当前位置: 仪器信息网 > 行业主题 > >

非制冷红外相机

仪器信息网非制冷红外相机专题为您提供2024年最新非制冷红外相机价格报价、厂家品牌的相关信息, 包括非制冷红外相机参数、型号等,不管是国产,还是进口品牌的非制冷红外相机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合非制冷红外相机相关的耗材配件、试剂标物,还有非制冷红外相机相关的最新资讯、资料,以及非制冷红外相机相关的解决方案。

非制冷红外相机相关的论坛

  • 【原创大赛】【我与近红外的故事】近红外相机

    说明:本文参与原创大赛仅为加强传播交流,让更多人发现近红外的魅力,不参与任何奖项评选!近红外相机张庆忠  我从小喜欢鸟儿,无论名贵与否,大小与否,总有一股爱怜之意。  记的上小学三年级的时候,房顶上的燕子窝里孵出了小燕子,张着黄黄的小嘴“吱吱”叫着,光光的身子,煞是可爱!一天早晨,我依着门框望着忙忙碌碌的燕子父母,伸着脖子叫的小燕子呆呆出神,仿佛自己也变成了一只小燕子,和它们挤在一起,享受着家庭的温暖。由于太入神竟然忘记了时间而耽误了上学,少不了老师的责备,可这也阻止不了我对鸟儿的喜爱。  上大学时,图书馆成了我经常光顾的地方,查阅大量资料来研究鸟儿的特点,整理了厚厚的三大本笔记,心中的梦想就是有朝一日成为研究鸟儿的一员。可事与愿违,我大学毕业后分配到了一所偏远中学教书,只好把爱好当成了业余。后来渐渐喜欢上了摄影,专门拍鸟儿的照片,还获了几个奖,让我乐此不疲。  2014年,我突发奇想,拍一组鸟儿休息时的照片。这样的照片很少有人拍到过,拿到大奖赛上一定能获奖,可这样的照片我也是很难拍到,因为大都在夜间。我试着转悠了十几个晚上,还是很不理想,简直是惨不忍睹。  一天,我在为这事发愁,一位同事提了个建议:借一架近红外相机不就啥问题也解决了吗?一语惊醒梦中人,说干就干,我求助于朋友圈。还别说,朋友中还真有这样的相机。一位朋友给我送来了一架西安聚星光电技术有限公司生产的EMCCD相机,型号是HawkEM247。他详细介绍了相机的功能,并说出了这种相机的优点:功耗低,结实耐用,分辨率高,小巧。还手把手教会了我使用方法。  有了这架近红外相机,我一连拍了五个晚上,终于拍到了我想要的照片。鸟儿睡觉时萌萌的,憨态可掬,让人忍俊不住。这组照片在黄河口鸟类摄影大赛上还获了奖。  俗话说“军马未动,粮草先行。”于是我拿出好几个月的积蓄添置了一台功能更加齐全的近红外相机,这样无论白天晚上都能拍到想要的照片了。  由此,我想到了我国近红外研究人员的伟大,是他们仅仅用了30年的时间就让我国近红外光谱的研究和应用有了突飞猛进的发展,是他们用汗水和智慧把我国的近红外光谱以产业链的方式应用于农业、石化、制药和食品等多个领域,并发挥着越来越重要的作用。  向我国近红外的研究人员衷心地道一声:谢谢你们,辛苦了!

  • 我国非制冷红外热像仪顺利进入民用市场

    我国非制冷红外热像仪顺利进入民用市场

    我国非制冷红外热像仪顺利进入民用市场 高德红外股份有限公司是国内规模最大的集光、机、电、人工智能图像处理技术于一体的红外热像系统生产厂商,在全球测温性红外热像仪领域排名第四,产品广泛用于海陆空各兵种的军事新型武器装备以及电力、医疗、公安、交通等民用领域。 基于红外监控不依赖光源,能在重要安全节点与普通视频监控器共同提高视频监控的质量和效果。高德红外股份有限公司认为,随着智能化安全城市建设全面铺开,机场、银行、政府、主要路口、边防及海防等重要安全节点有必要实现24小时不间断监控。未来在民用领域拥有巨大空间。 几天前,高德红外股份有限公司发布公告:湖北省科学技术厅组织行业专家对高德“基于非晶硅的400*300@25um非制冷红外探测器”项目进行了科技成果鉴定。一致认为该成果整体达到国内领先水平,并在国内率先具备该型号非晶硅红外探测器产业化的能力,同意该成果通过鉴定,并建议进一步加快延伸开发及推广应用。 “基于非晶硅的400*300@25um非制冷红外探测器”项目申请专利达11项,技术上已达进口替代水平,目前净化厂房建设已完成、设备已到货并调试验收合格, 一旦红外探测器实现国产化,将大大降低红外热像仪的制造成本。例如高德红外研发出的车载红外辅助驾驶系统IR312、手持红外热像仪IR510很有可能降至每台数千元。http://ng1.17img.cn/bbsfiles/images/2014/02/201402281022_491362_2855882_3.pnghttp://ng1.17img.cn/bbsfiles/images/2014/02/201402281023_491363_2855882_3.png

  • 【巨哥科技】推出多光谱红外相机,快速识别材料属性

    [color=#000000]在物料分选、材料分类、异物检测等应用领域,普通的RGB相机往往难以满足需求。多光谱红外相机探测目标对不同波段的光的吸收,形成代表材料属性的图像,提升分析的效率和准确性。巨哥科技最新推出的多光谱相机光谱响应范围900 nm至1700 nm,有效覆盖短波红外范围,适用于广泛的材料光谱分析。[/color][align=center][img]https://img1.17img.cn/17img/images/202403/uepic/a1c961b1-f44d-4ba2-84d6-03e27e60af46.jpg[/img][/align][color=#000000]该相机具有7个波长通道,可提供丰富的光谱信息。一次多光谱成像时间小于0.1秒,10Hz的多光谱成像帧频确保了对动态过程的实时监控。[/color][align=center][img]https://img1.17img.cn/17img/images/202403/uepic/a72d04ba-128e-4e4f-8539-5ad0295f002d.jpg[/img][/align][color=#000000]通过收集不同波长下的光谱数据,该相机能够创建详细的材料光谱特征库,结合先进的数据处理算法构建高精度光谱模型,可实现自动化生产线上的快速材料分拣、质量控制和异物检测等任务。巨哥科技丰富的光谱分析和建模经验可以应对需要精确材料鉴别的复杂应用场景,如在复杂混合物中识别特定成分或在生产过程中实时监控材料变化。[/color][color=#000000]使用短波多光谱相机对不同材质的四类布料(涤纶、氨纶、棉以及使用了特殊染料的布料)进行成像。使用多光谱相机采集到的四类布料光谱数据如下图所示,可以看出不同材料在光谱上的差异。[/color][align=center][img]https://img1.17img.cn/17img/images/202403/uepic/c65cbf7b-8684-46e2-8f9e-af1ee3508209.jpg[/img][/align][align=center][color=#0070c0]多光谱相机采集光谱[/color][/align][color=#000000]通过建模算法确定图像中各点对应的材料成分后,使用伪彩色进行整体显示,可以直观看到各类布料的材质差异。[/color][align=center][img]https://img1.17img.cn/17img/images/202403/uepic/028c5c7c-961c-4c1a-90c0-9d19c3150b56.jpg[/img][/align][align=center][color=#0070c0]多波段响应合成的伪彩色图区分不同材料[/color][/align][color=#000000]基于上述原理,该款多光谱相机可用于以下领域:[/color][b][color=#000000]01 工业分拣:[/color][/b][color=#000000]在生产线上,多光谱红外相机可以快速区分不同类型物质,如不同种类的纺织品或塑料,提高分拣效率。[/color][b][color=#000000]02 质量监控:[/color][/b][color=#000000]通过光谱分析,实时监测PCB、水果等产品质量,快速识别并排除不合格品。[/color][b][color=#000000]03 成分分布:[/color][/b][color=#000000]多光谱相机能够快速辨别材料成分,例如实时显示药物混合后的成分分布。[/color][b][color=#000000]04 异物检测:[/color][/b][color=#000000]在食品加工等行业,相机能够有效识别潜在的异物,保障产品安全和消费者健康。[/color][color=#000000]巨哥科技多光谱红外相机的产品设计注重实用性和稳定性,确保在各种工作环境中均能提供可靠的性能。新款多光谱红外相机与现有光谱仪系列的协同作用,将为客户提供更加完善的材料属性分析工具。此外,巨哥科技为客户提供全面的技术支持和培训服务,确保客户能够充分利用我们的产品进行高效的材料分析和处理。巨哥科技致力于推动光电技术在工业和科研领域的应用,期待与客户共同探索和实现光电技术在现代工业中的更多可能。[/color][b][color=#000000]关于巨哥科技[/color][/b][color=#000000]上海巨哥科技股份有限公司是专精特新和高新技术企业,自主研发光电仪器及核心芯片、智能算法和软件,获上海市科技进步一等奖。团队来自普林斯顿、清华、中科大、浙大、中科院等,获海外高层次人才、上海市优秀技术带头人等称号。[/color][color=#000000]巨哥科技提供全波段红外光电产品:用于电力、轨交、冶金、汽车等行业设备状态和过程监控的热像仪,用于石化等行业的气体泄漏成像仪,用于激光、半导体等先进制造领域的短波相机,用于石化、粮油、制药等领域成分分析的光谱仪等,并为材料、工程、生命科学等前沿研究提供科学级光电仪器。[/color][来源:巨哥科技][align=right][/align]

  • 【资料】非制冷热像仪的发展状况

    红外焦平面列阵的发展朝两个不同的方向进行:一种是低温制冷工作的光子型红外探测器列阵,如HgCdTe、InSb和PtSi等;另一种是室温工作的非制冷探测器列阵。制冷型探测器列阵的制作难度大,且需要昂贵的制冷系统,由其构成的热像仪通常用于敏感的军事领域。 由于非制冷红外焦平面探测器列阵具有室温工作、无需制冷、光谱响应与波长无关、制备工艺相对简单、成本低、体积小巧、易于使用、维护、可靠性好等优点,因此形成了一个新的富有生命力的发展方向,其目的是以更低的成本、更小的尺寸和更轻的重量来获得极好的红外成像性能。近年来,已研制成功三种不同类型的非制冷红外焦平面探测器列阵:a. 热电堆:根据塞贝克效应检测热端和冷端之间的温度梯度,信号形式是电压。b. 测辐射热计:探测温度变化引起载流子浓度和迁移率的变化,信号形式是电阻。c. 热释电:探测温度变化引起介电常数和自发极化强度的变化,信号形式是电荷。 在这三种器件中,测辐射热计列阵的发展最为迅速,并且取得了令人瞩目的成就。它采用类似于硅工艺的硅微机械加工技术进行制作,为了实现有效的热绝缘,一般采用桥式结构。探测器与硅读出电路之间通过两条支撑腿实现电互连。测辐射热计的灵敏度主要取决于它与周围介质的热绝缘,即热阻。热阻越大,可获得的灵敏度就越高。目前测辐射热计列阵的温度分辨率可达0.1K,不久将达到0.03至0.05K。对于工业应用来说,这种性能已相当令人满意了。用它构成的热像仪在尺寸、重量和价格方面可与可见光摄录机相媲美,在不远的将来可望获得广泛的应用,是一个新的经济增长点。 非制冷测辐射热计列阵技术也许是红外热成像技术在过去20年取得的最重要的进展。90年代以来,非制冷测辐射热计列阵已形成产品进入市场。美国波音公司研制的U3000型320 X 240 元非制冷测辐射热计列阵和美国Amber公司研制的320 X 240 元非制冷测辐射热计列阵热像仪Sentinel,双双荣膺美国1997年光电子领域优秀奖。美国FLIR公司销售到中国的非制冷焦平面热像仪,就是采用此类探测器。2000年,法国Sofradir公司生产出了他们的第一只非制冷焦平面红外探测器,它是采用由多晶硅材料制备的单片式电阻型微测辐射热计技术,该项技术由法国国家红外实验室转移至Sofradir公司生产,探测器列阵规模320×240,像元中心距45µ m,填充因子大于80%,噪声等效温差(NETD)达到100mK(典型值),器件的性能指标达到了当今世界先进水平

  • 非制冷势垒型InAsSb基高速中波红外探测器

    高速响应的中波红外探测器在自由空间光通信和频率梳光谱学等新兴领域的需求逐渐增加。中长波XB?n势垒型红外光探测器对暗电流等散粒噪声具有抑制作用。近期,由中国科学院半导体研究所、昆明物理研究所、中国科学院大学和陆装驻重庆军代局驻昆明地区第一军代室组成的科研团队在《红外与毫米波学报》期刊上发表了以“非制冷势垒型InAsSb基高速中波红外探测器”为主题的文章。该文章第一作者为贾春阳,通讯作者为赵俊总工程师和张逸韵研究员。本工作制备了不同直径的nBn和pBn结构的中波InAsSb/AlAsSb红外接地-信号-接地(GSG)探测器。对制备的探测器进行了变温暗电流特性,结电容特性和室温射频响应特性的表征。[align=center][size=18px][back=#ffff00][b]材料生长、器件制备和测试[/b][/back][/size][/align]通过固态源分子束外延装置在2英寸的n型Te-GaSb衬底上外延生长nBn和pBn器件。势垒型器件的生长过程如下所示:先在衬底上生长GaSb缓冲层来平整表面以及减少应力和位错,接着生长重掺杂(101? cm?3)n型InAsSb接触层,然后生长2.5 μm厚的非故意掺杂(101? cm?3)InAsSb体材料吸收层。之后生长了150 nm厚的AlAsSb/AlSb数字合金电子势垒层,通过插入超薄的AlSb层实现了吸收区和势垒层的价带偏移的显著减少,有助于空穴向接触电极的传输,同时有效阻止电子以减小暗电流。最后分别生长300 nm厚的重掺杂(101? cm?3)n型InAsSb和p型GaSb接触层用于形成nBn和pBn器件结构。其中,Si和Be分别被用作n型和p型掺杂源。生长后,通过原子力显微镜(D3100,Veeco,USA)和高分辨X射线衍射仪(Bede D1,United Kingdom)对晶片进行表征以确保获得高质量的材料质量。通过激光划片将2英寸的外延片划裂为1×1 cm2的样片。样片经过标准工艺处理,包括台面定义、钝化和金属蒸镀工艺,制成直径从10 μm到100 μm的圆形台面单管探测器。台面定义工艺包括通过电感耦合等离子体(ICP)和柠檬酸基混合溶液进行的干法刻蚀和湿法腐蚀工艺,以去除器件侧壁上的离子诱导损伤和表面态。器件的金属电极需要与射频探针进行耦合来测试器件的射频响应特性,因此包括三个电极分别为Ground(接地)、Signal(信号)和Ground,其中两个Ground电极相连,与下接触层形成欧姆接触,Signal电极与上接触层形成欧姆接触,如图1(c)和(f)所示。通过低温探针台和半导体参数分析仪(Keithley 4200,America)测试器件77 K-300 K范围的电学特性。器件的光学响应特性在之前的工作中介绍过,在300 K下光电探测器截止波长约为4.8 μm,与InAsSb吸收层的带隙一致。在300 K和反向偏置为450 mV时,饱和量子效率在55%-60%。通过探针台和频率响应范围10 MHz-67 GHz的矢量网络分析仪(Keysight PNA-XN5247B,America)对器件进行射频响应特性测试。[align=center][size=18px][back=#ffff00][b]结果与讨论[/b][/back][/size][/align][b]材料质量表征[/b]图1(a)和(d)的X射线衍射谱结果显示,从左到右的谱线峰分别对应于InAsSb吸收层和GaSb缓冲层/衬底。其中,nBn和pBn外延片的InAsSb吸收区的峰值分别出现在60.69度和60.67度,GaSb衬底的峰值则出现在60.72度。因此,InAsSb吸收层与GaSb 衬底的晶格失配分别为-108 acsec和-180 acsec,符合预期,表明nBn和pBn器件的InAsSb吸收区和GaSb衬底几乎是晶格匹配的生长条件。因此,nBn和pBn外延片都具有良好的材料质量。原子力显微镜扫描的结果在图1的(b)和(e)中,显示出生长后的nBn和pBn外延片具有良好的表面形貌。在一个5×5 μm2的区域内,nBn和pBn外延片的均方根粗糙度分别为1.7 ?和2.1 ?。[align=center][img]https://img1.17img.cn/17img/images/202401/uepic/92230b98-4dac-4ee0-aeaa-282dcd342995.jpg[/img][/align][align=center][color=#0070c0]图1 (a)和(a)分别为nBn和pBn外延片的X射线衍射谱;(b)和(e)分别为nBn和pBn外延片的原子力显微扫描图;(c)和(f)分别为制备的圆形GSG探测器的光学照片和扫描电子照片[/color][/align][b]器件的变温暗电流特性[/b]图2(a)显示了器件直径90 μm的nBn和pBn探测器单管芯片的温度依赖暗电流密度-电压曲线,通过在连接到Keithley 4200半导体参数分析仪的低温探针台上进行测量。图2(b)显示了件直径90 μm的nBn和pBn探测器在77 K-300 K下的微分电阻和器件面积的乘积R?A随反向偏压的变化曲线,温度下降的梯度(STEP)为25 K。图2(c)显示了在400 mV反向偏压下,nBn和pBn探测器表现出的从77 K到300 K的R?A与温度倒数(1000/T)之间的关系,温度变化的梯度(STEP)为25 K。[align=center][img]https://img1.17img.cn/17img/images/202401/uepic/a8f8001f-cd03-42f4-a32f-8b1acc94131d.jpg[/img][/align][align=center][color=#0070c0]图2 从77K到300K温度下直径90 μm的nBn和pBn探测器单管芯片(a)暗电流密度-电压曲线;(b)微分电阻和器件面积的乘积R?A随反向偏压的变化曲线;(c)R?A随温度倒数变化曲线[/color][/align][b]器件暗电流的尺寸效应[/b]由于势垒型红外探测器对于体内暗电流可以起到较好的抑制作用,因此研究人员关注与台面周长和面积有关的表面泄露暗电流,进一步抑制表面漏电流可以进一步提高探测器的工作性能。图3(a)显示了从20 μm到100 μm直径的nBn和pBn器件于室温工作的暗电流密度和电压关系,尺寸变化的梯度(STEP)为10 μm。图3(b)显示从20 μm-100 μm的nBn和pBn探测器的微分电阻和台面面积的乘积R?A随反向偏压的变化曲线。图3(d)中pBn器件的相对平缓的拟合曲线说明了具有较高的侧壁电阻率,根据斜率的倒数计算出约为1.7×10? Ωcm。[align=center][img]https://img1.17img.cn/17img/images/202401/uepic/e7fba8aa-eabe-40a4-a863-6ebcdd264744.jpg[/img][/align][align=center][color=#0070c0]图3 从20 μm到100 μm直径的nBn和pBn器件于室温下的(a)暗电流密度和电压变化曲线和(b)R?A随反向偏压的变化曲线;(c)在400 mV反偏时,pBn和nBn器件R?A随台面直径的变化;(d)(R?A)?1与周长对面积(P/A)变化曲线[/color][/align][b]器件的结电容[/b]图4(a)显示了使用Keithley 4200 CV模块在室温下不同直径的nBn和pBn探测器的结电容随反向偏压的变化曲线,器件直径从20 μm到100 μm按照10 μm梯度(STEP)变化。对于势垒层完全耗尽的pBn探测器,预期器件电容将由AlAsSb/AlSb势垒层电容和InAsSb吸收区耗尽层电容的串联组合给出,其中包括势垒层和上接触层侧的InAsSb耗尽区。[align=center][img]https://img1.17img.cn/17img/images/202401/uepic/c09b63df-6442-42f2-b548-df4f539db6eb.jpg[/img][/align][align=center][color=#0070c0]图4 (a)在室温下不同直径的nBn和pBn探测器的结电容随反向偏压的变化曲线;(b)反偏400 mV下结电容与台面直径的变化曲线。[/color][/align][b]器件的射频响应特性[/b]通过Keysight PNA-X N5247B矢量网络分析仪、探针台和飞秒激光光源,在室温和0-3 V反向偏压下,对不同尺寸的nBn和pBn探测器在10 MHz至67 GHz之间进行了射频响应特性测试。根据图5推算出在3V反向偏压下的40 μm、50 μm、70 μm、80 μm、90 μm、100 μm直径的圆形nBn和pBn红外探测器的3 dB截止频率(f3dB)。势垒型探测器内部载流子输运过程类似光电导探测器,表面载流子寿命对响应速度会产生影响。[align=center][img]https://img1.17img.cn/17img/images/202401/uepic/95acbbf7-8557-4619-b4cd-5829d636aced.jpg[/img][/align][align=center][color=#0070c0]图5 在300 K下施加-3V偏压的40 μm、50 μm、70 μm、80 μm、90 μm、100 μm直径的nBn和pBn探测器的归一化频率响应图[/color][/align][align=center][img]https://img1.17img.cn/17img/images/202401/uepic/541829b0-a336-4b7e-a75b-0a15f8dfd06a.jpg[/img][/align][align=center][color=#0070c0]图6 不同尺寸的nBn和pBn探测器(a)3 dB截止频率随反向偏压变化曲线;(b)在3 V反向偏压下的3 dB截止频率随台面直径变化曲线[/color][/align]图6(a)展示了对不同尺寸的nBn和pBn探测器,在0-3 V反向偏压范围内的3 dB截止频率的结果。随着反向偏压的增大,不同尺寸的器件的3 dB带宽也随之增大。因此,在图6(a)中观察到在低反向偏压下nBn和pBn器件的响应较慢,nBn探测器的截止频率落在60 MHz-320 MHz之间而pBn探测器的截止频率落在70 MHz-750 MHz之间;随着施加偏压的增加,截止频率增加,nBn和pBn器件最高可以达到反向偏压3V下的2.02 GHz和2.62 GHz。pBn器件的响应速度相较于nBn器件提升了约29.7%。[align=center][size=18px][back=#ffff00][b]结论[/b][/back][/size][/align]通过分子束外延法在锑化镓衬底上生长了两种势垒型结构nBn和pBn的InAsSb/AlAsSb/AlSb基中波红外光探测器,经过台面定义、工艺钝化工艺和金属蒸镀工艺制备了可用于射频响应特性测试的GSG探测器。XRD和AFM的结果表示两种结构的外延片都具有较好的晶体质量。探测器的暗电流测试结果表明,在室温和反向偏压400 mV工作时,直径90 μm的pBn器件相较于nBn器件表现出更低的暗电流密度0.145 A/cm2,说明了该器件在室温非制冷环境下表现出低噪声。不同台面直径的探测器的暗电流测试表明,pBn器件的表面电阻率约为1.7×10? Ωcm,对照的nBn器件的表面电阻率为3.1×103 Ωcm,而pBn和nBn的R?A体积项的贡献分别为16.60 Ωcm2和5.27 Ωcm2。探测器的电容测试结果表明,可零偏压工作的pBn探测器具有完全耗尽的势垒层和部分耗尽的吸收区,nBn的吸收区也存在部分耗尽。探测器的射频响应特性表明,直径90 μm的pBn器件的响应速度在室温和3 V反向偏压下可达2.62 GHz,对照的nBn器件的响应速度仅为2.02 GHz,相比提升了约29.7%。初步实现了在中红外波段下可快速探测的室温非制冷势垒型光探测器,对室温中波高速红外探测器及光通讯模块提供技术路线参考。[b]论文链接:[/b][url]http://journal.sitp.ac.cn/hwyhmb/hwyhmbcn/article/abstract/2023157[/url][来源:MEMS][align=right][/align]

  • 【原创】中国生产的半导体制冷CCD

    【原创】中国生产的半导体制冷CCD

    图森的半导体制冷CCD又添新成员, TCC-3.3ICE-N是一款能拍摄330万像素的半导体制冷CCD相机,有了它,你可以轻松的拍摄各种荧光、微弱发光照片。一如图森的其它科学级数字相机,TCC-3.3ICE-N给人的第一感觉是专业、美观、时尚,代表了图森产品由内到外精益求精的一贯品质。TCC-3.3ICE-N采用Peltier半导体制冷,将CCD芯片的工作温度控制在零下30摄氏度,从而获得高品质的信噪比。 1/1.8英寸的CCD芯片满足科研级用户对图像色彩还原最苛刻的出版级要求, USB2.0保证了在2048X1536像素分辨率下5帧每秒的高速传输。忘了那些昂贵的进口冷CCD数字相机吧! [img]http://ng1.17img.cn/bbsfiles/images/2008/11/200811281805_120892_1604632_3.jpg[/img]

  • 上海先箴光电科技有限公司诚聘红外相机销售经理-上海市,坐标上海市,你准备好了吗?

    [size=16px][color=#ff0000][b][url=https://www.instrument.com.cn/job/position-91967.html]立即投递该职位[/url][/b][/color][/size][b]职位名称:[/b]红外相机销售经理-上海市[b]职位描述/要求:[/b]职位描述:1.负责红外方向的光电产品的销售与市场开拓2.负责红外相关市场的调研与分析及应用3.负责相关产品的售前/售后服务与技术支持任职要求:1.本科及以上学历,具有物理、光电、激光或光学、通信电子等专业方面的教育背景2.具备较强的物理光电专业技术知识和能力,熟练CCD探测器,红外成像等相关的产品知识,在视觉成像,红外探测,无损检测,材料力学,流体力学及科研仪器方面具有一定的工作经验3.良好的英语水平,读写能力较强,能够与国外进行商务英语邮件沟通4.具有良好的沟通能力,不断学习的意识与能力5.具备敏锐的感知度和对产品及应用综合分析的能力6.拥有坦诚的品格与认真负责的工作态度7.高度的工作热情与敬业精神,良好的团队合作精神8.能够吃苦耐劳,对工作有拼劲,有韧性,有上进心,擅长做客户关系9.3年以上的行业工作经验薪资结构:高底薪+阶梯型销售提成欢迎优秀应届毕业生或具有相关行业经验者应聘该职位我公司将提供有竞争力的薪酬待遇与广阔的职业发展空间,员工可获得海外培训交流的机会[b]公司介绍:[/b] 上海先箴光电科技有限公司于2018年成立于上海,主要致力于为高校及科研院所提供所需求的光电成像相机、光谱仪、激光器光源及其系统。我司是一家囊括了高速成像探测、高灵敏度成像探测、红外成像探测、光谱遥感成像、显微镜成像(SEM、LSCM)系统、3D成像系统及其激光器光源系统等诸多产品的专业光电技术公司。公司涵盖行业应用方向广泛,主要专注于流体力学及其成像系统、燃烧诊断、高光谱成像系统、计算成像学、...[url=https://www.instrument.com.cn/job/position-91967.html]查看全部[/url][align=center][img=,178,176]https://ng1.17img.cn/bbsfiles/images/2021/08/202108160948175602_3528_5026484_3.png!w178x176.jpg[/img][/align][align=center]扫描二维码,关注[b][color=#ff0000]“仪职派”[/color][/b]公众号[/align][align=center][b]即可获取高薪职位[/b][/align]

  • 【原创大赛】显微荧光成像制冷CCD

    为何荧光显微镜需要使用制冷CCD相机?众所周知,荧光显微镜是利用被观测物体发出荧光来进行观测的显微镜。在外部光源的激发下,被检测物体发出荧光,从而进行观察。与普通显微观察不同的是,荧光显微镜并不直接使用外部光源,而是使用被观测物体发出的荧光。相比普通光源,荧光光源的强度要小得多,反映到成像上面,即意味着相比普通显微拍摄的曝光时间,荧光拍摄的曝光时间要长得多。但是,单方面的延长曝光时间,并不能得到好的显微荧光图像,因为随着曝光时间的增强,噪声也大幅度的的增加,严重影响了成像质量。科学家研究发现,由于曝光时间延长而导致的噪声的增加主要来自于CCD产生的暗电流噪声,于是冷CCD应运而生。所谓冷CCD,就是利用一定的制冷技术对CCD芯片进行制冷,让它在较低的温度下进行工作,从而有效的降低暗电流噪声。所以荧光显微镜的图像采集需要配套制冷CCD才能得到满意的图片,因为荧光的强度不足可见光的万分之一,这就决定采集荧光图像的CCD必须具备很高的灵敏度,为了消除图像采集过程中,因亮度不足而出现的噪点,最好采用制冷CCD来完成。无锡超微光学的LC-140A/500A显微荧光成像制冷CCD,是一款研究级的显微荧光成像专用相机,最适用于极弱光和微光的应用及提供最佳颜色还原和灵敏度的显微荧光成像专业用CCD,图像传感器具有高动态范围,优秀的灵敏性,配合12位数据采样输出,并支持2 x 2,4 x 4硬件binning。,具有小型化、操作简单、性能稳定等特点,适用在Nikon,leica,Zeiss,Olympus等显微镜上。提供企业或研究单位在化学发光成像分析、多色荧光成像分析等之研究及应用领域。

  • 【原创】国产500万像素冷CCD相机,新品助力成长

    【原创】国产500万像素冷CCD相机,新品助力成长

    2011年,图森公司隆重推出最新开发的500万像素制冷CCD相机。该冷CCD相机的推出,是对进口500万像CCD相机的有力补充.500万像素的分辨率,不仅使得该款相机具有优越的图像表现能力,更是在速度上略胜一筹,是一款功能强大的显微成像设备。图森500万像素冷CCD相机外观图如下:http://ng1.17img.cn/bbsfiles/images/2011/03/201103211624_284186_2043_3.jpg该冷CCD相机采用Sony ICX282芯片,具有如下优势:★超高分辨率设计★半导体制冷 ★边角亮光抑制功能★逐行预览扫描★一体化密封机械设计★显微荧光专用软件受益CCD技术的发展,现在的显微镜逐渐向数码显微镜发展,过去几年,进口相机高昂的价格一直抑制了很多国内用户·数码相机的使用。作为最早从事显微相机生产的少数几个国内厂家之一,图森公司致力于CCD相机的研究,不断开发新产品以满足广大客户的需要。500万像素冷CCD相机,是对进口500万像素CCD相机的有力补充。欢迎广大用户来电咨询。公司网站:www.tucsen.net

  • 水在制冷中是制冷剂还是载冷剂?

    最近很多人会问水在制冷中是制冷剂还是载冷剂?什么是载冷剂呢?以间接冷却方式工作的制冷装置中,将被冷却物体的热量传给正在蒸发的制冷剂的物质称为载冷剂。载冷剂通常为液体,在传送热量过程中一般不发生相变。但也有些载冷剂为气体,或者液固混合物,如二元冰等。常用的载冷剂有:水、盐水、乙二醇或丙二醇溶液、二氯甲烷和三氯乙烯,一般不包括一氟二氯甲烷,这个通常作为制冷剂,只有在直接制冷时,才使用制冷剂作为载冷剂。所以水是载冷剂。  但是,水虽然是载冷剂但它的载冷效果以及防腐蚀效果是非常不好的,水的冰点非常低,用它来传递冷量是不行的,一旦温度过低就会结冰冻结管路。在传递热量方面,又有很多优质的替代品来替代水,所以水在制冷行业的受欢迎度并不高。给大家讲完水在制冷中是制冷剂还是载冷剂这一问题,下面为大家推荐一些优秀的载冷剂厂家,以防大家受骗。

  • 单螺杆制冷压缩机的简单维修

    螺杆式压缩机是一种回转式容积式压缩机。主要是通过齿槽的容积的变化实现气压的变化的,而后又相继出现了双螺杆和单螺杆两种压缩机,本文主要讲解的是单螺杆压缩机在工作中出现的一些故障以及解决办法: 1、开启式单螺杆制冷压缩机。带有能量及内容积比调节滑阀的开启式单螺杆制冷压缩机,中间为螺杆转子,两侧为星轮和转子,其内容积比调节滑阀紧靠星轮和转子的啮合平面,而能量调节滑阀设在内容积比调节滑阀的上方。这样能量调节与内容积比调节可以互不制约,分别进行。 2、半封闭式单螺杆制冷压缩机。电动机与单螺杆转子直连,在排气端设有油回收装置,星轮与转子均采用滚珠轴承支撑,在星轮与转子间设有调节滑阀。由蒸发器来的制冷剂气体先冷却电动机再进入压缩腔,在压缩气体的同时向压缩腔喷入油和液体制冷剂,起到了冷却、密封、润滑和降低噪声的作用。排出的气体进入油回收装置,使油气分享,气体由排气口排出,油流向压缩机底部的油池。油池里的油在吸、排气压力差的作用下,通过过滤器再次喷入压缩腔和轴承,油仅在压缩机内进行循环。这种结构省去了油泵和油冷却器,装置结构紧凑简单。

  • 制冷加热系统运行方式与原理说明

    制冷加热系统是利用电能转化为热能的设备,工作范围比较广,为制药、化工、生物等行业的设备提供恒温的冷源和热源,那么无锡冠亚制冷加热系统怎么运行的呢?  制冷加热系统在被加热物体内部直接生热,因而热效率高,升温速度快,并可根据加热的工艺要求,实现整体均匀加热或局部加(包括表面加热),容易实现真空加热和控制气氛加热。在制冷加热过程中,产生的废气、残余物和烟尘少,可保持被加热物体的洁净,不污染环境。因此,制冷加热广泛用于生产、科研和试验等领域中。制冷加热系统装置是对金属材料加热效率较高、速度较快,低耗节能环保型的感应加热设备。  制冷加热系统能够提供冷源和热源的循环装置,工作范围宽广,制冷加热系统用于制药、化工、生物等行业,为反应釜、槽等提供热源和冷源,也可用于其他设备的加热和冷却,温度控制范围宽,全程不需更换导热介质,导热介质消耗少。全封闭循环系统,高温时导热流体不易挥发和氧化,低温下不易吸入空气中的水分,可延长导热流体的使用寿命,高温冷却、制冷功能,可以从高温直接降温。  制冷加热系统采用多功能报警系统和安全功能、板式换热器、管道式加热器提高加热和制冷速率,这样一来,运行更加平稳安全。

  • 导热油加热制冷循环系统制冷剂使用区别?

    导热油加热制冷循环系统 在运行中是离不开制冷剂的,导热油加热制冷循环系统中常用的制冷剂有R404、R22等,那么在导热油加热制冷循环系统中,这两种制冷剂有什么区别呢?  说起导热油加热制冷循环系统的制冷剂R404和R22,这两者饱和压力和热力膨胀阀机构都不同,所以,需要注意制冷剂对密封材料的相容性的问题,同时膨胀阀也需要进行相应的变更,总之,在R404A为选择导热油加热制冷循环系统制冷剂的时候,需要选择R404A专用的膨胀阀为好。导热油加热制冷循环系统制冷剂R404和R22在使用中不同的制冷剂运行时也不同的,其中就制冷剂本身而言,R404A制冷剂是R22排气压力的一倍多,质量流量R404A制冷剂是R22制冷剂的2倍少点,制冷剂的排气流速不断变大的话,阻力也会不断变大。  导热油加热制冷循环系统采用环保型制冷剂R404的话,需要注意润滑油问题,建议使用脂类油代替原先制冷剂使用的矿物润滑。为什么选择脂类润滑油呢?这是因为酯类润滑油和水的亲和性高,脱水性差,故导热油加热制冷循环系统 制冷剂的脂类润滑油在使用中应尽量避免与外界空气接触,容器开封后,应尽快使用,使用后须密封保存;远离氧化剂、强碱、强酸,在通风良好处保存。  导热油加热制冷循环系统对于R404和R22这两种制冷剂而言,一旦更换新的制冷剂为了确保安全性,需要对系统的容器压力进行更改,建议安装保护系统,以及对于已经安装的安全阀以及其他阀件进行更换,由于这两者制冷剂密度的不同,需要管路大小也是有点区别的,这一点也需要我们在更换制冷剂的时候注意区别以及更换。  另外,在更新R404和R22制冷剂的时候,需要注意导热油加热制冷循环系统的交流接触器以及热继电器线径需要进行调整,再者,系统保护方面的压力开关设定值也需要进行相应的变化。  导热油加热制冷循环系统 使用R404为制冷剂的话,建议使用全密闭循环系统,这样一来系统中不会有水分和制冷剂发生接触,避免了系统中水分的产生。

  • 真空室制冷加热恒温控制机组如何节能运行

    在节能减排运行的大环境下,无锡冠亚真空室制冷加热恒温控制机组如何高效运行是一件很重要的事情,接下来看看几个真空室制冷加热恒温控制机组技能降耗的小诀窍,看看如何使用的。  真空室制冷加热恒温控制机组的选型的非常重要的第一步,制冷量过小,影响生产,往往得不偿失;但是过大的制冷量则会在无形中增加企业成本,造成不必要的浪费。建议厂家在选购真空室制冷加热恒温控制机组的过程中将详细的工艺介绍清楚,让专业的人员来计算选配合适的真空室制冷加热恒温控制机组型号,需要冷却的对象以及降至所需温度所要求的时间。  在此过程中,千万要注意某些厂家在制冷量上做些小文章,往往夸大能效比,其实这些东西稍加注意便能返现其中的猫腻,有相关的数据显示制冷量功率理论上的数据,在实际的生产过程中,制冷量会低于理论值,根据环境的实际情况,制冷量会有波动。  真空室制冷加热恒温控制机组在保证生产需求和满足设备或是产品安全的前提下,提高蒸发温度,同时适当的降低冷凝温度,加大冷却塔的流量,以保证冷却水的效果;  完善真空室制冷加热恒温控制机组定期的日常维护保养工作,定期清理管道,减少管阻及防止管道结垢,增大流量,保证蒸发器和冷凝器充分补水,加强换热效率,不清洁的水源在长期的使用过程中,会产生碳酸钙和碳酸镁沉积管道中,影响换热效率,增加设备运行苏需要的功率,使得电费大幅度上升,在无形中增加企业成本。  无锡冠亚真空室制冷加热恒温控制机组采用全密闭管路,在运行的过程中,能够一定程度上降低真空室制冷加热恒温控制机组的能耗比,使得真空室制冷加热恒温控制机组高效运行。

  • 超低温速冻冰箱采用何种制冷方式比较好?

    超低温速冻冰箱根据不同的厂家,在制冷方式的选择上面也是有所不同的,根据不同的制冷方式,超低温速冻冰箱制冷方向上还是有一点的区别,这个需要我们了解清楚的。  蒸汽压缩机式制冷系统主要的制冷方式可分为:氨制冷系统、冷媒制冷系统、溴化锂吸收式制冷系统、共沸溶液制冷系统和非共沸溶液制冷系统。  一般情况下,超低温速冻冰箱大中型氨制冷系统较同规模的冷媒制冷系统投资略多。冷媒制冷系统的制冷机组自动化程度高, 投资相对较少。氨机系统庞大、辅机多、高压容器多、管路复杂,阀门多,各个部件尺寸较大比较笨重。  超低温速冻冰箱的氨制冷系统的工质价格低廉, 且制冷工质单位制冷量大, 耗电较少, 运行成本较低,超低温速冻冰箱冷媒制冷系统的工质价格较高, 单位制冷量较小, 耗电相对较多, 运行成本较高。  超低温速冻冰箱的制冷系统中,氨系统和冷媒系统均是中温制冷工质, 均具有适中的压力与温度, 既可用于冷冻冷藏、也可用于工业制冷和制药业。冷媒系统用于直接蒸发式空调系统更安全,氨系统可采用间接冷却方式 (通过载冷剂 )用于空调。  超低温速冻冰箱的这两种制冷方式,噪音、震动比较。 氨机体积比较庞大,噪音和震动都很大,对环境影响较大,冷媒机系统噪音和震动较低。  因此,想必大家对于超低温速冻冰箱的制冷系统也有了一些了解了,在现在制冷系统使用比较多还是单机自复叠制冷技术,采用环保制冷剂进行制冷,运行平稳高效。

  • 【讨论】能谱仪电制冷与液氮制冷的区别?

    我们现在用的是一台牛津的液氮制冷能谱仪,要新进一台热场发射,不知道电制冷能谱仪怎么样,请大家帮忙提提意见,求教,谢谢!(是卖家的请说明身份,说不定可以考虑哦!)[em0814]

  • 实验室冷水机制冷系统充注制冷剂的相关规定

    实验室冷水机制冷系统中的制冷剂如同人体中的血液一样,是实验室冷水机制冷系统中不不可划缺的一部分。实验室冷水机制冷系统中的制冷剂是属于易燃易爆物品,,因此,对冷水机制冷剂的存放、搬运、使用都必须十分小心,下面我们来了解一下关于实验室冷水机制冷系统制冷剂的相关规定。 对于压缩式制冷系统充灌制冷剂应遵守的规定,制冷剂应符合设计的要求,冷水机制冷剂充入的总量应符合设计或设备技术文件的规定。 应先将系统抽真空,其真空度应符合设备技术文件的规定,然后将装制冷剂的钢瓶与系统的注液阀接通,氟利昂系统的注液阀接通前应加干燥过滤器,使制冷剂注入系统,在充灌过程中按规定向冷凝器供冷却水或蒸发器供载冷剂;当系统内的压力升至0.1~0.2MPa(表压)时,应进行全面检查,无异常情况后,再继续充制冷剂,R11制冷剂除外;当系统压力与钢瓶压力相同时,方可开动压缩机,加快制冷剂充入速度。 另外需要提醒大家的是,若实验室冷水机需要航空运输,则需要先为实验室冷水机进行制冷剂(冷媒)抽真空处理,方可进行航空运输。

  • DSC有必要安装液氮制冷吗

    DSC一般都自带自然冷却装置,如果样品不是很多,而且使用温度在室温到600℃,估计液氮制冷附加只是浪费。据说液氮瓶容量才26L,可以使用多久呢?一个月2~4怕还是使得的。但是在检测一些聚合物需要加热降温再加热的检测模式,液氮制冷的优势就可以体现处来了吗?用过的大侠指点下。液氮制冷的配备到底好处在哪?耗材使用最好也要纳入进去。

  • 制冷循环中关于检漏相关要点说明

    制冷循环中关于检漏相关要点说明

    制冷循环在运行的过程中,制冷系统的安全性是很重要的,所以制冷循环中制冷系统无泄漏是很关键的,只有安全的制冷系统在运行中才能保证制冷循环的有效运行。  为了避免制冷循环发生制冷剂等气体泄漏,所以焊接质量的检验是比较重要的,先检查焊接处密封性能是否良好,在加入制冷剂或氮气待稳定一定时间后,可用肥皂水或其它方法检验。在制冷循环运转时,不能因振动而使焊接处有裂开(缝)现象,管路不能应焊接时进入杂物而堵塞,也不能应操作不当而进入水分,制冷循环工作时,焊接部位表面应清洁、无油污现象。  制冷循环常见的泄漏点就是蒸发器泄漏、制冷循环连接处泄漏、制冷循环阀件泄漏、压缩机管道泄漏、毛细管震动磨漏、四通换向阀泄漏 等这几方面,常见的检漏方法就在制冷循环的生产和维修中常用的检漏方法有:外观检漏、压力检漏、仪器检漏、真空检漏等,用户可以一一对应泄漏点进行解决。  制冷循环检漏这一故障是比较常见的,所以,制冷循环设备在选择的时候,建议选择全密闭循环管路系统以及阀件选择品牌配件,蒸发器选用高力板式换热器,体积小,效率高,制冷速度快,安全可靠,用于液体快速制冷,广泛应用于石化、医疗、 制药、 生化、冻干、制药、军工等高科技行业。  制冷循环用于化工、制药、生化等行业低温反应,所以,有效的制冷效果是很重要的,上文分享的这些故障也需要我们及时去解决,以免影响到生产效率。[img=,690,322]http://ng1.17img.cn/bbsfiles/images/2018/08/201808081657026820_6668_3445897_3.jpg!w690x322.jpg[/img]

  • 超导量子计算用mK级国产稀释制冷机实现商用量产

    近日,安徽省量子信息工程技术研究中心及科大国盾量子技术股份有限公司联合发布消息,国产稀释制冷机“ez-Q Fridge”在交付客户后完成性能测试,实际运行指标达到同类产品国际主流水平,成为国内首款可商用可量产的超导量子计算机用稀释制冷机。据媒体报道,2023年下半年,国盾量子向两家科研单位交付了国产稀释制冷机产品,经客户多月测试,设备长时间连续稳定运行,能够结合主动减震系统以及磁屏蔽等,为量子芯片提供低至10mK级别的极低温低噪声环境,制冷功率达到450uW@100mK。在容纳78根低温测控同轴线缆的超导量子计算低温支撑系统中,分别对56比特和24比特超导量子芯片进行测试,稀释制冷机运转效果良好,达到了国际先进水平。实际上近年来,量子科技已引起国内外的广泛关注。而发展先进的量子科技离不开极低温制冷技术,这主要是由于量子本身是微观的效应,很容易受到干扰,而超低温可以将噪音降得很低。比如,对量子比特来讲,它最怕的就是温度,因为温度产生热耦合噪音,低温之后噪音就可以被极大的限制,使它成为孤立系统,这时它的退相干时间就会大大延长,量子比特才会成功,否则包括存储、读取、叠加等都需要时间。目前达到低温的手段主要有吸附制冷、绝热去磁制冷和稀释制冷。稀释制冷技术于 1950 年代首次提出,并在 60 年代建成了第一个完整的稀释制冷系统,随后便成功商业化。稀释制冷技术最低温度可以低至数个mK(10K),具有制冷过程连续不间断及制冷功率较大等优点,随着低温物理研究需求的不断增加,其已经成为目前最为流行的制冷方法。水有普通的水和重水,它们混合到一块是分不开的,但是氦三氦四不一样,液态的氦三和氦四在低温下在大约八九百mK的时候就会自动分开,自动分开的现象过程中会有所谓的制冷效应,其实这就是因为这两者复合在一起就会产生稀释效应,就会有降温效应,连续的补充和打破平衡,就使得混合液一直处于相分离状态,就实现了所谓的稀释制冷,这就是稀释制冷机的原理。随着量子计算等技术的不断发展,对mK级的稀释制冷机提出了更高的要求,当前国内有数家单位和企业在投入精力开发。[b]中科院物理所[/b]2021年,中国科学院物理研究所自主研发的无液氦稀释制冷机6月下旬实现近10mK(比绝对零度-273.15摄氏度高0.01度)极低温,标志着中国在高端极低温仪器研制上取得突破性进展,具备了为量子计算等前沿研究提供极低温条件保障的能力。2023年3月28日,中国科学院物理研究所承担的北京市科技计划课题“400微瓦无液氦稀释制冷机研制”顺利通过了第三方技术测试。测试专家组认真听取了项目工作报告,审查了技术测试方案,查验了测试仪器和受试设备,通过现场测试和读取测试数据,一致认为该无液氦稀释制冷机长时间连续稳定运行最低温度已达到7.6mK,制冷功率达到450μW@100mK,两项指标均达到了国外主流中型商业稀释制冷机的水平。[b]合肥知冷低温科技有限公司[/b]2023年6月13日,“量子计算用国产极低温稀释制冷机项目”在合肥高新区正式签约,并入驻量子信息未来产业科技园。“量子计算用极低温稀释制冷机”由安徽大学物质科学与信息技术研究院单磊教授、王绍良研究员团队自主研发。安徽大学研究员、合肥知冷低温科技有限公司董事长王绍良表示,项目是合肥“以投带引”的成功案例,在合肥市科技创新集团的支持下,项目公司将拿到第一笔种子基金,打通落地转化的最初一公里。[b]本源量子[/b]2023年10月,由本源量子计算科技(合肥)股份有限公司完全自主研发的本源SL400国产稀释制冷机成功下线,这是国内科创企业的研发团队首次成功突破量子计算极低温制冷这一关键核心技术。省量子计算工程研究中心相关负责人张俊峰说:“该稀释制冷机可提供12mK以下的极低温环境及不低于400μW@100mK的制冷量,降温时间在40小时内,升温时间在24小时内,可满足超导量子计算的极低温运行环境和快速回温的要求,达到国际主流产品的水平。”此外,中船重工、飞斯科等国产厂商目前也在投入相关设备研发。中船重工鹏力(南京)超低温技术有限公司市场总监巢伟向仪器信息网透露,当前国内能用的最基础版本的是400-500μW,而国外主流厂商的1mW设备已经成熟了,甚至开展了10mW的研究,比如IBM的10mW的设备已经用起来了。林德等企业已开发了百瓦级、甚至数百瓦级别4K制冷量来预冷的稀释制冷机。当前中船低温已实现4K制冷机每年一千多套的量产。上世纪70年代物理所冉启泽老先生曾研制出湿式稀释制冷机,但后来无人从事相关研究,相当长一段时间内国内处于技术断层和研究空白,目前国内所用到的稀释制冷机均从欧美购买,比如Oxford Instruments ,Cryomagnetics,Janis Research Company,Bluefors Oy NanoMagnetics Instruments, ICE Oxford Ltd,Quantum Design, Inc.,Leiden Cryogenics Entropy等。2019年12月,美国商务部的一份内部文件提出,未来将限制向中国等美国在量子计算上的竞争对手出口稀释制冷机。一旦被限,中国的量子计算研究将面临重大挑战。据了解,国际主流稀释制冷机售价400万元至600万元,稀释制冷机的国产化,在一定程度上扭转了量子计算关键核心技术受限的局面,加快了量子计算领域自立自强步伐,增强我国在量子计算领域完全自主可控能力。[来源:仪器信息网] 未经授权不得转载[align=right][/align]

  • 低温试验箱不同制冷方式的区别

    低温试验箱不同制冷方式的区别[url=http://www.meryou.cn]低温试验箱[/url]顾名思义就是用来做低温试验的,低温试验箱的制冷系统可谓是重中之重,那么问题来了,低温试验箱做低温试验制冷时是用液氮制冷好还是压缩机制冷好呢?两者又有什么不同呢?两者之间共有三处不同分别为:制冷方式、温度范围、降温速度。一:制冷方式不同。液氮制冷,一般是使用液氮直接喷在试验箱箱体内部,液氮在试验箱内部吸热蒸汽化,带走热量,使试验箱降温 而压缩机制冷,一般是将制冷系统的蒸发器设计在试验箱内,蒸发器内部的制冷剂一般采用环保制冷剂,经过节流装置的制冷剂在蒸发器内部(不是直接进入试验箱)蒸发汽化,吸收蒸发器外围的热量,使试验箱降温 二:温度范围不同。对于需要提供低于-40℃—— -195℃的试验环境时,通常会选择液氮制冷的方式 对于需要提供低于0℃—— -80℃的试验环境时,选择压缩机制冷的方式的低温试验箱较多,因为液氮是消耗性的,每次低温的获得都必须消耗液氮 三:降温速度不同。液氮制冷的高低温试验箱降温速度快,考虑到温度的快速恒定和过冲问题,一般设计为10℃/min 压缩机制冷的高低温试验箱由于低温环境的获得成本高,一般设计的降温速度为1℃/min   通过以上的内容,相信您对低温试验箱制冷方式有了大致的了解,我们在做低温试验的时候,应当根据试验的要求来做出正确的选择,只有选择正确了,其效果才会达到最好。

  • 快温变试验箱厂家的制冷系统的制冷原理说明,让试验更便捷

    快温变试验箱厂家的制冷系统的制冷原理说明,让试验更便捷

    [b]快温变试验箱[/b]厂家采用了一套全封闭压缩机所组成的二元复叠式风冷制冷系统。为满足快温变试验箱厂家的快速降温技术,通常会采用的硬件措施为:制冷及控制器件均采用配件产品。以下就是小编总结的快温变试验箱厂家的制冷系统的制冷原理几大说明。[align=center][img=,469,469]https://ng1.17img.cn/bbsfiles/images/2021/08/202108111118261517_2454_1037_3.jpg!w469x469.jpg[/img][/align]  1.制冷系统及压缩机:为了保证试验箱对降温速率和低温度的要求,本试验箱的制冷系统采用压缩机所组成的复叠式制冷系统,该制冷系统具有匹配合理、可靠性高、使用维护方便等优点。  2.制冷工作原理:制冷循环均采用逆卡诺循环,该循环由两个等温过程和两个绝热过程组成,其过程如下:制冷剂经压缩机绝热压缩到较高的压力,消耗了功使排气温度升高,之后制冷剂经冷凝器等温地和四周介质进行热交换将热量传给四周介质。后制冷剂经截流阀绝热膨胀做功,这时制冷剂温度降低。后制冷剂通过蒸发器等温地从温度较高的物体吸热,使被冷却物体温度降低。此循环周而复始从而达到降温之目的。  3.制冷系统的设计应用能量调节技术,一种行之有效的处理方式既能保证在制冷机组正常运行的情况下又能对制冷系统的能耗及制冷量进行有效的调节,使制冷系统的运行费用下降到较为经济的状态。  4.无氧铜管,充氮焊接。  5.设置有凝结水接水盘,并排除箱外。  6.减振:采用压缩机弹簧减振。  7.降噪:采用特种消音海绵吸音。  8.冷却方式:风冷。

  • 汇总恒温恒湿试验箱制冷系统检漏的主要方法(上)

    恒温恒湿试验箱制冷系统检漏主要包括两个部分:一部分是制冷压缩机、冷凝器、蒸发器、干燥过滤器、毛细管等部件的检漏,第二部分是制冷管路组成的封闭系统的检漏。那么恒温恒湿试验箱制冷系统检漏的方法有哪些呢,我们来一起了解一下。 1、肥皂泡检漏 先将肥皂切成薄片,浸于温水中,使其溶成稠状肥皂液。检漏时,在被检部位用纱布擦去污渍,用干净毛笔沾上肥皂液,均匀地抹在被检部位四周,仔细观察有无气泡,如有肥皂泡出现,说明该处有泄漏。有时,需先向系统充入0.8-1.0Mpa(8-10kgf/cm2)的氮气。 2、水中检漏 此法常用于恒温恒湿试验箱压缩机(注意接线端子应有防水保护)、蒸发器、冷凝器等零部件的检漏。其方法是:对蒸发器应充入0.8Mpa氮气,对冷凝器应充入1.9MPa氮气(对于热泵型空调器,二者均应充入1.9MP氮气),浸入50度左右的温水中,仔细观察有无气泡发生。使用温水的目的在于降低水的表面张力,因为水的温度越低,表面张力越大,微小的渗漏就不能检测出来。检漏场地应光线充足,水面平静。观察时间应不少于30秒,工件浸入水面20厘米以下。浸水检漏后的部件应烘干处理后方可进行补焊。 更多精彩内容,请看下文。

  • 怎样解决低温试验箱制冷剂泄露的问题?

    怎样解决低温试验箱制冷剂泄露的问题?

    [b]低温试验箱[/b]被广泛应用在航天航空、汽车、家用电器、科研等领域,通过测试,确定某些产品或材料在不同的环境温度下的适应性。该环境测试设备实现箱内温度可调、微电脑控制、温度数字显示以及高密度保温层和节能等。还有漏电、故障报警后启动自动关闭试验等自动保护机制。[align=center][img=,600,600]https://ng1.17img.cn/bbsfiles/images/2022/04/202204061704051369_9264_1385_3.jpg!w600x600.jpg[/img][/align]  试验设备通过驱动压缩机引入低温低压制冷剂气体,再驱动电机对气体进行压缩,之后输出高温高压的制冷剂气体,为制冷试验的继续提供所需的动力,让压缩、冷凝、膨胀、蒸发这套制冷流程能顺利循环作业下去。  不过,我们需要注意的是,在低温试验箱制冷试验过程中,若是操作不当,制冷剂很容易出现泄露,那么问题来了,若是在试验过程中出现制冷剂泄露的情况该怎么办?  设备压力超出正常范围的时候,会出现制冷剂泄露的情况。当压力值小于正常值的时候,制冷剂将出现泄露的情况。要想阻止继续泄露,要检查一下设备的制冷系统检查清楚漏点所出的位置,方法就是先将高压氮气引入铜管里面,然后用检漏仪与肥皂水来进行检漏即可。大多数情况下只会出现一处泄露的地方,但也不排除有多处漏点,所以还是要仔细检查为好。  找到泄露的地方之后,需要使用氧悍将漏点进行严密的焊接,接着将氮气输入制冷系统,再对其进行48小时的保压,观察这段时间内压力表是否出现变化,若是指针没有移动,则表明焊接成功,后面把之前填充进去的氮气释放出来,然后再将制冷剂R404与R23输入系统,补漏工作正式完成,制冷系统可继续作业。  友情提示,当发现低温试验箱出现制冷剂泄露或其他问题的时候,不要擅自拆箱检查,以免造成二次损坏,可联系专业检修人员,我们将竭诚为您服务。

  • 电池测试设备制冷加热控温过程中影响制冷量的因素有哪些?

    电池测试设备是应用于新能源汽车电池、电机测试过程中使用的,在电池电机控温的过程中使用,那么,在制冷加热过程中,影响无锡冠亚电池测试设备制冷量的因素有哪些呢?  电池测试设备制冷系统中电池测试设备压缩机的功率越大,制冷量越高,根据电池测试设备机型大小选配机构形式不一样的压缩机,例如小型电池测试设备选用活塞式,中型选配涡旋式。电池测试设备水温(蒸发温度不一样,制冷量不一样)越高时,制冷量越大,水温越低时,制冷量越小。电池测试设备水泵功率水循环量的多少,直接影响传热速度,蒸发器,冷凝器的形式,分为水箱盘管试,壳管式,不锈钢板式等,需要我们按照一定的需求进行配置,热材质中铜管传热比较好。  影响电池测试设备制冷量外部因素也有,电池测试设备大部分是风冷式散热,所以外部环境温度需要在一个合理的范围之内,冷凝温度不能超过45度,一旦超过制冷量会明显减弱,也不能太低,电池测试设备空气是不是对流也很重要,散热口不能有阻挡物,参考标准出风口周围1米内不能有障碍物。  电池测试设备的制冷量关系到整个电池测试设备运行过程,所以,电池测试设备的制冷量一定要有所保证,使得电池、电机在制冷加热的过程中很好的运行。

  • 实验箱制冷原理

    我们知道的实验箱一般是压缩机制冷的,也有风冷的,还有半导体制冷的,不知版友们见过什么别的没有

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制