表面形变

仪器信息网表面形变专题为您整合表面形变相关的最新文章,在表面形变专题,您不仅可以免费浏览表面形变的资讯, 同时您还可以浏览表面形变的相关资料、解决方案,参与社区表面形变话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

表面形变相关的耗材

  • 特氟龙耐酸碱高温表面皿PTFE表面皿四氟表面皿
    聚四氟乙烯表面皿聚四氟乙烯(PTFE)表面皿:圆形状,中间稍凹,与蒸发皿相似。用途:1)可以用来做一些蒸发液体的工作,它可以让液体的表面积加大,从而加快蒸发.但是不能像蒸发皿那样加热;2)可以作盖子,盖在蒸发皿或烧杯上,防止灰尘落入蒸发皿或烧杯;3)可以作容器,暂时呈放固体或液体试剂,方便取用;4)可以作承载器,用来承载 pH试纸,使滴在试纸上的酸液或碱液不腐蚀实验台。 品名规格(mm)材质聚四氟乙烯(PTFE)表面皿45PTFE6090 特点:1.外观纯白色;2.耐高低温:可使用温度-200℃~+250℃;3.耐腐蚀:耐强酸、强碱、王水和有机溶剂,且无溶出、吸附和析出现象;4.防污染:金属元素空白值低;5.绝缘性:不受环境及频率的影响,介质损耗小,击穿电压高;6.耐大气老化,耐辐照和较低的渗透性;7.自润滑性:具有塑料中小的摩擦系数;8.表面不粘性:是一种表面能小的固体材料; 9.机械性质较软,具有非常低的表面能; 广泛应用在国防军工、原子能、石油、无线电、电力机械、化学工业等重要部门。聚四氟乙烯(PTFE)系列产品:培养皿、坩埚、试剂瓶、试管、镊子、药匙、烧瓶、烧杯、漏斗、容量瓶、蒸发皿、表面皿、阀门、接头、离心管等。
  • 聚四氟表面皿,特氟龙表面皿
    聚四氟乙烯表面皿聚四氟乙烯(PTFE)表面皿:圆形状,中间稍凹,与蒸发皿相似。用途:1)可以用来做一些蒸发液体的工作的,它可以让液体的表面积加大,从而加快蒸发.但是不能像蒸发皿那样加热;2)可以作盖子,盖在蒸发皿或烧杯上,防止灰尘落入蒸发皿或烧杯;3)可以作容器,暂时呈放固体或液体试剂,方便取用;4)可以作承载器,用来承载 pH试纸,使滴在试纸上的酸液或碱液不腐蚀实验台。 图片中矮的是表面皿,带嘴的是蒸发皿品名规格(mm)材质聚四氟乙烯(PTFE)表面皿45PTFE6090 特点:1.外观纯白色;2.耐高低温性:可使用温度-200℃~+250℃;3.耐腐蚀:耐强酸、强碱、王水和各种有机溶剂,且无溶出、吸附和析出现象;4.防污染:金属元素空白值低;5.绝缘性:不受环境及频率的影响,介质损耗小,击穿电压高;6.耐大气老化,耐辐照和较低的渗透性;7.自润滑性:具有塑料中最小的摩擦系数;8.表面不粘性:是一种表面能最小的固体材料; 9.机械性质较软,具有非常低的表面能;10.无毒害:具有生理惰性。 广泛应用在国防军工、原子能、石油、无线电、电力机械、化学工业等重要部门。聚四氟乙烯(PTFE)系列产品:培养皿、坩埚、试剂瓶、试管、镊子、药匙、烧瓶、烧杯、漏斗、容量瓶、蒸发皿、表面皿、阀门、接头、离心管等。
  • 表面皿
    使用方法:先将表面皿洗净、烘干才能使用。表面皿的用途很广,但无论代替何种仪器使用,均要按照各种仪器的使用方法使用。如作气室鉴定时,将两片表面皿,利用磨成的平面合成气室,用一张试剂浸湿的试纸,帖附在上面的一片表面皿上,被鉴定的化合物放在下面的一片表面皿上,必要时加温,观察反应中生成气体,从试剂的颜色改变来鉴定气体。如观察白色沉淀或混浊物时,可把表面皿底壁放一张黑纸,则白色生成物便可清晰可见。如做各种仪器盖子,只要利用它的弧形放在仪器口上,放稳即可,但要注意按仪器的口径选择表面皿。一般表面皿直径应大于仪器口径1cm,这样使用较方便。如做烧杯盖子,按烧杯容量选用不同直径的表面皿。 用途:用硬料玻璃生产,适用于化验室做定量分析。如在生物化学分析上用两片表面皿合成培养室,做悬浮滴培养试验用。气室反应观察白色沉淀、微量溶解、蒸发等。 用窗玻璃生产的表面皿,仅能用于烧杯、蒸发皿、结晶皿、漏斗等仪器的盖子,防止灰尘落入,保持操作时物质的纯洁。在作升华打操作时用以防止物质的异化,使异化的物质停留在表面皿的底部。对有腐蚀性物质称量时,可代替天平的秤盘用。

表面形变相关的仪器

  • 德国LaVision 表面PIV 400-860-5168转1446
    表面流动测量系统采用摄影法和光学互相关处理技术。可以测量并记录表面3D速度场合三维表面形貌随时间演化过程。这种新方法是研究表面形貌和周围流场相互作用耦合效应的理想工具。表面流动测量可以简便地利用标准3D PIV FlowMaster 测量系统来实现,并且只用到两台相机装置和软件分析工具,不需要任何特别的照明光源。应用:1。自由表面水波的运动2。流体中阻挡物的形变(心脏瓣膜,生物组织,襟翼等)3。颗粒流功能特色:1。支持标准的和高速PIV相机2。表面流软件完整地集成安装在DaVis平台上3。简便易用的设置,调整和运算程序4。用户友好的标定向导
    留言咨询
  • UST多功能微观表面分析仪设备介绍 UST多功能微观表面分析仪,主要用于微米和亚微米级材料和表面性能分析,可实时高分辨率的在线测定材料和表面的各种微机械和微摩擦学特性。UST多功能微观表面分析仪,可在亚微米级范围内测量分析材料和表面的微机械,微摩擦学和各种功能特性,如:磨耗,磨损,微摩擦,抗划能力,结合力,微硬度,粘弹性,三维形貌,结构和触觉等。该设备不仅可用于评价塑料,膜层和涂镀层,也能用于高分子材料,金属,陶瓷,纸张,橡胶和生物材料的测量,评价和分级。UST多功能微观表面分析仪,模块化设计,在一台设备中可进行不同材料,表面和功能参数的测定。根据需要,可进行测量模块的扩展。 应用领域 ¤ 光学系统原件 (光学镜片,隐形眼镜镀膜)¤ 生物材料(人工材料,医用植入物)¤ 装饰性涂层(PVD,CVD涂层及金属蒸镀膜)¤ 抗磨损涂层(TiN,TiC,DLC及切削工具涂层)¤ 汽车工业(发动机涂层,内饰涂层,外饰喷漆)¤ 航空、船舶工程(内饰涂层)¤ 纸张工业(书写、印刷、钱币,安全纸张、特殊纸张)¤ 化工工业(橡胶工业,高分子薄膜,可触屏幕,润滑油脂)¤ 半导体工业(钝化膜,金属薄膜)¤ 文物保护 设备优点 ● 原位三维成像功能● 高分辨率实时测量数据显示● 模块化设计● 功能最全的材料和表面特性测试● 可外加多种环境,如湿度,真空,温度等● 可在液体条件下测试,如润滑油,水溶液等 测试原理 利用专利的 &ldquo MISTAN &ndash 程序&rdquo 对材料表面顺着同一条直线以三个步骤进行机械式扫描,由此可以测量和计算出材料表面的各种性能。三步测试过程如下:1. 沿着特定的直线无负载扫描 (表面轮廓测定)2. 以特定的负载( 范围1-100mN) 扫描 (总变形测定)3. 进行无负载扫描 (弹性部分的恢复, 塑性变形的保持)主要测量参数 &ldquo 标准形变deformation:总形变&rdquo ,弹性形变和永久性形变&ldquo 标准形变及三维形貌deformation with 3D topography&rdquo :原位高精度测量并计算形变与三维形貌&ldquo 划痕试验&rdquo :革命性的抗划测试,加载同步,动态阻力记录,高精度原位测定。&ldquo 微摩擦学&rdquo :原位采集力、冲程和变形参数,高精度原位测定。&ldquo 磨耗&rdquo :自由设置磨损循环次数,同步记录动态阻力记录。&ldquo 粘弹性&rdquo :静态测试蠕变和驰豫特性,时间受控,力受控。万能硬度' 模块:符合万能硬度维氏和布氏棱锥(可选择三维)测试,从 N/mm2 到 DIN EN 14577- Vickers(维克式)及Berkovich锥体。&ldquo 缓冲damping&rdquo :材料及表面之缓冲制动性能。&ldquo 粗糙度&rdquo 根据DIN EN ISO 4287:测定Ra, Rq & Rz,自动或手动调整波长滤波器。&ldquo 触觉表面特性分析haptics&rdquo :真实模拟人体触觉摩擦学,如柔软度测定,隐形眼镜舒适度等。技术参数负载范围1~100mN或 10~1000mN测量范围 Z*z轴 ± 2mm (可选500µ m,精度1~4nm)解析度 Z*x轴 1 µ m y轴 0,1mm z-轴 60nm测量范围50mm × 50 mm速率0.1 - 10 mm/s硬件选择 UST 100 荷重范围1-100mNUST 1000荷重范围10-1000mN :用于较硬表面及涂装的特性描述微&ndash 摩擦学及微摩擦力&rdquo 模块 Microtribology Module : 压电型力测量系统,包括UST 定位台,用于测量 静摩擦力和滑动摩擦力以及摩擦力进程。解析度 1mN。TA-X :在微米及纳米范围内根据&rdquo 无损害试验&rdquo 评估不同材料及涂装,例如,涂料及聚合物的耐磨耗性能。高速x-线性台:用于高速动态力学测量。自动x-y-定位台:3-D方式评估表面轮廓及形变。测试头选择 钢圆锥60° 、钻石圆锥60° ~ 120° 、划痕钻石120° 、切削工具、Vickers(维克式)及Berkovich锥体、钢球、乒乓球等
    留言咨询
  • FRT光学表面量测仪器 400-860-5168转1185
    仪器简介:功能 ◆ 形貌(TTV,BOW,Warp) 应用◆ 汽车工业 ◆ 半导体加工◆ 精密光学 ◆ MEMS ◆ 钢铁工业 ◆ 造纸业◆ 生物学 ◆ 纳米技术◆ 模具加工 ◆ 材料分析技术参数:作为光学表面测量仪器的专业生产厂商,德国FRT公司拥有世界先进的纳米测量技术和专利。 其设备内部可选的不同的功能模块可以高精度非接触量测表面的平坦度、翘曲形变。 FRT与强大的伙伴合作,在表面测量领域处于绝对先锋。主要特点:◆ 非接触式光学量测,被测零件无痕无损坏; ◆ 客户化定制; ◆ 多达25种不同功能的测量传感器,提供灵活的配置选择; ◆ 纳米高精度测量; ◆ 测量速度快; ◆ 可测量大口径和大尺寸零件。
    留言咨询

表面形变相关的试剂

表面形变相关的方案

表面形变相关的论坛

  • 隔离环形变压器与自耦环形变压器哪个使用比较安全呢?

    隔离环形变压器与自耦环形变压器哪个使用比较安全呢?

    自耦环形变压器的安全级别肯定是没有隔离环形变压器高的。为什么呢?那就由[b][color=#ff0000]侨洋实业[/color][/b]小编我来解释一下吧! 自耦环形变压器的绕线方式初级、次级一起绕制的,只有表面才有绝缘带。而[b][color=#ff0000]隔离环形变压器[/color][/b]就不一样了,它的绕制方法是每个绕组都需绝缘带绝缘才进行下一组绕制。所以隔离环形变压器的安全级别是要比自耦环形变压器要高出很多的。相对一些安全标准较高的机器设备小编还是建议大家使用[b][color=#ff0000]隔离环形变压器[/color][/b]为好,这样机器设备的安全性才能保证到最优,电性能发挥到极致。[align=center][img=隔离环形变压器,380,381]http://ng1.17img.cn/bbsfiles/images/2017/04/201704271604_01_3120917_3.jpg[/img][/align][align=center][b][color=#ff0000]咨询:www.qysy88.com[/color][/b][/align]

  • 气相色谱中的声表面波传感器简介

    [align=left][font='宋体'][size=16px]摘要:介绍[/size][/font][font='宋体'][size=16px][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]中[/size][/font][font='宋体'][size=16px]有关[/size][/font][font='宋体'][size=16px][color=#ff0000]声表面波[/color][/size][/font][font='宋体'][size=16px][color=#ff0000]传感器[/color][/size][/font][font='宋体'][size=16px]的原理和应用场景……[/size][/font][/align] [font='宋体'][size=16px][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]是常用的分析仪器,主要是利用物质的物理化学性质差异,对多组分混合物进行分离和测定,目前作为有机定量分析方法中最重要的分支,在石油化工、医药工业、食品安全和环境监测等方面具有广泛的应用。作为精密仪器而言,在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]的仪器实现中,仪器需要接受光、声、热、电、磁等多种信号,因此需要安装多种多样的传感器,用以将各种信息转化为电信号,从而进行仪器各种功能的实现,并输出响应的结果。[/size][/font] [font='宋体'][size=16px][url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]中常用的传感器有十多种,主要有温度传感器、压力传感器、流量传感器等,其原理各不相同,本文主要介绍有关[/size][/font][font='宋体'][size=16px][color=#ff0000]声表面波[/color][/size][/font][font='宋体'][size=16px][color=#ff0000]传感器[/color][/size][/font][font='宋体'][size=16px]的原理和应用场景等内容。[/size][/font] [font='宋体'][size=16px]1 传感器概述[/size][/font] [font='宋体'][size=16px]根据国家标准《GB/T 7665-2005 传感器通用术语》的定义,传感器(transducer/sensor)指“能感受被测量并按照一定的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成”。其中,敏感元件(sensing element),指传感器中能直接感受或响应被测量的部分;转换元件(transducing element),指传感器中能将敏感元件感受或响应的被测量转换成适于传输或测量的电信号部分 。[/size][/font] [font='宋体'][size=16px]2 [/size][/font][font='宋体'][size=16px]声表面波[/size][/font][font='宋体'][size=16px]传感器[/size][/font][font='宋体'][size=16px]工作原理[/size][/font] [font='宋体'][size=16px]声表面波传感器则[/size][/font][font='宋体'][size=16px]是[/size][/font][font='宋体'][size=16px]结合[/size][/font][font='宋体'][size=16px]逆[/size][/font][font='宋体'][size=16px]压电效应[/size][/font][font='宋体'][size=16px]、压电效应[/size][/font][font='宋体'][size=16px],将[/size][/font][font='宋体'][size=16px]电信号变换为声信号并沿着衬底表面扩散,最后再[/size][/font][font='宋体'][size=16px]变换为电信号输出以达到电--声--[/size][/font][font='宋体'][size=16px]电之间[/size][/font][font='宋体'][size=16px]的变换[/size][/font][font='宋体'][size=16px]的器件。[/size][/font] [font='宋体'][size=16px]2[/size][/font][font='宋体'][size=16px].1 几个概念[/size][/font] [font='宋体'][size=16px]当石英等晶体受到某一[/size][/font][font='宋体'][size=16px]方向上的外力时,在其表面会有电荷出现。其原因是,受到压力的晶体会发生一定的形变,[/size][/font][font='宋体'][size=16px]形变导致其内部产生极化,从而在相应的表面[/size][/font][font='宋体'][size=16px]上出现电荷,且电荷的面密度与外力的大小有关。如果作用力的方向发生了改变,电荷的极性也将随之变化。当外力撤销后,该晶体又会恢复到不带电的状态。这种现象被称为[/size][/font][font='宋体'][size=16px]压电效应(Piezoelectric Effect)[/size][/font][font='宋体'][size=16px]。[/size][/font] [align=center][img]https://ng1.17img.cn/bbsfiles/images/2024/08/202408161005356471_3404_1856270_3.png[/img][/align] [font='宋体'][size=16px]压电效应存在逆效应[/size][/font][font='宋体'][size=16px],[/size][/font][font='宋体'][size=16px]称为[/size][/font][font='宋体'][size=16px]逆压电效应(Converse Piezoelectric Effect)[/size][/font][font='宋体'][size=16px],[/size][/font][font='宋体'][size=16px]也就是电场能够使压电材料发生形变[/size][/font] [font='宋体'][size=16px]声表面波([/size][/font][font='宋体'][size=16px]Surface acoustic wave[/size][/font][font='宋体'][size=16px])[/size][/font][font='宋体'][size=16px]简称 SAW,[/size][/font][font='宋体'][size=16px]是[/size][/font][font='宋体'][size=16px]在固体半空间表面存在的一种沿表面传播,能量集中于表面附近的弹性波[/size][/font][font='宋体'][size=16px],[/size][/font][font='宋体'][size=16px]又称为表面声波[/size][/font][font='宋体'][size=16px],[/size][/font][font='宋体'][size=16px]由[/size][/font][font='宋体'][size=16px]英国物理学家瑞利(Rayleigh)在19世纪80 年代研究地震波的过程中偶尔发现[/size][/font][font='宋体'][size=16px]。[/size][/font] [font='宋体'][size=16px]2[/size][/font][font='宋体'][size=16px].2 声表面波传感器的原理[/size][/font] [font='宋体'][size=16px]声表面波(SAW)传感器[/size][/font][font='宋体'][size=16px]是[/size][/font][font='宋体'][size=16px]运用声表面波技术,[/size][/font][font='宋体'][size=16px]以[/size][/font][font='宋体'][size=16px]声表面波器件作为传感元件,[/size][/font][font='宋体'][size=16px]通过压电效应和[/size][/font][font='宋体'][size=16px]逆[/size][/font][font='宋体'][size=16px]压电效应[/size][/font][font='宋体'][size=16px],[/size][/font][font='宋体'][size=16px]将[/size][/font][font='宋体'][size=16px]声表面波器件中声表面波的速度或频率的变化反映出来,并转换成电信号输出的传感器。[/size][/font] [font='宋体'][size=16px]以[/size][/font][font='宋体'][size=16px]声表面波[/size][/font][font='宋体'][size=16px]气体传感器[/size][/font][font='宋体'][size=16px]为例,其结构示意如下[/size][/font][font='宋体'][size=16px],[/size][/font][font='宋体'][size=16px]主要包含[/size][/font][font='宋体'][size=16px][color=#ff0000]压电基底[/color][/size][/font][font='宋体'][size=16px]、激励和检测 SAW 的[/size][/font][font='宋体'][size=16px][color=#ff0000]叉指换能器(IDTs)[/color][/size][/font][font='宋体'][size=16px]以及具有选择吸附性的[/size][/font][font='宋体'][size=16px][color=#ff0000]敏感膜[/color][/size][/font][font='宋体'][size=16px]三部分[/size][/font][font='宋体'][size=16px]:[/size][/font] [img]https://ng1.17img.cn/bbsfiles/images/2024/08/202408161005365558_3661_1856270_3.png[/img] [font='宋体'][size=16px][color=#ff0000]叉指换能器(IDTs)[/color][/size][/font][font='宋体'][size=16px]是[/size][/font][font='宋体'][size=16px][color=#ff0000]压电基底[/color][/size][/font][font='宋体'][size=16px]上具有周期性的[/size][/font][font='宋体'][size=16px][color=#ff0000]金属电极[/color][/size][/font][font='宋体'][size=16px],[/size][/font][font='宋体'][size=16px]其主要的工作原理是利用压电效应以及逆压电效应原理产生或者接收声表面波,从而[/size][/font][font='宋体'][size=16px]实现声[/size][/font][font='宋体'][size=16px]和电信号之间的相互转换[/size][/font][font='宋体'][size=16px]。[/size][/font][font='宋体'][size=16px]当其中一组 IDT受到交变信号的作用,会产生周期与一对叉指间隔距离相同的电场。在逆压电效应刺激作用下,由于弹性形变导致压电材料发生振动,将电信号转为弹性波信号传输到衬底的另一端。另外一组叉指换能器接收到传输过来的声波,在压电效应的刺激下下,把声波信号输出为电信号。[/size][/font] [font='宋体'][size=16px][color=#ff0000]敏感膜[/color][/size][/font][font='宋体'][size=16px]对待测气体具有选择吸附性、可逆性和高稳定性[/size][/font][font='宋体'][size=16px],[/size][/font][font='宋体'][size=16px]在吸收待测气体后会[/size][/font][font='宋体'][size=16px]引起[/size][/font][font='宋体'][size=16px]声[/size][/font][font='宋体'][size=16px]表面波[/size][/font][font='宋体'][size=16px](传播速度[/size][/font][font='宋体'][size=16px]、[/size][/font][font='宋体'][size=16px]频率或相位等)物理参数的变化,从而实现对待测气体的检测。[/size][/font] [font='宋体'][size=16px]3[/size][/font][font='宋体'][size=16px] [/size][/font][font='宋体'][size=16px]声表面波[/size][/font][font='宋体'][size=16px]传感器[/size][/font][font='宋体'][size=16px]在[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]中的[/size][/font][font='宋体'][size=16px]应用场景[/size][/font] [font='宋体'][size=16px]声表面波传感器[/size][/font][font='宋体'][size=16px]在化学分析中,最常见的用途是作为气体传感器测定含量,如[/size][/font][font='宋体'][size=16px]二氧化氮[/size][/font][font='宋体'][size=16px]、[/size][/font][font='宋体'][size=16px]二氧化碳[/size][/font][font='宋体'][size=16px]、氢气[/size][/font][font='宋体'][size=16px]、甲醛[/size][/font][font='宋体'][size=16px]等。[/size][/font] [font='宋体'][size=16px]另外,也有将声表面波传感器作为[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]器的检测器[/size][/font][font='宋体'][size=16px],[/size][/font][font='宋体'][size=16px]在公共安全、环境监测、食品和药品检测[/size][/font][font='宋体'][size=16px]等方面得到了应用。[/size][/font] [img]https://ng1.17img.cn/bbsfiles/images/2024/08/202408161005365774_2099_1856270_3.png[/img] [font='宋体'][size=16px]声表面波[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url][/size][/font][font='宋体'][size=16px]具有灵敏度高、色谱柱升温速度快[/size][/font][font='宋体'][size=16px]([/size][/font][font='宋体'][size=16px]~[/size][/font][font='宋体'][size=16px]20[/size][/font][font='宋体'][size=16px]℃[/size][/font][font='宋体'][size=16px]/s)[/size][/font][font='宋体'][size=16px]、体积小,可实现痕量气体的广谱(挥发和半挥发性有机物)、快速( 5 min)、高灵敏度([/size][/font][font='宋体'][size=16px]ppb[/size][/font][font='宋体'][size=16px]~[/size][/font][font='宋体'][size=16px]ppt[/size][/font][font='宋体'][size=16px] 级) 现场分析的特点[/size][/font][font='宋体'][size=16px]。[/size][/font] [font='宋体'][size=16px]4[/size][/font][font='宋体'][size=16px] 小结[/size][/font] [font='宋体'][size=16px]声表面波传感器能够精确测量物理、化学等信息 (如温度、应力[/size][/font][font='宋体'][size=16px]、[/size][/font][font='宋体'][size=16px]气体密度)[/size][/font][font='宋体'][size=16px],[/size][/font][font='宋体'][size=16px]目前已经形成了包括声表面波压力传感器、声表面波温度传感器、声表面波[/size][/font][font='宋体'][size=16px]生物基因传感器、声表面波化学[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]传感器以及智能传感器等多种类型,未来将会有更广阔的的应用范围。[/size][/font] [font='宋体'][size=16px]说明:本文2024年首发于公众号“[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]分析”[font='宋体']。[/font][/size][/font]

  • 【原创】比表面 比表面测试仪

    比表面是比表面积的简称。根据实际需要,比表面积分为内比表面积、外比表面积、和总比表面积;通常未注明情况下粉体的比表面积是指单位质量粉体颗粒外部表面积和内部孔结构的表面积之和,单位m2/g。粉体材料越细,表面不光滑程度越高,其比表面积越大。由于纳米材料细度很高,一般具有比较大的比表面积;吸附剂催化剂炭黑等材料的效能与比表面积关系密切,一定效能需要一定范围的比表面要求;但并不是比表面积越大,就粉体质量越好。例如在要求粉体球形度的情况下,粒度相当的粉体材料,比表面越大,球形程度就越差。比表面积和粒径(粒径一般用中位径或目数来表示)是两个概念,没有必然联系,同样目数的两个产品不等于他们拥有相同的比表面积,也依赖与其表面光滑程度和孔结构。比表面积研究和相关数据报告中,只有采用BET方法检测出来的结果才是真实可靠的,因为国内外制定出来的比表面积标准都是以BET测试方法为基础的。(GB.T 19587-2004)-气体吸附BET原理测定固态物质比表面积的方法,而通过粒度仪估算出的比表面积通常差距都很大,无法反映实际情况。比表面积测试有专用的比表面积测试仪。 比表面分析仪是用来检测颗粒物质比表面积的专用设备,目前在高校、科研单位及生产企业中被广泛实用,比表面积是衡量物质特性的重要参量,其大小与颗粒的粒径、形状、表面缺陷及孔结构密切相关;同时,比表面积大小对物质其它的许多物理及化学性能会产生很大影响,特别是随着颗粒粒径的变小,比表面积成为了衡量物质性能的一项非常重要参量,如目前广泛应用的纳米材料。比表面积大小性能检测在许多的行业应用中是必须的,如电池材料,催化剂,橡胶中碳黑补强剂,纳米材料等。 目前国内外比表面积测试统一采用多点BET法,国内外制定出来的比表面积测定标准都是以BET测试方法为基础的,请参看我国国家标准(GB/T 19587-2004)-气体吸附BET原理测定固态物质比表面积的方法。比表面积检测其实是比较耗费时间的工作,由于样品吸附能力的不同,有些样品的测试可能需要耗费一整天的时间,如果测试过程没有实现完全自动化,那测试人员就时刻都不能离开,并且要高度集中,观察仪表盘,操控旋钮,稍不留神就会导致测试过程的失败,这会浪费测试人员很多的宝贵时间。真正完全自动化智能化比表面积测试仪产品,才符合测试仪器行业的国际标准,同类国际产品全部是完全自动化的,人工操作的仪器国外早已经淘汰。真正完全自动化智能化比表面积分析仪产品,将测试人员从重复的机械式操作中解放出来,大大降低了他们的工作强度,培训简单,提高了工作效率。真正完全自动化智能化比表面积测定仪产品,大大降低了人为操作导致的误差,提高测试精度。 精微高博(JWGB)是当代中国著名的粉体表面特性测试技术的开创者。十年来,精微高博(JWGB)的科学家革新了测试技术并设计发明了相应的物性测试仪器,使粉体及多孔材料的测试更精确、更精密、更可靠。这包括: • 比表面测试• 吸附/脱附等温线• 孔隙度、介孔与微孔孔径分布•粉体真密度•精微高博(JWGB)具有代表性的仪器: -连续流动色谱法智能型比表面分析仪 ---- JW-DA -多站静态容量法比表面及孔隙度分析仪 ---- JW-BK -静态容量法超微孔孔径分布测试仪—— JW-BK-F

表面形变相关的资料

表面形变相关的资讯

  • 岛津原子力显微镜——表面之上(一)
    原子力显微镜是一种典型的表面分析工具。利用探针和表面的作用力,获取表面形貌、机械性能、电磁学性能等信息。但是,表面的状态往往是反应过程的最终表现,想要了解反应的动力学过程,只是着眼于“表面”明显就不够了。此外,对表面状态的诱发因素,也很难从表面的信息中获得。所以,表面的是最容易观察到的,但要究其根本,知其所以然,我们的视线要向“上”看,研究“界面”处的信息。表面之上,让表面不再肤浅。以原子力显微镜最基本的“力-距离”曲线为例。如下图所示,探针逐渐靠近样品表面直至接触,施加一定的作用力后再缓慢提起。在这个过程中,探针感受到的力和探针与样品表面间的距离标化曲线如下图。在逐步接近样品时,探针会受到一个吸引力,表现为曲线向负值方向有一个凹陷;然后逐步施加力至正值,停止;然后后撤探针,在脱离表面前会受到一个粘附力,形成第二个负值方向的凹陷。比较探针压入和提出的过程,探针的受力有一个明显的变化就是在提出过程中增加了探针表面与样品表面的粘附力作用。同时还要考虑样品表面的应力形变恢复带来的应力与吸附力作用距离延长。因此,从“力-距离”曲线中,我们可以获得压入-提出过程中,探针与样品保持接触阶段作用力的变化,由此分析得到杨氏模量;除此之外,在探针与样品表面脱离接触后,其范德华引力与粘弹性力在“界面层”仍然处于变化之中。分析这个阶段的粘附力力值和作用距离等数据,可以获得弹性形变恢复、粘性样品拉伸长度等信息。以上是针对一个点的分析,如果对一个面的每一个测试点都作如此分析,也就是通常所做的面力谱分析。如下图所示。一般而言,面力谱分析获得的是各类机械性能的面分布情况。如下图所示。但是,如果每一个测量点,我们都做如上的分析,还可以得到在垂直方向上,在探针针尖已经脱离了和样品表面的接触后的受力状态。从而获得了从表面向上一段距离内的力变化曲线。这样的数据用一个三维的图像表现出来呢,会给人更直观的认识。如下图所示。通过颜色变化表征垂直分布的力值变化,可以直观看到样品表面在受到压力后压缩和恢复程度,以及粘弹力的持续距离。前者可以反映样品的力学特征,后者可以反映表面化学成分,这个特征尤其在电化学和胶体科学领域非常重要。本文内容非商业广告,仅供专业人士参考。
  • 西安光机所等在表面功能化光纤传感器研究中获进展
    近日,中国科学院西安光学精密机械研究所与西北大学合作,在表面功能化光纤传感器研究方面取得重要进展。研究基于通信单模光纤开发出一种免标记、高灵敏度、高选择性的法布里-泊罗(Fabry-Perot)型干涉探针。该探针具有测试便捷、成本低、温度稳定性高等特点,在生物大分子光谱检测方面具备广泛应用前景。   胆固醇是细胞膜、脂蛋白、神经细胞和脑细胞中的重要脂质大分子,其浓度与心脏病、高血压、动脉硬化、中风等疾病密切相关。因此,胆固醇水平检测备受关注。与目前常用的电化学法、酶分析、液相色谱、质谱等检测方法相比,光纤光谱检测方法具有体积小、抗电磁干扰、成本极低、免标记等突出特点,在生物化学检测领域备受关注。   传统的光纤光谱检测器件(如长周期光栅、倾斜光栅、表面刻蚀布拉格光栅等)受到制备仪器要求严格、温度及形变交叉敏感等困扰,在实用性上有较大局限。   该团队从光纤干涉理论及光与物质的相互作用理论出发,采用单模光纤和光纤插芯制备光纤光谱检测器件,通过范德瓦耳斯力在光纤插芯端面依次贴覆环氧树脂-氧化石墨烯(GO)-β环状糊精多层功能膜,基于最外层β环状糊精的疏水型空心分子结构与胆固醇的靶向性吸附结合原理,实现对胆固醇分子的高灵敏度光谱浓度检测,并在尿素、葡萄糖、抗坏血酸、人体血红蛋白等生化分析领域常见干扰物作用下可以呈现出强选择性,具备可重复制备和可重复检测特性,检出限达到3.5M, 灵敏度为3.92 nm/mM。该成果为表面功能化光纤器件在生化光谱分析领域的应用提供了新的思路和手段。   此外,研究通过X射线光电子能谱(XPS)探究EDC/NHS活化GO羧基对分子间键合相互作用影响以及β环状糊精和胆固醇分子的成键作用特性,对检测机制进行了验证分析。   相关研究成果发表在Analytica Chimica ACTA上。西安光机所为第一完成单位及通讯单位。图1.(a)为实验装置,(b)(c)为干涉结构。图2.(a)胆固醇检测光谱;(b)参杂/未参杂样本检测波长的Langmuir拟合;(c)选择性;(d)器件制备重复性测试。图3.XPS结果。(a) EDC/NHS未活化/活化羧基传感器的XPS光谱;(b)活化羧基传感器的N 1s光谱;(c)(d)分别为经过/未经过EDC/NHS活化羧基传感器的C1s光谱,(e)(f)分别为其O1s光谱EDC/NHS处理的传感器 (g)EDC/NHS活性羧基示意图。
  • 液滴无损转移仿生功能表面的设计与制备
    液滴的高效抓取和无损释放在医学中的药物融合或靶向转移、冷凝器表面或芯片实验室热耗散等领域有着重要的应用。目前,液滴转移往往由两个具有不同粘附性的表面去实现,即将液滴从低粘附浸润表面转移至高粘附浸润表面,且液滴的无损、自由释放较难实现。最近,北京理工大学先进结构技术研究院陈少华、刘明课题组设计并制备了一种新型的多级微结构仿生功能表面,可利用同一表面实现液滴的高效抓取和无损释放。该表面由磁颗粒填充的微尺度平板阵列结构组成,微平板尺寸为5mm×0.12mm×1mm,每个微平板左右两侧分别分布有尺寸为60μm×60μm×50μm的矩形凹槽阵列结构和尺寸为0.1mm×0.05 mm×1mm的矩形条带阵列结构,如图1所示。该研究首先使用精度为10μm的3D打印机(nanoArch S140,摩方精密)制备实验模板,再结合倒模法制备出具有磁响应特性的多级微结构阵列表面。图1 微平板阵列功能表面的 (a)结构示意图及其(b)实验制备简图磁场作用下,操控微平板产生定量的弯曲大变形,使含矩形凹槽阵列的表面完全暴露,其粘附力高达252μN,接触角为151º,呈现类似玫瑰花瓣的高粘附浸润特性,可有效抓取体积较大的液滴;旋转磁场使其形变恢复,表面粘附力降低至57μN,呈现类似荷叶的低粘附浸润特性。进一步对微平板阵列结构的几何特征参数进行优化设计,结合表面在类玫瑰花瓣高粘附状态和类荷叶低粘附状态之间自由切换的特性,可将此多级仿生表面有效地作为液滴无损转移的“机械手”,液滴无损释放及其转移过程见图2-3所示。图2液滴的无损、自由释放行为图3 液滴无损转移过程该成果以“Amechanical hand-like functional surface capable of effciently grasping andnon-destructivelyreleasing droplets”为题发表在国际顶级期刊Chemical Engineering Journal (IF = 13.273,中科院工程技术类分区一区)上。北京理工大学先进结构技术研究院和机械与车辆学院博士后刘明为文章第一作者,陈少华教授为通讯作者,彭志龙教授、姚寅副教授和博士研究生李程浩参与了该工作,此工作得到了国家自然科学基金(No.12032004, 11872114, 12102041)和中国博士后科学基金(No. 2021M690401)的支持与资助。原文链接:https://authors.elsevier.com/c/1dtwc4x7R2YpjE官网:https://www.bmftec.cn/links/10
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制