当前位置: 仪器信息网 > 行业主题 > >

电镜原理

仪器信息网电镜原理专题为您提供2024年最新电镜原理价格报价、厂家品牌的相关信息, 包括电镜原理参数、型号等,不管是国产,还是进口品牌的电镜原理您都可以在这里找到。 除此之外,仪器信息网还免费为您整合电镜原理相关的耗材配件、试剂标物,还有电镜原理相关的最新资讯、资料,以及电镜原理相关的解决方案。

电镜原理相关的资讯

  • 直播预告|扫描电镜的原理及参数选择
    直播预告|扫描电镜的原理及参数选择【8月13日下午14:00直播】“扫描电镜的技术及原理”网络研讨会莱雷科技与善时仪器联合举办【会议分享内容】主要围绕“扫描电镜的技术和原理”,结合实际案例跟大家分享扫描电镜的原理,参数选择,制样方法等内容。导师:曾凌飞—善时仪器市场部总监【1】扫描电镜技术的发展历程【2】扫描电镜的特点、工作原理及优势【3】扫描电镜的参数选择、制样方法和主要应用方向微信扫描下方二维码,8月13日下午14点线上与您不见不散!
  • ​直播预告|扫描电镜的原理及制样方法
    直播预告|扫描电镜的原理及制样方法【8月13日下午14:00直播】“扫描电镜的原理及制样方法”网络研讨会莱雷科技与善时仪器联合举办导师:曾凌飞—善时仪器市场部总监【技术背景介绍】 扫描电子显微镜的英文全称为Scanning Electron Microscope,简称扫描电镜或者SEM,是一种用于放大并观察物体表面结构的电子光学仪器。扫描电镜由镜筒、电子信号的收集和处理系统、电子信号的显示和记录系统、真空系统和电源系统等组成,具有放大倍数可调范围宽、图像分辨率高和景深大等特点。该产品结构设计简洁,高低压真空设计,可调试电压,为不同样品提供更合适的检测环境。 由于扫描电镜具有观察纳米材料、材料端口分析、直接观察原始表面等特点和功能,所以越来越多受到科研人员的重视,用途日益广泛。现已被广泛用于材料科学、冶金、生物学、医学、半导体材料与器件、地质勘探、病虫害的防治、灾害鉴定、宝石鉴定、工业生产中的产品质量鉴定及生产工艺控制等。 莱雷科技与善时仪器联合举办的“扫描电镜的技术及原理”网络研讨会将于8月13日下午14:00点开播。届时莱雷科技将邀请善时仪器技术中心总监在线与您分享扫描电镜的参数选择及制样方法等内容。此次网络会议为参会者提供一个突破时间地域限制的免费学习、交流平台,让大家足不出户便能聆听到精彩报告。微信扫描下方二维码,立即加入观看!
  • iCEM 2016特邀报告:像差校正电镜原理与应用
    p style=" TEXT-ALIGN: center" strong 第二届电镜网络会议(iCEM 2016)特邀报告 /strong /p p style=" TEXT-ALIGN: center" strong 像差校正电镜原理与应用 /strong /p p style=" TEXT-ALIGN: center" & nbsp img title=" 于 荣.jpg" style=" HEIGHT: 231px WIDTH: 250px" border=" 0" hspace=" 0" src=" http://img1.17img.cn/17img/images/201610/noimg/d52e7af2-b526-418b-9e1b-cec74a4911ff.jpg" width=" 250" height=" 231" / /p p style=" TEXT-ALIGN: center" strong 于荣 教授 /strong /p p style=" TEXT-ALIGN: center" strong 清华大学北京电子显微镜中心 /strong /p p strong 报告摘要: /strong /p p   作为文明的物质载体的材料都是由原子构成的。但原子到底是以怎样的方式构成材料?它们又是怎样影响材料的功能?对这些问题的探索就是材料的原子结构研究。在现代社会,这已不仅仅是纯科学的好奇。因为材料的原子结构从根本上决定了材料的功能,所以也是工程技术研究的重要内容。 /p p   与材料研究的需求相适应,近年来在材料原子结构的实验与理论分析领域都取得了长足进展。尤其是在高分辨透射电镜上实现了像差校正,成为电子显微学发展的里程碑。这不仅使人们具有了亚埃尺度的分辨能力,而且对材料表面、界面、催化剂颗粒等局域结构的原子位置的测量达到了皮米精度,可以与X射线衍射对宏观单晶的原子位置的测量精度相媲美。这从根本上改变了高分辨电子显微学长期以来以定性分析为主的局面,给材料研究带来了重大机遇。目前,世界上高端的透射电子显微镜不仅在大学与科研院所逐渐普及,也大量安装在各大高科技企业。本报告将简要介绍像差校正电镜的基本原理及典型应用。 /p p strong 报告人简介: /strong /p p   于荣,清华大学材料学院教授,北京电子显微镜中心主任,国家杰出青年基金获得者。1996年毕业于浙江大学,1999年与2002年分别获中国科学院金属研究所硕士与博士学位,随后在美国劳伦斯伯克利国家实验室与英国剑桥大学从事博士后研究,2008年起任教于清华大学材料学院。 /p p   主要从事材料的高分辨电子显微学和第一性原理计算研究,在原子尺度探索材料的微观结构、电子状态、及其与宏观性能的相互关联。在Phys. Rev. Lett., Angew. Chem., Acta Mater., Nature Comm.等SCI期刊发表论文90余篇 他引1600余次。 /p p   担任中国晶体学会常务理事,中国电子显微镜学会物理与材料科学专业委员会副主任,中国物理学会固体缺陷专业委员会委员,中国有色金属学会理化检验学术委员会委员,Science China Materials编委,《中国科学:技术科学》青年工作委员会委员等。 /p p strong 报告时间:2016年10月25日下午 /strong /p p a title=" " href=" http://www.instrument.com.cn/webinar/icem2016/index2016.html" target=" _self" span style=" COLOR: #ff0000" img src=" http://www.instrument.com.cn/edm/pic/wljt2220161009174035342.gif" width=" 600" height=" 152" / /span /a span style=" COLOR: #ff0000" /span /p
  • 电镜学堂丨扫描电子显微镜的基本原理(三) - 荷电效应
    这里是TESCAN电镜学堂第三期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能!第四节 各种信号与衬度的总结前面两节详细的介绍了扫描电镜中涉及到的各种电子信号、电流信号、电磁波辐射信号和各种衬度的关系,下面对常见的电子信号和衬度做一个总结,如图2-36和表2-4。图2-36 SEM中常见的电子信号和衬度关系表2-4 SEM中常见的电子信号和衬度关系第五节 荷电效应扫描电镜中还有一种不希望发生的现象,如荷电效应,它也能形成某些特殊的衬度。不过在进行扫描电镜的观察过程中,我们需要尽可能的避免。§1. 荷电的形成根据前面介绍的扫描电镜原理,电子束源源不断的轰击到试样上,根据图2-6,只有原始电子束能量在v1和v2时,二次电子产额δ才为1,即入射电子和二次电子数量相等,试样没有增加也没减少电子,没有吸收电流的形成。而只要初始电子束不满足这个条件,都要形成吸收电流以满足电荷的平衡, i0= ib+is+ia。要实现电荷平衡,就需要试样具备良好的导电性。对于导体而言,观察没有什么问题。但是对于不导电或者导电不良、接地不佳的试样来说,多余的电荷不能导走,在试样表面会形成积累,产生一个静电场干扰入射电子束和二次电子的发射,这就是荷电效应。荷电效应会对图像产生一系列的影响,比如:① 异常反差:二次电子发射受到不规则影响,造成图像一部分异常亮,一部分变暗;② 图像畸变:由于荷电产生的静电场作用,使得入射电子束被不规则偏转,结果造成图像畸变或者出现阶段差;③ 图像漂移:由于静电场的作用使得入射电子束往某个方向偏转而形成图像漂移;④ 亮点与亮线:带点试样经常会发生不规则放电,结果图像中出现不规则的亮点与亮线;⑤ 图像“很平”没有立体感:通常是扫描速度较慢,每个像素点驻留时间较长,而引起电荷积累,图像看起来很平,完全丧失立体感。如图2-37都是典型的荷电效应。图2-37 典型的荷电效应§2. 荷电的消除荷电的产生对扫描电镜的观察有很大的影响,所以只有消除或降低荷电效应,才能进行正常的扫描电镜观察。消除和降低荷电的方法有很多种,这里介绍一下常用的方法。首先,在制样环节就要注意以便减小荷电:1) 缩小样品尺寸、以及尽可能减少接触电阻:这样可以增加试样的导电性。2)镀膜处理:给试样镀一层导电薄膜,以改善其导电性,这也是使用的最多的方法。常用的镀膜有蒸镀和离子溅射两种,常用的导电膜一般是金au和碳,如果追求更好的效果,还可使用铂pt、铬cr、铱ir等。镀导电膜不但可以有效的改善导电性,还能提高二次电子激发率,而且现在的膜厚比较容易控制,一定放大倍数内不会对试样形貌产生影响。不过镀膜也有其缺点,镀膜之后会有膜层覆盖,影响样品的真实形貌的,严重的话还会产生假象,对一些超高分辨的观察或者一些细节(如孔隙、纤维)的测量以及eds、ebsd分析产生较大影响。如图2-38,石墨在镀pt膜后,产生假象;如图2-39,纤维在镀金之后,导致显微变粗,孔隙变小。图2-38 石墨镀金膜之后的假象图2-39 纤维在镀金前(左)后(右)的图像除了制样外,还要尽可能寻找合适的电镜工作条件,以消除或减弱荷电的影响:3) 减小束流:降低入射电子束的强度,可以减小电荷的积累。4) 减小放大倍数:尽可能使用低倍观察,因为倍数越大,扫描范围越小,电荷积累越迅速。5) 加快扫描速度:电子束在同一区域停留时间较长,容易引起电荷积累;此时可以加快电子束的扫描速度,在不同区域停留的时间变短,以减少荷电。6) 改变图像采集策略:扫描速度变快后,图像信噪比会大幅度降低,此时利用线积累或者帧叠加平均可以减小荷电效应同时提升信噪比。线积累对轻微的荷电有较好的抑制效果;帧叠加对快速扫描产生的高噪点有很好的抑制作用,但是图像不能有漂移,否则会有重影引起图像模糊。如图2-40,样品为高分子球,在扫描速度较慢时,试样很容易损伤而变形,而快速扫描同时进行线积累的采集方式,试样完好且图像依然有很好的信噪比。图2-40 高分子球试样在不同扫描方式下的对比7)降低电压:减少入射电子束的能量(降至v2以内)也能有效的减少荷电效应。如图2-41,试样是聚苯乙烯球,加速电压在5kV下有明显的荷电现象,降到2kV下荷电基本消除。不过随着加速电压的降低,也会带来分辨率降低的副作用。图2-41 降低加速电压消除荷电影响8)用非镜筒内二次电子探测器或者背散射电子探测器观察:在有大量荷电产生的时候,会有大量的二次电子被推向上方,倒是镜筒内二次电子接收的电子信号量过多,产生荷电,尤其在浸没式下,此时使用极靴外的探测器,其接收的电子信号量相对较少,可以减弱荷电效应,如图2-42;另外,背散射电子能量高,其产额以及出射方向受荷电的影响相对二次电子要小很多,所以用bse像进行观察也可以有效的减弱荷电效应,如图2-43,氧化铝模板在二次电子和背散射图像下的对比。图2-42 镜筒内(左)和镜筒外(右)探测器对荷电的影响图2-43 SE(左)和BSE(右)图像对荷电的影响9) 倾转样品:将样品进行一定角度的倾转,这样可以增加试样二次电子的产额,从而减弱荷电效应。 除此之外,电镜厂商也在发展新的技术来降低或消除荷电,最常见的就是低真空技术。低真空技术是消除试样荷电的非常有效的手段,但是需要电镜自身配备这种技术。10)低真空模式:低真空模式下可以利用电离的离子或者气体分子中和产生的荷电,从而在不镀膜或者不用苛刻的电镜条件即可消除荷电效应。不过低真空条件下,原始电子束会被气体分子散射,所以分辨率、信噪比、衬度都会有一定的降低。如图2-44,生物样品在不镀导电膜的情况下即可实现二次电子和背散射电子的无荷电效应的观察。图2-44 低真空BSE(左)和SE(右)的效果对比福利时间每期文章末尾小编都会留1个题目,大家可以在留言区回答问题,小编会在答对的朋友中选出点赞数最高的两位送出本书的印刷版。奖品公布上期获奖的这位童鞋,请您关注“TESCAN公司”微信公众号,后台私信小编邮寄地址,我们会在收到您的信息并核实后即刻寄出奖品。【本期问题】低真空模式下,空气浓度高低对消除荷电能力的强弱有什么影响?(快关注微信去留言区回答问题吧~)简介《扫描电子显微镜及微区分析技术》是由业内资深的技术专家李威老师(原上海交通大学扫描电镜专家,现任TESCAN技术专家)、焦汇胜博士(英国伯明翰大学材料科学博士,现任TESCAN技术专家)、李香庭教授(电子探针领域专家,兼任全国微束分析标委会委员、上海电镜学会理事)编著,并于2015年由东北师范大学出版社出版发行。本书编者都是非常资深的电镜工作者,在科研领域工作多年,李香庭教授在电子探针领域有几十年的工作经验,对扫描电子显微镜、能谱和波谱分析都有很深的造诣,本教材从实战的角度出发编写,希望能够帮助到广大电镜工作者,特别是广泛的TESCAN客户。↓ 往期课程,请关注微信查阅以下文章:电镜学堂丨扫描电子显微镜的基本原理(一) - 电子与试样的相互作用电镜学堂丨扫描电子显微镜的基本原理(二) - 像衬度形成原理
  • 透射电镜原位样品杆加热芯片设计原理解析
    透射电镜原位样品杆加热芯片设计原理解析 引言在上一篇文章《透射电镜原位样品杆加热功能 4 大特性解析》里,我们以 Wildfire 原位加热杆为例,为大家详细介绍了 DENS 样品杆加热功能在控温精准、图像稳定、高温能谱、加热均匀四个方面的具体表现。通过这篇文章,相信大家对 MEMS 芯片的优良性能有更进一步的了解。 本文将以透射电镜原位样品杆加热芯片的改变为例,与大家深入探讨芯片加热设计具体的变化细节。 01. 加热线圈的变化 1.1 线圈尺寸缩小,“鼓胀”现象得到明显抑制 图 1:新款芯片 图 2:旧款芯片 仔细观察上图中两款芯片的加热区,可以发现新款芯片的加热线圈要明显比旧款小很多。再观察下面的特写视频我们可以看到,加热线圈的形状也有明显变化。新款的是圆形螺旋,旧款的是方形螺旋。 线圈尺寸缩小后,加热功率减小,由加热所导致的“鼓胀”现象也会得到抑制。所谓“鼓胀”是指芯片受热时,支撑膜在 Z 轴方向上的突起。在透射电镜中原位观察样品时,支撑膜的突起会使得样品脱离电子束焦点,导致图像模糊,不得不重新调焦;甚至有时会漂出视野,再也找不到样品。这样一来,就会错失原位变温过程中那些瞬息即逝的实验现象。 1.2 加热时红外辐射减少 尺寸缩小、加热功率减小,所带来的另一个好处就是加热时红外辐射减少,从而对能谱分析的干扰就会降低。这意味着即便在更高温度下,依然能够进行稳定可靠的能谱分析。 图 3:使用新款芯片时,铂/钯纳米颗粒在高温下的能谱结果。 1.3 温度均匀性提升 此外,形状从方形变为圆形,优化了加热区域的温度分布情况,温度均匀性更好,可以达到 99.5% 的温度均匀度。图 4:新款芯片加热时的温度分布情况 02. 电子透明窗口的变化 2.1 电子透明窗口种类多样化 除了线圈尺寸、形状不同之外,新旧两款芯片所用来承载样品的电子透明窗口也明显不同。旧款设计中,窗口都是形状相同的长条,分布在方形螺旋之间。而在新款设计中,窗口种类则更加多样化,根据形状和位置不同可分为三类窗口,适用于不同的制样需求。 图 5:新款芯片中透明窗口分三类,可以适用于不同的样品需求。 红色窗口:圆形窗口,周围宽敞,没有遮挡,适合以各种角度放置 FIB 薄片。蓝色窗口:位于线圈最中心,加热均匀性最好,周围的金属也可以抑制荷电,适合对温度均匀性要求很高的原位实验,也适合放置易荷电的样品。绿色窗口:长条形窗口,和 α 轴垂直,在高倾角时照样可以观察样品,适合 3D 重构。 总结通过以上图文,我们为大家介绍了采用创新设计之后新款芯片的四大优势,全文小结如下:1. “鼓胀”更小,原位加热时图像更稳定,便于追踪瞬间变化过程。 2. 红外辐射更少,在 1000 ℃ 时,依旧可以进行可靠的能谱分析。 3. 优化线圈形状,抵消了温度梯度,提升了加热区域的温度均匀性。 4. 加热区有三种观察孔,分别适用于 FIB 薄片、超高均匀性受热、大倾角 3D 重构等不同需求。此外,优化后的窗口几何不仅便于薄膜沉积,还可消除滴涂时的毛细效应。这些针对不同需求的细节设计都使得制样更加便捷、高效。
  • 今日抽奖:《集成电路材料基因组技术》+《扫描电镜和能谱仪的原理与实用分析技术》
    仪器信息网2023年10月18-20举办第四届“半导体材料与器件分析检测技术与应用”主题网络研讨会,围绕光电材料与器件、第三代半导体材料与器件、传感器与MEMS、半导体产业配套原材料等热点材料、器件和材料分析、可靠性测试、失效分析、缺陷检测和量测等热点分析检测技术,为国内广大半导体材料与器件研究、应用及检测的相关工作者提供一个突破时间地域限制的免费学习平台,让大家足不出户便能聆听到相关专家的精彩报告。为答谢广大用户,本次大会每个专场都设有一轮抽奖送专业图书活动。今日抽取的专业图书是《集成电路材料基因组技术》和《扫描电镜和能谱仪的原理与实用分析技术》。一、主办单位:仪器信息网&电子工业出版社二、会议时间:2023年10月18-20日三、会议日程第四届“半导体材料器件分析检测技术与应用”主题网络研讨会时间专场名称10月18日全天半导体材料分析技术新进展10月19日可靠性测试和失效分析技术可靠性测试和失效分析技术(赛宝实验室专场)10月20日上午缺陷检测与量测技术四、“半导体材料分析技术新进展”日程时间报告题目演讲嘉宾专场:半导体材料分析技术新进展(10月18日)专场主持人:汪正(中国科学院上海硅酸盐研究所 研究员)9:30等离子体质谱在半导体用高纯材料的分析研究汪正(中国科学院上海硅酸盐研究所 研究员)10:00有机半导体材料的质谱分析技术王昊阳(中国科学院上海有机化学研究所 高级工程师)10:30牛津仪器显微分析技术在半导体中的应用进展马岚(牛津仪器科技(上海)有限公司 应用工程师)11:00透射电子显微镜在氮化物半导体结构解析中的应用王涛(北京大学 高级工程师)11:30集成电路材料国产化面临的性能检测需求桂娟(上海集成电路材料研究院 工程师)午休14:00离子色谱在高纯材料分析中的应用李青(中国科学院上海硅酸盐研究所 助理研究员)14:30拉曼光谱在半导体晶圆质量检测中的应用刘争晖(中国科学院苏州纳米技术与纳米仿生研究所 教授级高级工程师)15:00半导体—离子色谱检测解决方案王一臣(青岛盛瀚色谱技术有限公司 产品经理)15:30宽禁带半导体色心的能量束直写制备及光谱表征徐宗伟(天津大学精密测试技术及仪器国家重点实验室 教授)16:00专业图书介绍及抽奖送书王天跃(电子工业出版社电子信息分社 编辑)五、参会方式本次会议免费参会,参会报名请点击:https://www.instrument.com.cn/webinar/meetings/icsmd2023/ 或扫描二维码报名
  • 日立高新扫描电镜的基本原理和应用技巧--教你成为扫描电镜的应用高手
    近年来,电镜作为科学研究的一个重要手段,被越来越多的研究者接受。日立高新的电镜多年来本着用户第一的信念,获得了广大用户的好评。为了给广大用户提供更好的技术支持,让每一位用户都能用好电镜,日立高新决定利用网络,开展一系列电镜知识普及讲座。 第一次网络讲座将于5月8日下午14:30开讲。观察电镜的过程中,常会碰到这样那样的问题,在本次讲座中,您可以逐步学习到电镜基础知识、观察技巧、前处理方法等,由浅到深,为各种问题提供合适的解决方法。让您今后能更好地操作电镜,相信此次讲座一定可以为您的工作提供很有用的帮助。主讲人:罗琴(日立高新电子显微镜应用工程师)报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInfo.asp?infoID=374关于日立高新: 日立高新技术是一家全球雇员人数超过10,000人,百余处经营网点的跨国公司。 日立高新技术的企业发展目标是"成为独步全球的高新技术/解决方案提供商",即兼有掌握 最先进技术水准的开发、设计、制造能力和满足企业界不同需求的解决方案提供商身份的综合性高新技术公司。 日立高新技术在中国区域除了生产半导体制造设备、液晶制造设备、基板安装设备、 电子显微镜、医用仪器设备外,还从事高新技术工业仪器设备、电力设备、汽车零部件、 半导体设备电子元件、显示器相关产品、光学元件、金属&bull 合成树脂材料及其衍生产品等的销售业务。同时,还积极布局国外,并且提供能够综合、动态管控从国外采购到国外销售诸环节中的信息&bull 物流&bull 资金流程的供应链解决方案。 日立高新在华企业的发展目标涵盖四方面内容,即将"人与技术"作为经营资源的核心内容,推动中国高新产业的发展,维护中国人民的身体健康,满足合作伙伴的需求。我们真诚希望在今后的岁月里继续得到您的支持与厚爱。
  • 扫描电子显微镜的基本原理(一)
    自1965年第一台商品扫描电镜问世以来,经过50多年的不断改进,扫描电镜的分辨率已经大大提高,而且大多数扫描电镜都能与X射线能谱仪等附件或探测器组合,成为一种多功能的电子显微仪器。在材料领域中,扫描电镜发挥着极其重要的作用,可广泛应用于各种材料的形态结构、界面状况、损伤机制及材料性能预测等方面的研究,如图1所示的纳克微束FE-1050系列场发射扫描电镜。图1 纳克微束FE-1050系列场发射扫描电镜场发射扫描电镜组成结构可分为镜体和电源电路系统两部分,镜体部分由电子光学系统、信号收集和显示系统以及真空系统组成,电源电路系统为单一结构组成。1.1 电子光学系统由电子枪、电磁透镜、扫描线圈和样品室等部件组成。其作用是用来获得扫描电子束,作为信号的激发源。为了获得较高的信号强度和图像分辨率,扫描电子束应具有较高的亮度和尽可能小的束斑直径。1.2 信号收集检测样品在入射电子作用下产生的物理信号,然后经视频放大作为显像系统的调制信号。1.3 真空系统真空系统的作用是为保证电子光学系统正常工作,防止样品污染,一般情况下要求保持10-4~10-5Torr的真空度。1.4 电源电路系统电源系统由稳压,稳流及相应的安全保护电路所组成,其作用是提供扫描电镜各部分所需的电源。图3为扫描电镜工作原理示意图,具体如下:由电子枪发出的电子束在加速电压(通常200V~30kV)的作用下,经过两三个电磁透镜组成的电子光学系统,电子束被聚成纳米尺度的束斑聚焦到试样表面。与显示器扫描同步的电子光学镜筒中的扫描线圈控制电子束,在试样表面的微小区域内进行逐点逐行扫描。由于高能电子束与试样相互作用,从试样中发射出各种信号(如二次电子、背散射电子、X射线、俄歇电子、阴极荧光、吸收电子等)。图3 扫描电镜的工作原理示意图这些信号被相应的探测器接收,经过放大器、调制解调器处理后,在显示器相应位置显示不同的亮度,形成符合人类观察习惯的二维形貌图像或者其他可以理解的反差机制图像。由于图像显示器的像素尺寸远大于电子束斑尺寸,且显示器的像素尺寸小于等于人类肉眼通常的分辨率,显示器上的图像相当于把试样上相应的微小区域进行了放大,而显示图像有效放大倍数的限度取决于扫描电镜分辨率的水平。早期输出模拟图像主要采用高分辨照相管,用单反相机直接逐点记录在胶片上,然后冲洗相片。随着电子技术和计算机技术的发展,如今扫描电镜的成像实现了数字化图像,模拟图像电镜已经被数字电镜取代。扫描电镜是科技领域应用最多的微观组织和表面形貌观察设备,了解扫描电镜的工作原理及其应用方法,有助于在科学研究中利用好扫描电镜这个工具,对样品进行全面细致的研究。转载文章均出于非盈利性的教育和科研目的,如稿件涉及版权等问题,请立即联系我们,我们会予以更改或删除相关文章,保证您的权益。
  • 电镜学堂丨电镜使用中,如何选择合适的束斑束流?
    “TESCAN电镜学堂”又跟大家见面了,利用扫描电镜观察样品时会关注分辨率、衬度、景深、形貌的真实性以及其他分析的需要等等,不同的关注点之间需要不同的拍摄条件,有时甚至相互矛盾。今天主要谈一谈电镜使用中如何选择合适的束斑束流? 这里是TESCAN电镜学堂第10期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能! 第三节 常规拍摄需要注意的问题 平时电镜使用者都进行常规样品的观察,常规样品不像分辨率标准样品那么理想,样品比较复杂,而且有时候关注点并不相同。因此我们要根据样品类型以及所关注的问题选择合适的电镜条件。 关注分辨率、衬度、景深、形貌的真实性、其它分析的需要等等,不同的关注点之间需要不同的电镜条件,有时甚至相互矛盾。因此我们必须明确拍摄目的,寻找最适合的电镜条件,而不是贸然的追求大倍数。 电镜的工作条件包括很多,加速电压、束流束斑、工作距离、光阑大小、明暗对比度、探测器的选择等。本期将为大家介绍束流束斑的选择。 §2. 束流束斑的选择 除了加速电压外,束流和束斑也是电镜工作中非常重要的参数。一般来说,束流和束斑并不完全独立,增加束流的同时,由于Boersch效应,必然导致束斑的扩大。所以束流越大,分辨率反而越低,但是信噪比越好。 束流的选择要视具体情况,在拍摄高分辨时,需要较小的束流来获得小束斑;常规倍数可以增加束流来满足信噪比的需要;而对于分析附件,往往需要比图像拍摄大很多的束流。 对于束斑的调节,通常都认为束斑扩大会降低分辨率,如图5-22,但是反之,束斑越小真的就能获得更好的图像吗? 图5-22束斑太大会引起分辨率的下降 看如下一组图,图5-23,左边一组图是5万倍下的图像,左边是小束斑,右边是大束斑,显然小束斑有更好的分辨率,大束斑的图像已经有些模糊。右边一组图是维持束斑大小不变拍摄的1万倍下的图像。本应有着更好的分辨率的小束斑图像却出现了失真,虽然依然有更好的分辨率。但是对于真实性和分辨率之间要根据需要来判断,此时,样品的真实性受到严重影响。 图5-23 相同束斑在不同倍数的对比 为什么会出现这样奇怪的现象?为什么更好的分辨率却没有得到更真实的图像?前面我们已经说到,电子束是由扫描线圈的脉冲信号控制,电子束在试样表面并不是连续扫描,而是逐点跳跃式的扫描。一般扫描电镜的采集像素比较大,我们会误以为是连续扫描。既然扫描电镜是束斑间断跳跃式的轨迹,那么电子束就有一定的覆盖面积。 束斑中心的距离取决于放大倍数和采集像素大小。当束斑较大时,束斑覆盖比较全面;但是当束斑减小时,束斑的覆盖区域也越来越小,所以有的特征形貌会从束斑两个跳跃中心穿过而没有被覆盖到,所以相应的形貌特征也不会反映在图像上,这就造成了信息的丢失。像上述例子,在大倍数小,束斑之间跳跃间距小,足够覆盖特征形貌,但是缩小倍数后,跳跃距离变大,束斑不足以覆盖所有的特征形貌,有的线条就反映不出来,如图5-24。 图5-24 束斑大小与电子束的扫描 电子束的扫描是根据放大倍数和采集像素大小而进行了马赛克的像素化,只要束斑缩小到和单点像素匹配就可以,束斑与束斑之间不会出现太多的重叠而导致分辨率下降。只有束斑与单点像素匹配后,再缩小束斑已经没有意义,不会带来分辨率的提升,相反会引起信息的缺失。由此我们可以得到新的结论,虽然束斑越小理论分辨率越高,但是对于实际拍摄来说,像素和束斑越匹配才是效果越好。 图5-25 束斑和像素的匹配度 图5-25中四张图片对应的束斑和单点像素(绿框)之间的关系,我们可以看出其匹配度和图像质量的关系。像素和束斑的匹配并非指束斑完全小于像素框,束斑可以看成是一个衍射波,中间呈类似高斯分布,只要半高宽和像素大致相等则视为最匹配。而此时束斑的大小是大于像素的。 而且扫描电镜是靠电子束的扫描运动,只要不同像素点覆盖区域的电子产额能够被探测器最有效处理和区分,那电镜图片也就能区分。所以扫描电镜是完全可分辨比束斑更小的细节的,而有点地方说扫描电镜不能区分比束斑更小的说法是不够严密的。束斑是单点像素1.3~2倍左右,都是最佳匹配的条件。 现在我们发现束流的设置应该是随着放大倍数而变换的,对于TESCAN用户来说,比较方便,可以直接从软件中读取当前电镜调节对应的束流,结合视野宽度很容易知道单点像素的大小,从而快速找到束斑与像素匹配的工作条件。既保证了没有信息丢失,又保证了最大的束流强度和信噪比。TESCAN的钨灯丝电镜可以直接右键进行自动束斑大小的设置,如图5-26左,场发射电镜则可以直接在信息栏中输入想要的束斑大小,如图5-26右。如果在束斑设置中输入0,则电子束缩到可能达到的最小值,这主要用于极限分辨率的观察。 图5-26 TESCAN电镜的束斑设置 此外对于EBSD分析也一样,EBSD分析为了追求速度,需要较大束流,而束流增大会增大束斑,导致花样重叠无法标定。而TESCAN用户则可以轻易的根据EBSD的步长来设置束斑大小,确保在不会出现花样重叠的情况下束斑达到最大,采集速度最快。 福利时间每期文章末尾小编都会留1个题目,大家可以在留言区回答问题,小编会在答对的朋友中选出点赞数最高的两位送出本书的印刷版。【本期问题】如何根据像素选择最合适的束斑?(快去微信留言区回答问题领取奖品吧→)奖品公布上期获奖的童鞋,请关注“TESCAN公司”微信公众号在3个工作日内后台私信小编邮寄地址,我们会在收到您的信息并核实后即刻寄出奖品。 TESCAN电镜学堂“有奖问答”奖品 (印刷版书籍1本)简介《扫描电子显微镜及微区分析技术》是由业内资深的技术专家李威老师(原上海交通大学扫描电镜专家,现任TESCAN技术专家)、焦汇胜博士(英国伯明翰大学材料科学博士,现任TESCAN技术专家)、李香庭教授(电子探针领域专家,兼任全国微束分析标委会委员、上海电镜学会理事)编著,并于2015年由东北师范大学出版社出版发行。本书编者都是非常资深的电镜工作者,在科研领域工作多年,李香庭教授在电子探针领域有几十年的工作经验,对扫描电子显微镜、能谱和波谱分析都有很深的造诣,本教材从实战的角度出发编写,希望能够帮助到广大电镜工作者,特别是广泛的TESCAN客户。↓ 往期课程,请戳以下文字或点击阅读原文:电镜学堂丨扫描电子显微镜的基本原理(一) - 电子与试样的相互作用电镜学堂丨扫描电子显微镜的基本原理(二) - 像衬度形成原理电镜学堂丨扫描电子显微镜的基本原理(三) - 荷电效应电镜学堂丨扫描电子显微镜的结构(一) - 电子光学系统电镜学堂丨扫描电子显微镜的结构(二) - 探测器系统电镜学堂丨扫描电子显微镜样品要求及制备 (一) - 常规样品制备统电镜学堂丨扫描电子显微镜样品要求及制备 (二) - 特殊试样处理&试样放置 电镜学堂丨扫描电镜的基本操作 & 分辨率指标详解电镜学堂丨电镜操作之如何巧妙选择加速电压?电镜学堂丨电镜使用中,如何选择合适的束斑束流? 更多详情内容请关注“TESCAN公司”微信公众号查看
  • 【电镜视频大赛】国仪量子扫描电镜超多细节大揭秘
    电镜被誉为“人类的第三只眼睛”,经过近百年的发展,已成为物质微观结构分析的重要手段。为帮助更多用户了解电镜这一技术,以及电镜的应用场景、电镜厂商及品牌等,仪器信息网特发起此次【电镜视频征集】有奖征集活动,广大电镜用户及厂商均可免费参与。点击查看活动详情及更多投稿作品↑↑↑ 下面是来自国仪量子的投稿视频。视频中,该应用工程师逻辑清楚、简单清晰的为大家介绍了这款SEM 3100钨灯丝扫描电镜的实物结构及其工作原理等知识。点击下方视频,观看仪器性能大揭秘,那些你想知道的扫描电镜细节都在这里~视频地址:https://bbs.instrument.com.cn/topic/8055119还有更详细的产品介绍及应用案例,请点击↓↓↓视频地址:https://bbs.instrument.com.cn/topic/8056100点击上方视频链接,为TA打call吧,点赞/留言/收藏,助TA赢取活动大奖~以下是视频中介绍的SEM 3100钨灯丝扫描电镜国仪量子扫描电子显微镜SEM3100公司简介:国仪量子(合肥)技术有限公司是一家以量子精密测量为核心技术的国家级高新技术企业,为全球范围内企业、政府、研究机构提供以增强型量子传感器为代表的核心关键器件、用于分析测试的科学仪器装备、赋能行业应用的核心技术解决方案等产品和服务。公司面向先进材料、半导体、量子科学、生命技术、医药和临床研究等领域,致力于帮助客户更高效地推动技术的发展、探索人类的未来。════════════════════════════════▼▼▼═══════════════════════════════电镜视频征集活动“火热”进行中参赛方式:1、点击链接https://bbs.instrument.com.cn/forum_89.htm,进入发帖页面,在该版面发布新帖,如下图所示。2、按照下图中格式填写,并上传视频,发布。待后台审核通过(约2-3h)后,即可在电镜版面展示,并同步更新至专题作品展示模块。奖项设置:本次活动面向广大用户及厂商均可免费参与,更有多重好礼(环球影城门票、百元京东卡)及热门广告位等你来拿!点击下方图片了解活动详情↓↓↓
  • 扫描电镜能谱技巧分享|4种方法提高扫描电镜能谱的准确性
    扫描电镜能谱技巧分享|4种方法提高扫描电镜能谱的准确性能谱(EDS)结合扫描电镜使用,能进行材料微区元素种类与含量的分析。其工作原理是:各种元素具有自己的 X 射线特征波长,特征波长的大小则取决于能级跃迁过程中释放出的特征能量 E,能谱仪就是利用不同元素 X 射线光子特征能量不同这一特点来进行成分分析的。 能谱定量分析的准确性与样品的制样过程,样品的导电性,元素的含量以及元素的原子序数有关。因此,在定量分析的过程中既有一些原理上的误差(数据库及标准),我们无法消除,也有一些人为因素产生的误差(操作方法),这些因素都会导致能谱定量不准确。 飞纳能谱面扫01 根据衬度变化判断元素的富集程度 利用能谱分析能够根据衬度变化判断元素在不同位置的富集程度。 如图 1,我们获得了材料的背散射图像以及能谱面扫 Si 的分布图,其中 Si 含量为20.38%。在背散射图及面扫图中,可以看到不同区域衬度不同,这是不同区域 Si 含量不同造成的。我们选取了点 2-7,其点扫结果 Si 含量分别为 19.26%、36.37%、18.06%、1.54%、20.17%、35.57%。 这种通过衬度判断元素含量的方法在合金(通过含量进而推断合金中含有金相的种类,不同的金相含有的某种元素有固定的含量区间),地质(通过含量判断矿石等的种类)等行业有广泛的应用。 图1. 左图为材料背散射图及能谱点扫位置,右图为能谱面扫 Si 含量的分布 02 判断微量元素的分布 利用能谱,可以寻找极微量元素在材料中分布的具体位置,先通过面扫进行微量元素分布位置的判断,然后通过点扫确定。 如下图,左边为背散射图像,右边分别对应 Al、Cr、Fe、Mg、Si、Ca、Ti、P,它们的含量如表 1,通过能谱面扫描分析得到各元素含量,其中 P 的含量为 0.09%。 图2. 材料的背散射图及 Al、Cr、Fe、Mg、Si、Ca、Ti、P 元素的分布 表1. 图 2 中 Al、Cr、Fe、Mg、Si、Ca、Ti、P 元素含量 工程师对样品进行点扫确认,位置 7 是面扫结果P元素富集区,其各元素分布如表 2,这个位置的P含量高达 14.56%,局部含量比整体含量高 160 倍。 图3. 背散射图像及样品点扫位置 表2. 样品点扫位置 7 各元素的含量飞纳台式扫描电镜获得高质量面扫结果的原因1. 灯丝亮度决定能谱信号的强度,飞纳电镜采用 CeB6 灯丝,具有高亮度,可以获得高强度的能谱信号。 2. 采用新型 SDD 窗口材料 Si3N4,提高了穿透率,透过率由 30% 提高到 60%。比传统聚合物超薄窗透过率提高 35% 以上。 3. 采用 Cube 技术提高响应速度(计数率)并降低了噪音(分辨率提高),是国际上处理速度最高的能谱系统,解决了计数率与分辨率的冲突。 如图 4 所示,飞纳电镜能谱一体机可以获得更高计数率与更高分辨率的能谱结果。 图4. 飞纳能谱结果 飞纳电镜能谱一体机 Phenom ProX 不需要液氮、制冷速度快、信号强度大、分辨率高、体积和重量小,真空密封性高,可以使用更少的能量获得更低的温度。尺寸更为紧凑,适用于不同环境需求。小技巧 - 如何提高能谱的准确性能谱使用前要校准保证样品平整保证分析区域均质、无污染保证样品导电性、导热性良好
  • 高端!当电镜走进这些中小学课堂
    经过数十年的发展,电镜已经成为现代科学技术中不可缺少的重要工具,材料、生物、医学、冶金、化学和半导体等各个科研领域都离不开它。随着科研工作条件的不断改善,以及电镜技术的不断智能化、操作简单化,电镜技术逐渐在更多科研工作者的工作中得到应用,但同时,也有许多高校没有配置这种科研设备,尤其是高性能电镜。很难想象,电镜这类许多高校学生都较少触及的科研级设备能够走进中小学生的视野,有趣的是,日立的“日立理科教室”活动便将电镜搬进了中小学课堂,而且这项活动已经在全球多个国家开展了超过30年。近日,一个“日立理科教室”将电镜搬进美国一所小学课堂的视频广受关注,电镜的到来,让学生们“大开眼界”:“从来没这样观察过事物”孩子们兴奋地表示。将电子显微镜带往学校,这一过程虽困难重重,但却感动了美国乃至世界上其他地方的学校。“我希望通过显微镜激发孩子们的求知欲。”日立高新技术(美国)有限公司 罗伯特戈登先生这样说到。他把先进的电子显微镜送到学校,让孩子们以全新的角度来观察身边的事物,以此分享科学的乐趣。“电子显微镜让我们看到许多肉眼看不见的自然产物——树叶的断面、砂砾的内部、蚊子的口器… … 放大十万倍甚至几十万倍,世界竟然会变得如此不同。” 罗伯特戈登先生介绍道,“这种魅力,使得孩子们纷纷为之着迷。”将电镜搬进中国中小学课堂据悉,2016年起日立将“理科教室活动”项目带入中国,培训现地员工,开展对中小学生的讲解活动。迄今这一项目已陆续在上海、大连、苏州、深圳等多所中小学校开展,逾两千名中小学生已通过日立“理科课堂”开启了他们的微观世界之旅。2019年9月, “日立理科教室”活动将日立电镜搬进上海华二初级中学教室, 252名初一学生与电镜零距离接触2020年11月,日立电镜走进北京日本人学校,与中学生们零距离接触中小学学生们学习电镜、应用电镜课堂上,志愿者老师用生动、幽默、通俗的语言讲解科学原理,使枯燥的知识趣味化。借助能够把物体放大3万倍的日立电子显微镜,学生们得以在前所未见的微观世界探索生物的奥秘,求知欲望被充分激发。学生们依次观察头发(1000倍)、蚊子口器(3000倍)、叶孔(1000倍)、荷叶(1500倍)等日常所见的事物在微观视角下的神奇景象搬进课堂的日立电子显微镜 TM3030关于日立“理科教室活动”自1990年起,日立使用自产的台式电子显微镜在全球展开“理科教室活动”,利用电子显微镜可放大十几倍乃至上万倍的优异性能,引领学生们观察头发、蚊子、荷叶等日常所见的事物在微观视角下的神奇景象。“理科教室活动”带领青少年探秘已知事物中的未知世界。课程针对不同年龄阶段的学生设置了不同的学习内容。对小学生重在演示,引起对自然科学的兴趣;针对中学生的授课则重在讲述科学原理、展示科研的成果与用途。“ 让肩负着科学的未来的孩子们对科学更感兴趣”是开展 “理科教室活动”这一项目的初衷。加强基础学科科研人才培养,培养综合素质优秀或基础学科拔尖的学生,造就科技关键领域人才。
  • 【电镜视频大赛】中科科仪电镜科普视频,带你探索微观世界
    电镜被誉为“人类的第三只眼睛”,经过近百年的发展,已成为物质微观结构分析的重要手段。为帮助更多用户了解电镜这一技术,以及电镜的应用场景、电镜厂商及品牌等,仪器信息网特发起此次【电镜视频征集】有奖征集活动,广大电镜用户及厂商均可免费参与。点击查看活动详情及更多投稿作品↑↑↑本次为大家介绍的是来自中科科仪的投稿视频。视频从科普的角度为我们描述了扫描电镜的原理,及其与光学显微镜的区别,并展示了扫描电镜在新能源、新材料、半导体、生物医药、冶金矿业、建筑、化工、陶瓷等领域中的应用案例。同时,也为我们展示了中科科仪KYKY-EM8100场发射扫描电镜的整体构造,仪器性能、使用操作等。该仪器还可提供多样化的定制方案,如扫描电镜联用系统:镀膜机、飞秒激光、原子力显微镜等。一起来观看视频,了解一下吧~~~电镜科普视频:探索微观世界——中科科仪↓↓↓视频地址:https://bbs.instrument.com.cn/topic/8056359KYKY-EM8100场发射枪扫描电子显微镜——中科科仪↓↓↓视频地址:https://bbs.instrument.com.cn/topic/8056349点击视频链接,为TA打call吧,点赞/留言/收藏,助TA赢取活动大奖~ 公司简介:北京中科科仪股份有限公司(简称中科科仪),始建于1958年。六十余年的发展历程中,曾参与“两弹一星”、正负电子对撞机、江门中微子实验室、高能同步辐射光源(HEPS)等国家重大工程和科研项目,成功研制出我国第一台扫描电子显微镜、第一台涡轮分子泵、第一台商用氦质谱检漏仪。中科科仪坚持创新引领,是2014年中宣部七家“创新驱动发展典型”之一。凭借雄厚的技术创新实力,2014年,被评为国家级企业技术中心,也是首批通过的国家级高新技术企业。2021年,获评国家级与北京市“专精特新”小巨人企业,并获重点支持。中科科仪是国内尖端科学仪器设备及真空技术领军者。新产品研发成果始终代表中国高端电子光学仪器和真空技术最高水平,业务领域覆盖扫描电子显微镜、氦质谱检漏仪等科学仪器和分子泵、真空应用设备等产业设备及核心零部件。══════════════════════════════▼▼▼══════════════════════════════电镜视频征集活动“火热”进行中参赛方式:1、点击链接https://bbs.instrument.com.cn/forum_89.htm ,进入发帖页面,在该版面发布新帖 ,如下图所示。2、按照下图中格式填写,并上传视频,发布。待后台审核通过(约2-3h)后,即可在电镜版面展示,并同步更新至专题作品展示模块。奖项设置:本次活动面向广大用户及厂商均可免费参与,更有多重好礼(环球影城门票、百元京东卡)及热门广告位等你来拿!点击下方图片了解活动详情↓↓↓
  • 电镜学堂丨电镜操作之如何巧妙选择加速电压?
    “TESCAN电镜学堂”又跟大家见面了,利用扫描电镜观察样品时会关注分辨率、衬度、景深、形貌的真实性、其他分析的需要等等,不同的关注点之间需要不同的拍摄条件,有时甚至相互矛盾。 今天主要谈一谈如何根据样品类型以及所关注的问题选择合适的加速电压? 这里是TESCAN电镜学堂第9期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能! 第三节 常规拍摄需要注意的问题 平时电镜使用者都进行常规样品的观察,常规样品不像分辨率标准样品那么理想,样品比较复杂,而且有时候关注点并不相同。因此我们要根据样品类型以及所关注的问题选择合适的电镜条件。 关注分辨率、衬度、景深、形貌的真实性、其它分析的需要等等,不同的关注点之间需要不同的电镜条件,有时甚至相互矛盾。因此我们必须明确拍摄目的,寻找最适合的电镜条件,而不是贸然的追求大倍数。 电镜的工作条件包括很多,加速电压、束流束斑、工作距离、光阑大小、明暗对比度、探测器的选择等。这一期将为大家介绍加速电压的选择。 §1. 加速电压的选择 任何电镜都是加速电压越高分辨率越高,但并不意味着任何试样都是电压越大越好。电压的选择是电镜中各个工作条件中最重要的一个。有各种因素需要考虑,而各个因素之间也有矛盾相悖的,这个时候还需要适当进行综合考虑或者采取其它办法。 ① 样品损伤和荷电因素 选择的加速电压不能对试样产生明显的辐照损伤或者荷电,否则观察到的图像不是试样的真实形貌。如果有荷电的产生,需要将电压降至到V2以下,这点在前面电荷效应中已经详细阐述,这里不再重复。 对于金属等导电导热均良好的试样,可以用较高的电压进行观察,如10kV及以上;对于一些导电性不是很好但是比较稳定的试样,可以中等加速电压,如5kV左右;对一些容易损伤的样品,比如高分子材料、生物材料等,可能需要较低的电压,如2kV或以下。 ② 电子产额因素 对于单相材料来说,因为成分没有差别,我们选择电子产额最大的区间V1~V2即可,但是对于混合物相材料来说,我们希望在有形貌衬度的同时还能有较好的成分衬度,这样的图片显得衬度更好,信息量也最大,往往我们也会认为这样的图片最清晰。因此我们需要选择二次电子产额相差较大的区域进行拍摄。 如图5-13,左图是碳和金的二次电子产额,中间图片是金颗粒在1kV下的二次电子图像,右图是200V下的二次电子图像。显然,在200V下碳和金的产额一样,所以此时拍摄的图像仅呈现出形貌上的差别,而碳和金的成分差异无论怎么调节明暗对比度也不会出现。而在1kV下,碳和金的电子产额差异达到最大,所以除了形貌衬度外,还表现出极好的成分衬度。 图5-13 金和碳在电子产额(左)及1kV(中)、200V(右)电压下的SE图像 对于一些金属材料来说,往往较高的加速电压下有相对较大的产额差异,而对于一些低原子序数试样,较低的电压往往电子产额差异更大。 如图5-14,试样为碳银混合材料。左图为5kV SE图像,右图为20kV SE图像。5kV下不但能表现出比20kV更好的成分衬度,还有更好的表明细节。 图5-14 碳银混合材料在5kV(左)、20kV(右)电压下的SE图像 如图5-15,试样为铜包铝导线截面,左图为5kV SE图像,右图为20kV SE图像。20kV下能够更好的将外圈的铜层和内部的铝层做更好的区分。 图5-15 铜包铝导线截面在5kV(左)、20kV(右)电压下的SE图像 对于有些本身差别很小的物相,如果能找到二次电子产额差异最大所对应的电压,也可将其区分。当然有的产额没有参考曲线,需要经过诸多尝试才能找到。比如图5-16,试样为掺杂半导体基底上的本征半导体薄膜,其电子产额差异在1kV达到最大,对应1kV的图像能将两层膜就行区分,而其它电压则没有太好的衬度。 图5-16 半导体薄膜在不同电压下的衬度对比 ③ 衬度的平衡 虽然通过上一点提到的加速电压的选择可以将成分衬度达到最大,但有时该条件并不是观察形貌最佳的电压。此时我们需要考虑究竟是注重形貌还是注重成分衬度,使用二次电子来进行观察,还是用背散射电子进行观察,或者用折中的办法进行观察。这都需要操作者根据电镜照片想说明的问题来进行选择。 要获得好的形貌衬度图像和原子序数图像所需的电压条件一般都不一样,也有另外的办法可以适当解决。对最佳形貌衬度和最佳原子序数衬度单独拍摄照片,后期在电镜软件中通过图像叠加的方式,将不同的照片(位置需要完全一样)按照一定的比例进行混合,形成一张兼有两者衬度的图片。 ④ 有效放大率因素 一般电镜在不同的电压下都有着不一样的极限分辨率,其对应的有效放大率也随之而改变。拍摄特定倍数的电镜照片,特别是高倍照片,需要选择电压对应的有效放大率能够达到需求。否则,视为图像出现了虚放大。虚放大后,图像虽然也在放大,但是并没有出现更多的信息,而且虚放大而会有更多环境因素的影响。 所以如果出现虚放大,可以提高加速电压,以增加有效放大率;如果电压不能改变,可以考虑增加图像的采集像素,来获得类似放大的效果。此时受环境因素或者样品损伤因素更小。 ⑤ 穿透深度因素 前面已经详细的讲述了加速电压和电子散射之间的关系。加速电压越高,能量越大,电子的散射区域就越大。那么产生的二次电子或背散射电子中,从更深处发射的比例则更多。因此较大的加速电压虽然有更好的水平方向的分辨率,但是却忽略了试样很多的表面细节;而低电压虽然水平方向分辨率相对较差,但是却对深度方向有着更好的灵敏度,可以反映出表面更多的形貌细节。 如图5-17,试样为表面修饰的二氧化硅球,5kV电压看不出任何表面细节,而2kV下则能观察到明显的颗粒。再如图5-18,纳米颗粒粉末在不同电压下的表现,因为颗粒团聚严重,所以在5kV电压下无法将团聚颗粒很好的区分,显得粒径更大,而1kV下则能观察到相对更细小的颗粒。 图5-17 SiO2球在5kV(左)、1kV(右)电压下的图像 图5-18 纳米颗粒在5kV(左)、1kV(右)电压下的图像 当加速电压降低到200V左右的超低水平后,电子束的作用区域变得很小,常规的边缘效应或者尖端效应基本可以去除,如图5-19。 图5-19 200V左右的电压可以消除边缘效应 更多详情内容请关注“TESCAN公司”微信公众号
  • 5月电镜讲座精彩回顾
    1.2021春季研讨会12场国外专题讲座该讲座由TESCAN欧洲总部发起,邀请到多个领域的专家进行每周一讲,分享的话题涵盖地球科学、材料科学、生命科学和半导体等各行业应用。例如:通过等离子FIB刻蚀和激光烧蚀,更高效完成毫米级半导体失效分析;如何助力生命科学领域的大体积分析;以及可靠的冷冻透射样品制备,等等。干货满满受到广泛关注!往期视频,都已收录在TESCAN的“中国电镜用户之家”。详请搜索”中国电镜用户之家“ 查看。2.双束电镜基础原理与分析应用线上课程感谢科学指南针平台和大家的热情参与,通过此线上讲座,有关双束电镜的样品制备、微纳加工、三维重构、联动成像,2小时理顺讲透。如果后悔错过此次机会,请搜索“中国电镜用户之家” ,进入观看视频,弥补遗憾哦。3. 拉曼图像-扫描电子显微镜联用技术论坛有幸与上海交大分析测试中心合作,并邀请到国内具有影响力的学者和行业内知名专家,齐聚一堂,共同探讨了RISE拉曼扫描电镜联用技术在以下方面的最新应用:- 石墨烯 - 热障涂层- 锂电池- 多种材料表征应用想听大咖们的演讲,请搜索“中国电镜用户之家”,进入视频页面。拥抱电镜知识,拥抱未来!搜索”“中国电镜用户之家”,查看更多内容。
  • 工作距离的选择,对电镜拍摄会有什么影响?
    “TESCAN电镜学堂”又跟大家见面了,利用扫描电镜观察样品时会关注分辨率、衬度、景深、形貌的真实性以及其他分析的需要等等,不同的关注点之间需要不同的拍摄条件,有时甚至相互矛盾。今天主要谈一谈电镜拍摄时工作距离的选择。 这里是TESCAN电镜学堂第11期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能! 第三节 常规拍摄需要注意的问题 平时电镜使用者都进行常规样品的观察,常规样品不像分辨率标准样品那么理想,样品比较复杂,而且有时候关注点并不相同。因此我们要根据样品类型以及所关注的问题选择合适的电镜条件。 关注分辨率、衬度、景深、形貌的真实性、其它分析的需要等等,不同的关注点之间需要不同的电镜条件,有时甚至相互矛盾。因此我们必须明确拍摄目的,寻找最适合的电镜条件,而不是贸然的追求大倍数。 电镜的工作条件包括很多,加速电压、束流束斑、工作距离、光阑大小、明暗对比度、探测器的选择等。本期将为大家介绍工作距离的影响。 §3. 工作距离的影响① 分辨率由前面的束斑尺寸公式我们就已经得知,不管任何电镜、任何电压束流条件,都是工作距离越近,分辨率越好。不过工作距离越近,操作越危险,需要操作者较为小心,避免试样碰撞极靴。而且工作距离越近,试样允许的倾转角度也受到更大的限制。② 景深除了分辨率外,有时候景深也是电镜图片非常重要的因素,特别是当倍数较大时,景深会大幅度缩小,试样稍有起伏则不能全部聚焦清楚。 景深有如下公式可以表示: 其中M为放大倍数、D为工作距离、d为电子束直径、α为光阑孔径。TESCAN所有的电镜都可以从软件中读取当前工作条件下的景深,如图5-27。 图5-27 TESCAN软件直接读取景深 从景深公式中我们可以知道,影响景深的几个工作参数: 工作距离越大,景深越大;加速电压越大,电子束直径越小,景深越大;束流越小,电子束直径越小,景深越大;光阑孔径越小,景深越大;放大倍数越小,景深越大。 另外,TESCAN电镜具有独特的景深模式,通过中间镜和物镜的聚焦配合,能够增加高倍数下的景深。此外,无磁场模式的景深要好于磁浸没式。 图5-28是不同距离下的景深效果,可以明显的看出长工作距离下的景深优于短工作距离,但是工作距离过长会导致分辨率的下降。 图5-28 工作距离对景深的影响③ 衬度与工作距离的影响 对背散射电子来说,工作距离还会引起衬度的不同。工作距离较远时,极靴下背散射电子探测器的接收立体角较小,相对接收更高角的背散射电子信号;距离较近时,立体角变大,可以接收更多的低角背散射电子信号。图5-29,试样是抛光的金属镍,测试了不同区域的灰度值,可以发现工作距离较近时,不同的晶粒的灰度值相差更大,通道衬度更好。 图5-29 工作距离与背散射电子衬度④ 物镜模式和附件的要求 采用半磁浸没式物镜时(MAIA的Depth或Resolution模式),需要较近的工作距离。半浸没式物镜的磁场仅在物镜附近,工作距离远了磁场不能将试样表面包住,使得电子束不能很好的聚焦到试样表面。因此在这种工作模式下,工作距离最好小于7mm。如果插入了极靴下背散射电子探测器,由于探测器本身具有一定的厚度,所以工作距离也不能太近,否则会撞上探测器。插入极靴下背散射探测器的情况下,工作距离要大于6mm。如果工作距离更近了,可以拔出极靴下背散射探测器,改用镜筒内背散射电子探测器进行观察。在使用减速模式或者镜筒内二次电子探测器时,也需要相对较小的工作距离。 电镜的其它附件,比如EDS/WDS,由于这些附件自带准直器,需要有特定的工作距离,不在此工作距离下,附件会因为没有信号而不能正常工作。 福利时间每期文章末尾小编都会设置1个问题,大家可以在留言区自由作答,每期在答对的朋友中我们会选出点赞数最高的两位送出本书的印刷版。【本期问题】工作距离对背散射电子成像会有怎样的影响?(快去留言区回答问题领取奖品吧↓)奖品公布上期获奖的两位用户@Yuki@Organometallics,请在3个工作日内后台私信小编邮寄地址,我们会在收到您的信息并核实后即刻寄出奖品。电镜学堂“有奖问答”奖品 (印刷版书籍1本)简介《扫描电子显微镜及微区分析技术》是由业内资深的技术专家李威老师(原上海交通大学扫描电镜专家,现任TESCAN技术专家)、焦汇胜博士(英国伯明翰大学材料科学博士,现任TESCAN技术专家)、李香庭教授(电子探针领域专家,兼任全国微束分析标委会委员、上海电镜学会理事)编著,并于2015年由东北师范大学出版社出版发行。本书编者都是非常资深的电镜工作者,在科研领域工作多年,李香庭教授在电子探针领域有几十年的工作经验,对扫描电子显微镜、能谱和波谱分析都有很深的造诣,本教材从实战的角度出发编写,希望能够帮助到广大电镜工作者,特别是广泛的TESCAN客户。↓ 往期课程,请戳以下文字或点击阅读原文:电镜学堂丨扫描电子显微镜的基本原理(一) - 电子与试样的相互作用电镜学堂丨扫描电子显微镜的基本原理(二) - 像衬度形成原理电镜学堂丨扫描电子显微镜的基本原理(三) - 荷电效应电镜学堂丨扫描电子显微镜的结构(一) - 电子光学系统电镜学堂丨扫描电子显微镜的结构(二) - 探测器系统电镜学堂丨扫描电子显微镜样品要求及制备 (一) - 常规样品制备统电镜学堂丨扫描电子显微镜样品要求及制备 (二) - 特殊试样处理&试样放置 电镜学堂丨扫描电镜的基本操作 & 分辨率指标详解电镜学堂丨电镜操作之如何巧妙选择加速电压?电镜学堂丨电镜使用中,如何选择合适的束斑束流? 更多详情内容请关注“TESCAN公司”微信公众号查看
  • 天美公司在中科院遗传所举办电镜应用讲座
    中国科学院遗传与发育生物学研究所(简称遗传发育所)是植物基因研究、分子农业生物学和发育生物学方面的国内权威研究机构。在对各类植物叶片、孢子等生物样品进行微观观察的实验中,扫描电镜及其相关制样设备是不可或缺的科学仪器。遗传发育所在2005年购入日立S-3000N钨灯丝扫描电镜及临界点干燥仪、离子溅射仪等,为所内外研究人员进行微观形貌观察实验提供了便利条件。受遗传发育所电镜实验室田彦宝老师邀请,为了相关人员更好的利用扫描电镜服务科研,天美公司电镜应用工程师程路2010年12月1日在所内举办了扫描电镜应用讲座和上机培训。 天美公司电镜应用工程师程路做电镜理论讲解 中科院遗传发育所内外的师生参加扫描电镜应用讲座 作为一次对外开发的电镜应用讲座,除了遗传发育所对电镜应用感兴趣的师生之外,附近的中科院动物所和一些公司的研究人员也来参加听讲。讲座的内容包括电镜的基本原理,操作基础和针对应用目的的参数设置。 上午讲座结束之后,遗传发育所电镜实验室田彦宝老师将部分想参加电镜上机练习的人员分为两组,让大家有机会去扫描电镜实验室参观并亲手操作实验室仪器。下午电镜应用工程师程路分别给两组师生介绍了电镜制样设备日立临界点干燥仪和离子溅射仪的功能原理,讲解了日立S-3000N的硬件结构和基本操作步骤。然后在工程师的指导之下,大家每人都有自己动手使用扫描电镜观察样品的机会。有些博士带来了自己的样品,在工程师的帮助之下,使用扫描电镜获得了非常满意的图像,并表示通过此次培训,对扫描电镜的应用操作有了更深的了解,学习收获很多。 电镜应用工程师在调试扫描电镜 参加培训的师生在工程师的指导之下亲手操作扫描电镜 日立S-3000N是一款带有低真空功能的前一代钨灯丝扫描电镜,目前在售的替代型号是日立S-3400N扫描电镜。日立S-3400N性能优异,深受广大用户的肯定,在中国大陆的销售量已超过160台。天美公司是日立科学仪器公司在亚太地区重要的行销合作伙伴,有充足的专业技术人员和完善的售后服务体系。
  • 今日下午“电镜学堂”直播,停工停产不停学!
    2022,是不平凡的一年,全国疫情卷土重来,上海、北京等城市相继受到停工停产的影响。借此,“TESCAN电镜学堂”除了以文章形式供用户学习之外,现还推出直播系列。我们将邀请各领域产品专家和大家分享电镜的理论知识等一系列干货,帮助广大电镜工作者,深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能!第一期的直播,如果您不小心错过了,跟着小编来回顾下精彩内容:【掌握扎实的基础理论,迈向成功第一步】要点回顾:✔ 扫描电镜工作原理;✔电子束的作用与产生的信号;✔ 电反差(衬度)的形成和类别;以上知识点get到了吗?今日预告:《扫描电镜拍摄参数如何优化》,今天下午14-15点与您不见不散~
  • IMC 2014聚焦电镜仪器与技术
    仪器信息网讯 2014年9月7日-12日,第18届国际显微学会议将在捷克共和国首都布拉格举行。该会议每4年举办一次,此次会议报告包括四个方面的主题:仪器及技术、材料科学、生命科学、交叉学科。其中仪器及技术专场下设了电子光学和光学元件、高分辨率TEM和STEM、超高分辨率光学显微镜和纳米显微成像、扫描电子显微镜等17个分会场。   分会场1:电子光学和光学元件   电子源和电子光学元件对显微镜的性能起着关键作用。该研讨会将关注所有类型的电子源,如脉冲源或光电发射源,以及高亮度枪、单色器、像差校正器、能量过滤器、基于新检测原理的检测器,分束器和偏转器,信号转换器等。   分会场2:高分辨率TEM和STEM   该研讨会涵盖像差校正、抑制漂移和不稳定性、镜筒屏蔽、离域问题、原子分辨率点缺陷、原子位置的测量、辐照损伤的证明与抑制、低剂量成像、成像模式的结合、STEM多通道检测等。   分会场3:超高分辨率光学显微镜和纳米显微成像   该研讨会聚焦于光学显微镜的前沿方法进展。包括PSF工程技术,4PI显微镜,受激发射损耗显微镜(STED)、随机光学重建显微镜(STORM)、光敏定位显微镜(PALM)等,以及采用类似原理的显微镜,如结构照明显微镜,近场光学显微镜,TIRF等。   分会场4:扫描电子显微镜   该研讨会将主要关注提升分辨率的方法,进行低能量甚至非常低的能量下的操作,多通道检测,以及包括FIB技术的数据采集、处理和可视化。另外,研讨会还涵盖能量/角度敏感探测器、传输模式、表面处理和原位处理,近场发射扫描电子显微镜等。   分会场5:分析电子显微镜   该研讨会将探讨通过分析技术,包括电子能量损失谱(EELS)、高分辨率元素分布、以及近边精细结构谱,可以使得TEM、STEM、SEM的背散射电子像、二次电子像、透射电子像以及前向散射电子像得到显著增强。   分会场6:环境电镜   该研讨会将探讨环境扫描电镜、环境透射电镜的各个方面,如加热、冷却、气体处理、电子束诱导沉积、刻蚀、蒸发的动力学现象、冷凝、熔化和凝固、气体中带电粒子束的行为、电子检测等,以及样品湿度控制及相关话题。   分会场7:原位及冷冻显微技术   该研讨会将关注在高温、强电场和强磁场条件下的原位实验,原位纳米压痕和变形,在电子、激光及其他辐照条件下观察动态现象,以及相关的仪器。另外,TEM,STEM和SEM在低温及超低温度下,冷冻阶段所涉及的各方面问题,如表面凝结,原位低温压裂和切割,局部温度的测量等也将被关注。   分会场8:超快显微技术   该研讨会将专门关注利用时间分辨显微技术,飞行时间技术观察动态现象,飞秒激光的应用、光发射电子显微镜(PEEM)和低能电子显微术(LEEM)中的同步加速器、4D成像、用于像差校正的时间分辨成像,基于电子计数和超快采集的二维图像技术等。   分会场9:电子衍射技术   该研讨会将关注会聚束电子衍射(CBED)、纳米束衍射(NBD)、旋进电子衍射(PED)和时间分辨电子衍射方法及应用,以及EBSD的所有相关内容。   分会场10:电子断层成像   该研讨会关注先进技术包括:断层成像的新图像模式、用于定量和准确度重建的新算法、以及破坏性和非破坏性成像技术。   分会场11:电子全息成像及lens-less成像   除了传统的电子显微镜成像方法,研讨会还将关注离轴和在线全息技术,原子分辨率级的全息术,相位移和微弱信号的测量,洛伦兹电镜和相差显微镜。其他还将关注相位恢复和图像重构算法的进展、全息技术的应用、X-ray spectro-holography、低能电子点源显微镜、少透镜光学显微镜、数字全息显微镜和光学相干断层扫描。   分会场12:表面显微技术   该研讨会的核心主题是基于阴极物镜的超高压表面电镜技术和仪器。这包括LEEM,镜式电子显微镜、各种模式的PEEM(UV-PEEM,激光PEEM,同步加速器辐射XPEEM),具有磁性或化学敏感性的电镜,以及其他场发射电镜等,重点关注高空间分辨率和光谱分辨率。   分会场13:聚焦离子束显微镜及技术   该研讨会探讨的内容将包括离子源(镓,氙等),离子光学器件,二次离子质谱法(SIMS),注气系统(GIS),三维聚焦离子束断层扫描和化学分析,微加工和样品制备,生物材料的聚焦离子束分析,离子/固体相互作用,以及新的应用和仪器。   分会场14:扫描探针显微镜和近场显微镜   该研讨会将探讨扫描探针仪器和方法,STM、SFM、MFM和SPM的应用,使用SPM作为操纵纳米结构或加工的工具,近场电子显微技术和近场光学显微技术的结合等。   分会场15:X射线、中子和其他显微技术   该研讨会将探讨X射线光学、X射线显微学和成像、相位衬度成像、光谱成像、傅里叶变换全息方法、中子束等。   分会场16:电镜理论和模拟   基于计算机的分析和模拟工具是该研讨会的主题,将包括用于电子光学的CAD的各个方面,如物理原理、算法、计算机模拟软件、扫描电镜成像过程的完整模拟,以及透射电镜图像模拟。   分会场17:原子探针和非传统的微量分析任务   该研讨会将探讨微量分析的非传统解决方案以及新型微量分析工具。另外将探讨原子探针层析技术的原理、仪器及实验操作。(编译:秦丽娟)
  • 关于举办“透射电镜分析技术”培训通知
    近年来电子显微领域的技术发展突飞猛进,硬件和软件的新技术和新功能不断的推出。透射电镜越来越受到科研人员的重视,用途日益广泛。现在透射电镜已广泛用于材料科学(金属材料、非金属材料、纳米材料)、化学化工、生命科学、转化医学、半导体材料与器件、地质勘探、工业生产中的产品质量鉴定及生产工艺控制等。为适应广大分析技术工作者的需求,进一步提高透射电镜用户的应用和研究水平,推动显微分析应用的进一步发展,上海交通大学分析测试中心特举办“ATP 004透射电镜分析技术”培训班,NTC授权单位培训机构上海交通大学分析测试中心承办并负责相关会务工作。 现将有关事项通知如下:一、 培训目标:了解透射电镜的基本结构与原理;了解透射电镜检测/校准项目及相关要求;掌握国家标准中透射电镜的检测方法。(一)通过学习理论知识,观摩实际操作,排查仪器故障,调谐最佳机器运转状态。(二)面对应急问题,学员可理论联系实际,查找故障原因,进行仪器自检及修复。二、 时间地点:培训时间:2023年10月16日-10月18日 上海(时间安排:授课2天,考核1天)三、 课程大纲:时间内容10月16日上午透射电镜的发展、成像原理、基本结构10月16日下午透射电镜的样品制备、像衬度、基本操作及维护10月17日全天透射电镜实操培训及答疑10月18日全天考核四、 主讲专家:主讲专家来自上海交通大学分析测试中心,熟悉NTC/ATP 004 透射电镜分析技术大纲要求,具有NTC教师资格,长期从事透射电镜技术研究的专家。五、 授课方式:(一) 讲座课程;(二) 仪器操作;六、 培训费用:(一)培训费及考核费:每人3000元(含报名费、培训费、资料费、考试认证费),食宿可统一安排费,费用自理。(二)本校费用:每人1500 元(含报名费、培训费、资料费、考试认证费;必须携带学生证)。七、 颁发证书: 本证书由国家科技部、国家认监委共同推动成立的全国分析检测人员能力培训委员会经过严格考核后统一发放,证书有以下作用:具备承担相关分析检测岗位工作的能力证明;各类认证认可活动中人员的技术能力证明、该能力证书可作为实验室资质认定、国际实验室认可的技术能力证明;大型仪器共用共享中人员的技术能力证明。 考核合格者将由发放相应技术或标准的《分析检测人员技术能力证书》。考核成绩可在全国分析检测人员能力培训委员会(NTC)网站上查询(https://www.cstmedu.com/)。八、 报名方式:(一)请详细填写报名回执表(附件1)和全国分析检测人员能力培训委员会分析检测人员考核申请表(附件2),邮件反馈。(二) 注:请学员带一寸彩照2张(背面注明姓名)、身份证复印件一张,有学生证的学员携带学生证复印件。(三) 报名截止时间是10月10日16:00前。(四) 如报名人数不足6人取消本次培训。 九、 联系方式联系人:吴霞(报名相关事宜)、郭新秋(技术咨询)电话:021-34208496-6102(吴霞)、021-34208496-6205(郭新秋)E-mail:iac_office@sjtu.edu.cn官方网址:iac.sjtu.edu.cn
  • 电镜学堂丨扫描电子显微镜样品要求及制备 (二) - 特殊试样处理&试样放置
    Hello,好久不见距离上次更新已有时日,这段时间小编没密集更新是因为知道大家在忙着立新年flag!但2018年的计划一定不能少的是跟随tescan电镜学堂持续输入电镜知识,稳定输出科研成果! 这里是TESCAN电镜学堂第7期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能!第二节 特殊试样的处理对于一些特殊的试样,除了常规制样方法外,可能还需要一定的特殊处理。§1. 金相试样金相试样要经过严格的抛光程序,为了在电镜下观察能有更好的衬度,需要进行一定的腐蚀处理。不同的金属需要不同的腐蚀剂以及腐蚀时间,这需要去慢慢摸索。腐蚀不能过度,否则表面会有太多的腐蚀坑,此外,腐蚀剂要清洗干净。§2. 生物试样对于生物样品,为了保证在电镜样品室的高真空下不发生变形而保持原貌,需要对试样进行一系列的处理,需要经过清洗、固定、脱水、干燥等步骤。① 清洗:试样取材好后可用生理盐水或缓冲液清洗,或用5%的苏打水清洗;用超声震荡或酶消化的方法进行处理。② 固定:常用戊二醛及锇酸双固定。③ 脱水:样品经漂洗后用逐级增高浓度的酒精或丙酮脱水,然后进入中间液,一般用醋酸异戊酯作中间液。④ 干燥:可用空气干燥法、临界点干燥、冷冻干燥等方法。§3. 石墨烯试样石墨烯是近年特别火热的样品,不过利用扫描电镜进行石墨烯的观察需要一定的技巧,否则难以有很好的说服力。理论上石墨烯厚度非常小,在扫描电镜下难以有很好的衬度。而那些铺展的很平整,却有着很好的明暗衬度的试样,本人觉得只能算是石墨薄片而不能算石墨烯。扫描电镜分辨率还不足以观察到石墨烯的碳原子结构,也没有探测器能证明其碳结构,不过扫描电镜可以定性判断其膜层的厚薄,当然这需要特殊的制样。我们可先对硅片这种平整基底镀上一层较厚的金膜,然后将石墨烯分散镀金硅片上。我们对镀金的形貌有着非常清晰的认识,如果表面有一层石墨烯的话,金膜就会像蒙了一层纱一样。石墨烯膜层越薄,金颗粒越清楚;反之如果金颗粒越不清楚,则膜层越厚;当完全看不见金颗粒时,则膜层已经相当厚,完全不算是石墨烯了,这点可以通过蒙特卡罗模拟来得到印证。之所以选择先镀金,就是让被覆盖的与未被覆盖的区域进行一个对比,这样可以定性判断石墨烯的膜厚。图4-9 石墨烯分散在硅片和镀金硅片上的对比如图4-9,左边四张图片是石墨烯直接分散在硅片上,因为没有参照物,只能判断出不同区域的厚薄,而这些厚薄是否能达到石墨烯要求的水准则难以判断;而右边六张图片是分散在镀金硅片上的图片,我们很容易通过与空白处金颗粒的对比来大致判断其膜层厚度是否符合石墨烯的要求。第三节 试样的放置问题 试样在放入电镜室中需要满足一定的几何条件。首先,一次性放置多个样品时,尽量保持高度一致。遇到高度不等的情况,可以将较矮的样品放置在加高台上,如图4-10。将不同高度的样品垫平。 图4-10gm-163-r样品台其次,样品如果表面凹凸不平,如断口材料或楔形样品,在放置样品的时候尽量将要观察的区域的朝着eds或etd的方向,避免在电镜观察时,因为观察面背向探测器而有强烈的阴影或者没有eds信号。还有,对于截面样品观察,有时候并非在90度的绝对垂直下效果最好。特别是对于一些膜面质量不是很好有点撕裂的薄膜,有时候倾转一点的角度,在非正入射的条件下有更好的立体感和景深,有时候更能观察到膜面和基体的结合情况。不过在进行测量的时候要记住需要进行倾斜修正。如图4-11上图,在正90度下虽然能观察到膜面,但是膜面质量的好坏及整体情况却无法判断,而在70度下则能看出膜层的整体情况。将倍数放大后,也可看到70度下有更好的景深和立体感,也更有助于进行膜面和基底结合的判断。 图4-11 膜的截面在90度和70度倾转下的对比再如图4-12,试样为两层同样成分的薄膜,如果在正90度下进行观察,膜之间的界线很不明显,而如果旋转到55度,可以发现膜在断裂过程中有发生“错位”地方,这个角度的观察使得对膜层的观察更加清楚。图4-12 双层膜的截面在90度和55度倾转下的对比特别是一些半导体的截面样品,时常都是先在非正入射的情况下进行观察,再转到90度的情况下进行测量。?福利时间每期文章末尾小编都会留1个题目,大家可以在留言区回答问题,小编会在答对的朋友中选出点赞数最高的两位送出本书的印刷版。?奖品公布上期获奖的这位童鞋,请后台私信小编邮寄地址,我们会在收到您的信息并核实后即刻寄出奖品。 【本期问题】截面样品观察,是否一定是在90°的绝对垂直下效果最好,为什么?(快去留言区回答问题领取奖品吧→)简介《扫描电子显微镜及微区分析技术》是由业内资深的技术专家李威老师(原上海交通大学扫描电镜专家,现任TESCAN技术专家)、焦汇胜博士(英国伯明翰大学材料科学博士,现任TESCAN技术专家)、李香庭教授(电子探针领域专家,兼任全国微束分析标委会委员、上海电镜学会理事)编著,并于2015年由东北师范大学出版社出版发行。本书编者都是非常资深的电镜工作者,在科研领域工作多年,李香庭教授在电子探针领域有几十年的工作经验,对扫描电子显微镜、能谱和波谱分析都有很深的造诣,本教材从实战的角度出发编写,希望能够帮助到广大电镜工作者,特别是广泛的TESCAN客户。这里插播一条重要消息: TESCAN服务热线 400-821-5286 开通“应用”和“维修”两条专线啦!按照语音提示呼入帮你更快找到想要找的人 ↓ 往期课程,请关注“TESCAN公司”微信公众号查看:电镜学堂丨扫描电子显微镜的基本原理(一) - 电子与试样的相互作用电镜学堂丨扫描电子显微镜的基本原理(二) - 像衬度形成原理电镜学堂丨扫描电子显微镜的基本原理(三) - 荷电效应电镜学堂丨扫描电子显微镜的结构(一) - 电子光学系统电镜学堂丨扫描电子显微镜的结构(二) - 探测器系统电镜学堂丨扫描电子显微镜样品要求及制备 (一) - 常规样品制备统
  • 天美公司在第四军医大学举办日立扫描电镜应用讲座
    第四军医大学位于古城西安,在基础医学、临床医学、军事医学、生物医学工程等领域有着很强的科研实力,是国家首批&ldquo 211工程&rdquo 重点建设院校。今年下半年第四军医大学从天美公司采购的日立S-4800场发射扫描电镜及冷冻干燥仪、离子溅射仪等科学仪器到货安装完毕,给相关研究人员进行微观形貌观察实验提供了便利条件。为了让校内师生更深入的了解S-4800场发射扫描电镜的原理和功能,提高电镜操作人员的应用技术水平,第四军医大学的段小红主任特邀请天美公司电镜应用工程师程路2010年12月10日来校举办扫描电镜应用讲座和上机培训。 天美公司电镜应用工程师在做日立S-4800电镜理论讲解 电镜操作人员及对扫描电镜应用感兴趣的师生参加了此次电镜讲座,内容包括日立S-4800场发射扫描电镜的硬件结构、基本原理和样品制备注意事项等,另外电镜应用工程师针对大家使用扫描电镜遇到的应用技术问题给出了相关解决方案。 日立S-4800场发射扫描电镜的上机培训 在日立S-4800上机培训的过程中,电镜应用工程师讲解了操作技巧和电镜参数设置,并拿出了标准样品供大家联系。培训过程中,有师生带来了一些扫描电镜的高难度样品,例如导电性很差的牙齿、聚氨酯高分子材料样品,还有极易受到污染和损伤的TiO2微管(孔径8nm到20nm左右),要求不喷金获取高分辨图像。在电镜应用工程师摸索和设置合适的条件参数之下,最后获得了令大家都满意的实验结果,加深了日立S-4800优异性能的直观印象。 日立S-4800是一款畅销的高分辨冷场发射扫描电镜,其低加速电压条件下的图像分辨率表现尤其出色,可以获得更多的样品表面细节信息,深受广大用户的肯定,在中国大陆的销售量已超过130台。天美公司是日立科学仪器公司在亚太地区重要的行销合作伙伴,有充足的专业技术人员和完善的售后服务体系。
  • 通知:2021扫描电镜原位研究方法暑期学习班
    原位扫描电镜研究方法已经成为揭示材料微观结构与性能关系的重要研究手段,为了推动国内原位扫描电镜研究方法的应用与普及,经研究决定于2021年7月21-25日在浙江省杭州市桐庐县举办扫描电镜原位研究方法暑期学习班。暑期学习班由浙江大学电子显微镜中心、浙江省科创新材料研究院联合举办。本期学习班的讲习内容主要涵盖扫描电镜仪器与成像基础、电子背散射衍射(EBSD)分析基础、原位高温-拉伸/EBSD-成像实验与应用、原位微纳米力学测试方法、扫描电镜中透射成像与应用、电子通道成像与应用、原位电子显微分析/EBSD样品制备技术等。讲授内容将更加侧重基本原理、仪器和研究方法,将采取理论讲座、墙报展示和现场演示等多种形式相结合的学习和交流模式。本期学习班全部采用中文授课。本期学习班将邀请全国高校和科研院所理论水平高、实践经验丰富并活跃在科研一线的优秀教师主讲。主讲教师将聚焦基于扫描电镜的原位研究方法,通过讲解相关理论知识和分享应用实例,进一步加强学员对扫描电镜原位实验的理解和认识,有助于学员制定合理的实验方案,并根据方案开展有效的原位SEM材料表征实验。本期学习班将特邀中国科学院院士、浙江大学材料与科学工程学院教授张泽等高水平专家学者作大会学术报告。本期学习班将为致力于扫描电镜原位研究的青年学者和研究生提供一个学习和交流的互动平台。会议具体通知如下:◀一、组织机构 ▶学术委员会:名誉主席:张泽主席:韩晓东、孙立涛、王勇组织委员会:主席:王 勇成员:田 鹤、吴劲松、曾 毅、张跃飞、刘 攀、岳永海、魏 晓、郭振玺、朱敏洁◀二、日程安排▶◀三、拟邀主讲专家▶1.吉 元,北京工业大学 研究员2.曾 毅,中国科学院上海硅酸盐研究所 研究员3.张跃飞 北京工业大学 研究员4.岳永海,北京航空航天大学 教授5.安大勇,西北工业大学副教授6.丁青青,浙江大学 副教授7.王 晋,浙江大学 副教授8.原效坤,北京工业大学 副研究员9.马晋遥,太原理工大学 讲师10.李永合 德国卡尔斯鲁厄理工学院(KIT),洪堡博士后◀四、会议地点▶浙江省杭州市桐庐县经济开发区洋洲南路199号 B座。桐庐科技孵化园浙江省杭州市桐庐县经济开发区洋洲南路199号◀五、报名方法▶1.请有意参加暑期班的学员于2021年6月25日前将附件《参会回执》和《墙报摘要》发至会议邮箱 hzxtkj001@163.com 或 关注公众号线上报名。2.暑期班收取注册费,普通代表2000元,学生代表1500元(包含已充值会议餐费、学习资料、保险等费用)。3.注册费缴纳方式:会议注册费由会议承办单位杭州欣桐科技服务有限公司代收,由杭州欣桐科技服务有限公司出具会议费财务报销凭证(发票)。微信报名:进入杭州欣桐科技服务公众号,点击下方菜单“参会报名”,选择“学生报名”或“普通报名”进入报名申请页面。会议注册电子发票将在注册申请支付成功后发至您的邮箱。邮箱报名:将附件《参会回执》和《墙报摘要》发至会议邮箱 hzxtkj001@163.com。银行汇款信息:名称:杭州欣桐科技服务有限公司统一社会信用代码:91330122MA2H2AXY22地址:浙江省杭州市桐庐县桐庐经济开发区洋洲南路199号 桐庐科技孵化园B座202-079工位 电话:0571-64338077开户行:中国工商银行桐庐三合支行账号:1202089309800020055转账时请务必备注参会人单位和姓名,请于转款后,将您的转款凭证发至:hzxtkj001@163.com邮箱。4.住宿标准:会务组为本次会议联系了会场附近酒店一定数量的房间,参会人员可享受会议优惠价,单/标间约400元/天(含早餐),豪华单/标间500元/天(含早餐)。参会人员需自行与会务组工作人员联系住房预订事宜,费用自理。由于7月份是旅游旺季,房源紧张,请大家尽量提前预定房间。◀六、联系方式▶会务组成员:王 燕:13750879087 岳 亮:17767054558 欧 琰:13456757568郑林超:18368155787张晓梅:13588840153
  • 2022年度日立电镜线上专题应用培训计划
    感谢广大新、老客户对于日立电镜产品一如既往的支持。2022年度日立扫描电镜线上高级应用系列专题培训第Ⅰ期——扫描电镜的基本结构及成像原理,完美收官,培训受到广大用户一致好评。鉴于广大日立电镜用户对于扫描电镜基础知识的学习热情以及对电镜应用的高级技术需求,日立科学仪器电镜应用团队从扫描电镜基础到应用案例分享将陆续为广大日立电镜用户提供一系列专题应用培训。1. 培训方式:线上2. 培训对象:日立电镜用户3. 培训日程安排:公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • 天美千里行-日立S-4800电镜应用技术讲座举办
    2010年3月的北京依然寒冷,与往年相比还没有春天的感觉,但天美已经行动起来,像往年一样开始了千里行活动。   中科院化学所是日立电镜的老用户,在2010年又有两台S-4800高分辨场发射扫描电镜到货,为了让用户能更好的发挥出仪器的性能,天美公司和中科院化学所胶体和界面重点实验室合办了一期S-4800电镜的应用讲座,用一天的时间分别由顾群和程路工程师作了“电镜原理和日立电镜的应用”、“S-4800操作基础和应用”等报告,并结合上机演示,生动、直观的介绍了S-4800的特点、操作要点、注意事项,近30位老师和学生参加了培训,为以后开展工作打下了基础。   顾群工程师作报告   程路工程师作报告
  • 第三届中科院电镜技术联盟系列讲座成功举办
    p   2019年11月13-15日,由物理所牵头的中国科学院电镜技术联盟联合国家计量认证中国科学院评审组在成都成功举办2019年度中国科学院检验检测机构现代仪器技术及应用讲习班暨第三届中科院电镜技术联盟系列讲座。 br/ /p p   中国科学院条件保障与财务局科技条件处处长牟乾辉,理化所副所长王雪松,中科院电镜技术联盟常务副理事长白雪冬、副理事长孟祥敏、副理事长许钫钫等领导出席了会议。 /p p   大会邀请了十位电镜领域专家及厂家工程师分别作了关于电镜理论和前沿技术及设备维护和使用技术方面的报告,主要围绕能谱分析中的关键科学问题、电子探针基本原理与应用、像差校正透射电镜原理、冷冻电镜应用进展、原位电镜技术开发与科研应用等基础理论与实验技术,为学员提供了一次深入学习和交流的机会,对于其进一步掌握电镜基本原理,加强电镜实操与应用能力,培养电镜专业技术人才起到了积极的推动作用。院内36家研究所130余位学员参加了培训。 /p p   同期,电镜技术联盟组织召开了第一届常务理事会第二次会议,审议并通过了《中国科学院电镜技术联盟章程》,确定了联盟下一步工作计划。 /p p   中科院电镜联盟由中科院条财局倡议发起,由物理所牵头,联合理化所、金属所、上海硅酸盐所、生物物理所五家单位于2018年7月18日组建成立。电镜联盟是为合作开展电镜技术交流、培养电镜技术队伍而组成的科研院所合作团体,旨在联合我院电镜领域优势单位,加强电镜使用管理与应用技术交流,提高运行维护和自主创新能力,培养电镜领域人才队伍,逐步促进中科院电镜技术发展及相关领域科技创新。 /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/c918a7e9-6a7b-4a44-be85-add25648735a.jpg" title=" 1.jpg" alt=" 1.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 图1:中科院条财局科技条件处处长牟乾辉致辞 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/1c901e87-fc46-4603-85cb-74cb2148bd87.jpg" title=" 2.jpg" alt=" 2.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 图2:a)联盟常务副理事长白雪冬讲话 b)副理事长孟祥敏主持会议 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/0853de0c-e2ba-40ff-8869-179debea36f8.jpg" title=" 3.jpg" alt=" 3.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 图3:大会现场 /span /p p style=" text-align: center" img style=" max-width:100% max-height:100% " src=" https://img1.17img.cn/17img/images/201911/uepic/c80cb76e-c40a-481f-b49a-a52b10a6e8ad.jpg" title=" 4.jpg" alt=" 4.jpg" / /p p style=" text-align: center " span style=" color: rgb(0, 176, 240) " 图4:第三届中科院电镜技术联盟系列讲座全体参会人员合影 /span /p
  • 众多高校名师联袂巨献——微课大赛电镜作品集锦
    第三届“信立方杯”微课大赛火热招募中!(点击报名)面向全国高等院校、科研单位的精英教师们,第三届“信立方杯”微课大赛现已开启报名通道!无论您是科研实验领域的专家,还是教学一线的骨干,都可将您日常积累的宝贵实验方法和仪器使用心得,浓缩成5分钟以内的视频作品,与我们一同分享您的智慧与经验。(点击图片直达第三届微课大赛官网)专家评审,权威认证 大赛将由评审委员会,从专业性、创新性、视频内容及呈现等多方面对参赛作品进行严格评选。优秀作品将荣获一等、二等、三等奖项;同时将通过大众网络投票活动,与专家评审分数相结合,共同角逐“十佳主讲老师”的殊荣。最高奖金高达1万元,期待您的精彩表现!往届佳作,熠熠生辉下面与你一起分享第二届微课大赛电镜组别的微课视频~作品名称:透明薄膜样品的价带铺测试方法 (点击题目查看视频)作品讲师:段建霞 清华大学分析中心作品简介:作品以 ITO为基底的透明薄膜样品,介绍价带谱的检测方法,包括样品制备和安装注意事项、XPS 价带谱和 UPS 谱测试中的高度调节技巧和参数设置方法以及 XPS 价带谱和 UPS 谱结果对比。透明薄膜样品在测量价带谱时存在对焦困难的问题,因此透明薄膜样品的高度调节技巧非常重要。作品名称:扫描电镜不导电样品磁控溅射镀膜仪常见问题解决(点击题目查看视频)作品讲师:李丽 南京理工大学作品简介:本作品主要从两大方面介绍磁控溅射镀膜仪:1.简易演示真空磁控溅射镀膜过程。这点也是仪器培训中学员最需要了解并最感兴趣。 2.介绍常见问题和解决办法:真空问题、Ar气进气排气、靶材、成膜厚度、溅射速率。作品名称:激光扫描共聚焦显微镜应用技术(点击题目查看视频)作品讲师:周静 四川大学分析测试中心作品简介:激光共聚焦扫描显微镜是近代最先进的细胞生物医学分析手段之一。与传统荧光显微镜相比,共聚焦显微镜能得到更清晰的样品图像。它不仅可观察固定的细胞、组织切片,还可对活细胞的结构、分子、离子进行实时动态地观察和检测。作品名称:原子力显微镜的表面电势模式(点击题目查看视频)作品讲师:郭航 西安交通大学作品简介:本节微课主要介绍了原子力显微镜的表面电势模式,它主要用于研究材料微区形貌和表面电势分布图像,这里介绍了其工作原理和应用。作品名称:透射电镜中的选区电子衍射技术(点击题目查看视频)作品讲师:李雷 武汉大学作品简介:选区电子衍射技术是透射电子显微学中的一个重要组成部分,不仅可以用于对微区的样品进行结构表征,也可以辅助分析样品的生长方向,样品的结晶性等。同时由于在拍摄选区衍射时使用发散的电子束,对样品的辐照损伤较低,因此可以使用该技术对样品的结构演变进行原位表征。作品名称:透射电镜EDS元素面分布分析的工作原理(点击题目查看视频)作品讲师:王延茹 中国科学技术大学作品简介:本视频首先介绍了该方法的定性依据,即特征X射线的产生原理,随后展示了这种分析方法的工作过程,包括电子束的工作状态、原始数据记录方式、后期软件数据提取步骤等,基于这些讲解得出在进行EDS面分布分析时,只要保留原始数据谱图中出峰的元素可随时提取其面分布结果。最后拓展介绍了EDS线分析的工作过程作品名称:信号探测器对扫描电镜成像效果的影响(点击题目查看视频)作品讲师:王佳伟 西安交通大学作品简介:扫描电镜因其分辨率高、制样简单、扩展性强等特点,是常用的显微成像设备之一。电镜利用电子与物质相互作用产生的信号,经计算拟合后模拟出样品形貌。因此,电镜成像效果受捕获信号的类型影响。本作品介绍了扫描电镜中常见的3种信号探测器,讨论了其信号来源,并对不同类型信号成像的效果进行对比,从而说明信号探测器对扫描电镜成像效果的影响。作品名称:高粘性液体的冷冻透射电镜样品制备(点击题目查看视频)作品讲师:童慧敏 西安交通大学作品简介:随着科学研究的不断深入,冷冻透射电镜的研究领域不再仅仅局限于生物医学领域,而是朝着水环境有机及其复合体系、电子束敏感材料体系等等交叉学科领域不断护展。本作品着眼于一类特殊样品-高粘性液体样品,重点研究其冷冻样品制样法,通过对制样参数的不断优化,得到最优化的制样方法一一涂样冷冻制样法,并结合冷冻透射电镜成功观察到了此类液体的微观结构。作品名称:电镜超薄切片制样技术分享(点击题目查看视频)作品讲师:董鑫 中山大学测试中心作品简介:在透射电镜的样品制备方法中,超薄切片技术是最基本、 最常用的制备技术,主要步骤包括包埋聚合、 切片、捞片等步骤。作品主要内容是围绕透射电镜样品制备的技术展开,介绍超薄切片制样技术的规范化制备方法、分享样品表征的案例,清晰真实地展示出样品从切片到电镜表征的全流程。作品名称:如何获得质量更高的扫描电镜样品(点击题目查看视频)作品讲师:周雨萌 大连理工大学作品简介:电镜制样过程常常会对表征结果的真实性带来影响。在拍电镜的过程中可能会遇到:想要拍EBSD时由于样品表面划痕、应力过多而造成解析率较低;想拍截面时,剪刀等工具会造成界面变形、污染、膜层界面不清晰等等从而影响结果。为此我们介绍一种前处理制样设备——氩离子抛光仪,可以有效地消除划痕,减小应力损伤,氧化、污染、变形的可能性,制备得到高质量的平整表面。同时可控的低温还可以用来抛光一些敏感材料。(点击图片直达第三届微课大赛官网)
  • 新闻 | 冻电镜技术未来之路在何方?
    號外2017诺贝尔化学奖2017年诺贝尔化学奖授予了理查德亨德森(richard henderson)、约阿希姆弗兰克(joachim frank)和雅克杜博歇(jacques dubochet),表彰他们在冷冻电镜技术的发展上做出的卓越贡献。分辨率对比他们将冷冻电镜技术简化,并将其应用在生物分子成像方向,打破了长期以来解析蛋白必须依靠传统x射线晶体学(x-raycrystallography),核磁共振(nmr)的手段,使我们在近期内很有可能获得原子级别分辨率下的生命复杂机制的详细图像。(图片来源:martin hogbom)其中,尤其值得一提的是杜博歇教授的工作: 他将少量蛋白溶液滴加到铜网上,迅速插入到用液氮冷却的液态乙烷中,使蛋白颗粒迅速被制冷的玻璃态的冰所包裹,最大程度上保存了蛋白颗粒的真实原始状态,得到了高质量的冷冻电镜样品,从而大大推动了冷冻电镜的推广。既然冷冻样品制备如此重要,有没有仪器可以提高我们实验的重复性和成功率呢?有!那就是我们徕卡的载网投入冷冻仪gp。leica em gp设计用于冷冻电镜样品前处理,用于制备玻璃化的液态样品。如病毒颗粒,蛋白质及其他细胞组分等的样品悬液。冷冻电镜技术未来之路在何方? celluar cryoem除了蛋白等生物大分子外,生物样品还有很重要的一面是细胞和组织。即使目前很多重要的蛋白结构都得到了埃米级别的解析,但由于它们都是纯化出来的,已经脱离了原来位置,如同一片树叶脱离了大树,研究的再深刻,目前也只是一叶遮目,不要说推测这片树叶在森林里的位置,即使在哪颗特定大树上的生长部位和结构都很难说。因此解析细胞或组织这样大尺度的高分辨精细结构具有更广泛的生物学意义。那我们对于它们的制样手段研究进展如何?这又不得不提这次诺奖的杜博歇教授。他不仅建立了单颗粒冷冻制样技术,同时也在细胞组织层面做出了突出的贡献,尤其是cemovis(cryo-electron microscopy of vitreous sections)的发展和逐渐完善,实现了近生理状态的细胞组织的原位观察。cemovis没有化学固定,没有染色,也没有生物成分的聚集;保持了生物体内水分的原位,玻璃态的固定。应用cemovis得到的电镜图片看起来和常规制样图片有很大不同:结构更平滑均质,细节更多更明显。那么它的技术路线是什么呢?高压冷冻+冷冻切片+冷冻电镜。杜博歇教授初期的工作就有用徕卡的em pact(徕卡第一代高压冷冻仪)对样品进行冷冻,用fcs ultracut s cryomicrotome(徕卡早期冷冻切片机)进行冷冻切片,最后在冷冻透射电镜下观察(见下图)。作为高压冷冻领域的领跑者,徕卡迄今已经发展到第三代高压冷冻仪-ice(innovative cryo-fixation equipment)。高压冷冻仪是通过液氮制冷,通过空气压缩机提供压力来源,通过物理原理可使局部压强达到2100拔,从而实现对含水样本的高压冷冻固定, 冷冻固定后样品经后续处理(冷冻替代/常温超薄切片,冷冻超薄切片或冷冻断裂等)供电子显微镜观测。高压冷冻仪能在毫秒级别内最大程度地保存样品生活状态的原始真实信息,蛋白质结构、酶/抗原活性无变化,可溶性离子及小分子得到有效固定等等,有效避免了常规化学固定带来的假象。除了可以结合冷冻切片,完成cemovis的工作外,它还可以结合冷冻断裂,冷冻替代等来观察样品的内部超微结构或进行免疫学的相关工作。除此之外,它还可以结合光刺激和电刺激,为神经生理学家打开了一扇新的大门。现在,冷冻制样逐渐深入人心,那冷冻好的样品,经过处理,能否在光镜下同时实现其功能的探究呢?徕卡em cryo clem(cryo correlative light electron microscopy)冷冻光镜电镜联用系统,实现保持样品原生状态下的光镜和电镜图像关联分析,对同一样品位置集荧光显微图像与高分辨率电镜图像于一体。它的主要技术路线是: 通过冷冻制样技术(高压冷冻,保存样品最原始的亚细胞结构信息),制备得到冷冻超薄切片(或通过投入冷冻技术冷冻样品),之后借助冷冻光镜观察荧光标记位置,记录感兴趣的位置,然后在冷冻tem中实现原位电镜观察,从而实现光镜电镜联用技术。备注:高压冷冻和冷冻超薄切片,用于冷冻固定组织样品,例如侵染有病毒的组织样品。投入冷冻em gp,用于冷冻单颗粒病毒大分子,或蛋白质大分子颗粒。此刻,无论是正在做单颗粒的你,还是正在做细胞组织的他,要不要来试试我们徕卡的gp,ice和cryo clem呢?快拨打400-630-5902联系我们吧!至真图片,制样为先!愿我们徕卡显微系统祝您一臂之力!关于徕卡显微系统leica microsystems 徕卡显微系统是全球显微科技与分析科学仪器之领导厂商,总部位于德国维兹拉(wetzlar, germany)。主要提供显微结构与纳米结构分析领域的研究级显微镜等专业科学仪器。自公司十九世纪成立以来,徕卡以其对光学成像的极致追求和不断进取的创新精神始终得到业界广泛认可。徕卡在复合显微镜、体视显微镜、数码显微系统、激光共聚焦扫描显微系统、电子显微镜样品制备和医疗手术显微技术等多个显微光学领域处于全球领先地位。 徕卡显微系统在全球有七大产品研发与生产基地,在二十多个国家拥有服务支持中心。徕卡在全球一百多个国家设有区域分公司或销售分支机构,并建有遍及全球的完善经销商服务网络体系。
  • 28 日上午 10:30 飞纳电镜开讲啦,京东礼品卡等您来拿
    聚焦台式科研仪器,解析最新科技发展【讲座内容】  本次讲座为您介绍飞纳台式扫描电镜的发展和主要特点,以及飞纳台式扫描电镜可以选配的样品杯和软件。并重点介绍最新推出的飞纳台式扫描电镜大样品室卓越版 Phenom XL,飞纳台式整合光电关联显微镜德飞 Delphi;以及代理产品帕纳科台式 XRF 的原理及特点。在讲座中,将结合飞纳台式扫描电镜的实际应用案例,让您更直观地了解飞纳电镜的优势。【注册报名】 http://vote.antpedia.com/index.php?sid=822489&lang=zh-Hans【报名截止时间】 讲座结束前【讲座时间】 2016 年 4 月 28 日 上午 10:30 - 11:30【主讲人】 李淑波,飞纳台式扫描电镜高级应用工程师,拥有多年场发射、钨灯丝及台式扫描电镜使用经 验,对扫描电镜原理及构造理解透彻并对各种复杂的扫描电镜样品制样及电镜拍照有独到见解。 讲座结束后,我们将从注册并准时参会者中抽取 4 名幸运奖,赠送价值 50 元的京东礼品卡! 无需来回奔波,不受地域限制,只需1台电脑、网络,即可免费参加会议,方便、快捷、高效!  欢迎大家积极参加,同时也感谢您把此消息转发给其他感兴趣的朋友,欢迎大家注册参与!
  • 【电镜视频大赛】扫描电镜、Micro CT在锂电、半导体等热点行业应用视频合辑——TESCAN中国系列投稿
    电镜被誉为“人类的第三只眼睛”,经过近百年的发展,已成为物质微观结构分析的重要手段。为帮助更多用户了解电镜这一技术,以及电镜的应用场景、电镜厂商及品牌等,仪器信息网特发起此次【电镜视频征集】有奖征集活动,广大电镜用户及厂商均可免费参与。点击查看活动详情及更多投稿作品↑↑↑ 下面是来自TESCAN中国的系列视频投稿,分别描述了TESCAN扫描电镜及Micro CT技术在锂电池、半导体等热点领域的应用,follow me,一起来看一下吧~~~ 视频1描述了TESCAN UniTOM XL Micro CT显微镜用于锂电池高通量、多尺度无损检测,可以实现对感兴趣位置(VOI)自动对中定位,批量运行扫描多个VOI感兴趣区域。视频1. 锂电池如何做动态检测↓↓↓视频地址:https://bbs.instrument.com.cn/topic/8055357 视频2描述了X射线显微CT产品UniTOM HR Micro CT显微镜可以无损、快速的获得球栅阵列封装BGA的三维分析,并清晰的得到里面的焊球和内部孔隙分布、统计信息,为下一步高分辨的FIB分析提供更有效的指导。视频2. 半导体应用∣球栅阵列封装BGA的三维分析↓↓↓视频地址:https://bbs.instrument.com.cn/topic/8055371 视频3描述了Micro CT显微镜通过连续的数据采集,实现不间断的原位压缩测试,形成动态4D成像,获得金属独有的内部完整数据,从而了解该材料在实际力学条件下如何变形。视频3. 动态4D成像 | 泡沫铝金属压缩↓↓↓视频地址:https://bbs.instrument.com.cn/topic/8055365 视频4描述了TESCAN RISE扫描电镜+拉曼光谱一体化系统用于表征二维材料,如石墨烯层数及质量鉴定、MoS2结构表征、碳纳米管CNT与二维材料结构分析等。视频4. 扫描电镜+拉曼光谱一体化系统 TESCAN RISE在二维材料的应用↓↓↓视频地址:https://bbs.instrument.com.cn/topic/8055341 视频5从Micro CT技术的诞生、发展史、结构及原理,讲述了动态原位成像的应用等。视频5. 黑科技!Micro CT 四维动态成像技术↓↓↓视频地址:https://bbs.instrument.com.cn/topic/8055357点击视频链接,为TA打call吧,点赞/留言/收藏,助TA赢取活动大奖~ 公司简介: TESCAN是一家专注于微观形貌、结构和成分分析的科学仪器的跨国公司,是全球知名的电子显微仪器制造商,总部位于全球最大的电镜制造基地-捷克布尔诺,且已建立起全球的销售和服务网络,在捷克、法国和美国拥有4家研发中心、2个生产基地以及6家海外子公司,已有超过60年的电子显微镜研发和制造历史。其产品主要有电子显微镜、聚焦离子束系统、多通道全息显微镜及相关分析附件和软件,正被广泛应用于医学、生物、生化、农业、材料科学、冶金、化学、石油、制药、半导体和电子器件等领域中。 TESCAN于2009年正式进入中国市场,成立了TESCAN CHINA中国分公司,总部设在上海,且在北京、上海两地建立了DEMO实验室,在北京、上海、广州、重庆、南京、武汉、西安、无锡、苏州等城市设立9个维修站。TESCAN中国公司拥有经验丰富的售前应用和售后服务的技术团队,在上海的应用中心有包含钨灯丝电镜、场发射电镜、FIB以及电制冷能谱仪、电镜制样设备等全系列产品的演示培训平台,为国内用户提供参观、交流和学习的平台。═══════════════════════════════▼▼▼═══════════════════════════════电镜视频征集活动“火热”进行中参赛方式:1、点击链接https://bbs.instrument.com.cn/forum_89.htm ,进入发帖页面,在该版面发布新帖 ,如下图所示。2、按照下图中格式填写,并上传视频,发布。待后台审核通过(约2-3h)后,即可在电镜版面展示,并同步更新至专题作品展示模块。奖项设置:本次活动面向广大用户及厂商均可免费参与,更有多重好礼(环球影城门票、百元京东卡)及热门广告位等你来拿!点击下方图片了解活动详情↓↓↓
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制