西北师范大学王雪梅:黄河上游复杂基质中新污染物的分离、分析及环境行为研究
新污染物治理列为全面推进美丽中国建设的重要内容,是当前生态环境工作新热点。新污染物种类繁多、性质各异,且在环境中存在的浓度往往极低,这要求检测技术必须具备更高的灵敏度、准确性和选择性。近年来,随着科技的快速发展,新污染物的分析检测技术取得了显著进步。为了更好的展现新污染物分析检测技术的创新成果,以及了解目前行业发展的现状,仪器信息网特别策划《环境新污染物分析检测技术与行业进展》主题约稿活动,集中展示新污染物检测领域的最新成果,以下为西北师范大学王雪梅老师回稿。黄河上游复杂基质中新污染物的分离、分析及环境行为研究王雪梅E-mail: wangxuemei@nwnu.edu.cn高原交汇区水资源安全与水环境保护教育部重点实验室甘肃省生物电化学与环境分析重点实验室西北师范大学化学化工学院随着工业化进程的快速发展和产业结构的调整,化学品数量急剧增长:近两年增加了4400万种,导致越来越多的新污染物(Emerging contaminants, ECs)在环境介质中被检出,对生态环境和公众健康的危害逐步显现,它们的治理也引起了政府的高度重视[1]。2022年5月,国务院办公厅印发了《新污染物治理行动方案》的通知,提出了新污染物治理的总体要求、行动举措和保障措施。2022年10月,党的二十大报告明确提出“开展新污染物治理”是“深入推进环境污染防治”中的一项重要工作[2]。目前,国际上广泛关注的新污染物有四类:持久性有机污染物,内分泌干扰物,抗生素和微塑料[3]。新污染物是指具有生物毒性、环境持久性、生物累积性等特征的有毒有害的化学物质,给生态系统和人类健康带来了风险。因此,针对ECs的分析方法、监测技术、环境行为、生态风险评价及迁移转化机制的研究,已成为近年来环境科学领域的一个重要热点问题[4]。然而该类污染物种类繁多,浓度水平低,净化分离难度大,对其污染水平、迁移转化及分析测定等相关报道十分有限,我国主要在东部沿海及北方部分地区。候选人通过合理设计、定向筛选及萃取分离等方式将介孔泡沫材料、石墨烯复合材料、分子印迹聚合物(MIPs)、金属有机框架(MOFs)、中空纳米微球(HoMS)、离子印迹聚合物及共价有机框架(COFs)等微纳米材料用于ECs的分离分析化学研究,针对黄河上游西北地区复杂环境介质中ECs的界面化学行为和过程动力学进行了探讨,并且取得了一系列具有特色的研究成果,具体内容简述如下:1、 制备了一系列不同类型、性能优越、选择性好的新型微纳米多孔材料。课题组基于目标构建及靶向设计,制备了二十余种在分离分析领域有潜在应用前景的新型多孔材料,包括分子印迹聚合物(MIPs)、金属有机框架(MOFs)、共价有机框架(COFs)及中空纳米微球(HoMS)等。基于表面印迹法和沉淀聚合法制备了具有核-壳结构的磁性介孔MIPs,特别适用于复杂环境样品中POPs的选择性富集,解决了基质干扰的问题(Talanta, 2017,166, 300-305 Talanta, 2019,194: 7-13)。MOFs具有高孔隙率、大比表面积、孔径可调以及拓扑结构多样性等优点,候选人通过将MOFs与具有高导电能力的高分子聚合物与石墨烯、碳纳米管等进行复合,对MOFs表面进行化学修饰,使用具有多个苯环平面共轭结构的配体,提高了MOFs材料的导电性及其在水溶液中的稳定性(Microchim. Acta., 2017, 184, 3681-3687 Talanta, 2018,181, 112-117 Anal. Chim. Acta, 2022, 1195, 339451)。此外,候选人充分利用中空多壳层结构(HoMS)的高负载容量与短的传质路径,通过溶剂刻蚀法和配体转化法制备了独特的中空多壳层结构(HoMS)并用于环境分析领域,实现了HoMS对15种多环芳烃(PAHs)的次序富集并表现出极高的萃取能力(Environ. sci-Nano, 2021, 8, 675-686 Sep. Purif. Technol., 2021, 276, 119367)。2、 建立了不同基质样品中多种ECs的萃取、富集、分离及分析方法。环境样品形态多样、基质复杂,ECs在环境中处于痕量水平,同系物多且干扰严重,高效和选择性好的样品前处理成为ECs分析测定中的重要环节和技术瓶颈。针对这一问题,候选人基于近年发展起来的快速、高效的样品前处理技术,将制备的新型微纳米材料用于ECs的净化、分离、富集和浓缩。候选人在磁性固相萃取(MSPE)具有分离方便、成本低廉、绿色环保等优点的基础上,无需制备Fe3O4(由于传统的Fe3O4在酸性介质中容易被氧化和团聚),充分利用Co,Ni独特的磁性和化学稳定性,将不同的镍、钴有序多孔材料用于MSPE结合高效液相色谱(HPLC)建立了不同基质环境样品中多环芳烃(PAHs),溴代阻燃剂(BFRs)和有机氮农药(ONPs)的分离分析方法(Talanta, 2021, 227(10),122149 Microchim. Acta., 2021, 188, 161 Sep. Purif. Technol., 2022, 287, 120608)。候选人基于博士期间在固相微萃取(SPME)方面的研究工作,创新性地利用化学键合法和溶胶凝胶法制备了内外双涂层和螺旋形SPME探针,通过疏水作用、π-π共轭效应、中心金属离子与多环芳烃π电子之间的络合作用,对15种多环芳烃(PAHs)、4种溴代阻燃剂(BFRs)和7种内分泌干扰物(EDCs)的萃取性能进行了评价(Talanta, 2020, 214, 120866 Sep. Purif. Technol., 2021, 276, 119367)。为了进一步提高POPs的萃取效率及重现性,候选人利用溶胶凝胶法制备了称为管内固相微萃取(In-tube SPME)的有机-无机杂化的毛细管整体柱(HMC)(Chinese. Chem. Lett., 2021, 32, 3199-3201);采用静电纺丝技术将HoMS与聚合物(如聚乙二醇(PEG)、聚二甲基硅氧烷(PDMS)、聚偏氟乙烯(PVDF)等)溶液进行混纺,制备复合纳米纤维膜(HoMS-NFM),将其放入改装的滤头装置用于膜萃取(ME)(Chem. Eng. J., 2022, 449, 137759),建立了不同基质样品中同时萃取、富集及分析7种多环芳烃(PAHs)的方法。3、探讨了复杂环境介质中ECs的环境界面行为及迁移转化机理。复杂环境介质中ECs与不同环境界面的相互作用机制一直是环境科学领域的核心和热点内容之一。ECs经各种暴露途径进入环境后,会在水、大气、土壤等不同环境介质中和介质之间进行迁移转化,在这些环境界面上能够发生吸附-解吸、氧化还原、催化降解乃至转化生成毒性更强的污染物等环境化学过程。候选人基于化学热力学和动力学的模拟方法开展了多介质环境下的ECs界面行为和吸附机制研究。选择以分子印迹柱结合气相色谱-质谱法(MIC-GC-MS/MS)进行实验,通过研究其在食品及塑料制品中的迁移转化规律,建立了外卖餐盒中16种多环芳烃(PAHs)的准确检测方法,对于评价人群中多环芳烃(PAHs)的暴露风险具有重要意义(Talanta, 2022, 243, 123385)。基于Scatchard模型,对水体中三氯生(TCS)和三氯卡班(TCC)的特异性和非特异性吸附的机制进行分析,旨在为评价药品及个人护理产品(PPCPs)及其衍生物的潜在生态环境风险提供依据(J. Chromatog. A, 2018, 1537, 35-42)。利用Langmuir和Freundlich吸附等温模型探讨了9种多环芳烃(PAHs)的界面吸附行为,采用准一级和准二级动力学模型研究了吸附机理(J. Chromatog. A, 2021, 1659, 462639 J. Chromatog. A, 2022, 1681, 463459),为环境介质中ECs的界面化学行为、过程动力学以及生物有效性等研究提供重要的技术支持。综上所述,本课题组近年来主要集中在黄河上游周边环境中新污染物(包括多环芳烃、溴代阻燃剂、内分泌干扰物、药品和个人护理品、农药等)的萃取、分离、富集、分析等一系列相关工作,研究了有着特殊的气象和地理条件的西北地区多介质(水体和土壤)环境中ECs的环境行为特征及典型分布,实现了复杂体系中的靶标物质快速、精准、实时地分析检测,这些学术成果很好地契合了黄河流域生态保护和高质量发展的国家战略,这些研究工作发表在国际相关领域的重要期刊上,拟将授权发明专利转让给相关企业,应用于环境污染物吸附、分离、去除的商业开发。主要参考文献:[1] 政府工作报告——持续改善生态环境,推动绿色低碳发展:加强污染治理和生态保护修复,2022年3月5日。[2] 党的二十大报告——推动绿色发展,促进人与自然和谐共生:深入推进环境污染防治 ,2022年10月16日。[3] 生态环境部举行的新闻发布会,生态环境部固体废物与化学品司司长任勇,2022年3月30日。[4] 江桂斌,刘维屏主编,环境化学前沿,北京:科学出版社,2017(第一版)。