当前位置: 仪器信息网 > 行业主题 > >

多能双能光子计

仪器信息网多能双能光子计专题为您提供2024年最新多能双能光子计价格报价、厂家品牌的相关信息, 包括多能双能光子计参数、型号等,不管是国产,还是进口品牌的多能双能光子计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合多能双能光子计相关的耗材配件、试剂标物,还有多能双能光子计相关的最新资讯、资料,以及多能双能光子计相关的解决方案。

多能双能光子计相关的资讯

  • 瑞士DECTRIS公司新产品发布(SANTIS 0804多能、双能X射线探测器)和2017年工作总结
    瑞士DECTRIS公司新产品发布(SANTIS 0804多能、双能X射线探测器)和2017年工作总结 2017年12月14号瑞士dectris公司cso clemens schulze-riese博士和销售总监johannes durzok博士来北京泰坤举行新产品发布会,同时做年度工作总结和2018年的工作指导。 clemens schulze-riese和johannes durzok充分肯定北京泰坤在2017年工业客户中取得的辉煌业绩。 eiger2 r 500k探测器和santis探测器为dectris公司新产品双能和四能x射线探测器,非常适合工业和医疗领域的oem仪器研发、生产用户配套使用,其探测器在国际同类产品中具有非常明显的优势,中国的仪器生产商一旦配套santis或eiger2 r 500k探测器,仪器的测量水平会达到或超过欧美等发达国家。 versionhigh resolution(hr)multi energy (me)sensorcdte 0.75 mmcdte 1.0 mmactive area8 x 4 cm28 x 4 cm2pixel matrix1030 x 514515 x 257pixel size75 μ㎡150 μ㎡mtf at 1 ip/mm 90% 90%energy rangeup to 120 kvpup to 160 kvpnumber of energy thresholds24energy resolution1.9 at 22 kev (fwhm)1.9 at 22 kev (fwhm)fill factor100%100%dynamic range32 bit32 bitframe rateup to 40 hzup to 40 hzmaximum input count rate1.5 * 109 photons/s/mm20.4 * 109 photons/s/ mm2all specifications are subject to change without notice. 。
  • 为什么Microlight3D双光子聚合激光直写技术能实现67nm超高分辨率3D打印?
    为什么Microlight3D双光子聚合激光直写技术能实现67nm超高分辨率3D打印?Microlight3D是一家生产用于工业和科学应用的高分辨率微尺度2D和3D打印系统的专业制造商。MicroFAB-3D光刻机是该公司于2019年推出的第一台紧凑台式双光子聚合系统,一经推出便得到客户的广泛好评。 MicroFAB-3D基于双光子聚合激光直写技术,可在各种光敏材料上制造出蕞小尺寸可达67nm的二维和三维特征结构,兼容各种聚合物,包括生物兼容性材料、医用树脂和生物材料,为微流控、微光学、细胞培养、微机器人或人造材料领域开辟了新的前景。双光子聚合激光直写,也称双光子3D打印,基于“双光子吸收效应”, 可以将反应区域限制在焦点附近极小的位置(称之为“体元”),通过纳米级精密移动台,使得该焦点在物质内移动,焦点经过的位置,光敏物质发生变性、固化,因此可以打印任意形状的3D物体。双光子聚合激光直写技术摒弃了传统增材制造(Additive Manufacturing)层层叠加的方法,使得层与层之间的精度大大提高,消除了“台阶效应”,使得我们可以制造低粗糙度、高精度的器件,如各种光学元件、维纳尺度的结构器件等。基于双光子聚合激光直写技术的microFAB-3D完全适用于超高分辨率3D打印,结合合适的光敏材料,“体元”直径可小至67nm,有时甚至可以更小。结合我们专有的软件,microFAB-3D激光可以在材料内部自由移动,创造出一个坚固的结构。 激光甚至可以穿过聚合的部件,因此“体元”可以在单体内部的三维空间中自由移动,可以高精度地创建任何3D形状,例如没有支撑的悬垂物、内部的体块、中空通道结构等等。 由于光敏材料、激光波长和所用的物镜直接影响打印的分辨率,所以我们的532 nm波长确保了低于67nm的超高3D打印分辨率,我们的用户已经实现了在3D结构中小于100nm的横向分辨率!Microlight3D双光子聚合3D纳米光刻机∣主要特征:1、高分辨率3D打印得益于双光子聚合激光直写技术,无论是基础版本还是先进版本,都可以实现至少67nm的刻写分辨率,最高记录67nm 。 2、打印最复杂的结构与传统的3D打印技术不同,双光子聚合激光直写技术摆脱了传统的“一层一层”的光刻方法。可以打印非常复杂的结构而不需要特殊材料支持或后续处理,增强了材料的机械性能。 3、分辨率自动调节我们的软件可以让您在制造过程中可以随时调节打印分辨率。用大“体元”得到更快的打印速度,用小“体元”实现更复杂、更精密的结构。 4、高精度自动定位microFAB-3D先进版本配备了反馈相机和专用软件功能,使您能够在已经有图案的基板甚至光纤的尖端上直接对齐和打印。您可以轻松和精细地调整聚焦点的位置,精度小于1µm。 5、独特的技术、更高的性能创新的纳米3D打印系统依赖于具有独特特点的工业激光器,带来最高的打印分辨率、紧凑性、成本效率和使用灵活性。除此之外,这些工业激光器完全支持长时间运行而无需定期的维护,提供了更好的可靠性与稳定性。 6、从基础版本升级到先进版本MicroFAB-3D可以根据您的需求和预算轻松地升级。您可以使用MicroFAB-3D标准版本探索高分辨率的3D打印,之后升级为MicroFAB-3D高级版本以实现大范围的复制、Voronoi结构光刻等附加功能。Microlight3D双光子聚合3D纳米光刻机∣兼容材料:我们为我们的双光子聚合激光直写3D纳米光刻机提供了10种专利光刻胶,这些树脂的各种性能允许您探索多种应用领域。我们的系统也与各种商业上可用的光刻胶兼容,如Ormocomp, SU8, FormLabs树脂,NOA-line树脂,甚至水凝胶或蛋白质等。这些光刻胶可能是生物兼容的,有的已被认证实现微型医疗设备。如果您想使用定制的、自制的聚合物,我们也可以帮助您调整系统以适应您的工艺。Microlight3D双光子聚合3D纳米光刻机∣应用领域: 微光学和光子学 微流控 2D材料 微型医疗设备 细胞培养与组织工程 微电子学 微机械 光电子 金属材料 传感器 天线 微型机器人Microlight3D双光子聚合3D纳米光刻机∣规格指标:关于生产厂商Microlight3D:Microlight3D是高分辨率微尺度2D和3D打印系统的专业制造商。Microlight3D致力于满足科学家和工业研究人员新的设计加工需求,以及高精度生产任何几何或非几何形状的微型零件。通过结合2D和3D微纳打印技术,Microlight3D为客户提供了制造更大尺寸复杂部件的灵活性。它的目标是为未来的新兴领域提供更快、更复杂的微型制造系统。Microlight3D的设备现用于微光学、微流体、微机器人、超材料、细胞生物学和微电子学等。 Microlight3D在2016年成立于法国格勒诺布尔,在Grenoble Alpes大学(UGA)进行了超过15年的3D微纳打印技术研发。 上海昊量光电作为Microlight3D在中国大陆地区代理商,为您提供专业的选型以及技术服务。对于Microlight3D有兴趣或者任何问题,都欢迎通过电话、电子邮件或者微信与我们联系。关于昊量光电昊量光电 您的光电超市! 上海昊量光电设备有限公司致 力于引进国 外先 进性与创 新性的光电技术与可 靠产品!与来自美国、欧洲、日本等众多知 名光电产品制造商建立了紧 密的合作关系。代理品牌均处于相关领域的发展前 沿,产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,所涉足的领域涵盖了材料加工、光通讯、生物医疗、科学研究、国 防及前沿的细分市场比如为量 子光学、生物显微、物联传感、精密加工、先进激光制造等。 我们的技术支持团队可以为国内前沿科研与工业领域提 供完 整的设备安装,培训,硬件开发,软件开发,系统集成等优 质服务,助力中国智 造与中国创 造! 为客户提 供适合的产品和提 供完 善的服务是我们始终秉承的理念!
  • 370万!清华大学高速双光子显微镜采购项目
    项目编号:清设招第2022214号项目名称:清华大学高速双光子显微镜采购项目预算金额:370.0000000 万元(人民币)最高限价(如有):370.0000000 万元(人民币)采购需求:包号名称数量是否允许进口产品投标01高速双光子显微镜1套是设备用途介绍:1)可以进行小型动物如小鼠、大鼠等的活体成像及结合行为学的相关成像;2)实现更深的、低热损伤、高信噪比的活体成像,以保证斑马鱼、果蝇、小鼠等小型动物的长时程、反复成像;3)支持在清醒小动物中进行光遗传实验和成像同步、行为和在体成像实验同步;4)能够实现活体或活细胞超高速、超敏感成像,如血流、离子浓度、钙火花检测等快速变化的应用。简要技术指标 :龙门型正置荧光显微镜系统 :① 电动激发块转盘≥7孔,无需拆卸可更换激发块,内置电动光闸;配置蓝紫、绿、GFP激发块;② 具有压电陶瓷快速电动Z模块。2) 双光子光路及光路自动调节系统:① 光轴自动校正模块,≥3轴可调,激光光斑位置X、Y位移和X、Y倾斜角度θX,θY中≥3个参量均能独立自动调节;② 具有深焦观察模式,激光光束自动调整模块,可以在高分辨率和高成像深度模式之间自主选择,不少于五档可调。3)清醒小动物电生理同步设备:① ANALOG模拟信号输入≥4通道,TTL数字信号输入≥6通道,TTL数字信号输出≥5通道。与双光子显微镜为同一品牌的数模转换控制系统,触发控制能通过双光子软件界面统一控制,不需调用第三方控制软件;4)同步光刺激及光遗传系统:① 固体可见光激光器通过激光整合器整合,由光纤导入,通过AOTF进行0.1-100%强度控制和快速开关。合同履行期限:合同签订后5个月内交货。本项目( 不接受 )联合体投标。
  • 微型化双光子显微镜研制十年路
    今年2月上旬,神舟十五号航天员乘组使用空间站双光子显微镜,开展在轨验证实验任务并取得成功。这是目前已知的世界首次在航天飞行过程中,使用双光子显微镜获取航天员皮肤表皮及真皮浅层的三维图像。 在南京脑观象台投入使用的微型化双光子显微镜成像系统。  “第三次双光子显微镜测试顺利结束!”  “无比完美!”  “这一次的曲线如此丝滑!”  ……  4月1日上午,中国科学院院士、北京大学未来技术学院教授程和平的微信对话框,被同事们发来的这些评论不断刷新。而在中国航天员科研训练中心内,掌声此起彼伏。让大家欢欣鼓舞的,是中国空间站再次传来的好消息。  当日,神舟十五号航天员乘组,使用空间站双光子显微镜进行成像测试。他们用探头轻轻掠过脸部和前臂,一旁的电子屏幕上立即显示出皮肤结构及细胞的三维分布影像。  这不是显微镜第一次在轨成像测试。今年2月上旬,神舟十五号航天员乘组使用空间站双光子显微镜,开展在轨验证实验任务并取得成功。这是目前已知的世界首次在航天飞行过程中,使用双光子显微镜获取航天员皮肤表皮及真皮浅层的三维图像。  “如果能从这些图像中发现空间环境中人体变化规律,就更好了!”程和平捧着手机与记者分享这些科学图像时说。  只有了解程和平团队十年来经历的艰难曲折,才能体会这些图像的来之不易。2013年,程和平带领团队开启微型化双光子显微镜研究时,“全世界都不看好”。  历经10年,该团队完成了从科研仪器技术创新,到技术产品化,再到技术服务平台化的跃迁。他们将中国带到全球大脑成像研究的前沿,让微型化双光子显微镜在中国的高校院所、企业得到推广应用,为脑科学研究搭建起重要实验平台、提供了海量数据支持。  程和平希望,用微型化双光子显微镜拓展人类对脑宇宙的认知疆域,为探索脑机接口原理、深化对大脑疾病机制的了解、推进药物研发开辟一片新天地。神舟十五号航天员乘组在轨使用空间站双光子显微镜(视频截图)  一束光的启迪  意识的生物学基础是什么,记忆是如何存储和恢复的……在世界各国的脑科学计划中,这些问题吸引着全球科学家们不断上下求索。  在2021年国际权威学术期刊《科学》发布的125个最前沿的科学问题中,有22个问题与脑科学相关。  双光子显微镜的出现,仿佛是照在生命科学研究领域的一束光。  1992年,程和平用世界上第二台双光子显微镜,首次实现了心肌线粒体成像。  “双光子显微镜,是用两个光子同时激发同一个荧光分子的光学成像技术。它具有天然的光学断层扫描效果,能看到的组织深度更深,成像的清晰度更高,像一个高性能的X光机。”程和平说,与单光子显微镜相比,双光子显微镜看得准、看得深、光损伤小。但传统的台式双光子显微镜非常笨重,足有房间那么大,所以只能观察头部固定的动物或者动物的脑切片。  研究一款微型化双光子显微镜,观察自由行走的小动物脑袋中的一颗颗神经元的动态变化,成为程和平藏在心底的一个梦想。  一个梦想的点燃,有时只需一个使命的召唤。  2013年,国家自然科学基金委员会启动了国家重大科研仪器研制项目。程和平带队申请了“超高时空分辨微型化双光子在体显微成像系统”项目。  那一年,美国启动“创新性神经技术推动的脑计划”,欧盟启动了旨在建立大型脑科学研究数据库和脑功能计算机模拟平台的“人脑计划”。  而此前,我国在《国家中长期科学和技术发展规划纲要(2006—2020年)》中,已把“脑科学与认知”列入基础研究8个科学前沿问题之一。  “中国科学家只有用自己研发的观测仪器,做出原创性的脑科学成果,国际科学界才会认可。我们希望研制一款成像仪,率先让中国科学家用起来。用国外的仪器做研究,都是在别人建设的四梁八柱上做文章。”程和平用使命必达的决心来筹备项目的启动。  一场跨越山海的探索  想实现双光子显微镜在自由活动的动物体上的高清成像,必须为它“瘦身”。  然而,极大的技术难度,让团队一度面临质疑。程和平向科技日报记者坦言,7200万元的投入“相当于一吨百元大钞”,究竟能不能收获一个看得见的未来,大家当时心里很忐忑。“那时世界多国尝试微型化双光子显微镜的研制,但都没有实质性突破,尝试十几次都无疾而终。”他说。  程和平所言非虚。2008年,瑞士有课题组公布了他们的微型双光子系统,仅重0.9克,并实现了大鼠在体钙成像信号。但其空间分辨率极低,也未实现真正的自由运动下的成像。  2009年,德国有课题组展示了它们的微型双光子系统,其理论分辨率接近大型的双光子显微镜。但其探头较重,扫描速度很慢。  程和平身后,有一支不同寻常的团队,团队中有人研究超快激光器,有人专攻高速电路,有人擅长图像处理,有人能做大数据分析……然而,研究起步阶段,团队中无人具备研制系统性科研设备的经验,技术路线也不确定。  “怎么办?只有一点点地认真做。”程和平给团队立下军令状。  在项目开始的前两年,大家争分夺秒地汲取多学科的营养。在北京大学分子医学研究所300平方米的大仪器联合实验室里,来自机械、光学、生物、电路等研究领域的师生汇聚在一起,交流切磋。每周六上午的集体学习,大家分享一周行业动态,介绍各自研究进展。同时,大量的国内外顶尖专家被邀请来作报告。  引进来的同时,团队也频频走出去。仅2014年,他们就涉足美国、俄罗斯、澳大利亚、西班牙。每去一个地方,大家都会在当天晚上写好总结,发给团队共同学习。空间站双光子显微镜对航天员皮肤表层成像。  一场持续十年的攻关  2017年,团队终于迎来了振奋人心的进展。  在如今北京大学膜生物学国家重点实验室设备研发平台内,一个只有拇指大小、重约2.2克的显微镜探头,被珍藏在实验室深处——这是团队于2017年成功研制的第一台微型化双光子显微镜的核心部件。  这台显微镜可以实现高时空分辨微型化成像,能实时记录数十个神经元、上千个神经突触动态信号。这些突破性的进展,使其入选2017年中国科学十大进展。  4年后,该团队推出微型化双光子显微镜的2.0版本,其成像视野扩大到初代显微镜的7.8倍,同时具备三维成像能力,获取了小鼠在自由运动行为中大脑三维区域内上千个神经元清晰稳定的动态功能图像。  今年2月,团队又发布了他们研制的微型化三光子显微镜。该显微镜能直接透过大脑皮层和胼胝体,首次实现对自由行为中小鼠的大脑全皮层和海马神经元功能成像,神经元钙信号最大成像深度可达1.2毫米,血管成像深度可达1.4毫米。  致广大而尽精微。10年,微型化双光子显微镜完成了从高清成像,向更广、更深成像的科研布局。然而,这在研制一款“大国重器”的探索之旅中,也许仅仅是开始。  2016年,当第一代微型化双光子显微镜的研究即将“破土”时,一个声音再次在程和平脑海里回响,“如果投入‘一吨百元大钞’,只是交付3台显微镜,性价比太低了。应该先让中国科研院所、企业的实验室用起来,做出领先国际的研究,再向国际市场推广。”  让程和平下定决心办公司的,还有3年来培养起来的一支团队。“国家投入这么大,让我们长了一身本事,项目结题后如果团队散了就太可惜了。”程和平说。  办公司让研究成果产品化,成为程和平团队的共识。2016年,程和平团队创立了北京超维景生物科技有限公司(以下简称超维景)。  一个新时代开启了。  一场自立自强的产业突围  当科学技术的光芒照进产业,不仅砥砺技术创新的成色,也可以点亮一片“暗夜”。要将高端精密科研仪器产品化,元器件的可靠性、稳定性必须过硬。  微型物镜,是微型化双光子显微镜的关键核心零部件。团队核心成员、北京大学未来技术学院特聘副研究员吴润龙记得,最初做原理样机时,团队从国外一家公司进口微型物镜。  但当团队进入显微镜产品化阶段后,对方的发展战略也发生变化。“对方要求我们购买他们合作伙伴的单光子显微镜系统,物镜不再单独售卖,而这个系统的价格要100多万元。代价太大,我们不能被‘卡脖子’。”吴润龙说,自此,团队开始自行设计高数值孔径的微型物镜,并联合国内企业加工,在超维景进行装配和测试。  自胜者强。2018年,赵春竹到北京大学未来技术学院做博士后研究,为助力物镜的自主研发按下了快进键。  “经过三代技术攻关,我们已经掌握了高端物镜的设计技术。但在自主设计、加工的基础上,还要形成高精度自主装配的流程和方法。微型物镜由多个镜片叠加而成,每片直径约3毫米,最初我们将所有的镜片一起装配完后,统一调试,但发现精度相差太大。后来,我们优化了装调工艺,每安装一片镜片,都用仪器检测光轴偏移量、焦距等参数。由于物镜直径太小,一开始,调整几微米的误差,都要耗时一两天。”赵春竹回忆,最艰难的时候,大家几乎绝望。但抱着不破楼兰终不还的信念,大家几微米几微米地死磕,想办法迭代技术,最终攻克了高端微型物镜装配技术。  光纤是显微镜微型化的另一个瓶颈。团队成员、北大电子学院副教授王爱民设计了一款蜂窝状的空芯光子带隙光纤,让激光通过光纤传输到微型化探头的过程中,脉冲不发生畸变、能量几乎不损耗,以有效激发小动物体内的荧光分子。  但让王爱民措手不及的是,设计方案有了,国内却没有厂家能生产这种光纤。“我们最初找了一家外国公司订制。但一年后,这家公司提出翻番的价格,每米光纤的价格接近万元,仅光纤的成本就增加了几百万元。”他回忆说,团队被“逼上梁山”,转而联袂上海光机所的一位青年学者一起摸索加工工艺,进行国产化。  在北京大学未来技术学院教授陈良怡看来,科研仪器国产化过程中的突围,也将带动应用基础研究与产业发展“双向奔赴”。  “我们的论文发表后,很多技术被公开了,但很多人做重复实验时无法再现,是因为加工中有很多细节问题难以解决,这些细节在学术论文中也难以呈现。”陈良怡说,如果想将这款显微镜尽快用起来,就要将科研成果产品化,带动产业的发展。而产品化的过程,也促使他们思考,如何用成像技术推动神经科学、脑科学乃至整个生命科学基础研究的发展。  目前,超维景研制的微型化双光子显微镜已服务了150余家国内实验室,年平均销售额达5000万元。今年,公司还将拓展国际市场。  一项世界首创的应用  10年前项目启动时,程和平抱着“从幼儿园开始读一个博士学位”的心态,研制微型化双光子显微镜。  时光浩荡向前,多年的厉兵秣马是否能支撑国家重大战略需求?团队将答卷写进宇宙苍穹。  2019年,在中国载人航天工程办公室大力支持下,程和平团队、中国航天员科研训练中心李英贤团队、北京航空航天大学冯丽爽团队联合相关企业及院所,组建了空间站双光子显微镜项目团队,由程和平担任总负责人。  “中国要发展载人航天、要研究生命科学,太空是一个难得的实验室。在失重环境下,人体细胞是如何完成新陈代谢的,大脑的神经元又将发生什么变化,都是很好的研究课题。双光子显微镜成像深度深,可以帮助我们逐层扫描、分析航天员的细胞结构和代谢成分信息。”程和平说。  2022年9月,空间站双光子显微镜研制成功。当年11月12日,空间站双光子显微镜搭乘天舟五号货运飞船成功运抵中国空间站,成为世界首台进入太空的双光子显微镜。  今年2月上旬的一天,空间站双光子显微镜终于开机。坐在中国航天员科研训练中心看到航天员操作画面传回,程和平松了一口气:“终于成功了。”  消息传来,整个团队沸腾了。“这辈子能做这么一件事情,值了!”王爱民至今回忆起来仍激动不已。  鲜为人知的是,为了达到航天应用的标准,显微镜经历了一次次蜕变。  精密的显微镜,要能承受飞船发射时的剧烈振动,这要求它足够抗振。“最初,激光器的核心部件被振得粉碎。”北京大学未来技术学院助理研究员王俊杰记得,为了让显微镜“强健筋骨”,他们将激光器的核心部件设计为固态结构,以增强激光器的机械强度,同时在激光器外部增加了减震装置,相当于给其上了一层保险。  超维景的团队也参与进来。超维景超快激光事业部经理陈燕川介绍,他们将激光器核心部件置于-40℃至80℃的温度下循环试验,使部件在短期内反复承受极端高低温变化应力以及极端温度交替突变的影响,以排查隐患。为了确保万无一失,团队还制作多组关键部件样品,进行加量级、破坏性的振动冲击试验,保证显微镜能满足航天发射环境各种极端条件的挑战。  最终,团队实现了多项突破:首次在轨验证实验实现了世界上首次双光子显微镜在轨正常运行,国内首次实现飞秒激光器在轨正常运行,国际上首次在轨、在体观测航天员细胞结构和代谢成分信息。  一个梦想的启航  从突破理论研究瓶颈,到试水产业蓝海,再到支撑国家重大战略需求,程和平团队将科技创新的底色写在从技术创新到产业应用的跃迁中。如今,一个更宏大的构想正在渐次舒展。  在南京江北新区,成立近4年的北大分子医学南京转化研究院(以下简称转化院),已搭建起高端脑成像的公共技术服务平台“南京脑观象台”。后者可以提供微型化双光子显微镜、超灵敏结构光超分辨显微镜及高速三维扫描荧光成像系统等设备,帮助科研团队获得从大脑突触、神经元集群、神经环路,再到全脑水平的全景式脑功能成像。  科研团队的身后,还有一群人与他们并肩作战。  几乎每天,实验员陈雪莉都要为小鼠注入观测所需的荧光蛋白,对小鼠进行行为训练。  当她为小鼠戴上显微镜探头后,一旁的屏幕上会立即呈现出小鼠大脑的钙活动影像。  “脑观象台有一支技术团队。对于遴选通过的研究项目,技术团队会与科研团队一起制订实验计划,为学者们制备、训练小鼠,采集小鼠的脑活动成像数据,再将小鼠的行为学数据和脑活动数据匹配,供科研人员分析小鼠在表现出某种行为时,大脑发生了什么变化。”转化院副院长赵婷解释,脑观象台希望将学者们从繁琐高难的实验技术细节中解放出来,加速从理论设想到实验发现的进程。  凭借南京脑观象台成像技术的支持,科学家们已经开始收获惊喜、成果迭出:小鼠有喜新厌旧的行为,而孤独症小鼠却存在这一行为缺陷;清醒状态下小鼠癫痫发作时,神经元异常放电……  赵婷介绍,如今,脑观象台已经服务了100多家单位的180余个课题组,开机时间累计超过2万小时。脑观象台与江北新区联合发起的两期“探索计划”,也已累计支持48项课题研究。  十年春华秋实。一颗在未名湖畔种下的种子,如今正在千里之外的扬子江畔落地生根、开枝散叶,荫泽全国的脑科学、神经科学等领域的研究。  40多年前,少年程和平曾在他的笔记本上写下带有科幻色彩的理想——“做一款思维记录器”。  跨越万水千山,如今,理想照进现实,中国脑科学研究风华正茂。
  • 北京大学李文哲博士:双光子显微成像技术应用心得
    生命科学研究过程离不开各类科学仪器的帮助,仪器信息网特别策划话题:“生命科学技术平台经验分享” ,邀请高校、科研院所公共技术平台的老师分享技术心得和经验,方便生命科学领域研究人员了解相关技术进展,学习仪器使用方法。本篇为北京大学天然药物及仿生药物全国重点实验室李文哲博士供稿。双光子吸收的理论概念是1931年由德裔美国物理学家Maria Göppert-Mayer在她的博士论文中提出。到1960年,激光器被发明出来后双光子吸收在实验上被验证,但是直到1990年第一台双光子荧光显微镜才被美国康奈尔大学的Denk、Strickler和Webb开发出来,Denk很快就将双光子显微镜用于神经元成像。1997年,美国科学家Svoboda利用双光子显微镜测量完整老鼠大脑的锥体神经元,并记录其感官刺激诱导树突钙离子动态,自此双光子显微镜的潜能开始完全凸显。时至今日,双光子显微系统在神经科学、肿瘤学、心脑血管及药物研究等领域有了极大的发展,近年来,光遗传光刺激也更多地和双光子技术结合,广泛地应用于清醒小动物领域。双光子成像的原理和优势特点双光子显微镜的基本原理是:在高光子密度的情况下,荧光分子可以同时吸收 2 个长波长的光子,在经过一个很短的所谓激发态寿命的时间后,发射出一个波长较短的光子;其效果和使用一个波长为长波长一半的光子去激发荧光分子是相同的。双光子激发需要很高的光子密度,为了不损伤细胞,双光子显微镜使用高能量锁模脉冲激光器。这种激光器发出的激光具有很高的峰值能量和很低的平均能量,其脉冲宽度只有 100 飞秒,而其周期可以达到 80至100兆赫兹。在使用高数值孔径的物镜将脉冲激光的光子聚焦时,物镜的焦点处的光子密度是最高的,双光子激发只发生在物镜的焦点上,所以双光子显微镜不需要共聚焦针孔,提高了荧光检测效率。图1.双光子激发原理(左)及双光子吸收现象(右)从双光子现象的原理,我们可以总结出双光子成像的特点及其相对于共聚焦成像的优势:1.光损伤小:由于双光子显微镜使用的是可见光或近红外光作为激发光源,这一波段的光对活体细胞和组织的光损伤小,适用于长时间的活体研究;2.穿透能力强:相对于紫外光,可见光和近红外光都具有更强的穿透能力(图2),因而受生物组织散射的影响更小,解决对生物组织中深层物质的层析成像研究问题,常规情况下,共聚焦的成像深度一般为100微米,双光子则能达到250到500微米,甚至超过1毫米;3.高分辨率:同时吸收两个光子意味只有高强度聚焦点处能被激发,由于双光子吸收截面很小,只有在焦平面很小的区域内可以激发出荧光,双光子吸收仅局限于焦点处的体积约为波长3次方的范围内;4.荧光收集率高:与共聚焦成像相比,双光子成像不需要光学滤波器(共焦针孔),这样就提高了对荧光的收集率;5.图像对比度高:由于双光子激光波长较长,瑞利散射产生的背景噪声只有单光子激发时的1/16,大大降低了散射的干扰(图2);6.避免组织自发荧光的干扰,获得较强的样品荧光:生物组织中的自发荧光物质的吸收波长一般在350-560nm范围内,采用近红外或红外波段的激光作为光源,能大大降低生物组织对激发光吸收(图2)。图2. 不同波长下的光穿透深度、光散射以及内源性物质对光的吸收情况基于以上优势,双光子显微镜自发明30年来,已成为较厚组织及活体动物显微成像中不可或缺的工具。我们平台双光子显微镜常用的应用研究如,在神经科学领域用于脑神经和脑血管成像,通过开颅对麻醉小鼠完整V层锥体神经元和更深层的海马神经元的三维结构进行深层成像,对脑血管进行高速动态实时成像;在肿瘤研究中,对于肿瘤细胞及肿瘤微环境中免疫细胞的行为进行成像;在药物研究中,对于药物在肿瘤或脏器中的靶向、释放及代谢等动力学行为进行实时可视化成像;得益于平台双光子显微镜双脉冲激光(一根700-1300nm可调激光,一根1040nm固定谱线激光)的配置,可进行双通道同时成像,特别是适用于比率型荧光生物传感器的研究,如果利用一根激光作为刺激光源,可进行边刺激边成像实验。双光子显微成像的“搭档”双光子显微镜用于活体动物的原位显微成像,为保证实验动物在成像时保持稳定且维持正常的生理状态,往往需要搭配一些辅助成像的设备或者配件。以下为我们常用的几种双光子成像辅助配件:1、可移动麻醉机进行双光子活体动物成像实验时,为保持动物处于稳定状态,需对其进行持续麻醉。吸入式麻醉起效快,麻醉效果稳定,麻醉的深度和维持时间易控制,麻醉撤离后动物复苏快,最重要的是其不会影响动物的生理指标,被认为是啮齿类动物最可靠的麻醉方式。异氟烷气体吸入式麻醉是目前国际惯用的麻醉方式,研究表明,异氟烷麻醉能维持动物的心率、血氧分压、血液pH等生理功能处于稳定状态,适合情况复杂且持续时间较长的动物实验,包括对小动物进行连续成像。因此小动物可移动麻醉机是双光子显微成像实验中必不可少的辅助设备。本平台配备的小动物可移动麻醉机适用于大鼠、小鼠、豚鼠,可保证动物在成像的同时进行可控的持续麻醉。2、小动物成像视窗由于光吸收和光散射,目前双光子成像深度≤1 mm。因此对于活体动物器官的成像一般需手术暴露成像部位。众所周知,大多数的生理和病理过程发生在较长时间内,需连续几天或更长时间内对同一只动物多次成像。因此对于双光子活体成像,待观察组织的暴露及固定技术非常重要。此外,正置双光子显微镜常用水镜,小鼠活体成像过程中会因稳定性不足发生抖动,造成样品与物镜间的水缺失,而活体动物自身的呼吸和心跳等影响因素也会造成成像焦面的丢失,一旦失焦,重新进行对焦十分耗时,大大影响成像的效率。基于以上问题,对于动物成像部位的维持与固定有非常高的要求,固定装置不能对动物有太大的损伤,既要保证能够得到清晰的图像,还要保证动物生命体征正常。目前已有多项研究通过构建和使用双光子活体成像窗口,实现对不同脏器进行固定和长期成像,其中脑部颅骨薄窗成像技术较为成熟,因其远离心脏的位置优势,前处理和固定相对较容易,结合荧光标记物已广泛应用于脑神经科学相关研究。腹部器官如肝脏、淋巴组织、肠、脾脏和肾等都很软且血管密布,由于解剖位置不同,缺乏可以固定成像窗的骨骼结构,给窗口适配器的固定增加了难度;而且腹部脏器普遍离心脏较近,拉伸距离有限,更需要较好的固定和麻醉来抵抗心跳造成的图像抖动。因此腹部器官的活体成像更具挑战性,固定适配器往往需根据具体实验自制或定制。3、气管插管工具及呼吸机对于小动物肺部成像或心脏成像,需对其进行开胸手术,为维持动物正常的生理活性,满足呼吸代谢的需求,一般借助呼吸机对其进行有节律的肺部供气。呼吸机的本质就是一种气体开关,控制系统通过对气体流路的控制而完成给实验动物肺部供气,保持实验动物生理活性的设备。而气管插管是呼吸机辅助呼吸的重要步骤,顺利的气管插管是实验成败的关键之一。气管插管(以下简称插管)是指将一特制的气管内导管经声门置入气管,进而打开小动物呼吸道,为气道通畅、通气供氧等提供最佳条件。气管插管推荐使用静脉留置针的套管,大鼠一般使用16-18G套管,小鼠一般使用22-24G套管。我们平台一般使用光纤辅助法经口插管,操作过程中先将动物固定到一个倾斜的平板上,光纤插入到气管插管中,然后利用这种带光源的气管插管在明视野条件下经口腔插入动物的气管,然后拔掉光纤,用专用的气泡接到气管插管中,吹泡检测是否气管插管到达需要的位置,如果确认插管到位,再将气管插管与呼吸机的Y型接口相连。光纤辅助法也是目前插管最快,成功率最高的方法,同时对动物的损伤小,对操作人员的技能要求低。国产双光子显微镜的现状和未来双光子显微镜目前已广泛应用于神经科学、肿瘤研究、免疫学、病毒学、化学生物学等研究领域,在基础科研和临床前研究中都有着不可替代的重要地位。一流的科研离不开一流的技术,但由于我国在显微镜行业起步较晚,当前我国高端双光子显微镜市场仍大多依赖进口,深度精密制造、光学核心部件设计及工艺严重制约产业升级,国内具备生产高端显微镜的企业屈指可数,必须承认的是国内厂商仍与国际高端水平有相当差距,在国际竞争中技术上处于相对劣势。我们平台的高端显微镜目前全部为进口品牌,在使用过程中一旦出现核心部件的严重的故障,涉及到需要连线国外厂家维修和维权非常不顺畅,耗费大量的人力和时间成本,严重影响了科研进度,面对此困境,国产高端显微镜的自立自强迫在眉睫。令人欣喜的是,近几年在国家科研仪器专项的支持下,我国科研仪器行业迅猛发展,特别是高端显微镜研制已渐入佳境,近几年更是研究出了有自己特点的高端双光子显微镜。中国科学院苏州医工所推出的“中科希莱”品牌高速双光子荧光显微镜深入研究并掌握了基于12kHz共振扫描器和磷砷化镓探测器的高速高灵敏度在体双光子成像技术,开发了专用于生物在体成像的高速高分辨双光子显微镜系统,实现了深表层和高速神经功能成像,并能与电生理、光遗传等常用生理仪器完全同步联合运作。目前产品已销售到以色列耶路撒冷希伯来大学、北京大学分子生物研究所、中国科学院上海生命科学研究院神经科学研究所等国内外多家高校及研究所。2017 年,北京大学程和平院士牵头研发的微型化双光子活体成像技术的出现,使目前最新神经科学需要的针对清醒动物的功能研究实验得以实现,其核心技术 2.2 克可佩戴式微型化双光子荧光显微镜,在国际上首次获取了小鼠自由行为过程中大脑神经元和神经突触活动清晰稳定的图像。该成果获得了中国科技部评选的2017年度“中国科学十大进展”,同时与其他自由运动成像技术被Nature Methods杂志评为2018年度方法——“无限制行为动物成像”。2021年,该团队在Nature Methods上报道了第二代微型化双光子荧光显微镜FHIRM-TPM 2.0,其成像视野是该团队于2017年发布的第一代微型化显微镜的7.8倍,同时具备三维成像能力,获取了小鼠在自由运动行为中大脑三维区域内上千个神经元清晰稳定的动态功能图像,并且实现了针对同一批神经元长达一个月的追踪记录。目前该技术已产品化并销往海内外,销售额过亿。值得一提的是,2023年2月27日,该团队研制的空间站双光子显微镜随神舟十五号进入太空,航天员乘组使用空间站双光子显微镜开展在轨验证实验任务,成功获取航天员皮肤表皮及真皮浅层的三维图像,为未来开展航天员在轨健康监测研究提供了全新工具。近五年来,国产高端显微镜科技成果产业化的飞速进步给了我们很多惊喜,也在逐渐努力打破当前被进口仪器垄断的市场格局。但由于我国显微镜行业起步较晚,发展缺乏技术沉淀,因此在核心部件设计、工艺及精密制造上仍与国外拥有百年历史的显微镜厂商有较大差距。未来,随着国内显微镜仪器行业新产品层出不穷,对光学元件组件加工技术(如光学玻璃非球面加工技术)、配套材料及高精度检测技术要求越来越高,只有解决了这些问题,才能将高端显微镜的知识产权和核心技术牢牢掌握在自己手里,以期真正实现高端显微镜的自主创新和国产替代。关于北京大学天然药物及仿生药物全国重点实验室生物影像平台在科技部国家重点实验室仪器专项和双一流学科建设经费的支持下,实验室建立了配套齐全、设备先进的大型仪器研究技术平台,设备总值约3.6亿元,按功能分为10个子平台,可为生物医学研究和新药研发提供全链条技术支持。其中,生物影像平台技术精专、设备一流、开放性强、是一个为科研人员提供合作研究和技术交流的多功能研究技术平台。生物影像平台拥有成熟的高内涵成像分析技术、STED/STORM/Airyscan超高分辨成像技术、共聚焦成像技术、双光子成像技术、多光谱全景组织切片成像及表型分析技术、小动物光学成像技术、多模式小动物光/超声成像技术等,同时平台集成了Imaris、Aivia、inForm、Nis-element、AutoQuant X3等多种智能图像处理分析软件,建立完备的图像分析工作站,获取大量基于图像的生物信息分析数据。平台成功建成从分子到细胞、组织、动物完整的生物成像及分析体系,已广泛应用于校内外的分子及细胞生物学研究、免疫学研究、疾病研究、原创药物研发及高通量药物筛选、新型纳米功能材料研究等领域。主持多项国家级课题和校级技术类开放课题,不断开发或拓展成像技术的应用领域,积累了丰富的生物成像研究经验。本成像平台目前的研究方向及技术服务内容有:1. 核酸、蛋白、糖类等生物分子的成像及相互作用分析;2. 细胞生物学成像及细胞器的动态相互作用超高分辨成像与分析;3. STED、STORM、Airyscan超分辨成像技术;4. FRET、FRAP、TIRF等成像技术及分析;5. FLIM、FLIM-FRET、FCS成像及定量分析;6. 信号传导通路分析及分子定位分析;7. 细胞内药效学及药物动力学可视化评价;8. 组织病理切片制备、染色、免疫组化、多色免疫荧光;9. 组织切片全景扫描、多色免疫组化荧光成像与空间组学分析;10.双光子小动物活体原位细胞动态成像;11. 小动物活体光学/超声/光声成像及活体中的药效、药物动力学评价等。
  • 鑫图参与国家重点项目—“双光子-受激发射损耗(STED)复合显微镜”的研发
    2017年10月20日,科技部重点研发计划-数字诊疗专项"双光子-受激发射损耗(STED)复合显微镜"项目(2017YFC0110200)实施交流研讨会在南京举行,鑫图总经理陈兵在会上作了关于"下一代sCMOS相机"的技术汇报。 该项目以研发及产业化双光子-受激发射损耗(STED)复合显微镜为主要目标,力图在"适用于双光子成像的自适应光学技术"、"基于中空贝塞尔淬灭光场调控的STED 成像技术" 等关键技术上有所突破。在长工作距离显微物镜、飞秒激光器和CMOS 相机等核心部件能自主研发,实现高端光学显微镜的技术创新与装备国产化。项目研发团队是由多名在光学显微成像领域有着丰富研究与产业化经验的资深人员组成,在双光子显微成像、STED超分辨成像及仪器化开发方面都有着深厚的基础。在双光子显微成像方面,项目负责人郑炜博士从2006 年起就开始双光子显微成像的相关研究,自主研发了世界首台双光子\谐波\光声三模态显微镜。在STED成像方面,项目核心成员席鹏教授是国内公认的STED技术领航人,是他首次在国内实现了STED超分辨显微成像,并将STED分辨极限推进到19nm的理论极限,刷新了STED在生物成像上的记录。在产业化方面,申报企业南京东利来公司是中国光学与光子学标准技术委员会的委员单位,是中国显微物镜、目镜标准的第一起草单位。福州鑫图光电有限公司依托其在科学相机产业化方面的优势有幸参与其中,承担该项目核心部件sCMOS相机的研制,助力核心部件国产化目标。
  • “双碳”目标赋能经济社会高质量发展
    2020年9月22日,国家主席习近平在第七十五届联合国大会一般性辩论上发表重要讲话,宣布了中国2030年前二氧化碳排放达峰目标和2060年前碳中和愿景。2021年10月24日,中共中央、国务院印发了《关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见》,对“双碳”工作进行了全面、系统的部署,形成了“双碳”工作管长远、管根本的顶层设计。  在习近平生态文明思想指导下,“双碳”工作被纳入经济社会发展全局,成为我国走绿色低碳高质量发展道路的重要抓手。通过努力建设人与自然和谐共生的现代化,重新认识减排与发展的辩证统一关系,在以下六个方面中,“双碳”工作促进经济社会发展的全面变革。  第一,加快产业结构调整。现代化的经济体系,其底色必然是绿色。一方面,绿色低碳产业与战略性新兴产业高度重合,在节能环保、信息、生物、高端装备制造、新能源、新材料、新能源汽车等战略性新兴产业的诸多细分领域,我国已经建立起后发优势,其在经济中的比重必然进一步扩大,成为支持中国打造低碳经济的主战场。另一方面,减排降碳的约束性目标,必然要求传统的高能耗、高排放产业持续开展深度变革,在巩固去产能成果的同时,实现传统产业绿色低碳转型。此外,在新一轮的产业转移进程中,要将碳排放控制作为强制标准纳入转移企业引进标准之中,促进高能耗、高排放产业在实现空间重组的同时,稳步降低碳排放。  第二,加速能源低碳转型。“富煤、贫油、少气”是我国能源禀赋的基本国情,必须先立后破,持续推进能源革命。一方面,要稳步减少以煤炭为主的化石能源消费比例,在煤炭生产洗选、燃煤发电、工业用煤等重点行业和领域,积极开展新技术应用,推动煤炭全产业链清洁高效利用。另一方面,要多措并举促进新能源高质量发展,针对风能、太阳能、生物质能、海洋能、地热能等不同新能源的特征,根据不同地区的新能源禀赋,因地制宜发展新能源;要促进存储消纳,提升可再生能源存储能力,促进就近消纳和外送消纳,不断提升可再生能源利用效率。此外,要积极探索“风光火储一体化”“源网荷储一体化”发展路径,逐步形成多能互补、综合利用、集约高效、低碳绿色的能源利用体系。  第三,推进绿色技术创新。绿色技术创新是实现产业结构调整、能源低碳转型的重要抓手,正成为全球新一轮工业革命和科技竞争的重要新兴领域。要构建市场导向的绿色技术创新体系,强化企业的绿色技术创新主体地位,激发高校、科研院所的绿色技术创新活力,推进“产学研金介”深度融合。支持有条件的地区建设一批国家实验室、国家重点实验室、重大科技基础设施,在关键领域的“卡脖子”环节实现自主绿色技术创新突破。要建立健全绿色技术转移转化市场交易体系、完善绿色技术创新成果转化机制,不断释放绿色技术创新支持绿色低碳循环发展经济体系建设效能。  第四,优化国土空间格局。要构建有利于碳达峰、碳中和的国土空间开发保护新格局,把“双碳”目标纳入国土空间规划指标体系之中,严守永久基本农田和耕地保护红线,强化耕地保护与利用,提升耕地生态功能;优化生态空间格局,保障生态系统稳定性和服务能力,提升生态系统碳汇水平;倡导集约紧凑的城镇用地空间布局,强化建设用地总量管控,用好存量建设用地,探索低碳的街区形态和建筑形态,促进国土空间利用向绿色低碳转型。  第五,重塑人民生活方式。良好生态环境是最公平的公共产品,是最普惠的民生福祉。要倡导环保意识、生态意识,构建全社会共同参与的环境治理体系,让生态环保思想成为社会生活中的主流文化。要通过树立尊重自然、顺应自然、保护自然的生态价值观,引导民众形成绿色增长、共建共享的理念,使绿色消费、绿色出行、绿色居住成为人们的自觉行动。把绿水青山建得更美,把金山银山做得更大,让人民群众在绿水青山中共享自然之美、生命之美、生活之美。  第六,构建地球生命共同体。实现碳达峰碳中和是中国高质量发展的内在要求,也是中国对国际社会的庄严承诺。中国通过开展“双碳”工作,跳出传统工业文明视角,从生态文明视角促进人与自然和谐共生,减排和发展就可以做到相互促进,为众多发展中国家提供低碳起飞的可能,为全球可持续发展提供根本解决之道。中国将秉持构建地球生命共同体的发展理念,积极参与和引领全球气候治理,致力于推动构建公平合理、合作共赢的全球气候治理体系,持续为世界贡献中国智慧与中国力量。
  • ALCOR 920性能再次提升!脑科学双光子显微成像系统理想飞秒激光光源——Spark Lasers
    自Spark Lasers公司推出ALCOR 920系列920nm飞秒光纤激光器以来,该系列产品就成为脑科学双光子显微成像系统主要使用的光纤飞秒激光器。凭借其高功率、窄脉宽、高稳定性、免维护等特性,ALCOR 920不仅成为传统钛蓝宝石飞秒激光器的高性价比替代产品,也成为同类产品的市场引领者。 ALCOR 920采用了Spark Lasers最新的HPC技术(High Pulse Contrast),功率有了进一步提高,同时脉冲形状也得到了优化。与前一代产品相比,ALCOR 920-1的平均功率从之前的1W提高到了1.5W;ALCOR 920-2的平均功率从之前的2W提高到了2.5W。ALCOR 920-4仍提供高达4W的平均功率,是目前市面上920nm飞秒光纤激光器中输出光功率最高的产品。图1 ALCOR系列产品主要参数列表 飞秒激光器作为双光子显微成像系统的核心部件之一,对系统成像效果是至关重要的。那么,如果想要得到好的成像效果,应该怎么办呢?我们有方法:1. 选择高峰值功率的激光器由于双光子效应是与光子密度正相关的非线性效应,越高的峰值功率就意味着越多的荧光分子能够同时吸收两个光子到达激发态,并在跃迁至基态的过程中发出荧光,也就是说最终被探测器采集到的荧光信号也就越强,最终生成的图像亮度和对比度也就越高。峰值功率的计算方式可以由下面的公式计算得出:例如,标准款ALCOR 920-2的平均功率为2.5W,重复频率为80MHz,脉冲宽度为100fs,那么ALCOR 920-2的峰值功率就高达312.5kW。 假如有一款飞秒激光器脉冲宽度只能做到150fs,平均功率和重复频率却能和ALCOR 920-2一样,那么会有什么影响呢?我们通过计算可以得到,这款激光器的峰值功率仅有208kW,仅有ALCOR 920-2的66.6%,这也就意味着相应的荧光强度也会有很大幅度的降低。同样地,假如有另一款产品,脉冲宽度也能达到100fs,但是平均功率却比较低,那么其峰值功率也是比较低的。 图2 使用低脉冲质量的激光器和Spark Lasers的高质量脉冲激光器的最终图像对比 2. 使用色散预补偿得到最优化的脉冲宽度然而,拥有一台激光器只是搭建双光子显微成像系统的第一步。由于成像系统内部有很多光学元器件,如反射镜、滤光片、光强调制器、空间光调制器、分光棱镜、物镜等等,而这些光学元器件中的大部分都会引入正色散,导致飞秒脉冲激光到达测量点处的过程中发生展宽,即脉冲宽度变宽。在上面的计算中我们可以看出,脉冲宽度变宽会导致激光峰值功率的下降,会在很大程度上降低荧光光强,以至于最终的图像亮度和对比度会变差。 ALCOR 920系列在激光头内部集成了色散预补偿模块,可以在激光发射时就带有负色散,这些负色散可以在激光脉冲传播过程中和光学器件引入的正色散相互抵消,从而使得在测量点处,脉冲宽度能保持比较窄。 标准款ALCOR带有0~-60000fs2的大色散补偿范围,同时提供0~-90000fs2的超大色散补偿范围选配,可以满足大部分双光子显微成像系统对色散补偿要求,甚至是最复杂的系统。根据我们的经验,一般复杂程度的双光子显微成像系统对色散补偿的要求在-30000fs2~-50000fs2。3. 对功率进行调制和精确控制ALCOR 920可提供XSight选配模块,即集成化内置AOM模块,以满足双光子显微成像系统对激光实现光强的开/关调制或模拟调制来实现复杂的功能的需要。内置模块可以在很大程度上节省光学平台的空间以及在光路中调试外置调制器的时间精力,同时,该模块能够提供:超高精度光强调节(分辨率高达0.1%)高带宽模拟调制(0~1MHz)高速光开关(上升/下降沿200ns)上海昊量光电作为Spark Lasers在中国地区独家代理商,为您提供专业的选型以及技术服务。对于Spark Lasers有兴趣或者任何问题,都欢迎通过电话、电子邮件或者微信与我们联系。欢迎继续关注上海昊量光电的各大媒体平台,我们将不定期推出各种产品介绍与技术新闻。关于昊量光电:上海昊量光电设备有限公司是光电产品专业代理商,产品包括各类激光器、光电调制器、光学测量设备、光学元件等,涉及应用涵盖了材料加工、光通讯、生物医疗、科学研究、国防、量子光学、生物显微、物联传感、激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等服务。
  • 青海大学500万元购买1套双光子三维光刻机
    7月30日,青海大学公开招标购买1套双光子三维光刻机,预算500万元。  项目编号:青海鑫融公招(货物)2021-27  项目名称:青海大学大型科研仪器购置补贴专项(双光子三维光刻机)  预算金额(元):5000000  采购需求:  数量: 1台  预算金额(元): 5000000  简要规格描述或项目基本概况介绍、用途:/  备注:  合同履约期限:详见招标文件  本项目(否)接受联合体投标。  开标时间:2021年08月23日 09:002021-27公招(货物)法务已审.doc
  • 深圳先进院郑炜团队提出可突破物镜标定视场极限的大视场高分辨双光子成像技术
    双光子成像具备较强的组织穿透能力、较高的分辨率和固有的光学层析能力,适用于深层组织的活体研究。传统的双光子成像能维持细胞分辨率的视场直径往往小于1 mm,限制了在大规模生物成像中的应用,如横跨多个脑区神经环路的结构与功能成像。近年来,一些新型技术通过设计特殊物镜和相应光学元件,实现可支持数毫米视场范围且保持细胞分辨率的双光子成像。但这些物镜并不是常规的商用光学元件,加工设计复杂,且使用时有较高的光学知识门槛,无法在生物成像研究中得到广泛应用。针对这一问题,中国科学院深圳先进技术研究院研究员郑炜团队提出一种有效的自适应光学方法,可矫正在大扫描角度时(大视场成像)的离轴像差,从而突破物镜的标定视场限制,在仅集成商用光学元件的基础上即实现视场直径可达3.5 mm且维持着800 nm横向分辨率的双光子成像。物镜是显微成像系统的核心部件,而物镜标定视场是一个由物镜制造商提供的数值,反映了该物镜光学像差得到有效校准的最大成像视野范围。在标定视场外的区域虽然仍能探测到光信号,只是将这部分信号用于成像时,图像模糊且存在明显畸变。为利用这一特性,团队提出一种分割矫正的无波前自适应光学补偿方法,该方法能高效且稳定地恢复标定视场外的图像质量。利用这一方法,研究人员能清晰观测到几乎覆盖了1/4小鼠大脑的神经环路成像,也能在活体小鼠大脑上监测大规模分布的小胶质细胞和微血管。该技术无需特殊光学元件,可集成到任一标准的点扫描式光学显微镜中。相关成果以Exploiting the potential of commercial objectives to extend the field-of-view of two-photon microscopy by adaptive optics为题,发表在Optics Letters上。研究由深圳先进院、香港理工大学联合完成,得到国家自然科学基金委、广东省重点实验室等项目支持。论文链接 技术原理及Thy1-GFP-M小鼠脑片大视场成像结果
  • 北大程和平院士团队自研空间站双光子显微镜登上中国空间站
    神舟十五号航天员乘组日前使用由我国自主研制的空间站双光子显微镜开展在轨验证实验任务并取得成功。这是目前已知的世界首次在航天飞行过程中使用双光子显微镜获取航天员皮肤表皮及真皮浅层的三维图像,为未来开展航天员在轨健康监测研究提供了全新工具。  人脑包含百亿级神经元和百万亿级的神经突触,其结构和功能上极其复杂精密的连接和相互作用,是意识和思想涌现的物质基础。为了能清晰看到活体大脑里面的神经元、神经突触的结构和信号,科学家们需要借助双光子显微镜。当代前沿的脑科学研究希望在大脑正常工作时、在自由活动的动物上观察大脑神经元变化,然而,体积重量庞大的传统双光子显微镜难以满足这种在体实时观察神经元信号的需求。  “如何才能创造出一种显微镜,能够在小动物自由行走的条件下,看到一颗一颗神经元,一闪一闪的动态变化,这是藏在我心底的一个梦想。”中国科学院院士、北京大学国家生物医学成像科学中心主任、北京大学未来科技学院教授程和平如是说。  2019年,在中国载人航天工程办公室大力支持下,由北大程和平、王爱民团队,中国航天员科研训练中心李英贤团队,北京航空航天大学冯丽爽团队联合相关企业及院所组建空间站双光子显微镜项目团队,程和平担任总负责人。项目组攻克多项显微镜小型化技术难题,于去年9月成功研制空间站双光子显微镜。  去年11月12日,空间站双光子显微镜搭乘天舟五号货运飞船成功运抵中国空间站,成为世界首台进入太空的双光子显微镜。近日,神舟十五号航天员乘组完成了双光子显微镜的安装、调试和首次成像测试,成功获取了在轨状态下航天员脸部和前臂皮肤的在体双光子显微图像。  项目团队成员、北京大学未来技术学院助理研究员王俊杰介绍,空间站双光子显微镜能以亚微米级分辨率清晰呈现出航天员皮肤结构及细胞的三维分布,具备对皮肤表层进行结构、组分等无创显微成像的能力。成像结果显示,皮肤的角质层、颗粒层、棘层、基底细胞层、真皮浅层等三维结构清晰可辨。双光子显微成像的信号来源于细胞及胞外基质中具有自发荧光的物质,这些信号有助于实现对航天员细胞线粒体代谢应激反应功能探测。通过对具有自发荧光的细胞代谢产物的量化观测可以反映出航天员机体代谢功能。  程和平表示,空间站双光子显微镜是体现我国高端精密光学仪器制造水平的重要成果。“此次在轨验证实验实现了多项第一,例如世界上首次实现双光子显微镜在轨正常运行;国内首次实现飞秒激光器在轨正常运行;国际上首次在轨观测航天员细胞结构和代谢成分信息。这些不仅为从细胞分子水平开展航天员在轨健康监测研究提供了全新工具和方法,也为未来利用中国空间站平台开展脑科学研究提供了重要的技术手段。”
  • 1128万!清华大学大视野双光子显微镜和在体神经元双光子成像系统采购项目
    一、项目基本情况1.项目编号:清设招第20230369号(TC23190EE)项目名称:清华大学大视野双光子显微镜采购项目预算金额:630.000000 万元(人民币)采购需求:(1)本次招标共1包:包号招标内容数量简要技术要求1大视野双光子显微镜1套详见采购需求本次招标、投标、评标均以包为单位,投标人须以包为单位进行投标,如有多包,可投一包或多包,但不得将一包中的内容拆分投标,不完整的投标将被拒绝。具体招标内容和要求,以本招标文件中商务、技术和服务的相应规定为准。(2)本项目接受进口产品投标。(3)本项目为非专门面向中小企业采购的项目。(4)用途:在视野双光子显微镜主要用于在≥5 mm直径的大视场下对单个神经元进行亚细胞级分辨率、视频帧频的功能成像,实现对空间上分离但在功能上关联的大脑区域的在体功能成像。该设备被用于跟踪具有钙指示剂的神经元群以获取小动物活体高分辨率高对比度的钙成像结果、小鼠全脑功能性活动和分布成像、小鼠全脑范围内跨区成像等方向,尤其在研究跨脑区的活体动物脑皮层神经元活动方面具有不可替代的作用。合同履行期限:交付时间为合同签订后90日内。2.本项目( 不接受 )联合体投标。项目编号:清设招第20230343号(TC23190EJ)项目名称:清华大学在体神经元双光子成像系统采购项目预算金额:498.000000 万元(人民币)采购需求:(1)本次招标共1包:包号招标内容数量简要技术要求1在体神经元双光子成像系统1套详见采购需求本次招标、投标、评标均以包为单位,投标人须以包为单位进行投标,如有多包,可投一包或多包,但不得将一包中的内容拆分投标,不完整的投标将被拒绝。具体招标内容和要求,以本招标文件中商务、技术和服务的相应规定为准。(2)本项目不接受进口产品投标。(3)本项目为非专门面向中小企业采购的项目。(4)用途:在体神经元双光子成像系统结合双光子成像技术和探头微型化设计,用于活体条件下长时间观察动物体内多个尺度、多层次的动态变化,以克服传统活体成像方式对动物的束缚压力、满足动物的自然行为需求如觅食、哺乳、休息等,以更真实地反映生物体内的生理动态过程。拟采购的设备在结合动物行为学特征研究活体动物的脑皮层神经元活动方面具有不可替代的作用,将服务于活体动物脑皮层神经元活动和动物行为学机制方面的研究。合同履行期限:交付时间为合同签订后90日内。本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年12月29日 至 2024年01月08日,每天上午9:00至12:00,下午12:00至16:00。(北京时间,法定节假日除外)地点:http://www.365trade.com.cn方式:本项目标书发售期内,请供应商通过汇款方式购买标书。纸质版文件请至中招国际招标有限公司9层911A领取(北京市海淀区学院南路62号中关村资本大厦)。电子版招标文件请在线上获取,获取网址http://www.365trade.com.cn。(详见特别告知)售价:¥500.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:清华大学     地址:北京市海淀区清华大学        联系方式:肖老师,010-62780052      2.采购代理机构信息名 称:中招国际招标有限公司            地 址:北京市海淀区学院南路62号中关村资本大厦            联系方式:张涵睿、陈思佳、蒋雪娜、邓嘉莹,010-61954121、4120、4122            3.项目联系方式项目联系人:张涵睿、陈思佳、蒋雪娜、邓嘉莹电 话:  010-61954121、4120、4122
  • Cell |清华大学研究团队开发新型双光子显微成像术,实现深层活体时空跨尺度观测
    双光子显微镜是对深层散射组织进行活体观测不可或缺的仪器,以其远超单光子显微成像的穿透深度而受到生命科学和医学研究的广泛关注。然而,传统双光子显微成像的点扫描成像模式从根本上限制了其成像通量与三维感知速度,极易受复杂活体成像环境干扰,同时激发点巨大的瞬时光强会对活体生物样本造成持续性的非线性光损伤,导致高速三维成像时长严重受限,极大地制约了病理学、免疫学和脑科学的发展。2023年5月12日,清华大学戴琼海、吴嘉敏、祁海作为共同通讯作者在 Cell 期刊发表了题为:Two-photon synthetic aperture microscopy for minimally invasive fast 3D imaging of native subcellular behaviors in deep tissue 的研究论文。该研究首次提出了基于空间约束的多角度衍射编码,实现非相干光孔径合成;建立了双光子合成孔径显微术(Two-photon synthetic aperture microscopy,2pSAM),“化点为针”,通过多角度针状光束的扫描在实现高速三维感知的同时,将双光子成像光毒性降低了1000倍以上;融合了戴琼海院士团队2021年同样在 Cell 上所提出的数字自适应光学架构,具备高速多区域像差矫正能力,即使在恶劣复杂活体环境下依然保持近衍射极限的空间分辨率,并进一步提升了传统双光子成像的穿透深度。基于此,2pSAM能够在哺乳动物深层散射组织中非侵入式地观测大范围亚细胞级动态变化,将毫秒级三维连续观测时长从数分钟提高到数十小时,为系统性地研究大规模细胞在不同生理与病理状态下的交互作用打开了大门。交叉研究团队利用2pSAM在小鼠活体观测到了一系列新现象,包括急性脑损伤后脑组织内周的多细胞互作,神经元在超长时程连续观测下展现出对视觉刺激的表征稳定性与功能多样性,以及首次完整高速记录下了小鼠免疫反应过程中淋巴结生发中心的形成过程,为病理学、脑科学和免疫学的研究打开了新窗口。传统双光子显微镜使用“点扫描”的方案对三维样本进行扫描,类似于共聚焦荧光显微镜,由于双光子成像的非线性效应使其能够获得数倍于单光子成像的穿透深度。例如,双光子显微镜在小鼠大脑皮层的最大穿透深度可以达到1 mm。然而,这种点扫描方式严重限制了双光子显微镜的三维成像速度与数据通量,并且由于在聚焦点位置极大的瞬时光强带来了非常严重的非线性光损伤隐患。2pSAM采用了轴向景深拓展的“针扫描”方案,通过改变针状光束的不同倾角实现样本三维信息的多角度投影,类似CT一样实现快速三维成像;同时,受到雷达成像中合成孔径方法的启发,通过在像面处引入针孔所带来的空间衍射编码约束,实现了非相干光的孔径合成,将多角度信息融合为大数值孔径对应的高空间分辨率;进一步利用样本的时空连续性先验,有效避免了视角扫描带来的时间分辨率损失。这样一种全新的计算双光子成像架构,在保留双光子本身深层组织穿透能力的同时,将有效成像通量提升了三个数量级以上。图1. 双光子合成孔径显微术(2pSAM)系统图除此之外,样本引起的光学像差给显微成像带来的分辨率与信噪比损失十分严重,随着成像深度的增加这种降质尤为明显。目前双光子成像中的硬件自适应光学技术主要面临着以下一些问题:1、成像系统复杂、成本高昂;2、有效校正视场有限,大视场多区域校正速度缓慢。2pSAM通过激发光编码获得了超精细的四维空间角度光场数据,能够使用数字自适应光学架构(DAO),无需在光学系统中增加额外的波前传感器或者空间调制器,就能实现信号采集与自适应像差校正的解耦,在后处理端完成大范围多区域自适应光学,显著提升在复杂成像环境中的空间分辨率与信噪比。图2. 双光子合成孔径显微术(2pSAM)结合数字自适应光学(DAO)与传统双光子显微镜(TPM)面对复杂成像条件下的结果对比。从左至右依次为:正常条件下拍摄,物镜校正环不匹配情况下拍摄,物镜为水镜且缺乏浸润水的情况下拍摄,物镜与样本之间增加散射胶带后进行拍摄长时间的激光照射会对活体样本产生严重的光毒性。研究团队发现,传统双光子显微成像由于使用飞秒激光激发与高NA会聚,在样本局部会产生巨大的瞬时光强,由此所产生的非线性光毒性在以往被极大地低估了,而一旦在长时程成像过程中,就会不断积累损伤从而影响细胞正常状态。与之对比,2pSAM化点为针,通过轴向景深拓展,在保持同样荧光激发效率的前提下,将瞬时峰值功率降低了1000倍,从而有效解决了非线性光损伤的问题。一方面能显著减少荧光探针的光漂白,对于同一类易淬灭染料,在同样激发光强下,传统双光子仅能拍摄几十个三维体,而2pSAM能够连续拍摄几十万个三维体而没有明显的信号衰减。除此之外,团队还对小鼠脑皮层中的小胶质细胞与脑损伤过程中的中性粒细胞进行了连续成像测试,发现即使使用较弱的光强,传统双光子显微成像在连续拍摄半小时以上时仍会导致大量细胞凋亡,而在2pSAM成像过程中细胞保持了正常的表型,并且相比于对照组结果无明显差异。团队通过一系列在体与离体实验充分证明了2pSAM能够将传统双光子成像的光毒性下降三个数量级以上,为长时程高速活体组织成像打开了新窗口。图3. 小鼠大脑急性开窗损伤后的皮层免疫细胞成像,TPM(左)与2pSAM(右)光漂白对比(GIF图)图4. 离体B细胞(GFP,蓝色通道)连续拍摄实验:使用PI标记细胞凋亡(红色通道),对比TPM(左)与2pSAM(右)的光毒性(GIF图)生发中心(Germinal center,GC)是次级淋巴器官中的动态组织区域,是被抗原激活后的B细胞在趋化作用引导下聚集形成的结构,也是产生高亲和力抗体及形成长期免疫记忆关键场所。但是由于GC形成的随机性和免疫细胞本身对光损伤的敏感性,完整的GC形成过程从未被高速长时间的清晰记录过。借助2pSAM,得以首次完整清晰地观测到了免疫反应下GC形成的全部过程。研究人员将带有荧光标记的抗原特异性B细胞回输到小鼠体内,随后将抗原接种到腹股沟附近以诱导引流淋巴结中生发中心的形成,并于免疫后90到110个小时内(生发中心未形成期),在大视场下持续地对淋巴结中抗原特异性B细胞的动态行为进行追踪,成功揭示了GC形成过程中B细胞的分裂增殖是GC形成的主因,辅助以周围活化B细胞的聚集。由于拍摄时长达十余小时,淋巴结本身会产生剧烈的形变,2pSAM通过多视角信息能够进行实时轴向聚焦位置反馈,实现自动对焦,有效避免了长时程拍摄过程中的样本漂移。 图5. 小鼠腹股沟淋巴结免疫反应后生发中心形成过程的完整观测和记录(GIF图)研究人员进一步借助2pSAM在患有创伤性大脑损伤(Traumatic brain injury,TBI)的小鼠和正在接受视觉条纹刺激的GCaMP转基因小鼠进行脑皮层组织的细胞动态观测。在TBI小鼠受伤区域磨薄颅骨后观测到了外周免疫细胞中性粒细胞在浸润后与内周星形胶质细胞的相互作用,如通过直接接触定向产生迁移体(migrasome)来传递物质和信息。对GCaMP转基因小鼠开颅恢复2周后进行视觉上的条纹刺激,进一步证实了长达数小时内小鼠视觉皮层神经元钙信号对不同方向条纹选择性表达的持续性和稳定性,同时也通过长时程功能数据挖掘出了多种单细胞水平的神经响应类型,体现了神经元的功能多样性。这些现象对于传统双光子显微镜而言都极具挑战,特别是会由于光毒性本身导致会导致细胞异常表现,比如会导致神经元在长时程拍摄过程中响应强度不断下降。
  • 这款我国自主研制双光子显微镜销售额已过亿!
    光学显微镜至今已有三百多年的历史,从观察细胞的初代显微镜发展到如今打破分辨率极限的超分辨显微镜。近年来,生命科学领域蓬勃发展,对显微成像技术不断产生新的需求,光学显微镜不断向更高分辨率、快速成像、3D成像等高端技术方向发展。我国高端光学显微镜市场长期处于被国外产品垄断的局面,许多关键核心部件依赖进口。令人欣喜的是,近五年来,市场上涌现出多种国产高端光学显微镜,包括超分辨显微镜、双光子显微镜、共聚焦显微镜、光片显微镜等,逐渐打破当前市场格局。基于此,仪器信息网特别制作“破局:国产高端光学显微镜技术‘多点开花’”专题,并向国产光学显微镜企业广泛征稿(投稿邮箱:lizk@instrument.com.cn),了解各企业主要高端光学显微镜产品技术特点和发展进程。本篇为北京超维景生物科技有限公司(以下简称“超维景”)供稿。 超维景研发和生产的微型化双光子显微镜基于自主研发的核心技术,在世界上第一次获取了自由行为小鼠大脑细胞和亚细胞结构的清晰、稳定的动态图像。这项发明曾被Nature Methods 评为“2018年度方法”,被国家科技部评为“2017度中国十大科学进展”。仪器信息网: 请回顾一下贵公司光学显微镜技术的发展历程。当前,最流行的对小动物行为过程中大脑神经元活动和结构变化进行长期观测和追踪的成像方法,是将虚拟现实与现有商品化台式双光子成像相结合,在动物头部被固定的情况下,在其眼前制造影像,让动物认为自己处在”真实“的环境之中。通过小鼠四肢在类似跑步机或者鼠标滚球上的运动来模拟其真实活动。以求达到研究神经元在动物行为中所起到的作用。然而,这种虚拟现实加头部固定成像的方法,已经遭到许多科学家的质疑。人们认为,头部固定的动物在实验期间一直处在物理约束和情绪压力下,无法证明神经元对外界的响应在虚拟现实和自由探索下是等价的。更重要的是,许多社会行为,比如亲子护理,交配和战斗,都不能用头部固定的实验来研究。如何在动物自由活动的时候,直接对其神经元进行成像,是神经科学家亟待解决的诉求。美国和欧洲脑计划及连接组计划在不断快速推进,我国的脑计划也将在年内启动,最新神经科学需要针对清醒动物的典型实验会越来越多。现有传统厂家的双光子设备上都只能做麻醉或固定头部的动物成像,实验的结果无法描述在正常行为模式下的神经功能变化。一个理想的解决方案是开发微型荧光显微镜直接固定在自由活动的动物身上,让动物“带着显微镜跑”。2017 年由北京大学程和平院士和陈良怡教授牵头研发的微型化双光子活体成像技术的出现,使目前最新神经科学需要的针对清醒动物的功能研究实验得以实现,其核心技术 2.2 克可佩戴式微型化双光子荧光显微镜,在国际上首次获取了小鼠自由行为过程中大脑神经元和神经突触活动清晰稳定的图像。研究成果已表于自然杂志子刊 Nature Methods,2014 诺贝尔生物学或医学奖得主 Edvard I. Moser 称之为研究大脑空间定位神经系统革命性的新工具。只有通过原型机转化为产品的方式,才能让更多科学家、实验室使用到高端技术,但这是在实验室无法完成的。在校方、政府政策、资本等要素多方助力下,团队成立了北京超维景生物科技有限公司推动这一成像装备商业化,形成微型化双光子荧光显微镜,微型化双光子荧光显微成像系统主要包含:微型化双光子显微成像模块、激光耦合模块、飞秒激光器、荧光采集模块、主控制器、宽视场观测模块、ScienceDesk 工作台,共 7 大模块。目前,超维景在面向脑科学的产品成型并已小批量出货。国内产品销售额过亿,国内用户有复旦大学、中科院深圳先进技术研究院、南京脑观象台、西湖大学、西京医院、空军军医大学、中科院脑科学与智能技术卓越创新中心、北京大学、中山大学中山眼科中心、广东粤港澳大湾区协同创新研究院、浙江大学城市学院和中山大学孙逸仙纪念医院等。国际产品销售额超千万,已经达成的国际合作有德国马普神经所、德国波恩大学、德国马普鸟类研究所、美国纽约大学、美国马普神经所等。未来超维景会充分调动所拥有多项核心技术,即累计拥有发明专利、实用新型、软件著作权等60余项知识产权以及双光子显微成像系统发力于千亿级的临床医疗检测和诊断市场,例如手持式双光子或穿刺式双光子设备直接作用于皮肤、口腔、浅表淋巴;结合小型化技术稍作改进可以实现宫腔成像的宫腔镜;在开腹/微创手术过程中,硬性腔镜可以实现术中指导,实现肺、胸、肾、肝、脑等组织病变的辅助诊断的手持/腔镜;结合传统内窥技术打开胃肠癌症筛查市场的内腔软镜。仪器信息网: 请介绍当前贵公司主推的产品和技术。贵公司的高端光学显微镜技术有哪些独特优势?超维景自主研制的快速微型化双光子显微成像系统FIRM-TPM,在世界上第一次实现了自由运动小鼠单个树突棘水平神经元功能活动的高速高分辨实时成像,解决了“脑计划”的核心痛点。而且超维景生产的微型化显微镜分辨率、扫描速度、重量、GFP/GCaMP 成像等方面均优于其他文献报道的微型化显微镜。这款头戴式双光子显微镜可实时记录自由行为动物的大脑神经元和树突棘活动,支持钙成像,并可在同一视野长时程反复成像。系统能够配置移动的轴向扫描模块,实现三维成像和多平面快速切换实时成像,用于脑神经回路观察;还可配置光遗传模块,对神经元和大脑神经回路活动进行精确控制。今年1月,继第一代微型化双光子显微镜在全球首次获取了小鼠在自由行为过程中大脑神经元和神经突触活动的动态图像后,超维景通过对微型光学系统的重新设计,成功研制了第二代产品。其成像视野更大,工作距离更远,操作简便,并具备实时三维成像能力,可在自由运动的小鼠上对大脑三维区域内上千个神经元进行清晰稳定的动态成像,并且实现了针对同一批神经元长达一个月的追踪记录。该成果于2021年1月6日在线发表于Nature Methods上。新一代微型化双光子荧光显微镜体积小,适于佩戴在小动物头部颅窗上,实时记录数十个神经元、上千个神经突触的动态信号。在大型动物上,还可望实现多探头佩戴、多颅窗不同脑区的长时程观测。相比单光子激发,双光子激发具有良好的光学断层、更深的生物组织穿透等优势,其横向分辨率达到 850 nm,成像质量与商品化大型台式双光子荧光显微镜可相媲美,远优于目前领域内主导的、美国脑科学计划核心团队所研发的微型化宽场显微镜。除此之外,超维景生物基于生物医学显微镜研发生产的背景以及拥有的多项技术专利,结合市场需求和实验需要,开发了包括脉冲激光器在内的一系列光电产品,其性能稳定、操作简单,适用于高端光学显微镜的研制和工业生产。仪器信息网: 请举例介绍贵公司的产品和技术是如何助力生命科学研究的?生命科学是一门极其复杂、极富挑战的科学,是一个可以做出重大科学发现的领域。在中国“脑计划”即将启动的今天,为满足脑计划对于脑认知原理解析的重大需求,助力中国脑科学家、脑医学家、脑药学家的探索与发现,超维景创始人程和平院士团队与南京江北新区合作建立了“南京脑观象台”。“南京脑观象台”有三方面的特色:一是改变手工作坊式的科研方式,有标准化、流程化分解技术流程;二是降低功能成像的“准入门槛”,集成最先进的成像装备,节约“设想”到“验证”的时间;三是改变功能成像的研究方式,有高通量、工程化的实验设计,可以回答“大科学”问题。南京脑观象台作为超维景双光子产品的集中应用基地和演示中心于2021年8月2日推出了免费服务计划——“探索计划”,计划启动期间收到了广大科学家的积极响应,共收到符合条件的申请67份。 综合申请者前期实验基础,以及项目的创新性、可行性因素,在专家评审委员会的推荐下,我们首批支持项目共计24个,资助总金额300万元。此外,超维景微型化双光子显微成像技术帮助许多科研团队取得了一些重要的研究成果,比如,11月18日,浙江大学医学院脑科学与脑医学学院/教育部脑与脑机融合前沿科学中心的胡海岚教授团队,在国际知名期刊Neuron在线发表了论文《 Dynamics of a disinhibitory prefrontal microcircuit in controlling social competition》,这篇文章通过在显性管测试中应用光遗传学和化学遗传学操作,发现由VIP-PV-PYR 组成的微环路通过抑制与去抑制的功能性连接,在社交情境下精细地协作调控dmPFC锥体神经元的活动,从而影响小鼠在面对社会竞争时的行为表现。研究团队在探索这两种神经元如何影响mPFC的活动时,正是使用我们的2.2克可佩戴式微型双光子荧光显微镜(FHIRM-TPM)在清醒活动的动物中观察脑内单个神经元水平的发放。仪器信息网: 请您介绍一下目前高端光学显微镜的市场现状。根据中国仪器仪表行业协会统计,2015 年至 2017 年我国显微镜出口量在 220 万台-300万台之间,年均进口5万台左右,出口数量远高于进口数量,但出口金额远低于进口金额,反映了中国进口的光学显微镜单台平均价格远高于出口显微镜,国内高端显微镜市场依赖于进口产品。自上世纪七、八十年代以来,中国显微镜制造逐渐承接了来自欧洲和日本的产业转移,已能生产95%的教育类和普及类显微镜。世界高端显微镜产业主要布局在德国和日本,德国是以徕卡显微系统和蔡司为代表,而日本以尼康和奥林巴斯公司为代表,上述企业占据着世界显微镜市场50%以上的市场份额,其发展战略左右着显微镜市场的走向。目前世界市场对高端显微镜的需求在增长,中国市场这方面的需求增长更快,超分辨显微镜在中国市场的增长更是超过20%。未来五年显微镜市场的发展在亚太地区将围绕中国、印度、澳大利亚和中东国家。近年来,全球科研经费持续增加,医疗卫生的投入也将进一步加大。基于分辨率、对比技术、荧光技术和数字影像等技术的更新,显微镜在生物医学等领域得到越来越广泛的应用。高分辨率光学显微镜是近年来增长较为快速的产品,主要应用于科研开发与医疗卫生领域。医院场景国产高端显微镜替代空间大。目前中国三甲医院所使用的高端光学显微镜几乎被徕卡、蔡司、尼康和奥林巴斯垄断。国内有能力开始生产高端显微镜的企业较少,目前有永新光学、麦克奥迪、舜宇光学等。国内制造的高性能、高可靠性的高端光学显微镜,充满了极大的市场机遇。仪器信息网:您如何看待国产光学显微镜生产商和进口品牌厂商的差距?您认为目前高端光学显微镜的国产化进程如何?我国显微镜行业发展缺乏技术沉淀,20 年以上经营积累的企业十分稀缺,深度精密制造及光学核心部件设计及工艺严重制约产业升级,具备生产高端显微镜的企业屈指可数。光电产业新产品层出不穷,应用范围逐步扩大,对光学元件组件加工技术要求越来越高。目前,国内少数厂商能实现精密光学元件组件量产,但特殊光学元件组件的加工技术(如光学玻璃非球面加工技术)、配套材料及高精度检测技术基本上由国外厂商掌握,国内厂商仍与国际高端水平有相当差距,在国际竞争中技术上处于相对劣势。在生命科学和医学研究中,成像技术至关重要,它是推动生命科学进步的核心动力,生物医学发展的历史大半部是成像技术的发展史。进入新千年,脑科学研究成为热点,根据《“十四五”规划纲要和2035年远景目标纲要》,我国脑科学与类脑研究将以脑认知原理解析、脑介观神经联接图谱绘制、脑重大疾病机理与干预研究等方向作为重点。中国要做原创科学,必须要有自己的仪器。超维景作为科技成果产业化的典型公司,将以自主创新的核心技术,将继续为我国的脑科学研究做出重要贡献,利用神经科学的基础研究成果来造福社会。
  • 2GL双光子灰度光刻技术成为消除台阶效应的光学加工解决方案
    斯图加特大学的Harald Giessen课题组研究人员使用Nanoscribe的双光子灰度光刻系统Quantum X加工出了具有优异光学性能的双层透镜(下方左图)。采用非球面面型设计的透镜对聚焦效率有明显提升,并且双层透镜对比单层透镜在时场上有明显提升(下方右图)。“我们设计、打印和优化了直径为300微米的空气间隔双透镜。优化后,双透镜的顶部透镜残余形状偏差小于100纳米,底部透镜残余形状偏差小于20纳米。我们利用USCF1951分辨率测试图表检查光学性能,发现分辨率达到645线对每毫米。” ---Harald Giessen课题组在实验中,研究人员引入了传统的双光子聚合技术(2PP)与先进的双光子灰度光刻技术(2GL)之间的比较。采用双光子灰度光刻技术加工出的透镜表面无台阶结构(step free),能够带来优异的光学性能。这是由于传统的双光子聚合技术中光斑大小不能全自动进行调节,导致加工出的透镜表面存在台阶结构,而这是微光器件中不希望看到的,因此即使多次对结构进行迭代优化,始终难以有满意的结果。双层透镜在USCF 1951标准的测试中结果高达645lp/mm,其中300微米口径的透镜PV值测量结果达到100nm,研究人员认为此数值有希望到达20nm。USAF-1951是目前唯一公认的能够对光学器件进行测量和量化的标准。尽管会受到系统中的镜头、匀光器、CMOS传感器等各组件性能的影响,也会有人眼识别带来的误差,但是透镜的性能瓶颈是能够明显看出的。测试结果是该透镜的分辨率达到645lp/mm,而在网上能搜索到的商用镜头的Z高数值为200lp/mm左右。也就是说这个数值代表了打印的透镜具有优异光学性能,适用于高要求的图像采集系统和显示系统。上图为使用共聚焦显微镜测试的PV值结果。这个数值反映了透镜设计值与测量值的误差,同时要参考透镜的口径进行评价,测量过程是对双层透镜进行单独测量,上方口径较大的300微米直径的透镜PV值为100nm,下方口径为162微米的透镜PV值为20nm,一般情况下,透镜的口径越大,PV值越难控制。同时,共聚焦测试出空间均方根表面粗糙度为4nm。4nm表面粗糙度和20nm PV值,这两个数值为双层透镜的645lp/mm分辨率提供了基础保证,也证明了双光子灰度光刻技术适用于加工超高精度微光学器件。双光子灰度光刻技术优势传统的双光子聚合技术(2PP) 对比其他加工技术的优势在于加工体素的悬空,可以一步打印出不用支架支撑的具有三维复杂结构的微纳器件,如钟摆结构和倒扣结构。这种比较简单的双光子聚合技术利用均一或变化缓慢的光斑在三维空间内逐层移动将结构加工出,这种技术加工出的结构就像金字塔一样具有一个个台阶,这是因为光斑大小没有随结构形状进行快速变化而产生的。基于传统双光子聚合技术,Nanoscribe公司推出了双光子灰度光刻技术(2GL)。该技术能够将悬空的光斑以1MHz的频率进行4096级调节,软件和硬件上都实现了全自动。结合灰度技术后,由于两个值不再受Z小加工体素的限制,而是依赖于光斑的变化速率与级数,打印结构的形状精度和表面粗糙度可以得到显著提升。双光子聚合技术和双光子灰度光刻技术的对比。左图为双光子聚合技术,右图为双光子灰度光刻技术Nanoscribe公司产品应用经理Benjamin Richter分别使用传统的双光子聚合技术(下图左侧)与双光子灰度光刻技术(下图右侧)加工出一个小姑娘模型,来验证台阶效应的消除。这简直是从低分辨率升级到了4K时代。在提升精度的同时,灰度技术还可以显著提升加工速度。4096级光斑大小调节能够以一层加工出灰阶位数为12bit的结构。Nanoscribe的QX平台系列设备比PPGT2的加工速度提升了1个数量级。 PMID: 36785392 DOI: 10.1364/OE.480472详情请咨询纳糯三维科技官方网站 nanoscribe-solutions.cn联系我们 china@nanoscribe.com德国总部中国子公司Hermann-von-Helmholtz-Platz6,76344 Eggenstein-Leopolds-hafen,Germany上海徐汇区桂平路391号B座1106A+49 721 9819 800china@nanoscribe.com
  • 世界首台!我国成功研制双光子-受激发射损耗(STED)复合显微镜
    p  在常规光学显微系统当中,由于光学元件的衍射效应,平行入射的照明光经过显微物镜聚焦之后在样品上所成的光斑并不是一个理想的点,而是一个具有一定尺寸的衍射斑。在衍射斑范围内的样品均会发出荧光,导致这些样品的细节信息没有办法被分辨,从而限制了显微系统的分辨能力。随着扫描电镜、扫描隧道显微镜及原子力显微镜等技术的出现,实现纳米量级分辨率的观测已经成为可能,但是以上这些技术仍然存在对样品破坏性较大,只能观测样品表面等缺点,并不适合对于生物样品,特别是活体样品的观测。因此,研究人员们急需找到一种光学的超衍射极限显微方法。二十世纪九十年代以来,研究人员们陆续提出了多种超分辨显微技术来实现超越衍射极限的高分辨率。在这些方法之中,以德国科学家S.W.Hell在1994年提出的受激发射损耗显微术(Stimulated Emission Depletion Microscopy,STED)的发展最为成熟,应用也最为广泛。/pp  受激发射损耗显微术(STED)是通过受激发射效应实现减小有效荧光发光的面积。一般STED显微系统中包含两束照明光,一束为激发光,一束为损耗光。当激发光的照射使得衍射斑范围内的荧光分子被激发,其中的电子跃迁到激发态后,损耗光使部分处于激发光斑外围的电子以受激发射的方式回到基态,而位于激发光斑中心的被激发电子则不受影响,继续以自发荧光的方式回到基态。由于在受激发射过程中所发出的荧光和自发荧光的波长及传播方向均不同,因此探测器观测到的光子均是由激发光斑中心的部分荧光样品通过自发荧光方式产生的。通过这种方式可以减小有效荧光的发光面积,提高系统的分辨率。/pp  目前,受激发射损耗显微术的关键主要集中在损耗光斑的调制,激发光与损耗光激光类型和波长的选择等方面。/pp  根据国家科技部消息,近日,在国家重点研发计划“数字诊疗装备研发”专项的支持下,由苏州国科医疗科技发展有限公司、吉林亚泰生物药业股份有限公司、中国科学院物理研究所等多家单位共同承担的数字诊疗重点研发专项项目--双光子-受激发射损耗(STED)复合显微镜获得重要进展:成功研制出国内外首台双光子-STED复合显微镜样机。项目组完成了显微镜系统中核心部件的自主研制,成功研制出了具有自主知识产权的大面阵CMOS相机和长工作距离大数值孔径物镜等核心部件,打破了国外相关产品对我国的垄断。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201907/uepic/003b5e67-5cf9-4afd-8932-d8a32c788f59.jpg" title="首台复合显微镜.png" alt="首台复合显微镜.png"//pp style="text-align: center "strong国内外首台双光子-STED复合显微镜样机/strong/pp  在当今生物学及基础医学的研究中,超分辨显微光学成像是取得原创性研究成果的重要手段。国外双光子-STED成像技术研究开展的相对较早,德国、加拿大、法国、意大利等多个国家的科研机构都已经成功搭建了双光子-STED成像实验系统 而我国相关研究起步较晚,目前双光子STED成像技术仍停留在实验室研究阶段,国际上尚未出现相应的产品。因此,双光子-受激发射损耗(STED)复合显微镜的成功研制对于满足我国生物医学等前沿基础研究的定制化需求、提升创新能力以及推动我国显微镜行业升级等具有重要意义。/p
  • 价值56万美元的双光子深层光激活成像显微镜落户中科院生物物理所
    中国科学院生物物理研究所膜蛋白结晶自动化加样工作站及双光子深层光激活成像显微镜采购项目中标及成交结果公告  采购人名称:中国科学院生物物理研究所  采购代理机构全称:东方国际招标有限责任公司  采购项目名称:中国科学院生物物理研究所膜蛋白结晶自动化加样工作站及双光子深层光激活成像显微镜采购项目  招标编号:OITC-G11022117  定标日期:2011年6月16日  招标公告日期:2011年5月5日  中标结果:包号设备名称中标供应商名称中标/成交金额1膜蛋白结晶自动化加样工作站上海腾泉生物科技有限公司USD 149,000.00元2双光子深层光激活成像显微镜徕卡仪器有限公司USD 560,000.00元  评标委员会成员名单:杨新科 戴琳 张连清 郝艾芳 李雪梅  本项目联系人:吴旭 徐薇薇  联系电话:68729913  感谢各供应商对于本项目的积极参与,并请未获中标的供应商于即日起5个工作日内来我公司办理保证金退回事宜(来前请先电话联系)。  东方国际招标有限责任公司  2011年6月17日
  • 单套664.5万!蔡司中标南科大双光子激光共聚焦显微镜采购项目
    近日,南方科技大学公布其双光子激光共聚焦显微镜中标公告,德国蔡司LSM 980以单价664.5万的价格中标,从发布公告到招标结束仅半月左右。此前在发布招标公告时,已有网友猜测中标者或将为蔡司。一、项目编号:0868-2144ZD090H(招标文件编号:0868-2144ZD090H)二、项目名称:双光子激光共聚焦显微镜三、中标(成交)信息供应商名称:广州千江生物科技有限公司供应商地址:广州市越秀区广州大道中301号201房自编09室中标(成交)金额:664.5000000(万元)四、主要标的信息序号供应商名称货物名称货物品牌货物型号货物数量货物单价(元)1广州千江生物科技有限公司双光子激光共聚焦显微镜德国ZeissLSM 9801台¥6,645,000.00五、评审专家(单一来源采购人员)名单:卓菲、赵卓、易娟、李大圣、万峻六、代理服务收费标准及金额:本项目代理费收费标准:按招标文件要求执行本项目代理费总金额:4.3296000 万元(人民币)七、公告期限自本公告发布之日起1个工作日。八、其它补充事宜一、投标供应商名称及报价:序号投标人名称投标报价资格审查1深圳市博诚生化试剂仪器有限公司¥5,800,000.00合格2莱华尔科技(深圳)有限公司¥6,649,700.00合格3深圳市森维凯科技有限公司¥6,649,800.00合格4广州千江生物科技有限公司¥6,645,000.00合格二、候选中标供应商名单:1.广州千江生物科技有限公司九、凡对本次公告内容提出询问,请按以下方式联系。1.采购人信息名 称:南方科技大学     地址:深圳市南山区西丽学苑大道1088号        联系方式:万老师 0755-88018674      2.采购代理机构信息名 称:深圳市振东招标代理有限公司            地 址:深圳市罗湖区红宝路京基金融中心D座(蔡屋围金龙大厦)10楼03号-06号            联系方式:李先生、黄先生 0755-82786018/82786038-821/822            3.项目联系方式项目联系人:李先生、黄先生电 话:  0755-82786018/82786038-821/822
  • 410万!中国农业大学双光子激光共聚焦扫描显微镜采购项目
    一、项目基本情况项目编号:XHTC-HW-2023-0002项目名称:中国农业大学模式动物重大设施建设办公室双光子激光共聚焦扫描显微镜采购项目预算金额:410.0000000 万元(人民币)采购需求:本项目为中国农业大学模式动物重大设施建设办公室双光子激光共聚焦扫描显微镜采购项目,简要技术参数:激光光源系统等,详见附件采购需求。本项目允许采购进口产品。合同履行期限:自合同签订生效后开始至双方合同义务完全履行后截止本项目( 不接受 )联合体投标。二、获取招标文件时间:2023年03月22日 至 2023年03月29日,每天上午9:00至11:30,下午13:00至16:00。(北京时间,法定节假日除外)地点:北京市海淀区莲花池东路39号西金大厦11层方式:需携带法人授权书原件及被授权人身份证复印件加盖公章。文件售后不退。未从采购代理机构获取招标文件并登记在案的潜在供应商均无资格参加投标。售价:¥500.0 元,本公告包含的招标文件售价总和三、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:中国农业大学地址:北京市海淀区圆明园西路2号联系方式:吴老师 010-62731314-8052.采购代理机构信息名称:新华招标有限公司地址:北京市海淀区莲花池东路39号西金大厦11层联系方式:张云驰010-63905857、刘佳 010-639059263.项目联系方式项目联系人:刘佳电话:010-63905926采购需求.docx
  • 客户成就| Nanoscribe双光子微纳3D技术应用于光子引线键合技术
    光子引线键合技术实现多光子芯片混合组装近日,由Nanoscribe公司的Matthias Blaicher博士携手Muhammed Rodlin Billah博士组成了一个德国光子学,量子电子学和微结构技术研究团队,利用光子引线键合技术,实现了硅光子调制器阵列与激光器和单模光纤之间的键合,制造出光通信引擎。此项研究成果发表在《自然-光:科学与应用》国际学术期刊上。(Light: Science & Applications)研究人员利用Nanoscribe公司先进的3D光刻技术将光学引线键合到芯片上,从而有效地将各种光子集成平台连接起来。此外,研究人员还简化了先进的光学多阶模块的组装过程,从而实现了从高速通信到超快速信号处理、光传感和量子信息处理等多种应用的转换。什么是光子引线键合技术自由光波导三维(3D)纳米打印技术,即光子引线键合技术。该技术可以有效地耦合在光子芯片之间,从而大大简化了光学系统的组装。光子丝键合的形状和轨迹具有关键优势,可替代依赖于技术复杂且昂贵的高精度对准的常规光学装配技术。 光子引线键合技术的重要性光子集成是实现各种量子技术的关键方法。该领域的大多数商业产品都依赖于需要耦合元件的光子芯片的独立组装,如片上适配器和体微透镜或重定向镜等。组装这些系统需要复杂的主动对准技术,在器件开发过程中持续监控耦合效率,成本高且产量低,使得光子集成电路(PIC)晶圆量产困难重重。 研究人员使用Nanoscribe的增材纳米加工技术,结合了常规系统的性能和灵活性,实现整体集成的紧凑性和可扩展性。为了在光子器件上设计自由形式的聚合物波导,该团队依靠光子引线键合技术,实现全自动化高效光学耦合。光子引线键合技术的可微缩性和稳定性在实验室中,研究人员设计了100个间隔紧密的光学引线键(PWB)。实验结果为简化先进光子多芯片系统组装奠定了基础。实验模块包含多个基于不同材料体系的光子芯片,包括磷化铟(InP)和绝缘体上硅(SOI)。实验中的组装步骤不需要高精度对准,研究人员利用三维自由曲面光子引线键合技术实现了芯片到芯片和光纤到芯片的连接。 在制造PWB之前,研究人员使用三维成像和计算机视觉技术对芯片上的对准标记进行了检测。然后,使用Nanoscribe双光子光刻技术制造光学引线键,其分辨率达到了亚微米级。研究团队将光学夹并排放置在设备中,以防止高效热连接中的热瓶颈。混合多芯片组件(MCM)依赖于硅光子(SiP)芯片与磷化铟光源和输出传输光纤的有效连接。研究团队还将磷化铟光源作为水平腔面发射激光器(HCSEL),当他们将光学引线键与微透镜结合在一起时,可以方便地将光学平面外连接到芯片表面。验证实验1在第一个实验中,研究团队通过使用深紫外光刻技术制造了测试芯片,结果表明光学引线键能够提供低损耗的光学连接。每个测试芯片包含100个待测试的键合结构,以从光纤芯片耦合损耗中分离出光学引线键损耗。光学引线键的实验室制造可实现完全自动化,每个键的连接时间仅为30秒左右,实验表明该时间可进一步缩短。研究团队还在其他测试芯片上进行了重复实验,验证了该工艺优秀的可重复性。随后,研究人员还进行了-40℃至85℃的多温度循环实验,以证明该结构在技术相关环境条件下的可靠性。实验过程中,光学引线键没有发生性能降低或是结构改变的情况。为了解光学引线键结构的高功率处理能力,研究人员还对样品进行了1550纳米波长的连续激光照射,且光功率不断增加。研究结果显示,在工业相关环境及实际功率水平中,光学引线键可以保证高性能。验证实验2在第二个实验中,研究团队制造了一个用于相干通信的四通道多阶发射机模组。在该模组中,研究人员将包含光学引线键的混合多芯片集成系统与电光调制器的混合片上集成系统相结合,并将硅光子芯片纳米线波导与高效电光材料相结合。实验结果表明,该模组具有低功耗、效率高的优点。更多双光子微纳3D打印技术和产品请咨询Nanoscribe中国分公司纳糯三维科技(上海)有限公司Photonic Professional GT2 双光子微纳3D打印设备Quantum X 灰度光刻微纳打印设备可应用于微光学,微型机械,生物医学工程,力学超材料,MEMS,微流体等不同领域。参考文献:Hybrid multi-chip assembly of optical communication engines via 3-D nanolithographyby Thamarasee Jeewandara , Phys.orghttps://phys.org/news/2020-05-hybrid-multi-chip-optical-d-nanolithography.html
  • 完美实现!双光子干涉或可带来量子计算新方法
    量子光学是以辐射的量子理论研究光的产生、传输以及光与物质相互作用的学科。双光子干扰是一种基本的量子光学效应,在量子信息科学中有着大量的应用。来自美国坦佩雷大学的Robert Fickler和Markus Hiekkamki,证明了利用光子的空间形状可以近乎完美地控制双光子干涉。研究结果发表在《物理评论快报》期刊上。单光子可以有高度复杂的形状,已知有利于量子技术,如量子密码、超灵敏测量,或量子增强计算任务。为了利用这些所谓的结构光子,关键是要让它们干扰其他光子。“基本上所有量子技术应用中,一个关键任务是提高以更复杂和可靠的方式操纵量子态的能力。在光子量子技术中,这项任务包括改变单个光子的性质,以及多个光子彼此干涉。”Fickler说。两位研究人员针对沿单一光束路径的多个横向空间模式的双光子干涉进行了研究。除了使用二维空间模式分流器实现Hong-Ou-Mandel干扰的模拟之外,他们还将该方案扩展到观察不同的三维和四维空间模式多端口的凝聚和反凝聚。在空间模式内的操作,沿着单一的光束路径,解除了对干涉测量稳定性的要求,为复杂的量子信息任务开辟了实现线性光学网络的新途径。研究人员下一步的目标是利用这种方法开发新的量子增强传感技术,同时探索更复杂的光子空间结构,开发利用量子态计算系统的新方法。参考资料:http://news.sciencenet.cn/htmlnews/2021/5/457119.shtm
  • Hi~CHINA LAB 2018 海能新仪又双叒叕来了!
    3月28日-30日,为期三天的广州国际分析测试及实验室设备展览会暨技术研讨会(CHINA LAB 2018)在广州保利世贸博览馆盛大开幕。此次展会海能新仪携TANK PLUS高通量微波消解仪、UWave-2000多功能微波合成萃取仪、全新MASTER系列超高通量密闭微波消解/萃取仪等多款仪器参展,吸引了众多目光。 ★Uwave-2000是BCEIA金奖产品Uwave-1000的升级产品,Uwave-2000将多能源辅助微波化学反应仪提升到了新的高度。 UWave-2000多功能微波合成萃取仪 其创造性地结合了常压、带压反应,微波、超声波和紫外辐照等多种功能为一体,为微波化学研究提供了灵活性与可靠性兼备的微波合成萃取工作站。无论是有机萃取、制药研究、蛋白质化学、新材料科学、石墨烯的研发,或是聚合物合成等其他众多领域,UWave-2000都将满足微波化学研究中的各种想象力与可行性。 ★TANK PLUS高通量微波消解仪TANK PLUS高通量微波消解仪 TANK PLUS采用先进的双磁控管变频微波加热系统,实现了大功率微波均衡磁场安全加热;多芯集成光纤及红外测温双重测温系统 ;66L大腔体设计可通用12位和40位转盘。TANK PLUS拥有二十多项苛刻的安全保障机制,确保高级别的安全性能与数据精确性;同时TANK PLUS高度智能化的人机对话操作系统及云服务功能,让实验过程高效便捷人性化十足,为科技工作者带来科学高效、安全舒适的操作体验;可选配萃取配件,进行有机萃取实验。未来,海能新仪必将不断改进,突破自我,努力为用户提供更优质的产品及服务!
  • 中美联合研制自适应光学双光子荧光显微镜
    像差问题一直困扰着光学领域的工作者。像差会使光波前发生形变,不仅降低成像的信噪比和分辨率,使得很多时候我们只能&ldquo 雾里看花&rdquo ,更甚者,产生赝像,或无法获得有意义的图像。像差问题对双光子成像的影响尤为严重,因为在那里,荧光信号对入射光强度的依赖是平方关系,一旦入射光波前形变,不仅聚焦强度大幅下降,成像分辨率也急剧恶化。因此,如何解决像差问题,实现活体,例如小鼠大脑皮层,深层区域的高质量成像成为光学成像发展中最具挑战性的问题之一。  美国Howard Hughes Medical Institute (霍华德· 休斯医学研究所)在Janelia Farm Research Campus的吉娜博士小组与来自中科院上海光机所强场激光物理国家重点实验室的王琛博士最近成功将一种新的自适应光学的方法和双光子显微镜结合,研制出一种新的自适应光学双光子荧光显微镜。通过校正活体小鼠大脑的像差,在视觉皮层的不同深度处均获得了提高数倍的成像分辨率和信号强度,大大改进了成像质量,使得原来在活体鼠脑中不可见或者模糊的细节变得清晰可见,她们成功将该方法应用于老鼠视觉皮层第五层(约500µ m)的形貌结构成像和钙离子功能成像。这一新的自适应光学方法,首次使得在活体小鼠深层区域成像中获得近衍射极限的成像分辨率成为现实。这一成果以题Multiplexed aberration measurement for deep tissue imaging in vivo发表在最新一期的Nature Methods (自然· 方法)杂志上。  在该自适应光学双光子荧光显微镜中,她们将空间光位相调制器光学共轭到显微物镜的后焦平面,通过位相调制器将入射光分成若干子区域,每一块子区域的波前都可以被独立控制。同时,她们用数字微阵列光处理器,以不同的频率同时调制其中一半子区域的入射光强度,以另一半子区域作为&ldquo 参考波前&rdquo 。来自所有子区域光束会在焦点处会聚干涉,通过监测焦点激发的双光子信号随时间的变化情况,并进行傅里叶变换分析,可以&ldquo 分解&rdquo 得到被调制的每一块子区域的&ldquo 光线&rdquo 的贡献信息,从而可以实现对一半子区域波前的并行测量。对另一半子区域重复这一测量过程,从而获得整个入射波前的信息并进行校正。该方法耗时很短,通常约1~3分钟左右即可完成像差的测量和校正,无需复杂的计算,适用于任何标记密度和标记类型的样品。更重要的是,得到的像差校正图案可以用于提高较大视场范围内的成像质量。该方法无疑为在体研究小鼠大脑皮层深层区域的生物、医学问题提供了可行性方案。
  • Nanoscribe双光子聚合技术助力微流控芯片内3D打印技术突破
    研究背景微流控技术的多学科领域应用主要表现在对微量体积的液体进行精准控制和操作,广泛应用在化学,生物学和物理学的芯片实验室(lab-on-a-chip)应用中。而为了能更好得对这微小尺度空间进行分析研究,则需要通过集成更小部件来操控微流体通道。通常,微流体通道由主动和被动部件结合在一起(包括过滤器,阀门和混合器等)。然而,微流控芯片的传统制造技术被限制于二维层面,限制了对三维空间的利用,例如多相液滴分离,交换混合器和湿相纤维纺丝等应用。技术突破如今,来自德国亚琛工业大学以及莱布尼兹材料研究所(DWI Leibniz-Institute for Interactive Materials and the RWTH Aachen University)的科学家们使用Nansocribe公司的无掩模光刻系统,采用一种全新的方式解决了制造并集成3D微纳结构到2D微流体通道的问题 - 在2D微型通道内制作嵌入式3D微流控器件,该器件的核心部件是模拟蜘蛛喷丝头的复杂喷嘴设计。科学家们运用Nanoscribe的双光子聚合技术,实现微流道母版制造和密闭通道系统内部的芯片内直接打印,开创了一种全新的微流控微纳加工方法:先运用Nanoscribe的双光子聚合(2PP)技术打印微型通道的聚合物母版,并结合软光刻技术做后续复制工作。随后,在密闭的微流道中通过芯片内3D技术直接制作复杂结构的喷丝头。Nanoscribe双光子聚合微纳加工技术赋予微流控新应用Nanoscribe公司双光子聚合(2PP)技术结合增材制造可以实现超越二维微流体平面的任意三维结构几何形状的制作。用该技术制造的三维微纳结构,结合Nanoscribe无掩模光刻系统的高精度定位设备,可成功将复杂结构元件精准集成到开放或密闭的微型通道中。利用2PP技术可以制作几乎任何形状的3D结构,例如细胞支架,过滤器或混合器等,并打印到预制的微流道中,从而扩大了微流控应用的更多可能性。2PP技术同样适用于2D或2.5D微流道系统聚合物母版制作。该应用进一步小型化了复杂且集成的2D通道系统,同时拓展了制造具有几微米甚至亚微米级横向特征尺寸的花丝结构的可能性。Nanoscribe的2PP技术可用于构造包含不同规模结构的聚合物母版,并通过例如软光刻技术进行复制。更多关于双光子聚合技术的微纳加工信息欢迎登录Nanoscribe网站并注册参加4月13日的首届3D微纳加工主题网络研讨会。届时KIT纳米技术研究院(INT)院士Martin Wegener博士将与我们共同介绍2PP技术原理,并展示用Nanoscribe无掩模光刻系统所制作的令人印象深刻的应用产品。德国Nanoscribe 超高精度双光子微纳3D无掩模光刻系统: Photonic Professional GT2 双光子微纳3D无掩模光刻系统 Quantum X 双光子灰度光刻微纳打印设备更多有关3D双光子无掩模光刻技术和产品咨询欢迎联系Nanoscribe中国分公司 - 纳糯三维科技(上海)有限公司
  • “超高时空分辨微型化双光子在体显微成像系统”专项取得重要成果
    p  在国家自然科学基金国家重大科研仪器研制专项“超高时空分辨微型化双光子在体显微成像系统”(项目编号:31327901)的支持下,北京大学分子医学研究所、信息科学技术学院、动态成像中心、生命科学学院、工学院联合中国人民解放军军事医学科学院组成跨学科团队,历经三年多的协同奋战,成功研制新一代高速高分辨微型化双光子荧光显微镜,并获取了小鼠在自由行为过程中大脑神经元和神经突触活动清晰、稳定的图像。相关研究成果以“Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice”(高速高分辨微型化双光子显微镜在小鼠自由行为中获取大脑图像)为题于5月29日在线发表在Nature Method上。相关技术文档同步发表在Protocol Exchange上,并已申请多项专利。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201706/insimg/9523a7f7-b0b6-4b67-981d-b74805580c21.jpg" title="2017-06-14_094040.jpg"//pp style="text-align: center "2.2g可佩戴式微型双光子显微镜/pp  目前,各国脑科学计划的一个核心方向就是打造用于全景式解析脑连接图谱和功能动态图谱的研究工具。其中,如何打破尺度壁垒,整合微观神经元和神经突触活动与大脑整体的活动和个体行为信息,是领域内亟待解决的一个关键挑战。/pp  新一代微型化双光子荧光显微镜体积小,重仅2.2克,适于佩戴在小动物头部颅窗上,实时记录数十个神经元、上千个神经突触的动态信号。在大型动物上,还可望实现多探头佩戴、多颅窗不同脑区的长时程观测。相比单光子激发,双光子激发具有良好的光学断层、更深的生物组织穿透等优势,其横向分辨率达到0.65μm,成像质量与商品化大型台式双光子荧光显微镜可相媲美,远优于目前领域内主导的、美国脑科学计划核心团队所研发的微型化宽场显微镜。采用双轴对称高速微机电系统转镜扫描技术,成像帧频已达40Hz(256*256像素),同时具备多区域随机扫描和每秒1万线的线扫描能力。/pp  此外,采用自主设计可传导920nm飞秒激光的光子晶体光纤,该系统首次实现了微型双光子显微镜对脑科学领域最广泛应用的指示神经元活动的荧光探针(如GCaMP6)的有效利用。 同时采用柔性光纤束进行荧光信号的接收,解决了动物的活动和行为由于荧光传输光缆拖拽而受到干扰的难题。未来,与光遗传学技术的结合,可望在结构与功能成像的同时,精准地操控神经元和神经回路的活动。/pp  微型化双光子荧光显微成像改变了在自由活动动物中观察细胞和亚细胞结构的方式,可用于在动物觅食、哺乳、跳台、打斗、嬉戏、睡眠等自然行为条件下,或者在学习前、学习中和学习后,长时程观察神经突触、神经元、神经网络、远程连接的脑区等多尺度、多层次动态变化。/pp  该成果在2016年底美国神经科学年会、2017年5月冷泉港亚洲脑科学专题会议上报告后,得到包括多位诺贝尔奖获得者在内的国内外神经科学家的高度赞誉。冷泉港亚洲脑科学专题会议主席、美国著名神经科学家加州大学洛杉矶分校的Alcino J Silva教授在评述中写道,“从任何一个标准来看,这款显微镜都代表了一项重大技术发明,必将改变我们在自由活动动物中观察细胞和亚细胞结构的方式。它所开启的大门,甚至超越了神经元和树突成像。系统神经生物学正在进入一个新的时代,即通过对细胞群体中可辨识的细胞和亚细胞结构的复杂生物学事件进行成像观测,从而更加深刻地理解进化所造就的大脑环路实现复杂行为的核心工程学原理。毫无疑问,这项非凡的发明让我们向着这一目标迈进了一步。”/pp  可以期待,微型化双光子荧光显微成像系统将为实现“分析脑、理解脑、模仿脑”的战略目标发挥不可或缺的重要作用。/p
  • Neuron︱利用微型化双光子技术揭示“摆烂躺平”背后的神经环路机制
    世上无难事,只要肯放弃。你是否也遇到连绵不断花样百出的工作挑战曾经想要摆烂躺平?社会竞争压力越来越大,打工人是“扶我起来,我还能肝”,还是“大胆躺平,妥妥摆烂”,这成为当下社会讨论的焦点。科学家们试图从科学的角度帮助阐述这个问题。既往研究表明,在充满挑战的情况下,个体可能会锲而不舍以实现期望的结果,甚至每次尝试后会更加努力。但是经过多次重复失败后通常会导致个体放弃或者躺平。哺乳动物的大脑如何在挑战性经历中做出从主动出击到摆烂躺平的决定,仍然是一个未解决的问题。目前的人类影像学资料表明,前额内皮质、扣带皮质、背外侧和腹外侧前额皮质、眶皮质、颞-顶区和前扣带回可能会参与放弃的决策过程。但是,支持这种适应性决策的确切神经解剖学和神经化学基础尚未阐明。2023年6月23日,复旦大学脑科学研究院Nashat Abumaria(那德)老师和顾宇老师团队合作于国际著名期刊Neuron发表题为“A neural circuit for regulating a behavioral switch in response to prolonged uncontrollability in mice”的研究论文。在本研究中,作者发现投射到眶额叶皮层(OFC)内GABA能神经元的去甲肾上腺素能神经元是关键的调节因素。利用微型化双光子成像技术(FHIRM-TPM)和其他在体记录手段,作者发现自由行为小鼠OFC中去甲肾上腺素的减少和α1受体的下调,减少了驱动动作行为所必需的GABA能神经元的数量和活性,从而导致行为转变,促使个体在反复结果不可控的状态中做出从行动模式切换到放弃行动模式的决定。作者首先构建了两种从行动模式到放弃行动模式的小鼠模型。在第一个模型中,将小鼠暴露于3天的足底电击。从第1天到第3天,小鼠行为从跳跃和转圈等行动模式为主逐渐转变为放弃行动模式。在另外一个模型中,将小鼠暴露于3天不可逃脱游泳中,从第1天到第3天,小鼠行为从攀爬和转圈等行动模式为主逐渐转变为放弃行动模式。图1:两种动物模型中小鼠从行动模式到放弃行为模式转换过程作者随后通过药物操作手段排除了血清素、多巴胺等对于该行为模式的调控,并发现去甲肾上腺素能神经元的激活和抑制调节了这种行为转变。作者进一步通过顺行示踪和逆行示踪的手段鉴定发现OFC神经元和蓝斑核去甲肾上腺素能神经元的投射。OFC神经元接受蓝斑核去甲肾上腺素能输入;蓝斑核去甲肾上腺素能神经元逆行投射到OFC,主要与抑制性神经元形成连接。光激活OFC去甲肾上腺素能神经元后可增加行动模式,抑制该神经元导致放弃行动模式的发生增多。图2:示踪手段鉴定发现OFC神经元和蓝斑核去甲肾上腺素能神经元的投射为了在活体动物细胞水平上提供进一步的探究,作者使用微型化双光子成像技术(FHIRM-TPM)对模式动物自由行为下OFC GABA能神经元的实时活动进行了成像。在实验时间过程中跟踪同一群细胞,发现这群细胞整体钙信号逐渐下降,与从行动模式到放弃行动模式的行为转变一致。GABA能神经元活性的降低不是由于光漂白或其他成像伪影,因为在行为训练的3天内基线荧光信号保持相似(没有下降)。作者通过对细胞水平的详细分析发现,并非所有OFC GABA能神经元都对实验有反应。除了降低细胞的总体活性外,作者观察到在实验时间过程中响应的GABA能神经元百分比逐渐降低。图3:微型化双光子成像揭示行为转变期间OFC中的GABA能神经元活动作者随后利用多通道电极,光遗传学刺激,药物刺激等实验手段进一步验证了该发现,OFC GABA能神经元(接受去甲肾上腺素能输入)通过促进行动模式和防止向放弃行动模式的转变来调节行为转换。长时间接触无法控制的结果会导致去甲肾上腺素浓度逐渐降低和OFC中α1受体的下调,两种因素共同导致维持行动模式所必需的OFC GABA能神经元的数量和活性减少,最终使得行为模式转变为放弃行动模式。在这项研究中,作者建立了两种小鼠在长时间经历不可控结局时的行为转变模型。使用这些模型来定义OFC中去甲肾上腺素、α-1a肾上腺素受体和GABA能神经元活动的释放如何调节这种行为。结合微型化双光子显微镜在细胞水平进一步探究这种适应性决策的确切神经解剖学和神经活动基础机制。这些发现为面对反复失败的个人行为(例如戒烟机制)提供了见解,并为该领域的进一步研究提供了易于操作的模型。希望随着该领域的进一步深入研究,对“躺平摆烂”神经机制的更多认识,或许将帮助我们更科学地设立奋斗目标,更积极有效地应对无法掌控的困难,在更多的挑战中都能百折不挠兵来将挡水来土掩。【参考文献】Li, C., T. Sun, Y. Zhang, Y. Gao, Z. Sun, W. Li, H. Cheng, Y. Gu and N. Abumaria (2023). "A neural circuit for regulating a behavioral switch in response to prolonged uncontrollability in mice." Neuron.
  • 深圳先进院提出梯度光场编码的双光子快速三维成像技术
    近日,中国科学院深圳先进技术研究院研究员郑炜团队提出一种基于激发光梯度编码的快速三维成像技术,可使双光子体成像速度比传统技术提升5至10倍。  双光子显微镜具有亚微米级的成像分辨率和毫米级的成像深度,被广泛应用在神经结构和功能成像以及其他活体成像研究中。传统的双光子三维成像是将双光子激发的焦点在样品中进行逐层的二维扫描来实现的,这种三维成像方法不仅速度受限且增加了样品暴露在高能激光中的时间,对生物组织造成光损伤和光漂白,不利于活体组织的长时间成像。  该研究提出的新型梯度光场双光子显微成像技术只需要进行两次二维扫描即可获得样品的三维信息,极大降低了激光对样品的损害。  在生活中,可利用编码来确定位置。与此类似,梯度光场技术设计了一对轴向拉长并且强度梯度变化的焦点,利用这对焦点的强度变化来编码并解析出物体的位置:横向扫描第一个梯度焦点得到的图像中,位置较浅处的样品荧光强度强,位置较深处的样品荧光强度弱,第二个焦点对应的图像则正好相反。两幅图像的和反映了样品的真实三维荧光强度,图像的比值则反映了荧光的深度信息。该方法可一次分辨深度12微米内三维信息,荧光点轴向定位精度为0.63微米。梯度光场双光子显微镜非常适合活体细胞的三维成像,在观测巨噬细胞吞噬荧光小球的实验中,能够快速捕捉荧光小球在巨噬细胞内外的三维运动轨迹,并精确定量出巨噬细胞运载小球的速度。  相关成果以Axial gradient excitation accelerates volumetric imaging of two-photon microscopy为题,发表在Photonics Research上。研究得到国家自然科学基金重大科研仪器研制项目、重大研究计划以及广东省重点实验室等支持。   论文链接 (a):梯度光场双光子显微成像原理、(b):巨噬细胞吞噬小球过程、(c):小球的运动轨迹、(d):小球运动轨迹的量化与评估
  • 首款可探测紫外自体荧光团的新型双光子显微镜
    中国科学院深圳先进技术研究院生物医学与健康工程研究所研发团队研发了首款短波长激发时间与光谱分辨新型双光子显微镜,该显微镜创新性地采用中心波长为520 纳米的锁模飞秒光纤激光器作为双光子激发光源,可以有效地激发短波长波段荧光团,利用连接光谱仪的时间相关单光子计数模块,可实现荧光光谱和荧光寿命的同时检测。该技术可以实现紫外波段自体荧光的有效激发与探测,极大地拓展了双光子成像技术的应用范围,为无创观测生物样品及生命过程提供了一种新的研究工具。该成果于近日发表于生物医学光学领域知名期刊《生物医学光学快报》上。生物体中,普遍存在着具有内源性荧光团的生物分子,内源性荧光团的三维成像可以在不干扰生物环境的情况下对重要生物过程进行无创体内检查,如代谢变化、形态改变和疾病进展,是组织成像和跟踪细胞代谢过程的有力工具。双光子显微镜具有天然的光学切片能力,无需物理切割就可以实现生物组织的三维高分辨成像。双光子显微镜跟内源性荧光团的结合可以实现活体生物组织无标记成像,对很多生命活动的研究具有非常重要的意义。然而,传统的双光子显微镜是以钛宝石激光器作为光源,只能对可见光波段的内源性荧光团进行探测,很难探测到信息更丰富的短波长荧光团。 深圳先进院郑炜团队首次研制出采用520纳米超快激发源搭建光谱分辨的双光子荧光寿命成像系统,可以有效激发和探测传统双光子显微系统无法成像的一系列短波长荧光团。为了验证该系统的实用性,研究团队首先系统地评估了生物组织中典型的短波内源性荧光团纯化学样品在520纳米激发下的荧光寿命和光谱特性,包括荧光分子酪氨酸、色氨酸、血清素、烟酸、吡哆醇和NADH,以及角蛋白、弹性蛋白和血红蛋白。 随后,研究团队对不同的生物组织进行了成像,包括离体大鼠食管组织和离体大鼠口腔面颊组织。结果表明,该系统可以在不需要任何外加造影剂的情况下,为生物系统提供高分辨率的三维形态信息和物理化学信息。此外,研究人员探索了短波长的内源性荧光团在食管壁中的分布,结果表明,该系统可以很清晰展示食管的不同分层结构。结合寿命和光谱信息,系统可以明确识别食管内部多层结构的不同信号来源,定量区分不同组织成分在食管壁的位置和数量,区分食管分层结构。 最后,研究团队进一步对小鼠皮肤进行了活体三维扫描成像,并基于短波内源荧光团在体内捕获了小鼠耳廓内白细胞的迁移,实现了典型免疫反应微环境中白细胞募集和变形运动的动力学过程的可视化,以及随时间的荧光寿命测量。“紫外荧光强度图像可以显示生物组织的精细结构,紫外荧光寿命信息可以区分红细胞和白细胞,两者结合可以无标记追踪免疫细胞在伤口和正常组织的运动情况,这些结果验证了我们开发的系统在天然组织环境中监测免疫反应的能力。”郑炜介绍。深圳先进院医工所助理研究员吴婷为文章第一作者,深圳先进院医工所郑炜研究员、李慧副研究员,北京大学物理学院施可彬研究员为共同通讯作者
  • 南方科技大学665万预采购1套双光子激光共聚焦显微镜
    1月28日,南方科技大学发布一则招标公告,预算665万,采购一套双光子激光共聚焦显微镜,要求招标项目的潜在投标人于2021年02月08日 09点30分(北京时间)前递交投标文件。一、项目基本情况项目编号:0868-2144ZD090H项目名称:双光子激光共聚焦显微镜预算金额:665.0000000 万元(人民币)最高限价(如有):665.0000000 万元(人民币)采购需求:序号设备名称数量单位是否接受进口设备1双光子激光共聚焦显微镜1台是合同履行期限:签订合同后【180】日内交货本项目( 不接受 )联合体投标。二、获取招标文件时间:2021年01月28日 至 2021年02月05日,每天上午9:00至12:00,下午14:00至18:00。(北京时间,法定节假日除外)地点:深圳市罗湖区红宝路京基金融中心D座(蔡屋围金龙大厦)10楼03号-06号方式:现金售价:¥300.0 元,本公告包含的招标文件售价总和三、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2021年02月08日 09点30分(北京时间)开标时间:2021年02月08日 09点30分(北京时间)地点:深圳市罗湖区红宝路京基金融中心D座(蔡屋围金龙大厦)10楼03号-06号四、公告期限自本公告发布之日起5个工作日。五、其他补充事宜1.获取招标文件相关事项:(1)凡有意参加投标者,请在“三、获取招标文件”所述时间内进行登记。如确认参加本项目投标,请于报名截止日前携带供应商获取招标文件时应提供材料(见下方要求)到深圳市振东招标代理有限公司进行现场报名,并缴纳标书费(仅接受现金或对公转账,招标文件售后不退不换),逾期不接受报名;若邮购,所产生费用由投标人自行承担)。采购代理机构将不对邮寄过程中可能发生的延误或丢失负责。(2)联系人:杨小姐。联系电话/传真:0755-82786028(仅提供招标文件获取相关咨询服务,其它投标事宜请联系下方采购代理机构联系人)。电子邮箱:339288519@qq.com(3)《投标登记表》下载地址:http://www.szzdzb.cn/ “下载中心”。2.获取招标文件需提供的资料:(1)投标登记表;(2)法定代表人授权书;(3)投标人须提供营业执照(法人证书或执业许可证等)副本扫描件;以上资料均需加盖投标人公章。注:需邮寄报名应将以上资料扫描后发至邮箱:339288519@qq.com邮件中标明项目名称、项目编号、联系人及联系方式,并与我公司杨小姐联系确认同时3个工作日内快递至采购代理机构留存备案,否则报名无效。3.采购代理机构开户银行及相关信息:开户银行:招商银行深圳分行安联支行开户名称:深圳市振东招标代理有限公司银行账号:755914788210601公示网址:①中国政府采购网(http://www.ccgp.gov.cn)②深圳公共资源交易中心市区政府采购统一平台(http://www.szzfcg.cn)③深圳市政府采购监管网(http://www.zfcg.sz.gov.cn)④深圳市振东招标代理有限公司网站(http://www.szzdzb.cn)投标人有义务在招标活动期间浏览以上网站,在以上网站公布的与本次招标项目有关的信息视为已送达各投标人。5.其他事项①为避免病毒传染的风险,各供应商法定代表人或其授权代表可通过“中国邮政”、“EMS”、“顺丰速运”的邮寄方式,按照规定的递交投标文件截至时间前”向我公司邮寄投标文件,快递单上写明供应商名称、招标编号,通过邮寄方式递交的投标文件递交时间以我公司代表签收时间为准。逾期或不符合规定的投标文件不予接受。②为确保项目顺利开展,通过邮寄方式递交投标文件的各供应商需盖章签署《供应商邮寄标书承诺书》(下载地址:http://www.szzdzb.cn/ “下载中心”),扫描件优先发送至项目负责人邮箱2778757549@qq.com,原件(无需密封)同投标文件一并邮寄至我公司。六、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:南方科技大学     地址:深圳市南山区西丽学苑大道1088号        联系方式:万老师 0755-88018674      2.采购代理机构信息名 称:深圳市振东招标代理有限公司            地 址:深圳市罗湖区红宝路京基金融中心D座(蔡屋围金龙大厦)10楼03号-06号联系方式:李先生、黄先生 0755-82786018/82786038-821/822            3.项目联系方式项目联系人:李先生、黄先生电 话:  0755-82786018/82786038-821/822
  • 宗伟健:新一代微型双光子荧光显微镜(多图)
    p  从石器时代原始部落的祭师对灵魂的崇拜,到中世纪后期哲人对大脑意识的产生溯源,到近代解刨学家发现井然有序的大脑功能分区,再到20世纪初Santiago Cajal得到了人类第一张清晰的大脑皮层神经元的照片,直至现在神经学家通过电生理,电子显微镜,光学显微镜等手段,在亚细胞,分子,基因水平对大脑的结构和功能进行研究,神经科学(neurosciences)这一门古老的学科,直至今日,仍然是全世界投入最大,最活跃的科学研究领域之一。/pp  限制科学家去理解和探索大脑的最主要因素是技术。每一次神经领域的重大突破,都是以技术的一次次革命与飞跃作为基础随之而来。19世纪末高尔基染色和尼斯染色技术的发明,使得单个神经元的结构得意完整清晰的呈现,并由现代神经学之父圣地亚哥· 拉蒙· 卡哈尔(Santiago Ramon y Cajal,1852-1934)总结并开创了神经元理论,至今仍是现代神经科学的基础。计算机体层扫描(CT)、磁共振成像(MRI)、经颅多普勒(TCD)、单光子发射计算机断层(SPECT)、正电子发射断层扫描(PET)等无创性影像学技术的发展,使得人类对大脑整体水平结构和功能的认识不断提高,并且对于大脑创伤和疾病的治疗提供了有利的参考工具。在实验神经科学领域,以模式动物作为研究对象,避免了把人作为研究对象在有创,改造等伦理方面的限制,使得更多的技术手段得以大显身手。其中包括电生理学方面,脑电图(EEG),多电极记录(MER),膜片钳技术(patch clamp)等技术的发明和有效使用,得以使科学家在亚微米空间尺度(单个神经突触连接),亚毫秒时间尺度(单次神经冲动电位)对神经元的功能进行研究。而最令人激动人心的是,近几年来蓬勃发展的光学显微成像技术,给实验神经科学带来了很多前所未有的思路和成果。2008年钱永健等人由于荧光蛋白(GFP,绿色荧光蛋白)的发现和使用,获得了诺贝尔化学奖,是对荧光成像技术的一次巨大肯定和推动。光学成像本身具有高分辨率、高通量(高速)、非侵入、非毒性等特点,再与荧光蛋白以及荧光染料等标记物在细胞中的定位与表达技术相结合,使得科学家可以特异性的分辨生物体乃至细胞内部不同结构与成分,并且能够在生命体和细胞仍具有活性的状态下(活体状态)对其功能进行动态观察。这就使得荧光成像技术成为了无可替代的,生物学家现今最为重要的技术手段之一。而随着近些年来各种新型的显微技术的出现,共聚焦显微镜(confocal microscopy),相干拉曼成像(CARS),超分辨率显微技术(super-resolution microscopy),光片显微技术(lightsheet microscopy)等使得荧光显微镜的分辨率,速度,成像深度等进一步提高。/pp  对于荧光成像技术在神经科学中应用,离不开双光子荧光显微镜(Two-photon Microscopy,简称TPM)1。目前,大多数细胞生物学,生理学研究主要还是在离体培养的细胞体系中研究。然而与细胞生物学研究有所不同的是,大脑的功能研究的整体性和原位性显得更加关键:仅研究分离的神经元无法解释神经系统的功能和规律。换句话说,必须要求神经元处在其正常生存的大脑环境中才能使其正常运转。然而,大脑是一个高度复杂的器官。即使是小鼠的大脑皮层也有将近1mm的厚度,海马,丘脑等深脑区核团更是深达3-5mm2,而且并不透明,充满了数以亿计的神经元胞体和突触,此外还有丰富的血管,粘膜(脑膜),最外层还有厚厚的颅骨和头皮包裹。使用包括共聚焦显微镜在内的传统的荧光显微镜,由于被观测的信号会受到样本组织的散射和吸收,根本无法穿透如此深的组织进行成像。而双光子显微镜的发明,则为此类研究带来了希望。双光子显微镜特有的非线性光学特性,再加上其工作波长处在红外区域等特点,令其在生物体组织内的穿透深度大大提高3,使得双光子显微镜成为神经科学家进行活体神经成像最理想的工具。神经动作电位(action potential)本身很难被光学信号捕获,但是动作电位产生的去极化会引起神经元Ca2+浓度的变化(钙内流现象)。科学家已经开发出多种Ca离子浓度的荧光探针,进而通过这种钙离子浓度的变化引起的荧光信号的变化来反映出神经活动。于是,双光子显微镜与在体的神经元Ca离子浓度指示剂标记技术相结合,碰撞出了耀眼的火花: 使得人们可以研究处于生理状态时的动物大脑内的神经元活动4。/pp  大脑的最重要功能是对生物体的行为活动进行调控,而反过来,最能反应大脑工作状态的同样是生物体的行为活动。所以说,为了了解大脑,研究者不仅要求在体状态下对神经元进行高分辨率观测,而且也希望生物体在被观测的阶段里,能够进行正常的行为活动。所以,在成像技术不断地提高分辨率和速度等性能的同时,科学家们也在积极开改进和革这些成像技术手段,使其进行成像时尽可能小的限制被观测对象的行为活动,以求得到最接近生理状态下的数据。但是这一目标始终存在诸多的技术瓶颈: 以啮齿类动物(大鼠或小鼠)神经元的双光子钙成像为例。早些年由于动物身体运动产生的晃动剧烈,而当时双光子显微镜成像速度又很低,所以科学家只能在麻醉状态下对头部固定的动物进行成像。后来随着成像速度的提高,并且对开颅手术技术的很大改进,使得科学家可以在清醒状态下对动物的神经活动进行观察(仍然需要头部固定)。近些年来,随着基因改造技术的突飞猛进,通过病毒转染和转基因技术,在神经元内源性表达“基因编码类钙指示剂(genetically encoded calcium indicator, 简称GECI)”成为神经元钙成像的大趋势4。这种由神经元自身产生钙指示剂的方法与之前的钙染料技术相比有着巨大的优势: 信噪比提升了一个数量级 对神经元特异性好,可以区分不同的神经元类型 并且可以在大脑神经元内持续表达数月(病毒转染)甚至整个生命历程(转基因动物)。于是,大概10年前开始,科学家就开始利用双光子成像结合GECI技术对神经元的活动和结构变化进行长期的观测和追踪,从而对记忆的形成,神经元病变等问题有了更深入的认识。其中,现在性能最好,使用最为广泛的GECI为绿色荧光钙调蛋白Gcamp家族4。目前已经改进到第六代,Gcamp6f,Gcamp6f已经成为神经成像里最受欢迎的指示剂之一。目前科学家最流行的对小动物行为过程中大脑活动进行成像的方法,是将虚拟现实与双光子成像相结合,在动物头部被固定的情况下,在其眼前制造影像,让动物认为自己处在”真实“的环境之中5。通过小鼠四肢在类似跑步机或者鼠标滚球上的运动来模拟其真实活动。以求达到研究神经元在动物行为中所起到的作用(如图1)。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/e167bfbc-be4e-4b26-aa38-6f15b1fdca08.jpg" title="1.png" width="600" height="429" border="0" hspace="0" vspace="0" style="width: 600px height: 429px "//pp style="text-align: center "图1 双光子成像结合虚拟现实场景,对头部固定,身体活动的动物进行研究。图片来自sup5/sup/pp  然而,这种虚拟现实加头部固定成像的方法,已经遭到许多科学家的质疑。人们认为,头部固定的动物在实验期间一直处在物理约束和情绪压力下,因此无法证明神经元对外界的响应在虚拟现实和自由探索下是等价的。更重要的是,许多社会行为,比如亲子护理,交配和战斗,都不能用头部固定的实验来研究。如何在动物自由活动的时候,直接对其神经元进行成像,是神经科学家还未能得到解决终极的诉求。/pp  一个理想的解决方案是开发微型荧光显微镜直接固定在自由活动的动物身上,让动物“带着显微镜跑”6。这种尝试大概从20年前开始。起初,科学家只是将一根或几根光纤插到小鼠头上,用以激光导入和荧光信号采集。然而,这种方式而只是记录某个区域内信号的总和,不具有空间分辨率,算不上真正意义上的成像。在最近的十几年里,由于光学,电子,材料技术的发展,人们开始尝试研制真正意义上的微型显微镜。其中,微型单光子宽场显微镜(miniature wide-field microscope),由于其原理与结构相对简单,是目前人们主要尝试研制的微型显微镜技术。例如由Ghosh及其同事开发的显微镜,通过将小型LED光源,微型CCD和自聚焦透镜整合到一个小于25px3的框架之中,研制出了一个重量为1.9g的微型宽场显微镜。该技术被用于研究大脑海马区place cell等与记忆和本能相关的实验当中7。然而,宽场成像方式由于不能很好的对离焦区域的背景信号进行过滤,并且对光的散射敏感,所以其无法达到细胞分辨率。更难以对更精细的诸如树突,轴突,树突棘等结构进行观察。所以一直难以达到神经科学家满意。/pp  于是,从大概15年前开始,世界上一些研究和开发双光子成像技术的研究组开始尝试将双光子显微镜这种在神经成像领域已经获得广泛应用的技术进行微型。然而,目前只有为数不多的几个课题组报道了他们在微型双光子显微镜研制方面的进展: 在2001年,Denk等的工作被认为是研制微型双光子显微镜的第一步8。然而,它仍然太过“巨大”(长7.5厘米,重25克),而且成像速度很慢(2 Hz 128x128的尺寸下速度为2 Hz, 512x512的尺寸下为0.5 Hz,如图2a)。之后,其他一些课题组相继报道了不同的微型双光子系统。 Helmchen课题组在2008年报道了他们的微型双光子系统,仅重0.9克9。它实现了512X512幅面下的8 fps的成像速度速度,并展示了利用该系统实现的大鼠在体钙成像信号。然而,从展示的效果来看,其空间分辨率极低,而且并没有实现真正的自由运动下的成像(如图2b)。Mark Schnitzler课题组在2009年也发表了他们的微型双光子系统10。他们的系统首次使用了微机电扫描镜(MEMS)来进行扫描,并将Z聚焦模块集成在了探头之中(如图2c)。但是扫描频率仍然很低(400x135约为4Hz) 空间分辨率也远远达不到要求(横向1.29 μm,轴向10.3 μm)。这些方面限制了其在神经元细胞核亚细胞水平成像中的应用。 Kerr课题组在2009年展示了它们的系统11,跟之前的微型双光子显微镜相比较,由于应用了微型透镜组构成的微型物镜(NA达到了0.9),这套系统的空间分辨率更高。然而,这套探头的重量也随之提高(5.5g)。此外,由于其仍然使用振动光纤的方式来进行扫描,所以其成像速度仍然比较慢。(对于64x64为10.9Hz,对于理论上的512x512为1.25Hz)(如图2d)。此外,还有一个之前所有的微型双光子系统都没有解决的问题。由于微型双光子显微镜一般需要利用光纤将飞秒激光导入到探头之中,而光纤由于存在诸如色散、截至模式、导通带宽等一系列限制,所以某一款光纤一般只允许一定带宽(一般为几十纳米)和特定中心波长的光传播。那就需要在制作微型显微镜的时候,结合使用的荧光指示剂所需要的激光波长对光纤进行选择。但是,目前商业化的,可以用来进行飞秒光传输的空心光子晶体光纤(hollow-core Photonic Crystal Fiber, HC-PCF)种类非常有限。例如,全球最大的光子晶体光纤生产商NKT公司仅提供中心波长为800nm,1030nm,1300nm和1550nm的HC-PCF。所有现有的微型双光子显微成像系统都是基于这几款光纤所限定的中心波长进行开发的。但是很遗憾的是,本文上述所提到的目前最广泛使用的GcamP指示剂需要920 nm的激光进行激发。所以先前的所有微型双光子都不能对Gcamp进行有效的成像。这限制了微型双光子显微镜的发展。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/4c1d7c1d-53eb-4a41-96d0-98ecb5ebda8d.jpg" title="2.png"//pp style="text-align: center "图2 微型双光子发展史上的几个典型工作。a、b、c、d分别选自参考文献sup8、9、10/sup和sup11/sup/pp  之所以这些早期的微型化双光子显微镜都无法得到真正的使用和推广,其原因在于,若要制造出具有实用价值的微型双光子显微镜,比研制单光子微型显微镜复杂和困难的多得多。微型双光子显微镜需要需要解决如下几个关键技术难题:/pp  1 如何将飞秒激光有效的导入微型显微镜 /pp  2 如何在微型显微镜内进行扫描/图像重建 /pp  3 如何在微型显微镜中进行高质量的激光汇聚,高效激发双光子信号。/pp  4 如何有效的对荧光信号进行收集 /pp  5 如何使整个系统在动物剧烈运动时仍保持稳定/pp  6 在满足前5项条件下,重量是否足够轻,以致尽量小地对动物的活动造成影响 /pp  本文作者所在的课题组,是由北京大学分子医学研究所、信息科学技术学院、动态成像中心、生命科学学院、工学院联合中国人民解放军军事医学科学院组成跨学科团队。我们在程和平院士的带领下,在国家自然科学基金委国家重大科研仪器研制专项《超高时空分辨微型化双光子在体显微成像系统》的支持下,历经三年多的协同奋战,成功研制了新一代高速高分辨微型双光子荧光显微镜,并将其取名为FHIRM-TPM。原始论文于5月29日在线发表于自然杂志子刊Nature Methods (IF 25.3)12。在这项成果中,我们解决了上文所提及的早先微型化双光子显微镜研制中存在的问题,获取了小鼠在自由行为过程中大脑神经元和神经突触活动清晰、稳定的图像。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/0418a0a6-f357-4e18-91b0-ef1c23d670bd.jpg" title="3.png" width="600" height="470" border="0" hspace="0" vspace="0" style="width: 600px height: 470px "//pp style="text-align: center "图3 FIRM-TPM示意图,来自sup12/sup/pp  新一代微型双光子荧光显微镜体积小,重仅2.2克,适于佩戴在小型动物头部,通过颅窗实时记录数十个神经元、上千个神经突触的动态信号。在大型动物上,还可望实现多探头佩戴、多颅窗不同脑区的长时程观测。相比单光子激发,双光子激发具有良好的光学断层、更深的生物组织穿透等优势,所以成像质量远优于目前领域内主导的、美国脑科学计划核心团队所研发的微型化宽场显微镜。其横向分辨率达到0.65μm,与商品化大型台式双光子荧光显微镜可相媲美 采用双轴对称高速微机电系统转镜扫描技术,成像帧频已达40Hz(256*256像素),同时具备多区域随机扫描和每秒1万线的线扫描能力。最为重要的是,FHIRM-TPM克服了先前限微型双光子显微镜应用的两个障碍。首先,我们定制设计的HC-PCF为 920纳米飞秒激光脉冲提供了无畸变传输,这种改进让有效的激发例如Thy1-GFP和GCaMP-6f等常用荧光指示剂成为可能。第二,由于双光子点扫描显微镜的高空间分辨率和层切能力,安装到动物头上的微型双光子显微镜非常容易受到运动伪影的影响。为了解决这个问题,我们对整个系统进行了充分的优化:(a)使用柔软的新型光纤束SFB来使得动物运动引起的扭矩和拉拽力最小化,并不降低光子收集效率 (b)采用独立的可旋转连接器来连接光学探头上的光纤和电线,以使动物在自由探索期间线的扭曲和缠绕最小化 (c)使用高速成像以减少运动引起的帧内模糊。此外,我们在实验之前预先训练动物适应安装在其头骨上的微型显微镜,并滴加1.5%低熔点琼脂糖使其充满物镜和脑组织之间,这些措施都显著降低了探头与大脑之间的相对运动,进而改善了实验短期和长期的稳定性,于是实现了在动物进行包含大量身体和头部运动的行为学试验中中进行高分辨率成像。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/0d8849db-62d7-4fdd-b7e0-4e572b3a1b03.jpg" title="4.png" width="600" height="437" border="0" hspace="0" vspace="0" style="width: 600px height: 437px "//pp style="text-align: center "图4 FIRM-TPM实物图,来自sup12/sup/pp  树突棘活动是神经元信息处理的基本事件,利用台式双光子显微镜在头固定的动物上的研究表明单个神经细胞的不同树突棘可以被不同朝向的视觉刺激或不同强度频率的声音刺激所激活。FHIRM-TPM实现了与传统的大型的台式双光子显微镜相同的分辨率和光学层切能力。与微型宽场显微镜相比,FIRM-TPM的高空间分辨率,固有的光学切片能力和组织穿透能力以及相当的机械稳定性都是极有优势的。所以虽然通过微型宽场显微镜可以获得数百个神经元在细胞水平上的活动,但是我们的 FHIRM-TPM无疑提供了一个更加强大的工具,即在自由活动的动物中对更加基本的神经编码单位——树突棘的时空特性进行观测。它能够在对小鼠依次进行的行为学试验(例如悬尾,跳台,以及社交行为)的过程中长时间观察位大脑中的神经元胞体、树突和树突棘的活动。这些功能的展示充分证明了FHIRM-TPM具有良好的性能和稳定性。未来,与光遗传学技术的结合,可望在结构与功能成像的同时,精准地操控神经元和大脑神经回路的活动。微型双光子荧光显微镜整机性能十分稳定,可用于在动物觅食、跳台、打斗、嬉戏、睡眠等自然行为条件下,或者在学习前、学习中和学习后,长时程观察神经突触、神经元、神经网络、远程连接的脑区等多尺度、多层次动态变化。/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/90a13003-d9fd-404d-8df3-64926f598012.jpg" title="5.png" width="600" height="283" border="0" hspace="0" vspace="0" style="width: 600px height: 283px "//pp style="text-align: center "图5 三种模式在结构学成像中的成像质量对比,来自sup12/sup/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201706/insimg/44bc19d8-0a51-4583-8784-2f9240ac1cdd.jpg" title="6.png"//pp style="text-align: center "图6 FHIRM-TPM在三种不同的行为学范例对小鼠大脑皮层神经元活动进行成像,来自sup12/sup/pp  从2001年Denk发表第一篇微型双光子显微镜的原型机以来,微型双光子显微镜的发展已经走过了15年的时间。15年的发展历程,微型双光子显微镜从最开始的25克笨重的身躯,只能在分离的组织中进行验证性的实验8到如今重量仅两点几克重,可以对自由活动的小鼠神经元进行树突棘级别的成像,可以说取得了一定的进步。然而,在看到这个领域取得的成就的同时,也应看到,至今为止,微型双光子显微镜还未像共聚焦显微镜或者是荧光光片显微镜一样被生物学家广泛认可和应用。而后者(光片显微镜)的发展时间更短(2008年Science的一篇文献一般被认为是现代荧光光片显微镜镜的开端13)。究其原因,除了技术本身的限制以外,整个研究领域的气氛和投入,也是重要的影响因素之一。/pp  纵观这15年来微型双光子显微镜的发展道路,开疆拓土者有之 改革创新者有之 另辟蹊径者有之 浑水摸鱼、指鹿为马者亦有之。然而遗憾的是,愿意心无旁骛、全情投入者鲜有之 有意愿和能力建立为这个研究的领域建立范式者亦鲜有之。而中国,在不久前在这个领域基本上属于完全的空白。更不要说什么领先世界。/pp  然而令人十分兴奋的是,中国国家基金委国家重大科研仪器设备研制专项在2014年正式将“超高时空分辨微型双光子在体显微成像系统”立项。以5年七千两百万人民币的研究经费对这一项“世界上做的还并不怎么好,中国基本没人做过”的技术进行攻关研发。这样的大力投入无疑为这一领域注入了新鲜血液和十足动力。而我也有幸在博士五年期间全程参与了这个项目的工作。从2012年来到该项目首席负责人程和平院士和陈良怡研究员的联合课题组至今,我见证了这个项目从无到有,团队从幼小稚嫩到壮大成熟的整个过程。如今,我们有了初步的成果,不仅让我们这样一支完全由中国本国科研工作者建立的团队在世界上处在了较为领先的位置,同时也把这个领域向前推动了一些,我感到无比激动和自豪。/pp  该成果在2016年底美国神经科学年会、2017年5月冷泉港亚洲脑科学专题会议上报告后,得到包括多位诺贝尔奖获得者在内的国内外神经科学家的高度赞誉。冷泉港亚洲脑科学专题会议主席、美国著名神经科学家加州大学洛杉矶分校的Alcino J Silva教授在评述中写道,“从任何一个标准来看,这款显微镜都代表了一项重大技术发明,必将改变我们在自由活动动物中观察细胞和亚细胞结构的方式。它所开启的大门,甚至超越了神经元和树突成像。系统神经生物学正在进入一个新的时代,即通过对细胞群体中可辨识的细胞和亚细胞结构的复杂生物学事件进行成像观测,从而更加深刻地理解进化所造就的大脑环路实现复杂行为的核心工程学原理。毫无疑问,这项非凡的发明让我们向着这一目标迈进了一步。”/pp  1. Denk, W., Strickler, J. & Webb, W.Two-photon laser scanning fluorescence microscopy. Science248, 73-76(1990)./pp  2. Gewin, V. A goldenage of brain exploration. PLoS Biol3, e24 (2005)./pp  3. Zipfel, W.R.,Williams, R.M. & Webb, W.W. Nonlinear magic: multiphoton microscopy in thebiosciences.Nat Biotechnol21, 1369-1377 (2003)./pp  4. Chen, T.W. et al.Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature499, 295-300 (2013)./pp  5. Minderer, M.,Harvey, C.D., Donato, F. & Moser, E.I. Neuroscience: Virtual realityexplored. Nature533, 324-325 (2016)./pp  6. Hamel, E.J., Grewe,B.F., Parker, J.G. & Schnitzer, M.J. Cellular level brain imaging inbehaving mammals: an engineering approach. Neuron86, 140-159 (2015)./pp  7. Ghosh, K.K. et al.Miniaturized integration of a fluorescence microscope. Nat Methods8, 871-878(2011)./pp  8. Helmchen, F., Fee,M.S., Tank, D.W. & Denk, W. A Miniature Head-Mounted Two-Photon Microscope.Neuron31, 903-912 (2001)./pp  9. Engelbrecht, C.J.,Johnston, R.S., Seibel, E.J. & Helmchen, F. Ultra-compact fiber-optictwo-photon microscope for functional fluorescence imaging in vivo. Optics Express16, 5556 (2008)./pp  10. Piyawattanametha, W.et al. In vivo brain imaging using a portable 2.9 g two-photon microscope basedon a microelectromechanical systems scanning mirror. Optics Letters34, 2309(2009)./pp  11. Sawinski, J. et al.Visually evoked activity in cortical cells imaged in freely moving animals. Proceedings of the National Academy ofSciences106, 19557-19562(2009)./pp  12. Zong, W. et al. Fasthigh-resolution miniature two-photon microscopy for brain imaging in freelybehaving mice. Nat Methods (2017)./pp  13. Keller, P.J.,Schmidt, A.D., Wittbrodt, J. & Stelzer, E.H. Reconstruction of zebrafishearly embryonic development by scanned light sheet microscopy. Science322, 1065-1069 (2008)./p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制