当前位置: 仪器信息网 > 行业主题 > >

非损伤微测系统

仪器信息网非损伤微测系统专题为您提供2024年最新非损伤微测系统价格报价、厂家品牌的相关信息, 包括非损伤微测系统参数、型号等,不管是国产,还是进口品牌的非损伤微测系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合非损伤微测系统相关的耗材配件、试剂标物,还有非损伤微测系统相关的最新资讯、资料,以及非损伤微测系统相关的解决方案。

非损伤微测系统相关的论坛

  • 旭月非损伤微测系统助力中国康复科学所

    旭月非损伤微测系统助力中国康复科学所

    旭月[img=,599,390]http://ng1.17img.cn/bbsfiles/images/2018/06/201806081405394500_6400_3037344_3.png!w599x390.jpg[/img][align=center]NMT活体生理检测仪 NMT Physiolyzer[sup][/sup][/align][align=center][/align]在刚刚结束公示的采购项目中,美国扬格/旭月北京的非损伤微测系统成功中标[b]中国康复科学所[/b]。[b]除此之外,涉及医学、动物学、农业科学、环境科学等多个领域的多个单位也在进行紧锣密鼓的系统采购中。[color=#ffffff]研究案例[/color][/b]01[b][url=https://mp.weixin.qq.com/s?__biz=MzA3OTE0NTI3OQ==&mid=2651818392&idx=2&sn=92cc01f7066a96df1d92e6ea6d032207&chksm=844cd9c8b33b50dee3cac1bc108aee1270be3ce82795aee4758c4f9d4c4c33f1ab1e62bd9845&mpshare=1&scene=21&srcid=0606RC3nbWgn4hsLlsHCC7db#wechat_redirect]科海观潮—非损伤微测技术用于神经毒性机制的研究[/url][/b]02[b][url=https://mp.weixin.qq.com/s?__biz=MzA3OTE0NTI3OQ==&mid=2651818405&idx=2&sn=91d5ba4699a1c2d14b5e4351a30eafa4&chksm=844cd9f5b33b50e3fd5b1e04b6cb0907b19a4075902c588560c7f4158ea0ae6534d29866578e&mpshare=1&scene=21&srcid=0606N6onxcRW0oL8rG7onKBT#wechat_redirect]科海观潮—非损伤检测胎儿肺上皮细胞微环境中Cl-流的变化情况[/url][/b]03[b][url=https://mp.weixin.qq.com/s?__biz=MzA3OTE0NTI3OQ==&mid=2651818104&idx=2&sn=c5a5d92596e29435c02f5dd31a504bea&mpshare=1&scene=21&srcid=0606Os0Jfdo27Df9iwae2sM5#wechat_redirect]科海观潮--Ca2+外流促进骨骼损伤的修复[/url][b][color=#007aaa][b]NMT[color=#007aaa]的技术优势是什么?[/color][/b][/color][/b][/b][list][*][align=left]活体、原位、非损伤测量[/align][*][align=left]实时、动态测量[/align][*][align=left][color=#ff2941]两种[/color]离子和分子同时测量[/align][*][align=left]长时间持续测量[/align][*][align=left]无需标记[/align][*][align=left]多种测量方式[/align][*][align=left]高分辨率、测定范围广[/align][*][align=left]无需提取样品[/align][*][align=left]可测样品种类繁多[/align][*][align=left]立体[b][color=#ff2941]3D[/color][/b]流速测量[/align][/list][b]了解旭月旭月(北京)科技有限公司是目前世界上提供非损伤微测设备销售、非损伤微测技术(Non-invasive Micro-testTechnology, NMT)服务的主流商业机构。中国[b][color=#ff2941]97.6%[/color][/b]的NMT应用成果出自旭月非损伤设备已服务于国内[b][color=#ff2941]211[/color][/b]家科研单位,累计[b][color=#ff2941]339[/color][/b]个实验室协助国内学者发表SCI文章[b][color=#ff2941]216[/color][/b]篇,累计IF [b][color=#ff2941]846.033[/color][/b]可提供多达[b][color=#ff2941]12[/color][/b]种的商业化非损伤离子/分子流检测中国[b][color=#ff2941]唯一[/color][/b]的全要素非损伤微测技术设备支持团队取得基于非损伤微测技术的[b][color=#ff2941]3[/color][color=#ff2941]1[/color][/b]项设备专利全球[b][color=#ff2941]唯一[/color][/b]的非损伤商业测试中心最新的第[b][color=#ff2941]七[/color][/b]代非损伤微测系统[/b]

  • 再生医学与NMT非损伤微测技术(1)技术解读

    再生医学与NMT非损伤微测技术(1)技术解读

    [align=left]作者:许越 [url=https://mp.weixin.qq.com/s?__biz=MzA3OTE0NTI3OQ==&mid=2651820382&idx=2&sn=b59711014ab3bac4117cfe0f115a62da&chksm=844cc10eb33b48181a6e3cd18f734ae66f9059d781d54320e045b89677bd8bb7943c8bb0df6c&scene=21#wechat_redirect]点击查看作者自传[/url][/align][align=center][/align][b][color=#a5a5a5]许越,男,1967年生于北京。[/color][/b][list][*][color=#a5a5a5][color=#888888]于[/color][color=#888888]1993[/color][color=#888888]年和[/color][color=#888888]2000[/color][color=#888888]年分别获得首都师范大学及美国麻省州立大学,植物生理学双硕士学位。[/color][/color][*][color=#a5a5a5][color=#888888]2001[/color][color=#888888]年在美国创建基于[/color][color=#888888]NMT[/color][color=#888888]技术的美国扬格公司,次年运用[/color][color=#888888]NMT[/color][color=#888888]服务于设立在美国北卡州立大学的美国航空航天局[/color]([color=#888888]NASA[/color])[color=#888888]空间植物学研究项目。[/color][/color][*][color=#a5a5a5][color=#888888]2005[/color][color=#888888]年成立旭月(北京)科技有限公司,在匡廷云院士、杨福愉院士和林克椿教授的帮助,以及各级政府的大力支持下,将非损伤微测技术引进中国大陆。[/color][/color][*][color=#a5a5a5][color=#888888]2014[/color][color=#888888]年带领旭月团队提出被誉为“第二个人类基因组计划”的“动态分离子组学([/color][color=#888888]imOmics[/color][color=#888888])”创新概念,同年成立旭月生物功能研究院。[/color][/color][*][color=#a5a5a5][color=#888888]2015[/color][color=#888888]年推出世界领先的“自动化非损伤微测系统”,并倡导建立中关村[/color][color=#888888]NMT[/color][color=#888888]产业联盟,开启以水安全、个体化精准医疗、粮食安全等民生应用为代表的[/color][color=#888888]NMT[/color][color=#888888]产业化进程。[/color][/color][*][color=#a5a5a5][color=#888888]截至[/color][color=#888888]2016[/color][color=#888888]年,已帮助国内[/color][color=#888888]400[/color][color=#888888]多个科研单位及实验室,利用[/color][color=#888888]NMT[/color][color=#888888]实现了科研水平的跨越式发展。[/color][/color][/list][b][b]1) 再生医学:新时代的宠儿[/b][/b][color=#545454]再生医学([/color]Regenerative medicine[color=#545454])[color=#545454],是转化医学的一个分支,是指以修复或重建具有正常(生理)功能为目的,进行人体细胞、组织或器官的替换、工程制备或再生生产的过程[/color]。[/color][color=#545454][/color][color=#545454]它是制作具有正常生理功能的身体器官组织,用于修复或是替换身体内,因为老化、生病、受损所造成之不健康的器官与组织。或是以其他的方式,来刺激体内组织或是器官再生的方法。通常在这领域的工作者,会在实验室中,培养身体内的组织或是器官后,用安全性地移植方式,移植至病患身体中。[/color][color=#545454][/color][color=#545454]在中国、美国、日本、欧洲都逐步进入老龄化社会的历史时期,对于再生医学需求的快速增长完全在人们的预料之中,就如同下面这幅图所示,近些年人们在再生医学上面的投入都在逐年显著递增。[/color][color=#545454][img=,490,345]http://ng1.17img.cn/bbsfiles/images/2018/06/201806081415341980_1283_3037344_3.png!w490x345.jpg[/img][/color][color=#545454][color=#545454](来自于网络)[/color][/color][color=#545454][b] 2) 技术角度解读再生医学[/b][/color][color=#545454][img=,425,273]http://ng1.17img.cn/bbsfiles/images/2018/06/201806081416226230_4359_3037344_3.png!w425x273.jpg[/img][/color][color=#545454][/color][align=center][color=#545454](来自于网络)[/color][/align][align=left][color=#545454]近日,中国科学家成功地完成了灵长类物种的克隆,从某种意义上说,也是再生医学方面取得的一突破。[/color][/align][align=left][color=#545454][/color][/align][align=left][color=#545454]大家或许注意到了,在电视报道中,该研究团队的一名科研人人员透露道,除了操作技巧上日积月累的熟能生巧外,很重要的一个成功因素就是,该团队发现了影响卵母细胞能否进入正常细胞分裂的关键点两个(环境)因子,即:如果卵母细胞所处的环境之中,缺少了这两种因子,它就无法启动细胞分裂进程并最终形成胚胎,直至成体。[/color][/align][align=left][color=#545454][/color][/align][align=left][color=#545454]因此,这次中国团队的成功,部分印证了我在[/color][url=https://mp.weixin.qq.com/s?__biz=MzA3OTE0NTI3OQ==&mid=2651820382&idx=1&sn=156a5c79f5aba52283f147a9d4cb1e7f&chksm=844cc10eb33b48188af3c5762db8b3b21a30d311c3bbae3f85ad8fd71abbd91872704d321d35&scene=21#wechat_redirect]《[color=#0052ff]从PC膜片钳到NMT非损伤微测技术(2)时间与空间[/color]》[/url][color=#545454]中所述的那样,没有固执地去寻找某些所谓开关基因,而是找到了能够左右细胞和组织发育命运的两个因子。因此,避免了半个世纪以来人类寻找治愈癌症的开关基因一样失败的结局。[/color][/align][align=left][color=#545454][/color][/align][align=left][color=#545454]当然,谁也不会[/color][color=#545454]天真地相信,有了这两个因子就能够成功完成克隆的全过程,但我们可以想象在从受精卵到成猴的漫长过程中,还会有很多环境因子在起着各方面的关键作用。[/color][/align][align=left][color=#545454][/color][/align][align=left][color=#545454]因此,[/color][color=#ff0000][b]从技术的角度来讲,再生医学就是寻找能够使人体细胞、组织或器官立体再生的关键(环境)因子的过程。[/b][/color][/align][align=left][color=#ff0000][b][img=,434,310]http://ng1.17img.cn/bbsfiles/images/2018/06/201806081417043130_9173_3037344_3.png!w434x310.jpg[/img][/b][/color][/align][align=left][color=#ff0000][b][/b][/color][/align][align=center][color=#545454](来自于网络)[/color][/align][align=left][color=#545454]大家可以想象,如果有一种技术,能够帮助这些科学家,在活体状况下,和尽量模拟正常生理状态的外部环境条件下,能够实时监测从单个卵细胞,到分裂后的几个,几百个,几千个细胞群,再到不同组织,不同器官,不同个体肌体部位等等,它们与外界环境,即所处微环境中的各种因子的相互作用过程。这些调控因子,极有可能就是某些离子和/或各种大小和类型各异的分子,比如Ca++负责信号传导,葡萄糖/O2负责能量代谢等等。而且这个技术还不能够对被测材料造成任何损害。那么这种技术不就是,NMT非损伤微测技术吗?![/color][/align][align=left][/align][align=left][color=#545454]作为测量和研究生命体外微环境中离子/分子流的一种技术,我将在下一部分具体探讨NMT在干细胞,细胞外介质,组织器官再生等再生医学领域的潜在应用。[/color][/align]〈未完待续〉[b]参考文献[/b][list][*][align=left][color=#000000]Regenerative Medicine, 2008, 3(1), 1-5 [/color][/align][*][align=left][color=#000000]https://zh.wikipedia.org/wiki/再生醫學[/color][/align][*][align=left][color=#000000]http://www.businessinsider.com/venture-capital-interest-in-regenerative-medicine-2017-4[/color][/align][*][align=left][color=#000000]Chaomei Chen, Rachael Dubin & Meen Chul Kim. Emerging trends and new developments in regenerative medicin: a scientometiric update (2000-2014). Expert Opin. Biol. Ther. (2014) 14(9):1259-1317[/color][/align][*][align=left][color=#000000]有关NMT非损伤微测技术(请到百度学术输入“非损伤微测技术”获取相关信息)[/color][/align][/list]

  • 从PC膜片钳到NMT非损伤微测技术 | (3)现状与未来

    [b]活体研究智能传感技术的演进(3)现状与未来作者:许越 [url=https://mp.weixin.qq.com/s?__biz=MzA3OTE0NTI3OQ==&mid=2651820382&idx=2&sn=b59711014ab3bac4117cfe0f115a62da&chksm=844cc10eb33b48181a6e3cd18f734ae66f9059d781d54320e045b89677bd8bb7943c8bb0df6c&scene=21#wechat_redirect]点击查看作者自传[/url][b][color=#a5a5a5]许越,男,1967年生于北京。[/color][/b][/b][list][*][color=#a5a5a5][color=#888888]于[/color][color=#888888]1993[/color][color=#888888]年和[/color][color=#888888]2000[/color][color=#888888]年分别获得首都师范大学及美国麻省州立大学,植物生理学双硕士学位。[/color][/color][*][color=#a5a5a5][color=#888888]2001[/color][color=#888888]年在美国创建基于[/color][color=#888888]NMT[/color][color=#888888]技术的美国扬格公司,次年运用[/color][color=#888888]NMT[/color][color=#888888]服务于设立在美国北卡州立大学的美国航空航天局[/color]([color=#888888]NASA[/color])[color=#888888]空间植物学研究项目。[/color][/color][*][color=#a5a5a5][color=#888888]2005[/color][color=#888888]年成立旭月(北京)科技有限公司,在匡廷云院士、杨福愉院士和林克椿教授的帮助,以及各级政府的大力支持下,将非损伤微测技术引进中国大陆。[/color][/color][*][color=#a5a5a5][color=#888888]2014[/color][color=#888888]年带领旭月团队提出被誉为“第二个人类基因组计划”的“动态分离子组学([/color][color=#888888]imOmics[/color][color=#888888])”创新概念,同年成立旭月生物功能研究院。[/color][/color][*][color=#a5a5a5][color=#888888]2015[/color][color=#888888]年推出世界领先的“自动化非损伤微测系统”,并倡导建立中关村[/color][color=#888888]NMT[/color][color=#888888]产业联盟,开启以水安全、个体化精准医疗、粮食安全等民生应用为代表的[/color][color=#888888]NMT[/color][color=#888888]产业化进程。[/color][/color][*][color=#a5a5a5][color=#888888][color=#a5a5a5]截至2016年,已帮助国内400多个科研单位及实验室,利用NMT实现了科研水平的跨越式发展。[/color][/color][/color][/list]PC膜片钳与NMT非损伤微测技术虽然几乎诞生在同一历史时期,但是它们的发展和普及过程却大相径庭。[b]1) NMT的中国特色[/b]大家知道,各个国家对动物医学研究的投入通常要远远高于对其它研究领域的投入。下图是美国在医疗健康上面的投入是其它领域的5-10倍,在中国动物医学方面的投入大概是植物学研究的6倍左右(来自于个人通讯)。[align=center][img]https://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDEbuf6P7NZBiavESu2yf2ug2MvS7dCXdDYBfqrNMk6gpicChvuLDRS1569mM4NaA54xUEhEbZYcSY3w/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][/align][align=center](来自于网络)[/align]因此,在绝大多数情况下,很多生命科学的新技术,新思路,新突破,都是来自于动物医学领域,然后传导到其它科研领域,正如在本文的第一部分[url=https://mp.weixin.qq.com/s?__biz=MzA3OTE0NTI3OQ==&mid=2651820348&idx=1&sn=bd4fb10beab21b0499c233c9c6df16d5&chksm=844cc16cb33b487ae3226d4e2a4782738fe7a4203ab8a52d838ec30831ba79bf9f5d77cd0e81&scene=21#wechat_redirect](1)愿望与挑战[/url]中所叙述的那样,膜片钳技术诞生于动物神经细胞单通道离子电流(烟碱乙酰胆碱受体)的研究,90年代进入中国后,也被首先应用于动物医学研究。然而,非损伤微测技术在生命研究领域的发展,却划出了一个自己较为独特的发展轨迹。首先,大家去问问用膜片钳搞植物研究的科研人员,他们有多么羡慕用膜片钳进行动物医学研究的同行们,因为植物有细胞壁,研究植物的人必须要先用各种消化酶去除细胞壁后,才可以形成膜片钳技术必须的玻璃电极与细胞膜之间的高阻封接。[align=left]那么,大家可以想象,不用去除细胞壁就可以研究植物与外界环境的离子/分子交换信息,这对于搞植物研究的人该有多么大的吸引力呀!姑且不说,细胞壁作为植物细胞完整结构的一部分,在功能上更是不可或缺的重要环节,将其人为去除后,其结果的理论价值必然大打折扣外,单就技术上给植物学家们带来的简单、便捷和快速,就让大家兴奋不已。[/align] [img]https://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDEbuf6P7NZBiavESu2yf2ug27IT7uZGkSnBKveX2hqCR3kByLLiaCiciaGpamSXicEKMicmibyic9tTbVLPlg/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][align=center][img]data:image/gif base64,iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVQImWNgYGBgAAAABQABh6FO1AAAAABJRU5ErkJggg==[/img][/align][align=center](种康在《Cell》利用NMT发表水稻植物领域文章)[/align]因此,在国际上自从NMT诞生之日起,植物研究学者们对它的追求从来没有逊色于动物医学研究的同行们。而中国自身为农业国,在植物领域的研究底子好,投入又大。可能也加之旭月公司创始人自身的植物研究出身的背景,使得非损伤微测技术在中国的发展一路走来,在植物领域的发展要远远胜于在动物医学的发展,数据显示,在中国科学家至今发表的200多篇NMT应用已发表文献里,80%以上是来自植物领域的研究(数据来自“中关村NMT产业联盟”http://nmtia.org)。[b]2) 科研应用现状[/b]膜片钳技术在这二十几年的发展使其已经深深地融入了全世界生命科研活动的各个方面。在中国也不例外,这些年我国科研人员利用该技术取得了丰硕的科研成果,尤其是植物研究领域,以武维华、种康、刘春明等为代表的科研人员利用膜片钳技术在植物生理生化方面取得了系列世界级的成果。我国的动物医学研究方面,以周专、徐涛、王世强、王立伟、陈丽新、祁金顺等科学家为代表在诸多领域也已处于世界科技前沿。但就我个人在国外多年的所见所闻来看,我国在动物医学方面没有比现在发展的更快更好一些的一个重要原因是中国这方面的人才流失比较严重。我在哈佛、耶鲁等大学见到很多国内培养的膜片钳高手。即:国内培养出来后,在就要出成果的时候,却来到国外为国外的课题所用了。想必周专老师他们对这点肯定有更深更多的感受吧。非损伤微测技术在中国的普及应用,相比膜片钳技术有两个先天不足。一是进入中国要晚近10年的时间;二是没有膜片钳那样一开始便伴随着诺贝尔奖的耀眼光环。但是,非损伤微测技术也有其自身的优势,其一是进入中国适逢国家对基础科研的投入要远远大于90年代膜片钳进入时期;二是有匡廷云、杨福愉、林克椿、叶鑫生、高荣孚、尹伟伦、赵微平、邱泽生等老一辈科学家的鼎力支持。[align=center][img]https://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDEbuf6P7NZBiavESu2yf2ug2wjQ6aFhplNcl23wiarAqicxyxVibbOMIfrP4Y6ftiaDAchOn8awoaOJ9Tg/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][/align][align=center](来源于网络)[/align]所以,尽管非损伤微测技术进入中国时间不长,但是发展十分迅速,不但以印丽萍、陈少良、沈应柏、许卫峰、罗志斌等中青年科学家,利用非损伤微测技术快速将自身科研提升至世界水平,刚才所列的武维华、王立伟等国内膜片钳技术专家也已利用NMT,并结合膜片钳技术做出了世界一流的科研成果。[b]3) 技术现状[/b]全自动膜片钳虽然已于近年面市,但是传统的膜片钳技术仍然在生理、相关基因功能验证等基础研究领域,发挥着不可替代的作用。而全自动膜片钳虽然提高了数据的单位产出量,但似乎更多地被应用于药物研发、药效评价等应用领域,其对科研基础理论的贡献和潜力还有待于观察。[align=center][img]data:image/gif base64,iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVQImWNgYGBgAAAABQABh6FO1AAAAABJRU5ErkJggg==[/img][img]https://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDEbuf6P7NZBiavESu2yf2ug2aSo6YYWVabuqzRV3dKticXGNNbib3A4WMZAkVqhMibPWm0tAFjWHPPJ3Q/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][/align][align=center](来源于旭月公司网站:http://xuyue.net)[/align]智能自动化的NMT传感器制备装置,已经于2016年在中国市场有售,标志着非损伤微测技术开启了追赶膜片钳自动化的步伐。尽管数据的单位时间产出量,即:高通量并不是非损伤微测技术的优势,但是,鉴于该技术的长处之一就在于它的实时测量,即在正常生理时间尺度内,揭示生物的活体生理功能。相反,将非损伤微测技术与膜片钳技术相比,比较容易一叶障目的误区就是把非损伤微测技术的应用限制在了只是生物膜的层面。其所谓‘成也萧何,败也萧何!’,膜片钳的高阻封接成就了它的单通道测量,但同时也制约了它的测量材料的灵活性。而反观非损伤微测技术,因为不接触被测材料,所以在材料的选择上就有了极大的自由度。特别是近年的科学发现表明,如我在里所述,人类的各种疾病的答案,不在基因层面(半个多世纪寻找癌症基因努力的失败就是例证),甚至不在细胞层面,这就给组织层面的研究打开了广阔的新天地。当我们环顾实验室四周,能够帮助我们研究活体组织的技术凤毛麟角,而像非损伤微测技术这样完全近乎无损的技术更是难觅。加之进一步的研究表明,比如癌症的发生发展是和其组织微环境的改变密切相关,那么,还有什么技术比非损伤微测技术,这一能够在活体状况下检测微环境中各种离子分子活性的技术更合适的呢!山西医科大学的祁金顺教授,利用非损伤微测技术建立起的脑切片组织生理检测试验体系,就是这方面的一个很好的例证(具体描述请浏览: http://e.vhall.com/133934064或http://xbi.org/index.php?option=com_content&view=article&id=516&Itemid=907&lang=cn)。[b]4) 未来趋势[/b]每个技术都有它自己的特色,很难完全取代对方。因此,利用各自优势,膜片钳与非损伤微测技术配合使用将是一个趋势。这里已经有一些尝试,大家可以参考一下相关文献(http://xbi.org)。下面我就几个非损伤微测技术可以弥补膜片钳技术局限的地方跟大家分享一下,以便大家更好地结合两者使用。[align=center][img=,397,211]https://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDEbuf6P7NZBiavESu2yf2ug2x4Tml1DWpOIDDI3WicJ2o6tvFQYUiaJqfCwnoGdkw1nT5D3wSFghk3Dg/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][/align][align=center][img]data:image/gif base64,iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVQImWNgYGBgAAAABQABh6FO1AAAAABJRU5ErkJggg==[/img][/align][align=center](来源于美国扬格公司网站:http://youngerusa.com/)[/align](a)‘零’电流问题如上图所示,当有等电荷的两种离子进出同一片细胞膜的时候,膜片钳技术将检测不到电流。而此刻科研人员可以利用非损伤微测技术的多传感器同时测量优势进行研究。(b)其它离子运输载体和方式的研究我们知道除了离子通道,生物细胞还有其它多种离子转运方式,它们与离子通道一起,共同担负着维持细胞和乃至整个生物体活性的各种生理功能。正如在[url=https://mp.weixin.qq.com/s?__biz=MzA3OTE0NTI3OQ==&mid=2651820382&idx=1&sn=156a5c79f5aba52283f147a9d4cb1e7f&chksm=844cc10eb33b48188af3c5762db8b3b21a30d311c3bbae3f85ad8fd71abbd91872704d321d35&scene=21#wechat_redirect](2)时间与空间[/url]中所说,将PC与NMT这两个跨越不同时间和空间的技术相结合使用,对于我们更加全面的了解生物现象的本质,有着不可替代的作用。(c)分子转运的研究毫无疑问,NMT非损伤微测技术在O2,H2O2,葡萄糖,乙酰胆碱等与生命活动密切相关的小分子,大分子跨膜运输方面,将极大补充PC技术在这方面的不足。(d)物理机械损伤尽管‘高阻封接’成就了PC的单通道测量,但是其巨大的机械损伤,被证明不但是的确存在的,而且的确会产生错误的结果。那么,有另外一个相对独立的技术对PC进行验证,对科学研究的准确性无疑是个巨大利好。[align=left]广州暨南大学的王立伟,陈丽新教授,利用NMT与PC结合,发现并推翻了PC过去错误的结论的故事很好地诠释了这一点。(具体描述请浏览:http://e.vhall.com/133934064[/align][align=left]或 http://xbi.org/index.php?option=com_content&view=article&id=516&Itemid=907&lang=cn)[/align][b]5)结束语[/b] [img=,280,231]https://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDEbuf6P7NZBiavESu2yf2ug26453BRepj8GYQsp578CpkibGszw4qrzbIkhsyxAH8vJxhAIACpICQjg/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][align=center][img]data:image/gif base64,iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVQImWNgYGBgAAAABQABh6FO1AAAAABJRU5ErkJggg==[/img][/align][align=center](来源于网络)[/align]在一次社会名流的聚会上,当有人用略带轻蔑的口吻对发现美洲新大陆的哥伦布说到:“你发现美洲没有什么了不起的,只不过是你的运气比别人好些罢了!”。哥伦布没有马上说什么,而是让人拿来一个鸡蛋向在场的所有人发出挑战,看谁能够把这个鸡蛋立在桌子上。读者们中很多人知道这个故事的结局,就是在这些人费了九牛二虎之力失败之后,哥伦布将鸡蛋的一端击碎后立在了桌子上。Neher和Sakmann发明膜片钳“不过”是在前人电生理的基础上,略微地在玻璃电极与细胞膜接触时施加了一点点负压形成‘高阻封接’而已。同样NMT非损伤微测技术的诞生,Jaffe和Newman他们“也无非” 就是让离子/分子传感器动了起来,进行‘两点测量’而已!但就是这一看似细微的‘高阻封接’,这一看似平常的‘两点测量’,让科学家能够检测到pA(10[sup]-12[/sup])级的微弱单离子通道电流,让科学家能够检测到单个细胞离子(比如Ca[sup]2+[/sup])分子(比如O[sub]2[/sub])的10[sup]-15[/sup]级进出流速。他们就是科学界的哥伦布,帮助科学家们发现了科学世界的新大陆!同学们,老师们,朋友们,现在非损伤微测技术已经来到了你的身边,中国人在一些领域已经实现了弯道超车,能否先于他人把这个‘蛋’矗立在你们各自的研究领域,即是摆在你们面前的挑战,大家准备好了吗?![b]参考文献[/b][list][*]美国对不同研究领域的投入http://www.bu.edu/research/articles/funding-for-scientific-research/[/list][list][*]Verkhratsky, Alexei & Parpura, Vladimir. (2014). History of Electrophysiology and the Patch Clamp. Methods in molecular biology (Clifton, N.J.). 1183. 1-19. 10.1007/978-1-4939-1096-0_1.[/list][list][*]Uncoupling of K+ and Cl- transport across the cell membrane in the process of regulatory volume decrease. Linjie Yang, Linyan Zhu, Yue Xu, Haifeng Zhang, Wencai Ye, Jianwen Mao, Lixin Chen, Liwei Wang. Biochemical pharmacology 84 (3), 292-302[/list][list][*]非损伤微测技术实时检测海马脑片跨膜钙离子流。《生理学报》2017年 第4期 | 李甜 原丽 张军 焦娟娟 祁金顺[*]文中相关文献可以到旭月研究院网站下载: http://xbi.org/index.php?option=com_rsfiles&view=rsfiles&Itemid=304&lang=cn[/list][align=center][img]http://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDF6tmTJTMX4uic43l9icahVSUTxSOVWpIzWuU9op0axQeUZlOd197ib0J6kUyJDXf9MJrWibHg0hicvMCw/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][/align][align=center][/align][align=center][b]旭月版权所有,转载注明出处.[/b][/align][align=center][img=,,130]http://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDFvv5AgpUstNSuO10Yztkuqee9ozBmgmqkRl5Df8F3bvfhr0YroolbwMI0ScicdJDTJyTPYXIc1qvw/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][/align]

  • 再生医学与NMT非损伤微测技术(2)中国机遇

    [align=center]作者:许越 [url=https://mp.weixin.qq.com/s?__biz=MzA3OTE0NTI3OQ==&mid=2651820382&idx=2&sn=b59711014ab3bac4117cfe0f115a62da&chksm=844cc10eb33b48181a6e3cd18f734ae66f9059d781d54320e045b89677bd8bb7943c8bb0df6c&scene=21#wechat_redirect]点击查看作者自传[/url][/align][align=center][color=#545454][img]https://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDHOUFjXFV7ic7CZt5GL0M9cC4vVPhpibGgHricqqVG24APdBDGLVMyR53bh1I0h4Vbompwq7swVPMOzg/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][/color][/align][color=#545454]继《[/color][color=#545454][url=https://mp.weixin.qq.com/s?__biz=MzA3OTE0NTI3OQ==&mid=2651820402&idx=1&sn=75ff584943ab424049b05a316c1e7b20&chksm=844cc122b33b48347ca664d1c16d6c8f1da528d3403529743b50d49e6790071f088e9cbf3630&scene=21#wechat_redirect]再生医学与NMT非损伤微测技术(1)技术解读[/url][/color][color=#545454]》[color=#545454]之后,今天让我们来看看NMT给中国[/color]再生医学研究带来的机遇。[/color][b]1) 热点领域[/b][align=center][b][img=,835,498]https://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDHCnMqAeLSTib39W0DFRL8ibF65FS12jzzuXVNq3NFlvkCOGueVuZ9j5q3LM20Bbs0QDjTVhGzxxoDA/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][/b][/align][align=center][b][/b][/align][align=center][color=#545454](来自文献 3)[/color][/align]图是人们通过互联网大数据总结出的(文献3),围绕着‘再生医学’的一些关键词。这些关键词不仅告诉了我们目前‘再生医学’研究的热点领域,而且可以让我们看到未来发展的一些端倪。比如,干细胞研究与治疗;组织工程;器官(再生);修复研究;损伤愈合;骨骼(再生);衰老研究;肿瘤研究;信号通路(传导路径);......[align=left][color=#000000][b]2)NMT应用[/b][/color][/align][align=left][color=#000000]NMT非损伤微测技术在下面三个方向上(当然可能不只这三个方向),将有助于提高再生医学的研究和应用效率[/color][/align][align=left][color=#000000][/color][/align][align=left][color=#000000] 1-信号传导;[/color][/align][align=left][color=#000000]能够快速简便地测量进出活体材料的Ca2+、NO、H2O2、H+等这些生物第二信使,使得NMT非损伤微测技术自然成为再生医学研究不可或缺的关键技术之一。除了NO外,Ca2+、H2O2、H+三种指标早已商业化多年,技术十分成熟。NO的商业化障碍不在技术,而是市场使用量尚未越过商业盈亏平衡点。[/color][/align][align=left][color=#000000]NMT在信号传导方面的成功应用文献非常多,读者到旭月研究院网站搜索即可。[/color][/align][align=left][/align][align=left][color=#000000] 2-生理指标;[/color][/align][align=left][color=#000000]Na+,K+,Cl-,Mg2+,O2等离子分子的跨膜运输与生物能量代谢、动力学变化、细胞迁移、离子平衡等等重要生理功能有着十分密切的关系。如果将这些指标变成,干细胞、组织器官再生,损伤愈合等过程中的定性或者定量生理指标,将对再生医学的标准化、流程化和工业化、商业化打下坚实的理论基础。相关论述可见《[/color][color=#000000][url=https://mp.weixin.qq.com/s?__biz=MzA3OTE0NTI3OQ==&mid=2651820474&idx=1&sn=0b925fc606ddbc33063969ec8f7e07fa&chksm=844cc1eab33b48fc0e451451fe6746b59e9dc796a34a5b66697e8d6ec0939f459c8b8cf6484e&scene=21#wechat_redirect]飘忽不定的诺贝尔奖机遇:如何理解和用好NMT数据?[/url][/color][color=#000000]》[/color][/align][align=left][/align][align=left][color=#000000] 3-组织水平研究;[/color][/align][align=left][color=#000000]自从本世纪初,肿瘤研究工作者在经历了半个多世纪的艰辛工作之后认识到:[/color][/align][align=left][color=#000000]a)不存在肿瘤疾病开关基因;[/color][/align][align=left][color=#000000]b)肿瘤组织的微环境研究极度匮乏;[/color][/align][align=left][color=#000000]究其原因,是人们对组织水平研究的不重视而导致的长期欠账,导致组织水平研究手段十分匮乏。[/color][/align][align=left][color=#000000]因此,NMT非损伤微测技术在其它科研领域的,报复式和井喷式地应用浪潮,毫无悬念地也将在再生医学领域重复上演。读者可以到旭月研究院网站申领《NMT论文集》来了解在其他领域已有的应用。[/color][/align][b]3)中国的机会[/b][img=,992,672]https://mmbiz.qpic.cn/mmbiz_png/iaFShJzBuGDHCnMqAeLSTib39W0DFRL8ibFTG6ZIV1vLC9d54BKbBwpxuFoJL2QM8T89FLnvppbnlfqqAXxXNZvsw/640?wx_fmt=png&wxfrom=5&wx_lazy=1[/img][b][/b][align=center][color=#545454](来自于文献 4)[/color][/align][align=center][color=#545454][/color][/align][align=left][color=#000000]我国再生医学的起点和水平并不低,在个别领域甚至处于世界先进水平。[/color][/align][align=left][/align][align=left][color=#000000]但我们必须警惕的是,由于我们整体研究手段的落后,以及对新的研究手段传统意识上的不敏感,最终不但会失去一些本可以属于我们中国的原始创新,而且在其后续的商业化、国际标准化过程中也会处于竞争劣势![/color][/align][align=left][/align][align=left][color=#000000]非损伤微测技术NMT,在中国整体处于世界领先应用水平的今天,我们可以期待中国的再生医学科学家们,一定要利用好NMT,让其发挥最大的作用,使我国在再生医学这一未来的医学及商业制高点上引领世界![/color][/align][align=center][img]https://mmbiz.qpic.cn/mmbiz_png/iaFShJzBuGDHCnMqAeLSTib39W0DFRL8ibF6HL6Fs1nXLq55H46FPqCqWVBVDuCrDA7gIiagln3bKBbWr8CGWDO18g/640?wx_fmt=gif&wxfrom=5&wx_lazy=1[/img][/align][align=center]扫描获取NMT论文集,更多了解NMT![/align][align=left][color=#000000]参考文献:[/color][/align][hr/][list=1][*][align=left]https://zh.wikipedia.org/wiki/再生醫學[/align][*][align=left]http://www.businessinsider.com/venture-capital-interest-in-regenerative-medicine-2017-4[/align][*][align=left]Chaomei Chen, Rachael Dubin & Meen Chul Kim. Emerging trends and new developments in regenerative medicin: a scientometiric update (2000-2014). Expert Opin. Biol. Ther. (2014) 14(9):1259-1317[/align][/list][align=center][img]https://mmbiz.qpic.cn/mmbiz_png/iaFShJzBuGDF10rbBePJYG5zRjc9HLVic9xmlx0oiblS8ovRyT0or5FH5j2yXavGeoexUU5NW0WiaRkFe6heu7Vzrg/640?wx_fmt=png&wxfrom=5&wx_lazy=1[/img][/align][b][color=#a5a5a5]许越,男,1967年生于北京。[/color][/b][list][*][color=#a5a5a5][color=#888888]于[/color][color=#888888]1993[/color][color=#888888]年和[/color][color=#888888]2000[/color][color=#888888]年分别获得首都师范大学及美国麻省州立大学,植物生理学双硕士学位。[/color][/color][*][color=#a5a5a5][color=#888888]2001[/color][color=#888888]年在美国创建基于[/color][color=#888888]NMT[/color][color=#888888]技术的美国扬格公司,次年运用[/color][color=#888888]NMT[/color][color=#888888]服务于设立在美国北卡州立大学的美国航空航天局[/color]([color=#888888]NASA[/color])[color=#888888]空间植物学研究项目。[/color][/color][*][color=#a5a5a5][color=#888888]2005[/color][color=#888888]年成立旭月(北京)科技有限公司,在匡廷云院士、杨福愉院士和林克椿教授的帮助,以及各级政府的大力支持下,将非损伤微测技术引进中国大陆。[/color][/color][*][color=#a5a5a5][color=#888888]2014[/color][color=#888888]年带领旭月团队提出被誉为“第二个人类基因组计划”的“动态分离子组学([/color][color=#888888]imOmics[/color][color=#888888])”创新概念,同年成立旭月生物功能研究院。[/color][/color][*][color=#a5a5a5][color=#888888]2015[/color][color=#888888]年推出世界领先的“自动化非损伤微测系统”,并倡导建立中关村[/color][color=#888888]NMT[/color][color=#888888]产业联盟,开启以水安全、个体化精准医疗、粮食安全等民生应用为代表的[/color][color=#888888]NMT[/color][color=#888888]产业化进程。[/color][/color][*][color=#a5a5a5][color=#888888]截至[/color][color=#888888]2016[/color][color=#888888]年,已帮助国内[/color][color=#888888]400[/color][color=#888888]多个科研单位及实验室,利用[/color][color=#888888]NMT[/color][color=#888888]实现了科研水平的跨越式发展。[/color][/color][/list][align=center][b]旭月公司版权所有,转载请注明出处[/b][/align][align=center][b][/b][/align][align=center][img]https://wx1.sinaimg.cn/large/e515c2aely1fqfel8e1j7j20hs0bq0ti.jpg[/img][/align]

  • 无损伤检测设备的定义及应用特点

    什么是无损伤检测设备?无损伤检测设备是工业发展必不可少的有效工具,在一定程度上反映了一个国家的工业发展水平,其重要性已得到公认。我国在1978年11月成立了全国性的无损伤检测学术组织——中国机械工程学会无损伤检测分会。此外,冶金、电力、石油化工、船舶、宇航、核能等行业还成立了各自的无损伤检测学会或协会;部分省、自治区、直辖市和地级市成立了省(市)级、地市级无损伤检测学会或协会;东北、华东、西南等区域还各自成立了区域性的无损伤检测学会或协会。我国目前开设无损伤检测专业课程的高校有大连理工大学、西安工程大学、南昌航空大学等院校。在无损伤检测的基础理论研究和仪器设备开发方面,我国与世界先进国家之间仍有较大的差距,特别是在红外、声发射等高新技术检测设备方面更是如此。无损伤检测设备的应用特点1.不损坏试件材质、结构无损伤检测设备的最大特点就是能在不损坏试件材质、结构的前提下进行检测,所以实施无损伤检测后,产品的检查率可以达到100%。但是,并不是所有需要测试的项目和指标都能进行无损伤检测,无损伤检测技术也有自身的局限性。某些试验只能采用破坏性试验,因此,在目前无损伤检测还不能代替破坏性检测。也就是说,对一个工件、材料、机器设备的评价,必须把无损伤检测的结果与破坏性试验的结果互相对比和配合,才能作出准确的评定。2.正确选用实施无损伤检测的时机无损伤检测系统在无损伤检测时,必须根据无损伤检测的目的,正确选择无损伤检测实施的时机。   3.正确选用最适当的无损伤检测方法由于各种检测方法都具有一定的特点,为提高检测结果可靠性,应根据设备材质、制造方法、工作介质、使用条件和失效模式,预计可能产生的缺陷种类、形状、部位和取向,选择合适的无损伤检测方法。4.综合应用各种无损伤检测方法任何一种无损伤检测方法都不是万能的,每种方法都有自己的优点和缺点。应尽可能多用几种检测方法,互相取长补短,以保障承压设备安全运行。此外在无损伤检测的应用中,还应充分认识到,检测的目的不是片面追求过高要求的“高质量”,而是应在充分保证安全性和合适风险率的前提下,着重考虑其经济性。只有这样,无损伤检测在承压设备的应用才能达到预期目的。

  • 旭月非损伤微测技术(NMT)与激光共聚焦技术

    旭月非损伤微测技术(NMT)与激光共聚焦技术

    [align=center]05 NMT和激光共聚焦技术的比较[/align][align=center][b]什么是激光共聚焦[/b][/align][align=left][color=#000000]激光扫描共聚焦荧光显微镜[/color](laser scanning confocal microscopy, LSCM)是一种利用计算机、激光和图像处理技术获得生物样品三维数据、[color=#000000]目前最先进的分子细胞生物学的分析仪器[/color]。 [/align][align=left]主要用于[color=#ff2941][b]观察活细胞结构及特定分子、离子的生物学变化[/b][/color],定量分析,以及实时定量测定等。其不仅可以得到非常清晰的荧光图像,进行多重荧光标记的定位和定量分析,还具有图像三维重建、荧光共振能量转移谱测定,甚至膜电位测定等功能,成为[color=#000000]生命科学研究[/color]的重要技术手段。[/align][align=center][b]激光共聚焦的局限[/b][/align]随着激光共聚焦技术应用范围的扩大,其在研究中的局限性也逐渐突显。激光共聚焦技术[color=#000000]主要采集的是生物样品内部的离子分子信息[/color],这些离子分子信息的改变既可能源于样品内部离子/分子源的变化,也可能源于样品内外的离子/分子交换。这两种离子/分子变化过程是由完全不同的生命机制引发的。这要求研究者[color=#ff2941][b]必须通过其它实验结果,才能得出相对准确的结论[/b][/color]。若单纯用激光共聚焦数据作为检测或诊断标准,往往[color=#ff2941][b]面临较大的假阳性风险[/b][/color]。[align=center][b]NMT对比[b]激光共聚焦[/b][/b][/align][quote][b]共同点 [/b][list][*][color=#000000]实时[/color][*][color=#000000][color=black]动态[/color][/color][align=left][img]http://mmbiz.qpic.cn/mmbiz_gif/iaFShJzBuGDEj5a7Bbc3x4qAI8ztsSBibntRG4vZSlVPAkepxzJpa5DbkF4G4olRqClBpqx5vC6tu8WMmjrE9r4Q/0?wx_fmt=gif&wxfrom=5&wx_lazy=1[/img][/align][/list][list][*][color=#000000][color=black]数据可视化[/color][/color][/list][align=left][img]http://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDEj5a7Bbc3x4qAI8ztsSBibndicTwjLfNDBo2yb3nTuR8XDSeibxHQUiasv6fJrSbiaUdCPBBC4BMibQWew/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][/align][list][*][color=#000000]测定游离的离子[/color][/list][/quote][quote][b]差异[/b][table][tr][td=1,1,222][color=#021eaa][b]激光共聚焦技术[/b][/color][b][color=black][/color][/b][/td][td=1,1,222][b][color=#ff2941]非损伤微测技术[/color][/b][/td][/tr][tr][td=1,1,222][color=black]使用染料和激光光源[/color][/td][td=1,1,222][color=black]使用电极或者传感器[/color][/td][/tr][tr][td=1,1,222][color=black]需要标记[/color][/td][td=1,1,222][color=black]无需标记[/color][/td][/tr][tr][td=1,1,222][color=black]荧光易发生淬灭[/color][/td][td=1,1,222][color=black]电极或者传感器稳定[/color][/td][/tr][tr][td=1,1,222][color=black]测量时间短[/color][/td][td=1,1,222][color=black]测量时间可短,可长[/color][/td][/tr][tr][td=1,1,222][color=black]半活体(有损伤)[/color][/td][td=1,1,222][color=black]近似活体或者完全活体(测定无损伤)[/color][/td][/tr][tr][td=1,1,222][color=black]检测内部的离子浓度变化[/color][/td][td=1,1,222][color=black]检测跨膜的离子流速以及外部的离子浓度[/color][/td][/tr][tr][td=1,1,222][color=black]测定种类较少,依赖于染料[/color][/td][td=1,1,222][color=black]测定种类多,可测[/color][color=black]N[/color][color=black]a[sup]+[/sup][/color][color=black],[/color][color=black]K[/color][sup][color=black]+[/color][/sup][color=black],[/color][color=black]N[/color][color=black]O[sub]3[/sub][sup]-[/sup][/color][color=black],[/color][color=black]O[sub]2[/sub][/color][color=black]等[/color][/td][/tr][tr][td=1,1,222][color=black]测量材料不能太大,以细胞为主[/color][/td][td=1,1,222][color=black]测量材料不限,从细胞到整体都可以测量[/color][/td][/tr][tr][td=1,1,222][color=black]只能同时测定一种离子[/color][/td][td=1,1,222][color=black]可以同时测定两种离子[/color][/td][/tr][/table][img]http://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDEj5a7Bbc3x4qAI8ztsSBibnXaCibthFwB0hia1fL083fThDh9wJSAul3ibFnF5K07KQCsYZBRsUVuy8Q/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][align=left][color=#888888][b]NMT[/b]可测样品种类繁多[/color][/align][img]http://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDHlicX82mDdMzMicwghNCSszDPhINheFic5vdILGnHjuA2069kzYAHlLwpcdcMXKu9UY0vqEF7MN4Y1w/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][align=left][color=#888888][b]NMT[/b]可以同时测定两种离子[/color][b][color=black][/color][/b][/align][/quote][quote][b]结合[/b][color=#000000][color=#000000][/color][b]将激光共聚焦技术与非损伤微测技术([color=#000000][b]NMT[/b][/color])的结合[/b],可以克服单纯用激光共聚焦数据作为检测或诊断标准面临较大的假阳性风险,实现全面获得被测样品内外的离子/分子流动信息。[color=#ff2941][b]实现内外兼测[/b][/color]。[/color][/quote]

  • 从PC膜片钳到NMT非损伤微测技术(4)优势对比

    从PC膜片钳到NMT非损伤微测技术(4)优势对比

    [b]活体研究智能传感技术的演进(4)优势对比[/b]作者:许越 [url=https://mp.weixin.qq.com/s?__biz=MzA3OTE0NTI3OQ==&mid=2651820382&idx=2&sn=b59711014ab3bac4117cfe0f115a62da&chksm=844cc10eb33b48181a6e3cd18f734ae66f9059d781d54320e045b89677bd8bb7943c8bb0df6c&scene=21#wechat_redirect]点击查看作者自传[/url][align=center][/align][b][color=#a5a5a5]许越,男,1967年生于北京。[/color][/b][list][*][color=#a5a5a5][color=#888888]于[/color][color=#888888]1993[/color][color=#888888]年和[/color][color=#888888]2000[/color][color=#888888]年分别获得首都师范大学及美国麻省州立大学,植物生理学双硕士学位。[/color][/color][*][color=#a5a5a5][color=#888888]2001[/color][color=#888888]年在美国创建基于[/color][color=#888888]NMT[/color][color=#888888]技术的美国扬格公司,次年运用[/color][color=#888888]NMT[/color][color=#888888]服务于设立在美国北卡州立大学的美国航空航天局[/color]([color=#888888]NASA[/color])[color=#888888]空间植物学研究项目。[/color][/color][*][color=#a5a5a5][color=#888888]2005[/color][color=#888888]年成立旭月(北京)科技有限公司,在匡廷云院士、杨福愉院士和林克椿教授的帮助,以及各级政府的大力支持下,将非损伤微测技术引进中国大陆。[/color][/color][*][color=#a5a5a5][color=#888888]2014[/color][color=#888888]年带领旭月团队提出被誉为“第二个人类基因组计划”的“动态分离子组学([/color][color=#888888]imOmics[/color][color=#888888])”创新概念,同年成立旭月生物功能研究院。[/color][/color][*][color=#a5a5a5][color=#888888]2015[/color][color=#888888]年推出世界领先的“自动化非损伤微测系统”,并倡导建立中关村[/color][color=#888888]NMT[/color][color=#888888]产业联盟,开启以水安全、个体化精准医疗、粮食安全等民生应用为代表的[/color][color=#888888]NMT[/color][color=#888888]产业化进程。[/color][/color][*][color=#a5a5a5][color=#888888][color=#a5a5a5]截至2016年,已帮助国内400多个科研单位及实验室,利用NMT实现了科研水平的跨越式发展。[/color][/color][/color][*][b]膜片钳优势[/b]、[*][align=left][b][color=#ff0000]时间分辨率高[/color][/b][/align][align=left]适合如“钙火花”等极短暂生理过程的检测[/align][align=left][/align][align=left][b][color=#ff0000]可检测单离子通道[/color][/b][/align][align=left]可以观察到单个离子通道的信号传递[/align][align=left][/align][align=left]如果以上两点膜片钳的优势,并非是你的必要需求,建议您考虑[b]非损伤微测技术(Non-invasive Micro-test Technology, NMT)[/b],因为……[/align][b]NMT优势[/b][*][b][/b][align=left][color=#ff0000][b]不损伤样品——活体[/b][/color][/align][align=left]检测细胞时,无需钳住细胞,不接触细胞,检测到真正的“生理信号”[/align][/list][img=,369,263]http://ng1.17img.cn/bbsfiles/images/2018/06/201806081338019601_5316_3037344_3.png!w369x263.jpg[/img][align=left][url=https://v.qq.com/x/page/o0549h86ank.html][b]视频案例1(大鼠腿部肌肉在体检测)[/b][/url][/align][align=left][url=https://v.qq.com/x/page/d0614xx44yk.html][b]视频案例2(斑马鱼鱼腮离体检测)[/b][/url][/align][align=left][color=#ff0000][b]还可以检测分子[/b][/color][/align][align=left]NMT检测的是化学信号,非典信号。所以不带电的分子(O[sub]2[/sub]、H[sub]2[/sub]O[sub]2[/sub]、IAA等)、生理过程均可检测。[/align][align=left][/align][align=left][color=#ff0000][b]可同时检测两种指标[/b][/color][/align][img=,363,246]http://ng1.17img.cn/bbsfiles/images/2018/06/201806081343238734_5888_3037344_3.png!w363x246.jpg[/img][align=left][url=https://mp.weixin.qq.com/s?__biz=MzA3OTE0NTI3OQ==&mid=2651819879&idx=2&sn=cad9c88683a9ff8c61cecca28181361a&chksm=844cdf37b33b5621fc921786b5680fb5784c2e32bafb9300b94f3c261fb079dc87522220abad&mpshare=1&scene=21&srcid=0529bXlPBtk62quQGP6gHI0j#wechat_redirect][b]视频案例(人乳腺肿瘤组织H[sup]+[/sup]、O[sub]2[/sub]同时检测)[/b][/url][/align][align=left][/align][align=left][color=#ff0000][b]可直接分辨出具体的离子/分子,无需通道抑制剂[/b][/color][/align][align=left]不同离子/分子,对应不同的传感器,一一对应。即Ca[sup]2+[/sup]传感器,识别的就是Ca[sup]2+[/sup]信号,不识别Na[sup]+[/sup]、K[sup]+[/sup]等其它信号。[/align][align=left][/align][align=left][color=#ff0000][b]一支传感器可检测多个样品[/b][/color][/align][align=left]因不接触样品,每检测完一个样品后,传感器无需更换。一支传感器平均可检测30个样品。[/align][b]旭月版权所有,转载注明出处.[/b]

  • 从PC膜片钳到NMT非损伤微测技术(2)时间与空间

    [align=left][b]活体研究智能传感技术的演进(2)[b]时间与空间[/b][/b][/align][align=left]作者:许越 [url=https://mp.weixin.qq.com/s?__biz=MzA3OTE0NTI3OQ==&mid=2651819860&idx=1&sn=0c4df0710b0519d9dc4a43b08c9cbd23&chksm=844cdf04b33b5612eb56793dba3143bbd3597a25facb5fe6be07588a611c9c2239f313cec201&scene=21#wechat_redirect]“点击查看作者自传”[/url][/align][b][b][b][color=#a5a5a5]许越,男,1967年生于北京。[/color][/b][/b][/b][list][*][color=#a5a5a5][color=#888888]于[/color][color=#888888]1993[/color][color=#888888]年和[/color][color=#888888]2000[/color][color=#888888]年分别获得首都师范大学及美国麻省州立大学,植物生理学双硕士学位。[/color][/color][*][color=#a5a5a5][color=#888888]2001[/color][color=#888888]年在美国创建基于[/color][color=#888888]NMT[/color][color=#888888]技术的美国扬格公司,次年运用[/color][color=#888888]NMT[/color][color=#888888]服务于设立在美国北卡州立大学的美国航空航天局[/color]([color=#888888]NASA[/color])[color=#888888]空间植物学研究项目。[/color][/color][*][color=#a5a5a5][color=#888888]2005[/color][color=#888888]年成立旭月(北京)科技有限公司,在匡廷云院士、杨福愉院士和林克椿教授的帮助,以及各级政府的大力支持下,将非损伤微测技术引进中国大陆。[/color][/color][*][color=#a5a5a5][color=#888888]2014[/color][color=#888888]年带领旭月团队提出被誉为“第二个人类基因组计划”的“动态分离子组学([/color][color=#888888]imOmics[/color][color=#888888])”创新概念,同年成立旭月生物功能研究院。[/color][/color][*][color=#a5a5a5][color=#888888]2015[/color][color=#888888]年推出世界领先的“自动化非损伤微测系统”,并倡导建立中关村[/color][color=#888888]NMT[/color][color=#888888]产业联盟,开启以水安全、个体化精准医疗、粮食安全等民生应用为代表的[/color][color=#888888]NMT[/color][color=#888888]产业化进程。[/color][/color][*][color=#a5a5a5][color=#888888][color=#a5a5a5] 截至2016年,已帮助国内400多个科研单位及实验室,利用NMT实现了科研水平的跨越式发展。[/color][/color][/color][/list]时间分辨率和空间分辨率,指的是一个检测技术能够在时间和空间上提供的最小分辨单位或数值。列文虎克(Anthony Von Leeuwenhoek)发明的能够看到活细胞的显微镜,就是在人类观察世界的空间分辨率上的一次大的提升。膜片钳技术之所以能够在90年代获得诺贝尔奖,一个很重要的原因就是它将人类对世界的感知能力,在时间分辨率上提升到毫秒级别,在空间分辨率上细小到微米级以下(请见下表),而且是对生物活体进行检测。[b][b] [img=,694,274]https://mmbiz.qpic.cn/mmbiz_png/iaFShJzBuGDEbuf6P7NZBiavESu2yf2ug2kotPNzq90MdWicyeLWDCA6AciawYPkflWchjSDjbjQHRqAb4dgq9kjibw/640?wx_fmt=png&wxfrom=5&wx_lazy=1[/img][/b][/b][align=center](非损伤微测技术与膜片钳及荧光等化学技术在时间空间分辨率上的区别。来源于旭月研究院 http://xbi.org)[/align][b][b][/b][/b][align=center][/align][color=#ff0000]1)时间[/color][align=center][img]https://mmbiz.qpic.cn/mmbiz_png/iaFShJzBuGDEbuf6P7NZBiavESu2yf2ug2fQATMY9iagCFuceSqsLf75Y9sdE4M3jGIVucKibMiaxHJ4Bjler2JvQhg/640?wx_fmt=gif&wxfrom=5&wx_lazy=1[/img][img]data:image/gif base64,iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVQImWNgYGBgAAAABQABh6FO1AAAAABJRU5ErkJggg==[/img][/align][align=center](膜片钳技术典型数据图。来源于网络)[/align]膜片钳技术可以轻而易举地捉捕到毫秒级(ms)的离子通道的开放和关闭。这点让依靠反应时间最快也需要秒级的NMT离子分子传感器的非损伤微测技术望尘莫及。即使有的NMT分子传感器,比如O2传感器反应速度可以达到0.8秒(800ms),但面对离子通道的开关研究也无能为力。[b][b] [img]https://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDEbuf6P7NZBiavESu2yf2ug29icHHJJDnWFQCqa882XZvLda0XsvxbptGC2nVsWbfAaUDr1cnyLVbSQ/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][/b][/b][align=center][img]data:image/gif base64,iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVQImWNgYGBgAAAABQABh6FO1AAAAABJRU5ErkJggg==[/img][/align][align=center](非损伤微测技术典型数据图。来源于网络)[/align][align=center][/align]然而,如果我们的科研需要几十分钟,几小时,甚至几十小时地跟踪研究活体材料的离子/分子活动,非损伤微测技术的时间方面的优势就体现了出来。因为只要科研人员有办法保持样品的活性,由于NMT传感器不和被测材料进行接触,所以时间上对非损伤微测技术就不是一个制约因素。有时即使NMT流速传感器在实验过程中失效了,或不小心损坏了,没有关系,马上换上一个好的传感器就是了,只要你的样品还正常就没有问题。[b][b][color=#ff0000]2)空间[/color][/b][/b]膜片钳技术通过全细胞等多种灵活的记录方式(见下图),极大地丰富了膜片钳与被测材料之间的空间关系,但是由于该技术对玻璃电极与材料之间高阻封接的必须要求,使得膜片钳技术对于大于微米材料的操作显得力不从心。[b][b][/b][/b][align=center][img]https://mmbiz.qpic.cn/mmbiz_png/iaFShJzBuGDEbuf6P7NZBiavESu2yf2ug2TO5xCab6Y9ibT4BYkgUWvyxZBlkp6gRiboialWGSUCB2FcOSeiaWFPBKHw/640?wx_fmt=gif&wxfrom=5&wx_lazy=1[/img][img]data:image/gif base64,iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVQImWNgYGBgAAAABQABh6FO1AAAAABJRU5ErkJggg==[/img][/align][align=center](膜片钳技术的多种测量构形。来源于网络)[/align]非损伤微测技术由于不需要接触被测材料,因此在被测材料的选择,特别是材料大小上面,相比膜片钳就有了非常大的自由度(见下图)。比如,最近面市的‘NMT活体生理检测仪’可以检测从微生物群体,一直到小型个体(如斑马鱼)的各种大小材料离子/分子的进出情况。[b][b][/b][/b][align=center][img]data:image/gif base64,iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVQImWNgYGBgAAAABQABh6FO1AAAAABJRU5ErkJggg==[/img][img]https://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDEbuf6P7NZBiavESu2yf2ug2ef0ibeIqFdGZicpq4C1ONkWPjTS1gTCZ1krZPnbqYqSOsyQ2uXQcPibTA/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][/align][align=center][img]https://mmbiz.qpic.cn/mmbiz_png/iaFShJzBuGDEbuf6P7NZBiavESu2yf2ug284zhs9Mj1EIHaLMza2ZdqKc1ZYoDpMe00zm4GRnQyic0Czia471m22hQ/640?wx_fmt=png&wxfrom=5&wx_lazy=1[/img][/align][align=center][img]data:image/gif base64,iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVQImWNgYGBgAAAABQABh6FO1AAAAABJRU5ErkJggg==[/img][/align][align=center][img]https://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDEbuf6P7NZBiavESu2yf2ug2PgibOksfsIs4g0yEKg3Auqktj24lT28aePO0icUdaBT9Ev8cXBUbbQvA/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][img]data:image/gif base64,iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVQImWNgYGBgAAAABQABh6FO1AAAAABJRU5ErkJggg==[/img][/align][align=center][img]https://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDEbuf6P7NZBiavESu2yf2ug2iaqt0YIY3kYSX2dMRpnso6GtKTWicI47ibx5hvP36UIM4rCgkoZYl4Jiag/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][/align][align=center][img]https://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDEbuf6P7NZBiavESu2yf2ug2OauXy22ibCp4ngxtUhxEwYhdhdYrfmeVSvboKw8npbGgXUiceoibma0Tw/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][/align][align=center][img]https://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDEbuf6P7NZBiavESu2yf2ug2naZOUCNBiae6CyDnnbGqsWZ3LFYjM2QssLibjleWxicg6ptrp7BzxdbZA/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][/align][align=center][img]https://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDEbuf6P7NZBiavESu2yf2ug20rJ8SDnjW63vh60Bd3kiaiaia60Xufia65HF2Tviaf6rruxYs4eKI9XEt3Q/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][img]data:image/gif base64,iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVQImWNgYGBgAAAABQABh6FO1AAAAABJRU5ErkJggg==[/img][/align][align=center][img]data:image/gif base64,iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVQImWNgYGBgAAAABQABh6FO1AAAAABJRU5ErkJggg==[/img][/align][align=center][img]data:image/gif base64,iVBORw0KGgoAAAANSUhEUgAAAAEAAAABCAYAAAAfFcSJAAAADUlEQVQImWNgYGBgAAAABQABh6FO1AAAAABJRU5ErkJggg==[/img][/align][align=center][/align][align=center][img]https://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDEbuf6P7NZBiavESu2yf2ug21up5ZK2Sz8hPbubNosQh0ibic6CjicRt8sMJG6wwLD5evRa84CbHt9TAg/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][/align][align=center][img]https://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDEbuf6P7NZBiavESu2yf2ug2l1RKX0xF7x1e7nRFwlPufwgKnXXL68sorpFCHiaiamqp775HRnyyqfUw/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][/align][align=center][img]https://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDEbuf6P7NZBiavESu2yf2ug29ibs6mxnicDhpfXFgZYPePFKj2V5iayNpvDsyntbnWjOFSML74rgEjYHA/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][/align][align=center](非损伤微测技术可以测试的各种活体材料举例。来源于旭月研究院htt://xbi.org )[/align]膜片钳与非损伤微测技术在时间和空间分辨率上面各有千秋,可以根据科研需要进行合理选择。有时也可以联合应用则能够更加说明问题,不但两者在时间和空间上可以相互印证,而且非损伤微测技术所测得的离子信号是除离子通道在内,还包含有离子载体和转运体等多种离子运输载体的共同贡献。同时还有多糖吸附,细胞或组织表面的电化学作用,以及各种离子分子相互影响的物理,生物和化学的综合作用的结果。因此也是更加贴近真实的生理状态的结果。还有就是我们可以人为设计这些样品的检测环境,使其更加接近它们真正的活体状态。别忘了,毕竟您手中握有的是非损伤微测技术![b][b][color=#ff0000]3)引发其他联想[/color][/b][/b]这里有很多时候没有引起生命科学工作者足够重视的两个地方:1.生物体是多维的立体空间结构,生命活动和生理现象发生在不同的时间尺度2.每一项技术都有其在时间分辨率和空间分辨率上的特色或极限 具体而言:1.生物体是多维的立体空间结构,生命活动和生理现象发生在不同的时间尺度随着60年代DNA概念的提出,80年代生物化学的迅速崛起,90年代分子生物学的风靡全球,到近些年各种组学的盛行,科学界一部分人似乎认为只要搞定生命的各种组成成份,就可以解决人类的生老病死等等一切问题了。然而,半个世纪之后,人们终于承认人类寻找癌症等病魔的开关基因是不存在的。前一段时间,某些企业想通过基因序列为社会提供疾病/健康预测的服务尝试,也被以美国FDA为首的各国医药管理部门叫停,原因就是这些静态成份数据不足以支持建立基因组成与各种疾病之间的必然联系。也就是说,忽视生物体的在时间和空间上多维度的特点,所得到的结果也必然不能够反映生命活动的根本真实面目,其衍生的各类实际应用也必然是空中楼阁。2.每一项技术都有其在时间分辨率和空间分辨率上的特色或极限也正是由于相当一段时间以来,以生物化学,分子生物学和现在的各种组学为代表的,在生物体成份研究为主导的学科教育和科研大环境下,使得很多从事生命科学研究工作的朋友们,对于某一项技术的时间和空间分辨率定位不是很敏感。现实是,如图5所示,当NMT非损伤微测技术告诉你,它所涵盖的时间和空间分辨率既不同于膜片钳技术,也有别于其它荧光和放射性物质技术的时候,你的眼睛是否豁然一亮,因为在你面前出现了一个崭新的、宽阔无垠的科研蓝海!道理很简单,就是你将揭示前人从未涉足的生命现象领域,就像当年的列文虎克一样。参考文献1)旭月研究院网站 http://xbi.org2)美国扬格公司网站:http://youngerusa.com3)印莉萍, 上官宇, 许越. 非损伤性扫描离子选择电极技术及其在高等植物研究中的应用. 自然科学进展. 2006, 16(3):262-266.4)丁亚男,许越.非损伤微测技术及其在生物医学研究中的应用.物理. 2007, 36(7): 548-558.[align=center][img]http://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDF6tmTJTMX4uic43l9icahVSUTxSOVWpIzWuU9op0axQeUZlOd197ib0J6kUyJDXf9MJrWibHg0hicvMCw/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][/align][align=center][b]旭月版权所有,转载注明出处.[b][/b][/b][/align][align=center][b][b][img=,,130]http://mmbiz.qpic.cn/mmbiz_jpg/iaFShJzBuGDFvv5AgpUstNSuO10Yztkuqee9ozBmgmqkRl5Df8F3bvfhr0YroolbwMI0ScicdJDTJyTPYXIc1qvw/640?wx_fmt=jpeg&wxfrom=5&wx_lazy=1[/img][/b][/b][/align]

  • Science:三类抗生素潜在杀伤力可损伤细胞DNA

    4月20日,国际著名杂志《科学》Science上刊登了来自麻省理工学院和波士顿大学的研究人员的最新研究成果“Oxidation of the Guanine Nucleotide Pool Underlies Cell Death by Bactericidal Antibiotics,”,文章中,研究者揭开了三类主要的抗生素潜在的杀伤机制:药物生成了一些破坏性分子,通过一连串细胞事件对细胞DNA造成了致命性的损伤。青霉素和其他抗生素的出现使医药发生了革命性的改变,将曾经是致死性的疾病转变为了容易治愈的疾病。然而,尽管抗生素在临床上应用已有70多年,其杀死细菌的确切机制却仍是一个待解之谜。研究人员表示详细了解这一机制可以帮助科学家们改进现有的药物。在过去40年只有少数的新抗生素被开发出来,而大量的细菌株却对当前可用的药物产生耐受。波士顿大学生物医药工程学教授James Collins说:“这有可能提高我们当前‘武器库’的杀伤效应,减少所需剂量,或使细菌株对现有的抗生素重新敏感。破坏性的自由基2007年,Collins证明三类主要的抗生素——喹诺酮类、β-内酰胺类和氨基糖苷类——可通过生成高度破坏性的分子羟基自由基(hydroxyl radicals)来杀伤细菌细胞。当时,他和其他的研究人员就猜测自由基对它们遭遇的所有细胞成分发动了全面的攻击。麻省理工学院生物学教授Graham Walker 说:“它们几乎对一切都产生反应。它们会追击脂质、它们能氧化蛋白,它们能氧化DNA。”然而在新研究中,研究人员发现这种损伤大部分并非是致命性的,研究人员证明能对细菌造成致死性损伤的是羟基诱导的鸟嘌呤损伤,鸟嘌呤(G)是组成DNA的四个基本核苷酸碱基之一。当这种损伤的鸟嘌呤插入到DNA中时,细菌会致力修复这种损伤,但最终加速了自身的死亡。“这并非是导致所有杀伤效应的原因,但事实它却占据了相当重要的比重,”Walker说。最初,Walker对于DNA修复酶的研究令到研究人员怀疑这种氧化鸟嘌呤有可能在抗生素介导的细胞死亡中发挥了作用。在第一个研究阶段,他们发现了一种特异的DNA聚合酶DinB非常善于利用氧化鸟嘌呤元件来合成DNA。然而,DinB不仅在DNA复制过程中将氧化鸟嘌呤插入到了其正确碱基对胞嘧啶(C)的对面,还将其插入到了腺嘌呤(A)的对面。研究人员发现当太多氧化鸟嘌呤被掺入到新的DNA链中时,细胞将无法成功去除这些损害,因此导致了死亡。基于这些基础的DNA修复研究,Walker和他的同事们于是猜测抗生素生成的羟基自由基是否有可能引发了相同的一连串的DNA损伤。事实证明果然如此。一旦抗生素处理导致的氧化鸟嘌呤插入到DNA中,一个旨在修复DNA的细胞系统就会采取行动。一些称之为MutY 和 MutM的特异性酶通过剪断DNA来启动胞修复过程,正常情况下这一修复机制可以帮助细胞应对DNA中存在的氧化鸟嘌呤。 然而这种修复也是具有高风险的,因为它需要打开DNA双螺旋,在错误碱基被替换时切断DNA链。如果两种这样的修复在DNA反向链附近的位置同时发生,那么DNA就会发生双链断裂,这通常对细胞具有致命效应。“原本应该保护你,确保准确性的系统变成了刽子手。”Walker说。哈佛医学院微生物和免疫生物学教授Deborah Hung说:“新研究代表随着我们重新了解抗生素的作用机制会开启下一个重要的篇章。我们过去思考我们所知的,现在我们意识到所有的简单假设都是错误的,它其实更为的复杂。”

  • 喝酒多损伤脾胃

    喝酒多损伤脾胃,要注意化痰湿。可以在喝酒的同时,喝一点米汤水、白粥、小米粥等,也可以放一点生姜、陈皮来煲汤以解酒。

  • 【求助】植物DNA损伤检测

    请教好心人,有谁测过植物细胞的DNA损伤,具体怎么操作?有没有人用过植物DNA损伤彗星检测试剂盒?样品怎么前处理,前处理前怎么保存?谢谢各位大虾了,望不吝赐教,小弟感激不尽!

  • ★ ★ ★请各位老师帮忙!想用TEM作镍钛合金的微观损伤实验★ ★ ★

    我现在想用TEM作镍钛合金的微观损伤实验(样品的参数:厚度为300µ m的多晶结构、冷扎薄片,其中镍钛合金中Ni占56.4%,Ti占43.6% (质量百分比)),微观损伤其实就是预先在NiTi片上作直径大约5微米的深度大约在600纳米的压痕。请教各位高手,TEM都能观测什么微观和亚微观的结构和损伤?第二个想请教大家的是,关于我这样品、针对可能出现的损伤,TEM的制样方法?我想看一下压痕的抛面。在请教一下老师们我怎么实现“并将20分悬赏积分分配给帮助过自己的VIP用户”,谢谢!非常期待各位的援助!万分感谢!

  • 【转帖】常用化学试剂对人体的损伤

    大家搞化学的要多多注意呀,身体要紧(1)神经系统损伤: 如二硫化碳引起的神经炎; 甲醇中毒影响视神经等。代表化学试剂有酒精、苯、氯化乙醇、二氯乙烷、汽油、甲酸戊酯、醋酸戊酯、二甲苯、三氯乙烯、丁醇、松节油、煤油、丙酮、酚、三氯甲烷、异丙苯等。 因抑制神经系统的传导冲动功能,产生麻醉,神经系统障碍或引起神经炎等。 (2)肝损伤: 主要是氯化烃类。此类溶剂有四氯化碳、氯仿、三氯乙烯、四氯乙烷、苯及其衍生物等。 因损伤肝脏机能,引起恶心、呕吐、发烧、黄疸炎及中毒性肝炎; (3)对肾脏机能破坏 代表试剂有烃类之卤化物、苯及其衍生物、二元醇及其单醚类、四氯化碳、乙醇等。肾脏为毒物排泄器官,故最易中毒,且因血氧量减少,亦足以使肾脏受害,发生肾炎及肾病。 (4) 对造血系统破坏: 因破坏骨髓造成贫血现象。代表试剂有苯及其衍生物如甲苯、氯化苯、二元醇等。 (5) 对粘膜及皮肤刺激: 代表溶剂氯仿、三氯甲烷、醚、苯、醋酸甲酯、煤油、丙酮、甲醇、石油、氯酚、二氯乙烯、四氯化碳等。因刺激粘膜,使鼻粘膜出血,喉头发炎,嗅觉丧失或因皮肤敏感产生红肿、发痒、红斑及坏疽病等。

  • 液氮容器如何避免输送中的振动损伤?

    振动分析与特性首先,东亚液氮容器在运输过程中可能面临多种振动源,如道路不平、运输工具的震动、搬运过程中的颠簸等。这些振动会通过容器壁传递到液氮内部,导致液体的不均匀分布和可能的泄漏,甚至容器本身的结构损伤。为了准确评估振动对液氮容器的影响,可以利用振动传感器和数据记录仪来进行实时监测和分析。通过记录不同运输条件下的振动频率、振幅以及持续时间等参数,可以形成详细的振动特性分析。[img=,690,516]https://ng1.17img.cn/bbsfiles/images/2024/07/202407251702087012_9724_6088378_3.jpg!w690x516.jpg[/img] 材料与结构优化其次,液氮容器的材料选择和结构设计对振动抵抗能力至关重要。常见的液氮容器材料包括不锈钢、铝合金等,这些材料在低温下具有良好的机械性能和耐腐蚀性。在结构设计上,容器通常采用双壁结构或多层绝热层设计,以增强其抗振性能。双壁结构可以有效减少外界振动对内部液氮的传递,而绝热层则可以降低液氮温度的变化率,进一步保护液氮的稳定性。 缓冲与固定技术为了减少振动对液氮容器的冲击,运输过程中常采用缓冲和固定技术。缓冲技术包括在容器周围加入吸震材料或填充物,如泡沫塑料、气囊等,以吸收和减少外部振动传递到容器的能量。同时,通过合理的固定方法,如使用专用的固定架或支架,并结合橡胶垫或吊挂系统,可以有效减少运输过程中的震动影响,保护液氮容器的安全性和稳定性。 实时监控与调整最后,为了保证运输过程中的安全性和稳定性,可以采用实时监控与调整措施。运输过程中,监测[url=http://www.yedanguan001.com/]东亚液氮罐[/url]的温度、压力和振动情况,并根据实时数据进行调整和优化,确保液氮在整个运输过程中保持稳定的温度和压力状态。例如,通过远程传感器和监控系统,可以实时掌握液氮容器的运输状态,并及时调整运输条件,以最大程度地减少振动损伤的风险。

  • 光学元件亚表面损伤深度的无损荧光检测方法

    [b][font='Microsoft YaHei', 宋体, sans-serif]【序号】:1[/font]【作者】:[font=sans-serif][/font][font=Arial][font=Archivo, &][size=16px][b]侯晶1,2王洪祥1王储1王景贺1朱本温1[/b][/size][/font][/font][font=sans-serif][/font][/b][font='Microsoft YaHei', 宋体, sans-serif][b][b][/b][/b][/font][font=&]【题名】:[b][b][b][font=&][size=30px][b][b]光学元件亚表面损伤深度的无损荧光检测方法[/b][/b][/size][/font][/b][/b][/b][/font][font=&]【期刊】:[/font][font=Arial][size=12px]CNKI[/size][/font][font='Microsoft YaHei', 宋体, sans-serif][color=#545454][b]【链接】:[url=https://kns-cnki-net-443.webvpn.xnai.edu.cn/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2018&filename=HEBX201807004&uniplatform=NZKPT&v=Ea5aJALKB3g_fiNv2APpnkEseIaTI7Z48qNsA5LkYAhwQ1rbRTyJg9Yc4DQ2Eht2]光学元件亚表面损伤深度的无损荧光检测方法 - 中国知网 (xnai.edu.cn)[/url][/b][/color][/font]

  • 毛细管气相色谱柱的损伤和使用要怎么做

    [b][font=微软雅黑]毛细管[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱[/font][/b][font=微软雅黑][font=微软雅黑]由两部分组成[/font][font=微软雅黑]—管身和固定相。管身一般使用熔融二氧化硅或不锈钢作为基本材质;而固定相种类就有许多了。大部分的固定相是液体或胶状的高分子量,具有高热稳定性的聚合物,常用的是聚硅氧烷和聚乙二醇,另外还有一类是小的多孔粒子组成的聚合物或沸石。[/font][/font][font=微软雅黑] [/font][b][font=微软雅黑]毛细管[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱[/font][/b][font=微软雅黑]的损伤和使用:[/font][font=微软雅黑]  正确的色谱柱使用对于色谱柱的寿命至关重要。损伤包括热损伤、氧损伤、污染、化学损伤和物理损伤。损伤后会影响色谱柱的柱效和分离度。[/font][font=微软雅黑] [/font][font=微软雅黑]  热损伤是指过高的温度会导致固定相裂解,骨架断裂。措施是严格按照色谱柱的说明书,使用时不超过其较高温度。[/font][font=微软雅黑] [/font][font=微软雅黑]  氧损伤是指在氧存在的条件下,破坏固定相的化学键,是不可逆的损伤。主要表现为基线高、基线噪声大、峰形变差、不出峰和保留时间漂移等。措施是保证载气的纯度、安装捕集阱和保证进样口密封。氧损伤有可能导致色谱柱彻底破坏,这时只能更换新色谱柱。[/font][font=微软雅黑] [/font][font=微软雅黑]  污染损伤主要来源于被分析样品。措施是进行样品的前处理,将污染物提前处理掉;再者是更换耗材、隔垫、衬管和分流平板;还有就是进行多次的色谱柱老化或使用保护柱;使用保护柱也可以将样品污染物尽量隔离在色谱柱进口处。[/font][font=微软雅黑] [/font][font=微软雅黑][font=微软雅黑]  化学损伤是指色谱柱固定相受到化学物的损伤。被分析物中如含[/font][font=微软雅黑]HCl,NH3,KOH等酸碱试剂,会造成色谱柱的损伤。在进行分析时,要尽量避免使用含CF3COOH,CF3CF2COOH,CH3CF2CF2COOH等试剂的样品。[/font][/font][font=微软雅黑] [/font][font=微软雅黑][font=微软雅黑]  被分析样品尽量选用有机溶剂作为稀释剂,不选用水。水样分析时进样量要控制在[/font][font=微软雅黑]0.5μL以下,进样口温度要高于250度;水样中不能含有酸、碱、盐等不挥发性物质。[/font][/font][font=微软雅黑] [/font][font=微软雅黑]  物理损伤指保存时毛细管过于紧绕导致折断,或者放置不当导致其它情况折断。毛细管的外部涂有聚酰胺层,可保护毛细管弹性,不易折断。[/font][font=Calibri] [/font]

  • 【原创】砂轮片切割片切割损伤表

    砂轮切割砂轮片 切割速率损伤深度(微米)软粘接氧化铝磨料慢 10 快45硬粘接氧化铝磨料慢 20 快 900锯床 正常70+200精密切割切割片 转速 (转/分) 损伤深度(微米) 时间 (分)金属粘接金刚石100 10 20金属粘接CBN100 8 15 1000 50 150树脂粘接碳化硅1000 9 2 2000 7 1

  • 【分享】化学发光法研究三种参对DNA损伤的保护作用

    DNA是生物体内一种重要的大分子,它的氧化损伤在癌症、衰老等疾病的发生过程中起着重要作用。.OH 一直被认为是引起DNA损伤的重要因素。生命体内的.OH可通过抽提核酸分子中碱基氢或戊糖氢,从而引起DNA碱基发生开环、脱落等变化,使DNA双螺旋间的氢键遭到破坏,DNA发生单链或双链断链、交联等作用。虽然活性自由基除.OH外还有.O2-,一般认为.O2-对DNA等生物分子的损伤是由于它与H2O2作用形成中间产物·OH引起。因此,研究抑制.OH对DNA损伤的药物有重要意义。 用于清除自由基的抗氧化剂种类很多,但是近年来,从天然物质中筛选高效、无毒的自由基清除剂成为生命医学的一个研究热点。参是非常好的抗氧化剂, 在参类中有人参和西洋参两大类。人参中又分红参和生晒参,二者区别在于加工方法不同:直接晒干名生晒参;蒸熟后晒干名红参。人参中抗衰老的生物活性物质虽然因作用而异,可主要是人参皂甙。但是,关于参对DNA的氧化损伤的保护作用的研究尚未见文献报道。 用化学发光法研究药物对DNA损伤的保护作用是一方便可靠的方法,已有不少报道。本实验利用CuSO4-Phen-Vc-H2O2-DNA化学发光体系研究红参、生晒参、西洋参提取液对DNA受·OH损伤的抑制作用。实验证明,这些提取液都能有效地清除.OH,抑制DNA受.OH的损伤。并且实验发现对DNA损伤的保护作用效果分别为红参优于生晒参,生晒参好于西洋参。1 实验部分1.1 试剂与仪器 硫酸铜(分析纯,上海振兴试剂厂);邻菲罗啉(Phen,分析纯,上海试剂三厂);维生素C(VC,分析纯,第二军医大学卫辉试剂厂);过氧化氢(30%,分析纯,上海桃浦化工厂)。鱼精DNA(生化试剂,中国科学院上海生物化学研究所);LKB-1250化学发光仪(1250Luminometer,样品池可恒温)。1.2 参中有效成分的提取 红参、生晒参、西洋参的有效成分提取液的处理方法: 将市售红参、生晒参、西洋参在80°C烘箱中烘3h,分别称取1.4900g烘干的红参、生晒参、西洋参置于3个50mL的烧杯中,加入15mL[/font

  • 求无损伤检测鉴定艺术品的设备推荐

    [b][color=#ffcccc]新手小白第一次发帖,求助各位大神嘿嘿,发现这个发帖的编辑栏好可爱(*?▽?*)回正题:做艺术品鉴定检测分析,有无这个方面的大神捏?求推荐无损伤鉴定分析检测艺术品的仪器设备?有从事这个方面的专家不?小妹儿在此求指导[img]https://simg.instrument.com.cn/bbs/images/brow/em44.gif[/img][/color][/b]

  • 【讨论】电磁辐射对人的大脑有损伤吗?

    [b][color=#d40a00][size=4]我国手机用户已达到6亿左右,使用手机基本(绝大多数)都是靠近脑部接听,手机发射的高频信号(900MHn/1800MHz)应该是很强的,据我了解还没有人说,只要长期打手机就头疼脑热或脑部不适,虽然有些有关医院的医学研究者报道(包括国外的一些报道),说手机的电磁辐射对人的大脑有损伤,可是没有说服力。而手机生产厂商确对此事的看法,认为医学工作者需要拿出科学的依据(或根据)来说服大众。实际上人们就是生活在错综复杂的电磁波环境中,宇宙电磁波,高压(铁塔)电力输送线路,卫星飞机导航系统,广播电视发射塔,微波中继站,移动通讯基站,大型(冶炼)钢厂,大型电气变电(发电)站,城市电力、通讯密集网络等等。。。。。。,不知道人们生病进医院是否与上述因素有关。值得思考!!![/size][/color][/b]

  • 气相在运行的时候进样口压力和柱流量突然降为零,对柱子的损伤

    我今天在老化柱子的时候用的是恒流模式,然后在老化的过程中进样口压力升不上去了,可能是隔垫密封的问题,然后压力和流量就慢慢的降为零了,因为正在老化温度也很高,我想问一下柱子一端接在进样口也相当于密封,另一端没有接检测器在柱箱,在这种温度较高的情况下柱流量停了对柱子的损伤大吗?非常感谢!

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制