当前位置: 仪器信息网 > 行业主题 > >

二维压电平移台

仪器信息网二维压电平移台专题为您提供2024年最新二维压电平移台价格报价、厂家品牌的相关信息, 包括二维压电平移台参数、型号等,不管是国产,还是进口品牌的二维压电平移台您都可以在这里找到。 除此之外,仪器信息网还免费为您整合二维压电平移台相关的耗材配件、试剂标物,还有二维压电平移台相关的最新资讯、资料,以及二维压电平移台相关的解决方案。

二维压电平移台相关的资讯

  • 厦门质谱公司全二维气质联用仪新产品专家评议会召开
    仪器信息网讯 8月25日,厦门质谱仪器仪表有限公司新产品&mdash &mdash &ldquo 全二维气相色谱/快速气相色谱-飞行时间质谱联用仪&rdquo 的专家评议会在厦门大学国家大学科技园召开。评议会由中国仪器仪表学会分析测试分会秘书长刘长宽主持,由中国科学院院士陈洪渊担任评议会组长。参加此次会议的还有中国质谱学会理事长研究员李金英、中科院化学所研究员王光辉、江西省质谱科学与仪器重点实验室主任、教授陈焕文、中国分析测试协会研究员汪正范、中国气象局大气环境研究院研究员徐晓斌、厦门大学环境科学系教授王新红和中国质谱学会领导研究员苏玉兰、副研究员肖国平。  陈洪渊院士、李金英理事长、王光辉研究员等专家进行实地考察  厦门大学机电系教授何坚 做产品研发报告  专家评议组成员合影  评议会专家组首先实地参观考察了厦门质谱公司研发基地,然后听取了该项目的产品研发报告、查新报告、自测报告、用户报告、专利及企业标准,审查了有关技术资料,并进行了现场考查与质询,一致认为厦门质谱仪器仪表有限公司研发的 &ldquo 全二维气相色谱/快速气相色谱-飞行时间质谱联用仪&rdquo ,是国内首款具有自主知识产权的气相色谱-飞行时间质谱联用仪。该仪器设计先进合理,加工和制作精密可靠,测试方法严密有效 仪器的质量范围、分辨率、灵敏度、采谱速度和测试重复性等各项指标均已达到目前国际同类产品的先进水平。专家组建议:继续加大产品的研发投入力度,并积极争取国家支持 加强产品的应用开发 做好市场开发工作,使产品尽早投放市场。   &ldquo 全二维气相色谱/快速气相色谱-飞行时间质谱联用仪&rdquo 的研发成功为打破国外厂家的长期垄断和推动国产质谱的发展具有重要意义。该仪器配备了采集与控制和数据分析两套软件。采用面向对象型和模块化方式开发软件,功能丰富强大,界面简洁直观高效,不仅能完全实现自动化控制和谱图采集,而且能实现数据批量处理 该软件还能与NIST 2014数据库对接,迅速获得相应的图谱和结构信息。仪器的自动调谐和谱图处理等软件算法技术达到国际先进水平。该项目共申请6项发明专利(已授权2项),以及软件著作权6项(已授权1项)。项目产品经用户测试,其检测精度较高,稳定性好,达到了国家产品标准。该仪器可以广泛应用于石油化工、香精香料、烟草酒业、食品安全、环境监测和中药鉴定等领域,对分析复杂样品尤为重要。   GCxGC-TOFMS(iTOFMS-2G)的实物外观图   Fast GC-TOFMS(iTOFMS-1G)的实物外观图产品介绍  全二维气相色谱-飞行时间质谱联用技术(Comprehensive Two-dimensional Gas Chromatography-Time of Flight Mass Spectrometry, GCxGC TOFMS)是近十年以来,国际上发展最迅猛的色质联用技术之一,是色谱-质谱联用技术发展的一个最新趋势。相比于常规气质联用具有高通量、高分离度和高灵敏度等显著优势,是解决复杂体系中全组分和痕量组分分析的最佳方案,逐渐成为石油化工、香精香料、烟草酒业、食品安全、环境监测和中药鉴定等领域的必备分析仪器。  快速气相色谱-飞行时间质谱联用技术(Fast Gas Chromatography-Time of Flight Mass Spectrometry, Fast GC-TOFMS)是当今最具潜力的气质联用技术之一,并已经得到了广泛的实践证明。与常规气质联用相比,能够提高3~6倍的分析速度(在保证足够的分辨率的条件下,只需十分钟就绝大数中等或中等高度复杂混合物的分离与分析)。不仅极大地提高了工作效率,节约了时间成本,而且对色谱柱的要求低,显著减小了对仪器的污染,降低了维护和使用成本。研发团队和公司:  何坚教授带领他的研发团队,经过两年多夜以继日的辛勤努力,开发出了中国首款具有完全自主产权的商品化小型台式气相色谱-飞行时间质谱联用仪。它具有高分辨、高灵敏度和高采集速度的优异功能,实现了与全二维气相色谱/快速气相色谱的完美对接。  厦门质谱仪器仪表有限公司(简称厦门质谱公司)成立于2012年,是国内一家专注于飞行时间质谱器技术研发与生产的新兴企业。去年9月成为江苏天瑞仪器股份有限公司(以下简称天瑞仪器)的控股子公司。厦门质谱公司总经理、厦门大学机电系(原科学仪器工程系)何坚教授师从中国质谱先驱季欧教授,多次担任质谱仪研制重大国家项目的技术负责人,曾研发成功国内首台高分辨率电喷雾离子源飞行时间质谱仪(2002年)。厦门大学机电系(原科学仪器工程系)是国内最早(1983年)、也是目前国内非常少的、具有以质谱仪研制为科研方向的工科院系。因此,厦门质谱公司传承了厦门大学三十余年质谱技术的研究经验与成果。  天瑞仪器在2012年一次推出GC-QMS、LC-QMS和ICP-MS三款质谱产品之后时隔2年,质谱仪产品家族又增添新的成员-全二维气相色谱/快速气相色谱-飞行时间质谱联用仪。至此,天瑞仪器在气质联用领域形成了从GC-QMS到GCxGC/Fast GC-TOFMS的高低搭配,形成完整的气质联用解决方案,成为目前国内质谱产品最全的厂家。去年天瑞仪器年报显示GC-QMS销售22台,创下迄今为止国产质谱的年销售最佳成绩。这表明天瑞仪器质谱产品已经逐步被国内用户认可,市场前景良好。
  • 压电位移台常用术语中英文对照表
    压电位移台常用术语中英文对照表Absolute accuracy : Deviation between the actual position and the desired one. If a stage has to move 100µm but it moves only 99.99µm (measured through an ideal scale), then the inaccuracy is 10nm. The permanent positioning error along an axis is designated as accuracy. Absolute accuracy is aff¬ected by calibration errors, linearity errors, hysteresis, Abbe errors and positioning noise. 绝dui精度:实际位置与所需位置之间的偏差。 如果一个平台必须移动 100µm,但它仅移动 99.99µm(通过理想标尺测量),则误差为 10nm。 沿轴的泳久定位误差称为精度。 绝dui精度受校准误差、线性误差、滞后、阿贝误差和定位噪声的影响。Backlash : Backlash is a positioning error occurring upon change of direction. Backlash can be caused by insufficiently preloaded thrust or inaccurate meshing of drive components, for example gear teeth. Piezoconcept’s flexure motion translation mechanism and piezo actuator designs are inherently backlash free. 齿隙:齿隙是在运动方向改变时发生的定位误差。 齿隙可能是由于预载推力不足或驱动部件(例如齿轮齿)啮合不准确造成的。 Piezoconcept 的弯曲运动平移机构和压电致动器设计本质上是无间隙的。Bandwidth : The frequency range to which the amplitude of the stage' s motion is dropped by 3dB. It reflects how fast the stage can follow the driving signal. 带宽:载物台运动幅度下降的频率范围为3dB。 它反映了平台能够以多快的速度跟随驱动信号。Drift : A position change over time, which includes the e¬ffects of temperature change and other environmental e¬ffects. The drift may be introduced from both the mechanical system and electronics. 漂移:位置随时间的变化,包括温度变化和其他环境影响的影响。 漂移可能来自机械系统和电子设备。Friction : Friction is defined as resistance between contacting surfaces during movement. Friction may be constant or speed dependent. Because they use flexure, the nanopositioners from Piezoconcept are friction free. 摩擦力:摩擦力定义为运动过程中接触表面之间的阻力。 摩擦力可以是恒定的或取决于速度的。 因为使用柔性连接,Piezoconcept 的纳米定位器是无摩擦的。Hysteresis : The positioning error between forward scan and backward scan. A closed-loop control is an ideal solution for this problem and is done by using a network of High Resolution silicon sensor to provide feedback signals. 滞后:前向扫描和后向扫描之间的定位误差。 闭环控制是该问题的理想解决方案,它通过使用高分辨率硅传感器网络提供反馈信号来完成。Linearity error : The error between the actual position and the first-order best fit line (straight line). Our nanopositioning products are calibrated with laser interferometry and the non linearity errors are compensated down to 0.02% of the full travel.线性误差:实际位置与一阶蕞佳拟合线(直线)之间的误差。 我们的纳米定位产品使用激光干涉仪进行校准,非线性误差补偿低至全行程的 0.02%。Orthogonality error : The angular off¬set of two defined motion axes from being orthogonal to each other. It can be interpreted as a part of crosstalk. 正交性误差:两个定义的运动轴相互正交的角度偏移。 它可以解释为串扰的一部分。Position noise : The amplitude of the stage shaking when it is on a static command. It is usually measured and specified with Peak-To-Peak value. It is a combination of the sensor noise, driver electronics noise and command noise, etc. The position noise of our stages is very limited due to the very high Signal-To-Noise ratio of the Silicon HR sensors we use. 位置噪声:在静态命令下载物台晃动的幅度。 它通常用峰峰值来测量和指定。 它是传感器噪声、驱动器电子噪声和命令噪声等的组合。由于我们使用的 Silicon HR 传感器具有非常高的信噪比,我们平台的位置噪声非常有限。Range of motion : The maximum dISPlacement of the nanopositioners. 运动范围(行程):纳米定位器的蕞大位移。Resolution : The minimum step size the stage can move. 分辨率:舞台可以移动的蕞小步长。Resonant frequency : Piezostage are oscillating mechanical systems characterized by a resonant frequency. The resonant frequency that we give is the lowest resonant frequency that can be seen on a nanopositioner. In general, the higher the resonant frequency of a system, the higher the stability and the wider working bandwidth the system will have. The resonant frequency of a piezostage is determined by the square root of the ratio of sti¬ness and mass. 谐振频率:压电级是以谐振频率为特征的振荡机械系统。 我们给出的共振频率是在纳米定位器上可以看到的蕞低共振频率。 一般来说,系统的谐振频率越高,系统的稳定性和工作带宽就越宽。 压电级的共振频率由刚度和质量之比的平方根决定。Silicon HR sensor : Piezoconcept use temperature compensated High-Resolution silicon sensors network for reaching highest long-term stability. This measuring device is capable of measuring position noise in the picometer range and its response is not dependent of the presence of pollutants, air pressure changes like other high-end sensors can be. Si-HR 传感器:Piezoconcept 使用温度补偿高分辨率硅传感器网络,以达到蕞高的长期稳定性。 该测量装置能够测量皮米范围内的位置噪声,并且其响应不依赖于污染物的存在,应对改变气压带来的影响与其他高端传感器一样。Step response time : The step response time is the time needed by the nanopositioner to do the travel from 10% of the commanded value to 90% of the commanded value. The step response time reflects the dynamic characteristics of the system and is relatively to the installation method and load of the stage.阶跃响应时间:阶跃响应时间是纳米定位器从指令值的 10% 到指令值的 90% 所需的时间。 阶跃响应时间反映了系统的动态特性,并且与位移台的安装方式和负载有关。更多详情请联系昊量光电/欢迎直接联系昊量光电关于昊量光电:上海昊量光电设备有限公司是国内知名光电产品专业代理商,代理品牌均处于相关领域的发展前沿;产品包括各类激光器、光电调制器、光学测量设备、精密光学元件等,涉及应用领域涵盖了材料加工、光通讯、生物医疗、科学研究、国防及更细分的前沿市场如量子光学、生物显微、物联传感、精密加工、先进激光制造等;可为客户提供完整的设备安装,培训,硬件开发,软件开发,系统集成等优质服务。相关技术文
  • 新型二维铁电材料铁电畴结构的调控研究获进展
    铁电材料因具有稳定的自发极化,且在外加电场下具有可切换的极化特性,在非易失性存储器、传感器、场效应晶体管以及光学器件等方面具有广阔的应用前景。与传统的三维铁电材料不同,二维范德华层状铁电材料表面没有悬空键,这可降低表面能,有助于实现更小的器件尺寸。此外,传统三维铁电薄膜的外延生长需要合适的具有小的晶格失配的基材,而在二维层状材料中,许多具有不同结构特性的层可以被堆叠并用于铁电异质结构器件,不受基底的限制,从而提供了广泛的铁电特性可调性。某些二维层状材料已在实验或理论上被报道为铁电材料,包括薄层SnTe、In2Se3、CuInP2S6、1T单层MoS2、双层或三层WTe2、铋氧氯化物和化学功能化的二维材料等。然而,目前对二维材料铁电畴结构的调控及铁电-反铁电相变等方面缺乏系统性研究,在范德华层状材料中实现连续的铁电域可调性和铁电-反铁电相转变仍是挑战。   近日,中国科学院苏州纳米技术与纳米仿生研究所研究员康黎星团队与中国人民大学教授季威团队、南方科技大学副教授林君浩团队、松山湖材料实验室副研究员韩梦娇合作,在新型二维铁电材料铁电畴结构的调控方面取得进展。该团队发现了一种具有室温本征面内铁电极化的新型二维材料Bi2TeO5,并观测到由插层铁电畴壁诱导的铁电畴大小、形状调控机制以及由此产生的铁电相到反铁电相的转变。科研人员采用CVD法合成新型的超薄室温二维铁电材料Bi2TeO5,通过压电力显微测(PFM)证实该材料存在面内的铁电畴结构,结合电子衍射及原子尺度的能谱分析和第一性原理计算结果对其结构进行解析,结合像差校正透射电镜对亚埃尺度的离子位移进行分析(图1)。对Bi2TeO5中畴结构的进一步研究发现,样品中存在大量的条状畴结构。原子尺度结构分析和计算结果表明,由于Bi/Te插层的存在,有效降低了畴壁的应变能,从而使得180°畴壁的条状畴能够稳定(图2)。研究表明,通过调控前驱体中Bi2O3和Te的比例可以有效实现180°铁电畴宽度的调控及实现铁电-反铁电相的反转(图3、图4)。此外,Bi/Te插层的引入除了能够改变铁电畴的大小,同时可以对畴壁的方向进行调控(图5)。   本研究对Bi2TeO5室温面内铁电性的报道丰富了本征二维铁电材料体系。原子插层作为新的调控单元对铁电畴大小及方向的调控,以及由此产生的铁电-反铁电相变,为二维铁电材料畴结构及相结构的调控提供了新思路,并为在未来纳米器件领域的应用奠定了新的材料基础。相关研究成果以Continuously tunable ferroelectric domain width down to the single-atomic limit in bismuth tellurite为题,发表在《自然-通讯》(Nature Communications)上。图1.二维层状铁电材料Bi2TeO5的CVD生长及结构表征。a、二维层状Bi2TeO5的光镜图;b-c、样品的表面形貌及对应的面内PFM图像;d-f、不同方向Bi2TeO5的结构模型以及铁电极化的产生;g-I、Bi2TeO5的原子尺度结构表征及对应的极化分布。图2.Bi/Te插层诱导的180°铁电畴的形成。a、Bi2TeO5中典型条状180°铁电畴的面内PFM;b、180°铁电畴壁的原子尺度HAADF-STEM图;c-e、180°铁电畴壁处铁电离子位移(DBi)及晶格畸变(晶格转角θ)的原子尺度分析;f、弛豫后180°铁电畴的结构模型。图3.插层对畴宽度的调控及铁电相到反铁电相的转变。a-d、具有不同周期的180°畴HAADF-STEM图像;e-h、分别为对应图a-d中的离子位移分布。图4.插层诱导的反铁电相。a、具有反铁电性样品的PFM;b-d、反铁电样品中的原子尺度极化分布及晶格畸变分析;e、弛豫后的反铁电相结构模型。图5.畴壁台阶的形成及插层对畴壁取向的影响。a-b、样品中扇形铁电畴的面内PFM图像;c、扇形铁电畴边缘处大量台阶形成的倾斜畴壁面;d-e、畴壁台阶的原子尺度HAADF-STEM图像及对应的离子位移分析;f、弛豫后的畴壁台阶结构模型;g、Te和O浓度对畴壁台阶形成焓的影响。
  • 基于垂直架构的新型二维半导体/铁电多值存储器研究获进展
    二维层状半导体材料得益于原子级薄的厚度,受到静电场屏蔽效应减弱,利用门电压可对其电学性能进行有效调控。利用二维层状半导体材料构建的多端忆阻晶体管(Memtransistor)可以模拟人脑中复杂的突触活动,有望应用于未来非冯架构的神经形态计算等。此外,相比于平面构型,二维纳米功能材料通常具有开放且洁净的界面,使其能够进行任意垂直组装,可实现硅基半导体工艺所不能兼容的多层向上集成范式,从而在单位面积内沿z轴获得更高密度集成。因此,基于垂直架构的二维纳米电子学器件,已成为当前延续摩尔定律的重要研究方向之一。迄今为止,针对铁电二维材料忆阻晶体管的研究仍然匮乏,尤其缺失具有垂直构型的门电压可调的忆阻器件的研究,主要原因在于传统基于隧穿架构的二维忆阻器难以在垂直方向兼具更高性能和有效栅极调控特性。   近日,中国科学院金属研究所沈阳材料科学国家研究中心与国内多家单位合作,设计二维半导体与二维铁电材料的特殊能带对齐方式,将金属氧化物半导体场效应晶体管(MOSFET)与非隧穿型的铁电忆阻器垂直组装,首次构筑了基于垂直架构的门电压可编程的二维铁电存储器。11月17日,相关研究成果以A gate programmable van der Waals metal-ferroelectric-semiconductor vertical heterojunction memory为题,在线发表在《先进材料》(Advanced Materials)上。   科研团队使用二维层状材料CuInP2S6作为铁电绝缘体层,利用二维层状半导体材料MoS2和多层石墨烯分别作为铁电忆阻器的上、下电极层,形成金属/铁电体/半导体(M-FE-S)架构的忆阻器;在顶部半导体层上方通过堆叠多层h-BN作为栅极介电层引入了MOSFET架构。底部M-FE-S忆阻器件开关比超过105,具有长期数据存储能力,且阻变行为与CuInP2S6层的铁电性存在较强耦合(图1)。此外,研究通过制备3×4的阵列结构展示了该型铁电忆阻器件应用于存储交叉阵列【crossbar array,实现随机存取存储器(RAM)的关键结构】的可行性(图2)。进一步,研究在上方MOSFET施加栅极电压,有效调控了二维半导体层MoS2的载流子浓度(或费米能级),从而对下方M-FE-S忆阻器的存储性能进行操控(图3)。基于上述成果,科研人员展示了该型器件的门电压可调多阻态的存储特性(图4)。   本研究展示的门电压可编程的铁电忆阻器有望在未来人工突触等神经形态计算系统中发挥重要作用,并或推动基于二维铁电材料制备多功能器件的开发。此外,该工作提出的MOSFET与忆阻器垂直集成的架构可进一步扩展到其他二维材料体系,从而获得性能更加优异的新型存储器。   研究工作得到国家重点研发计划“青年科学家项目”、国家自然科学基金青年科学基金项目/面上项目/联合基金项目、沈阳材料科学国家研究中心等的支持。图1.器件结构设计及两端铁电忆阻器的存储性能。a、器件结构示意图;b、器件的阻变行为;c、少层CuInP2S6的压电力显微镜相位和幅值图;d、器件在不同温度下的输运行为;e、存储器的数据保持能力测试;f、存储器开关比统计图。图2.铁电忆阻器存储阵列演示。a、二维铁电RAM结构示意图;b、CuInP2S6/MoS2界面的HAADF-STEM照片;c、3×4阵列的SEM图像;d、局部放大图;e、3×4阵列的光学照片;f-g、通过读取3×4阵列中每个交叉点的高阻态和低阻态编码的“I”“M”“R”的简化字母。图3.器件的可编程存储特性。a、器件结构示意图;b、MoS2层的转移特性曲线;c-d、异质结的能带结构图;e-f、通过施加门电压实现了对存储窗口从有到无的调控。图4.门电压可编程存储器的多阻态存储特性。a-d、器件在不同门电压下的存储窗口;e、器件的多阻态存储性能演示;f、栅极调控的耐疲劳特性。
  • 专家约稿|压电力显微术的基本技术原理与使用注意事项
    原子力显微术(AFM)作为一种表征手段,已成功应用于研究各个领域的表面结构和性质。随着人们对多功能和更高精度的需求,原子力显微技术得到了快速发展。目前,原子力显微镜针对不同的研究对象,搭配特定的应用功能模块可以研究材料的力学、电学以及磁学等特性。其中压电力显微术(PFM)已被广泛应用于研究压电材料中的压电性和铁电性。1. 压电材料与铁电材料压电材料具有压电效应,从宏观角度来看,是机械能与电能的相互转换的实现。当对压电材料施加外力时,内部产生极化现象,表面两侧表现出相反的电荷,此过程将机械能转化为电能,为正压电效应。与之相反,若给压电材料的施加电场,材料会产生膨胀或收缩的形变,此过程将电能转化为机械能,为逆压电效应。铁电材料同时具备铁电性和压电性。铁电性指在一定温度范围内材料会产生自发极化。铁电体晶格中的正负电荷中心不重合,没有外加电场时也具有电偶极矩,并且其自发极化可以在外电场作用下改变方向。并非所有的压电材料都具有铁电性,例如压电薄膜 ZnO。压电铁电材料广泛应用于压电制动器、压电传感器系统等各个领域,与我们的生活息息相关,还应用于具有原子分辨率的科学仪器技术,例如在原子力显微镜中扫描的精度在很大程度上取决于内部压电陶瓷管扫描器的性能。2. PFM工作原理原子力显微镜是一种表面表征工具,通过检测针尖与样品间不同的相互作用力来研究样品表面的不同结构和性质。针尖由悬臂固定,激光打在悬臂的背面反射到位置敏感光电二极管上,由于针尖样品间作用力发生变化会使悬臂产生相应的形变,激光光束的位置会有所偏移,通过检测光斑的变化可获得样品的表面形貌信息。 图1 压电力显微术工作原理PFM测量中导电针尖与样品表面接触,样品需提前转移到导电衬底上,施加电压时可在针尖在样品间形成垂直电场。为检测样品的压电响应,在两者之间施加AC交流电场,由于逆压电效应,样品会出现周期性的形变。当施加电场与样品的极化方向相同时,样品会产生膨胀,反之,当施加电场与样品的极化方向相反时,样品会收缩。由于样品与针尖接触,悬臂会随着样品表面周期性振荡发生形变,悬臂挠度的变化量与样品电畴的膨胀或收缩量直接相关,被AFM锁相放大器提取,获得样品的压电响应信号。3. PFM的测量模式图2 压电力显微术的三种测量模式PFM目前有三种测量模式,分别为常规的压电力显微术、接触共振压电力显微术和双频共振追踪压电力显微术。常规的压电力显微术在测量过程中针尖的振动频率远小于其自由共振频率,将其称为Off-resonance PFM。这种模式得到的压电信号通常较小,一般需要施加更高的电压,通常薄层材料的矫顽场较小,有可能会改变样品本身的极性,不利于薄层材料压电响应的测量,存在一定的局限性。此时获得的振幅值正比于压电系数,利用针尖的灵敏度可直接将振幅得到的PFM 信号转换为样品的表面位移信息,获得材料的压电系数。接触共振的压电力显微术测量称其为contact-resonance PFM,可以有效放大信号,针尖的振动频率为针尖与样品接触时的接触共振频率,一般是针尖自由共振频率的3-5倍。此时无需施加很高的外场就能得到较强的PFM信号,不会改变样品的极化方向。此时测得 PFM 压电响应信号比常规FPM测量的响应信号幅值放大了 Q 倍(Q为共振峰品质因子),计算压电系数时需考虑放大的倍数。但此技术也存在一定的局限性,针尖的接触共振频率是在某一位置获得的,接触共振频率取决于此位置的局部刚度。在扫描的过程中,针尖与样品之间的接触面积会发生变化,引起接触共振频率的变化,若以单一的接触共振频率为针尖的振动频率会使得信号不稳定,测得的振幅信号在共振频率处放大,其余地方信号较弱,极大的影响压电系数的定量分析,得到与理论值不符的压电系数。与此同时PFM信号易与形貌信号耦合,产生串扰。双频共振追踪压电力显微术(DART-PFM)可以有效避免压电信号与形貌的串扰。在这项技术中,通过两个锁相放大器分别给针尖施加在接触共振峰两侧同一振幅位置的频率,当接触共振频率变化时,振幅会随之变化,锁相放大器中的反馈系统会通过调节激励频率消除振幅的变化,由此获得清晰的形貌和压电信号。此时在量化压电系数时需要额外的校准步骤确定振幅转化为距离单位的值,目前一般是通过三维简谐振动模型去校准修订得到压电材料的压电系数。 4. PFM的表征与应用PFM测量中可获得样品的振幅和相位图。图中相位的对比度反映样品相对于垂直电场的极化方向,振幅信息显示极化的大小以及畴壁的位置。一般来说,材料的压电响应是矢量,具有三维空间分布,可分为平行和垂直于施加外场的两个分量。图3 BFO样品的PFM表征图[1]若样品只存在与电场方向平行的极化响应,PFM所获得的振幅和相位信息可直接反映样品形变的大小和方向,若样品畴极化方向与外加电场相同,相位φ=0;若样品畴极化方向与外加电场相反,则相位φ=180°。此时垂直方向的压电响应常数可直接由获得的振幅与施加的外场计算出来,在共振频率下可以定量测量。值得说明的是,PFM获得的压电响应常数很难与块体材料相比较,因为样品在纳米尺度的性质会与块体材料有显著的不同。若样品具有平行和垂直于电场的压电响应,在施加电场时,样品的形变出现面内和面外两个方向。利用Vector PFM可以同时获得悬臂的垂直和横向位移,可以将得到的信号矢量叠加,获得样品的三维PFM图像。压电力显微术不仅可以成像,还能用于研究铁电材料的电滞回线,并且可以对铁电材料进行写畴。铁电材料的相位和振幅与施加的电压呈函数关系,测得的电滞回线和蝴蝶曲线可以用于判断铁电材料的矫顽场,矫顽场是铁电材料发生畴极化反转时的外加电压。一般的电滞回线的获取需要施加大于±10V的直流偏压,但值得注意的是较高的直流电压会增加针尖与样品间的静电力贡献,静电力信号有可能超过压电响应信号,从而掩盖畴极化反转信号。图4 SS-PFM的工作原理图开关谱学压电力显微术(SS-PFM)可以有效减小静电力的影响,原理如图4所示与普通PFM在测量电滞回线时线性施加DC电压的方式不同,SS-PFM将DC电压以脉冲的形式初步增加或减小,每隔一定的时间开启和关闭DC电压,并且持续施加AC交流电。其中DC用于改变样品的极化,AC交流电用于记录DC电压接通和关闭时的压电信号。图为研究二维异质材料MoS2/WS2压电性能时利用SS-PFM测得的材料特性曲线。 图5 二维异质材料MoS2/WS2的材料特性曲线[2]铁电材料与普通压电材料最大不同是在没有外加电场时也具有电偶极矩,并且其自发极化可以在外电场作用下改变方向,因此可利用是否能够写畴来区分铁电材料。知道压电材料的矫顽场之后可以对样品进行局部极化样品进行写畴,畴区可以自定义,正方形、周期阵列型或者更加复杂的图案。最简单的写畴是先选择一10×10μm正方形区域,其中6×6μm区域施加正偏压,4×4μ区域施加负偏压,获得回字形写畴区域,在相位图中可以清晰的看到所写畴区。图6 Si掺杂HfO2样品的回字形写畴区域[3]5. 注意事项在PFM测量中首先要保证在样品处于电场之中,在样品的前期准备时需将样品转移至导电衬底,并确定针尖和放置样品的底座可以施加电信号,此时才能保证施加电压时在针尖在样品间具有垂直电场。在PFM测量中静电效应的影响也不容忽略,导电针尖电压的电荷注入可诱导静电效应并影响材料的压电响应,导致PFM振幅和相位信息与特性曲线失真。尽管静电效应在 PFM 测试中无可避免,但可以使用弹簧常数较大的探针或者施加直流偏压来尽量减小其中的静电影响。此外针尖的磨损也会极大的影响PFM测量。由于针尖与样品间相互接触,加载力不宜过高,过高会损坏样品表面,保持恒定适中的加载力。此外使用较软的针尖在扫描过程中可以保护针尖不受磨损,并且保护样品。PFM测量中常用的针尖为PtSi涂层的导电针尖,以获得较稳定的PFM信号。参考文献[1] HERMES I M, STOMP R. Stabilizing the piezoresponse for accurate and crosstalk-free ferroelectric domain characterization via dual frequency resonance tracking, F, 2020 [C].[2] LV JIN W. Ferroelectricity in untwisted heterobilayers of transition metal dichalcogenides [J]. Science (New York, NY), 2022, 376: 973-8.[3] MARTIN D, MüLLER J, SCHENK T, et al. Ferroelectricity in Si-doped HfO2 revealed: a binary lead-free ferroelectric [J]. Adv Mater, 2014, 26(48): 8198-202.作者简介米烁:中国人民大学物理学系在读博士研究生,专业为凝聚态物理,主要研究方向为低维功能材料的原子力探针显微学研究。程志海:中国人民大学物理学系教授,博士生导师。2007年,在中国科学院物理研究所纳米物理与器件实验室,获凝聚态物理博士学位。2011年-2017年,在国家纳米科学中心纳米标准与检测重点实验室,任副研究员/研究员。曾获中国科学院“引进杰出技术人才计划”和首届“卓越青年科学家”、卢嘉锡青年人才奖等。目前,主要工作集中在先进原子力探针显微技术及其在低维量子材料与表界面物理等领域的应用基础研究。
  • 上海天美公布官方公众平台微信二维码
    上海天美官方公众平台微信已完成认证,欢迎各位专家、同行、同事积极订阅!~ 扫描以下 上海天美 二维码,速度关注。首先准备工具1、智能手机一部(这个是必须的)2、手机上装微信(这个也是必须的)具体操作步骤1、首先的注册微信客服端2、扫描二维码:操作方法:打开微信 朋友们 添加朋友扫描二维码 加为好友 关注成功 关于上海天美科学仪器有限公司 上海天美是由创建于1994年的上海天美科学仪器有限公司和2006年成立的上海天美生化仪器设备工程有限公司组成,它们都是天美(控股)有限公司的独资子公司。上海天美在上海、北京、广州、成都、沈阳、西安等地设立分公司。上海天美主要产品包括气相、液相、离子色谱仪、紫外/可见、原子吸收分光光度计、荧光光谱、电化学、酶标/洗板、超微量核酸蛋白测定仪、离心机、生命科学系列以及试剂、耗材和软件等,提供完整的实验室综合解决方案,为各行各业的客户服务。欲了解更多信息,请浏览公司网站:www.techcomp.com.cn 上海天美市场部2013年06月24日
  • 二维磁性材料非线性光学研究取得重要进展
    p style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "据悉,近年来,二维磁性材料在国际上成为备受关注的研究热点。它们能将自发磁化保持到单原胞层厚度,为人们理解和调控低维磁性提供了新的研究平台,也为二维磁性与自旋电子学器件的研发开辟了新的方向,在新型光电器件、自旋电子学器件等方面有着重要应用价值。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "尽管二维磁性材料的铁磁性质已有研究,但反铁磁态由于不具有宏观磁化,材料体系整体对外不表现出磁性,加之样品既薄又小,其实验研究是领域内的一大难题。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "针对这一问题,近日,复旦大学物理系吴施伟课题组与华盛顿大学许晓栋课题组合作,在二维磁性材料双层三碘化铬中观测到源于层间反铁磁结构的非互易二次谐波非线性光学响应,并揭示了三碘化铬中层间反铁磁耦合与范德瓦尔斯堆叠结构的关联。北京时间8月1日凌晨,相关研究成果以《反铁磁双层三碘化铬中巨大的非互易二次谐波产生》(“Giant nonreciprocal second harmonic generation from antiferromagnetic bilayer CrI3”)为题发表于《自然》(Nature)杂志。/span/pp style="text-align: center text-indent: 2em "span style="font-family: " times new roman" "img style="max-width: 100% max-height: 100% width: 400px height: 273px " src="https://img1.17img.cn/17img/images/201908/uepic/4ab2a45d-ae2c-44ff-a0d7-2d4959a3a9a0.jpg" title="caef76094b36acaf4a6e7356761eb51503e99cde.jpeg" alt="caef76094b36acaf4a6e7356761eb51503e99cde.jpeg" width="400" height="273" border="0" vspace="0"//span/pp style="text-indent: 2em text-align: center "span style="font-family: " times new roman" font-size: 14px "双层三碘化铬 图片来自复旦大学物理系网站/span/pp style="text-align: justify "strongspan style="font-family: " times new roman" "将经典方法引入新领域 开辟广阔研究空间/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "研究工作中观测到的由层间反铁磁诱导的二次谐波响应让团队成员们非常兴奋,因为他们知道,这在二维材料的研究和非线性光学领域都具有重要的意义。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "“意义首先在于其独特性。”吴施伟介绍,迄今为止二维材料领域所研究的二次谐波大多由晶格结构的对称破缺引起。“对称破缺也就是破坏对称性,例如人的左右手原本是镜面对称的,如果一只手指受伤,那么镜面对称就破缺了。”而这种由磁结构产生的非互易二次谐波和前者有本质区别,从原理上就十分新颖。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "反铁磁材料由于没有宏观的磁矩,对外部的物理激励一般难以产生宏观的可测量的响应,对仅有几个原子层厚的二维反铁磁材料往往无能为力。“过去这个问题就像是灯光照不到的地方,一片黑暗无从下手。然而就是这样的一种‘暗’状态,现在能通过二次谐波的方式变‘亮’。这也是将一种经典的方法引入一个新领域的美妙所在。”吴施伟对此颇有感触。这种二次谐波过程对材料磁结构的对称性高度敏感,为二维磁性材料的研究开辟了广阔的研究空间。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "研究团队同时发现,双层反铁磁三碘化铬的二次谐波信号相比于过去已知的磁致二次谐波信号(例如氧化铬Cr2O3),在响应系数上有三个以上数量级的提升,比常规铁磁界面产生的二次谐波更是高出十个数量级。利用这一强烈的二次谐波信号,团队得以揭示双层三碘化铬的原胞层堆叠结构的对称性。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "吴施伟介绍,体材三碘化铬在高温下属于单斜(monoclinic)晶系,在低温下发生结构相变而变为菱形(rhombohedral)晶系,两者的差别在于范德瓦尔斯作用(一种原子或分子之间的相互作用力,相比于化学键的相互作用,范德瓦尔斯相互作用弱得多)的层间平移。但在寡层极限下,低温下的晶格堆叠结构还存在着争议。团队在实验中使用一束偏振光测量了材料在空间不同方向的极化,通过测量偏振极化的二次谐波信号,发现它与单斜晶格的堆叠结构都具备镜面对称性,这与国际上新近发表的理论计算结果一致,为研究二维材料层间堆叠结构与层间铁磁、反铁磁耦合的关联提供了新的实验证据和研究手段。/span/pp style="text-align: justify "strongspan style="font-family: " times new roman" "创新研发实验系统 实现基础研究突破/span/strong/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "研究团队在实验中探测的反铁磁材料仅有两个原胞层厚度(厚度在2nm以下),而在此条件下,中子散射等测量手段很难奏效。针对这一问题,团队基于过去多年在二维材料非线性光学研究领域的积累,运用了光学二次谐波这一方法来探测二维磁性材料的磁结构与相关特性。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "光学二次谐波过程对体系的对称性高度敏感,光学二次谐波的探测方法从体系的对称性入手,能够灵敏地探测体系的反铁磁性。与通常探测磁性的实验手段不同,它不依赖于材料的宏观磁性,而取决于微观磁结构造成的对称破缺。双层三碘化铬在反铁磁态下,其磁结构不但打破了时间反演对称性,也同时打破了空间反演对称性,由此产生强烈的非互易二次谐波响应。当体系升至转变温度以上、或施加面外磁场拉为铁磁态后,磁结构的对称性却发生了改变,这一二次谐波信号也随之消失。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "自2017年至今,两年的协力共进浇灌出如今的成果。团队首先利用实验室已有的无液氦可变温显微光学扫描成像系统进行了初步测量,但由于该系统没有磁场,很多关键的实验测量受到了限制。为解决这一问题,课题组成员攻坚克难,利用一套无液氦室温孔超导磁体,自主研发搭建了一套无液氦可变温强磁场显微光学扫描成像系统,并借助新系统实现强磁场下的光学测量,完成了关键数据的探测。/span/pp style="text-align: justify text-indent: 2em "span style="font-family: " times new roman" "据了解,该研究工作的合作团队还包括香港大学教授姚望、卡耐基梅隆大学教授肖笛、华盛顿大学教授曹霆、美国橡树岭国家实验室研究员Michael McGuire,以及我系教授刘韡韬、陈张海、高春雷等。吴施伟和许晓栋为文章的通讯作者,我系博士研究生孙泽元和易扬帆为共同第一作者。研究工作得到自然科学基金委、科技部重大研究计划和重点研发专项计划等项目经费的支持。/span/ppbr//p
  • 重庆研究院单晶二维材料GeSe大面积单原子层研究获新进展
    p  近日,中国科学院重庆绿色智能技术研究院量子信息技术中心团队在以GeSe为代表的IVsupA/supVIsupB/sup大面积单原子层材料制备和能带结构确定,及其器件测试分析研究中取得最新进展。/pp  目前已有近百种二维材料被人们发现,包括第四主族单质、第三和第五主族构成的二元化合物、金属硫族化合物、复合氧化物等。这些发现不仅打破了长久以来二维晶体无法在自然界中稳定存在的说法,其自身的特性更是呈现出许多新奇的物理现象和电子性质,如半整数、分数和分形量子霍尔效应、高迁移率、能带结构转变等。IVsupA/supVIsupB/sup单晶二维材料MX(M=Ge,Sn;X=S,Se)因极高稳定性、环境友好性、丰富蕴藏量,以及从材料结构到性能上与黑磷烯的相似性而受到广泛关注。基于第一性原理方法对MX的能带结构的计算、对其从间接带隙到直接带隙的临界层厚,以及基于其Csub2v/sub对称结构的压电性能理论预测的研究已多有报道。但受其脆性影响,该类型材料难以直接采用物理撕裂法制备得到单原子层材料。采用化学合成方法,也难以获得较大面积的单原子层(大于1微米)。因此,对IVsupA/supVIsupB/sup单晶二维材料的研究迄今仍停留在理论预测阶段。/pp  在MX中,GeSe理论上被认为是唯一具有直接带隙的材料,且该材料的光谱范围预测几乎覆盖了整个太阳光光谱,这使它在量子光学、光电探测、光伏、电学等领域有巨大的应用潜力。据此,重庆研究院量子信息技术中心团队研究发现,利用单晶硅表面二氧化硅的隔热效果和激光减薄方法,可以在一定激光功率密度下不断地减薄GeSe的层厚,直至单原子层。其减薄机理是激光在GeSe表层产生高热,由于GeSe材料本身的层状特性,难以将热量及时传导出去,导致层厚被不断减薄。当GeSe的层厚被减薄至单原子层时,整个SiOsub2/sub/Si可以被看作热沉而无法继续减薄。利用此方法,该团队首次实验制备出了100微米以上的GeSe单原子层材料,基于荧光谱、拉曼谱等方法对GeSe单原子层的原子和能带结构进行研究,并基于第一性原理方法理论印证了实验结果的可靠性。实验和理论计算表明,GeSe单原子层的荧光谱非常宽,从可见光波段到近红外波段发现了8个荧光峰,从间接带隙到直接带隙的转变发生在第三层。此外,该团队分别实验制备出了基于GeSe体材料和二维材料的晶体管,其I-V和光反应性能表明,二维材料的光敏度是相应体材料的3.3倍,同时二维材料器件的光反应度也远优于相应体材料器件。/pp  相关研究成果发表在emAdvanced Functional Materials/em上。该研究得到了重庆市基础前沿重大项目、中科院“西部之光”西部青年学者A类项目、国家自然科学基金面上项目的资助。??/ppbr//p
  • Science: 扫描探针显微镜控制器在二维磁性材料研究中的突破性应用进展
    导读:自2017年来,二维磁性在单层材料中的实现使得二维磁性材料受到了大的关注。范德瓦尔斯磁体让我们对二维限下的磁性有了更进一步的了解,不同磁结构的范德瓦尔斯磁体使得实验上探究二维下的磁学模型成为可能。例如,在单层CrI3中发现Ising铁磁,而XY模型的NiPS3在单层限下的磁性会被抑制。除了这些,有着变磁行为的范德瓦尔斯磁体更为有趣,比如在少层CrCl3中由于奇数层存在着未补偿磁矩,使得奇数层存在着spin-flop转变,而偶数层则没有。目前,现存的二维磁性材料非常稀少,这意味着新范德瓦尔斯磁体的发现,不仅仅有助于二维磁性的研究,更是为二维自旋电子学器件的应用提供了材料基础[1]。相比于传统的三维空间结构,二维层状磁性材料因其原子层间较弱的范德华尔斯作用力,能够人为操控其层间堆叠方式,进而有可能影响其磁耦合特性,为新型二维自旋器件的研制提供新思路。然而,堆叠方式与磁耦合间的关联机制仍不甚明晰,需要借助先进的扫描探针技术才能实现在原子层面的直接实验观测。美国RHK公司所提供的先进R9plus扫描探针显微镜控制器可以有效结合课题组自主研发的扫描探针设备,同时给予高效率的扫描控制,从而可以针对二维磁性材料应用领域展开更为深入的研究。本文重点介绍国内课题组灵活运用RHK公司扫描探针控制器,配合自主研发设计的扫描探针设备所开展的一系列国际前沿性二维材料领域的研究工作,其中各研究工作当前已在国际SCI核心学术期刊发表。科学成果的突破,离不开实验技术的不断攻坚克难。复旦大学物理学系教授高春雷、吴施伟团队通过团队自主研发搭建的扫描探针设备创造性地将原位化合物分子束外延生长技术和自旋化扫描隧道显微镜相结合,在原子层面彻底厘清了双层二维磁性半导体溴化铬(CrBr3)的层间堆叠和磁耦合间的关联,为二维磁性的调控指出了新的维度。相关研究成果以 《范德华尔斯堆叠依赖的层间磁耦合的直接观测》(“Direct observation of van der Waals stacking dependent interlayer magnetism”)为题发表于《科学》(Science)主刊,其中复旦大学物理学系博士后陈维炯为作者[2]。图中所示为陈博士与RHK技术总监进行深入的技术探讨,现场摸索优化测试信号,并详细沟通具体的测量细节,为后续高效率提取高质量大数据做准备。 课题组运用自主研制的自旋化扫描隧道显微镜测量技术,结合RHK公司先进的扫描探针显微镜控制器对自主研发实验设备实现测量调控,团队进一步在原子分辨下获取了样品磁化方向的相对变化,从而实现了实验突破,揭秘材料堆叠方式与磁耦合之间的直接关联性。团队以CrBr3双层膜作为主要研究对象和潜在突破口。双层CrBr3间较弱的范德瓦尔斯力赋予层间发生相对转动和平移的“自由”,从而使堆叠方式多样化成为可能。确实,在实验中获得的CrBr3双层膜具有两种不同的转动堆叠结构(H型和R型),分别对应迥异的结构对称性。其中,R型堆叠结构中,双层膜上下两层间同向平行排列,且沿晶体镜面方向作一定平移;H型堆叠结构中,双层膜上下两层之间旋转了180度,反向平行交错排列。这两种结构均是在相应的体材料中从未发现过的全新堆叠结构。至此,团队率先在原子尺度阐明了CrBr3堆叠结构与层间铁磁、反铁磁耦合的直接关联,为理解三卤化铬家族CrX3中不同成员的迥异磁耦合提供了指导。H型和R型堆叠的CrBr3双层膜自旋化扫描隧道显微镜测量 更多精彩案例: 《Nature》子刊:中国科大扭转双层石墨烯重要进展! 范德瓦尔斯堆叠的双层石墨烯具有一系列新奇的电学性质(例如,电场可调控的能隙、随扭转转角变化的范霍夫奇点以及一维拓扑边界态等)。当双层石墨烯的扭转转角减小到一系列特定的值(魔角)时,体系的费米面附近出现平带,电子在能量空间高度局域,电子-电子相互作用显著增强,出现莫特缘体和反常超导量子物态。另一方面,这些新奇的性质与双层石墨烯体系的扭转角度有着严格的依赖关系,体系层间相互作用随着转角减小会逐渐增强,因此探寻和研究这种层间耦合对理解扭转双层石墨烯的电子结构和物理性质至关重要。中国科学技术大学合肥微尺度物质科学研究中心国际功能材料量子设计中心(ICQD)物理系秦胜勇教授与武汉大学袁声军教授及其他国内外同行合作,利用扫描隧道显微镜和扫描隧道谱,次在双层转角石墨烯体系中发现了本征赝磁场存在的重要证据,结合大尺度理论计算指出该赝磁场来源于层间相互作用导致的非均匀晶格重构。相关研究成果以“Large-area, periodic, and tunable intrinsic pseudo-magnetic fields in low-angle twisted bilayer graphene”为题,于2020年发表于《自然通讯》(Nature Communications 2020,11,371)上[3]。图:小角度双层石墨烯中本征赝磁场的发现。对于转角为0.48度的双层石墨烯,在不加外磁场情况下,实验发现了贋朗道能(图b),理论计算进一步验证了这种贋磁场行为(图c),并估算出贋磁场值大约为6特斯拉(图e)。 该团队系统研究了小角度下(1°)双层石墨烯的电学性质,次证实了由晶格重构导致的本征赝磁场。先,研究人员发现体系中赝磁场导致了低能载流子的能量量子化,并计算出这种本征赝磁场在实空间的分布。研究发现赝磁场的分布并不是均匀的,而是以AA堆叠为中心呈涡旋状,且在AA堆叠边界区域达到大值;另外,该赝磁场的大小随着转角的减小而增大,其分布和大小受到外加应力的调控。该项研究证实,在小角度扭转双层石墨烯中晶格重构导致的赝磁场和强关联电子态存在着内在的关联,层间相互作用对体系的结构重构和性质变化有着非常重要的影响。这一现象可以推广到其他范德瓦尔斯堆叠的二维材料体系中。这项工作同时表明,具有本征赝磁场的小角度扭转双层石墨烯是实现量子反常霍尔效应的一个可能平台,为研究二维材料的性质和应用提供了新的思路。RHK公司提供的R9plus扫描探针显微镜强有力的为国内自主研发技术提供有力保障,除了在科研领域内重点关注的二维材料发挥重要作用以外,也对国内其它相关扫描探针设备研发领域课题组提供技术支持。中国科学技术大学陆轻铀教授团队与中国科学院强磁场科学中心、新加坡国立大学等单位合作,利用扫描探针控制器实现了高精度的磁力显微镜观察表征,报告了在超薄BaTiO3/SrRuO3 (BTO/SRO)双层异质结构中发现铁电体(FE)驱动的、高度可调谐的磁性斯格明子。在BTO中,FE驱动的离子位移可以穿过异质界面,并继续为多个单元进入SRO。这种所谓的FE邻近效应已经在不同的FE/金属氧化物异质界面中得到了预测和证实。在BTO/SRO异质结构中,这种效应可以诱导相当大的DMI,从而稳定强大的磁性物质。此外,通过利用BTO覆盖层的FE化,可以实现对斯格明子性质的局部、可逆和非易失性控制。这种铁电可调的斯格明子系统为设计具有高集成性和可寻址性的基于斯格明子的功能设备提供了一个潜在的方向。相关成果以题为“Ferroelectrically tunable magnetic skyrmions in ultrathin oxide heterostructures”发表在了Nat. Mater.上[4]。B20S5样品中磁性斯格明子的磁力显微镜表征 除此之外该课题组也对二维过渡金属硫化物材料MoTe2温度依赖的表面STM图像、电子结构、晶格动力学和拓扑性质进行了研究。研究结果以Uniaxial negative thermal expansion and band renormalization in monolayer Td-MoTe2 at low temperature为题,发表在美国物理学会杂志《物理评论B》上。该工作为二维过渡金属硫化物材料MX2的低温研究、实验制备和器件开发提供了直接的理论支持,其揭示的MoTe2低温下反常物性的内在物理机制对其它具有内在MX2八面体结构畸变的二维材料同样具有参考价值[5]。学术工作之外,该课题组在仪器设备研发方面也取得了优异的成果,课题组在国际上次研制成功混合磁体端条件下原子分辨扫描隧道显微镜(STM),相关研究成果发表在显微镜领域著名期刊Ultramicroscopy和著名仪器刊物Review of Scientific Instruments上。此工作利用混合磁体搭配RHK公司扫描探针设备开展原子分辨成像研究,对于突破当前超强磁场下只能开展输运等宏观平均效果测量的瓶颈,进入到广阔的物性微观起源探索领域,具有标志性意义。同时,课题组又针对超强磁场下的生物分子高分辨成像,搭建了一套室温大气环境下的分体式STM。该系统将一段螺纹密封式胶囊腔体通过一根长弹簧悬吊于混合磁体中心,并将STM核心镜体悬吊于胶囊腔体内用以减弱声音振动干扰。经测试,该STM在27.5特斯拉超强磁场下依然保持原子分辨。由于没有真空、低温环境的保护,搭建混合磁体超强磁场、超强振动和声音环境下的室温大气STM难度更大。此前,国际上还未曾报道过水冷磁体或混合磁体中的室温大气STM[6]。混合磁体STM系统:(a)混合磁体照片;(b)混合磁体STM系统简图;(c)STM镜体;(i-iv)分别为0T、21.3T、28.3T、30.1T磁场强度下石墨的原子分辨STM图像。 参考文献:1. Peng, Y., et al., A Quaternary van der Waals Ferromagnetic Semiconductor AgVP2Se6. Advanced Functional Materials, 2020. 30(34): p. 1910036.2. Chen, W., et al., Direct observation of van der Waals stacking-dependent interlayer magnetism. Science, 2019. 366(6468): p. 983-987.3. Shi, H., et al., Large-area, periodic, and tunable intrinsic pseudo-magnetic fields in low-angle twisted bilayer graphene. Nat Commun, 2020. 11(1): p. 371.4. Wang, L., et al., Ferroelectrically tunable magnetic skyrmions in ultrathin oxide heterostructures. Nat Mater, 2018. 17(12): p. 1087-1094.5. Ge, Y., et al., Uniaxial negative thermal expansion and band renormalization in monolayer Td?MoTe2 at low temperature. Physical Review B, 2020. 101(10).6. Meng, W., et al., 30 T scanning tunnelling microscope in a hybrid magnet with essentially non-metallic design. Ultramicroscopy, 2020. 212: p. 112975.
  • 从编织篮到新型准二维钒基Kagome金属的前沿研究
    编织篮看似窸窣平常,平平无奇,但其编织图案背后却深藏着丰富的数学和物理的奥秘,六芒星型的编织图案正是カゴメ格子(kagome lattice),即所谓笼目晶格的原型。1951年时任大阪大学教授的伏见康治与一同研究的庄司一郎在Physics Today上次提出了kagome lattice这一概念,用于指代由正六边形和正三角形组成的一种平面密铺结构。此后kagome格子作为一种晶格结构被应用到物理学中,并因其强阻挫晶格特性吸引了科研工作者的持续研究。图1:编织篮与kagome lattice近期,一个新型准二维钒基kagome金属AV3Sb5 (A = K, Rb, Cs) 体系引起了国内多个课题组的共同关注,该体系是研究几何阻挫、非平庸拓扑能带以及多种电子序耦合与竞争的重要平台。CsV3Sb5在低温下2.5 K左右发生超导转变,同时在95 K发生类CDW的相变。STM表征发现手性电荷序的出现打破了时间反演对称性,可能在CDW相变温度以下诱导出巨大的反常霍尔效应。此外,ARPES以及性原理计算表明该体系在Fermi面附近存在着Z2拓扑不变量的非平庸能带结构。CsV3Sb5中的类CDW相变和超导电性开展了大量的理论和实验研究,取得了一系列重要成果,对揭示该体系中奇特物性的关联作用具有重要价值。图2:CsV3Sb5晶体结构示意图今年4月20日,中国科学院物理研究所的陈小龙研究员和郭建刚研究员与曲阜师范大学的刘晓兵教授和陈欣教授合作,通过高压手段对CsV3Sb5的超导物性和结构演化进行了系统研究,相关成果以“Highly Robust Reentrant Superconductivity in CsV3Sb5 under Pressure”为题发表在《中国物理快报》上(Chin. Phys. Lett. 38, 057402 (2021))。研究发现当压力小于10 GPa时,超导临界温度(Tc)先增加至大值7.6K,然后迅速减小并消失,形成了穹状的超导I区。当压力升高到15 GPa时超导再次出现,并且在压力为53.6 GPa时Tc升高至5.2K,之后随着压力升高至100 GPa时,Tc缓慢降低至4.7K,形成了穹状的超导II区。压力下的原位拉曼测试表明超导再进入现象与高频E2g振动模式的减弱以及低频E1g振动模式的增强有关。结构预测表明,当压力为100 GPa时CsV3Sb5没有发生结构相变,化合物依然存在着十分稳定的超导相。图3:CsV3Sb5超导临界温度随着压力变化相图以及压力下的原位拉曼测试,原位高压测量在PPMS系统中进行,使用了DAC高压包中国科技大学陈仙辉/应剑俊团队也在CsV3Sb5超导体研究中取得重要进展,相关研究成果于6月10日以“Unusual competition of superconductivity and charge-density-wave state in a compressed topological kagome metal”为题在线发表在《自然通讯》上(Nat. Commun. 12, 3645 (2021)),并被推荐为亮点文章(Featured Article)。该文侧重研究了CsV3Sb5材料中非寻常的电荷密度波(CDW)与超导的竞争关系,他们利用多种加压手段,对CsV3Sb5材料在高压下行为进行了系统研究,通过高压电输运测量和磁化率测量发现Tc随压力增加表现为双穹状的行为,而非传统的单穹行为。当压力在0.7-2 GPa之间样品表现出了反常的Tc压制,同时超导明显展宽。当压力达到2 GPa后,CDW被完全压制,Tc高可以达到8 K(是常压下的3倍),这也是目前具有kagome格子的材料所报道的高Tc。该反常的双穹状超导相图可能是由公度的CDW态转变为近公度CDW态导致的。该研究结果表明CsV3Sb5这种笼目结构超导材料中的超导态和CDW态对压力非常敏感,同时也揭示了CsV3Sb5中不寻常的超导与CDW竞争,为研究其中非传统的CDW机制提供了实验线索。图4:CsV3Sb5单晶的压力-温度相图,电输运测量在PPMS系统开展,部分高压磁化率测量在MPMS系统开展,使用了PCC高压包几乎与此同时6月17日,中国科学院物理研究所/北京凝聚态物理研究中心端条件物理重点实验室EX6组的博士生陈科宇、王宁宁、孙建平副研究员和程金光研究员,与凝聚态理论与材料计算重点实验室T06组的蒋坤特聘研究员、胡江平研究员,联合中国人民大学的雷和畅教授以及日本东京大学的Yoshiya Uwatoko教授,采用活塞-圆筒压腔和六面砧大腔体高压低温物性测量装置,在6.6 GPa静水压、1.5 K低温和8 T磁场的综合端环境下,对高质量的CsV3Sb5单晶开展了仔细的高压磁电输运以及磁性测量,并建立CsV3Sb5单晶的温度-压力相图。该篇工作以“Double Superconducting Dome and Triple Enhancement of Tc in the Kagome Superconductor CsV3Sb5 under High Pressure”发表PRX(Phys. Rev. Lett.126(2021))。他们发现CsV3Sb5单晶的CDW转变逐渐被高压抑制,并且其超导相出现了非单调变化的双拱形相图,这与在中间压力区间CDW的特征变化是紧密相联系的。在CDW消失的临界压力2 GPa附近其超导Tc升高至~8 K,是常压Tc的近3倍。这些结果对理解AV3Sb5体系电子序之间的竞争和相互作用具有重要意义。图5:CsV3Sb5单晶的温度-压力相图,部分高压磁化率测量在MPMS系统开展,使用了PCC高压包除了压力调控之外,中国科学院物理研究所SC4组的董晓莉研究员、俞理副研究员与SC2组的袁洁主任工程师、N04组的杨海涛副研究员等人就CsV3Sb5材料常压下的各向异性超导特性开展了细致研究。合作者还有赵忠贤院士、高鸿钧院士及胡江平研究员。该工作于今年4月21日以“Anisotropic Superconducting Properties of Kagome Metal CsV3Sb5”为题发表在《中国物理快报》上(Chin. Phys. Lett. 38, 057403 (2021))。研究发现在0.5 T磁场下的混合态面内转角磁阻呈现出二重对称性。更为有趣的是,随着温度改变,在2.8 K附近,大磁阻方向旋转了60°,这些奇异现象与该kagome体系复杂的电子和晶格环境密不可分。图6:CsV3Sb5高品质单晶的各向异性磁阻,低温磁性(0.4K)测量在MPMS-3系统中开展,应用了iHe3插杆,电学测量在PPMS系统中开展此外,复旦大学李世燕教授、上海科技大学郭艳峰研究员和人民大学雷和畅教授等团队探究了CsV3Sb5的超导配对机理(发表在预印本:arXiv:2102.08356),认为其超导结构为节点超导体。该文通过超低温热导率测量发现,零磁场下热导率具有有限剩余线性项,而且该线性项具有显著场依赖性,这为CsV3Sb5超导能隙结构中存在节点提供了有力证据。大范围的压力电阻测量表明两个超导穹的存在。这些结果都表明CsV3Sb5具有非常规的超导性。图7:CsV3Sb5材料低温热导和大范围温度-压力相图,直流磁性测量在MPMS系统中开展,部分高压电阻测量在PPMS系统中开展,使用了DAC高压包至此我们不难看出几何、关联和拓扑之间的相互依赖关系是解决凝聚态物理领域很多棘手问题的关键。推动这一前沿领域的进展直接有助于增进我们对量子物质机理理解和量子材料的应用,推动量子信息科学和能源相关技术研究。而CsV3Sb5因其不同寻常的晶格几何结构,蕴含了包括几何阻挫、强关联以及拓扑电子态等丰富的物理特性,成为研究几何、关联和拓扑之间的相互依赖关系的理想平台,为新奇电子序和电子序之间的关联研究提供一片沃土。PPMS综合物性测量系统是在低温、强磁场环境下开展对此类材料研究的有力工具,在以上的诸多测量数据中都能看到它的身影。迄今为止国内各科研单位课题组安装的PPMS综合物性测量系统以及新的无液氦型号DynaCool已达到近240余套,其低温和强磁场环境下集成了全自动的磁性、电学、热学甚至形貌观测等各种物性测量手段。通过切换不同选件,可实现对像CsV3Sb5这样具有丰富的新奇物性材料的多角度、深层次、全方面探究。Quantum Design助力您紧随研究热点,实现便捷的综合物性的测量。图8:全新一代综合物性测量系统PPMS DynaCool* 以上内容均源于论文的客观表述相关新闻参考如下:[1]. Chinese Physics Letters 5月7日 研究快讯 |CsV3Sb5中高度稳定的超导再进入现象;[2]. 科技战略前沿研究中心 6月22日 中科大超导研究团队在笼目结构超导体的高压研究中取得重要进展;[3]. 中科院物理所 6月23日进展 |Kagome超导体CsV3Sb5的高压研究进展;[4]. Chinese Physics Letters 5月13日研究快讯 |Kagome化合物CsV3Sb5单晶超导态的各向异性。
  • 高性能二维钙钛矿太阳电池制备成功
    近日,中科院大连化学物理研究所研究员刘生忠团队与陕西师范大学教授赵奎合作,在二维Dion—Jacobson(DJ)钙钛矿成膜控制研究中取得新进展,制备出高效率芳香族二维DJ钙钛矿太阳电池。相关研究发表在Advanced Energy Materials上。近年来,二维有机—无机杂化钙钛矿半导体材料凭借其高的环境稳定性和结构多样性,受到研究界广泛关注。该研究中,合作团队利用原位表征手段,实时追踪二维DJ钙钛矿前驱体溶液反应形成固态薄膜的结晶过程,以及其对量子阱生长、电荷传输、太阳电池性能的影响。研究发现,溶液处理过程中,快速提取溶剂可以加快钙钛矿相的成核和生长,避免从中间相到钙钛矿相的间接转变。因此,通过提升薄膜质量、优化量子阱的厚度分布,有利于提高二维钙钛矿太阳电池的电荷传输效率、载流子寿命和迁移率,最终改善电池的短路电流和开路电压,制备出效率为15.81%的器件。据了解,这是目前文献可查的芳香族二维DJ钙钛矿太阳电池的最高效率。该研究对指导DJ钙钛矿实现更加优化的光电性能和器件性能具有重要意义。相关论文信息:https://doi.org/10.1002/aenm.202002733
  • 乌尔姆大学电镜组《自然通讯》:二维聚合物透射电镜高分辨成像分辨率突破2埃!
    1.透射电镜(TEM)成像挑战透射电镜高分辨成像是新材料结构研究不可或缺的技术之一,尤其是发展得欣欣向荣的二维材料界, 得益于它们易于剥离或者生长成薄膜的性质, TEM在二维材料成像上可谓所向披靡。近年来二位聚合物是潜力无限的新兴二维材料,我们可以用乐高来想象二维聚合物,不同的积木结构(单体monomers)通过在水和气体界面聚合搭出一个二维的网格,每层网格之间再通过范德华力结合。各式单体带来了材料结构和性能的无限可能[1],与此同时结构的解析是发展新二位聚合物过程中不可或缺的一环。在TEM的成像的过程中,高速电子如同密集的子弹穿透研究材料,和材料进行碰撞并传递能量,一方面电子携带了结构的信息,同时这种强力轰击又破坏了材料的结构,连锁反应导致大面积的积木的轰然倒塌。这意味着我们只能用非常少量的电子来获得结构信息,否则材料就会被打乱成无序状态。然而电子少信息也少,只能得到低清的图像,缺乏高清细节。因此TEM表征二维聚合物以及所有对电子轰击敏感的材料是电镜领域的一大挑战。图1,辐照损伤黑魔法(图1左作者 J. S. Pailly, 来源, 中右来源:depositphotos)2.优化电压,突破2 埃[2]!乌尔姆大学的Kaiser教授电镜组的研究人员梁宝坤和戚浩远博士接受了这个挑战。重要的第一步,就是研究如何降低电子对于材料的损伤。进而提高成像的分辨率,看到二维聚合物里前所未见的细节。在TEM中,电子发射的速度是影响着电子对材料杀伤力的重要条件之一。研究人员在高分辨成像使用的电压范围内 (80-300 kV), 通过电子衍射量化测量了二维聚亚胺能收受的总最大电子轰击量。然而这里我们需要注意的是,由于电子和材料结构相比如此微小,不少电子在分子积木搭建的二维结构间隙中穿过,因此使用的电子总量高并不代表能获得更多结构信息,我们还需要得到其中递信息的电子的比例。在图表中,可以看到这两个变量相对电压有着相反的变化趋势。结合两个变量,我们得到电子利用的最高效率在120 kV 达到顶峰。图2 二维聚亚胺结构图示。材料可承受电子量,结构信息比例和电子利用效率不同电压的量化分析。最优电压和相差矫正的强强联手,研究人员终于看到了高清版的二维聚亚胺结构,成像分辨率首次达到了2 埃以内,细节历历在目!图3 2D-PI-BPDA 和2D-PI-DhTPA的高分辨图像以及图像模拟。FFT显示出图像分辨率突破 2 埃。3.首次呈现间隙缺陷表活引导的界面二维聚合物合成方法,实现了晶圆尺寸级别的高结晶度的薄膜自下而上的生长[3][4]。样品晶区之间的晶界结构以及晶体缺陷材料非常重要的特征。通过优化TEM成像条件,清晰的视野使更多结构细节得以浮现,二维聚亚胺的单体卟啉中心4埃直径的孔道清晰可见。然而在某些区域,图像上的‘异象‘让研究者一时以为自己眼花了。2D-PI-BPDA 的孔洞的四个角出现神秘亮点,2D-PI-DhTPA里发现的则是半月形的弧线。通过文献分析和密度泛函(DFTB)的计算的帮助,终于解密了这些神奇的图案来自于卟啉分子在规整的二位聚合物网格中形成的间隙缺陷。研究人员解释这种缺陷产生的动力来自于被酸性环境质子化之后带正电荷的分子间产生的静电排斥作用。就如同乐高积木上突然长出了一些新的凸起点,导致它们无法完美堆叠在一起。然而当他们扭转或者平移之后,对抗解除,就可以继续堆叠,从而构成了类似统计模型中展示的结构。图4 2D-PI-BPDA 和2D-PI-DhTPA的间隙缺陷图,DFTB计算结构以及图像模拟。4.分辨单体侧边官能团得益于分辨的提高,单体侧边的官能团能够被直接分辨。单体DhTPA 的苯环上2,5对位各链接了一个氢氧根,研究人员通过对比图像上单体宽度的半峰宽惊喜地发现在目前in-focus成像条件下,官能团的氢氧根侧链能被轻松分辨。这对理解二维聚合物的通道环境对材料性质的影响有重要意义。图5 2D-PI-BPDA 和2D-PI-DhTPA 链接单体的结构,以及其高分辨图像宽度测量。5.应用展望研究人员继续对半无序状态下的亚胺进行了成像和分析, 从图可见,原本六边形的网格结构被许多五边和七边的结构取代。为了量化分析,研究人员利用了神经网络的方法来分析结构中多边形的配比,以及单体间距的长短角度。这个新工具可以帮助电镜研究人员进一步提高数据分析的效率,跨学科联合,事半功倍。图6 a-PI 高分辨成像以及神经网络图片分析结果。参考文献:[1] Feng X and Schlüter A D 2018 Towards Macroscopic Crystalline 2D Polymers Angew. Chemie - Int. Ed.5713748–63[2] Liang B, Zhang Y, Leist C, Ou Z, Položij M, Wang Z, Mücke D, Dong R, Zheng Z, Heine T, Feng X, Kaiser U and Qi H 2022 Optimal acceleration voltage for near-atomic resolution imaging of layer-stacked 2D polymer thin films Submitted[3] Ou Z, Liang B, Liang Z, Tan F, Dong X, Gong L, Zhao P, Wang H, Zou Y, Xia Y, Chen X, Liu W, Qi H, Kaiser U and Zheng Z 2022 Oriented growth of thin films of covalent organic frameworks with large single-crystalline domains on the water surfac J. Am. Chem. Soc.[4] Sahabudeen H, Qi H, Glatz B A, Tranca D, Dong R, Hou Y, Zhang T, Kuttner C, Lehnert T, Seifert G, Kaiser U and Fery A 2016 Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness Hafeesudeen Nat. Commun.71–8
  • 国产高压电源市场整体乐观——“创新100”访西安威思曼高压电源有限公司销售部长白婷
    p  strong仪器信息网讯 /strong2018年10月31日,第九届慕尼黑上海分析生化展(analytica China 2018)在上海新国际博览中心盛大召开。作为“创新100”项目公益性活动之一,咸阳威思曼高压电源有限公司(以下简称:威思曼)销售部长白婷与会期间接受了仪器信息网的视频采访。/pp  受中美贸易战影响,很多原来使用国外的高压电源的客户,都纷纷开始在国内寻找供应商。另外随着我国不断深化改革开放,低端产能逐步淘汰、所有产业都向高、精、尖推进,所以高端高压电源的使用也会越来越多。因此威思曼表示,国产高压电源的市场前景整体乐观。/pp  白婷表示:“威思曼高压电源产品多年来坚持走高端路线,每年都会研发储备大概后续5年才会用到的一些高压电源产品,公司技术储备扎实到位。目前威思曼高压电源产品系列全,电压覆盖范围0.1kv-600kv、功率覆盖范围0.1w-120kw范围,完全具备一站式供应高压电源的能力,这可能是威思曼最大的优势之一。威思曼高压电源经过11年的发展,培养了一批高压电源的研发、制造专业人员,使中国高压电源完全具备自给自足的能力。”/pscript src="https://p.bokecc.com/player?vid=EB3713A195ED7CA99C33DC5901307461&siteid=D9180EE599D5BD46&autoStart=false&width=600&height=490&playerid=2BE2CA2D6C183770&playertype=1" type="text/javascript"/scriptp  本次慕尼黑上海分析生化展,威思曼带来机箱式高压电源、模块式高压电源、微型模块式高压电源、X射线管高压电源4类产品和一些定制类的高压电源。/pp  机箱式高压电源具有数字化网口通讯功能、整体功率较大、电压较高等特点,主要面向一些大功率高电压用户的需求,用户分布在电子束焊接领域、军工领域和大专院校。/pp  模块式高压电源主要特点是体积比较紧凑、功率密度大、长期稳定性高、纹波低、效率高,主要应用于工业、医疗及军工航天,具体比如半导体测试领域、DNA测试领域、电泳领域、静电印刷、电容充电,导弹,激光制导等领域,航天领域如北斗导航卫星等等。/pp  微型模块高压电源主要应用尖端仪器仪表居多,比如质谱仪,各种固态探测器。这类微型高压电源模块纹波超低、稳定性非常高、温度漂移低,且3项指标集成于一个模块的,只有西安威思曼高压电源有限公司有这种产品。/pp  X射线管用高压电源是威思曼高压电源多年来的拳头产品,主要用于全球各个厂家的X射线管,这类X射线管产品系列非常全,从5kv-450kv,功率从几瓦到几十千瓦,广泛用于在线检测、安检、无损检测、医疗CT、DR等领域。/pp  本次威思曼展出的还有一些客户定制类产品,比如3D打印机高压电源,电子显微镜电源等。3D打印机高压电源是威思曼承接科技部支持项目后的一款机型,属于中国固态封装达到数字化工业使用的高稳定性首款自主知识产权的高压电源。电子显微镜高压电源,威思曼也是中国独家可以数字化工业化的电子显微镜高压电源供应商。/pp arial="" white-space:="" line-height:="" style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, ' Arial Narrow' line-height: 26px white-space: normal "span style="margin: 0px padding: 0px font-family: 楷体, 楷体_GB2312, SimKai "span style="margin: 0px padding: 0px color: rgb(255, 0, 0) "strong style="margin: 0px padding: 0px "  附:国产仪器腾飞行动“创新100”介绍/strong/span/span/pp arial="" white-space:="" line-height:="" style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, ' Arial Narrow' line-height: 26px white-space: normal "span style="margin: 0px padding: 0px font-family: 楷体, 楷体_GB2312, SimKai "  为秉承“国产科学仪器腾飞行动”宗旨,在中国仪器仪表行业协会的指导下,仪器信息网于2018年启动“国产科学仪器腾飞行动”之“创新100”项目,筛选一批具备自主创新能力的中小仪器厂商,通过公益性的报道、走访、调研,在企业发展的关键时期“帮一把”,助力国产仪器中小厂商腾飞发展。/span/pp arial="" white-space:="" line-height:="" style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, ' Arial Narrow' line-height: 26px white-space: normal "span style="margin: 0px padding: 0px font-family: 楷体, 楷体_GB2312, SimKai "  strong style="margin: 0px padding: 0px "一、“创新100”入选标准/strong/span/pp arial="" white-space:="" line-height:="" style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, ' Arial Narrow' line-height: 26px white-space: normal "span style="margin: 0px padding: 0px font-family: 楷体, 楷体_GB2312, SimKai "  (1) 企业主营业务为科学仪器 /span/pp arial="" white-space:="" line-height:="" style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, ' Arial Narrow' line-height: 26px white-space: normal "span style="margin: 0px padding: 0px font-family: 楷体, 楷体_GB2312, SimKai "  (2) 企业主营产品具有自主知识产权,具备创新性 /span/pp arial="" white-space:="" line-height:="" style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, ' Arial Narrow' line-height: 26px white-space: normal "span style="margin: 0px padding: 0px font-family: 楷体, 楷体_GB2312, SimKai "  (3) 企业总部设在中国 /span/pp arial="" white-space:="" line-height:="" style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, ' Arial Narrow' line-height: 26px white-space: normal "span style="margin: 0px padding: 0px font-family: 楷体, 楷体_GB2312, SimKai "  (4) 企业科学仪器产品的年产值在3000万元以下 /span/pp arial="" white-space:="" line-height:="" style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, ' Arial Narrow' line-height: 26px white-space: normal "span style="margin: 0px padding: 0px font-family: 楷体, 楷体_GB2312, SimKai "  (5) 企业需是中国仪器仪表行业协会、中国仪器仪表学会、仪器信息网会员之一。/span/pp arial="" white-space:="" line-height:="" style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, ' Arial Narrow' line-height: 26px white-space: normal "span style="margin: 0px padding: 0px font-family: 楷体, 楷体_GB2312, SimKai "  strong style="margin: 0px padding: 0px "二、“创新100”申报流程/strong/span/pp arial="" white-space:="" line-height:="" style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, ' Arial Narrow' line-height: 26px white-space: normal "span style="margin: 0px padding: 0px font-family: 楷体, 楷体_GB2312, SimKai "  国产仪器腾飞行动“创新100”筛选流程包含以下环节:企业在线申报——企业创新能力审核——公益报道服务——线下资源对接——最具成长潜力企业评选。/span/pp arial="" white-space:="" line-height:="" style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, ' Arial Narrow' line-height: 26px white-space: normal "span style="margin: 0px padding: 0px font-family: 楷体, 楷体_GB2312, SimKai "  strong style="margin: 0px padding: 0px "三、“创新100”报名方式/strong/span/pp arial="" white-space:="" line-height:="" style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, ' Arial Narrow' line-height: 26px white-space: normal "span data-filtered="filtered" style="margin: 0px padding: 0px font-family: 楷体, 楷体_GB2312, SimKai "/span/pp arial="" white-space:="" line-height:="" text-align:="" style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, ' Arial Narrow' line-height: 26px white-space: normal text-align: center "img src="https://img1.17img.cn/17img/images/201809/uepic/5cf2f7a3-00ba-4337-9397-757ac92a4d3b.jpg" title="“创新100”预报名表单_副本.jpg" alt="“创新100”预报名表单_副本.jpg" style="margin: 0px padding: 0px border: 0px max-width: 600px "//pp arial="" white-space:="" text-align:="" line-height:="" style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, ' Arial Narrow' line-height: 26px white-space: normal text-align: center "span style="margin: 0px padding: 0px font-family: 楷体, 楷体_GB2312, SimKai color: rgb(255, 0, 0) "扫描二维码填写申请表,完成“创新100”预报名。/span/pp arial="" white-space:="" line-height:="" style="margin-top: 0em margin-bottom: 1em padding: 0px color: rgb(68, 68, 68) font-family: 宋体, ' Arial Narrow' line-height: 26px white-space: normal "strong style="margin: 0px padding: 0px "span style="margin: 0px padding: 0px font-family: 楷体, 楷体_GB2312, SimKai "  /span更多相关内容请点击进入专题/strongspan style="margin: 0px padding: 0px color: rgb(255, 0, 0) text-decoration: underline "strong style="margin: 0px padding: 0px "a href="https://www.instrument.com.cn/zt/chuangxin100" target="_blank" style="margin: 0px padding: 0px color: rgb(255, 0, 0) text-decoration: none "《“创新100”助力国产腾飞》/a/strong/span/p
  • 柔性二维碳化钒基表面增强拉曼散射检测平台问世
    安徽理工大学力学与光电物理学院青年教师蓝雷雷与东南大学物理学院邱腾课题组合作,制备出两种类型的二维碳化钒(V4C3和V2C)MXenes材料,并证明这种材料可以作为性能优异的表面增强拉曼散射(SERS)平台,其中V4C3作为SERS活性材料首次报道。相关研究成果发表于《美国化学会-应用材料与界面》。柔性二维碳化钒MXene基滤膜的SERS增强效果示意图 安徽理工大学供图表面增强拉曼散射作为一种具有高灵敏度、分子指纹识别和快速无损测量的表面光谱分析技术,将检测灵敏度提升了百万倍以上,已广泛应用于生命科学、物理、化学、材料学、地质学、考古和艺术品鉴定等领域。“比如将SERS技术应用于患者呼出物、血清液、脱氧核糖核酸的检测,为早期患者的疾病诊断提供一种有力分析手段;应用于海洋微塑料、大气有毒有害气体、水体有机污染物和土壤重金属的微量检测,实现对环境中有害物质的监测;还可实现对危害公共安全的爆炸物质和疑似吸毒人员体液毛发中含毒品物质的快检。” 蓝雷雷向《中国科学报》介绍。近年来,一些MXenes材料表现出相当强的SERS活性,为SERS活性材料发展开辟了新前景。但其瓶颈在于灵敏度不足,无法满足实际应用需求。因此,将MXene材料的灵敏度推向更高水平仍然具有挑战性。此次研究中,蓝雷雷等提出了一种新的增强策略,通过结合二维裁剪和分子富集来设计高灵敏度的柔性MXene基SERS衬底,成功制备出两种类型的二维碳化钒MXenes材料。“我们研究发现,与块状MXene材料相比,二维裁剪赋予碳化钒MXenes费米能级附近更为丰富的态密度,促进了光致诱导电荷转移,增加了多达2个数量级的检测灵敏度。”蓝雷雷说。进一步,研究人员采用了一种分子富集方法,实现了2分钟内超快速分子富集、超高分子截留率和更低的检测限,从而获得了超灵敏的SERS检测。蓝雷雷说,“这项研究有助于设计和开发出高性能的新型MXene基SERS基底,可用于食品安全、疾病诊断、反恐搜爆、毒品稽查、环境监测和病毒检测等领域。”审稿人认为:作者将二维裁剪策略与分子富集效应相结合,这是一项有趣的研究工作,新型碳化钒基底的SERS增强效果显著,其中V4C3作为SERS基底在这之前未曾报道过。通过简单抽滤的分析物富集概念为实现超灵敏的SERS检测提供了一种有效的策略。相关论文信息:https://doi.org/10.1021/acsami.2c10800
  • 中科大在二维材料固态自旋色心研究中取得新进展
    中国科学院院士、中国科学技术大学教授郭光灿团队在二维范德瓦尔斯材料固态自旋色心领域取得重要进展。该团队李传锋、唐建顺研究组与匈牙利魏格纳物理研究中心教授AdamGali等合作,实验研究并理论解释了六方氮化硼(hexagonalboronnitride,hBN)中带负电硼空位(VB-)色心受磁场调制的自旋相干动力学行为,揭示了hBN中VB-色心电子自旋与核自旋之间的相干耦合和弛豫机制,这对发展基于二维范德瓦尔斯材料的相干自旋系统及低维量子器件具有重要意义。9月29日,相关研究成果发表在《自然-通讯》(Nature Communications)上。 近年来,研究发现,宽禁带范德瓦尔斯材料hBN是室温自旋色心的优秀宿主。范德瓦尔斯材料通过简单的机械剥离便可制备为原子厚度的二维结构,且可与多种微纳结构相耦合,在低维量子器件制备和近场传感探测等方面比三维体材料具有天然优势,因而hBN中的自旋色心成为固态自旋色心领域的研究热点。目前,研究最广泛的hBN自旋色心为VB-色心,且集中于VB-的电子自旋,而对VB-电子自旋周围的核自旋缺乏深入研究及观测。由于色心周围的核自旋是固态自旋维度扩展的主要途径之一,且是造成固态自旋弛豫的主要因素。因此,VB-色心的电子自旋与周围核自旋耦合形成的多自旋体系的相干动力学研究,对推动基于范德瓦尔斯材料的固态量子自旋技术至关重要。本工作中,研究组使用中子辐照技术在hBN中制备出高浓度的VB-色心样品,并利用ODMR(optical probing magnetic resonance)技术探测VB-自旋能级结构,观测到VB-色心中电子自旋与3个最近邻14N核自旋相互作用产生的超精细劈裂以及14N核自旋偏振随磁场增强的极化现象。同时,研究组对VB-进行多项室温相干操控和探测,包括Rabi振荡、自旋回波、Ramsey干涉探测等。探测结果表明,VB-自旋受到明显的核自旋相干调制,且核自旋调制效应会随磁场增加而变强。为进一步揭示相关现象的内在动力学机制,研究组理论构建了VB-电子与最近邻14N核自旋组成的4自旋系统,并对该4自旋系统的多种动力学性质进行无参数(parameterfree)的理论模拟。结合实验与模拟结果,研究组发现VB-色心中存在较强的电子与核自旋相互作用,同时最近邻14N核自旋极化也受到显著的驱动微波动态调制。此外,研究组还在理论模拟中引入了包含127个14N和11B的多体核自旋环境,并模拟了与之相互作用的开放4自旋VB-系统的动力学行为。通过对照实验和理论结果,研究组发现11B核自旋环境主导了VB-色心的自旋弛豫,而磁场能够减弱核自旋环境的弛豫效应并增强VB-电子与最近邻14N的相干耦合。(a)VB-色心的原子结构示意图;(b)VB-色心的电子自旋能级结构;(c)不同磁场下VB-色心的ODMR信号;(d)不同磁场下VB-色心的Rabi振荡信号。该研究从实验和理论上揭示了VB-色心中存在显著的电子和最近邻14N核自旋相干耦合,以及多体11B核自旋环境导致的VB-色心自旋弛豫。该工作为将VB-相干操控自旋拓展至核自旋以及发展相关低维固态量子系统奠定了基础。研究工作得到科技部、国家自然科学基金、中科院和合肥国家实验室等的支持。
  • Nature、Science! mK极低温纳米精度位移台在二维材料、石墨烯等领域的前沿应用进展
    nature:二维磁性材料的磁结构与相关特性研究关键词:二维铁磁材料;低温纳米精度位移台;反铁磁态;二次谐波 近年来,二维磁性材料在国际上成为备受关注的研究热点。近日,中国与美国的研究团队合作,在二维磁性材料双层三碘化铬中观测到源于层间反铁磁结构的非互易二次谐波非线性光学响应,并揭示了三碘化铬中层间反铁磁耦合与范德瓦尔斯堆叠结构的关联。同时,研究团队发现双层反铁磁三碘化铬的二次谐波信号相比于过去已知的磁致二次谐波信号(例如氧化铬Cr2O3),在响应系数上有三个以上数量的提升,比常规铁磁界面产生的二次谐波更是高出十个数量。利用这一强烈的二次谐波信号,团队成功揭示双层三碘化铬的原胞层堆叠结构的对称性。图一 双层三碘化铬的二次谐波光学显微图 运用光学二次谐波这一方法来探测二维磁性材料的磁结构与相关特性是此实验的关键。团队利用自主研发搭建的无液氦可变温强磁场显微光学扫描成像系统,完成了关键数据的探测。值得指出的是,该无液氦可变温强磁场显微光学扫描成像系统采用德国attocube公司的低温强磁场纳米精度位移台和低温扫描台来实现样品的位移和扫描。德国attocube公司是上著名的端环境纳米精度位移器制造商。公司已为全科学家生产了4000多套位移系统,用户遍及全球著名的研究所和大学。它生产的位移器设计紧凑,体积小,种类包括线性XYZ线性位移器、大角度倾角位移器、360度旋转位移器和纳米精度扫描器。图二 attocube低温强磁场位移器、扫描器attocube低温位移台技术特点如下:参考文献:Sun, Z., Yi, Y., Song, T. et al. Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3. Nature 572, 497–501 (2019). nature:石墨烯摩尔超晶格可调超导特性研究关键词:石墨烯 超晶格 高温超导高温超导性机制是凝聚态物理领域世纪性的课题。这种超导性被认为会在以Hubbard模型描述的掺杂莫特缘体中出现。近期,美国和中国的国际科研团队合作在nature上报道了在ABC-三层石墨烯(TLG)以及六方氮化硼(hBN)摩尔超晶格中发现可调超导性特征。研究人员通过施加垂直位移场,发现ABC-TLG/hBN超晶格在20K的温度下表现出莫特缘态。进一步通过冷却操作发现,在温度低于1K时,该异质结的超导特特性开始出现。通过进一步调控垂直位移场,研究人员还成功实现了超导体-莫特缘体-金属相的转变。 图1.德国attocube公司低温mK纳米旋转台电学输运工作的测量是在进行仔细的信号筛选后,本底温度为40mK的稀释制冷机内进行的。值得指出的是,样品的面内测量需要保证样品方向与磁场方向平行,这必须要求能够在低温(40mK)环境下实现良好且工作的旋转台来移动样品,确保样品与磁场方向平行。实验中使用了德国attocube公司的mK纳米精度旋转台(如图1所示)。Attocube公司可提供水平和竖直方向的旋转台,使样品与单轴线管的超导磁场方向的夹角调整为任意角度。通过电学输运结果,证实了样品中存在超导体-莫特缘体-金属相的转变(结果如图2所示),为三层石墨烯/氮化硼的超晶格超导理论模型(Habbard model)以及与之相关的反常超导性质和新奇电子态的研究提供了模型系统。 图2. ABC-TLG/hBN的超导性图左低温双轴旋转台;图右下:石墨烯/氮化硼异质节的超导性测量测试结果,样品通过attocube的mK适用旋转台旋转后方向与磁场方向平行参考文献:Guorui CHEN et al, Signatures of tunable superconductivity in a trilayer graphene moiré superlattice, Nature, 572, 215-219 (2019) nature:分数量子霍尔效应区的非线性光学研究关键词:量子霍尔效应 四波混频 化激元设计光学光子之间的强相互作用是量子科学的一项重要挑战。来自瑞士苏黎世联邦理工学院(Institute of Quantum Electronics, ETH Zürich, Zürich,)的研究团队在光学腔中嵌入一个二维电子系统的时间分辨四波混频实验,证明当电子初始处于分数量子霍尔态时,化激元间的相互作用会显著增强。此外,激子-电子相互作用导致化子-化激元的生成,还对增强系统非线性光学响应发挥重要作用。该研究有助于促进强相互作用光子系统的实现。值得指出的是,该实验在温度低于100mK的环境下进行,使用德国attocube公司的低温mK环境纳米精度位移台来实现物镜的移动和聚焦。参考文献:Knüppel, P., Ravets, S., Kroner, M. et al. Nonlinear optics in the fractional quantum Hall regime. Nature 572, 91–94 (2019). Science:NV center在加压凝聚态系统中的量子传感研究关键词:NV色心 量子传感器压力引起的影响包括平面内部性质变化与量子力学相转变。由于高压仪器内产生巨大的压力梯度,例如金刚石腔,常用的光谱测量技术受到限制。为了解决这一难题,巴黎十一大学,香港中文大学和加州伯克利大学的研究团队研发了一款新型纳米尺度传感器。研究者把量子自旋缺陷集成到金刚石压腔中来探测端压力和温度下的微小信号,这样空间分辨率不会受到衍射限限制。为此加州伯克利大学团队采用了德国attocube公司的与光学平台高度集成的闭循环低温恒温器- attoDRY800来进行试验,其中包含了attocube公司的低温纳米精度位移台,以此来实现快速并且控制金刚石压强的移动以及测量实验。参考文献:[1] S. Hsieh et al., Science, Vol. 366, Issue 6471, pp. 1349-1354 (2019) [2] M. Lesik, et al., Science, Vol. 366, Issue 6471, pp. 1359-1362 (2019)[3] K. Yau Yip et al., Science, Vol. 366, Issue 6471, pp. 1355-1359 (2019)
  • ACQUITY UPLC M-Class系统用于微升级二维反相/反相肽段分离
    Matthew A. Lauber、 Stephan M. Koza 和 Kenneth J. Fountain目的证明ACQUITY UPLC M-Class系统和配套的色谱柱进行微升级2D-RP/ RP肽段色谱的性能和重现性。背景信息微升级LC-MS方法在蛋白质组学领域得到了日益广泛的应用。近来此方法作为Elisa免疫分析的互补技术,在分析生物药品中残留宿主细胞蛋白质(HCP)上也得到了关注和应用。采用如300 μm窄内径色谱柱能够从相对少量的样品中获得丰富的信息。同时,在此类工作中需要进行高峰容量的肽段分离,因为更高的分离效率才能更容易检出待测物。 通过多维色谱可以提高肽段分析的峰容量,二维正交的色谱分离方法相结合可提供更好的分离能力。反相/反相(2D-RP/ RP)二维色谱具有特殊的优势,通过使用具有卓越的化学稳定性和机械稳定性的亚乙基桥杂化硅胶颗粒固定相(BEH Tec hnology),第一维进行高pH反相分离,随后经过在线富集后得肽段混合物在亚2 μm颗粒的分析柱进行第二维低pH反相梯度分离(具体操作请参考以前的应用资料)。 使用配置2D-RP/RP功能的ACQUITY M-Class系统和配套的色谱柱进行复杂肽段分析,峰容量更高,重现性更好。 在本简报中,我们通过使用ACQUITY UPLC M-Class系统和ACQUITY UPLC M-Class 300 μm内径的分析柱,进一步拓展了此技术的应用和性能。通过测试不同色谱柱组和使用寿命可以看到,此系统不仅具有卓越的分离能力,还实现了绝佳的重现性和可靠性。使用ACQUITY UPLC M-Class系统和色谱柱的2D RP/RP在线二维色谱分离将是一种进行复杂样品研究肽段混合物如残留宿主细胞蛋白的理想方法,峰容量高,性能稳定可靠。下载完整应用纪要请点击: http://www.waters.com/waters/library.htm?lid=134779299&cid=511436
  • 宋延林课题组利用打印技术制备高性能无铅柔性压电声敏传感器
    根据世界卫生组织的数据,全球约4.3亿人因耳蜗受损而遭受听力损失,改善听力主要靠人工耳蜗。然而,传统的人工耳蜗语音识别能力较低,而且刚性电极与软组织间的不匹配可能导致神经损伤和耳鸣等问题。随着物联网和人工智能的发展,柔性自供电人工耳蜗的研究引起了广泛关注。在国家自然科学基金委、科技部、中国科学院和北京市的大力支持下,化学研究所绿色印刷院重点实验室宋延林课题组近期在各向异性材料合成和图案化器件制备方面取得了系列进展,如二维MXene与纳米晶复合材料研究(J. Mater. Chem. A, 2022, 10, 14674-14691 Nano Res. 2022, DOI:10.1007/s12274-022-4667-x),直写高性能原子级厚二维半导体薄膜和器件(Adv. Mater. 2022, DOI:10.1002/adma.202207392),制备基于交替堆叠微电极的湿度传感超级电容器(Energy Environ. Mater. 2022, DOI:10.1002/eem2.12546)等。压电材料可以作为未来人工耳蜗的有利候选材料,然而,主流含铅压电材料与生物不相容,对环境不友好,其他压电材料的电输出功率由于声电转换性能低,不足以直接刺激听觉神经。因此,制造高性能无铅柔性压电声学传感器意义重大。最近,他们受人类耳蜗外耳毛细胞的启发,报道了一种基于准同型相边界的多组分无铅钙钛矿棒的直写微锥阵列策略,该策略一方面利用取向工程和在两个不同正交相(Amm2和Pmmm)之间形成的准同型相边界,显著提高应力对压电材料性能影响,实现压电响应增强;另一方面在压电薄膜表面引入微锥阵列,增加与声波的接触面积,增强对声波的吸收,从而制备高性能柔性压电声学传感器(FPAS)。该传感器显示出高灵敏度、宽频率响应的特点,覆盖常用的语音频率,同时具有角度灵敏度,可用于记录声音信号,并实现语音识别和人机交互。FPAS还具备防水和耐酸碱等特点,满足自然环境对可穿戴声学传感器的要求。研究成果近日发表于Matter期刊上(https://doi.org/10.1016/j.matt.2022.11.023),论文第一作者是硕士生向钟元,通讯作者是宋延林研究员和李立宏副研究员。 图1. 微锥阵列柔性压电声敏器件应用演示图图2. 声音数据采集、人机交互应用和FPAS的防水性能
  • 扫描隧道显微镜助力揭示二维材料边界态物理本质
    p style="text-indent: 2em text-align: justify "传统的三维半导体材料表面存在大量的悬挂键,可通过捕获和散射等方式影响和限制自由载流子的运动,因此表面态的设计、制造和优化是提高三维半导体器件性能的关键因素。类似于三维半导体材料的表面态,单层二维材料(如二硫化钼和石墨烯)在边界原子的终止和重建可以产生边界态,这使二维材料产生了许多独特的现象,使其得到广泛的应用。 /pp style="text-indent: 2em text-align: justify "针对此现象,微电子所微电子器件与集成技术重点实验室刘明院士和李泠研究员的科研团队与中科院物理所、北京理工大学、美国加州大学洛杉矶分校合作,对单层MoS2/WSe2晶体管进行了器件测试、扫描隧道显微镜实验观测和第一性原理计算,发现二维材料的边界态是控制器件亚阈值特性及影响器件迁移率的关键因素,并在国际上首次提出这种边界态是拉廷格液体的物理本质。该科学发现对于研究器件性能优化和低功耗应用具有一定的意义。 /pp style="text-align: justify text-indent: 2em "该工作以《Possible Luttinger liquid behavior of edge transport in monolayer transition metal dichalcogenide crystals》为题发表在 Nature Communications期刊上(DOI: 10.1038/s41467-020-14383-0)。微电子所博士后杨冠华和物理所邵岩博士为该文章第一作者,微电子所刘明院士、李泠研究员、北京理工大学王业亮教授和美国加州大学洛杉矶分校段镶锋教授为共同通讯作者。 /pp style="text-align: justify text-indent: 2em "上述工作得到了国家自然科学基金委、科技部、中科院等相关项目的资助。 /pp style="text-indent: 2em text-align: justify "全文链接:https://www.nature.com/articles/s41467-020-14383-0#citeas /pp style="text-align: center text-indent: 0em "img style="max-width:100% max-height:100% " src="http://www.ime.ac.cn/zhxx/ttxw/202009/W020200925583655261172.png"//pp style="text-align: center "strong图a./strong二维材料边界电导比例与温度、栅压关系。strong图b./strong I/T1+α与qV/kBT关系。strong图c. /strongSTS能谱。 /pp style="text-align: center "a href="https://www.instrument.com.cn/webinar/meetings/iCSMD2020/" target="_self"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202010/uepic/287a2421-2521-43a6-aa4c-219af657b8e0.jpg" title="半导体材料与器件.jpg" alt="半导体材料与器件.jpg"//a/p
  • 中国科学院兰州化学物理研究所495万元购买全自动二维液相色谱系统等5台仪器
    5月20日,中国科学院兰州化学物理研究所公开招标,购买气相/液相色谱-三重四极杆质谱联用、全自动二维液相色谱系统、全自动液相色谱-微型质谱联用系统等5台/套仪器,预算495万元。  项目编号:OITC-G210240390  项目名称:中国科学院兰州化学物理研究所2021年修购采购项目  预算金额:495.0000000 万元(人民币)  采购需求:包号货物名称数量(台/套)是否允许采购进口产品采购预算(万元人民币)1气相/液相色谱-三重四极杆质谱联用1否1502全自动二维液相色谱系统1否1103全自动液相色谱-微型质谱联用系统1否704小型质谱分析系统1否735全功能稳态瞬态荧光光谱仪1否92  合同履行期限:详见第八部分货物需求一览表  本项目( 不接受 )联合体投标。  开标时间:2021年06月10日 09点30分(北京时间)240390++技术部分.docx
  • 二维材料首现奇异“多铁性”状态,助力磁性数据存储设备开发
    美国麻省理工学院物理学家在单原子薄材料中发现了一种奇异的“多铁性”状态。他们的观察首次证实了多铁性可存在于完美的二维材料中。发表在最新一期《自然》杂志上的这一发现,为开发更小、更快、更高效的数据存储设备铺平了道路,这些设备由超薄的多铁性比特和其他新的纳米级结构组成。  研究作者、麻省理工学院物理学教授努格迪克称,二维材料就像乐高积木,不同组合会出现百变形状。“现在我们有了一个新的乐高积木:单层多铁体,它可与其他材料堆叠在一起,诱导出有趣的特性。”  实验证实,碘化镍在其二维形式中是多铁性的。更重要的是,这项研究首次证明了多铁有序可存在于二维中,这是构建纳米级多铁存储位的理想维度。  在材料科学中,“多铁性”指的是材料电子中任何属性在外场下的集体转换,如它们的电荷或磁自旋方向。材料可以表现为几种铁性状态中的一种。例如,铁磁材料是电子自旋集体沿着磁场方向排列的材料,就像向日葵向着太阳转一样。同样地,铁电材料由自动与电场对齐的电子电荷组成。  在大多数情况下,材料要么是铁电性的,要么是铁磁性的。它们很少能同时体现这两种状态。“这种组合非常罕见,”研究作者之一里卡多科明教授说。“即使对整个元素周期表都不加限制,也不会有太多这样的多铁材料生产出来。”  但最近几年,科学家们在实验室里以奇特的耦合方式合成了表现出多铁性的材料,既表现为铁电体,又表现为铁磁体。电子的磁自旋不仅可受磁场影响,还可受电场影响。  这种耦合的多铁性状态令研究人员十分兴奋,因为它具有开发磁性数据存储设备的潜力。在传统的磁性硬盘驱动器中,数据被写入快速旋转的磁盘上,磁盘上刻有微小的磁性材料域。悬浮在磁盘上的一个小尖端会产生一个磁场,它可以共同将域的电子自旋切换到一个方向或另一个方向,以表示编码数据的基本“位”——“0”或“1”。  尖端的磁场通常是由电流产生的,这需要大量的能量,其中一些能量可能会以热的形式损失。除了硬盘过热外,电流产生磁场和切换磁位的速度也有限制。科明和努格迪克等物理学家认为,如果这些磁性比特可由多铁性材料制成,它们就可使用更快、更节能的电场而不是电流感应磁场来切换。如果使用电场,写入比特的过程将会快得多,因为在电路中可在几分之一纳秒内产生场,这可能比使用电流快数百倍。
  • 国内首台8英寸PZT压电薄膜设备落户上海智能传感器产业园
    1月19日,国内首台8英寸PZT压电薄膜设备落户上海智能传感器产业园超越摩尔研发中试线,打造基于压电材料的MEMS先进工艺平台。平台将由国家智能传感器创新中心(简称“创新中心”)和上海微技术工业研究院共同建设,持续推进智能传感关键共性技术创新开发能力。PZT薄膜压电MEMS技术是智能传感器领域的重要发展方向,是充满技术多样性和产业机会的蓝海领域。创新中心的量产型PZT压电薄膜沉积设备可以实现8英寸晶圆上单晶体PZT薄膜的高质量生长,成膜温度低(500℃),可以满足CMOS传感控制电路与MEMS兼容集成制造需求,是与Bosch、Silex等国际主流传感器生产厂商保持同步的先进装备。新型压电MEMS光学、声学、惯性、微流控等产品,在自动驾驶、消费电子、光通信、医疗康养、工业控制等AIoT领域具有广泛而重要的应用前景。本次入驻的PZT压电薄膜沉积设备来自ULVAC,以及来自Oxford Instrument的PZT 薄膜刻蚀设备。创新中心持续稳步推进包括设计、仿真、材料、加工、测试等环节的高端MEMS工艺平台能力建设,快速形成一系列相关特色技术模块和工艺能力,将与产业链上下游共同打造基于压电薄膜材料的MEMS新器件开发、新原理探索、新应用验证的技术平台,为国内外相关技术和产品开发提供平台支撑服务,也将为无铅压电材料的薄膜化以及在MEMS方向的应用探索和技术开发提供平台支持。国家智能传感器创新中心致力于先进传感器技术创新,以关键共性技术的研发和中试为目标,联合传感器上下游及产业链龙头企业开展共性技术研发,形成“产学 研 用”协同创新机制,打造世界级智能传感器创新中心。依托中国传感器与物联网产业联盟已有近1000家产业链各领域的代表企业,发挥产学研资源优势,加速我国物联网核心技术的发展,推动智能传感、大数据、人工智能的生态体系建设。
  • 东西分析全二维气相色谱飞行时间质谱仪通过专家测评
    p span style="FONT-FAMILY: times new roman" strong仪器信息网讯 /strong2015年10月18日,中国分析测试协会仪器评议组对北京东西分析仪器有限公司与广州禾信分析仪器公司联合研制的GC× GC TOF MS 3300全二维气相色谱飞行时间质谱仪进行现场测评。该活动作为BCEIA展会同期开展的活动,评测结果将在展会期间进行发布。/span/ppspan style="FONT-FAMILY: times new roman"  测评专家组成员包括:中国分析测试协会研究员汪正范、中石化石油化工研究院高级工程师苏焕华,中国农业大学教授李重九,国家生物医学分析中心教授杨松成,中国科学院科学仪器研究中心研究员于科岐、国家生物医学分析中心研究员赵晓光,清华大学教授张新荣、北京大学教授刘虎威,中国科学院化学研究所研究员王光辉。北京蛋白质组研究中心研究员魏开华任测评组组长。北京东西分析仪器有限公司合作伙伴广州禾信分析仪器有限公司董事长周振也带领广州禾信项目团队一同参加了本次活动。/span/ppspan style="FONT-FAMILY: times new roman"  全二维气相色谱飞行时间质谱的研发是对当前国内外常用的一维气相色谱质谱的一次革命,为解析复杂物质与检测未知物质提供了一个强有力和新颖的解决手段。目前国际上只有个别公司掌握了这项尖端技术。GC× GC TOF MS 3300全二维气相色谱飞行时间质谱仪作为全二维色谱和质谱彻底整合的产品,国际尚属少见。通过此项目的研究,东西分析和广州禾信获得了多个相关专利。/span/ppspan style="FONT-FAMILY: times new roman"  本次会议由魏开华主持。项目组向专家组汇报仪器研制情况,介绍测评方案。专家组针对测评方案提出意见并进行了现场测评。并对现场测评结果进行了总结和补充。/span/ppspan style="FONT-FAMILY: times new roman"  GC× GC TOF3300的新颖性和独创性引起了专家的极大兴趣。针对专家的疑问,项目组现场做样和演示,通过分析结果解答专家的问题,整个互动过程气氛活跃。/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"img title="1_副本.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/0f81a93f-b3ae-42ef-bce8-53a094d5374c.jpg"//span/ppspan style="FONT-FAMILY: times new roman"  span style="FONT-FAMILY: times new roman COLOR: #0070c0 FONT-SIZE: 12px"strong项目技术负责人、北京东西分析仪器有限公司生命科学及生物技术首席科学家薛恒钢汇报仪器研制结果/strong/span/span/ppspan style="FONT-FAMILY: times new roman"  项目技术负责人、北京东西分析仪器有限公司生命科学及生物技术首席科学家薛恒钢介绍了产品的设计理念、立项依据、产品研制过程、突破的关键技术点和仪器的检出限等性能指标。据介绍,此仪器主要应用在大气中有机物分析、地质石油中组分分析、现代农业研究、冶金环保等领域。薛恒钢还以柴油组分分析为例介绍了仪器的应用特点。除此之外,薛恒钢还对比了该产品与国外同类产品的分析结果。/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"img title="2_副本.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/687222a7-70d7-4bd0-818b-399d625c8ef1.jpg"//span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"span style="FONT-FAMILY: times new roman COLOR: #0070c0 FONT-SIZE: 12px"strong专家组对仪器进行现场测评/strong/span/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"span style="FONT-FAMILY: times new roman COLOR: #0070c0 FONT-SIZE: 12px"img title="3_副本.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/c61dd797-fd21-48b4-a469-fd132b816bca.jpg"//span/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"span style="FONT-FAMILY: times new roman COLOR: #0070c0 FONT-SIZE: 12px"strong柴油样品一维TIC图(GC Q MS)/strong/span/span/ppspan style="FONT-FAMILY: times new roman"  由柴油样品的一维色谱TIC图可以看到,一维色谱分离化合物数目不到200个。/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"img title="4说_副本.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/fc1d8f5a-c227-4137-a873-9060d7527a7d.jpg"//span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"/spanspan style="FONT-FAMILY: times new roman"span style="FONT-FAMILY: times new roman COLOR: #0070c0 FONT-SIZE: 12px"strong柴油样品的全二维色谱TIC图/strong/span/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"span style="FONT-FAMILY: times new roman COLOR: #0070c0 FONT-SIZE: 12px"img title="补充三维色谱图-xhg_副本.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/07c512dc-79d5-4553-aeb9-1fb238fbc18c.jpg"//span/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"span style="FONT-FAMILY: times new roman COLOR: #0070c0 FONT-SIZE: 12px"strong柴油样品的全二维色谱TIC图3D显示/strong/span/span/ppspan style="FONT-FAMILY: times new roman"  通过全二维色谱可以对超过1500个化合物进行定性。/span/ppspan style="FONT-FAMILY: times new roman"  会议最后,参会专家对该款仪器予以了积极的和正面的肯定,为能见证国产仪器的跨越式的进步感到十分欣喜。专家表示希望东西分析继续大胆创新,不断推出具有自主知识产权的优秀高端科学仪器产品,勇敢攀登世界分析仪器的顶峰。/span/ppspan style="FONT-FAMILY: times new roman"  另外,专家特别称赞东西分析和广州禾信的这种合作模式,为国内仪器厂商合作共赢树立了一个良好的典范。广州禾信秉承“做中国人的质谱仪器”的理念,在中国质谱仪的研发和应用方面,取得了丰硕的成果。/span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"img title="6_副本.jpg" src="http://img1.17img.cn/17img/images/201510/insimg/8f7bc677-9ae9-4b60-9fca-2f7933a2fb2a.jpg"//span/pp style="TEXT-ALIGN: center"span style="FONT-FAMILY: times new roman"span style="FONT-FAMILY: times new roman COLOR: #0070c0 FONT-SIZE: 12px"strong参会/strong/span/spanspan style="FONT-FAMILY: times new roman"span style="FONT-FAMILY: times new roman COLOR: #0070c0 FONT-SIZE: 12px"strong全体人员在东西分析楼前合影/strong/span/span/pp style="TEXT-ALIGN: right"编辑:郭浩楠/p
  • 【HORIBA学术简讯】二维材料、钙钛矿、环境、传感器、玻璃领域 | 2021年第37期
    “学术简讯”栏目旨在帮助光谱技术使用者时时掌握新发表的科学研究前沿资讯。我们将每周给您推送新增学术论文:包括但不限于主流期刊Nature index、ACS、RSC、Wiley、Elsevier等。帮助您了解全球范围用户使用 HORIBA 光谱技术的新动态,为您的科学研究提供新思路,激发学术灵感。如您对本栏目有任何建议,欢迎留言。本周我们推荐5篇前沿学术成果,针对二维材料、钙钛矿、环境、传感器、玻璃领域,涉及拉曼、荧光、OSD技术。二维材料钙钛矿环境传感器玻璃更多光学光谱文献,欢迎访问Wikispectra 文献库。
  • “我们一定要做全球领先的高压电源制造商”——访西安威思曼高压电源有限公司经理高永明
    p  说起威思曼公司,2004年,高永明看到中国高压电源产品依然受制于国外,毅然从上市公司辞职,创办了西安威思曼高压电源有限公司。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/6a8290a6-1fff-475e-ac95-816c69293c8a.jpg" title="高永明.jpg"//pp style="text-align: center "span style="font-family: 楷体, 楷体_GB2312, SimKai "strong西安威思曼高压电源有限公司经理 高永明/strong/span/pp  威思曼公司2007年注册成立。“当时因为我上班的上市公司也用高压电源,每次采购的价格都不一样,明摆着是中国做不了,你只能任人宰割。当时我就决定我们自己下大力气去开发高压电源。”而选择做分析仪器的电源,也是由于2007年左右正是RoSH指令实施后采购XRF的高峰,所以,威思曼公司的第一个产品就是XRF高压电源,公司前十年也一直致力于耕耘分析仪器领域。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/40f2f8ef-62b0-4bf8-9fc2-e9a9434ac35a.jpg" title="镉大米电源_meitu_1.jpg"//pp style="text-align: center "span style="font-family: 楷体, 楷体_GB2312, SimKai "strong镉大米检测仪的电源/strong/span/pp  X射线类分析仪器的电源产品,除了RoSH检测仪,威思曼还提供测金仪、测厚仪、镉大米检测仪,以及XRD等的电源。“镉大米检测仪的电源我们是全球第一家自主研发的生产商,是与钢研纳克一起合作推出,并得到了国家粮食局系统的认可。”高永明说到。/pp  “目前X射线类分析仪器的高压电源产品仍是威思曼主要生产的一类产品。”高永明说到,“但是,这类产品的利润已经非常薄了。”为此,近年来高永明在不断拓展新的产品以及新的应用领域。/pp  strongspan style="color: rgb(0, 112, 192) "场发射扫描电镜电源研制成功,解决了一项“卡脖子”的技术/span/strong/pp  2012年底,威思曼公司拿到了咸阳市科技局一个5万元的资助项目。“我们自己光资金投入就有250万左右。历经六年的时间,2017年电子显微镜的高压电源产品才正式问世。”据了解,目前世界上只有三家厂商能够生产该类产品,而国内能做的就只有威思曼高压电源一家公司。/pp  “这款电源的设计初衷是给台湾一家公司的场发射扫描电镜产品定制开发。”这家台湾公司的场发射扫描电镜主要用于半导体行业,客户只有三星和英特尔这两家做晶圆的公司。虽然市场销量非常少,但一台仪器都可以卖出一个多亿人民币的价格来。“我们的高压电源就是配套在这个电子显微镜里头的,而该电子显微镜产品2017年已经开始整机销售了。目前,这个高压电源在世界上是属于电子显微镜电源中比较顶尖的。”高永明自豪地说到。“如今,国内生产电子显微镜的公司用到电源就会找到我们。”/pp  不过高永明也遗憾地说,这种电镜电源的市场量很少。为此,我们好奇地问到,威思曼公司自己投入了那么多资金、花了那么长的时间,研制出来的却是一个市场量很小的产品。当时,高永明是怎么想的呢?/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201807/insimg/1b3598be-5ef2-4df1-93a2-ef04231ac651.jpg" title="电子显微镜_meitu_2.jpg"//pp style="text-align: center "strongspan style="font-family: 楷体, 楷体_GB2312, SimKai "场发射扫描电镜电源/span/strong/pp  “其实做这个产品,我是任性了一把,也真的是因为一种‘情怀’的存在。” 高永明讲述到,当年美国总统尼克松访访华的时候送给周总理一个礼物,就是电子显微镜技术。如今,纳米材料的研究与加工等在国家发展中发挥着重要作用。虽然,电镜作为一种纳米材料表征技术的市场量并不很大,但是很多实验室都会用到,如果国外仪器公司不卖给我们,就是个“卡脖子”的问题。“接了这个活,也是因为许多老科学家对我们的鼓励,‘这个事咱们国内一定要做,咱们中国一定要做出尖端的、世界一流的电子显微镜,所有的配套的东西一定要在中国解决。 ’”/pp  span style="color: rgb(0, 112, 192) "strong2017重大专项取得重大突破,将大幅提升整个高压电源产品性能/strong/span/pp  场发射扫描电镜电源产品的研制成功,标志着威思曼公司掌握了尖端技术,在这个行业里达到了一定“高度”。也因此,威思曼公司顺利获得了2017年科技部“重大科学仪器设备开发”重点专项—— “X射线高压电源”项目。该项目主要为了解决小体积、大功率、高电压电源的国产化问题。/pp  2017年12月18号该项目正式启动。据高永明介绍,重大专项项目要求非常具体,该项目要求实现的指标是:体积132*480*480mm、功率5000瓦、电压250千伏、逆变频率240K赫兹。“这四个条件同时实现是很难的,目前全球范围内都没有该级别的产品。”高永明说到:“我们当时接下这个项目也是有点忐忑。在高压电源领域,没有太多可参考的东西,完全要我们自主研制。”/pp  不过,仅用了不到半年的时间,该项目已经取得了重大突破。接下来,高永明和他的同事们将不断“抠”细节、做出工程样机来。重大专专项产业化的要求——每年2000万产值,高总认为,有难度,但是非常有信心完成。/pp  “完全按照重大专项这些指标制作的产品并没有多大的市场,但是,使用重大专项的某几项技术细分成不同的产品就很有用了,这也是重大专项的意义。” 高永明说到,“未来,我们要把这项技术扩展到所有的产品中去。这可能对整个高压电源领域是比较大的一个震动,对整个高压电源产品的性能将有大幅度的提升。”/pp  2018年威思曼又承担了国家科技项目“增材制造”项目——金属3D打印机的子项目,仍是核心部件——高压电源,也是中国首款。/pp  strong后记/strong/pp  span style="font-family: 楷体, 楷体_GB2312, SimKai "威思曼的很多产品开发是来自于合作伙伴的需求,另外一个典型的例子是威思曼与广州禾信合作开发的质谱仪专用高压电源模块,电源的噪声、稳定性等性能的高低决定着质谱仪的分辨率等指标。广州禾信的董事长周振当时说到,做中国人的质谱,也应该做一个中国人的高压电源公司。/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  大约5年前的时候,广州禾信实现了数字离子阱质谱仪的原理样机,但是样机的脉冲电源体积太大,比预期的整机体积都要大。为了实现小型化,当时就找到了威思曼。而威思曼最后做出的电源只有烟盒大小,使得广州禾信的数字离子阱质谱仪才可以做的非常小。周振董事长也比较受触动,开始与威思曼形成了战略合作关系。/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "  谈到公司的未来发展规划,高永明表示,“我们一定要做中国高压电源领先公司,全球领先的高压电源制造商。”中长期的规划是拓展医疗、安检等应用领域,实现产值规模达到7000万。同时,将公司投入1个多亿计划建设的“西安威思曼科技园”建起来。长期的规划是通过十年左右时间,实现企业上市。/span/ppbr//p
  • 解决方案 | 全二维气质联用仪鉴别白酒风味组分
    背景介绍白酒是我国历史悠久的传统蒸馏酒,目前主要有以酱香型、清香型、浓香型、米香型四种香型为主的十二大香型白酒。由于原料及生产工艺的差异,不同香型白酒有着不同的风味组分特征,构成了白酒丰富多彩的风味特色。因此,白酒中的特征风味化合物分析已成为当今研究者的关注重点。方案简介随着科技的发展,白酒风味物质的分析方法逐渐由传统化学方法引向高端仪器分析。为了更好地支持白酒风味物质分析,禾信仪器秉承“做中国人的质谱仪器”发展理念,与中国食品发酵工业研究院标准和数字化研究发展部合作开展基于全二维气质联用仪(GGT 0620)等国际领先的白酒分析技术,推出白酒风味组分分析检测解决方案。方案以全二维气质联用仪(GGT 0620)为核心设备,搭载全自动智能进样平台、全新半导体制冷固态热调制器和海量化合物数据分析软件,开展白酒中风味物质的高通量定性鉴定、定量分析,将现代高新技术融合进庞大复杂的白酒风味成分体系研究中,逐渐揭开不同香型白酒所含风味物质的神秘面纱,从而科学地引导中国白酒行业的快速发展。全二维气质联用仪(GGT 0620)产品图片应用案例 01某浓香型白酒风味成分分析仪器配置参数部分测试结果风味成分定性分析下图是该浓香型白酒样品的全二维色谱图,通过自动峰检测,共检测到1864种挥发性有机物成分,化合物组成非常丰富,且不同种类的化合物(酯类、醇类、有机酸类)在全二维色谱图呈现规律性分布。某浓香型白酒样品的全二维色谱图风味化合物组成分析通过海量化合物数据分析软件(MDT)可以实现一键自动分析,一键完成数据自动分类及统计,确定该浓香型白酒中烷烃、烯烃、芳烃、酯类、醛类等类别化合物占比和主要风味成分,具体数据见下表。某浓香型白酒样品的各类化合物数量及占比表不同年份酒差异性分析通过对该浓香型白酒的不同年份酒统计分析,较好地实现了对三个储存年限的年份酒的鉴别。下图中绿色Y3代表储存3年,蓝色Y6代表储存6年,红色Y9代表储存9年,通过图示可以看出,Y3与Y6、Y9不同年份酒能达到很好区分。不同年份某浓香型白酒样品的聚类分析图酒越陈越香,白酒储存年限越长,陈味越突出,入口感觉越细腻。通过GGT 0620可以对不同存储年限的酒风味物质进行鉴别,有助于各大白酒厂商筛选出口感较好的陈年老酒。实验结论使用 GGT 0620 结合海量化合物数据分析软件对某浓香型白酒样品进行非靶向分析,共测得1864多种挥发性有机物成分。与此同时,有效完成了对该白酒主要风味成分的类别和占比分析,并对不同年份酒开展了准确鉴别分析,为浓香型白酒风味物质的研究和不同年份酒的鉴定提供了一种准确有效的分析方法。 02某清香型白酒挥发性成分分析仪器配置参数部分测试结果风味成分定性分析下图是九类清香型白酒样品的全二维色谱图,每类样品检测出400-700种挥发性有机物,总计检出1600多种挥发性有机物成分,其中以 2-3#样品中检测到的化合物种类最多,达到 609 种,化合物组成非常丰富。9个某清香型白酒样品的全二维色谱图风味化合物组成分析通过MDT数据处理软件对检测到的化合物组成进行统计分析,结果如下图,九类白酒样品中含量最高的化合物种类均是以癸酸乙酯、辛酸乙酯、月桂酸乙酯、己酸乙酯酯等为主的酯类化合物,相对含量都在50%以上。酮类、醇类、烯烃类及酸类化合物含量略低一些。某清香型白酒样品的各类化合物数量及占比表主成分物质分析PCA是常用的无监督统计方法,用于降低大数据集的维数,以揭示样本间的差异,它对复杂数据集能提供直观解释,并从中揭示出数据集中观测数据的分组、趋势以及离群。采用PCA方法对九类清香型白酒样品采集数据进行差异化分析,并经MDT软件分析处理后得到832个变量,按类别区别划分为九组进行PCA分析,得分图如下图所示。9个某清香型白酒样品的全二维色谱图实验结论使用 GGT 0620 结合化学计量学方法对九个清香型白酒样品进行非靶向分析,共测得 1600 多种挥发性有机物成分。Canvas 软件、MDT 软件可以联合处理和挖掘全二维气质联用数据,找出差异/相似化合物,最后通过商业化多元数据分析软件得到样品间的聚类关系,为区分不同类别的清香型白酒提供了一种快速、可靠的分析思路。 03某白酒样品中的氨基甲酸乙酯(EC)测定分析仪器配置参数部分测试结果某白酒样品中的风味成分定性分析下图是某白酒样品的全二维色谱图,通过自动峰检测,成功分离了上千种挥发性化合物,在选择离子模式下有助于从这个庞大的数据中找到目标物EC,并且白酒基质对目标物没有任何的影响。△ EC 和 D5-EC在白酒基质中二维色谱图△ EC 和 D5-EC在选择离子模式(M/Z 62,64)二维色谱图某白酒样品中的EC定量曲线分析按照实验方法依次从低浓度到高浓度对标准白酒样品溶液进行分析,在10-500μg/L的范围内,线性相关系数达到0.998,可以满足国标方法GB 5009.223-2014的要求。EC测定的标准曲线实验结论禾信仪器GGT 0620是分析白酒中EC的有力工具,分析过程不需要繁琐的人工操作以及衍生试剂和有毒有害试剂的消耗,同时可保留丰富的样品挥发性物质信息,有效减小基质效应的影响。此外,该实验也为白兰地、威士忌等高酒精浓度饮料酒中EC的定量测定提供了新方法,为发酵食品的安全生产提供了新思路。 04白酒标准化数据库建立指导目前,我国白酒风味研究还存在专业风味数据库缺乏的问题。在没有合适的谱图库的情况下,为了提高风味剖析的准确性和科学性,相关高校、科研院所及龙头生产企业都会分别购买几百种甚至上千种风味标准物质,但是相关资源共享还存在一定难度。基于全二维气质联用仪(GGT 0620),可以开展不同香型、相同香型、不同地区白酒样品的风味物质分析,完善升级中国白酒风味物质大数据库组分数量和相关信息,建立白酒的风味物质标准化数据库,为白酒真实性鉴别提供科学技术依据。总结禾信仪器白酒风味组分分析检测解决方案,既可以快速准确地研究庞大复杂的白酒风味成分体系,还可以监测白酒的关键性安全指标,实现白酒风味物质检测和安全监测的双重目标。未来,禾信仪器将聚焦更多高端质谱仪器,提供更多更专业化的白酒分析检测质谱解决方案,希望能为广大的白酒行业分析工作人员提供支持和帮助。
  • 二维半金属—二维超导体之间超流拖拽效应揭示
    15日,记者从中国科学技术大学获悉,该校曾长淦教授、李林副研究员研究团队与北京量子信息科学研究院解宏毅副研究员等合作,通过构筑石墨烯与氧化物界面超导体系的复合结构,揭示了二维半金属和二维超导体之间由于量子涨落诱导的巨幅超流拖拽效应。相关成果日前在线发表于《自然物理》。对于两个空间相近但彼此绝缘的导电层构成的电双层结构,在其中一层(主动层)施加驱动电流,层间载流子之间的耦合会在另一层(被动层)中诱导产生一个开路电压或闭路电流,即产生层间拖拽效应。基于二维电子气之间的拖拽效应,可以探索准粒子的层间长程相互作用,发现如激子超流体等新颖层间关联量子态。由于较强的介电屏蔽效应,拖拽电流耦合比远远小于1。而将其中一层或两层替换成超导材料,将有望产生耦合比显著增强的超流拖拽效应。研究团队构筑了石墨烯与氧化物异质界面组成的二维半金属—超导体电双层结构,并对其层间拖拽行为进行了系统研究。他们发现,在氧化物界面超导转变区间,石墨烯层中施加驱动电流可以在氧化物界面诱导出巨幅拖拽电流,且强度可以通过栅压/外磁场等进行有效调控。特别是在界面超导最优掺杂附近,拖拽电流耦合比达到0.3,即所产生的拖拽电流大小与驱动电流相当。与此前传统普通金属/超导金属体系相比,耦合比提高了两个量级以上。这一结果揭示了宏观量子涨落对于层间准粒子相互作用的显著调制。在应用层面,基于该复合结构将有望制备新型电流或电压高效转换器件,包括超导二极管等量子器件,将推动具有丰富量子物相的更广泛二维电子体系的拖拽效应研究,并发现更多基于层间长程耦合的新颖量子多体效应。
  • 探索纳米世界!你不得不了解的快速筛样超小型台式低电压电子显微镜
    操作简单换样快捷,换样仅需3 min成本低廉 无需冷却水无需专业实验室维护成本低新一代超小型台式透射电子显微镜LVEM 5 随着科研技术的进步,人们对科研设备的要求也越来越高。在保证高精度、高灵敏度等条件的前提下,便捷操作的台式小型化设备越来越受科研人员的青睐。尤其是科研工作者在前期科研探索过程中,面对繁重的样品筛选工作,迫切需要操作便捷、换样快速的表征仪器,特别是透射电镜领域,满足这样需求的仪器少之又少。为此,美国Delong Instrument公司推出新一代LVEM5超小型多功能台式透射电镜,以实现这一功能。操作简单,换样快捷,成本低廉 LVEM5直观的用户界面、简便的控制台设计,用户仅需少的培训,即可轻松操作,让用户在使用时感觉更加舒适。不同于传统透射电镜每次更换样品后需要长时间抽真空,LVEM5更换样品仅需3分钟,可节省大量时间。LVEM5次购置费用远低于传统透射电镜。LVEM5特的设计优势,在使用中无需冷却水等外设,无需安装在特殊实验室,维持成本低。 台式设计:体积小巧,灵活性高 传统透射电子显微镜体积庞大,对放置环境有严格的要求,并且需要水冷机等外置设备。通常会占据整间实验室。LVEM5从根本上区别于传统电镜,尺寸较传统电镜缩小了90%,对放置环境无严格要求,无需任何外置冷却设备,可以安装在用户所需的任意实验室或办公室桌面。TEM-ED-SEM-STEM四种成像模式 LVEM5是新一代电子显微镜,不仅具有传统透射电镜功能,同时集成了扫描电镜功能,在一台电镜上即可实现TEM-ED-SEM-STEM四种成像模式。通过控制软件,LVEM5可以在四种模式间快速切换。研究人员可以获取同一样品、同一区域的不同模式图像,更加方便多方位深入的研究样品。电子光学-光学两图像放大 LVEM5电子光学系统采用倒置设计,场发射电子枪位于显微镜底端。电子枪发射出的高亮度电子束,经过加速、聚焦以及样品作用后,照射在高分辨率 YAG荧光屏上。荧光屏上的图像,包含了纳米的样品信息。YAG荧光屏将电子光学信号,转化成光学信号。采用光学显微镜对图像进一步进行放大。TEM模式下,放大倍数~20万倍(TEM Boost升版 ~50万倍)。而整个电镜体积,仅与光学显微镜相仿。5 kV低加速电压,有效提高轻元素样品成像质量生物样品无需染色 LVEM5采用5 kV低电压设计。相比高电压,低压电子束同样品的作用更强,对密度和原子序数有很高的灵敏度,对于0.005 g/cm3的密度差别仍能得到很好的图像对比度。例如,对20 nm碳膜样品,5 kV电压下比100 kV电压下对比度提高10倍以上。而LVEM5的空间分辨率在低电压下仍能达到1.5 nm。 生物样品的主要元素为C、H、O等轻元素,使用传统透射电镜观测时,需要使用重金属元素对样品进行染色,以增强对比度。 LVEM5观测生物样品时无需喷金,避免了染色造成的样品污染和扭曲,展现样品的本征形貌。超小型多功能台式透射电镜LVEM5与传统透射电镜的对比:传统透射电镜LVEM放大倍数高,分辨率0.2 nm左右分辨率:1.5nm(LVEM5)1nm (LVEM25)进样速度慢,约15-30分钟进样速度快,约3分钟操作复杂:操作人员需经过长期的严格培训为保证设备正常运行,好是专门做电镜的研究生操作,人工成本高操作简单:半天培训即可立操作无需专人操作放置于一层或地下室,需要特殊处理的实验室,需防震处理,环境要求高可放置于任何位置,厂房、办公室、实验室需要动力电(不能断电)、需要水冷机、液氮等维护成本高无需特殊电源,无需水冷、液氮维护成本低超小型多功能台式透射电镜LVEM5新应用案例TEM模式SEM模式STEM和ED模式用户评价LVEM5 User Profile: Dr. Betty Galarreta “While we were looking for an electron microscope, we knew we wanted to get one that did not require complicated and expensive maintenance. We also wanted equipment that was able to resolve details within the 1-2 nm range and that we could use to analyze not only metallic nanoparticles but also some biopolymers. The LVEM5 not only met our requirements but also made it possible to have sort of a 3 in 1 electron microscope, being able to characterize the same area in TEM, SEM and STEM mode.” "当我们在调研射电子显微镜时,我们想要一台不需要复杂和昂贵维护的设备。同时,我们还希望这台透射电子显微镜能够观察到1-2纳米尺度内的细节,而且这台电镜不仅可以用来分析金属纳米颗粒,还可以分析一些生物聚合物材料。LVEM5不仅满足了我们的要求,而且这台透射电子显微镜同时拥有三种功能,能够在TEM、SEM和STEM模式下对同一区域进行表征。" LVEM5 User Profile: Dr. Francesca Baldelli Bombelli “We are very satisfied with the instrument as it allows us to screen a high number of samples in a short time with a limited cost. It’s easy to use, without the need of a specific technician to run it, and with a low cost of maintenance. It allows the screening of a high number of samples in a quite short time. It is also quite good in the imaging of organic nanomaterials thanks to its low voltage which does not degrade them.” "我们非常满意这台透射电子显微镜,因为它允许我们在短时间内以有限的成本筛选大量的样品。这台设备很容易使用,不需要专门的技术人员来运行它,而且维护成本低。它可以在相当短的时间内筛选大量的样品。同时,归功于低电压操作模式,LVEM5非常擅长于有机纳米材料的成像,不会使它们发生降解。" LVEM5 User Profile: Dr. Fabrice Piazza “The most exciting moment was to find diffraction patterns of single bilayer graphene domain with AB stacking with LVEM5. The single bilayer graphene domain with AB stacking discriminates from AA counterpart by the three-fold symmetry of the spot intensity distribution on the inner ring of the diffraction patterns. This cannot be observed at 60–100 keV. Those observations confirmed the calculations of one of our collaborator at CEMES, Dr. Pascal Puech. Definitively, one of the greatest moments in my 22-year-long career.We have found that the advantages of using a LVEM go beyond cost issues. Indeed, by using LVEM to analyze 2D materials, in many cases, one can quickly obtain the number of layers and stacking sequence. Also, as we demonstrated the methodology is useful for materials other than graphene, such as transition metal dichalcogenides (TMD) which are nowadays very popular worldwide. Analyzing these materials in these ways is not possible using a conventional TEM operating at 60–100 keV.” "激动人心的时刻是用LVEM5衍射模式证明了单双层石墨烯域是以AB方式堆积的。具有AB堆积的单双层石墨烯域在衍射图像上与AA堆积的单双层石墨烯域的区别为,内环上的光斑强度分布的三倍对称性不同。这在60-100 KeV电压下是无法观察到的。这些观察结果证实了我们一位合作者的计算结果,来自CEMES的Pascal Puech博士。这肯定是我22年职业生涯中伟大的时刻之一。我们已经发现,使用LVEM5已经远超出了其成本优势。事实上,通过使用LVEM5来分析二维材料,在许多情况下,人们可以快速获得层数和堆叠顺序。另外,正如我们所展示的,该方法对石墨烯以外的材料也是有用的,例如当今非常流行的过渡金属二氯化物(TMD)材料。对于使用60-100 keV电压操作的传统透射电子显微镜,这些材料是不能用这种方法分析的。"用户单位
  • Nano Energy:基于面投影微立体光刻3D打印技术的共形压电传感器设计与制造
    随着柔性电子领域的快速发展和物联网技术的普及,能够用来监测人类生理指标(如心跳、脉搏、运动周期、血压等)和机械运行状态(如主轴跳动、机器人运动状态感知等)信号的可穿戴电子器件逐渐应用到社会生活中。可穿戴电子器件的共形设计和制造使其在电子皮肤、柔性传感和人工智能中具有潜在的应用前景。当前,大多数电子器件是利用光刻、压印技术和电子束在硅表面进行制备。然而由于缺乏弯曲表面的加工工艺,要制备与复杂曲线表面(例如人体关节)共形的电子器件尤为困难。面投影微立体光刻3D打印技术(PμSL)可快速制造并成型任意形状和可设计的结构,为三维共形柔性电子器件的制造提供了灵活性和简便性。然而,考虑到柔性材料的成型工艺与功能特性,传统的制造工艺限制了功能材料的设计范围,降低了微结构的设计与成型尺度,制约了功能器件的成型和性能提升的范围。图1 论文工作的摘要图近日,西安交通大学机械工程学院陈小明、李宝童、邵金友教授等研究人员,从功能压电纳米复合材料的改性与压电器件的微结构拓扑优化等两方面出发,利用面投影微立体光刻3D打印技术(nanoArch S140,10μm精度,深圳摩方),通过设计并调节压电氮化硼纳米管材料(BNNTs)和光敏聚合物树脂的界面相容性,结合拓扑优化微结构方法,实现了具有高灵敏度、宽响应,且结构可覆形的柔性压电传感器制造。该研究以“3D printed piezoelectric BNNTs nanocomposites with tunable interface and microarchitectures for self-powered conformal sensors”为题发表在国际高水平期刊《Nano Energy》上,为高性能可穿戴柔性压电传感器件的设计与制造提供了新思路。工作要点一:功能纳米复合材料(BNNTs)的表面改性与材料制备,超低负载量(0.2wt%)的纳米复合材料表现出出色的压电性能:图2 功能纳米复合材料(BNNTs)的设计、改性与表征:a)BNNTs表面功能化工艺;(b)原始BNNTs/功能化BNNTs和树脂基体界面力学行为示意图;(c)极化与未极化BNNTs等压电输出信号为了提高压电纳米填料在有机聚合物溶液中的相容性和分散性,以及纳米复合材料的压电性能,通过用硝酸处理来实现纳米管表面的氧化和羟基形成,在超声处理下,官能化分子(TMSPM)与BNNT-OH表面的官能团嫁接,生成化学官能化的纳米管(F-BNNTs)。同时,纳米管上的丙烯酸酯基团显着提高了BNNTs在聚合物基体溶液中的分散性及压电输出;实验表明:相对于原始BNNTs,基于F-BNNTs的复合压电聚合物的压电输出提高了140% (见图2)。工作要点二:结构拓扑优化显著提高了复合材料的压电性能,微结构的纳米复合膜在较宽的响应区域上展现出高灵敏度; 课题组研究人员的前期研究工作表明,微结构化能显著提升压电器件的输出信号(Small 13 (23), 1604245;Nano Energy 60, 701等)。因此为了实现器件电信号输出的最大化,本文采用结构拓扑优化的方法优化压电膜的微观结构,并利用高精度面投影微立体光刻3D打印的微尺度加工能力,实现拓扑微结构的制造。数值模拟结果表明,微结构的引入能显著提高压电输出,并且具有优化微结构(struct B-P 和struct C-P)的压电薄膜能进一步提高信号输出(见图3)。图3 平面和微图案化压电薄膜的设计和仿真结果通过微结构3D打印拓扑结构及压电信号测试,表明F-BNNTs /树脂复合膜的最大输出电压记录为4.7 V,与原始的平面F-BNNTs压电膜相比,输出提高了4.3倍,比未官能化的BNNTs基复合膜高出10倍。这种显著增强主要归因于聚合物和压电填料之间有效应力传递,以及复合膜的拓扑微结构设计。图4 (a-f)不同微结构压电薄膜;(g)薄膜压电输出;(h)压电微结构薄膜的压电输出实验与仿真对比工作要点三:基于PμSL技术实现共形压电器件制造与应用;与传统的微加工方法相比,面投影微立体光刻3D打印技术在设计和制造具有复杂几何形状的共形电子器件上具有更大的灵活性,如图5所示,曲面形状和微结构的制造证实了功能材料在复杂表面上的非平面制造能力。图4 (a)面曝光3D打印原理;(b)微结构化的共形薄膜示意图可打印压电材料被用于构造机器人手的智能触觉应变传感器。为了确保压电器件在弯曲或不平坦表面上的功能性,根据机械手的表面设计了合适的3D模型,然后将共形器件打印并安装到机械手不同的指骨上,通过建立应变感应电压与特定手部姿势的映射关系,手指上的应变传感器阵列可为机械手提供触觉感测的能力。图5(a–d)机械手上的共形应变传感器可转换不同的姿势,例如松弛(a),抓取(b),吊勾(c)和托平(d);(e)从托举球到抓紧球的姿势以及相应的电压响应(f)。如图5所示,手指上的应变传感器阵列可以使用14个压电应变传感器直接转换手的姿势,当用手握住不同结构的物体时,应变传感器会记录弯曲手指的不同输出信号。从预定义的传感器中获得的针对这种姿势的力的大小及其空间分布。3D打印的共形柔性压电传感器件可用于捕获接触区域上的力分布并监视机械手的不同运动,使其更能像人手一样具备相关功能,在人机交互中应用。本研究提出了一种面投影微立体光刻3D打印功能化纳米复合材料实现功能器件制造的方法,并通过材料改性与微结构设计两方面协同提升信号输出。研究结果表明:在光固化聚合物树脂中掺杂低负载量(0.2 wt%)的功能化氮化硼纳米管,并进行微结构拓扑优化,可实现高性能压电器件的制造。该方法制备的传感器在智能机器人、仿生电子皮肤、曲面结构件健康检测与人机接口等领域有广泛的应用前景。 论文链接:https://www.sciencedirect.com/science/article/abs/pii/S2211285520308776
  • 台式ALD,Nat. Mater.!二维晶体管介电层集成研究取得重要进展
    台式三维原子层沉积系统-ALD体积小巧,可放在实验桌上多片4,6,8 英寸样品同时沉积厚度均匀性高于99%适合复杂/ 掺杂薄膜沉积二维半导体表面沉积利器...... 随着现代半导体行业的发展,基于硅半导体的场效应晶体管(FET)的尺寸不断缩小,目前已经接近其物理极限。在新兴材料中,二维半导体可达到原子级厚度且保持高载流子迁移率,理论上可实现优异的栅极控制,因而被认为是用于下一代场效应晶体管的理想沟道材料。然而,由于二维半导体表面无悬挂键,很难在其表面集成高质量的介电层,这是目前该领域的重大难题。 为解决上述问题,华中科技大学翟天佑团队以无机分子晶体Sb2O3作为缓冲层,发明了一种在二维材料表面集成超薄高k介电层的普适性方法。利用该缓冲层法制备的HfO2/Sb2O3复合介电层可实现0.67 nm的等效氧化层厚度(EOT),是目前报道的二维晶体管介电层中zui低的。高质量的界面降低了界面态密度,由单层MoS2沟道和HfO2/Sb2O3复合介电层构成的FET在0.4 V的超低工作电压下即可获得超过106的开关比,其栅极控制效率优于目前报道的其他所有FET。该项成果以“Scalable integration of hybrid high-κ dielectric materials on two-dimensional semiconductors”为题发表于国际高水平期刊Nature Materials。 Sb2O3缓冲层的作用机理如下:一方面,Sb2O3可与二维半导体间形成高质量的范德华界面;另一方面,Sb2O3覆盖了二维材料原有的疏水表面,提供了高度亲水的表面,提升了与传统原子层沉积(ALD)工艺的相容性,便于集成超薄高k介电层。图1a展示了在MoS2二维半导体表面集成HfO2/Sb2O3复合介电层的过程。作者利用热蒸镀法制备了Sb2O3缓冲层,随后使用美国Arradiance公司的GEMStar系列台式原子层沉积(ALD)系统制备了致密均匀的HfO2层(图1b)。此外,作者还利用该台式ALD设备在MoS2/Sb2O3上生长了常见介电层Al2O3和ZrO2(图1c, 1d),证明了该方法的普适性。图1. (a)在MoS2二维半导体表面集成HfO2/Sb2O3复合介电层的过程,(b)-(c)样品的AFM图像。 随后,作者用第一性原理计算研究了Sb2O3缓冲层对ALD过程的促进原理。如图2a-2b所示,H2O分子在MoS2表面的吸附距离为约3&angst ,在Sb2O3表面的吸附距离减小至约2&angst ,接近于水中氢键的长度。同时,H2O分子在Sb2O3表面的吸附能大幅高于在MoS2表面的吸附能(图2c)。上述结果表明Sb2O3缓冲层可促进ALD过程中的前驱体吸附,有助于介电层的生长。图2. H2O分子在(a)MoS2和(b)Sb2O3表面的吸附构型,(c)H2O分子在MoS2和Sb2O3表面的吸附能。 本文所使用的美国Arradiance公司的GEMStar系列台式原子层沉积系统如图3所示,在小巧的机身(78 * 56 * 28 cm)中集成了原子层沉积所需的所有功能,可容纳9片8英寸基片同时沉积。全系配备热壁,结合前驱体瓶加热,管路加热,横向喷头等设计,使温度均匀性高达99.9%,气流对温度影响减少到0.03%以下。高温度稳定度的设计不仅可在8英寸基体上实现厚度均匀的膜沉积(其厚度均匀性高于99%),而且适合对具有超高长径比孔径的3D结构进行均匀薄膜覆盖,在高达1500:1长径比微纳深孔内部也可均匀沉积。此外,该设备还具有节约前驱体原料,制备效率高,性价比高等优点。该设备已帮助国内外用户取得大量Nature、Science级别的研究成果。图3. 美国Arradiance公司生产的GEMStar系列台式三维原子层沉积系统参考文献:[1]. Scalable integration of hybrid high-κ dielectric materials on two-dimensional semiconductors. Nat. Mater., 2023, DOI:10.1038/s41563-023-01626-w
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制