当前位置: 仪器信息网 > 行业主题 > >

多轴差分吸收仪

仪器信息网多轴差分吸收仪专题为您提供2024年最新多轴差分吸收仪价格报价、厂家品牌的相关信息, 包括多轴差分吸收仪参数、型号等,不管是国产,还是进口品牌的多轴差分吸收仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合多轴差分吸收仪相关的耗材配件、试剂标物,还有多轴差分吸收仪相关的最新资讯、资料,以及多轴差分吸收仪相关的解决方案。

多轴差分吸收仪相关的资讯

  • 安光所利用差分吸收光谱技术实现了对对流层臭氧廓线的反演
    近日,中科院合肥研究院安光所司福祺研究员团队在差分吸收光谱技术反演对流层臭氧廓线的研究中取得新的突破,相关研究成果发表在Science of the Total Environment上。   臭氧在平流层通过吸收太阳紫外辐射来保护地球生物,而在对流层因其强氧化性参与多种大气污染物的化学转化过程,属于二次污染物。近年来,近地面臭氧浓度在许多城市呈现出逐年上升的趋势,已成为城市典型的污染气体,为了加强臭氧污染防控,近地面臭氧浓度和垂直分布的准确监测必须提上日程。   多轴差分吸收光谱技术(MAX-DOAS)作为被动光学监测技术,能实现多组分气体浓度(如NO2、SO2、HCHO等)的反演,但由于太阳光穿越平流层时,平流层臭氧吸收的干扰,使得用MAX-DOAS技术反演对流层臭氧廓线成为极具挑战性的工作。安光所科研团队罗宇涵副研究员与钱园园博士创新性地提出了基于辐射传输模型模拟平流层臭氧吸收,从而准确获得对流层臭氧的吸收数据,使用最优估计算法最终获得可靠的对流层臭氧廓线。该研究拓展了MAX-DOAS仪器的应用场景,为研究对流层臭氧形成机制提供了新方案。   钱园园博士是该论文的第一作者,罗宇涵副研究员与司福祺研究员是论文的通讯作者。本研究获得国家自然科学基金、中国科学院青年创新促进会的资助。MAX-DOAS反演对流层臭氧的方法及与激光雷达测量的臭氧廓线结果对比
  • 科学团队利用差分吸收光谱技术反演对流层臭氧廓线
    近日,中科院合肥研究院安光所司福祺研究员团队在差分吸收光谱技术反演对流层臭氧廓线的研究中取得新的突破,相关研究成果发表在Science of the Total Environment上。臭氧在平流层通过吸收太阳紫外辐射来保护地球生物,而在对流层因其强氧化性参与多种大气污染物的化学转化过程,属于二次污染物。近年来,近地面臭氧浓度在许多城市呈现出逐年上升的趋势,已成为城市典型的污染气体,为了加强臭氧污染防控,近地面臭氧浓度和垂直分布的准确监测必须提上日程。多轴差分吸收光谱技术(MAX-DOAS)作为被动光学监测技术,能实现多组分气体浓度(如NO2、SO2、HCHO等)的反演,但由于太阳光穿越平流层时,平流层臭氧吸收的干扰,使得用MAX-DOAS技术反演对流层臭氧廓线成为极具挑战性的工作。安光所科研团队罗宇涵副研究员与钱园园博士创新性地提出了基于辐射传输模型模拟平流层臭氧吸收,从而准确获得对流层臭氧的吸收数据,使用最优估计算法最终获得可靠的对流层臭氧廓线。该研究拓展了MAX-DOAS仪器的应用场景,为研究对流层臭氧形成机制提供了新方案。钱园园博士是该论文的第一作者,罗宇涵副研究员与司福祺研究员是论文的通讯作者。本研究获得国家自然科学基金、中国科学院青年创新促进会的资助。MAX-DOAS反演对流层臭氧的方法及与激光雷达测量的臭氧廓线结果对比
  • 科学岛团队利用差分吸收光谱技术反演对流层臭氧廓线
    近日,中科院合肥研究院安光所司福祺研究员团队在差分吸收光谱技术反演对流层臭氧廓线的研究中取得新的突破,相关研究成果发表在Science of the Total Environment上。   臭氧在平流层通过吸收太阳紫外辐射来保护地球生物,而在对流层因其强氧化性参与多种大气污染物的化学转化过程,属于二次污染物。近年来,近地面臭氧浓度在许多城市呈现出逐年上升的趋势,已成为城市典型的污染气体,为了加强臭氧污染防控,近地面臭氧浓度和垂直分布的准确监测必须提上日程。   多轴差分吸收光谱技术(MAX-DOAS)作为被动光学监测技术,能实现多组分气体浓度(如NO2、SO2、HCHO等)的反演,但由于太阳光穿越平流层时,平流层臭氧吸收的干扰,使得用MAX-DOAS技术反演对流层臭氧廓线成为极具挑战性的工作。安光所科研团队罗宇涵副研究员与钱园园博士创新性地提出了基于辐射传输模型模拟平流层臭氧吸收,从而准确获得对流层臭氧的吸收数据,使用最优估计算法最终获得可靠的对流层臭氧廓线。该研究拓展了MAX-DOAS仪器的应用场景,为研究对流层臭氧形成机制提供了新方案。   钱园园博士是该论文的第一作者,罗宇涵副研究员与司福祺研究员是论文的通讯作者。本研究获得国家自然科学基金、中国科学院青年创新促进会的资助。MAX-DOAS反演对流层臭氧的方法及与激光雷达测量的臭氧廓线结果对比
  • “利用差分吸收光谱技术实时监测大气污染的研究”项目取得较大进展
    由河北工程大学承担完成的“利用差分吸收光谱技术实时监测大气污染的研究”科研项目日前通过验收。  本项目所采用的差分吸收光谱技术不仅适用于造价昂贵的高分辨率光谱仪测量大气污染物NO2浓度的反演计算,更重要的是也适用于价格低廉的普通光谱仪,而且利用该技术使用普通光谱仪也能获得良好的反演结果。由于本项目参考光谱的获取是在待测地区地面上,相对于在飞机上或山顶上进行采集参考光谱较为经济、方便。因此,利用该技术进行大气污染物NO2的浓度测量耗费资金较少、操作简便且能保证一定的测量精度,具有很强的普适性。  同时,本项目所研究的差分吸收光谱技术不仅适用于监测大气中污染物NO2的浓度,而且能用于大气中其他氮氧化物、SO2、O3等污染物的监测。只需要把监测波长移至污染物特征吸收峰附近,同时,把吸收截面数据换成对应污染物的吸收截面数据即可。另外,如果所用的光谱仪具有采集波长范围宽广的属性,则可实现多种污染物的同时监测。该项目的实施将对邯郸市产生较好的社会效益、经济效益和环境效益,有助于该市达到可持续发展的目标。
  • 大气痕量气体差分吸收光谱仪随高光谱综合观测卫星成功发射
    12月9日,高光谱综合观测卫星在太原卫星发射中心由长征二号丁运载火箭成功发射。卫星上装载了中科院合肥研究院安光所自主研制的大气痕量气体差分吸收光谱仪EMI-II。高光谱综合观测卫星是由国家生态环境部牵头、中国航天科技集团有限公司八院抓总研制的综合性观测卫星。该卫星探测谱段涵盖了从紫外到长波红外的光学波段,具有高光谱分辨率、高精度、高灵敏度的观测能力,服务于国家生态环境监测、国土资源勘查、防灾减灾和气象用户需求。其搭载的大气痕量气体差分吸收光谱仪EMI-II主要用于获取紫外到可见波段的超光谱遥感数据,实现对全球大气痕量成分(二氧化硫、二氧化氮、臭氧、甲醛等)分布和变化的定量监测,为全球/区域痕量污染气体成分的分布和变化提供科学数据;未来将面向国家污染减排、环境质量监管、大气成分与气候变化监测,开展污染气体、区域环境空气质量、大气成分、气候变化等超光谱遥感监测应用示范。EMI-II载荷于2020年10月立项,2021年10月完成系统调试、测试,2022年1月上旬完成出所质量评审,2022年1月中旬交付航天八院验收评审。载荷开机运行后,将与2021年9月发射的“高光谱观测卫星”、2022年4月发射的“大气环境监测卫星”上的EMI-II载荷组网运行,增加我国大气环境卫星观测频次,提高重访能力和全球覆盖能力,为我国实现减污降碳协同增效、建设美丽中国的目标提供有力支撑。大气痕量气体差分吸收光谱仪EMI-II
  • 高光谱综合观测卫星大气痕量气体差分吸收光谱仪正样通过验收
    1月18日,中科院安徽光学精密机械研究所(下简称“安光所”)承研的高光谱综合观测卫星大气痕量气体差分吸收光谱仪(EMI),在北京、上海、合肥三地视频验收会上,通过了正样产品验收。 验收专家组由科工局重大专项工程中心、生态环境部卫星环境应用中心、国家卫星气象中心、中国资源卫星应用中心、航天八院科技委、气象环境卫星总体部、509所和合肥研究院等单位的领导和专家组成。经现场听取汇报、质询和评议,验收专家组指出:EMI经过高光谱观测卫星、大气环境星等型号任务的多次迭代,已经是比较成熟的载荷产品,之前高光谱观测卫星搭载的EMI在轨应用优秀,相信本次验收的EMI在轨运行后将取得预期效果。高光谱综合观测卫星探测谱段涵盖了从紫外到长波红外的光学波段,具有高光谱分辨率、高精度、高灵敏度的观测能力,覆盖环境、资源、气象用户的主要观测需求。EMI在卫星任务期间主要用于获取紫外到可见波段的高光谱遥感产品,实现对全球大气痕量成分分布和变化的定量监测,为全球/区域痕量污染气体成分的分布和变化提供科学数据。面向国家污染减排、环境质量监管、大气成分与气候变化监测,开展污染气体、区域环境空气质量、大气成分、气候变化等高光谱遥感监测应用示范。EMI载荷于2020年10月立项,2021年5月完成零部件装配,10月完成系统调试、测试,11月完成环境试验,12月完成测试定标工作。2022年1月10日完成出所质量评审,2022年1月1日交付验收评审。在型号研制、完成进度中处于领先序位。承研的安光所载荷研制团队在项目研制过程中,克服疫情等影响,以高度的责任感和对航天产品质量特殊重要性的深刻理解,严格按照航天管理要求,落实航天载荷的研制工作,产品设计、加工、装配、调试、测试及试验,事前严密策划,全过程严格控制,按照“零缺陷”要求,保证了项目研制满足航天管理要求。测试现场正样视频验收会
  • 中国计量测试学会发布《温室气体排放测量方法 可移动差分吸收激光雷达法》团体标准征求意见稿
    各有关单位:根据国家标准化管理委员会、民政部印发的《团体标准管理规定》及《中国计量测试学会团体标准管理办法》有关规定,经中国计量测试学会批准立项,由郑州计量先进技术研究院等单位牵头起草的《温室气体排放测量方法 可移动差分吸收激光雷达法》团体标准现已完成征求意见稿的编制,为保证标准的科学性、严谨性和适用性,现面向社会广泛公开征求意见。请各有关单位及专家对上述标准提出宝贵意见和建议,于2024年5月3日前将《征求意见反馈表》反馈至以下联系方式。联系人:臧金亮 电 话:(010)64525137地 址:北京市朝阳区北三环东路18号中国计量科学研究院 电子邮箱:zangjl@nim.ac.cn 附件3 征求意见反馈表.doc附件1 《温室气体排放测量方法 可移动差分吸收激光雷达法》征求意见稿.pdf附件2 《温室气体排放测量方法—可移动差分吸收激光雷达法》编制说明.pdf
  • 山东省发布《便携式紫外吸收法多气体测量系统技术要求及检测方法》
    为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,防治大气污染,改善环境质量,规范便携式紫外吸收法多气体测量系统的技术性能,制定本标准。 随着国家环保部展开以锅炉或炉窑监测SO2、NOx为主的气态污染调查,各省市环保局对CEMS在线监测系统的大力普及,SO2、NOx的在线监测与瞬时监测之间的数据不统一的矛盾日益突出。目前国内监测SO2、NOx常用的仪器主要依赖于电化学传感器法,但由于在高湿低硫的工况中,易发生气体间交叉干扰以及前处理不彻底受水汽影响等因素而导致测量数据不准确的案例时有发生。 2007年8月,中国环境监测总站在青岛召开各省、直辖市、省会城市环境监测工作会议,许多代表提出目前电化学传感器测试烟气中SO2存在的问题,中环总站副站长在会议上指出:电化学传感器是否继续适用我国的固定污染源测试值得商榷,建议仪器生产厂家抓紧时间研制稳定、可靠的SO2测试仪。 在这种大环境下,崂应公司很早就开始研制以紫外光学法测量SO2、Nox等烟气的监测仪。此方法的特点是利用紫外光谱分段测量不同气体,不受水汽及气体间交叉干扰的影响,测量精度高、数值准确。 另外,崂应相信在广大同仁及社会各界人士的共同努力下,我们一定会在大气污染防治这场攻坚战中取得最终胜利,还给地球一片绿色,为生活在“穹顶之下”的我们呼吸到干净的空气贡献出环保人的一份力量,给我们的子孙后代留下一片干净的天空!
  • 应用案例 | 参数调谐随机共振作为增强波长调制光谱学的工具,使用密集重叠斑点模式多程吸收池
    近日,来自安徽大学、安庆师范大学、复旦大学、皖西学院的联合研究团队发表了《参数调谐随机共振作为增强波长调制光谱学的工具,使用密集重叠斑点模式多程吸收池》论文。Recently, the joint research team from Anhui Key Laboratory of Mine Intelligent Equipment and Technology, School of Electronic Engineering and Intelligent Manufacturing, Department of Atmospheric and Oceanic Sciences, School of Electrical and Photoelectronic Engineering, West Anhui University published an academic papers Parameter-tuning stochastic resonance as a tool to enhance wavelength modulation spectroscopy using a dense overlapped spot pattern multi-pass cell.背景 激光吸收光谱技术已在许多应用中得到证明,如空气质量监测、工业过程控制和医学诊断。测量的精度对这些应用非常重要。尽管激光吸收光谱在敏感检测方面具有许多优点,但仍需要很长的光学路径长度和特殊的测量技术来检测极微量的物质,以实现高检测灵敏度。为了实现这些目的,通常采用具有长光学路径的多程吸收池来增强吸收信号。然而,在吸收信号中经常出现意想不到的干扰光束、热噪声、射频噪声、电噪声和白噪声,严重影响了检测的精度。当使用密集重叠斑点模式的多程吸收池时,这些问题在激光吸收光谱中很常见。因此,从强噪声背景中有效提取弱光电吸收信号具有重要意义。已提出了几种方法来消除噪声的负面影响。传统的弱周期信号处理方法主要包括时间平均法、滤波法和相关分析法。① 时间平均法可以获得信噪比(SNR)较高的信号,因此可以降低噪声的标准差并提高信号质量。然而,这种方法无法完全消除强噪声背景。② 基于硬件和软件的信号滤波广泛用于降噪,其特点是带宽较窄。在实际应用中,期望的信号和噪声通常具有连续的功率谱和宽带宽,但制造与信号带宽相匹配以去除噪声的滤波器相对较困难。如果滤波器的带宽非常小,噪声将大幅衰减。然而,这可能会破坏期望的信号。③ 相关检测方法是通过周期信号的自相关来去除噪声的。其本质是建立一个非常窄的带宽滤波器,以滤除与信号频率不同的噪声。与上述其他弱周期信号检测方法相比,参数调谐随机共振(SR)方法的优势显而易见。即使噪声和信号具有相同的频率,只要它们达到最佳的共振匹配,SR方法就可以将部分噪声能量转化为信号能量,以抑制噪声并增强信号。在这项工作中,我们将SR方法应用于波长调制光谱学(WMS),并使用密集重叠斑点模式的多程吸收池。首先,将进行数值计算以找到合适的参数并评估最佳SR系统的性能,然后通过实验验证SR方法可以有效增强WMS信号。IntroductionThe laser absorption spectroscopy technology has been demonstrated in many applications, such as air quality monitoring, industrial process control, and medical diagnostic. The precision of the measurement is important to those applications. Although laser absorption spectroscopy has many advantages in sensitive detection, it still needs a long optical path length and special measurement technology for detecting a very trace substance, with a high detection sensitivity . For those purposes, a multi-pass cell with a long optical path is usually applied to enhance the absorption signal. However, the unexpected interference fringe, thermal noise, shot noise, electrical noise and white noise, often occur in absorption signals and seriously spoil the detection precision. Those problems are common for laser absorption spectroscopy when using dense overlapped spot pattern multi-pass cell. Therefore, it is of great significance to effectively extract weak photoelectric absorption signals from a strong noise background.Several methods are proposed to eliminate the negative influence of the noise. The traditional weak periodic signal processing methods mainly include time average method, filtering method,and correlation analysis method. ①The signal with a high signal-to-noise ratio (SNR) can be obtained by time average method, so the standard deviation of noise can be reduced and the signal quality can be improved. Nevertheless, the strong noise background cannot be fully eliminated by this method.②The signal filters based on hardware and software are widely used for noise reduction, the characteristic of which is narrow bandwidth. In practical application, the desired signal and noise usually have a continuous power spectrum and wide bandwidth, but it is relatively difficult to manufacture a filter that matches the bandwidth of the signal to remove the noise. If the bandwidth of the filter is very small, the noise will be greatly attenuated. However, this may destroy the desired signal.③The correlation detection method is used to remove the noise by the autocorrelation of the periodic signal. Its essence is to establish a very narrow bandwidth filter to filter out the noise, the frequency of which is different from that of the signal. Compared with other weak periodic signal detection methods mentioned above, the advantage of the parameter-tuning stochastic resonance (SR) method is apparent. Even if the noise and signal have the same frequency, as long as they reach the optimal resonance matching, the SR method can convert part of the noise energy into the signal energy to suppress the noise and enhance the signal.In this work, the SR method is applied to the wavelength modulation spectroscopy (WMS) by using the dense overlapped spot pattern multi-pass cell. first, the numerical calculation will be implemented to find the suitable parameters and evaluate the performance of the optimal SR system, and then it is verified that the SR method can effectively enhance the WMS signal by the experiments.实验装置的示意图如图1所示。海尔欣光电科技有限公司为此研究提供了锁相放大器(Healthy Photon,HPLIA),用于解调来自光电探测器的吸收信号,解调频率为第二谐波信号2f的频率(其中f = 6千赫兹是正弦波的调制频率)。锁相放大器的时间常数设置为1毫秒。解调后的信号随后由一个数据采集卡数字化,并显示在计算机上。A schematic diagram of the experimental setup is shown in Fig. 1. HealthyPhoton Technology Co., Ltd. provides a lock-in amplifier (HPLIA), which is used for demodulation of absorption signal from the photodetector at the frequency of second harmonic signal 2f (where f =6 KHz is the modulation frequency of the sine wave). The time constant of the lock-in amplifier is set to 1 ms. The demodulated signal is subsequently digitalized by a DAQ card and displayed on a computer. Fig. 1. Schematic diagram of experimental device of measurement.Healthy Photon,lock-in amplifier HPLIAFig. 2. 2f SR signal and 2f time average signal.结论参数调谐随机共振(SR)方法可以将部分噪声能量转化为信号能量,以抑制噪声并放大信号,与传统的弱周期信号检测方法(例如,时间平均法、滤波法和相关分析法)相比。本研究进行了数值计算,以找到将SR方法应用于波长调制光谱学(WMS)的最佳共振参数。在随机共振状态下,2f信号的峰值(CH4浓度恒定在约20 ppm)有效放大到约0.0863 V,比4000次时间平均信号的峰值(约0.0231 V)高3.8倍。尽管标准差也从约0.0015 V(1σ)增加到约0.003 V(1σ),但信噪比相应提高了1.83倍(从约25.9提高到约15.8)。获得了SR 2f信号峰值与原始2f信号峰值的线性光谱响应。这表明在强噪声背景下,SR方法对增强光电信号是有效的。Conclusion The parameter-tuning stochastic resonance (SR) method can convert part of the noise energy into the signal energy to suppress the noise and amplify the signal, comparing with traditional weak periodic signal detection methods (e.g., time average method, filtering method, and correlation analysis method). In this work, the numerical calculation is conducted to find the optimal resonance parameters for applying the SR method to the wavelength modulation spectroscopy (WMS). Under the stochastic resonance state, the peak value of 2f signal (a constant concentration of CH4&sim 20 ppm) is effectively amplified to &sim 0.0863 V, which is 3.8 times as much as the peak value of 4000-time average signal (&sim 0.0231 V). Although the standard deviation also increases from &sim 0.0015 V(1σ) to &sim 0.003 V(1σ), the SNR can be improved by 1.83 times (from &sim 25.9 to &sim 15.8) correspondingly. A linear spectral response of SR 2f signal peak value to raw 2f signal peak value is obtained. It suggests that the SR method is effective for enhancing photoelectric signal under strong noise background.参考:Reference: Parameter-tuning stochastic resonance as a tool to enhance wavelength modulation spectroscopy using a dense overlapped spot pattern multi-pass cell, Optics Express 32010https://doi.org/10.1364/OE.465629
  • 如何对气相分子吸收光谱仪检出限进行测定
    如何对气相分子吸收光谱仪检出限进行测定1. 检出限为某特定分析方法在给定的置信度内可从样品中检出待测物质的最小浓度或最小量。所谓“检出”是指定性检出,即判定样品中存有浓度高于空白的待测物质。 检出限除了与分析中所用试剂和水的空白有关外,还与气相分子吸收光谱仪的稳定性及噪声水平有关。在气相分子吸收光谱仪灵敏度计算中没有明确噪声的大小,因而操作者可以将检测器的输出信号,通过放大器放到足够大,从而使灵敏度相当高。显然这是不妥的,必须考虑噪声这一参数,将产生两倍噪声信号时,单位体积载气或单位时间内进入检测器的组分量称为检出限。则: D = 2N / S式中:N---噪声(mV或A);S---检测器灵敏度;D---检出限,其单位随S不同也有三种:Dg=2N / Sg,单位为mg/mlDv=2N / Sv,单位为ml/mlDt=2N / St,单位为g/s有时也用最小检测量(MDA)或最小检测浓度(MDC)作为检测限。它们分别是产生两倍噪声信号时,进入检测器的物质量(g)或浓度(mg/ml)。不少高灵敏度检测器,如FID、NPD、ECD等往往用检出限表示检测器的性能。灵敏度和检出限是两个从不同角度表示检测器对测定物质敏感程度的指标,前者越高、后者越低,说明检测器性能越好。从而可见,测量方法的检出限于分析空白值、精密度、灵敏度密切相关。他是分析方法的一个综合性的重要计量参数。2.检出限的计算方法1)在《全球环境监测系统水监测操作指南》中规定:给定置信水平为95%时,样品测定值与零浓度样品的测定值有显著性差异即为检出限(D.L)。这里的零浓度样品是不含待测物质的样品。D.L = 4.6σ 式中:σ — 空白平行测定(批内)标准偏差(重复测定20次以上)。 2)国际纯粹和应用化学联合会(IUPAC)对分析方法的检出限D.L作如下规定。在与分析实际样品完全相同的条件下,做不加入被测组分的重复测定(即空白试验),测定次数尽可能多(试验次数至少为20次)。算出空白观测值的平均值Xb和标准偏差Sb。在一定置信概率下,被检出的最小测量值XL以下式确定: X L= Xb+ K’ Sb式中:Xb—— 空白多次测得信号的平均值; Sb—— 空白多次测得信息的标准偏差; K’ —— 根据一定置信水平确定的系数。 与XL-Xb(即K’ Sb)相应的浓度或量即为检出限:D.L = X L- Xb/ K = k’ Sb/ K式中:k——方法的灵敏度(即校准曲线的斜率)。 为了评估Xb和Sb,实验次数必须至少20次。1975年,IUPAC建议对光谱化学分析法取k’=3。由于低浓度水平的测量误差可能不遵从正态分布,且空白的测定次数有限,因而与k’=3相应的置信水平大约为90%。此外,尚有将 K’取为4、4.6、5及6的建议。3)美国EPASW-846中规定方法检出限:MDL=3.143δ (δ 重复测定7次)4)在某些分光光度法中,以扣除空白值后的与0.01吸光度相对应的浓度值为检出限。5)气相色谱分析的最小检测量系指检测器恰能产生与噪声相区别的响应信号时所需进入色谱柱的物质的最小量,一般认为恰能辨别的响应信号,最小应为噪声的两倍。 最小检测浓度系指最小检测量与进样量(体积)之比。6)某些离子选择电极法规定:当校准曲线的直线部分外延的延长线与通过空白电位且平行于浓度轴的直线相交时,其交点所对应的浓度值及为该离子选择电极法的检出限。光度分析中,虽然吸光度最小测读值为0.001,灵敏度也以A=0.001所相应的被测物浓度表示,但实际上惯常以A=0.05相应的被测物浓度作为有充分置信度的测定限,即最小能够可靠测定的浓度。这是因为,在吸光度A接近零的情况下,测定值与真实值之比即相对误差趋向无限大。 其次,由于比色皿的成对性不易做到完全匹配,尤其是使用已久的比色皿的成对性不易保证,因此吸光度很小的测量值在不同操作者、不同试验室之间常会不一致,除非操作者很有经验,十分注意比色皿成对性对测量的影响,并在每次测量时予以试验校正。 转载内容如涉及版权问题,请版权所有者及时通知我们,我们会尽快删除相关内容。
  • 中国原子吸收的“前世今生”——访北京瑞利分析仪器有限公司前总工章诒学
    1954年,澳大利亚物理学家A.Walsh提出了有关原子吸收光谱(Atomic Absorption Spectroscopy,AAS)分析方法的理论。1958年,第一台商品型火焰AAS 仪器问世。自此,开启了原子吸收光谱的发展历程。  谈到中国原子吸收的生产制造历史,不得不提到北京第二光学仪器厂(二光),很多的&ldquo 第一&rdquo 发生在二光。而对于中国原子吸收仪器的研发、制造历史的亲身经历,对于未来技术发展方向的了解&hellip &hellip 莫过于北京瑞利分析仪器有限公司的前总工章诒学。  到2014年,章诒学研制原子吸收光谱已有33年历史,亲身经历、参与和见证了中国的原子吸收光谱仪器怎样从无到有,从简单到复杂,从低端到高端,产量和市场从少到多,成为一种量大面广、可以和国外仪器一比高下的科学仪器。而如今,章诒学还工作在研发的第一线,另外,每年参加PITTCON等光谱方面学术会议与展览会,积极了解原子吸收的最新进展。  日前,仪器信息网的编辑就中国原子吸收的过去、现在与未来,采访了章诒学。北京瑞利分析仪器有限公司的前总工 章诒学中国原子吸收的&ldquo 里程碑&rdquo   国内第一台商品原吸  上世纪60年代,在中国,分析仪器市场需求已经打开,但是商品化的光谱仪器国内几乎没有。当时原子吸收正经历从科研装备向商品化仪器转变的过程。据章诒学回忆,根据国家规划,当时机械工业部向北京市机电工业局下达了建立&ldquo 物理光学仪器生产基地&rdquo 的任务。北京光学仪器厂部分物理光学仪器、北京科学仪器厂物理光学仪器的研发人员、装配人员、设计图纸、装配工具以及初步样机等全部打包&ldquo 搬&rdquo 到了二光。二光成立于1968年12月, 1988年更名为北京瑞利分析仪器有限公司,现归属北京北分瑞利分析仪器(集团)有限责任公司公司(文中统称&ldquo 二光&rdquo )。  我国原子吸收商品仪器的研制始于北京科学仪器厂的倪国栋(浙大光仪系毕业)原子吸收研发团队,该团队1971年加入到二光。在已有研发的基础上,1972年即推出了国内第一台商品原子吸收WFX-Y2型,火焰原子化方式。不过据章诒学介绍,这款仪器并没有大批量推向市场,只生产了10多台。是什么原因导致了中国第一台原子吸收没有成功产业化呢?章诒学说,Y2的研制过程中,有色院、矿冶院作为合作方试用了Y2,而试用结果是认为Y2有不太成熟的地方,需要继续改进。  获得国家科学技术奖项、国内第一台石墨炉原吸  在从原子化、火焰稳定性、喷雾器供气等方面不断对Y2改进的同时,国际上出现了石墨炉原子吸收仪器,专家们和研发团队建议我国开展石墨炉技术的研制。  说到这里,章诒学是1972年加入到了原子吸收团队,Y2研制时处于学习阶段 在1973年初开始石墨炉原子吸收WFX-Y3型研制的时候,章诒学已经开始负责Y3石墨炉机械设计 1979年倪国栋由于个人原因离开二光的时候,章诒学开始担任原子吸收团队的负责人。  Y3的研制中,中科院环境化学所倪哲明团队的马怡载先生起到了非常积极的作用,马怡载先生对石墨炉原子化技术非常感兴趣。当时由于中国还没有开放,很多工作都需要自己动手。中国石墨炉原子吸收的研制是从寻找高纯度、高密度、高强度要求的石墨材料开始的,马怡载先生与章诒学分别赶赴兰州炭素厂和哈尔滨电炭厂,最终从兰州炭素厂找到了符合要求的石墨材料。之后,在大量的石墨炉分析试验中,了解到热解镀层石墨管的寿命长、灵敏度高,章诒学找到了北京电子管厂和航天部1院703所王恩福,正巧王恩福与章诒学二人是北大校友,其部门是研制火箭头上使用的石墨部件,巧的是为响应军转民号召,正在积极寻找民用项目。二人交流了原子吸收仪器中石墨管的技术需求,王恩福部门的大型进口设备、技术能力完全可以解决该问题。说起来非常有意思的是,后来王恩福看到了原子吸收石墨管的市场空间和前景,自己成立了专门公司,一直运营到现在。  历经了两年的时间,解决了石墨材料、热解石墨管加工、电源设计等技术难题,1975年二光推出了WFX-Y3型石墨炉原子吸收。Y3技术革新的地方不只是增加了石墨炉法,还实现了数字化。当然,这个数字化和现在所说的数字化不一样,原来的Y2是指针显示,Y3则实现了数码管显示。这两方面的技术进步,都是填补了国内空白,并且可以说与国际先进技术保持了同步。令人印象深刻的是,Y3还在1978年获得了第一届科学大会奖,科学大会奖是现在国家科学技术奖项的前身,Y3能够获得国家级大奖,其意义和分量不言而喻。  计算机化的原吸  1978年,由于改革开放,中国很多行业受到了巨大冲击,其中,电子工业首先垮台。如现在很火的798文化创意园的前身是中国电子元器件产业园,目前主要依靠收取文化创意工作室的租金生存。这种冲击肯定是给国家工业发展带来负面影响,不过换个角度来讲,例如,对于分析仪器行业来说,大量国外的质量好、价格也不贵的电子元器件涌进来,使得电路板整体故障率下降,促进了分析仪器质量的提升。  章诒学一直坚持&ldquo 追寻国际先进技术不断改进&rdquo 的观念,认为产品改进是无止境的。改革开放之后,中国与国际接轨、信息更通畅,原子吸收的研发人员积极地学习电子、光学等方面先进技术。&ldquo 当时原子吸收的市场、应用已经多起来了,普及程度大,已被列为量大面广的分析仪器。&rdquo 章诒学说道,&ldquo 当时在原子吸收技术进步方面,最主要的发展是计算机化。&rdquo   1985年二光推出了采用计算机进行控制的WFX-1F型原子吸收产品。当然,当时还是286、386等单板机 并且仪器内置了一个9寸电视机显示屏幕。由于计算机的引入,可以实时检查原子化过程中信号变化,达到了毫秒级响应速度,发现了一些原理性问题。另外,1F还推出了自吸收扣背景技术,说到自吸,当时是与广西化工所马治中先生合作的。马治中先生实验室有一台二光的Y2,马先生虽然是研究分析化学的,但是对电子技术很感兴趣,他通过改动Y2的电路实现了自吸收背景校正。  WFX-1F的技术进步较多,在1986年获得了国家科技进步三等奖,是原子吸收光谱历史上获得的第二个国家级奖项。  在1984年国家鼓励技术引进的时候,原子吸收方面也引进了日立、精工等产品。对于技术引进,章诒学说从中学到了很多,如一种新型的原子化技术&mdash &mdash 钨舟电热原子化,才知道原来原子化方式不只有火焰和石墨炉,后来,这种原子化技术的变更-钨丝电热原子化应用在了二光后来的910型便携原子吸收仪器上。另外,更主要的还是学到了装配、机械加工技术,在工业设计等方面也受到了启发。  发展塞曼原吸  塞曼效应背景校正是近年来最受关注的原子吸收扣背景技术,章诒学对于恒磁场塞曼效应背景校正技术一直比较偏爱,尤其关注日立公司的恒磁场技术。可以说二光的塞曼原子吸收仪器研发上受日立公司技术影响较多。章诒学介绍,日立的原子吸收从170、180、5000、2000,一直到3000型,始终坚持在恒磁场塞曼效应背景校正技术方向上改进,并且不断有新&ldquo 东西&rdquo 出来,&ldquo 这种坚持自己技术路线不断进步的理念值得学习。&rdquo   二光的塞曼背景校正技术是与广州测试所的何华焜先生合作的,何先生是中国最早研究塞曼背景校正技术的人之一。1988年的时候何华焜先生与二光合作推出了交变磁场塞曼背景校正技术的WFX-1G,不过,虽然该样机通过了鉴定,但在后期的试验中发现由于交变磁场部件振动导致基线&ldquo 振荡&rdquo 显著,并且由于该技术不能应用于火焰原子吸收上,最终,WFX-1G没有批量生产。不过这也为二光继续研究塞曼背景校正技术打下了基础,仍然是与何华焜先生合作,经过了3年研究,在2006年,二光推出了并列式火焰与石墨炉原子化系统、恒定磁场横向塞曼效应背景校正WFX-810。  1975年WFD-Y3石墨炉、1985年WFX-1F计算机、2006年WFX-810塞曼代表了中国原子吸收的技术进步的步伐。其中,像石墨炉技术、自吸收扣背景技术等的研发几乎与国际同步,而自吸扣背景还可能早于国外。  中国原子吸收早期的应用领域主要是冶金、地质,后来扩展到了环境、食品、医药等领域。国产厂商除了二光之外,还有北分、上分、南分、沈分等。原子吸收技术的&ldquo 现在与未来&rdquo   &ldquo 单光束与双光束&rdquo 之争  &ldquo 单光束与双光束&rdquo 之争这个话题是章诒学提出的,她还自豪的说在单光束与双光束的光路设计方面是我们中国影响了外国。事件源于上世纪八十年代初,当时大量的进口原子吸收产品涌进了中国,进口原子吸收多采取了双光束的光路设计,而大部分国产原子吸收则是采取单光束设计方式。单光束光路设计简单、光强高,弱点是基线漂移、稳定时间长。而双光束的基线稳定性好,弱点是光路复杂、光强弱,砷等弱光元素受影响较大。  当时国外公司极力宣传双光束的优势,基线稳定、不用预热、开机就能使用等。当时,邓勃、马怡载、何华焜、吴廷照等老一辈原子吸收学者们组织了一次PK活动,现场测试、比较国内外原子吸收仪器的稳定性。PK的结果是,单光束的原子吸收仪器效果更好,虽然其基线漂移是缺陷,需要稳定一定时间才能使用,而且当时的元素灯稳定性没有现在的好,稳定时间多在十五或二十分钟。但是单光束原子吸收的光能量强、信噪比好。如今,随着光源制作技术的发展,元素灯的预热时间变短了很多,性能更稳定 而且由于计算机技术的引进,调零方便,基线漂移很容易解决。  相反,双光束仪器设计的镜子多,而多一块反射镜最少也要损失15%~20%的能量,原子吸收本就是减弱光强度的过程,如此导致检测到的信号非常弱。那次PK之后,可以说,国外仪器公司也有不坚持双光束的了,至少将双光束当作卖点进行大力宣传的少了很多。  原吸&ldquo 短板&rdquo 之多元素同时检测  分析速度慢、一次只能分析一个元素是原子吸收的固有缺陷。而2004年,德国耶拿公司在世界上首次推出了连续光源火焰原子吸收光谱商品仪器。耶拿的连续光源原子吸收是通过采用脉冲氙灯作为连续光源、中阶梯光栅的分光系统、CCD 检测器等技术,实现了多元素连续检测。  不过,不同元素的原子化条件差异很大,即使是采用连续光源,真正实现多元素同时测定仍有难度,仍需要发展新的技术。另外,连续光源原子吸收仪器的结构与运行都相对复杂,而且,中阶梯光栅等技术具有一定难度,国内短时间内无法达到。  在这种情况下,国内的原子吸收走了另外一条技术路线:多元素灯+CCD。多元素灯,用两种以上金属合金制作的空心阴极灯,据了解相关部件供应商现在最多已经可以做到8元素灯。&ldquo 今后可以根据用户的需求定制特色多元素灯,不过哪些元素适合组合在一起还需要进一步研究开发,&rdquo 章诒学说。  大势所趋之现场检测、小型化  就像标题所说的,小型化、便携化,能够现场检测,是分析仪器&ldquo 大&rdquo 的发展方向,也是原子吸收的发展方向之一。  随着全社会对于环境健康和人类健康问题越来越重视,包括原子吸收光谱仪在内的各类重金属检测仪器发挥的作用越来越大,现场小型化、便携式、车载等专用的重金属检测仪也得到长足的发展。从另一个方面来讲,随着大型直读光谱、质谱仪器的迅速发展,原子吸收要保持其仪器和操作上简便易用的特长,应使原子吸收仪器向小型化、专用化方面发展。  2010年,二光推出了便携式原子吸收WFX-910型,采用CCD检测器和钨丝电热原子化器,实现了三元素同时检测。不过,章诒学也说道,仍然有许多的工作要做,如:真正实现多元素的同时检测 软件和整体结构的继续改进 目前910在现场还是手动操作,未来可以自动化程度更高些,如远程控制、无线网络数据传输等,逐步实现江河湖海的实时监测,因为我国的很多江河的源头都是在远离人烟的地方,如果仪器能够远程控制开机、采样、运行、报数据等将为国家水环境事业解决了实际问题 样品处理和分析条件方面需要进行更深入的研究,以便实现真正能拿到野外使用。  章诒学还遗憾地说道,910推出后,由于没有方法标准的支持,检测出的结果不被认可,使得该仪器的市场推广成了大问题。  多功能化是方向吗?  近年来一些仪器公司推出了多功能的原子吸收,如沈阳华光推出过一台集合了火焰原子吸收、石墨炉原子吸收、氢化物发生原子荧光、紫外可见分光光度计、火焰光度计于一身的原子吸收。北京华夏科创公司推出主要用于饮用水标准中11项指标检测的原子吸收和原子荧光&ldquo 二合一&rdquo 的多功能原子吸收光谱仪。  不过,对于这种多功能的原子吸收,其实用性、客户反应如何,还有待进一步的考察。  &ldquo 样品前处理仪器化&rdquo 缺乏  样品前处理技术的仪器化,是所有分析仪器都面临的问题,章诒学指出,&ldquo 前处理技术是开启新应用市场的关键。&rdquo 样品前处理是分析工作的一道坎,分析化学的人不会&ldquo 搞&rdquo 仪器,&ldquo 做&rdquo 仪器的人不了解分析,所以,目前,样品前处理属于两边都够不着的&ldquo 空白区&rdquo 。  说到这里,章诒学举了一个例子,当时910便携原子吸收推出后,蒋仕强老师非常看好910在饲料行业原料进厂前的检测应用,推荐去联系廊坊一家饲料企业,该企业质控经理看过测试数据后,认为910 能够满足企业的需求。不过,企业的分析人员水平较低,无法胜任复杂的样品前处理技术,对此,质控经理提出了一个要求,能否将910的前处理做成自动、&ldquo 傻瓜相机&rdquo 式的?对于这样的要求,章诒学说自己受到了&ldquo 刺激&rdquo ,&ldquo 太难了,仪器厂家对于这方面很外行,不过这一定是一个方向。&rdquo   仪器小型化的目的是为了在现场能够进行检测,恰恰目前还缺少了一个环节&mdash &mdash 样品前处理,未来在这方面有大量的工作可做。全自动化、半自动化的前处理技术或发现新的处理方法解决传统方法不好解决的问题,再或者,另辟蹊径&mdash &mdash 发展直接进样技术。也谈国内外的差距  &ldquo 总的来说,中国的原吸与国际发展方向一致、同步,&rdquo 章诒学说道,&ldquo 国产原子吸收仪器研发力量越来越弱,国内仪器企业的光机系统、分析软件、电路设计的人才很缺乏。&rdquo   长期稳定性之殇  总体来说,国内外原子吸收之间最大的差距是在于长期稳定性。国产原子吸收的长期稳定性较差,这也是用户购买国产原子吸收不自信的地方。用户普遍反应是&ldquo 使用时间长了之后,故障多,数据重现性差。&rdquo   国内外制造水平存在差距之外,关键零部件如光电倍增管、固态检测器等目前几乎都是进口的。很多业内人士建议,国家应该大力扶持关键零部件产业的发展。  一揽子解决方案的&ldquo 真与假&rdquo   国产原子吸收的用户多是县级单位、企业的用户,仪器操作人员的技术水平较低,更加需求全面解决方案。国外厂家的一揽子解决方案真正做到了包含前处理方法、配套试剂等环节。而国内真正能够做到全面解决方案的厂家还不多。  究其原因,章诒学认为,国产仪器厂家的人才结构上存在缺陷,不愿意养、也养不住分析化学人才 而且对于&ldquo 不只造仪器,还要教用户用仪器,最好还能配套前处理设备或方法&rdquo 这种需求缺少意识,然而恰恰这些方面对于占领市场很重要。  同质化、低价竞争的怪圈  &ldquo 国产原子吸收的现状不是很好,同质化、低价竞争现象较严重,&rdquo 章诒学说道。国产原子吸收多是中低档产品,低价竞争的结果是利润薄、研发投入下降。对于相关产业联盟一直没能真正建起来,章诒学感到困惑,&ldquo 不形成联盟,在应对国外竞争时将毫无优势可言。&rdquo   另外,章诒学也谈到目前在仪器招投标中存在的一些弊端,如&ldquo 明明两个灯就够了,偏偏要配八个灯?!灯多了之后,稳定性变差、仪器结构与运行都变得复杂。还有狭缝的个数也是,并不是越多越好,一些仪器厂家往往将这些参数宣传成了&lsquo 噱头&rsquo 。&rdquo   采访编辑:刘丰秋
  • 上海光谱在苏州发布交直流塞曼原子吸收新品
    仪器信息网讯 2014年11月1日,作为第十八届全国分子光谱学学术会议协办单位之一,上海光谱仪器有限公司在会议召开之际举行了交直流塞曼原子吸收新品发布会。新品发布会现场上海光谱总经理陈建钢  上海光谱总经理陈建钢介绍了产品的一些研发情况。据其介绍,此次发布的交直流塞曼原子吸收是上海光谱承担的科技部十二五重大仪器专项的成果之一,该项目的主要内容就是光谱仪器关键元器件和部件的研发及工程化。  通过这个项目的实施,上海光谱在原子吸收光谱产品方面形成了部件模块化、产品系列化的布局。到塞曼原子吸收形成产品为止,上海光谱整个原子吸收光谱共形成了9大部件,通过这9大部件中也形成了三大类别的原子吸收产品,包括塞曼系列产品、石墨炉系列产品以及火焰石墨炉一体化产品。  陈建钢介绍到,在近10年的原子光谱仪器的研发过程中,上海光谱认识到分析仪器具有小批量、多品种的产品特点,若以产品作为研发对象,不同产品在研发过程中会形成很多个性化的零件或者部件,这样不利于产品工艺的开发,因此,上海光谱决定将产品内部功能进行分离。  通过五六年的时间,现在上海光谱部件完全按照产品标准来做,每一个部件都有企业标准,在性能和指标方面都有相关的要求,而且还有一整套的包括环境试验在内的设备来保证其可靠性,产品部件的通用化程度可以达到95%。这样一来,就可以对有限资源进行相对集中的控制,保证了产品的质量。  陈建钢说,通过该仪器专项,上海光谱形成了年产3000台原子吸收产品的能力(虽然现在还没有这么大的市场份额)。同时,陈建刚还介绍到,上海光谱计划在昆山千灯镇建设生产基地。Gerhard SchlemmerAC-DC Zeeman for Background Correction in AAS  上海光谱顾问Gerhard Schlemmer 先生介绍了原子吸收光谱中的交直流塞曼背景校正相关问题。SP-3881ZAA交直流磁场石墨炉火焰塞曼原子吸收分光光度计  据介绍,SP-3881ZAA交直流磁场石墨炉火焰原子吸收分光光度计是国内首台交流塞曼原子吸收,同时也是国内外首创的交、直流塞曼背景同时校正技术于一体的原子吸收产品。该技术充分利用可变磁场电源创造一种交流、直流磁场双检测器的一种测量方式,实现了交直流塞曼效应原子吸收背景的同时校正。同时,该产品还具有氘灯背景校正和自吸收背景校正技术。  据悉,该产品计划明年下半年正式投入市场,在这之前还有一些市场准备工作要做。
  • 测量茶多酚的仪器—台式分光测色仪
    在繁华的都市中,奶茶已经成为人们日常生活中不可或缺的一部分。其中,茶多酚这一活跃成分,因其出色的抗氧化、抗癌和抗辐射特性,对人体有着积极的健康影响。对于奶茶厂商以及消费者来说,了解奶茶中茶多酚含量的多少,无疑具有深远意义。这就使得我们需要一种科学的测量工具,以精确测定奶茶中茶多酚的含量,而台式分光测色仪的出现,正好满足了这个需求。那么,如何运用这个工具测量奶茶中的茶多酚含量呢?步骤其实并不复杂。我们需要准备好奶茶样品,并加入适量的乙醇或其他溶剂,使茶多酚得以提取并溶解。接着,我们将提取后的溶液置于台式分光测色仪中进行测量,这一过程应依据仪器的操作说明书进行。最后,根据分光测色仪测得的吸光度值,结合茶多酚的标准曲线,我们就能计算出样品中茶多酚的含量。为了保证测量的准确性,我们还需采取一些额外措施。包括:选择合适的波长以提高测量精度,控制温度和光照条件以防测量结果受到影响,以及进行重复测量以减小误差。在此过程中,Ci7520台式分光测色仪是我们的重要工具。这款基于分光技术的高精度、高可靠性的光学分析仪器,可以通过样品吸收特定波长的光线产生的光谱特征,计算吸光度和浓度之间的关系,从而准确分析和测定样品中的茶多酚含量。其具体运用过程中,我们将奶茶样品经过离心、过滤、稀释等制备处理,以获得具有代表性的测试样品,然后放置在Ci7520台式分光测色仪的样品架上,按下测量按钮,仪器就会自动测量样品的吸光度和反射率,结果会显示在屏幕上。最后,我们使用Ci7520台式分光测色仪的软件处理数据,转换为茶多酚的含量,并生成图表和报告。而Ci7520台式分光测色仪优势明显,可为各领域用户提供精准可靠的色彩测量服务。它具有0.15ΔE*的仪器台间差和0.03ΔE*的可重复性,确保了测量结果的精确一致性。无论在何处,无论何时,Ci7520都能为您提供准确无误的色彩测量。无论在哪个场所使用Ci7520,用户都可以享受到一致的配置。通过自动化软件设置,最大程度地减少了配置错误的可能性,大大提高了使用效率。Ci7520台式分光测色仪符合CIENo.15、ASTMD1003和ISO7724/1等行业标准。它的专业性和可靠性得到了行业内的广泛认可,测量结果权威可信。通过测量不同浓度的茶多酚标准溶液,建立了茶多酚与吸光度的关系后,再结合Ci7520台式分光测色仪的高精度、高可靠性,我们就能确保测量结果的准确性和可靠性。这种方法,无疑对于保证奶茶的质量和安全性具有着极其重要的意义。“爱色丽彩通”是丹纳赫公司旗下的品牌,总部位于美国密歇根州,成立于1958年。作为全球领先的色彩趋势、科学和技术公司,爱色丽彩通提供服务和解决方案,帮助品牌、制造商和供应商管理从设计到最终产品的色彩。
  • “AJ-3700气相分子吸收光谱仪”新品鉴定会成功召开
    受上海安杰环保科技股份有限公司委托,中国仪器仪表行业协会于2018年10月16日在上海组织专家,对上海安杰环保科技股份有限公司开发的“AJ-3700气相分子吸收光谱仪”进行了鉴定。出席鉴定会的专家有中国科学院上海生物工程研究中心李昌厚教授,中国计量科学研究院史乃捷高级工程师,中国水利水电科学研究院周怀东教授,南京水利科学研究院李云教授,天津大学黄战华教授,北京市理化分析测试中心陈舜琮研究员。本次鉴定会由李昌厚教授担任主任,中国仪器仪表行业协会郑朝松副秘书长主持会议。安杰科技研发部副总工程师刘丰奎汇报“AJ-3700 气相分子吸收光谱仪”产品研制情况。从项目立项、项目实施、项目成果、综合测评四部分全方面进行了介绍。该新仪器在公司已有产品的基础上,通过功能模块化设计,突破高效连续气液反应分离、多通道稳压恒流气源、高信噪比光电检测等方面进行了二次开发,以满足市场对气相分子吸收光谱仪智能化、自动化的不断需求。与会专家听取了测试、研发人员汇报自检报告、第三方测试报告、查新报告、用户使用报告等鉴定会资料。该仪器的综合技术指标达到同类产品的国际领先水平,鉴定委员会一致同意“AJ-3700气相分子吸收光谱仪”通过新产品鉴定。“AJ-3700气相分子吸收光谱仪”是安杰科技完善公司的产品结构,增强公司的竞争力和生命力,经过市场调研,可行性分析和技术经济分析以及公司自身的生产能力而开发的新产品,在环保、水利、第三方检测、石油化工等行业的水质检测方面有良好的应用前景。
  • 气相分子吸收光谱仪的计量校准方法
    p  span style="FONT-FAMILY: 楷体,楷体_GB2312, SimKai"建立一种科学合理且可操作性强的气相分子吸收光谱仪校准方法。从仪器的工作原理及结构入手,对该类仪器提出了检出限、线性相关系数、定量重复性等性能评价参数。利用国家相关标准物质对其检出限的测量不确定度进行了评定,统一了校准方法,有力地保证了测量数据的准确性、溯源性。对计量技术机构开展该类仪器的校准工作规范的制定有一定的指导意义。/span/pp  气相分子吸收光谱法是20世纪70年代兴起的一种简便、快速的分析手段,利用基态的气体分子吸收特定紫外光谱进行定量的一种测量方法。在水质监测领域中,主要是对水中亚硝酸盐氮、硝酸盐氮、总氮、硫化物、氨氮等物质的测量,通过在特定的分析条件下,将待测成分转变成气体分子载入测量系统,测定其特征光谱吸收[1–3]。这种分析技术在国内发展逐渐成熟,已有不少报道和国家标准的发布[4–7]。/pp  气相分子吸收光谱仪的技术性能优劣直接影响测量的准确性,但是至今国家还没有气相分子吸收光谱仪的校准规范。笔者通过开展对气相分子吸收光谱仪校准方法的研究,将测量数据进行量值溯源,并对仪器检出限进行不确定度的评定,保证测量数据的量值溯源与传递的唯一性,为各类标准和方法的制定提供技术保障。/pp  1.气相分子吸收光谱仪工作原理及特点/pp  气相分子吸收光谱仪是基于被测成分转变成气体分子对特定波长的辐射光具有选择性吸收,且光的吸收强度与被测成分浓度的关系遵守朗伯–比耳定律从而实现对待测成分进行定量分析的仪器。气相分子吸收光谱仪主要由光学系统、进样系统、在线加热及反应分离器系统、检测系统组成,具有分析速度快、抗干扰能力强、自动化程度高、测量范围宽等特点。/pp  2.校准用主要仪器与试剂/pp  气相分子吸收光谱仪:GMA3202C,上海北裕分析仪器有限公司 /pp  盐酸溶液:4.5mol/L,取81mL盐酸,注入200mL水中,摇匀 /pp  柠檬酸溶液:0.3mol/L,称取64g柠檬酸,溶解于水,转移至1000mL容量瓶中定容,摇匀 /pp  磷酸:10%水溶液 /pp  过氧化氢:30% /pp  实验所用试剂均为分析纯 /pp  实验用水为高纯水 /pp  校准物质:选择有代表性的水中亚硝酸盐氮、硫化物、氨氮有证标准物质来评价仪器的计量性能,各标准物质信息见表1。/pp  /pp style="TEXT-ALIGN: center"img title="01.png" src="http://img1.17img.cn/17img/images/201807/insimg/01ea0712-b51b-4afa-a85d-f49f59c1a166.jpg"/ /pp  3.校准条件/pp  3.1环境条件/pp  环境温度:15~35℃ 环境相对湿度:≤85%。/pp  室内不得存放与实验无关的易燃、易爆和强腐蚀性的物质,无强烈的机械振动和电磁干扰。/pp  3.2仪器安装及工作条件/pp  仪器:气相分子吸收光谱仪应平稳而牢固地安置在工作台上,电缆线接插件紧密配合,接地良好。/pp  工作条件:针对3种不同的标准物质及不同系列的仪器,按照国家相关标准[8–10]和仪器操作手册进行优化设定,参考工作条件如表2所示。/pp  /pp style="TEXT-ALIGN: center"img title="02.png" src="http://img1.17img.cn/17img/images/201807/noimg/13cf2d6f-2ccc-4f44-ae6b-1ebda5617034.jpg"//pp  4.校准项目和校准方法/pp  每次测定之前,将反应瓶盖插入装有约5mL水的清洗瓶中,通入载气,净化测量系统,调整仪器零点。测定后,水洗反应瓶盖和砂芯。/pp  参考国家标准及测量仪器特性评定方法[8–11],根据仪器的基本性能及以往的校准经验,选择有代表性的水中亚硝酸盐氮、硫化物、氨氮有证标准物质来评价仪器的计量性能,初定被校仪器的主要计量性能应满足表3的推荐值。/pp /pp /pp style="TEXT-ALIGN: center"img title="03.png" src="http://img1.17img.cn/17img/images/201807/noimg/34d662bd-2657-4cff-bd09-b38fed491846.jpg"//pp  4.1检出限/pp  将仪器各参数调至最佳工作状态,并把标准溶液配制成0,0.5,1,2,5mg/L系列标准使用液。对每一浓度点分别进行3次重复测定,取3次测定的平均值,按线性回归法求出工作曲线的斜率。连续做11次空白样,并计算所得值的实验标准偏差。/pp  检出限按式(1)计算:/pp  cL=3s/b(1)/pp  式中:b——工作曲线的斜率 /pp  s——空白样测定值的标准偏差,mg/L /pp  cL——测量检出限,mg/L。/pp  4.2校准曲线绘制/pp  4.2.1亚硝酸盐氮的测定/pp  用微量移液器逐个移取0,12.5,25,50,125μL亚硝酸盐氮标准溶液于样品反应瓶中,加水至2.5mL,再加2.5mL柠檬酸和0.5mL无水乙醇。将反应瓶盖与样品反应瓶密闭,通入载气,依次测定各标准溶液吸光度。以吸光度y与相对应的亚硝酸盐氮的质量浓度x(mg/L)绘制校准曲线,并计算相关系数。/pp  4.2.2硫化物的测定/pp  用微量移液器逐个移取0,25,50,100,250μL硫化物标准溶液于样品反应瓶中,加水至5mL,加2滴过氧化氢。将反应瓶盖与样品反应瓶密闭,再加入5mL磷酸,通入载气,依次测定各标准溶液吸光度。以吸光度y与相对应的硫化物的质量浓度x(mg/L)绘制校准曲线,并计算相关系数。/pp  4.2.3氨氮的测定/pp  用微量移液器逐个移取0,10,20,40,100μL氨氮标准溶液置于样品反应瓶中,加水至2mL,再加3mL盐酸和0.5mL无水乙醇。将反应瓶盖与样品反应瓶密闭,通入载气,依次测定各标准溶液吸光度。以吸光度y与相对应的氨氮的质量浓度/pp  x(mg/L)绘制校准曲线y=a+bx,并计算相关系数。/pp  4.3定量重复性/pp  将仪器参数调至最佳工作状态,选取分析物的工作曲线中2mg/L的浓度点,重复测量6次。按式(2)计算测得值的相对标准偏差(RSD),即为该物质的仪器定量重复性。/pp  /pp style="TEXT-ALIGN: center"img title="04.png" src="http://img1.17img.cn/17img/images/201807/noimg/189ec940-56dc-40fa-8903-39f43c437e82.jpg"/ /pp  5.不确定度评定/pp  气相分子吸收光谱仪性能的重要指标为检出限,但是其针对其检出限的测量结果不确定度评定84化学分析计量2014年,第23卷,第3期却鲜有报道。笔者依据《实用测量不确定度评定》要求,利用国家相关标准物质,对仪器检出限并进行了不确定度评定,为从事仪器检出限性能比对的技术人员提供参考。/pp  5.1实验数据/pp  3种标准物质的实验数据列于表4、表5。/pp style="TEXT-ALIGN: center"img title="05.png" src="http://img1.17img.cn/17img/images/201807/noimg/f613da10-63cb-41ce-9ece-30dcc8392398.jpg"//pp  5.2不确定度评定/pp  仪器检出限的测量不确定度uc主要由重复性测量、标准曲线引入的不确定度分量构成。下面以测量亚硝酸盐氮检出限为例来进行不确定度评定。/pp  5.2.1重复性测量引入的标准不确定度u(s)/pp  输入量s为亚硝酸盐氮11次空白溶液的标准偏差,故测量平均值的不确定度:/pp  /pp style="TEXT-ALIGN: center"img title="06.png" src="http://img1.17img.cn/17img/images/201807/noimg/e0a734fb-d213-47ef-b70d-aed76db1a14c.jpg"//pp /pp /pp  5.2.2校准曲线引入的标准不确定度u(b)/pp  校准曲线引入的标准不确定度主要来自标准溶液质量浓度定值引入的标准不确定度u1、校准曲线斜率引入的标准不确定度u2。/pp  /pp style="TEXT-ALIGN: center"img title="07.png" src="http://img1.17img.cn/17img/images/201807/noimg/e38c30d1-0393-4f5a-8928-94cec66d0e19.jpg"//pp /pp /pp  式中2%为标准物质的定值不确定度。/pp  /pp style="TEXT-ALIGN: center"img title="08.png" src="http://img1.17img.cn/17img/images/201807/noimg/65345203-b8e4-4538-a1ef-8560756db3d9.jpg"/ /pp  5.2.3合成标准不确定度的评定/pp  由式(2)求得s的灵敏度系数:/pp  c1=3/b=3/0.0625=48(mg/L)/pp  同样斜率b的灵敏度系数:/pp  c2=–3s/b2=–0.0819(mg/L)/pp  根据式(2)求得检出限测量的不确定度:/pp style="TEXT-ALIGN: center"img title="09.png" src="http://img1.17img.cn/17img/images/201807/noimg/4afd3e68-846d-4d49-beae-fbc37134e19c.jpg"//pp  5.2.4扩展不确定度的评定/pp  取k=2,从而求得测量亚硝酸盐氮检出限的扩展不确定度:/pp  U=kuc=2× 0.0032=0.0064(mg/L)/pp  参照测量亚硝酸盐氮检出限的不确定度评定,求得测量硫化物、氨氮二种标物检出限的测量结果不确定度,结果见表6。/pp style="TEXT-ALIGN: center"img title="10.png" src="http://img1.17img.cn/17img/images/201807/noimg/2a35f1b7-cc9a-4ce5-a653-ff41734cb469.jpg"//pp  6结语/pp  结合仪器的工作原理,提出了仪器的校准方法,并通过建立数学模型对仪器检出限进行了合理的不确定度评定,为今后气相分子吸收光谱仪的校准提供了技术参考。建议气相分子吸收光谱仪的校准周期为1年,首次使用前和维修后均应进行校准,以确保水质监测数据的准确、可靠。/pp  参考文献/pp  [1]方肇伦.流动注射分析法[M].北京:科学出版社,1999./pp  [2]臧平安.气相分子吸收光谱法简介[J].光谱仪器与分析,2000(1):1–4./pp  [3]孙成业.气相分子吸收光谱分析法及仪器的应用[J].现代仪器,2002(3):17–20./pp  [4]严静芬.水样中氨氮测定方法比较[J].广州化工,2008,36(2):55–57./pp  [5]臧平安.气相分子吸收光谱分析法测定亚硝酸根离子的研究[J].分析化学,1991,19(2):1364–1367./pp  [6]臧平安.气相分子吸收光谱分析法测定水中硫化物[J].宝钢检测,1997(4):33./pp  [7]国家环境保护总局.《水和废水监测分析方法》[M].4版.北京:中国环境科学出版社,2002./pp  [8]HJ/T195–2005水质氨氮的测定气相分子吸收光谱法[S]./pp  [9]HJ/T197–2005水质亚硝酸盐氮的测定气相分子吸收光谱法[S]./pp  [10]HJ/T200–2005水质硫化物的测定气相分子吸收光谱法[S]./pp  [11]JJF1094–2002测量仪器特性评定[S]./pp style="TEXT-ALIGN: right"  施江焕,李蓓蓓/pp style="TEXT-ALIGN: right"  (宁波市计量测试研究院,浙江宁波315103)/p
  • 探访岛津原子吸收分析达人
    获得热烈反响的&ldquo 岛津原子吸收分析达人&rdquo 活动结果已于日前揭晓,四位原子吸收分析达人脱颖而出,以准确的分析结果夺得了&ldquo 岛津原子吸收分析达人&rdquo 大奖。为了向各位达人致以感谢和敬意,日本株式会社岛津制作所分析计测事业部的 ICP/AA产品经理大森敬久(Yoshihisa Omori)先生一行近日逐一拜访了四位岛津原子吸收分析达人。我们随着大森经理一行一起探访各位达人,一睹了几位原吸分析达人的光彩形象。 岛津原吸分析达人-王金星老师 王金星老师是唐山市疾病预防控制中心的资深专家。谈到分析达人的获奖,王老师介绍说,在岛津分析达人活动中,并没有刻意地对样品进行更多的测定,只是利用工作的间隙,在日常测定的样品中加入了&ldquo 岛津原吸分析达人&rdquo 的样品,随着其他的常规样品一起测定了。王老师轻描淡写地将此次获奖谦虚的归于运气。 但是在参观实验室的过程中,整洁的实验室让来还是让来访的大森敬久经理看出了端倪,整个实验室窗明几净、一尘不染,规章制度完善全面,各类设备分类明确,摆放有序,实验室中的仪器包括两台岛津原子吸收都保养得非常好。展柜上一排排的获奖证书也无言地诠释了为什么此次活动中王老师能够做到举重若轻。 在返回的路上,大森敬久经理猜想:对于实验室分析工作的重视和严格的管理,或许就是王老师的&ldquo 达人法宝&rdquo 之一吧。当然,对于分析技术的扎实掌握也是严格管理的基础和前提。 大森经理为王金星老师颁奖(右1,王金星老师,右2,大森敬久) 王金星,男,1990年毕业于北京中医药大学仪器分析(中药)检验专业,大学本科学历。现在唐山市疾病预防控制中心工作,主任技师。参加起草了中华人民共和国国家标准《生活饮用水标准检验方法》GB/T5750-2006的制定,主持承担了卫生部、市科技局下达的科技攻关任务,获市科技进步一、二等各1项;作为第一主研人研制的两个水质检验方法作为检验国家标准检验方法均被列入GB/T5750.6-2006中。与同行合作,有5项科研成果获市科技进步一、二、三等奖;先后有近30篇论文发表在国家级专业杂志。先后被评为唐山市优秀年轻人才暨河北省&ldquo 三三三人才工程&rdquo 第三层次人选、第二届&ldquo 唐山市优秀科技工作者&rdquo 及&ldquo 唐山市专家咨询服务团专家&rdquo 。 岛津原吸分析达人-高苹老师 高萍老师所在单位是中国农业科学院蔬菜花卉研究所,多年来一直从事理化检验工作,曾参与多个行业标准的制订工作。在整个岛津原吸分析达人活动中,高苹老师给予了很大的重视和支持。由于之前很少接触类似的粮食类样品,高苹和刘中笑两位老师首先进行了方法的摸索,查阅了多个国标方法,通过几次预实验才最终确定了整个测定方法。之后在测定过程中,也是进行了多次平行测试最终取得了较好的结果。 高苹老师向大森经理介绍说,参加此次活动更多的还是为了检验自己的工作,也是一次和全国的同行们进行交流好机会,所以,从一开始就将这次活动看做是一次考核来准备。大森经理对高苹老师的认真严谨表示赞赏,认为这同岛津公司的文化也是十分契合的。精心的准备使得高苹老师获奖没有任何意外。非常遗憾的是,来自同一实验室的刘中笑老师的结果也非常的优秀,仅有毫厘之差,然而由于活动奖项设置有限,没有能够拿到大奖。不过,岛津原吸分析达人活动将持续的举办下去,相信未来还有很多的获奖机会等待着这些达人们!大森经理为高苹老师颁奖(左1,高萍老师,左2,大森敬久) 髙苹,女,副研究员, 中国农科院蔬菜所&ldquo 质量安全与检测技术研究室&rdquo , 主要从事农产品质量安全检测与检测技术研究工作。参加国家、农业部、北京市农产品质量监督抽查工作,负责农产品理化指标的检测;应用原子吸收、等离子发射光谱及质谱仪开展矿质元素、重金属检测方法研究及培训工作;参加多项农业部行业标准制定工作。参加北京市自然科学基金项目研究工作;参加&ldquo 蚯蚓粪基质蔬菜穴育苗关键技术研究和新产品开发&rdquo 课题,已通过成果鉴定,是第五完成人。 岛津原吸分析达人-张国光老师 岛津原吸分析达人张国光老师来自北京市农业环境监测站,看上去非常年轻,但实际上已经是资深的行业专家,已发表了多篇土壤分析的相关论文。张老师得知活动的消息时间较晚,但是凭借多年环境类样品的分析经验,把握起来得心应手。而实验室中的岛津AA-6800虽然已经使用了近10年时间,但是由于维护保养良好,因此仪器仍然处于良好的状态。因此张老师很快就给出了非常准确的测定结果。 在交流过程中,大森经理也就日常工作中的一些环境类样品测定的技术问题同张老师进行了交流。张老师说,在日常工作中经常遇到土壤类复杂基体的样品,分析这类样品的最大难点在于前处理,如果能较好地去除基体,那么对于测定结果和仪器保护来讲都大有裨益。经过良好的前处理,目前的主流原吸应该能够得出准确的测定结果。当然,论未来发展,还是ICP,ICP-MS等多元素分析技术的天下。大森经理对张老师的意见十分赞同,同时也表示,岛津目前也在更多地致力于改进现有的ICP/ICP-MS等多元素分析技术,相信不久的将来,能够推出更多更好的产品为广大用户服务。大森经理为王金星老师颁奖(右1,张国光老师,右2,大森敬久) 张国光,男,2002毕业于北京理工大学环境工程专业本科,从事农业环境农产品质量分析10年,北京市农业环境监测站环境监测科副科长。 岛津原吸分析达人-马永艳老师 来到华测北方,刚一进实验室,就从整齐的着装和忙碌身影中意识到这是一家专业的第三方检测机构。稍事等待,在获奖者马永艳老师忙完了手头的样品后,我们一行才终于见到了她。谈到此次活动,马老师向大森敬久经理介绍说:&ldquo 土壤类样品的分析一直是原子吸收分析中的难点,主要是前处理方面。华测作为第三方检测机构,接触的样品种类广泛,很多时候都要反复的摸索方法,因次在方法的摸索上积累了一定的经验。&rdquo 马老师的经验是----一般土壤加9mL硝酸和3mL氢氟酸样品消解效果都会很好,特殊样品(如:沉积物类的)会比较难消解,这种情况下课按比例增加消解液体积。此次原吸达人样品的分析铅镉过程中都做了多次尝试,加酸量和消解时间也调整了几次,最终增大了酸量至硝酸:氢氟酸15:5,取得了良好的消解效果。 马老师介绍说,此次活动也得到了华测北方的各位领导的支持,在华测,虽然日常检测工作非常繁重,但公司仍十分鼓励员工的自我学习和提升,重视技术的研发和创新。对于华测的良好的工作氛围,大森经理十分赞赏,他表示,岛津也愿意以分析中心和技术团队帮助华测和广大用户解决分析应用当中所遇到的各种问题,和客户共同进步和发展。大森经理为马永艳老师颁奖(左1,马永艳老师,左2,大森敬久) 马永艳,女,北京华测北方检测技术有限公司,主要从事环境相关样品检测,擅长原子吸收,原子荧光,ICP等的仪器分析。涉及水,气,土壤,固废等众多领域。曾多次参加所在单位内外部组织的能力验证取得优良成绩。参与国家环境保护标准《环境空气铅的测定-石墨炉原子吸收分光光度法》的制定。 我们结束了对各位达人的探访,大家都为几位原吸分析达人的高超的原吸技术水平与热忱的工作态度所深深折服,同时,也为岛津原吸在达人们的工作中发挥着重要作用由衷地感到自豪。 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所为扩大中国事业的规模,于1999年100%出资,在中国设立的现地法人公司。 目前,岛津企业管理(中国)有限公司在中国全境拥有13个分公司,事业规模正在不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心;覆盖全国30个省的销售代理商网络;60多个技术服务站,构筑起为广大用户提供良好服务的完整体系。 岛津作为全球化的生产基地,已构筑起了不仅面向中国客户,同时也面向全世界的产品生产、供应体系,并力图构建起一个符合中国市场要求的产品生产体制。 以&ldquo 为了人类和地球的健康&rdquo 为目标,岛津人将始终致力于为用户提供更加先进的产品和更加满意的服务。 更多信息请关注岛津公司网站www.shimadzu.com.cn。
  • 兰州化物所高熵合金基高温太阳能光谱选择性吸收涂层研究获进展
    高熵合金通常被定义为含有5个以上主元素的固溶体,并且每个元素的摩尔比为5~35%,具有优异的力学、耐高温、耐磨、耐蚀、抗辐照等性能,在较多领域展现出发展潜力。中国科学院兰州化学物理研究所环境材料与生态化学研究发展中心副研究员高祥虎、研究员刘刚带领的科研团队,通过组分调控、构型熵优化和结构设计,制备出系列高熵合金基高温太阳能光谱选择性吸收涂层。  前期,研究人员设计出一种由红外反射层铝、高熵合金氮化物、高熵合金氮氧化物和二氧化硅组成的彩色太阳能光谱选择性吸收涂层,其吸收率可达93.5%,发射率低于10%。研究人员发现,单层高熵合金氮化物陶瓷具有良好的本征吸收特性,因此制备出结构简单的涂层。以高熵合金氮化物作为吸收层,SiO2或Si3N4作为减反射层得到的涂层吸收率可达92.8%,发射率低于7%,并可在650°C的真空条件下稳定300小时。  近期,为进一步提升涂层吸收能力,研究人员选用不锈钢作为基底,低氮含量高熵合金薄膜作为主吸收层,高氮含量高熵合金薄膜作为消光干涉层,SiO2、Si3N4、Al2O3作为减反射层,形成了从基底到表面光学常数逐渐递减的结构(图1)。研究通过光学设计软件(CODE)进行优化,利用反应磁控溅射的方法制备,提高了制备效率。涂层吸收率可达96%,热发射率被抑制到低于10%。研究人员通过时域有限差分法(FDTD)研究了涂层光吸收机制。长期热稳定性研究表明,高熵合金氮化物吸收涂层在600°C真空条件下,退火168小时后仍保持良好的光学性能;计算涂层在不同工作温度和聚光比的光热转化效率发现,当工作温度为550°C、聚光比为100时,涂层的光热转化效率可达90.1%。该图层显示出优异的光热转换效率和热稳定性(图2)。  研究人员将吸收涂层沉积在不同基底材料上制备的涂层依然保持优异的光学性能,并在铝箔上实现了涂层的大规模制备。对不同入射角的吸收谱图研究发现,吸收涂层在入射光角度为0-60°的范围内具有良好的吸收率。研究人员模拟太阳光对吸收器表面进行照射,在太阳光照射下,涂层表面的温度超过100℃,表明该材料在界面水蒸发研究领域具有重要应用价值。  相关研究成果发表在Journal of Materials Chemistry A、Solar RRL、Journal of Materiomics上。上述工作开发出兼具优异光学性能和耐高温性能的高温太阳能光谱选择性吸收涂层,拓展了高熵合金在新能源材料领域的功能应用。研究工作得到中科院青年创新促进会、中科院科技服务网络计划区域重点项目和甘肃省重大科技项目的支持。图1.光学模拟结合磁控溅射方法制备太阳能光谱选择性吸收涂层图2.光谱选择性吸收机制和热稳定性研究
  • 近红外吸收染料的吸收光谱
    |前言近红外吸收染料通常在700~1200nm范围内有最大吸收波长,因其重要的光学性能而应用广泛,如隔热玻璃、激光防护、热写显示、等离子显示器等。为了获取性能优异的近红外吸收染料,需要确定其吸收性能。因此具有近红外波长测定范围的紫外分光光度计必不可少。日立新型紫外分光光度计产品UH5700,检测波长范围190~3300nm波长,同时,标配操作软件UV Solutions Plus具有峰检测功能,可以轻松测定不同近红外吸收染料的吸收光谱。日立紫外可见近红外分光光度计UH5700|应用数据样品制备:将近红外吸收染料粉末溶解于甲苯溶液中,获得待测样品。光谱测定:以甲苯溶液为参比,使用UH5700测定样品的吸收光谱图1 五种近红外吸收染料的吸收光谱1 1纵轴是以每个样品的最大峰值波长归一化后的值UH5700采用连续可变狭缝功能,根据光量大小自动调节狭缝,即使在能量较低的检测器切换波长附近仍然可获得平缓的光谱。如图所示样品约在800~1100nm范围内有最大吸收峰,包含了UH5700的检测器切换波长。 图2 峰检测软件界面2峰高是以每个样品的最大峰值波长归一化后的值图3 峰检测结果UH5700操作软件UV Solutions Plus具有峰检测功能,同时对五种近红外吸收染料进行了峰检测,结果如表所示,可以轻松获取不同样品吸收峰的位置、面积、起始波长等信息。 |总结日立UH5700在近红外波长处获得的数据噪声小,非常适合检测和近红外波长有关的样品。软件中的峰检测功能可以快速分析多个样品的光谱性能,提高工作效率。
  • 气相分子吸收光谱技术应用交流会
    会议报到时间:10月29日会议开始时间:10月30日会议地点:北京辉腾商务酒店工体店主办单位:中国仪器仪表行业协会分析仪器分会承办单位:上海安杰环保科技有限公司一、会议主题:气相分子吸收光谱应用技术交流会二、会议背景: 目前我国工业、农业和生活污染排放负荷大,全国化学需氧量排放总量为2294.6万吨,氨氮排放总量为238.5万吨,远超环境容量。全国地表水国控断面中,仍有近十分之一(9.2%)丧失水体使用功能(劣于Ⅴ类),24.6%的重点湖泊(水库)呈富营养状态;不少流经城镇的河流沟渠黑臭,饮用水污染事件时有发生。全国4778个地下水水质监测点中,较差的监测点比例为43.9%,极差的比例为15.7%。全国9个重要海湾中,6个水质为差或极差。全国水环境的形势非常严峻,2015年4月国家环保部出台《水污染防治行动计划》,对污水处理、工业废水、全面控制污染物排放等方面进行强力监管并启动严格问责制,铁腕治污将进入新常态。 国家对水质监测非常重视,可用于水质检测的仪器及方法繁多,气相分子吸收光谱仪即是其中之一,目前可检测氨氮、凯氏氮、亚硝酸盐氮、硝酸盐氮、总氮、硫化物、有机汞等,广泛应用于环境监测、水文监测、农业检测等各种领域的水质分析。由中国仪器仪表行业协会分析仪器分会主办、上海安杰环保科技有限公司承办本次气相分子吸收光谱仪应用交流会,希望通过学术交流探讨在水质监测领域新仪器、新方法的应用,汇集科学仪器行业的智慧,更好地服务国家环境监测事业。三、会议议程: 2015年10月30日上午 9:30-10:00 开幕式、领导致辞 国家水利部水资源司领导致辞 国家农业部农业环境重点实验室领导致辞 中国仪器仪表行业协会领导致辞 10:00-12:00 会场主题报告 水质监测新方法探讨——气相分子吸收光谱仪的应用 齐文启(中国环境监测总站) 气相分子吸收光谱仪的应用方法扩展 陈舜琮(北京理化测试中心) 气相分子吸收光谱仪的十四年发展历程 臧平安(安杰科技总工程师) 气相分子吸收光谱仪新产品介绍 孙璐(安杰科技总经理) 2015年10月30日下午 拟参观上海安杰(北京)生产基地四、会议费用标准 此次会议会务费全免,为了保证参会代表的住房安排,请与10月20日前电话联系我们。五、会议联系方式 联系人:曾祥丽 联系电话:13357726798 邮箱:13357726798@163.com 传真:010-53028853 中国仪器仪表行业协会分析仪器分会上海安杰环保科技有限公司
  • 美析仪器携原子吸收光谱仪等热门产品亮相福州高等教育博览会
    第61届中国高等教育博览会于2024年4月15日-17日在福州海峡国际会展中心隆重召开。“高博会”前身为创立于1992年秋的全国高教仪器设备展示会,每年举办两届(春、秋各一次),已成功举办60届。目前,“高博会”已成为展示我国高等教育发展成就的重要窗口,成为政府、高校、企业协同创新、共谋发展的重要桥梁,成为推进高等教育现代化的国家名片。美析仪器作为国内最早从事实验室设备和化学分析检测仪器的专业制造商,已经与众多高校紧密合作,形成产、学、研相结合的研发和制造体系,产品广泛应用于全国多所各类学校。本次展会携众多经典产品精彩亮相,我司人员与到访的老师们深入沟通交流,了解课堂教学需求,收集专业性信息和建议,为今后研发改进提供了有力的帮助。AA-1800EL型原子吸收光谱仪AA-1800EL型原子吸收光谱仪是采用国际新的技术和国内高校的专家联手研发完成,拥有几十年光谱仪器的研发和应用经验。该产品包括火焰、石墨炉及氢化物发生系统,可配置多种附件,灵活的配置方案可满足不同层次客户的需求。全自动多功能AA-1800EL型原子吸收光谱仪可进行复杂的样品分析,多种分析方法可自动切换,做到无人全自动分析。ICP-6810全谱直读电感耦合等离子体发射光谱仪ICP-6810是用于测定不同物质(可溶解于硝酸、盐酸、氢氟酸等)中的微量、痕量元素含量的全谱直读电感耦合等离子体发射光谱仪,广泛应用于环保、石油制品、稀土、半导体、地质、冶金、化工、临床医药、食品、生物样品、刑事科学、农业研究等各个领域。AFS-6801原子荧光光度计适用于样品中砷、汞、硒、锡、铅、铋、锑、碲、锗、镉、锌、金等十二种元素的痕量分析。UV-1800PC双光束紫外可见分光光度计仪器特点* UV-1800系列采用双光束光学系统,成功实现了高精度和高可靠性测量的完美结合,可满足各种应用的要求,可用在生物研究、生物工业、药物分析、制药、教学研究、环保、食品卫生、临床检验、卫生防疫等领域。展会持续到17号,美析仪器欢迎广大师生莅临我司展位2号馆2A13。本次展会收获颇多,感谢各位老师们和合作伙伴一直以来的认可和支持!
  • 软X射线吸收谱在材料科学研究中的应用
    软 X 射线是波长介于 0.1nm 到 10nm 之间的 X 射线,由于在这个能量波段的光子能够特异性地激发元素周期表上大多数元素的原子共振能级,并发射出特征荧光或俄歇电子,因此,软 X 射线吸收谱能够适用的材料研究非常广泛。利用软 X 射线吸收谱进行材料结构及其变化过程研究的一个非常重要的因素就是它可以在不破坏研究材料结构的前提条件下同时获得材料近表面和亚表面的结构信息,另一方面,由于软 X 射线吸收谱对原子的轨道电子结构具有高度的敏感性,可以同时实现研究材料中元素价态、轨道电子自旋态以及轨道杂化等信息的探测。基于这些特点和优势,软 X 射线吸收谱在材料科学、生物科学、能源科学及环境科学等多学科及交叉学科领域复杂体系材料结构表征中发挥了非常重要的作用,为重大科学问题的研究提供了重要的实验数据支持。传统光谱表征技术(像 UV-Vsi、FT-IR 等)受激发波长的限制,其对材料结构的表征往往止步于分子层面。软 X 射线吸收谱能够以亚原子的分辨能力,通过选择性地激发原子芯能级轨道电子,实现对同一元素在不同环境条件下的键荷分析。这里以辐照前后的 PET 聚合物的结构表征为例,通过特征元素吸收边附近的能量激发,可以获得材料在二维图像上的元素分布信息和特征元素原子与周围原子的轨道杂化信息,继而解决了传统光谱表征技术对材料结构分析的局限。在能源催化领域,软 X 射线吸收谱能够定性和定量地解析催化剂材料中的活性官能团,为催化剂材料的构效关系建立提供必要的数据支撑。在这篇文章的工作中,伦敦大学 Parkin 教授的研究团队利用 SiO2 作为模板制备了氧官能团修饰的多孔碳催化剂,通过 C 和 O 的 K 边吸收谱,精确地揭示了催化剂材料中氧官能团的轨道电子结构在不同退火温度条件下的可控变化,并结合电化学分析,为醌基官能团在双电子氧还原制备 H2O2 中的优越性提供了重要的实验证据。在能源电池领域,软 X 射线吸收谱对解析正极材料中阴离子的电荷补偿行为同样表现出了独特的优势。传统的观点认为,锂电池材料中锂的脱嵌过程只涉及金属离子得失电子,因而金属离子中可转移的电子总数决定了正极材料的理论电容。但在这篇文章的工作中,东京大学 Mizokawa 教授小组通过 O 的 K 边和 Co 的 L 边吸收谱同时研究了 LixCoO2 正极材料在不同脱锂状态下的轨道电子结构变化。结果发现,不仅 Co 离子在这个过程中发生了氧化还原反应,O 阴离子同样也参与了这个反应过程。更有意思的是在 0° 和 60° 的不同入射角度条件下的 O 的 K 边吸收谱表征结果表明,材料在脱锂状态下的 Co-3d 和 O-2p 轨道杂化表现出明显的各向异性,从微观层面上揭示了 LixCoO2 正极材料在充放电过程中具有良好导电性的根本原因。在生物科学领域,利用软 X 射线吸收谱研究土壤和岩石矿物中金属和有机质的组成结构演化,有利于打破传统土壤腐殖质学对土壤有机质过程和功能认识的局限,让我们能够从生命活动的本质及其代谢产物与矿物的相互作用重新审视土壤和岩石矿物与生命耦合的协同关系。此外,基于水窗波段的软 X 射线对水分子的高透性,软 X 射线吸收谱能够实现生物膜上不同磷脂分子层的结构表征,对针对性地设计和研发生物体的靶向纳米药物具有重要的指导意义。在生命医疗领域,从亚细胞水平研究人体骨组织的结构和病理机制,有利于骨关节炎的前期诊断和治疗。在这篇文章的工作中,圣彼得堡国立大学的 Sakhonenkov 教授团队通过 Ca 的 L 边和 O 的 K 边吸收谱研究了正常骨组织与受损骨组织中羟基磷灰石的结构差异。发现骨质的硬化过程伴随着新的氧价态的生成和 Ca-O、磷酸键的增加,这不仅让我们对骨关节炎发生过程中骨组织的微观结构变化有了新的认识,同时也为骨关节炎的前期诊断和治疗提供了新的思路。总的来说,软 X 射线吸收谱在多学科领域复杂体系的材料结构表征中扮演了非常重要的角色,且随着 X 射线显微技术的发展,STXM-NEXAFS 技术联用为材料结构的多尺度高分辨表征提供了可能。但相比于硬 X 射线吸收谱而言,由于软 X 射线本身在材料中的强吸收效应,要在常规实验室条件下实现软 X 射线吸收谱表征,其难度非常之高。不仅要求高的真空操作环境,高亮的软 X 射线发射光源,同时要求各光学组件对射线的吸收也要小。因此,目前软 X 射线吸收谱表征主要还是依赖同步辐射光源。但矛盾的是,同步辐射光源的机时紧张,很难满足日益增长的科学研究需求。近年来,随着实验室 LPP、DPP 等软 X 射线光源及高精度光学组件(例如反射式波带片、平场光栅等)的开发,基于激光驱动等离子体光源的软 X 射线吸收谱仪系统也逐渐发展成熟,并成功应用到多学科领域的材料结构表征。其中,基于平场光栅几何的软 X 射线吸收谱仪系统以其紧凑的结构设计、宽的摄谱范围以及高的光谱分辨率脱颖而出,并成功实现了商业化应用,基本能够满足实验室软 X 射线吸收谱表征的需求。由德国 HP Spectroscopy 公司推出的实验室软 X 射线吸收谱,尤其适用于薄膜材料的结构表征。同时我们也可以提供针对 5-12 keV 能量波段的实验室硬 X 射线吸收谱,希望能够给相关老师和研究人员在科学研究中提供帮助。HP Spectroscopy德国 HP Spectroscopy 公司成立于 2012 年,致力于为全球科研及工业领域的客户定制最佳 X 射线解决方案,是全球领先的科研仪器供应商。现可提供 5-12keV 的非扫描式桌面 X 射线吸收精细结构谱仪 hiXAS,以及200-1200eV 的平场光栅软 X 射线吸收精细结构谱仪 proXAS,产品线还包括 XUV/VUV/X-ray 光谱仪,beamline 产品等。主要团队由 x 射线、光谱、光栅设计、等离子体物理、beamline 等领域的专家组成。长期与全球领先的研究机构的科学家维持紧密合作,关注前沿技术,保持产品的迭代与创新。众星联恒作为 HP Spectroscopy 中国区 XAS 系统授权总代理商,为中国客户提供所有产品的售前咨询,销售及售后服务。我司始终致力于为广大科研用户提供专业的 EUV、X 射线产品及解决方案。如果您有任何问题,欢迎联系我们进行交流和探讨。 相关阅读 小尺度,察纹理!实验室软X射线显微和吸收光谱探索微观结构的奥秘非扫描台式X射线吸收精细结构谱仪,加速非晶材料结构及其演化过程探索的步伐“足不出户,走进XAFS” proXAS高分辨实验室桌面NEXAFS谱仪助力材料化学结构表征分析太强了!看最新非扫描式桌面XAFS谱仪在催化领域出神入化的应用 参考文献 1. Prasad S., et al. Intl. J. Spectrosc. 7, 249 (2011)2. Wachulak P., et al. Spectrochim. Acta Part B At. Spectrosc. 145, 107 (2018)3. Liu L., et al. Angew. Chem. Int. Ed. 20234. Mizokawa T., et al. Phys. Rev. Lett. 111, 056404 (2013)5. Holburg J. et al. Anal. Chem. 94, 3510 (2022)6. Novakova E., et al. Biointerphases, 3, FB44 (2008)7. Sakhonenkov S., et al. Nano. Ex. 2, 020009 (2021)8. Jonas A., et al. Opt. Express, 27, 36524 (2019) 9. Holburg J. et al. Anal. Chem. 94, 3510 (2022)
  • 世界首台气相分子吸收光谱仪的诞生——上海安杰环保发展回顾
    pspan style="font-family: 楷体, 楷体_GB2312, SimKai "  供稿:上海安杰环保科技股份有限公司/span/pp  上海安杰环保科技股份有限公司(简称“安杰科技”),原上海安杰环保科技有限公司,成立于2001年12月29日。公司在成立之初租用了50平方米的工作室,臧平安高级工程师担任总负责人,技术人员有来自上海宝钢仪器修理科、上海分析仪器厂、上海天美仪器厂和上海光学仪器厂的退休和兼职软硬件高级工程师5人,股东2人,总共8人。公司整体技术力量较强,成立初期就设计开发了AJ-2100气相分子吸收光谱仪,也是世界上第一台气相分子吸收光谱仪。/pp style="margin-top: 10px margin-bottom: 10px "  strong一、发明气相分子吸收光谱法,获得环保部认可/strong/pp  安杰科技总工程师臧平安发明了测定亚硝酸根离子和硝酸根离子的方法并申请了发明专利,他是气相分子吸收光谱法(GPMSA)的杰出开拓者。气相分子吸收光谱法是“节能环保”的分析监测手段,它不仅抗干扰性能强、测定样品速度快、节约化学试剂,而且不使用有毒有害的化学试剂,因而受到了广大分析检测工作者的欢迎。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201909/uepic/5d3e3ebf-88d0-478c-ba4c-bf05151d54c8.jpg" title="安杰环保1_副本.jpg" alt="安杰环保1_副本.jpg"//pp style="text-align: center "span style="font-family: 楷体, 楷体_GB2312, SimKai "臧平安“亚硝酸根离子的测定方法”发明专利证书/span/pp  经过多年努力,氨氮、硝酸盐氮、亚硝酸盐氮、凯氏氮、总氮及硫化物测定方法于2002年被纳入了“水和废水监测分析方法(第四版)”。为更容易推广这一节能环保的分析监测手段,应广大分析监测者及监测站等的要求,并在中国环境监测总站领导齐文启研究员的支持和指导下,该系列监测方法于2004年正式获得国家环保部科技标准司的批准,以安杰科技生产的AJ-2100气相分子吸收光谱仪作为指定验证仪器,组织了全国范围内6家环境监测站,对“氨氮等6项气相分子吸收光谱法”进行了方法验证,将取得的验证数据进行了“数理统计”、起草了“标准编制说明书”,并按照行业标准格式编制了“氨氮等6项气相分子吸收光谱法”标准。随即于2005年7月,由国家环保部科技标准司在全国范围内召集了9位环境监测系统的知名、权威专家,在上海召开了“氨氮等6项气相分子吸收光谱法”的标准审定会议,与会专家一致认为:/pp  (1)“氨氮、硝酸盐氮、亚硝酸盐氮、凯氏氮、总氮、硫化物的气相分子吸收光谱法均通过简单的化学反应产生相应的气态分子,通过测定气态分子对特征谱线的吸收达到测量目的。/pp  (2)方法选择性好、操作简单、快速、测定结果准确。/pp  (3)所编制的标准方法避免了汞、酚二磺酸、对氨基二甲基苯胺、对氨基苯磺酰胺、N-(1-萘基)-乙二胺等有毒试剂的二次污染。/pp  (4)方法编写用语规范、整体结构清晰、操作性强。/pp  (5)可以作为HJ/ T195-200(2005)国家环境保护保行业标准”。/pp style="margin-top: 10px margin-bottom: 10px "  strong二、世界第首台气相分子吸收光谱仪的诞生/strong/pp  臧平安高级工程师从1986年开始研究气相分子吸收光谱法。他所属的宝钢环境监测站一直在使用原子吸收分光光度计进行气相分子吸收光谱法的测定,由于其灵敏度达不到要求,因此臧平安的理想是退休后研发一种专用的气相分子吸收光谱仪器。/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/201909/uepic/e0ed24dd-281e-409e-ae72-ded31104ed90.jpg" title="安杰环保2_副本.jpg" alt="安杰环保2_副本.jpg"//pp style="text-align: center "span style="font-family: 楷体, 楷体_GB2312, SimKai "一九九三年十二月,中国科技信息杂志社编著的“国家级科技成果研制功臣名录”中第64页中,了收录了“亚硝酸根离子的测定方法”/span/pp  臧平安高级工程师自参加工作直至1996年退休,一直是从事仪器分析方面的工作,先是做极谱分析,之后就是原子吸收分析。臧平安爱好电子技术,参加过电子技术培训班,连续订购了多年的“无线电”杂志,买了许多“电子技术”参考书,孜孜不倦地学习电子技术。他工作认真、细心严谨 做仪器分析久了,不但会使用仪器测定样品,还能修理和改装极谱仪,他曾经花了近3年时间,于1979年独自设计组装了一台YXF-79型原子吸收分光光度计,使用了13年时间仍然好用。由于有装配仪器的功底,他在1994年将要退休的时候就着手谋划研发气相分子吸收光谱仪样机的准备工作。/pp  但是,他于1996年退休后并未马上开始研发仪器,而是在宝钢“退管会”参加了“太极拳”和“交谊舞”两期学习班,期间还炒过股票。休整了两年的时间,直到1998年才正式研发样机。仅用了一年多的时间就研发出了首台气相分子吸收光谱仪样机。/pp  在研发样机时并未明确要将仪器推向市场。样机研制成功后退掉了租的房子,将仪器搬到家里摆放在茶几上。不时地测试着仪器的性能,以其能够测出卓越的技术指标而感到心情愉悦。有时竟然把这台样机当做玩具消磨时间,还不时地为同事测试家里自来水中的亚硝酸根离子。他曾经测试对比过“活性炭水质净化器”消除亚硝酸根离子的效果。/pp  在一天傍晚,他将烧水壶灌满了自来水,放置一个晚上,到第二天早晨从水壶倒出一杯水,打开水龙头放出一杯新鲜的自来水,再从净水器中放出一杯净化的水。将这3杯水分别用这台样机进行了测定。测定结果竟然是早晨放出的新鲜自来水中亚硝酸根离子含量最低,头一天放在烧水壶里的水含量次之,而净化器放出来的净化水含量特别高。/pp  通过这个试验说明,放在水壶里未烧开的水所含的铵离子受到细菌的作用,一部分转化成了亚硝酸根离子 从自来水龙头放出来的水是密闭在管道路里的,没有氧气,细菌很难将其转化成亚硝酸根离子 而水质净化器出来的水含量高的原因是净化器使用时间过长,其中的活性炭吸附了过量的亚硝酸根离子正在脱落阶段,早就应该更换滤芯中的活性炭了。这说明使用水质净化器一定要及时更换滤芯,这正是人们容易忽略或者是为了省钱想多用些时间反而喝了许多污染严重的水。这个试验也说明,用气相分子吸收光谱仪能够非常容易地在家里测定水中的有害物质,因为测定用的化学试剂仅仅是无毒的柠檬酸和无水乙醇。/pp  亚硝酸根离子是公认的诱发致癌物质,通过这次试验,臧平安拆除了这个水质净化器。免得使用不当,花了钱还要受毒害。上海自来水的水质还是比较清洁的,所以从此就直接使用自来水一直到今天。/pp  虽然不曾想到要将研发的仪器推向市场,但当上海分析仪器厂的吴洪池总工程师到中国环境监测总站找到齐文启研究员询问:“环境监测方面有没有新的仪器要研发”时,齐文启研究员立刻说:“你去找宝钢的臧平安,他有新东西”。/pp style="margin-top: 10px margin-bottom: 10px "  strong三、成立上海安杰环保科技有限公司/strong/pp  那是1999年的7月份,以当时上海分析仪器厂的“三产”——自立仪器厂为甲方、上海分析仪器厂以吴洪池为首的6人为乙方、臧平安作为技术股为丙方。三方合作进行了气相分子吸收光谱仪的生产。在臧平安研发的样机基础上,采用了电脑控制和数据处理。所以于2000年非常顺利地组装好了三台商品样机,命名为GMA-2000型气相分子吸收光谱仪。/pp  三台样机由上海市技术监督局鉴定合格后,全部由臧平安销售并为用户进行了安装调试。/pp  生产和销售了三台样机后,由于合作的乙方人员调离和吴洪池的退休,“三产”已不具备生产能力。另外,在合作期间臧平安体会到,采用大规模集成电路装配气相分子吸收光谱仪远比组装YXF-79型原子吸收分光光度计来得容易。在这种情况下,成立了上海安杰环保科技有限公司,专业研发生产AJ-2100型的气相分子吸收光谱仪。/pp  AJ-2100型的气相分子吸收光谱仪虽然是手动操作的仪器,但是比起已有的光度法,操作十分简单,比较容易得到较好的分析结果 测定速度之快前所未有。例如,测定一个样品的硝酸盐氮只需2分钟,与酚二磺酸光度法相比测定速度提高了60倍,与戴氏合金蒸馏光度法相比,提高了180倍。再如硫化物的测定,与对氨基二甲基苯胺光度法相比,测定速度也高了约15倍,但是气相分子吸收光谱法测定硫化物操作极其简便,测定结果的相对标准偏差在2%左右,远远高于光度法的12%。/pp  尽管如此,随着环境水质污染日益严重、监管要求提高,检测样品越来越多,手工操作的气相分子吸收光谱仪越来越不能满足环境监测的要求。在这种情况下安杰科技相继研发出了半自动化AJ-2200和全自动化AJ-2500气相分子吸收光谱仪。但是,全自动化的仪器在一段时间内存在着不稳定和不可控的质量问题,不能满足环境监测的需求。/pp style="margin-top: 10px margin-bottom: 10px "  strong四、适应时代发展,改革重组/strong/pp  直至2008年,安杰科技是气相分子吸收光谱仪的唯一供应商。为了适应发展要求,在技术力量相对不足的情况下,公司于2013年进行了改革重组扩大了规模,注入和加强了新的技术力量,壮大了技术队伍。逐步确立和完善了仪器的研发方向以及要突破的关键技术,在保证分析结果的准确性和满足水环境监测工作要求的基础上,实现整机自动化、检测流程优化 集中力量开发具有自主知识产权、更加智能化、更加自动化的快速检测仪器。期间陆续推出了AJ-3000、AJ-3000Plus、AJ-3700等最新产品,产品在稳定性和自动化方面有了大幅度的提升。/pp style="margin-top: 10px margin-bottom: 10px " strong 五、成为科技创新板首家分析仪器挂牌企业/strong/pp  2016年,上海安杰环保科技有限公司正式更名为上海安杰环保科技股份有限公司,成功挂牌上海科技创新版(股票代码300089),实现资本对接,成为国家科技创新板首家分析仪器制造挂牌上市企业。/pp  通过不懈的努力,安杰科技的气相分子吸收光谱仪以其优异的性能逐渐获得了市场的关注和认可,分别获得了中国仪器仪表行业协会颁发的自主创新金奖、中国分析测试协会颁发的CAIA二等奖和BCEIA金奖、仪器信息网颁发的科学仪器优秀新产品奖、和中国仪器仪表学会分析仪器分会颁发的朱良漪青年创新奖。公司首席科学家臧平安先生被授予2018年度“中国科学仪器研发特别贡献奖”。为进一步提升产品的品质和鼓励创新,安杰科技获得了2018国家科技部“重大科学仪器设备开发”重点专项的支持。/pp  上海安杰环保科技股份有限公司,以拥有专利的气相分子吸收光谱法为核心技术,在水质检测领域走出了一条国产高端科学仪器研发自主创新之路,产品拥有完全自主知识产权,为国家打造“青山、绿水、蓝天”的目标正在做出不懈的努力。/p
  • 从BCEIA 2013看原子吸收光谱技术进展
    仪器信息网讯 2013年10月23-26日,由中华人民共和国科技部批准、中国分析测试协会主办&ldquo 第十五届北京分析测试学术报告会及展览会&rdquo (BCEIA 2013)在北京展览馆顺利召开。从1985年开始,BCEIA每两年举办一次,已经连续成功举办了十五届,在国内外享有较高声誉。很多国内外分析仪器厂商把BCEIA作为新产品新技术发布的最佳平台。  从BCEIA 2013展会我们可以看到,有赛默飞、耶拿、日立、岛津等外国公司和北京瑞利、东西分析、普析、北京海光、华洋仪器、瀚时、上海光谱、沈阳华光、浙江福立、安徽皖仪、华夏科创等中国公司展出了原子吸收光谱仪器(AAS)。  AAS分析自理论诞生之日至今的近60年时间里,方法、仪器与应用三者之间相互依存、相互促进,都获得了长足的发展。目前,AAS商品仪器处于高水平技术发展阶段:仪器各系统功能不断提高和完善 仪器自动化、智能化水平不断提高 各大公司AAS仪器主要技术指标相互接近。  随着我国环境、食品等方面污染问题的加剧,原子吸收光谱仪的应用范围不断扩展,市场需求持续增加,使它成为一种量大面广的产品。因而加入原子吸收仪器制造的企业仍在增加,例如2013BCEIA展会,就有安徽皖仪与华夏科创的AAS亮相。  北京瑞利分析仪器公司技术顾问章诒学老师,调研了BCEIA 2013上展出的AAS,并从参展的仪器中总结出AAS一些技术发展动向。北京瑞利分析仪器公司技术顾问章诒学老师  章诒学老师研制原子吸收分光光度计已有32年历史,亲身经历、参与和见证了中国的原子吸收光谱仪器怎样从无到有,从简单到复杂,从低端到高端,产量和市场从少到多,成为一种量大面广、可以和国外仪器一比高下的科学仪器。  一、空心阴极灯竖直放置  岛津、上海光谱、安徽皖仪也向赛默飞学习,将空心阴极灯竖直放置,求得灯放置状态的稳定性。  二、光束传导系统采用双光束  赛默飞iCE3500、岛津AA-6880系列和AA-7000系列、沈阳华光的光束传导系统采用双光束,目的是提高仪器基线稳定性。赛默飞iCE3500光学系统岛津AA-7000系列光学系统  三、燃烧器工艺结构变化  赛默飞的iCE3500和沈阳华光LAB600仪器,燃烧器采用散热片式结构,以利燃烧器散热。华洋、瀚时等公司采用可拆卸缝片,便于清洗。赛默飞iCE3500散热片式结构燃烧器  四、采用可调式喷雾器  普析由其英国公司工程师设计了新的可调式喷雾器,用户可调节优化喷雾状态以提高雾化效率及火焰稳定性、减少进样量。普析AAS的可调式喷雾器  五、双加样位石墨管  日立Z3000仪器采用一种有两个加样位置的石墨管,使样品量增加一倍,有利于低含量样品分析。  六、磁极间隙加大  上海光谱的新恒磁场塞曼仪器中,石墨炉磁钢的磁极间隙增加,使其退至石墨炉外,缩小炉内空间,有利于石墨管升温和磁极保护。上海光谱石墨炉磁钢磁极间隙增加  七、仪器多功能化  沈阳华光LAB600仪器在有氘灯的基础上,增加钨丝灯,使仪器具有紫外分光光度计功能。华夏科创将原子吸收和原子荧光组合成一台仪器,称之为原子吸收-原子荧光联用仪。  八、石墨炉直接固体(粉末)进样技术  固体(粉末)直接进样技术可以提高石墨炉法测定的灵敏度,已为国外高端仪器所采用。耶拿公司展出具有石墨炉直接固体进样的仪器novAA-400P型。采用SSA61Z型固体进样器, 能直接分析原始样品,样品无需作消解和溶剂桸释,降低污染,用样量小,灵敏度高达pg和fg级的检出水平, 可与ICP-MS相比, 其省时、快速、适用真实微量元素分析。  九、石墨炉配置可视系统(GFTV) 和在线自动溶液稀释功能  赛默飞iCE3000GF型的石墨炉原子化系统,增加可视系统,观察进样针位置及管内样品变化,精确调控石墨炉进样重复性和原子化过程,以提高检测精密度。  十、仪器小型化和专用化发展  近年来研发适用于现场分析的小型化原子光谱分析仪器引起国内外分析工作者关注。随着采用CCD检测器的便携式和小型台式原子发射光谱仪商品化进程,小型化原子吸收仪器的研究受到更多关注。  北京瑞利展出了WFX-910型便携式原子吸收光谱仪,WFX-910采用电热原子化和CCD检测系统,电热丝原子化器,节能省电,功耗仅为石墨炉原子化器的6%,可在无电网供电环境下使用。  另外,值得一提的是光纤技术应用。AAS著名厂商珀金埃尔默没有参展BCEIA 2013,但其在 BCEIA 2011上展出的PinAAcle900,首先在光路系统中采用光纤传输光信号,而不再用机械结构移动调整原子化系统,实现光路弯曲,可使仪器内部结构更紧凑,为仪器小型化打下基础。PinAAcle900光纤传导光束摘录:刘丰秋
  • 精准· 稳定· 高效——日立原子吸收助力土壤检测
    引言距上一次土壤普查已经过去40多年,为了摸清现在的土壤质量家底,国务院于2022年初印发了《关于开展第三次全国土壤普查的通知》,决定自2022年起开展第三次全国土壤普查。普查内容包括:土壤性状、类型、立地条件、利用情况、数据库和样品库构建、质量状况分析、成果汇交汇总等。其中土壤理化性状检测是非常重要的一环,包括金属元素、(半)挥发性有机物、有机农药等的检测。日立作为一家历史悠久的分析检测仪器设计和生产制造商,包括:原子吸收分光光度计、X射线荧光光谱仪、高效液相色谱仪、紫外分光光度计。此次介绍的是针对元素分析之日立原子吸收分光光度计ZA3000系列的优势及应用案例。土壤检测【解决方案:元素分析】原子吸收分光光度计用于定量分析样品中的金属元素,ZA3000 系列采用了偏振塞曼背景校正, 以其整体的可靠性和其他原子吸收分光光度计所无法实现的独有技术,获得更好的准确性和更高的灵敏度。 原子吸收分光光度计ZA3000系列ZA3000系列用于土壤检测的特点l火焰石墨炉双塞曼背景校正:即使对类似土壤分解液一样的含大量盐分的样品,也可以扣除由共存物质产生的背景干扰,测定数据的精度高,稳定性好,结果准确可靠。l双光束双检测器,全波长(190-900nm)校正,每种目标元素均可获取准确的测量结果。l仅使用PC即可实现火焰和石墨炉原子化方式切换,不需要手动调整光轴。l轻松实现降本增效:开机即测,不需要预热等待,提升测试效率,空心阴极灯使用寿命更长。l操作方便:实时语音导航和实时质量控制,全信息操作界面,火焰法快速测试按钮。【对应的土壤检测标准】【应用示例】参照标准:HJ 491-2019. 《土壤和沉积物铜、锌、铅、镍、铬的测定火焰原子吸收分光光度法》测定方法:火焰原子吸收分光光度法型号:ZA3000实验数据除空白外, 每种元素都选择5个点做标准曲线, 另外对三种标准物质分别进行5次重复测试。标准物质处理方法: JSAC 0402、JSAC 0403溶解0.95g样品, 定容至50mL, 得到待测样品 NIES No.2溶解0.90g样品, 定容至50mL, 得到待测样品。* JSAC0402、JSAC0403是日本分析化学会认证的标准物质* NIES No.2是日本国立环境研究所认证的标准物质标准曲线铅、镍、铬的R2都在0.9995以上,其中铅的R2为0.9999,线性良好。实验结果将JSAC0402、JSAC0403和NIES No.2三种标准物质的测试结果与认证结果进行比较,结果可见铅、镍、铬的测试结果均在认证结果范围以内,并且测试结果波动范围更小,因此测试结果准确可靠。公司介绍:日立科学仪器(北京)有限公司是世界500强日立集团旗下日立高新技术有限公司在北京设立的全资子公司。本公司秉承日立集团的使命、价值观和愿景,始终追寻“简化客户的高科技工艺”的企业理念,通过与客户的协同创新,积极为教育、科研、工业等领域的客户需求提供专业和优质的解决方案。 我们的主要产品包括:各类电子显微镜、原子力显微镜等表面科学仪器和前处理设备,以及各类色谱、光谱、电化学等分析仪器。为了更好地服务于中国广大的日立客户,公司目前在北京、上海、广州、西安、成都、武汉、沈阳等十几个主要城市设立有分公司、办事处或联络处等分支机构,直接为客户提供快速便捷的、专业优质的各类相关技术咨询、应用支持和售后技术服务,从而协助我们的客户实现其目标,共创美好未来。
  • "MB5型多通道原子吸收分光光度计”被认定为北京市自主创新产品
    我公司自主研发的“MB5型多通道原子吸收分光光度计”被认定为北京市自主创新产品。北京市自主创新产品的认定是由市科委、市发改委、市建委、市工促局和中关村管委会在中关村科技园区内联合启动的首批北京市自主创新产品认定试点工作。旨在更好的落实国家和北京市关于政府采购自主创新产品的相关政策,发挥公共财政对自主创新的促进作用。首批自主创新产品的认定共征集到近300家企业的500多种产品,北京市科委组织专家对首批征集到的产品进行了严格的评审,并经北京市自主创新产品认定工作小组进行审核。最终101家企业的157种产品被认定为北京市首批自主创新产品,我公司的MB5型多通道原子吸收分光光度计名列其中。北京市自主创新产品认定工作小组也将向政府采购、重大工程等相关采购推荐我市的自主创新产品,支持自主创新产品积极参与政府公共财政采购,促进首都高技术企业的快速的发展。企业只有不断的推出具有自主知识产权的新型产品,才能够更快、更广泛的占领市场,提升企业形象,促进企业的快速发展。
  • 气相分子吸收光谱法快速测定水中高锰酸盐指数
    第3 期2 0 1 1 年6 月N o . 3 J u n . 2 0 1 1 95 气相分子吸收光谱法快速测定水中高锰酸盐指数 赵建平 沈璧君 赵洋甬 胡建林 宁波市环境监测中心 浙江宁波 315010)摘 要 以亚硝酸盐作为还原剂,通过间接测定亚硝酸盐的方式,建立了水中的高锰酸盐指数的快速定量分析方法。水样中的高锰酸盐加硫酸氧化后,用亚硝酸盐进行还原,再用分子光谱吸收法测定亚硝酸盐,从而间接测定高锰酸盐指数。结果表明,方法的检出范围为0 ~ 9mg/L,检出限0.29mg/L, 平均回收率93.2 ~ 103.1%,相对标准偏差3.8 ~ 5.8% 不高于10%。该方法具有测定快速、准确度高、浊度影响少、所用试剂安全环保的特点,特别适合于应急、在线监测、流动注射领域的仪器的开发与使用。关键词 亚硝酸盐 高锰酸盐 气相分子吸收光谱法中图分类号 O657.3Rapid Determination of CODMn by Molecular Absorption SpectrometryZhao Jianping Shen Bijun,Zhao Yangyong,Hu Jianlin(Ningbo environmental monitoring center Ningbo Zhejiang 315010)Abstract This study describes a novel fast quantitative analysis method used nitrite as reductive agent for the detectionof Potassium Permanganate Index (CODMn). The acidulated permanganate in water was fi rstly deoxidized by nitrite.Subsequently, the concentration of nitrite was detected by molecular absorption spectrometry. Due to the reaction betweenpermanganate and nitrite, the readout signals were related to the concentration of potassium Permanganate Index. The resultsindicated a high sensitivity and stability with a detection limit of 0.29 mg/l (R.S.D.% was 3.8%~5.8%) and the recoverywas 93.2%~103.1% ranging from 0 to 9mg/l. The proposed method is rapid and accurate, few disturbances fr om theturbidity of the water and environm entally friendly. Taking into account these advantages, this method represents a promisingplatform for environmental emergency monitoring, on-line analysis and fl ow injection instrument exploitation and application.Key words Nitrite CODMn Molecular absorption spectrometry高锰酸盐指数为地表水体受有机污染物和还原性无机污染物污染程度的综合指标,是指在酸性或碱性的介质中以高锰酸盐为氧化剂处理水样时所消耗的氧,以氧的mg/L 来表示[1],一般采用水样被高锰酸盐氧化后用草酸钠还原,再用高锰酸盐滴定多余草酸钠的方法进行测定,对还原反应和加热氧化后高锰酸盐残留量有较高要求。采用本方法可以在常温的条件下进行多余的亚硝酸盐测定,由于浊度等对分子光谱吸收法影响极少[2],本方法特别适用浊度较大水体的高锰酸盐指数测定。1 检测原理水样加入硫酸呈酸性后,加入一定量的高锰酸盐溶液并在沸水浴(100℃)加热一定时间,剩余的高锰酸盐用亚硝酸钠还原并加入过量,再加入柠檬酸-乙醇溶液,在柠檬酸的介质中,加入乙醇为催化剂,将亚硝酸盐瞬间转化为NO2, 用载气载入气相分子吸收光管中,在213.9 纳米波长处测定吸光值。2 实验部分2.1 仪器与试剂分子吸收光谱仪(上海北裕公司),DG200 加热反应器(哈希公司)、高锰酸钾1/5KMnO4=0.01mol/L、1+3 硫酸、柠檬酸- 乙醇溶液,C=0.5mol/L 柠檬酸+10% 乙醇、以上试剂均为分析纯。2.2 试验方法取10mL 比色管,抽取样品5mL,加入0.5mL高锰酸钾,3mL 硫酸(1+3)于100° 温度DG200 加热反应器加热30 分钟,冷却后加入100mg/L 亚硝酸钠0.7mL, 反应3 ~ 5 分定容至25mL,波长收稿日期:2011-03-08基金资助:国家水专项水污染源应急监测技术体系研究(2009ZX07527-002-06)作者简介:赵建平(1971-),男,浙江宁波人,高级工程师96 Modern Scientific Instruments No . 3 Ap r . 2 0 1 0213.9nm 处,测定吸光度。2.3 工作条件锌空心阴极灯电流:2.5mA;工作波长213.9nm;氮气输入压力为0.2MPa;测量方法:峰高;积分时间2.0min3 结果与讨论3.1 还原剂的选择亚硝酸盐同高锰酸盐反应为无机反应中间产物少。分子吸收光谱法适用于海水地表水工业污水等各类水的测定,检出范围大[1]。3.2 酸度的选择消解完成后,按化学方程平衡计算,加入等摩尔亚硝酸盐(100mg/L)0.7mL 还原。经试验,消解后可直接进分子吸收光谱仪进行检测,高酸性对测定无明显影响。3.3 干扰的消除由于水样消解后水样中原有亚硫酸盐等还原性物质已被氧化,不影响测定;高锰酸盐等被亚硝酸盐等还原,浓度较低亦已不影响测定。3.4 工作曲线的制作取新配9.60 mg/L 高锰酸盐标准溶液0.0、0.5、1.0、1.5̷ 5.0,分别按实验步骤操作,测定吸光度并制作标准曲线,标准曲线为Y=0.0364x+5E-5,高锰酸盐指数的线性范围为0.0 ~ 9mg/L, 相关系数为0.999,检出限为0.29 mg/L,低于国标0.5mg/L。3.5 样品的检测及回收率与精密度取不同浓度标准溶液及样品各2 个,按实验方法进行检测,用标准曲线法求得高锰酸盐指数,结果见表1。表1 高锰酸盐指数的测定样品均值*/ug 加标量/ug 测定/ug 加标回收率*/% 相对标准偏差/%标准1(203138) 7.44 3.72 11.05 98.5 4.7标准2(203137) 2.38 2.38 4.79 101.3 3.8样品1 8.44 5.21 13.08 93.2 5.8样品2 3.20 4.22 7.52 103.1 4.2* 均平行测定5 次。3.6 不同分析方法的比较不同分析方法的比较,见表2。表2 不同分析方法的比较样品国标GB11892-89/(μ g/mL) 本法/(μ g/mL)标准1(203136)5 . 2 4 、5 . 6 2 、4 . 8 8 、5 . 5 8 、4.91、4.99、5.10、5.225.02、5.32、4.97、5.12、5.21、5.19、4.98、5.26标准2(203135)3 . 7 0 、3 . 6 9 、3 . 8 5 、3 . 9 2 、3.51、3.48、3.65、3.813.51、3.81、3.66、3.72、3.64、3.55、3.71、3.90样品18 . 3 0 、8 . 4 5 、8 . 4 6 、7 . 9 0 、7.96、8.01、8.25、8.468.34、8.47、8.20、7.96、8.02、8.41、8.12、8.26经t 检验,本法与国标监测结果无明显区别。4 结论采用DG200 加热反应器消解,用亚硝酸盐还原后,直接用分子吸收原子吸收光谱法进行测定的方法。具有测定快速、准确度高、浊度影响少、所用试剂安全环保的特点,特别适合于应急、在线监测、流动注射领域的仪器的开发与使用。参考文献[1]  国家环境保护总局等编. 水和废水监测分析方法(第四版),2002.223-224[2] 魏复盛,等. 水与废水监测分析方法指南(上册)[M]1997:225-240[3]  周天泽编著.化学分析测试中的干扰消除[M]. 首都师范大学出版社,1996,50[4]  海洋监测规范. 第四部分, 海水分析.GB/T17378.4-2007,101[5]  华东师范大学无机化学教研组等编著. 无机化学. 华东师范大学出版社,1997[6] 水质亚硝酸盐氮的测定. 分光光度法,GB/T 7493-1987
  • 中仪标化原子吸收光谱分析技术应用及维护保养培训班8月18日于兰州举办
    中仪标化(北京)技术咨询中心,是专业从事光谱、色谱、质谱等仪器分析培训、实验室培训、高级化学检验员培训的专业培训机构。 是中国分析测试协会、中国仪器仪表学会分析仪器学会团体会员单位,国家质检总局质量技术监督行业国家资格取证委托培训单位。中仪标化目前已在全国各地成功举办100多期相关培训班,每年培训来自全国各地仪器分析测试人员及实验室管理人员近千名。  中仪标化将于2014年8月18日兰州再次举办&ldquo 原子吸收光谱分析技术应用及维护保养&rdquo 培训班,邀请高介平研究员、郑国经研究员两位专家系统地讲授原子吸收光谱技术应用及维护保养。  【培训详情】  培训时间:2014年8月18日-8月23日  培训地点:兰州  培训对象:各企事业单位原子吸收的管理、操作、使用、维护人员  授课专家: 高介平  研究员,国家矿冶研究院。从事原子光谱分析测试及应用研究工作50余年,国内外多家AAS知名企业担任过顾问,北京理化分析测试技术学会理事、北京光谱学会常务理事,中国分析测试协会光谱仪器评议专家组成员。全国分析测试人员能力培训教材原子吸收光谱分析技术编写专家。  郑国经  研究员,首钢科学研究院。从事原子吸收光谱分析测试及应用研究工作50余年,北京理化分析测试技术学会副理事长、北京光谱学会理事长,中国分析测试协会光谱仪器评议专家组组长。全国分析测试人员能力培训委员会秘书处技术专家。  培训内容:详见培训通知  【报名详情】 报名官网:http://www.fxyqpx.org/Spetrain/19_1104.html本网报名:http://www.instrument.com.cn/training/training_info.asp?TRI_No=101125咨询电话:010-52573244 手机:15718847789  报名传真:010-61772365  报名邮件:fxyq06@126.com
  • 东西分析10年老用户优秀征文之三 “安安静静,做好自己”—AA-7003型原子吸收分光光度计
    编者按:东西分析10年老用户优秀征文活动持续进行中,本期的仪器主角是就职于辽宁省分析科学研究院的AA-7003型原子吸收分光光度计,其凭借过硬的技术本领,在岗位上出色的完成一次次的任务,让我们一起跟随它的同事看看它工作中的精彩表现吧…“安安静静,做好自己”—AA-7003型原子吸收分光光度计辽宁省分析科学研究院副研究员 曹璨自序曹璨,辽宁省分析科学研究院,副研究员,任第一研究室副主任。从事原子光谱及质谱元素分析已逾十年,主要负责食品、药品、钢铁及矿产品、石油化工产品、环境样品等二十多个领域样品中痕量元素的分析及相关方法学研究,并开展部分领域元素形态分析方法研究。多年来为多家大型国有企业及合资企业提供技术支持,协助企业参与国际标准审核。在《质谱学报》、《光谱实验室》等多家国家级核心期刊发表论文多篇,参与国家级、省级课题和自然科学基金项目近20项。多年从事痕量元素分析,先后使用过四台不同厂家生产的原子吸收光谱仪,在旧的进口仪器意外损坏,新的进口仪器面临重重审查不能及时到位的情况下,东西分析AA-7003这台乖巧设备临危受命,参与了多个课题的研究,现在仍以它稳定、快速的优势在分析工作中占有一席之地。分享下其参与的几个重大事件。1某大型企业核电项目核电主泵擦拭方法研究核电主泵由于其工作环境的特异性,要求运行期间免维护,这就要求主泵要有相当长时间的耐腐蚀性。研究表明,生产过程中的原料、辅助材料、接触性材料及成品的零部件表面,某些阴、阳离子的数量必须得到控制,而生产过程中的辅助试剂不可避免的要引入大量的阴、阳离子,相关的资料和文献几乎为零。如何控制这些指标、如何规范生产流程让从事工业生产的企业十分头疼。在多年从事元素分析的基础下,我们从控制辅助材料使用、控制接触性材料使用和成品表面擦拭分析三个方面入手,针对不同样品的材质、性状和组成,分别建立了多个标准分析方法,其中阳离子分析转化为元素分析,主要采用这台东西分析原子吸收光谱仪。由于样品成分复杂,处理困难,导致取样量较低、前处理引入试剂空白和基体效应较高,对仪器的灵敏度和检出限都提出了很高的要求。这台设备配备有火焰和石墨炉两种原子化器,在样品基体成分复杂、酸度过大的影响下,我们主要选择了火焰原子化器进行分析。全钛燃烧头具有优异的抗腐蚀、抗氧化能力,耐高温,长时间使用积碳、吸附效应不显著;高效雾化系统,节省样品,灵敏度高;单光束光学系统,光学系统悬浮设计,震动、环境温度变化不影响仪器稳定性;氚灯扣背景技术,预热后较稳定,校正结果相对精确。使用这台设备,我们完成了Pb、Cd、Cr等痕量元素的方法学研究及分析方法确认,并与其它设备一起申请两项专利。申请省级课题并验收结题一项,配合该企业通过美国转让方的技术考核和现场评审。2“毒胶囊”事件中铬含量筛查方法研究震惊全国的“毒胶囊”事件在东北地区也引起广泛关注。一时间,几十家药厂少则几批多则几十批送检胶囊壳,面临药品下架的风险,急迫要求报告结果。药典规定,铬元素检测方法为微波消解-石墨炉原子吸收光谱法,检测成本高,受微波消解罐数量限制,正常检测周期为2~3天。当时胶囊壳质量良莠不齐,用非食品级明胶制备的空心胶囊及软胶囊,铬元素含量甚至高达80mg/kg以上,而国家规定的限量值为2.0mg/kg。石墨炉原子吸收测定铬元素线性范围约为10μg/L以下,又是高温元素,一旦高浓度样品造成污染,后期清洗包括消解罐、比色管、石墨管的清洗要耗费时间、精力,进一步延长检测周期。为此,我们采用增大称样量、改用干灰化法来增加溶液中样品浓度,通过使用富氧-乙炔焰提高原子化温度,并适当使用表面活性剂提高雾化效率的方法,用火焰原子吸收分析方法对样品进行筛查,筛查掉可能导致污染的高含量样品。采用东西分析的这台原子吸收,经过方法学考证和方法优化,可以确定方法检出限为1mg/kg,方法回收率在92.4%~105%,稳定性良好。将该方法与药典标准方法进行比较,该方法不受硬件资产条件限制,干灰化法前处理周期短,火焰原子吸收法上机检测时间明显短于石墨炉原子吸收法,非常适用于不同品级多样品分析筛查。尽管该方法不是国家规定标准方法,检测结果不能用于出具检测报告,但该方法的应用大大缩短了批量检测中逐级稀释和清洗污染的时间,有效保证了检测周期。随着国家规定各药厂必须配备原子吸收,具备自检能力,该方法也已推广至部分药厂,用于胶囊壳品级的初步判定。3东西分析火焰原子吸收仪器比对数据随着国产分析仪器的繁荣发展,国产原子吸收的性能逐渐接近同类进口仪器,工作之余,将东西分析火焰原子吸收部分元素性能参数与某配有高灵敏雾化器,样品提升量约为普通雾化器三倍的进口原子吸收进行了比对,具体数据见表1。表1 AA7003与某进口仪器数据比对由数据可知,东西分析火焰原子吸收尽管灵敏度普遍略低于该台配有高灵敏雾化器的进口仪器,但样品提升量却仅为进口仪器的1/3,标准曲线中位值重复性、相关系数及线性误差等参数与进口仪器在伯仲之间。安安静静,做好自己,东西分析这台原子吸收光谱仪已与我合作了近十年,至今仍以快速、高效、节约等优势在本院占有重要地位,性能参数没有显著降低,维修次数也屈指可数,实在是一台省心、乖巧的仪器。看看我们工作中的样子吧…。…关于我们北京东西分析仪器有限公司,拥有二十多年的分析仪器研发、制造、服务的历史,系北京市高新技术企业,分析仪器制造行业国际化企业。在行业内率先通过ISO9001国际质量体系认证,ISO14001环境管理体系认证,多个产品取得欧盟CE认证,系中华预防医学会卫检专用委员会产品信得过单位。“完美分析,辉映东西”。公司以科研技术实力为后盾,以质量管理为保证,以完善的售后服务为支撑,为用户提供高品质的分析仪器产品。
  • 上海光谱原子吸收的高端化之路
    p  a href="http://www.instrument.com.cn/zc/37.html" target="_self" title=""原子吸收光谱仪器(AAS)/a是现代分析检测实验室必备的重要检测手段,有着广泛的应用。而且,AAS是我国国产化最好的少数分析仪器之一。经过多年的发展,我国AAS的技术水平、功能和质量都有了很大的提高。据初步统计,目前全国有AAS生产厂家达19家,国外在华厂商7家。国内AAS仪器公司每年为国家提供数以千计的各种型号的AAS仪器。国产AAS仪器,遍布于国内生产、科研、教学、进出口检验等各个部门,为工农业发展、国际国内贸易、人民健康、食品安全、环境保护、科学进步做出了重要的贡献。/pp  不过,业界同行比较一致的看法是,我国火焰AAS目前的技术水平已达到国外同类仪器的水平 但石墨炉AAS的技术水平与国际先进水平还有一定差距。高档AAS市场仍然由国外知名大公司的品牌仪器所控制。/pp  但是,近来让我们欣喜的是,从国产AAS的主要厂商之一上海光谱仪器有限公司传来了一个好消息。据该公司总经理陈建钢介绍,“ACHEMA展会上,上海光谱展出的具有国际先进水品的高性能全自动石墨炉/火焰/自动进样器一体的原子吸收光谱仪,引起了与会国外同行的高度重视,也引起了来自世界各地经销商的高度兴趣,展会期间落实了三台仪器订单,更多的采购意向正在洽谈之中”、“上海光谱初步形成了一整套原子吸收光谱仪的生产工艺以及工艺装备,具备了生产可与国际知名同行的高端产品性能和可靠性相媲美的原子光谱仪系列产品以及完整的附件产品”。/pp  对此,国内原子光谱知名专家杨啸涛认为,上海光谱的SP-3800系列交直流塞曼扣背景全自动石墨炉火焰原子吸收光谱仪已经达到了高端AAS的水平,尤其是石墨炉技术已经“过关”了。杨啸涛老师全程参与了上海光谱AAS的研发,在SP-3800系列产品中,采用了多项专利技术,如:交直流两用塞曼效应原子吸收背景校正系统及使用方法(2010)、一种石墨管保护套置于磁场内的塞曼石墨炉结构(2015)、一种用于双检测器直流塞曼原子吸收的变阵调校方法及装置(2014)等。/pp  杨啸涛认为,塞曼效应背景校正技术是目前高端原子吸收仪器采用的主要背景校正技术。因为原子吸收光谱法最主要的光谱干扰是分子吸收和光散射,而塞曼效应背景校正是能较好地解决这一干扰的方法 另外,由于其双光束特性,可以在火焰和石墨炉分析中获得良好的信噪比,一直受到广大分析工作者的青睐。/pp  “交直流塞曼背景同时校正技术是国际首创的专利技术,”杨啸涛介绍,采用交直流两用塞曼效应原子吸收背景校正系统时,由于磁感应强度可根据不同元素的塞曼分裂模型设定,在分析灵敏度上优于恒定磁场的塞曼背景校正系统。该系统的建立可以实现多种火焰和石墨炉原子化器塞曼背景校正的组合,如恒定磁场、交直流同时磁场、单直流或单交流磁场等,能够满足用户的各种需要。/pp  谈到技术创新,杨啸涛老师有很多的感想,他说到,仪器产品要真正地推向市场、并在市场上站稳脚跟,技术创新是必不可少 但是创新不能只停留在思维上,而是需要解决同时产生的众多相关问题。如交直流塞曼背景同时校正技术是杨老师2008年提出的想法,历经了7年的时间不断改进,直到最近才真正用到商品化仪器上。如磁场电源不但要保证产生一定的磁场强度,还要具有稳定可靠、以及省电的能力,为此进行了长时间、无数次的试验。“真正的创新是可行的、能够实现的创新。”/pp  “相关技术也要在同一起点上,”这是杨啸涛老师一直提到的观念,“分析仪器发展存在着内因、外因,内因是仪器本身局限的解决,外因就是相关器件和外围技术的发展带动仪器的发展。而外因很可能促使仪器突飞猛进,最典型的例子就是计算机技术快速发展、新型材料的出现等。目前,仪器原理性创新已经很少了,现在进行的多是集合创新,即让外部环境、周边技术为我所用。”/pp  如,SP-3800系列仪器上使用了新型磁钢,由于有较高的磁感应强度,可以通过改变磁场位置调节磁感应强度使不同元素的测定灵敏度达到最佳化。与其他技术相比,新型稀土材料磁钢在相同的磁间隙情况下,可达到1.05 T的磁感应强度,经测试,对于Cu 324.8 nm谱线和Zn 213.9 nm谱线,分析灵敏度提高了50%。对于Cd 228.8 nm 谱线分析灵敏度提高了15%,火焰塞曼背景校正原子吸收磁钢的导磁板采用陶瓷材料,并作防腐蚀表面处理,大大延长了磁钢的使用寿命。使用稀土永磁钢,在原有磁感应强度条件下,可以加大工作间隙(例如适应不同种类的火焰),因此对原子化器形状和大小的限制也会减弱。在仅需要相同磁场强度的条件下可以将磁钢体积减小,进而可以开发体积更小、更便携的小型专用仪器。/pp  “仪器质量提升另一个保障就是‘基础’,‘创新’实现需要有工艺、工装设备等基础的支持。”杨啸涛举例到,在交流塞曼中,当磁场方向和加热电流方向垂直时,石墨管会受到洛伦兹力的影响,引起的震动对仪器光学系统产生影响,降低测定精度。为了降低震动对测量精度的影响,需要提高光机稳定性,这也体现了工厂基础工艺的水平。另外,一个好的石墨炉,不但要有好的结构设计,还需要好的石墨材料、以及温度校正等技术。“不过,提高‘基础’的水平并不容易,不但问题解决难度大,投入的人力物力也非常大。但是,这笔投入是非常值得的,因为,工装、测试设备是质量保证的基础工作。”/pp  杨啸涛老师还介绍到,上海光谱在国际合作方面主要有两项工作,一是正在与国外公司商务会谈直接进口石墨管工作 另一项则是在国外定制雾化器模具,因为,目前大部分国产AAS采用的是非标准化的玻璃雾化器,这一点可能阻碍国产AAS走向国际市场,为此,上海光谱专门在瑞士定制了雾化器模具。虽说这些投入导致了仪器成本升高,但是相应的也让上海光谱收获良多,据介绍,2008年以来上海光谱取得了累计出口近千台原子吸收光谱仪的好成绩。/pp  近年来,上海光谱多次得到了科技部、上海市科委等的大力支持,如承担的2011年国家科技部重大科学仪器设备开发专项“高性能光谱仪器关键元器件与部件的应用及工程化开发”等,使得上海光谱能够不断加大力度升级其关键部件、整机制造能力和技术创新,提高了原子吸收光谱仪器的整体性能水平。在不断发展过程中,上海光谱也形成了自己的研发团队 而坚持走高端仪器制造的路线,完全符合“中国制造2025”的制造强国战略。/ppbr//p
  • 珀金埃尔默、上海光谱瓜分海关总署原子吸收大单
    p style="text-indent: 2em line-height: 1.5em text-align: justify "strong仪器信息网讯/strong 近日,2020年海关总署科技司原子吸收光谱仪公开招标采购项目中标结果公示。项目包含2个包,10台原子吸收光谱的中标结果,采购总额总计313.34万元,供应商分别为中国科学器材有限公司、科沃斯(北京)科技有限公司,由珀金埃尔默和上海光谱包揽本次大单。详情如下:/pp style="line-height: 1.5em text-align: justify "  一、项目编号:HG20GK-A0000-D080(招标文件编号:HG20GK-A0000-D080)/pp style="line-height: 1.5em text-align: justify "  二、项目名称:2020年海关总署科技司原子吸收光谱仪公开招标采购项目/pp style="line-height: 1.5em text-align: justify "  三、中标信息/pp style="line-height: 1.5em text-align: justify "  01包供应商名称:中国科学器材有限公司/pp style="line-height: 1.5em text-align: justify "  供应商地址:北京市朝阳区太阳宫中路19号1号楼/pp style="line-height: 1.5em text-align: justify "  中标(成交)金额:195.3400000(万元)/pp style="line-height: 1.5em text-align: justify "  02包供应商名称:科沃斯(北京)科技有限公司/pp style="line-height: 1.5em text-align: justify "  供应商地址:北京市门头沟三家店东街51号/pp style="line-height: 1.5em text-align: justify "  中标(成交)金额:118.0000000(万元)/pp style="line-height: 1.5em text-align: justify text-indent: 2em "01包/ptable border="1" cellspacing="0" cellpadding="0" style="border-collapse:collapse border:none" align="center" width="-182"tbodytr style=" height:75px" class="firstRow"td style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " height="75"p style="text-align:center"span style=" font-family:宋体"序号/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="75"p style="text-align:center"span style=" font-family:宋体"名称/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " height="75"p style="text-align:center"span style=" font-family:宋体"规/spanspan style="font-family: 宋体 "格/spanspan style="font-family: 宋体 "型/spanspan style="font-family: 宋体 "号/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " height="75"p style="text-align:center"span style=" font-family:宋体"数量/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " height="75"p style="text-align:center"span style=" font-family:宋体"品牌/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px word-break: break-all " height="75"p style="text-align:center"span style=" font-family:宋体"原产地和制造商名称/span/p/td/trtr style=" height:40px"td style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="40"p style="text-align:center"span style=" font-family:宋体"1/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="40"p style="text-align:center"span style=" font-family:宋体"主设备价格/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="40"p style="text-align:center"span style=" font-family:宋体"//span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="40"p style="text-align:center"span style=" font-family:宋体"//span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="40"p style="text-align:center"span style=" font-family:宋体"//span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="40"p style="text-align:center"span style=" font-family:宋体"//span/p/td/trtr style=" height:95px"td style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="95"p style="text-align:center"span style=" font-family:宋体"1.1/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="95"p style="text-align:center"span style=" font-family:宋体"火焰石墨炉原子吸收光谱仪span1/span/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="95"p style="text-align:center"span style=" font-family:宋体"PinAAcle/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="95"p style="text-align:center"span style=" font-family:宋体"3/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="95"p style="text-align:center"span style=" font-family:宋体"Perkin Elmer/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="95"p style="text-align:center"span style=" font-family:宋体"江苏太仓span\/span珀金埃尔默/span/p/td/trtr style=" height:85px"td style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="85"p style="text-align:center"span style=" font-family:宋体"1.2/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="85"p style="text-align:center"span style=" font-family:宋体"石墨炉原子吸收光谱仪/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="85"p style="text-align:center"span style=" font-family:宋体"PinAAcle/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="85"p style="text-align:center"span style=" font-family:宋体"2/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="85"p style="text-align:center"span style=" font-family:宋体"Perkin Elmer/span/p/tdtd style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="85"p style="text-align:center"span style=" font-family:宋体"江苏太仓span\/span珀金埃尔默/span/p/td/tr/tbody/tablep style="text-indent: 2em "02包br//ptable border="1" cellspacing="0" cellpadding="0" width="NaN" style="border-collapse: collapse border: none " align="center"tbodytr style=" height:57px" class="firstRow"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="57" width="59"pspan style=" font-family:宋体"序span /span号/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="57" width="150"pspan style=" font-family:宋体"名称/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="57" width="67"pspan style=" font-family:宋体"规格型号/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="57" width="59"pspan style=" font-family:宋体"数span /span量/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="57" width="59"pspan style=" font-family:宋体"品span /span牌/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="57" width="103"pspan style=" font-family:宋体"原产地和制造商名称/span/p/td/trtr style=" height:57px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="57" width="59"pspan style=" font-family:宋体"1/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="57" width="150"pspan style=" font-family:宋体"主设备价格/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="57" width="67"pspan style=" font-family:宋体"//span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="57" width="59"pspan style=" font-family:宋体"//span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="57" width="59"pspan style=" font-family:宋体"//span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="57" width="103"pspan style=" font-family:宋体"//span/p/td/trtr style=" height:57px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="57" width="59"pspan style=" font-family:宋体"1.1/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="57" width="150"pspan style=" font-family:宋体"品目span3/span:火焰span /span石墨炉原子吸收光谱仪span2/span/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="57" width="67"pspan style=" font-family:宋体"SP-3882ZAA/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="57" width="59"pspan style=" font-family:宋体"3/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="57" width="59"pspan style=" font-family:宋体"上海光谱/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="57" width="103"pspan style=" font-family:宋体"中国span//span上海光谱仪器有限公司/span/p/td/trtr style=" height:57px"td valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="57" width="59"pspan style=" font-family:宋体"1.2/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="57" width="150"pspan style=" font-family:宋体"品目span4/span:火焰原子吸收光谱仪span3/span/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="57" width="67"pspan style=" font-family:宋体"SP-3801AA/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="57" width="59"pspan style=" font-family:宋体"2/span/p/tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="57" width="59"br//tdtd valign="top" style="border: 1px solid rgb(0, 0, 0) padding: 5px " height="57" width="103"pspan style=" font-family:宋体"中国span//span上海光谱仪器有限公司/span/p/td/tr/tbody/tablep style="text-indent: 2em "br//p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制