭代和验证后,团队最终确定产品设计,进入量产准备阶段。这包括确定生产工艺、设备和流程,以保证产品在批量生产中的一致性和质量稳定性。在试生产阶段,团队会验证生产线的可靠性,确保产品质量符合量产标准。产品投入市场后,团队还会持续收集用户反馈,并根据需要进行产品改进和升级。  通过这些系统的步骤,创新型仪器的研发得以高效、精准地进行,从而实现从概念到产品的顺利转化。这一过程不仅推动了技术的进步,还为企业带来了显著的竞争优势,帮助其在快速变化的市场中保持领先地位。未来,随着技术的进一步发展,仪器研发将朝着更加智能化和自动化的方向发展,继续推动整个行业迈向新的高峰。  拓展阅读:  三代测序技术相关仪器工艺创新概述  2024站在巨人肩上的仪器研发(附资料)  2024年基于人工智能的仪器研发思路  2024年科学仪器供应链及核心零部件分析
  • 冷冻电镜技术和多尺度分子模拟相结合成效颇丰
    近日,中国科学院大连化学物理研究所分子模拟与设计研究组研究员李国辉团队受邀在Current Opinion in Structural Biology上发表综述文章Multiscale Simulations of Large Complexes in Conjunction with Cryo-EM Analysis,系统介绍冷冻电镜技术和多尺度分子模拟相结合在生物大分子复合体结构和功能调控关系上的突破和方向。  李国辉团队长期致力于理论与计算生物学方法发展与应用等方面的研究,近年来在生物大分子动力学功能机理之间关系的理论计算研究方面取得丰硕成果,引起广泛关注。  该综述在生物大分子复合体研究的复杂性和挑战性背景下,回顾了近两年利用多尺度分子模拟和日趋成熟的单细胞冷冻电镜技术相结合的方法,在蛋白质-RNA/DNA复合体、蛋白质-蛋白质复合体、膜蛋白复合体等复杂生物体系多蛋白组装动态调控机制的相关研究,重点阐述了结合分子模拟和单细胞冷冻电镜方法自身特点和优势在复杂大分子生物体系时间和空间尺度的不断突破的观点,并提出未来挑战与发展趋势。相关研究广泛涉及生物化学、分子生物学、细胞生物学、生物物理学、计算生物学、化学等领域。  相关工作得到国家自然科学基金、中科院战略性先导科技专项等的支持。结合冷冻电镜技术和多尺度模拟分析大型生物复合体动态组装和调控机制
  • 阿泰可发布阿泰可 四立柱轮胎耦合道路模拟环境舱(带阳光模拟)新品
    ATEC阿泰可四立柱轮胎耦合道路模拟环境舱(带阳光模拟)该套整车试验舱为四通道轮胎耦合道路模拟系统,主要由气候模拟试验室主体、升降温装置、新风换气系统、电气控制系统构成。该系统对用于乘用车结构耐久性、驾驶平顺性测试,以及早期模型评估、车身疲劳、异响BSR、噪声振动NVH、乘坐舒适性等测试。可实施整车高低温静态存放试验、如整车除霜、除雾性能试验、整车冷起动性能试验、整车采暖及制冷性能试验、整车热平衡试验、零部件耐高低温试验等。车辆轮距及轴距调整范围大,且采用自动调节,方便快捷,提高设备运行效率盖板采用隔热材料,隔热效果更好,盖板移动采用自动装置,更加便捷 主要技术指标1 温度指标1. 温度范围:-40℃~+80℃;2. 温度均匀度:≤±2℃(空载);3. 温度偏差:≤±2℃(空载);4. 温度控制精度:≤±0.5℃(无热负荷,稳态)≤±2℃(有热负荷,稳态)5. 升温速度:≥1℃/min(全程平均,带车辆,无热负载,出风口测量);6. 降温速度:≥0.7℃/min(全程平均,带车辆,无热负载,出风口测量);7. 湿度范围:10 %R.H.~95%R.H.8. 阳光模拟:红外线光谱辐射灯9. 辐射强度:600~1200W/㎡(可调节)10. 辐射区域(长×宽)6000×2500mm11. 垂直移动距离:辐射灯下距离舱底表面2.5~4.2m可调依据标准GB/T 2423.1-2008 试验A:低温试验方法GB/T 2423.2-2008 试验B:高温试验方法GB/T 2423.3-2006 试验Ca:恒定湿热试验GB/T 2423.4-2008 试验Db:交变湿热试验方法1,2QC/T 413-2002、ISO 16750-4《道路车辆电气及电子设备的环境条件和试验》QC/T 413-2002中关于3.11产品耐温度/湿度循环变化性能的要求ISO 16750-4《道路车辆电气及电子设备的环境条件和试验 第4部分:气候负荷》中5.2温度梯度、5.3.1规定变化率的温度循环、5.6湿热循环、5.7稳态湿热对测试的要求GB /T 2423.24-1995太阳辐射试验IEC60068-2-1:2007 低温试验方法AbIEC60068-2-2:2007 高温试验方法BbIEC60068-2-30:2005 交变湿热试验方法DbIEC60068-2-78:2007 恒定湿热试验方法CabGJB 150.3A-2009 高温试验GJB 150.4A-2009 低温试验GJB 150.9A-2009 湿热试验的试验标准要求 创新点:该套整车试验舱为四通道轮胎耦合道路模拟系统,主要由气候模拟试验室主体、升降温装置、新风换气系统、电气控制系统构成。该系统对用于乘用车结构耐久性、驾驶平顺性测试,以及早期模型评估、车身疲劳、异响BSR、噪声振动NVH、乘坐舒适性等测试。可实施整车高低温静态存放试验、如整车除霜、除雾性能试验、整车冷起动性能试验、整车采暖及制冷性能试验、整车热平衡试验、零部件耐高低温试验等。车辆轮距及轴距调整范围大,且采用自动调节,方便快捷,提高设备运行效率盖板采用隔热材料,隔热效果更好,盖板移动采用自动装置,更加便捷
  • 美海底18米深建实验室 模拟执行太空任务
    两名宇航员、一名海底工程师和一名经验丰富的科学家将会置身于佛罗里达东海岸的宝瓶座海底实验室,模拟执行太空任务。  新浪科技讯 北京时间5月8日消息,据美国太空网报道,美国宇航局计划于近期展开一次海底实验,模拟执行太空任务。届时,两名宇航员、一名海底工程师和一名经验丰富的科学家将会置身于佛罗里达东海岸的海底,模拟执行太空任务,从而检验外太空探测的新理念,掌握更多有关在极端恶劣环境下进行工作的知识。  美国宇航局5月4日宣布,将于本月10日开始进行第14次海底实验,为期14天。这次实验是NASA名为“极限环境任务实施”(NEEMO)项目的一部分。  加拿大宇航局宇航员克里斯-哈德菲尔德是此次海底实验的领导者。克里斯是一名资深宇航员,有过多次太空行走经历。从本月10日起,克里斯将带领其他参加实验的人员,在“宝瓶宫”海底实验室体验太空生活环境,展开模拟执行太空任务的实验。  据悉,美国宇航局(NASA)在佛罗里达州Key Largo附近的海底建立了一个名为宝瓶宫(Aquarius)的海底模拟实验室。这个能容纳6个人的实验室能够训练宇航员在模拟的环境下熟悉太空飞行,并开展一系列科学实验训练。宝瓶宫模拟器长14米,宽3米,装备有全套的设备,位于海面一下18米。借助于这个模拟器,宇航员不必要再等候轮到登上航天飞机或者进入国际空间站的机会去体验太空生存环境。  本月10日开始的此次海底模拟实验,将会利用海床模拟其他行星的表面和低重力环境。为准备此次海底实验,2009年10月潜水员在宝瓶宫模拟器附近放置了着陆器、探测车和模拟机械臂的小型吊车。  模拟执行太空任务  据悉,执行此次海底模拟实验的成员将会在宝瓶宫海底实验室内生活、进行模拟太空行走、操纵小型吊车来移动实验室,这同在外星球上搭建宿营地非常相似。  当潜水员执行操作并检测这些技术时,将会为美国宇航局工程技术人员提供非常有价值的信息和反馈。预计在此次的海底实验中,实验人员将会从着陆器上取下一个模拟月球车、从着陆器上取下少量荷载并模拟将一名失去行动能力的宇航员从海床转送回舱内。  据了解,此次试验的着陆器和探测车模拟器同美国宇航局考虑用于未来行星探测的着陆器和探测车大小相仿。模拟着陆器的宽度比一辆校车的长度还要大,几乎是其三倍高。宽13.7米,高8.5米,有一个3米高的吊车。模拟探测车比一辆SUV稍大,高2.4米,长4.3米。  训练海中溅落  哈德菲尔德2001年4月份航天飞机执行STS-100任务时,执行过两次太空行走任务,操纵国际空间站的Canadarm2机械臂。1995年他还在STS-74任务中,执行过大量操纵航天飞机Canadarm的任务。其他参加此次海底实验的人员包括,美国宇航局宇航员兼太空飞行医生托马斯-马斯伯恩,“月球车”副项目经理安德鲁和科学家史蒂夫-夏贝尔。北卡罗来纳大学的詹姆斯和内特-本德是建设外星球露营地的技术人员,他们将会提供工程技术支持。  在宝瓶宫实验室内时,实验小组将会进行生命科学实验,主要关注在极端环境下人们的行为、表现和心理。此次实验还将对自动开展工作展开研究。也就是说,实验中将会有一段时间成员间的通信和任务控制中心的通联将受到限制,这中状况在未来人类探索火星或月球时也将会遇到。  据悉,宝瓶宫实验室归属于美国国家海洋和大气管理局,由北卡罗来纳大学操作运行。
  • 环保部同意建设国家环境保护大气物理模拟与污染控制重点实验室
    近日,环保部发布了关于同意国电环境保护研究院建设国家环境保护大气物理模拟与污染控制重点实验室的复函,复函全文如下:  国电环境保护研究院:  你单位报送的《国家环境保护大气物理模拟与污染控制重点实验室建设计划任务书》(以下简称《计划任务书》)收悉。依据我部组织专家论证的结果,经研究,现同意以你单位为依托单位,建设国家环境保护大气物理模拟与污染控制重点实验室。  重点实验室建设任务:面向国家环境保护战略需求,围绕大气环境物理模拟与污染控制,服务于区域大气污染防治,以大气污染迁移转化规律与污染控制技术为研究对象,利用风洞模拟实验室与污染控制技术研发基地,开展污染物在大气中的化学转化、物理输送规律和污染源的合理空间布局、区域大气环境预警与调控等应用基础研究,进行烟气多污染物协同控制技术研发和成果转化,培养一批优秀的创新性骨干人才和领军人才,努力建设产学研联盟,建成国际一流水平的重点实验室和开放性交流服务平台,为我国大气环境管理与决策提供技术支撑。以重点实验室为学术交流与合作平台,促进国内相关领域优势单位和人员的合作交流,培养优秀创新性骨干人才和领军人才。  重点实验室建设期两年。请你单位按照《国家环境保护重点实验室管理办法》的有关规定,围绕《计划任务书》中提出的建设目标和建设内容,建立&ldquo 开放、流动、联合、竞争&rdquo 的运行模式,落实资金投入,按期完成重点实验室的各项建设任务。在建设期间,若遇重大事项,及时向我部汇报,并按时提交《重点实验室建设情况年度报告》。  特此函复。  环境保护部  2013年9月3日  抄送:科技部、中国国电集团公司,各省、自治区、直辖市环境保护厅(局),中国环境科学研究院、中国环境监测总站、中日友好环境保护中心、核与辐射安全中心、南京环境科学研究所、华南环境科学研究所、环境规划院、环境工程评估中心、卫星环境应用中心,各国家环境保护重点实验室。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制