当前位置: 仪器信息网 > 行业主题 > >

粉尘浓度探测器

仪器信息网粉尘浓度探测器专题为您提供2024年最新粉尘浓度探测器价格报价、厂家品牌的相关信息, 包括粉尘浓度探测器参数、型号等,不管是国产,还是进口品牌的粉尘浓度探测器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合粉尘浓度探测器相关的耗材配件、试剂标物,还有粉尘浓度探测器相关的最新资讯、资料,以及粉尘浓度探测器相关的解决方案。

粉尘浓度探测器相关的资讯

  • 小学生500元自制粉尘浓度对比检测仪
    天气不好的时候,要不要开窗换气,许多人很纠结,西城区黄城根小学的郭宇华和回民小学杨易格,两位六年级的小学生却仅仅花费了500元自制出一台粉尘浓度对比检测仪,让大家不再纠结。  这台巴掌大小的仪器,比PM2.5小一半的微粒都能测出来,而且还能同时测室内外空气,实现同步比对,提醒何时最适宜开窗通风。这台仪器不仅博得了清华、北大、北师大、北理工等高校专家的青睐,还被评为第34届北京青少年科技创新大赛一等奖。  小学生发明的&ldquo 便携式粉尘浓度对比检测仪&rdquo 到底有什么神奇之处?  &ldquo 市场上的粉尘检测仪要么检测室内,要么检测室外,不能联网对比检测。我们做的检测仪不仅成本低、检测数据可信、可靠,而且能通过蓝牙传输装置,实现多个测试点检测数值间的无线传输、比较分析。&rdquo 郭宇华小大人儿般一本正经地为记者介绍:&ldquo 这对仪器分主机、副机,主机摆在室内,副机摆在室外,通过采集室内外的粉尘浓度,无线传输数据,进行实时对比,从而判断是否适宜通风换气。&rdquo   郭宇华和杨易格俩人经过对牛街等二环、三环周边的居民区数次采样分析,得出的结论是:生活在市区,尤其是交通主干道的居民,早晨晚间都不宜打开窗户通风,因为仪器数据显示,这时室内的粉尘量往往低于外界环境。  郭宇华从小爱天文,曾连续两届荣获市区级天文知识、天文摄影竞赛奖项 他还痴迷地铁,自幼热衷考察地铁系统,纷繁线路了熟于胸,自诩&ldquo 上知天文,下晓地铁&rdquo 。他的小发明刚刚入围第29届全国青少年科技创新大赛,暑假里他将代表北京队参加这项全国性赛事,所以六一也不能闲着。
  • 赫施曼助力生产环境中纳米二氧化钛粉尘浓度的检测
    纳米二氧化钛是白色疏松粉末,屏蔽紫外线作用强,有良好的分散性和耐候性。可用于化妆品、功能纤维、塑料、涂料、油漆等领域。作为紫外线屏蔽剂,防止紫外线的侵害。也可用于高档汽车面漆,具有随角异色效应。在纳米材料生产环境中,粉尘颗粒面积较大,氧吸附较多,在有粉尘的环境中存在可燃性气体时,会大大增加粉尘爆炸的危险性。另外人体吸入粉尘会引起以肺为主的全身性疾病。根据GB/T 41456-2022,将空气中纳米二氧化钛粉尘采集到捕集液中,形成二氧化钛粉尘分散液。当分散液浊度T≤T0时,用二安替吡啉甲烷分光光度法测定其浓度;当分散液浊度TT0时,用过氧化氢分光光度法测定其浓度。注:分散液浊度T0 :取生产现场的纳米二氧化钛产品配制成1.8 mg/L的分散液,用浊度计测得的浊度值即为T0。以分散液浊度T≤T0为例,测定方法如下:1.配置溶液(1)二安替吡啉甲烷溶液称取25.0g二安替吡啉甲烷于1000mL烧杯中,加入400mL7.4%盐酸(采用37%盐酸配制而成),加热并搅拌至完全溶解,冷却,转移至500mL的容量瓶中,用7.4%盐酸定容至刻度,混匀,保存于棕色瓶中,4℃±2℃下冷藏。使用前1h取出。有效期1个月。(2)消解液向1000mL烧杯中加入350mL浓硫酸和200g硫酸铵,置于电热板上加热至硫酸铵全部溶解,然后自然冷却至室温,转移至500mL广口瓶中。(3)二氧化钛储备液称取500.0 mg二氧化钛产品于100mL烧杯中,加入消解液10mL,置于电热板上,在通风橱中逐渐升温至200℃消解,待溶液变为无色透明时取下,冷却,转移至1000mL容量瓶中,用蒸馏水定容至刻度,混匀。(4)二氧化钛使用液用移液管移取二氧化钛储备液5mL置于250mL容量瓶中,用蒸馏水定容至刻度,混匀。2.工作曲线的绘制(1)取6个50ml容量瓶,分别加入二氧化钛使用液0mL、1.0mL、2.0mL、3.0 mL、4.0mL和5.0mL。(2)向上述6个溶液中均依次加入8.0mL5.9%盐酸、2.0mL10g/L抗坏血酸和10.0mL50g/L二安替吡啉甲烷溶液,用蒸馏水定容至刻度,播匀,得到不同浓度的溶液。(3)分别移取(2)的6个溶液到比色皿中,用紫外-可见分光光度计在波长390nm处,以试剂空白为参比,测试吸光度,每个样品测试3次,计算其平均吸光度。(4)以二氧化钛浓度为横坐标,平均吸光度为纵坐标,绘制工作曲线。工作曲线的直线拟合相关系数R² 应不小于0.999,否则重新绘制。3.分散液中纳米二氧化钛粉尘浓度的测试(1)将分散液样品至少超声5min。(2)用移液管取(1)分散波样品50mL于100mL烧杯中,在80℃条件下烘干。(3)在(2)样品中加入10mL消解液于烧杯中,置于电热板上,在通风橱中逐渐升温至200℃消解,待溶液变成无色透明时取下,冷却,转移至50 mL容量瓶中。(4)在(3)样品中,依次加入8.0mL的5.9%盐酸、2.0mL的10g/L抗坏血酸和10.0mL的50g/L二安替吡啉甲烷溶液,用蒸馏水定容至50mL,摇匀。(5)将(4)溶液转入比色皿中,用紫外-可见分光光度计在波长390nm处,测定吸光度,每个样品测试三次,计算其平均吸光度。最后计算纳米二氧化钛粉尘质量浓度。实验有大量的试剂添加、稀释配液等工作,赫施曼瓶口分配器可高效便捷地进行0.5%精度的液体移取,适合试验中盐酸等的有腐蚀性或挥发性等危险的试剂移取、分配工作。赫施曼的opus稀释配液系统的多体积分液模式,在一个分液程序中可设定10个独立的分液体积,设定好每次分液的体积和间隔时间后,按下分液键就可以进行一组分液,且分液参数(程序)还可保存和调用。可用于毫升级的母液添和稀释液的快速、准确地添加,非常适合做标准曲线和毫升级大批量灌装。
  • 布鲁克红外测定不同浓度的粉尘中游离二氧化硅
    游离二氧化硅粉尘俗称矽尘,是工业界广泛存在的职业有害因素,长期接触矽尘引起的矽肺是最我国目前最为严重的职业病,据2006年卫生统计报告,我国累积矽肺患者约为尘肺的半数,大约30余万例。矽肺是尘肺中最严重、最多见、报告最早、研究最多、病理改变基本清楚的一种尘肺,而且也是我国乃至全球发病率和死亡率最高的一种尘肺病。矽尘的准确识别和检测是矽肺病预防与控制的重中之重。因此,分析粉尘中的游离二氧化硅含量成为疾病预防与职业卫生监测工作的重要工作内容之一。 根据中华人民共和国国家职业卫生标准GBZ/T 192.4 2007《工作场所空气中粉尘测定 第 4 部分:游离二氧化硅含量》,工作场所空气中粉尘游离二氧化硅含量的测定方法有三种,第一法是焦磷酸法,第二法是红外光谱法,第三法是X线衍射法。 焦磷酸法为手工称重操作,对实验人员的操作水平要求较高,且实验繁琐。而且据《中华职业医学》和国外有关文献中指出: 矽肺是长期吸入结晶型游离二氧化硅造成的。第二法是红外光谱法,其原理是利用 α-石英(结晶型)在红外光谱中于12.5μm (800 cm-1) 、12.8μm ( 780 cm-1 ) 及14.4μm (694 cm-1) 处出现特异性强的吸收带,在一定范围内,其吸光度值与α-石英质量成线性关系,通过测量其吸光度进行定量测定。当待测物是结晶型二氧化硅时(如石英粉尘),两种方法测定的结果是一致的,但是当待测粉尘不是或不完全是结晶型二氧化硅时,焦磷酸法测得的粉尘中二氧化硅结果就会高于红外光谱法。不同浓度的α-石英光谱图标准曲线的建立 布鲁克多款型号的红外光谱仪满足国标对游离二氧化硅的检测要求。布鲁克专利的永久准直的ROCKSOLIDTM干涉仪,采用镀金双立方角镜技术,保证了红外光谱仪具有业界最佳的光效能和灵敏度,从而确保光谱仪可以在各种环境条件下获得准确可靠的红外光谱数据。将游离二氧化硅含量分析简单到一键化操作,结果直接公式即得,大大缩短了分析时间和简化了实验流程。ALPHA II傅立叶变换红外光谱仪INVENIO傅立叶变换红外光谱仪如您对该应用技术感兴趣,欢迎拨打布鲁克光谱400热线。
  • 金坛亿通最新激光粉尘检测仪在昆山爆炸中的应用
    生产车间专用粉尘检测仪结构检测器外部空气进入吸引口,经迷宫式切割器除去粗大粒子,遮掉外部光线,进入检测器暗室。暗室内的平行光与受光部的视野成直角交叉构成灵敏区(图中斜线部分),粉尘通过灵敏区时,其90℃方向散射光透过狭缝射进光电倍增管转换成光电流,经光电流积分电路转换成与散射光成正比的单位时间内的脉冲数。因此记录单位时间内的脉冲数便可求出粉尘的相对质量浓度。本仪器相对质量浓度单位使用CPM(Count Per Minute),意为“每分钟的脉冲计数”,质量浓度单位使用mg/m3。生产车间专用粉尘检测仪使用场所◎劳动卫生呼吸性粉尘 ◎总粉尘浓度的测定◎工矿企业生产现场扬尘 ◎建设工地粉尘浓度连续在线监测◎公共场所可吸入颗料物(PM10、PM2.5)以及环境监测部门大气飘尘的快速和在线检测。生产车间专用粉尘检测仪主要性能指标○测量范围:0.001~1000 mg/M33;量程可以根据用户定做。在线连续测量。
  • 搭载质谱仪的“卡西尼”号探测器检测到神秘粒子
    p  近日,美国宇航局(NASA)的“卡西尼”号探测器还在继续产生着令人惊讶的发现,而早在一个多月前,这架探测器已经在任务结束后于土星大气中烧毁。来自“卡西尼”号探测器的新数据表明,土星的宏伟光环正在将微小的尘埃颗粒注入到行星的上层大气中,从而形成了一种复杂且意想不到的化学混合物。/pp  “卡西尼”号探测器上的一台质谱仪检测到这种奇特的化学物质——该探测器在最后的5个月里一直在土星和土星环之间环绕飞行。/pp  马里兰州劳雷尔市约翰· 霍普金斯大学应用物理实验室行星科学家Mark Perry说:“我们真的是中头彩了。”10月17日,他在犹他州普罗沃市召开的美国天文学会行星科学分部的一次会议上报告了这一发现。/pp  该项目科学家曾希望“卡西尼”号探测器的质谱仪能够在土星和土星环之间发现水分子的特征。在上世纪七八十年代,NASA的先驱者号探测器和旅行者号探测器在土星的最上层大气中发现了比预期更少的带电粒子。在这些数据的基础上,研究人员在1984年提出,脱离土星环的水分子——主要以冰的形式——起到催化剂的作用,将带电粒子从大气中分离出来。“卡西尼”号探测器的最后几个月给了科学家们第一次直接测试这个想法的机会。/pp  但吸引卡西尼团队的并不是突然出现的水的证据。质谱仪的数据揭示了一个巫师般存在的化学物质,其中包括甲烷,这种分子可能是一氧化碳和更复杂的分子。这些化学物质的浓度在土星的赤道和高海拔地区是最大的,这表明这些物质正在从土星环中脱落。/pp  “卡西尼”号探测器进入土星大气层的深度越深,测量值就愈发奇怪。Perry对与会者说,“卡西尼”号探测器以最近距离掠过土星表面揭示了大量的重分子。科学家还没有确定每种分子的类型,但很明显,除了水之外,还有很多其他分子。/pp  通过分析可能从土星环上脱落的物质的类型,Perry的研究小组得出结论,这些碎片必定是微小的尘埃颗粒的片段,这些颗粒的尺寸仅为1至10纳米,但相对较重。当这些粒子从土星环上落下并撞击“卡西尼”号探测器的质谱仪时,它们被粉碎成小碎片。/pp  这些粒子究竟是如何从土星环飘落到大气层的还有待观察。“我们有很多工作要做,以了解它们是如何到达那里的。”Perry说,“没有一个模型能预测到这一点。”/pp  在这些最后的俯冲过程中,“卡西尼”号探测器沿着土星的引力牵引,以每秒钟30公里的速度加速,这一速度超过了质谱仪设计所能承受的4倍之多。“这些速度比它所经历的任何时刻都要高。”Linda Spilker说,他是加利福尼亚州帕萨迪纳市喷气推进实验室的行星科学家,也是卡西尼项目科学家。/pp  在如此巨大的速度下,“卡西尼”号探测器所撞击的任何东西都会分裂成碎片。/pp  今年9月15日凌晨4时55分,数百名科学家见证了“卡西尼”号探测器在火焰中涅槃。“卡西尼”号探测器在土星的大气层中解体,这样做是为了防止探测器污染土星的卫星,包括土卫六和土卫二,这些卫星上可能存在生命迹象。/pp  “卡西尼”号探测器1997年10月15日发射升空,沿途造访过金星、地球、月球、小行星和木星,并于2004年抵达环土星轨道。近20年间,“卡西尼”探测任务大幅刷新了人类对土星的认识,包括它的复杂光环、类型多样的卫星体以及磁场环境等。它曾获得一系列重大发现,如土卫二存在全球性海洋、土卫六上存在液态甲烷海洋、在土卫二喷出的羽流中探测到氢等。/pp  与土星相伴的13年间,“卡西尼”号探测器曾发回大量数据资料,仅图像就差不多40万张。科学家依据这些信息,已发表了约4000篇科学论文。NASA还依据这些信息设计了前往木卫二的探测计划,以及未来十年间的其他太空探测项目。/pp  尽管“卡西尼”号探测器已经结束了自己的使命,但科学家表示未来仍有可能带来重大发现,例如,来自探测器的数据将有助于确定土星环的实际年龄及其磁场的持久性。/pp  (原标题:土星大气发现神秘粒子 卡西尼数据显示或来自土星环)/pp/p
  • Wright Dust Feeder II 粉尘发生器助力中国粉尘气溶胶研究
    自从Martin Wright研发Wright Dust Feeder II 粉尘发生器以来,它已经用于科学研究差不多60年的历史. 现在北京赛克玛环保仪器有限公司开始正式为中国 颗粒物研究人员提供Wright Dust Feeder II 粉尘发生器. 颗粒物研究一部分属于现场实验,另一部分属于实验室基础性研究,如无组织扬尘源颗粒[1]和除尘器下灰的粒径分布与成分谱研究、光学颗粒物质量浓度和数量浓度监测仪的校准[2]及颗粒物净化装置性能实验等. 以上实验室研究都需要一套颗粒物再悬浮和检测系统,即在实验室稳定发生一定范围质量浓度和粒径分布的多分散粉尘颗粒物,并进行检测[3]. 其他学科领域同样需要此系统,如制造业过程控制与职业卫生学[4]、可吸入毒理学[5]及环境健康与流行病学. 再悬浮和检测系统的关键子系统是颗粒物再悬浮系统,颗粒物再悬浮过程包括2 个步骤:以恒定速度向颗粒物发生器连续定量投加粉尘及扩散粉尘形成颗粒 物气流[6]. 国外典型的再悬浮系统是Wright 粉尘喂料系 统[7]和流化床系统[2],两者各有优缺点. 其中,Wright 系统以一个恒定的速度磨蚀柱状压缩粉尘饼,适宜长时间研究,更适用于干燥、硬质材料粉尘,且90%以上的颗粒粒径&le 10 &mu m[6];流化床系统能长时间稳定运转,颗粒粒径分布范围很广,不受粉尘材质限制[2],但初始阶段需要几个小时才能获得稳定的输出浓度,当改变粉尘喂料速率时,约25 min&sim 1 h 才可达到平衡[6,9]. 相关介绍见img1.17img.cn/17img/old/NewsImags/File/2010/9/2010091914272510408.pdf
  • 激光功率测量积分球和探测器
    在基于垂直腔面发射激光器(VCSEL)的激光雷达和面部识别系统中,对激光束的多属性评估至关重要。这些属性包括功率、频谱和时间脉冲形状,它们共同决定了激光性能的优劣。然而,捕获和准确测量这些属性,特别是对于准直、发散、连续和脉冲光源,极具挑战性。Labsphere的多功能激光功率积分球和传感器凭借其出色的性能和精确度,为解决这些问题提供了有效方案。我们可根据您的需求提供激光功率测量积分球。选择不同的尺寸和涂层以满足您特定的测试激光功率水平。同时,根据测试激光的波长以及光学探测器的光谱响应度校准范围,我们可为您定制最合适的光学探测器,确保满足您的所有需求。特点确保激光器发出的功率能够被全面收集,无论其发散角度或偏振状态如何。高效地衰减高功率,以防止传感器过载。集成第二个探测器端口,用于进行光谱监测或扩大波长覆盖范围。减少在裸露状态下,传感器有效区域响应不均匀所引起的误差。应用&bull 连续(CW)与脉冲激光测量&bull 实验室与生产测试&bull 镜头校准&bull 激光功率质量评估LPMS 配备皮安计和激光功率软件&bull 第n波长的平均辐射功率(连续波)&bull 第n波长的平均峰值辐射功率(脉冲)&bull 探测器采样率(Hz)&bull 探测器扫描间隔(秒)&bull 激光功率密度:单位面积的瞬时激光束功率,单位为W/cm2,可选择以cm2为单位的光束面积需要输入光束面积&bull 最大功率(连续波)&bull 最小功率(连续波)&bull 峰值辐射功率(脉冲)&bull 脉冲宽度或脉冲持续时间间隔&bull 辐射功率范围(连续波)&bull 辐射功率(W)&bull 重复率/频率(脉冲)&bull 标准偏差(连续波)&bull 总脉冲数&bull 波长(由客户根据激光输出和校准数据表选择)
  • 【赛纳斯】手持式痕量爆炸物探测器,快速识别可疑物
    所谓爆炸物泛指能够引起爆炸现象的物质,例如雷管、炸药、黑火药等,粉尘、可燃气体、燃油、锯末等在特定条件下引起爆炸的物质,广义上也属于爆炸物。如电视剧《开端》里高压锅内的爆炸物,如果能提早发现,也能杜绝犯罪,保障人民群众生命财产安全。现如今特殊环境下所拥有的检测仪效果多样,通常使用环境复杂,针对检测爆炸物这一点,具体环境的差异存在而导致各自不同的使用功能。手持式痕量爆炸物探测仪 SHINS-P200SHINS-P200是赛纳斯联合嘉庚创新实验室公共安全联合研究中心,研发的最 新一款手持式痕量爆炸物探测仪,采用蓝牙无线连接技术,通过非接触式抽气采样,5秒快速识别爆炸物,可连续实时监测,当仪器周围环境炸药浓度或采样质量达到探测限时,仪器能快速发出报警指示。“电子鼻”即是仿照生物的嗅觉系统而研制出的检测气体的传感器或集成系统。赛纳斯SHINS-P200产品基于功能仿生狗鼻的启发:狗鼻内部粘膜有约3亿个气味受体细胞,气体分子与这些受体细胞接触,引起级联放大的生化反应,进而识别气体成分。基于功能仿生材料设计,具有“一点接触、多点响应”的链效应特点的荧光淬灭爆炸物检测技术被普遍认为是灵敏度最高、选择性最好的可实用化、可微型化的技术,有利于“电子鼻”传感薄膜的制备。赛纳斯SHINS-P200型产品基于自主技术产权,打破了目前国外企业垄断荧光淬灭安检产品的现状,达到国际领先水平。颠覆了现有检测方法局限,创新性的发展了微型化、智能化、非接触式爆炸物检测的超灵敏“仿生电子狗鼻”,对未来战争、航线保障、反恐防爆、国防安全具有重要意义。应用领域 1、反恐排爆侦查 2、应急响应部门探测危化品 3、公共治安巡防安检 4、海关查验可疑物品 5、公共交通、货物运输安检 6、高级别防护目标、重大活动安检 产品特点与优势1、手持式、重量500克,方便携带 2、一键式操作、简单方便、易学易用、使用性强 3、耗材元件更换简单,无需复杂拆机操作 4、警用安全防护设计 5、仪器报警后,按复位键即可重新检测,无需校准或等待步骤 6、环境适应性强 7、开机时间小于3秒 8、可检测40 余种爆炸物,包括: 民用炸药(硝酸铵、黑火药、鞭炮药、点火药、TATP 等) 军用炸药(TNT、DNT、特屈儿、苦基胺、黑索金、太安等 液体炸药(硝基甲烷等) 应用案例 1、城市及边境检查站可疑物安检排查 2、重要场所日常安检爆炸物排查
  • 多国探测器飞抵火星,科学仪器助力火星探测
    近日,中国“天问一号”、美国“毅力号”以及阿联酋“希望号”火星探测器飞抵火星轨道。中国“天问一号”携13台科学仪器踏入环火轨道2月10日,“天问一号”火星探测器顺利实施近火制动,完成火星捕获,正式踏入环火轨道。据了解,天问一号共携带了13个高科技科学仪器,火星磁力仪,火星矿物学光谱仪,火星离子和中性粒子分析仪,火星高能粒子分析仪,火星轨道地下探测雷达,地形摄像机,火星探测器地下探测雷达,火星表面成分检测器,火星气象监测器,火星磁场检测器,光谱摄像机,还有两个先进摄像头。其中,轨道器配备了7个科学仪器,火星巡视车配备了6个科学仪器。火星表明成分探测仪结合了被动短波红外光谱探测和主动激光诱导击穿光谱探测技术,可以探测火星表面物质反射太阳光的辐射信息,同时其可主动对几米内的目标发射激光产生等离子体,测量原子发射光谱可准确获取物质元素的成分和含量。火星矿物光谱分析仪搭载在火星环绕器上。在环绕器对火星开展科学遥感探测期间,该仪器可在近火段800km以下轨道,通过推帚式成像、多元实时动态融合的总体技术,获取火星表面的地貌图像与相应位置的光谱信息,为探测火星表面元素与矿物成分等提供科学数据。小型化、高集成化是深空探测载荷发展的主要趋势。火星离子与中性粒子分析仪采用从传感器到电子学进行最大限度共用的设计思路,在一台仪器中实现对离子和能量中性原子进行能量、方向和成分的探测,大大降低了仪器对卫星平台的资源需求。仪器采取静电分析进行离子的方向和能量测量、采取飞行时间方法进行离子成分的测量。中性原子采用电离板电离成带电离子,后端的能量测量和成分测量与离子相同。鉴定件样机已经完成了初步的测试定标,结果表明其满足设计要求。 阿联酋“希望号”携3组设备抵达火星当地时间2月9日,阿联酋“希望号”火星探测器抵达火星,对火星大气开展科学研究。这是阿联酋首枚火星探测器,由阿联酋和美国合作研制。“希望”号探测器历经半年时间,飞行近5亿公里,阿联酋由此成为第五个到达火星的国家。“希望”号于2020年7月20日从日本鹿儿岛县种子岛宇宙中心发射升空。“希望”号主要任务是研究火星气候和大气的日常和季节变化。由于阿联酋政府明确要求该国项目团队不能直接从别国购买探测器,阿联酋的工程师深度参与了合作研发。“希望”号高约2.9米,其太阳能电池板完全展开时宽约8米,重1.5吨,携带3组研究火星大气层和监测气候变化的设备。“希望”号的主要任务是拍摄火星大气层图片,研究火星大气的日常和季节变化。与人类今年计划发射的另外两个火星探测器不同,“希望”号不会在火星着陆,而是在距火星表面2万至4万公里的轨道上环绕火星运行。“希望”号绕火星运行一周需要大约55小时,它将持续围绕火星运行至少两年。美国“毅力号”漫游者火星车将登录火星美国宇航局的“毅力号(Perseverance)”漫游者火星车目前计划于2021年2月18日着陆。该次着陆顺序大多为自动化。据了解,“毅力号”(Perseverance)火星探测器为NASA公布的新一代火星车,由美国的初一学生亚历山大马瑟命名,用于搜寻火星上过去生命存在的证据。2020年5月18日,NASA公布“毅力号”火星车多项测试视频集锦,由于火星车登陆后无法对其进行维修,团队需确保其能承受极端温度变化及持续辐射的环境。2020年7月30日,美国“毅力”号火星车从佛罗里达州卡纳维拉尔角空军基地升空。毅力号探测器将进行一次近7个月的火星旅行,并于2021年2月18日在火星杰泽罗陨坑(Jezero)内以壮观的“空中起重机”方式安全着陆。“毅力号”是一个2300磅(1043千克)的火星车,是世界最大的行星漫游车。其样品处理臂由一对组件组成:Bit Carousel和Adaptive Caching Assembly(自适应缓存装置),它们将用于收集、保护这些灰尘和岩石样本并将其返回给科学家。Bit Carousel 由9个钻头组成,火星车将使用它们钻入地面,拉动样本并将它们传递到火星车内部,以通过自适应缓存装置进行分析。该系统具有七个电机和总共3000个零件,并负责存储和评估岩石和灰尘样品。毅力号身上总共安装了五款成像工具,首先是桅杆头上的SuperCam(位于大的圆形开口中),其次是两个位于桅杆下方灰框中的Mastcam-Z导航摄像头。激光、光谱仪、SuperCam成像仪将用于检查火星的岩石和土壤,以寻找与这颗红色星球的前世有关的有机化合物。两台高分辨率的Mastcam-Z相机能够与多光谱立体成像仪器一起工作,以增强毅力号火星车的行驶和岩心采样能力。该探测器的10个科学设备中有一个叫做“MOXIE”,它能从火星稀薄、以二氧化碳为主的大气层中制造氧气,这些的设备一旦扩大规模,就可以帮助未来宇航员探索火星,这是美国宇航局将在21世纪30年代实现的重要太空目标。此外,一架被命名为“Ingenuity”的1.8公斤重的小型直升机将悬挂在毅力号腹部位置抵达火星,一旦毅力号找到合适位置,Ingenuity直升机将分离,并进行几次试飞,这将是首次旋翼飞行器在地外星球飞行。美国宇航局官员表示,如果Ingenuity直升机成功飞行,未来火星任务可能经常采用直升机作为探测器或者宇航员的“侦察兵”。旋翼飞行器可以进行大量科学勘测工作,探索难以到达的区域,例如:洞穴和悬崖。同时,Ingenuity直升机配备一个摄像系统,可以拍摄具有重要研究价值的火星表面结构 。美国洞察号执行任务失败,被迫“冬眠”然而,火星探测并非一帆风顺,与此同时,也传来了美国“洞察号”任务失败的消息。“洞察”号火星无人着陆探测器是美国宇航局向火星发射一颗火星地球物理探测器,它的机身设计继承先前的凤凰号探测器,着陆火星之后将在火星表面安装一个火震仪,并使用钻头在火星上钻出迄今最深的孔洞进行火星内部的热状态考察。根据项目首席科学家布鲁斯巴内特(Bruce Banerdt)的说法,这一探测器将是一个国际合作进行的科学项目,并且几乎是先前大获成功的凤凰号探测器的翻版。据了解,洞察号搭载完全不同的3种科学载荷,包括两台由欧洲提供的仪器,专门设计用于探查这颗红色星球的核心深处,从而了解与其形成过程相关的线索。它将探测这里是否存在任何地震现象,火星地表下的地热流值,火星内核的大小,并判断火星的内核究竟处于固态还是液态。巴内特说:“地震仪设备(即SEIS,全称为‘内部结构地震实验’)由法国提供,地热流值探测仪(HP3,即热流和物理属性探测仪)则由德国提供。按照计划,热流探测器需要将探头打入地下5米深的位置。然而,由于热探针始终无法获得挖掘所需的摩擦力,美国NASA官方宣布,用于探索火星的洞察号执行任务失败。与此同时,由于“洞察”号使用太阳能电池板从太阳获取能量,而火星的冬季也是火星距离太阳最远的时候,再加上洞察号火星探测车的太阳能电池板目前被灰尘覆盖,大大减小了它能获取到的太阳能,“洞察”号将被迫进入“冬眠”。火星探测道阻且长。
  • 苏州昆山工业粉尘爆炸应该如何检测和报警预防
    苏州昆山工业粉尘爆炸应该如何检测和报警预防,金坛亿通报告说明 苏州工业粉尘的爆炸有二个原因:一、工厂没有粉尘检测设备、二:安监局和环保局,没有对工业粉尘定期检测和检查,金坛亿通公司最新研发:在线式空气粉尘检测仪,众所周知,大气雾霾、粉尘颗粒、扬尘,是造成空气质量的主要元凶,随着对大气扬尘的在线检测要求,我公司根据:使用符合劳动行业标准《空气中粉尘浓度的光散射测定法》、卫生部标准《公共场所空气中可吸入颗粒物(PM10)测定方法-光散射法》。设计了一种在线检测模块,为在线检测和安装提供了一款高性能的检测方法。国内空气在线检测主要通过:β射线,测量时间长,价格高达10万以上,我公司成功研制一款:用激光原理。2分钟出一个检测结果,同时可以测量:PM10、PM2.5、PM1粒子数和质量浓度的仪器。目前国产手持式的粉尘检测仪,流量小,误差大,无法保证测量精度,我公司成功解决这系列难题,为大气粉尘检测,提供一款:大流量,在线式,有远程通讯功能的,同时测量粒子数和浓度的仪器。金坛亿通在线式空气粉尘检测仪结构检测器外部空气进入吸引口,经迷宫式切割器除去粗大粒子,遮掉外部光线,进入检测器暗室。暗室内的平行光与受光部的视野成直角交叉构成灵敏区(图中斜线部分),粉尘通过灵敏区时,其90℃方向散射光透过狭缝射进光电倍增管转换成光电流,经光电流积分电路转换成与散射光成正比的单位时间内的脉冲数。因此记录单位时间内的脉冲数便可求出粉尘的相对质量浓度。 金坛亿通专业的粉尘检测模块,可以方便各地,针对污染排放,实施在线粉尘检测。我们还提供数据采集仪,欢迎用户选择和使用我们的产品联系电话:0519-82616576/82616366/82362388
  • 继昆山爆炸事件粉尘检测仪销售最佳
    本月销售最佳产品:粉尘检测仪,实实在在为广大群众检测空气中的粉尘浓度。可以与当地公布的粉尘浓度同步。M10/PM2.5大气粉尘检测仪概要目前国产手持式的粉尘检测仪,流量小,误差大,无法保证测量精度,我公司成功解决这系列难题,为大气粉尘检测,提供一款:大流量,在线式,有远程通讯功能的,同时测量粒子数和浓度的高精度仪器。国内空气在线检测主要通过:β射线,测量时间长,价格高达10万以上,金坛亿通公司最新研发一款:用激光原理。2分钟出一个检测结果,同时可以测量:PM10、PM2.5、粒子数和质量浓度的仪器。众所周知,大气雾霾、粉尘颗粒、扬尘,是造成空气质量的主要元凶,随着对大气扬尘的在线检测要求,我公司根据:使用符合劳动行业标准《空气中粉尘浓度的光散射测定法》、卫生部标准《公共场所空气中可吸入颗粒物(PM10)测定方法-光散射法》。设计了一种在线检测仪,为在线检测和安装提供了一款高性能的检测仪器。PM10/PM2.5大气粉尘检测仪结构检测器外部空气进入吸引口,经迷宫式切割器除去粗大粒子,遮掉外部光线,进入检测器暗室。暗室内的平行光与受光部的视野成直角交叉构成灵敏区(图中斜线部分),粉尘通过灵敏区时,其90℃方向散射光透过狭缝射进光电倍增管转换成光电流,经光电流积分电路转换成与散射光成正比的单位时间内的脉冲数。因此记录单位时间内的脉冲数便可求出粉尘的相对质量浓度。本仪器相对质量浓度单位使用CPM(Count Per Minute),意为“每分钟的脉冲计数”,质量浓度单位使用mg/m3。PM10/PM2.5大气粉尘检测仪使用场所◎劳动卫生呼吸性粉尘 ◎总粉尘浓度的测定◎工矿企业生产现场扬尘 ◎建设工地粉尘浓度连续在线监测◎公共场所可吸入颗料物(PM10、PM2.5)以及环境监测部门大气飘尘的快速和在线检测。PM10/PM2.5大气粉尘检测仪主要性能指标○测量范围:0.001~100 mg/M33;量程可以根据用户定做。○检测灵敏度: 0.001 mg/M33;(平均粒径0.3μm几何标准偏差1.25的硬脂酸粒子校正的值)。有定时测量和连续测量功能。○测定精度:±8%(相对校正粒子)、有湿度修正功能。○测量原理:激光光散射原理 气体采样流量3L/分 微电脑触摸屏○电脑显示屏:数字显示 ,K值任意设定。可以准确不同场所粒子质量浓度。○在线直读:PM10、PM2.5的粒子数,分别显示,同时显示粉尘的浓度值,○输 出:有485接口、可以和数据采集仪相连, 可以将检测数据远程传输到控制中心或者远程手机读取测量值。有报警功能○数据:可以存储256组数据,操作界面:微电脑 触摸屏,K值和校正系数,直读浓度。任意设置,○测定时间:标准时间为90秒,用户可以任意设定。自动计算时间内的标准浓度。○电 源:12V充电电池,可连续使用12小时,环境温度:-5~40℃目前国内最专业的粉尘检测仪,可以方便各地,针对污染排放,实施在线粉尘检测。我们还提供数据采集仪,欢迎用户选择和使用我们的产品。
  • 第八场研讨会 | TESCAN CLARA镜筒内探测器实现超高分辨扫描电镜更高的差异化衬度需求
    主题:Leveraging Advanced UHR-SEM Contrast Methods Using TESCAN CLARA' s In-column Detectors演讲人:Petr Klimek Petr Klímek 是TESCAN 公司SEM产品经理,有多年的扫描电镜操作和应用经验。他在布尔诺的孟德尔大学(Mendel University)获得了材料学博士学位,后在德国弗劳恩霍夫研究院(Fraunhofer WKI)和俄勒冈州立大学(Fulbright Scholar)实习。时间段1:4月21日, 下午3:00 –4:00(北京时间)时间段2:4月22日, 上午1:00– 2:00(北京时间)随着超高分辨扫描电镜(UHR-SEM)的不断普及,对超高分辨扫描电镜的评定标准已经逐渐形成规范,不再只关注电镜的高分辨率,开始更加强调能够获得不同衬度的图像的能力,通过这些不同衬度的图像来揭示仅凭高分辨无法辨别的样品信息。通常,当高能电子束打到样品上时,就会激发出能够反映样品形貌、结构和成分的各种信号,我们通过获取这些信号来对材料细节进行表征。背散射电子(BSE)是被激发出的主要信号之一,它会以不同的角度、不同的深度从样品表面下被激发出来。根据角度和能量的差异选择性地收集背散射电子信号,增强图像的形貌衬度或成分衬度。显然,有选择性地收集背散射信号可以增强背散射电子图像所能够揭示样品深层信息的能力。在本次网络研讨会上,我们将展示TESCAN CLARA超高分辨场发射扫描电镜如何使用不同的背散射电子探测器来解决差异化衬度的需求,这些背散射电子探测器包括安装在样品室内的四分割固态背散射电子探测器/闪烁体背散射电子探测器、镜筒内轴向探测器、和镜筒内Multidetector™ 探测器。如您对本场研讨会感兴趣,点击“我要报名”立即报名参会吧!说明:为了让更多的用户可以参与到本次研讨会中,每一场研讨会都有两个时间段可供选,内容相同,与会者可自行选择报名参加其中一个时间段的研讨会。TESCAN CLARA
  • 跨向理想X射线探测器的一小步-高分辨、非晶硒X射线探测器及其应用
    “对于相干衍射成像(CDI),微米级像素的非晶硒CMOS探测器将专门解决大体积晶体材料中纳米级晶格畸变在能量高于50 keV的高分辨率成像。目前可用的像素相对较大的(〜55μm像素),基于medipix3芯片光子计数、像素化、直接探测技术无法轻易支持高能布拉格条纹的分辨率,从而使衍射数据不适用于小晶体的3D重建。” 美国阿贡国家实验室先进物理光子源探测器物理小组负责人Antonino Miceli博士讲到。相干X射线衍射成像作为新兴的高分辨显微成像方法,CDI方法摆脱了由成像元件所带来的对成像分辨率的限制,其成像分辨率理论上仅受限于X射线的波长。利用第三代同步辐射光源或X射线自由电子激光,可实现样品高空间分辨率、高衬度、原位、定量的二维或三维成像,该技术在材料学、生物学及物理学等领域中具有重要的应用前景。作为一种无透镜高分辨、无损成像技术,CDI对探测器提出了较高的要求:需要探测器有单光子灵敏度、高的探测效率和高的动态范围。目前基于软X射线的相干衍射成像研究工作开展得比较多,在这种情况下科研工作者通常选用是的基于全帧芯片的软X射线直接探测相机。将CDI技术拓展到硬X射线领域(50keV)以获得更高成像分辨率是目前很多科研工作者正在尝试的,同时也对探测器和同步辐射光源提出了更好的要求。如上文提到,KAimaging公司开发了一款非晶硒、高分辨X射线探测器(BrillianSe)很好的解决的这一问题。下面我们来重点看一下BrillianSe的几个主要参数1. 高探测效率 如上图,间接探测器需要通过闪烁体将X射线转为可见光, 只有部分可见光会被光电二极管阵列,CCD或CMOS芯片接收,造成了有效信号的丢失。而BrillianSe选用了具有较高原子序数的Se作为传感器材料,可以将大部分入射的X射线直接转为光电子,并被后端电路处理。在硬X射线探测效率远高于间接探测方式。BrillianSe在60KV (2mm filtration)的探测效率为:36% at 10 cycles/mm22% at 45 cycles/mm10% at 64 cycles/mm非晶硒吸收效率(K-edge=12.26 KeV)BrillianSe在60KV with 2 mm Al filtration的探测效率,之前报到15 μm GADOX 9 μm pixel 间接探测器QE 为13%。Larsson et al., Scientific Reports 6, 20162. 高空间分辨BrillianSe的像素尺寸为8 µm x8 µm,在60KeV的点扩散为1.1 倍像素。如下是在美国ANL APS 1-BM光束线测试实验室布局使用JIMA RT RC-05测试卡,在21keV光束下测试3. 高动态范围75dB由于采用了100微米厚的非晶硒作为传感器材料。它具有较大满井为877,000 e-非晶硒材料,不同入射光子能量光子产生一个电子空穴对所需要电离能BrillianSe主要应用:高能(50KeV)布拉格相干衍射成像低密度相衬成像同步辐射微纳CT表型基因组学领域要求X射线显微CT等成像工具具有更好的可视化能力。此外需要更高的空间分辨率,活体成像的关键挑战在于限制受试者接收到的电离辐射,由于诱导的生物学效应,辐射剂量显着地限制了长期研究。可用于X射线吸收成像衬度低的物体,如生物组织的相衬X射线显微断层照相术也存在类似的挑战。此外,增加成像系统的剂量效率将可以使用低亮度X射线源,从而减少了对在同步辐射光源的依赖。在不损害生物系统的情况下,在常规实验室环境中一台低成本、紧凑型的活体成像设备,对于加速生物工程研究至关重要。同时对X射线探测器提出了更高的要求。KAimaging公司基于独家开发的、专利的高空间分辨率非晶硒(a-Se)探测器技术,开发了一套桌面高效率、高分辨的微米CT系统(inCiTe™ )。可以从inCiTe™ 中受益的应用:• 无损检测• 增材制造• 电子工业• 农学• 地质学• 临床医学• 标本射线照相 基于相衬成像技术获得优异的相位衬度相衬成像是吸收对比(常规)X射线成像的补充。 使用常规X射线成像技术,X射线吸收弱的材料自然会导致较低的图像对比度。 在这种情况下,X射线相位变化具有更高的灵敏度。因为 inCiTe™ micro-CT可以将物体引起的相位变化转为为探测器的强度变化,所以它可以直接获取自由空间传播X射线束相位衬度。 同轴法相衬X射线成像可将X射线吸收较弱的特征的可检测性提高几个数量级。 下图展示了相衬可以更好地显示甜椒种子细节特征不含相衬信息 含相衬信息 低密度材料具有更好的成像质量钛植入样品图像显示了整形外科的钛植入物,可用于不同的应用,即检查骨-植入物的界面。 注意,相衬改善了骨骼结构的可视化。不含相衬信息 含相衬信息 生物样品inCiTe™ 显微CT可实现软组织高衬度呈现电子样品凯夫拉Kevlar复合材料样品我们使用探测器在几秒钟内快速获取了凯夫拉复合材料的相衬图像。可以清楚看到单根纤维形态(左图)和纤维分层情况(右图)。凯夫拉尔复合物3维透视图 KA Imaging KA Imaging源自滑铁卢大学,成立于2015年。作为一家专门开发x射线成像技术和系统的公司,KA Imaging以创新为导向,致力于利用其先进的X射线技术为医疗、兽医学和无损检测工业市场提供最佳解决方案。公司拥有独家开发并自有专利的高空间高分辨率非晶硒(a-Se)X射线探测器BrillianSeTM,并基于此推出了商业化X射线桌面相衬微米CT inCiTe™ 。我们有幸在此宣布,经过双方密切的交流与探讨,众星已与KA Imaging落实并达成了合作协议。众星联恒将作为KA Imaging在中国地区的独家代理,全面负责BrillianSe™ 及inCiTe™ 在中国市场的产品售前咨询,销售以及售后业务。KA Imaging将对众星联恒提供全面、深度的技术培训和支持,以便更好地服务于中国客户。众星联恒及我们来自全球高科技领域的合作伙伴们将继续为中国广大科研用户及工业用户带来更多创新技术及前沿资讯!
  • 众瑞仪器发布ZR-7022型 环境粉尘连续监测仪新品
    详细介绍产品简介ZR-7022型环境粉尘连续监测仪应用β射线吸收称重原理,对捕集到滤膜上的TSP、PM2.5或PM10颗粒进行自动准确测量,自动连续监测环境TSP、PM2.5和PM10的浓度。该仪器体积小,便于携带安装,具有防尘防雨特性,可在户外长时间连续自动工作。广泛适用于常规环境空气质量监测、环境评价、科学研究、应急监测以及环境空气监测站数据比对等场合。 执行标准GB3095-2012 环境空气质量标准HJ653-2013环境空气颗粒物(PM10和PM2.5)连续自动监测系统技术要求及检测方法JJG846-2015 粉尘浓度测量仪检定规程Q/0214 ZRB018-2018 环境粉尘连续检测仪 功能特点采用β射线吸收称重+DHS(动态加热系统)原理直接测量颗粒物质量浓度,不受颗粒物化特性的影响,无需修正,全天候实时提供准确数据。采样工位与检测工位分离,有效避免污染源对计量系统的污染和干扰。运纸机构整体移动单方向走纸,有效避免了双工位纸带容易断裂的缺陷。DHS(动态加热系统)内置,减小环境变化对测量结果的干扰。机芯防护透明门设计,降低由于开机箱门导数据等操作时环境突变对数据准确性的影响。具有动态温湿度补偿功能,可以保障对半挥发性硝酸盐和有机物的准确测量。采用宽温型工业触摸屏,操作方便快捷。自动测量温湿度和气压等参数,并自动换算标准状态采样体积。仪器可自动存储历史测试数据、可现场打印或用U盘导出。具备数字和模拟输出接口,可方便连接数采仪进行联网传输。具备4G无线通讯模块,可以远程查询仪器工作状态和实时测量数据。仪器具备数据断电自动保存功能,来电后保持断电前状态运行;仪器有独立的断带、滤纸用尽以及机械故障等测试程序;出现问题仪器自动报警。内置锂电池,能够连续运行8小时以上,满足各种监测需要。创新点:1、采用先进的β 射线吸收称重+DHS(动态加热系统)原理直接测量颗粒物质量浓度,不受颗粒物化特性的影响,无需修正,全天候实时提供准确数据;2、采样工位与检测工位分离,有效避免污染源对计量系统的污染和干扰,数据可靠性更高;3、运纸机构整体移动单方向走纸,有效避免了双工位纸带容易断裂的缺陷;4、DHS(动态加热系统)内置,减小环境变化对测量结果的干扰;5、机芯防护透明门设计,降低由于开机箱门导数据等操作时环境突变对数据准确性的影响;6、具有动态温湿度补偿功能,符合国家标准,可以保证对半挥发性硝酸盐和有机物的准确测量;7、内置锂电池,能够连续运行8小时以上,防水等级达到IP67,能够在恶劣的环境下稳定工作,满足各种监测需要。ZR-7022型 环境粉尘连续监测仪
  • 《轧花企业粉尘检测方法》国家标准已通过审定
    由中华全国供销合作总社提出,全国棉花加工标准化技术委员会归口,中华全国供销合作总社郑州棉麻工程技术设计研究所等单位起草的《轧花企业粉尘测定》国家标准,经过反复认证和不断完善、多次征求行业专家意见,现已通过专家审定。  空气中到处弥漫的粉尘,其危害是多方面的。首先是对人体的危害,其次是对工业生产的影响,特别是粉尘在一定浓度条件下还可能引起爆炸事故。我国现有棉花加工厂近一万家,有几十万棉花加工工人,轧花企业的粉尘已经严重影响到他们的健康。棉花加工行业的除尘作业,除了短纤维多、风量大以外,还存有大量的砂土、粉尘等,还造成粉尘排放超标。  目前,国家棉花标准体系中与棉花加工中的粉尘技术标准存在要求水平低、内容过时等一系列问题。GH/T 1025-2000《轧花厂粉尘测定》行业标准至今已经颁布实施了10年,在执行中暴露出一些与棉花加工产业的发展实际不相适应的问题,已不能满足棉花加工产业发展的客观需要,亟需制定或进行修订。据了解,美国棉花加工研究所正准备花1~2年的时间对棉花加工企业的粉尘含量进行测试研究。  轧花企业粉尘检测工作对棉花加工设备的安全运转有极大的影响,直接关系到棉花加工企业的安全生产是否能够顺利进行。只有科学的检测方法,才能准确地检测出粉尘含量,为节能减排提供正确的信息,对粉尘的排放加以合理有效的控制。标准实施后,规范了轧花企业粉尘的测定,控制好粉尘排放,将会给企业的安全、卫生和效益带来积极影响。
  • 《轧花企业粉尘检测方法》国家标准已通过审定
    由中华全国供销合作总社提出,全国棉花加工标准化技术委员会归口,中华全国供销合作总社郑州棉麻工程技术设计研究所等单位起草的《轧花企业粉尘测定》国家标准,经过反复认证和不断完善、多次征求行业专家意见,现已通过专家审定。  空气中到处弥漫的粉尘,其危害是多方面的。首先是对人体的危害,其次是对工业生产的影响,特别是粉尘在一定浓度条件下还可能引起爆炸事故。我国现有棉花加工厂近一万家,有几十万棉花加工工人,轧花企业的粉尘已经严重影响到他们的健康。棉花加工行业的除尘作业,除了短纤维多、风量大以外,还存有大量的砂土、粉尘等,还造成粉尘排放超标。  目前,国家棉花标准体系中与棉花加工中的粉尘技术标准存在要求水平低、内容过时等一系列问题。GH/T 1025-2000《轧花厂粉尘测定》行业标准至今已经颁布实施了10年,在执行中暴露出一些与棉花加工产业的发展实际不相适应的问题,已不能满足棉花加工产业发展的客观需要,亟需制定或进行修订。据了解,美国棉花加工研究所正准备花1~2年的时间对棉花加工企业的粉尘含量进行测试研究。  轧花企业粉尘检测工作对棉花加工设备的安全运转有极大的影响,直接关系到棉花加工企业的安全生产是否能够顺利进行。只有科学的检测方法,才能准确地检测出粉尘含量,为节能减排提供正确的信息,对粉尘的排放加以合理有效的控制。标准实施后,规范了轧花企业粉尘的测定,控制好粉尘排放,将会给企业的安全、卫生和效益带来积极影响。
  • 突破!全球最快响应的短波红外量子点探测器
    【背景介绍】短波红外(SWIR,1000 ~ 3000 nm)光由于受空气中颗粒物的散射较弱,使其在恶劣天气或生物组织中也能提供长距离的有效探测,并在成像场景中提供更多物质化学信息,同时对人眼更安全。这使得短波红外在光通信、远程遥感、自动化视觉技术、生物成像、环境监测和光谱技术等领域中发挥着关键作用。然而,目前市场上的短波红外传感器采用异质外延技术,但由于其制备方法繁琐,不适合大规模、低成本的3D成像应用。随着胶体量子点(QDs)的出现,其尺寸可调的光学特性使其成为探测短波红外光的理想选择。虽然近年来短波红外光电二极管结构探测器的响应时间有所缩短,但至今仍未达到纳秒级水平,这成为将胶体量子点应用于短波红外光电探测领域的主要挑战之一。【成果简介】据麦姆斯咨询报道,近日,比利时根特大学的邓玉豪(第一作者兼通讯作者)等人取得了一项突破性进展,成功利用超薄的胶体量子点吸收层,实现了基于胶体量子点的短波红外光电二极管(QDPDs)的纳秒级响应。这一研究成果创造了短波红外领域全球最快响应的胶体量子点光电探测器,相关内容以“Short-Wave Infrared Colloidal QDs Photodetector with Nanosecond Response Times Enabled by Ultrathin Absorber Layers”为题在国际著名期刊《Advanced Materials》上发表,为胶体量子点在超快短波红外探测技术的进一步研究和应用提供了重要参考。【核心创新】1. 作者通过优化超薄结构器件的制备方法,克服了传统方法的不足,得到1600整流比,42%外量子点效率,98%内量子效率的光电二极管器件。2. 作者通过结构优化,实现了超薄结构下量子点层2.5倍的吸收增强,使得超薄层仍然可以获得较高EQE。3. 作者通过厚度与面积优化,平衡了载流子迁移与RC延迟时间,最终得到创纪录的4 ns响应时间。【研究概览】图1 胶体量子点探测器响应时间的数值模拟。计算表明,漂移时间将限制厚度较大的器件的响应,而RC延迟效应将决定较薄器件的响应时间,通过降低器件面积,可以实现纳秒级的响应时间。图2 胶体量子点光电探测器制备流程优化。作者通过浓度梯度的交换法,提高了PN结的质量,得到了整流比1600的器件。图3 胶体量子点光电探测器结构示意图和性能。该器件的胶体量子点层优化为100 nm,器件的EQE达到了42%,利用结构形成法布里-珀罗腔,在超薄结构的基础上将量子点层的吸收增强了2.5倍,器件的内量子效率可以高达98%。图4 不同大小、不同厚度的胶体量子点光电探测器的响应时间。通过降低器件面积、优化器件厚度可以使得器件具有更快的响应,最终实现了4 ns响应时间的世界纪录,也是首次将胶体量子点短波红外探测速度逼近到了纳秒级别。图5 进一步提快胶体量子点光电探测器的响应分析。通过提高胶体量子点层的迁移率,该器件结构还可以继续优化,完全可以实现亚纳秒级的响应时间,这为接下来胶体量子点超快探测器的研究阐明了研究方向。【成果总结】这项研究工作实现了一项重大的突破,首次设计出超薄吸收层的胶体量子点光电探测器,成功在短波红外波段实现了纳秒级的响应时间。通过采用浓度梯度的配体交换方法,制备了具有高质量PN结的薄膜结构器件。该光电探测器在1330 nm处获得了42%的外部量子效率,这得益于在胶体量子点光电二极管内形成的法布里-珀罗腔和高效的光生电荷提取。此外,通过进一步提高载流子迁移率,该器件可以实现亚纳秒级的响应时间。这项研究的成功突破将对短波红外超快光电探测技术的未来发展产生重大的影响。论文链接:https://doi.org/10 . 1002/adma.202402002【作者简介】Yu-Hao Deng(邓玉豪)博士,比利时根特大学BOF博士后研究员,主要研究方向为胶体量子点材料与光电器件,以及钙钛矿材料表征与光电器件。邓博士之前已在Nature、Advanced Materials、Matter、Nano Letters、Physical Review Letters、Advanced Science等国际期刊上发表论文数篇。
  • 合肥研究院高性能紫外光探测器研究取得进展
    p  近期,中国科学院合肥物质科学研究院固体物理研究所研究员李广海课题组在高性能紫外光探测薄膜器件方面中取得进展,相关结果发表在ACS Applied Materials & Interfaces上,并申请国家发明专利2件。/pp  紫外探测器在空间天文望远镜、军事导弹预警、非视距保密光通信、海上破雾引航、高压电晕监测、野外火灾遥感及生化检测等方面具有广泛的应用前景。在实际应用时,由于自然环境的不确定性,待测目标的紫外光强度通常不高,环境中存在着大量对紫外光具有强吸收和散射能力的气体分子或尘埃,导致最终到达探测器可检测的紫外光信号非常弱。因此,提高紫外探测器对弱光的探测能力至关重要。探测率(detectivity)是衡量探测器件对弱光检测能力的重要指标,探测率由响应度(responsivity)和暗电流密度共同决定。响应度越高,暗电流密度越低,器件的探测率越高。高探测率更有利于弱紫外光的探测。然而,对于大部分半导体光导探测器而言,响应度高的器件常伴随着较高的暗电流 提高材料质量,减少缺陷可降低器件暗电流,但响应度随之减小。因此,器件探测率难以提升,限制了光导探测器在弱紫外光检测方面的应用。/pp  针对上述问题,李广海课题组的副研究员潘书生等在前期透明高阻薄膜的研究基础上,提出以中间带半导体为核心材料构筑紫外探测器的新方法。中间带具有高态密度,能够有效俘陷本征缺陷在导带上产生的电子,从而降低器件暗电流 另一方面,光照时,中间带上储存的载流子能补充到价带上,并被光激发至导带贡献光电流,因此中间带半导体材料紫外探测器能够实现在降低暗电流的同时,保持器件较高的响应度。采用磁控反应溅射技术,沉积Bi掺杂SnO2薄膜,并通过优化实验设计和参数,构筑出了基于中间带半导体薄膜的光导型紫外探测器件。性能测试结果显示,器件暗电流降低至0.25nA,280nm波长紫外光响应度达到60A/W,外量子效率为2.9× 104%,探测率达到6.1× 1015Jones,紫外—可见光抑制比达103量级。器件的动态范围高达195dB,这说明Bi掺杂SnO2薄膜光导探测器可检测极其微弱的紫外光(等效每秒300紫外光子),对较强的紫外光也可探测。/pp  该研究工作得到了国家自然科学基金与合肥研究院固体所所长基金的支持。/pp style="text-align: center "img width="450" height="349" title="W020170907540355593507.jpg" style="width: 450px height: 349px " src="http://img1.17img.cn/17img/images/201709/noimg/1086db54-ce3a-4a29-b90b-ed2b9dbbf2f4.jpg" border="0" vspace="0" hspace="0"//pp  Bi掺杂SnO2薄膜光导探测器件性能:(a) 响应度,(b) 外量子效率,(c) 探测率和 (d) 噪声等效功率。/pp/pp/p
  • 【众瑞新品】ZR-7022型 环境粉尘连续监测仪
    采用新的β射线吸收称重+DHS(动态加热系统)原理直接测量颗粒物质量浓度,不受颗粒物化特性的影响,无需修正,全天候实时提供准器数据。采样工位与检测工位分离,有效避免污染源对计量系统的污染和干扰,数据稳定性更高。运纸机构整体移动单方向走纸,有效避免了双工位纸带容易断裂的缺陷。DHS(动态加热系统)内置,整机工作时机箱内基本处于恒温的状态,减小环境变化对测量结果的干扰。仪器打开外门后设计有机芯防护透明门,降低由于开机箱门导数据等操作时环境突变对数据准确性的影响。具有动态温湿度补偿功能,符合国家标准,可以保证对半挥发性硝酸盐和有机物的准器测量。可选配不同的切割器进行TSP、PM10和PM2.5浓度的实时测量。采用低活度C14β源,安全稳定。采用宽温型工业触摸屏,操作方便快捷。采样进气管有加热装置,根据设定的湿度值对空气自动除湿。自动测量温湿度和气压等参数,并自动换算标准状态采样体积。仪器可自动存储历史测试数据、可现场打印或用U盘导出。具备数字和模拟输出接口,可方便连接数采仪进行联网传输。具备3G无线通讯模块,可以远程查询仪器工作状态和实时测量数据。仪器具有断电后自动保存当前数据,当来电后能按照断电前的状态运行。仪器有独立的断带、滤纸用尽以及机械故障等测试程序;出现问题仪器自动报警。便携性好,现场安装迅速,交直流两用,连续自动运行,可适用于多种测试用途。内置锂电池,能够连续运行5小时以上,满足各种监测需要。防水等级达到IP67,能够在恶劣的环境下稳定工作。2018年9月ZR-7022型 环境粉尘连续监测仪参与北京环保局开展的“建筑施工扬尘排放标准制定数据实验工作”项目比对实验建筑施工扬尘排放标准制定数据比对实验实验数据证明ZR-7022型环境粉尘连续监测仪稳定性好、抗干扰、量程范围大,利用β射线法检测更准确。
  • 非制冷势垒型InAsSb基高速中波红外探测器
    高速响应的中波红外探测器在自由空间光通信和频率梳光谱学等新兴领域的需求逐渐增加。中长波XBₙn势垒型红外光探测器对暗电流等散粒噪声具有抑制作用。近期,由中国科学院半导体研究所、昆明物理研究所、中国科学院大学和陆装驻重庆军代局驻昆明地区第一军代室组成的科研团队在《红外与毫米波学报》期刊上发表了以“非制冷势垒型InAsSb基高速中波红外探测器”为主题的文章。该文章第一作者为贾春阳,通讯作者为赵俊总工程师和张逸韵研究员。本工作制备了不同直径的nBn和pBn结构的中波InAsSb/AlAsSb红外接地-信号-接地(GSG)探测器。对制备的探测器进行了变温暗电流特性,结电容特性和室温射频响应特性的表征。材料生长、器件制备和测试通过固态源分子束外延装置在2英寸的n型Te-GaSb衬底上外延生长nBn和pBn器件。势垒型器件的生长过程如下所示:先在衬底上生长GaSb缓冲层来平整表面以及减少应力和位错,接着生长重掺杂(10¹⁸ cm⁻³)n型InAsSb接触层,然后生长2.5 μm厚的非故意掺杂(10¹⁵ cm⁻³)InAsSb体材料吸收层。之后生长了150 nm厚的AlAsSb/AlSb数字合金电子势垒层,通过插入超薄的AlSb层实现了吸收区和势垒层的价带偏移的显著减少,有助于空穴向接触电极的传输,同时有效阻止电子以减小暗电流。最后分别生长300 nm厚的重掺杂(10¹⁸ cm⁻³)n型InAsSb和p型GaSb接触层用于形成nBn和pBn器件结构。其中,Si和Be分别被用作n型和p型掺杂源。生长后,通过原子力显微镜(D3100,Veeco,USA)和高分辨X射线衍射仪(Bede D1,United Kingdom)对晶片进行表征以确保获得高质量的材料质量。通过激光划片将2英寸的外延片划裂为1×1 cm²的样片。样片经过标准工艺处理,包括台面定义、钝化和金属蒸镀工艺,制成直径从10 μm到100 μm的圆形台面单管探测器。台面定义工艺包括通过电感耦合等离子体(ICP)和柠檬酸基混合溶液进行的干法刻蚀和湿法腐蚀工艺,以去除器件侧壁上的离子诱导损伤和表面态。器件的金属电极需要与射频探针进行耦合来测试器件的射频响应特性,因此包括三个电极分别为Ground(接地)、Signal(信号)和Ground,其中两个Ground电极相连,与下接触层形成欧姆接触,Signal电极与上接触层形成欧姆接触,如图1(c)和(f)所示。通过低温探针台和半导体参数分析仪(Keithley 4200,America)测试器件77 K-300 K范围的电学特性。器件的光学响应特性在之前的工作中介绍过,在300 K下光电探测器截止波长约为4.8 μm,与InAsSb吸收层的带隙一致。在300 K和反向偏置为450 mV时,饱和量子效率在55%-60%。通过探针台和频率响应范围10 MHz-67 GHz的矢量网络分析仪(Keysight PNA-XN5247B,America)对器件进行射频响应特性测试。结果与讨论材料质量表征图1(a)和(d)的X射线衍射谱结果显示,从左到右的谱线峰分别对应于InAsSb吸收层和GaSb缓冲层/衬底。其中,nBn和pBn外延片的InAsSb吸收区的峰值分别出现在60.69度和60.67度,GaSb衬底的峰值则出现在60.72度。因此,InAsSb吸收层与GaSb 衬底的晶格失配分别为-108 acsec和-180 acsec,符合预期,表明nBn和pBn器件的InAsSb吸收区和GaSb衬底几乎是晶格匹配的生长条件。因此,nBn和pBn外延片都具有良好的材料质量。原子力显微镜扫描的结果在图1的(b)和(e)中,显示出生长后的nBn和pBn外延片具有良好的表面形貌。在一个5×5 μm²的区域内,nBn和pBn外延片的均方根粗糙度分别为1.7 Å和2.1 Å。图1 (a)和(a)分别为nBn和pBn外延片的X射线衍射谱;(b)和(e)分别为nBn和pBn外延片的原子力显微扫描图;(c)和(f)分别为制备的圆形GSG探测器的光学照片和扫描电子照片器件的变温暗电流特性图2(a)显示了器件直径90 μm的nBn和pBn探测器单管芯片的温度依赖暗电流密度-电压曲线,通过在连接到Keithley 4200半导体参数分析仪的低温探针台上进行测量。图2(b)显示了件直径90 μm的nBn和pBn探测器在77 K-300 K下的微分电阻和器件面积的乘积R₀A随反向偏压的变化曲线,温度下降的梯度(STEP)为25 K。图2(c)显示了在400 mV反向偏压下,nBn和pBn探测器表现出的从77 K到300 K的R₀A与温度倒数(1000/T)之间的关系,温度变化的梯度(STEP)为25 K。图2 从77K到300K温度下直径90 μm的nBn和pBn探测器单管芯片(a)暗电流密度-电压曲线;(b)微分电阻和器件面积的乘积R₀A随反向偏压的变化曲线;(c)R₀A随温度倒数变化曲线器件暗电流的尺寸效应由于势垒型红外探测器对于体内暗电流可以起到较好的抑制作用,因此研究人员关注与台面周长和面积有关的表面泄露暗电流,进一步抑制表面漏电流可以进一步提高探测器的工作性能。图3(a)显示了从20 μm到100 μm直径的nBn和pBn器件于室温工作的暗电流密度和电压关系,尺寸变化的梯度(STEP)为10 μm。图3(b)显示从20 μm-100 μm的nBn和pBn探测器的微分电阻和台面面积的乘积R₀A随反向偏压的变化曲线。图3(d)中pBn器件的相对平缓的拟合曲线说明了具有较高的侧壁电阻率,根据斜率的倒数计算出约为1.7×10⁴ Ωcm。图3 从20 μm到100 μm直径的nBn和pBn器件于室温下的(a)暗电流密度和电压变化曲线和(b)R₀A随反向偏压的变化曲线;(c)在400 mV反偏时,pBn和nBn器件R₀A随台面直径的变化;(d)(R₀A)⁻¹与周长对面积(P/A)变化曲线器件的结电容图4(a)显示了使用Keithley 4200 CV模块在室温下不同直径的nBn和pBn探测器的结电容随反向偏压的变化曲线,器件直径从20 μm到100 μm按照10 μm梯度(STEP)变化。对于势垒层完全耗尽的pBn探测器,预期器件电容将由AlAsSb/AlSb势垒层电容和InAsSb吸收区耗尽层电容的串联组合给出,其中包括势垒层和上接触层侧的InAsSb耗尽区。图4 (a)在室温下不同直径的nBn和pBn探测器的结电容随反向偏压的变化曲线;(b)反偏400 mV下结电容与台面直径的变化曲线。器件的射频响应特性通过Keysight PNA-X N5247B矢量网络分析仪、探针台和飞秒激光光源,在室温和0-3 V反向偏压下,对不同尺寸的nBn和pBn探测器在10 MHz至67 GHz之间进行了射频响应特性测试。根据图5推算出在3V反向偏压下的40 μm、50 μm、70 μm、80 μm、90 μm、100 μm直径的圆形nBn和pBn红外探测器的3 dB截止频率(f3dB)。势垒型探测器内部载流子输运过程类似光电导探测器,表面载流子寿命对响应速度会产生影响。图5 在300 K下施加-3V偏压的40 μm、50 μm、70 μm、80 μm、90 μm、100 μm直径的nBn和pBn探测器的归一化频率响应图图6 不同尺寸的nBn和pBn探测器(a)3 dB截止频率随反向偏压变化曲线;(b)在3 V反向偏压下的3 dB截止频率随台面直径变化曲线图6(a)展示了对不同尺寸的nBn和pBn探测器,在0-3 V反向偏压范围内的3 dB截止频率的结果。随着反向偏压的增大,不同尺寸的器件的3 dB带宽也随之增大。因此,在图6(a)中观察到在低反向偏压下nBn和pBn器件的响应较慢,nBn探测器的截止频率落在60 MHz-320 MHz之间而pBn探测器的截止频率落在70 MHz-750 MHz之间;随着施加偏压的增加,截止频率增加,nBn和pBn器件最高可以达到反向偏压3V下的2.02 GHz和2.62 GHz。pBn器件的响应速度相较于nBn器件提升了约29.7%。结论通过分子束外延法在锑化镓衬底上生长了两种势垒型结构nBn和pBn的InAsSb/AlAsSb/AlSb基中波红外光探测器,经过台面定义、工艺钝化工艺和金属蒸镀工艺制备了可用于射频响应特性测试的GSG探测器。XRD和AFM的结果表示两种结构的外延片都具有较好的晶体质量。探测器的暗电流测试结果表明,在室温和反向偏压400 mV工作时,直径90 μm的pBn器件相较于nBn器件表现出更低的暗电流密度0.145 A/cm²,说明了该器件在室温非制冷环境下表现出低噪声。不同台面直径的探测器的暗电流测试表明,pBn器件的表面电阻率约为1.7×10⁴ Ωcm,对照的nBn器件的表面电阻率为3.1×10³ Ωcm,而pBn和nBn的R₀A体积项的贡献分别为16.60 Ωcm²和5.27 Ωcm²。探测器的电容测试结果表明,可零偏压工作的pBn探测器具有完全耗尽的势垒层和部分耗尽的吸收区,nBn的吸收区也存在部分耗尽。探测器的射频响应特性表明,直径90 μm的pBn器件的响应速度在室温和3 V反向偏压下可达2.62 GHz,对照的nBn器件的响应速度仅为2.02 GHz,相比提升了约29.7%。初步实现了在中红外波段下可快速探测的室温非制冷势垒型光探测器,对室温中波高速红外探测器及光通讯模块提供技术路线参考。论文链接:http://journal.sitp.ac.cn/hwyhmb/hwyhmbcn/article/abstract/2023157
  • 电镜那么多探测器,拍摄时我到底该如何选择?
    “TESCAN电镜学堂”终于又跟大家见面了,利用扫描电镜观察样品时会关注分辨率、衬度、景深、形貌的真实性、其他分析的需要等等,不同的关注点之间需要不同的拍摄条件,有时甚至相互矛盾。那我们该如何根据样品类型以及所关注的问题选择合适的电镜条件呢?这里是TESCAN电镜学堂第12期,将继续为大家连载《扫描电子显微镜及微区分析技术》(本书简介请至文末查看),帮助广大电镜工作者深入了解电镜相关技术的原理、结构以及最新发展状况,将电镜在材料研究中发挥出更加优秀的性能!第五章 电镜操作与工作参数优化第三节 常规拍摄需要注意的问题电镜的工作条件包括很多,加速电压、束流束斑、工作距离、光阑大小、明暗对比度、探测器的选择等。前几期我们已经介绍过加速电压、束斑束流、工作距离该如何根据实际应用需求选择。本期将为大家继续介绍明暗对比度、不同探测器对扫描电镜拍摄的影响。§4. 明暗对比度的影响一张清晰的电镜照片需要有适中的明暗对比度,可以利用电镜软件中的直方图工具来进行明暗对比度的判断,如图5-30。直方图的横坐标表示亮度,左为暗部,右为亮部,纵坐标表示各种灰度所占的比例。图5-30 直方图工具一张明亮对比适中的图片,需要暗处、亮处、中间灰度均有分布,直方图从中间到两边类似正态分布,如图5-31。图5-31 亮度与直方图当图像亮度过亮、过暗都会导致另一端没有灰度信息,导致图像信息损失。对比度的调节希望整个灰度分布恰好覆盖大部分区域,如图5-32,对比度太小则灰度仅覆盖中间很少区域,而对比度太大,会造成亮处、暗处有信息损失。在开始扫描的时候尽量将明暗对比度调节至最合适的条件,如果一开始明暗对比不适合,利用软件自带的处理工具可以对图像进行优化,如图5-33。调整完的可以清楚的判别出其中至少五种灰度衬度,而调整前只能勉强分辨四种衬度。图5-32 对比度与直方图图5-33 明暗对比度的影响及对应的直方图§5. 探测器的选择TESCAN的场发射扫描电镜如果配置齐全包括SE、InBeam-SE、BSE、InBeam-BSE、STEM-BF、STEM-DF六个独立的探测器,前面已经在电镜结构中简单介绍了各个探测器的原理和特点。在平时拍摄时,选择不同的探测器也会获得不同的效果。图5-34 TESCAN电镜所有的电子探测器① SE和BSE探测器的对比SE和BSE分别是旁置式电子探测器和极靴下探测器,前者接收二次电子和部分低角背散射电子,后者接收大部分低角背散射电子探测器。所以从图像效果来说,SE探测器的图像以形貌衬度为主,立体感强,兼有少量的成分衬度;BSE探测器的图像以成分衬度为主,兼有一定的形貌衬度,如图5-35。图5-35 SE(左)和BSE(右)探测器的衬度对比② SE与InBeam-SE探测器的对比SE和InBeam-SE探测器相比,前者在侧方,具有阴影效应,可以形成强烈的立体感,而后者位于正上方,不会受任何形貌的遮挡,立体感较差,如图5-36。图5-36 SE(左)和InBeam-SE(右)探测器的立体感对比SE探测器接收SE1、SE2、SE3和部分BSE信号,分辨率相比只收集SE1的InBeam SE探测器要低,如图5-37。图5-37 SE(左)和InBeam-SE(右)探测器的分辨率对比对于一些凹坑处的观察,由于InBeam-SE探测器在上方没有遮挡,所以会比SE探测器有更多的信号量,InBeam-SE探测器更适合做凹陷区域的观察,如图5-38。图5-38 SE(左)和InBeam-SE(右)探测器对凹陷处观察对比③ BSE与InBeam-BSE探测器的对比BSE探测器主要采集低角背散射电子,InBeam-BSE探测器采集高角背散射电子,前者兼有成分和形貌衬度,后者相对来说成分衬度占主要部分,形貌衬度相对较弱。不过后者接收的电子信号量小于前者,所以信噪比也不如前者,如图5-39。图5-39 BSE(左)和InBeam-BSE(右)探测器受形貌影响的对比对于能观察到通道衬度的平整样品来说,BSE探测器显然有更好的通道衬度,更有利于晶粒的区分,如图5-40。图5-40 BSE(左)和InBeam-BSE(右)探测器通道衬度的对比④ STEM探测器的应用电子束轰击到试样上形成水滴状的散射,但当试样足够薄时,电子束的散射面积还没有扩大就已经透射样品,所以此时各种信号的分辨率较常规样品更高,STEM探测器也有更好的分辨率。STEM探测器由于需要样品经过特殊的制样,虽然在扫描电镜中不常用,但是却有着所有探测器中最高的分辨率。当二次电子和背散射电子探测器分辨率都达不到要求时,可以尝试STEM探测器。如图5-41,二次电子探测器在20万倍下已经分辨率不够,而STEM放大至50万倍也能很好的区分。图5-41 SE(左)和STEM(右)探测器分辨率的对比此外,对于一些纳米级的小颗粒,因为团聚厉害,二次电子即使在低电压下也难以将其区分,且分辨率也不好,而STEM探测器通过透射电子来进行成像,对小颗粒的区分能力要强于其它探测器。如图5-42,STEM探测器可以区分团聚在一起的更小的单个纳米颗粒,而二次电子探测器则观察到团聚在一起的颗粒。图5-42 STEM(左)和InBeam-SE(右)探测器对团聚纳米颗粒的分辨对比扫描电镜中的STEM探测器虽然分辨率是最高的,但是和透射电镜的分辨率相比还是相形见绌。不过扫描电镜的电压要远小于透射电镜,所以扫描电镜的STEM相比TEM有着更好的质厚衬度。所以对一些不是非常注重横向分辨率,但特别注重质厚衬度的样品,如一些生物样品、石墨烯等,扫描电镜的STEM探测器可以表现出更大的优势。如图5-43,为10kV下观察到的石墨烯试样,图5-44为生物样品在扫描STEM和TEM下的对比。图5-43 STEM探测器在10kV下拍摄的石墨烯试样图5-44 生物试样在SEM STEM探测器和TEM的对比⑤ 多探测器同时成像TESCAN的电镜具有四个独立的通道放大器,可以进行四个探测器的同时成像。如果分辨不清楚用何种探测器时,可以选择多种探测器同时成像。然后在软件中将需要的图像进行通道分离,如图5-45。 图5-45 四探测器同时成像
  • 多功能激光粉尘仪研制
    table border="1" cellspacing="0" cellpadding="0" width="600"tbodytrtd width="113"p style="line-height: 1.75em "仪器名称/p/tdtd width="535" colspan="3"p style="line-height: 1.75em "多功能激光粉尘仪/p/td/trtrtd width="113"p style="line-height: 1.75em "单位名称/p/tdtd width="535" colspan="3"p style="line-height: 1.75em "北京绿林创新数码科技有限公司/p/td/trtrtd width="113"p style="line-height: 1.75em "联系人/p/tdtd width="187"p style="line-height: 1.75em "翟利明/p/tdtd width="161"p style="line-height: 1.75em "联系邮箱/p/tdtd width="187"p style="line-height: 1.75em "2851630081@qq.com/p/td/trtrtd width="113"p style="line-height: 1.75em "成果成熟度/p/tdtd width="535" colspan="3"p style="line-height: 1.75em "□正在研发 □已有样机 □通过小试 □通过中试 √可以量产/p/td/trtrtd width="113"p style="line-height: 1.75em "合作方式/p/tdtd width="535" colspan="3"p style="line-height: 1.75em "□技术转让 □技术入股 √合作开发 □其他/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong成果简介: /strongbr//pp style="text-align:center"img src="http://img1.17img.cn/17img/images/201603/insimg/c834e053-482a-48d0-9e8d-a14b7828e2c2.jpg" title="多功能激光粉尘仪.jpg" width="350" height="327" border="0" hspace="0" vspace="0" style="width: 350px height: 327px "/span style="line-height: 1.75em " /span/pp style="line-height: 1.75em " LD-7S多功能激光粉尘仪是“高稳定高可靠PM2.5微电脑激光粉尘仪产业化培育”项目研究成果,本成果主要解决仪器长期运行的温度和零点漂移、环境湿度对测量值的影响等关键技术问题,并在电源保护及自动校准方面进行了技术创新,提高了电源的稳定性和可靠性,延长了电池使用寿命,可方便实现远程校准。多功能可便携、可在线实时监测、良好的环境适应性以及良好兼容性是我们产品的亮点。产品主要功能及性能指标如下: br/ strong主要功能/strong:/pul class=" list-paddingleft-2"lip style="line-height: 1.75em "直读质量浓度mg/m3(设置浓度转换系数K值)。/p/lilip style="line-height: 1.75em "内置φ40mm滤膜,可在监测颗粒物浓度的同时收集粉尘样品。/p/lilip style="line-height: 1.75em "PM10、PM5、PM2.5、PM1.0、TSP切割器可供选择。/p/lilip style="line-height: 1.75em "独特的光路自清洗系统,避免粉尘对仪器核心部件的污染。/p/lilip style="line-height: 1.75em "内设出厂前已标定的具有光学稳定性的自校装置,可有效消除仪器的系统误差。/p/lilip style="line-height: 1.75em "大屏幕汉字提示,操作直观简便。/p/lilip style="line-height: 1.75em "多种工作模式,可直读TWA和STEL,可根据设定时间定时启动采样,所得数据可存贮、回放或导入PC机进行数据处理、打印表格和曲线。/p/lilip style="line-height: 1.75em "内置强力抽气泵,更适合于需配备较长采样管的采样场所(如集中空调排气口PM10可吸入颗粒物浓度的检测)。/p/lilip style="line-height: 1.75em "可设定粉尘浓度超标报警阈值,超标时自动声音报警或将信号传输到控制中心进行监控。/p/li/ulp style="line-height: 1.75em " strong主要技术指标/strongstrong /strong/pul class=" list-paddingleft-2"lip style="line-height: 1.75em "检测灵敏度(相对于校正粒子):0.001mg/m3(高灵敏度);0.01mg/m3(低灵敏度)。/p/lilip style="line-height: 1.75em "测量范围(相对于校正粒子):(0.001 ~10 )mg/m3(高灵敏度);(0.01~100)mg/m3(低灵敏度)。/p/lilip style="line-height: 1.75em "测定时间:0.1min,1min(标准测量时间),及(1~9999)min任意设定。/p/lilip style="line-height: 1.75em "重复性误差:≤2%。/p/lilip style="line-height: 1.75em "相对误差:± 10%。/p/lilip style="line-height: 1.75em "显示屏:汉字提示屏。/p/lilip style="line-height: 1.75em "连续监测:可设定测量时间(1~9999)s,待机时间(0~9999)s,采样次数(1~9999)次。/p/lilip style="line-height: 1.75em "数据存贮:/p/li/ulp style="line-height: 1.75em "一般测量:循环存储99组数据(可由仪器回放,亦可PC机读取)。 br/ 劳动卫生:循环存储30组数据(可由仪器回放,亦可PC机读取),每组包括:采样日期,采样开始时间,使用K值,测量周期,TWA值,STEL值和记录序号。同时保留最新一次测量的每分钟所测浓度值(以CPM表示),最多1440个数值(24h),该组数据只能通过PC机读取。 br/ 连续监测:可存储两组测量连续监测数据,每组最多存储9999个浓度值,只能通过PC机读取。/pul class=" list-paddingleft-2"lip style="line-height: 1.75em "报警模式:可设定报警浓度阈值,超过该阈值时声音报警。/p/lilip style="line-height: 1.75em "输出接口:PC机通讯串行接口(RS232/RS485)。/p/lilip style="line-height: 1.75em "电源:可充电锂电池组3.5Vх2,电池充满可连续使用8h以上。在线仪器可使用专用 电源适配器供电。/p/li/ul/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong应用前景: /strongbr/ 本成果仪器与其他商品销售仪器与其他商品销售颗粒物测量仪器相比,最大的特点是,具有湿度修正功能,可有效降低湿度对测量值的影响,改善高湿度环境下的测量准确度;既可通过设定测量时间进行颗粒物的实时测量,又可通过内置滤膜采样装置同时收集滤膜样品,进行重量法测量校准和成分分析。因此该仪器可应用于公共卫生,环境保护及工矿企业职业场所三大领域对包括PM2.5在内的颗粒物浓度进行快速检测,也可用于科研单位进行环境分析、污染源分析及对人类健康影响分析等。 br/ 近年来,PM2.5污染成为政府和民众关注的热点问题。为研究和了解可吸入颗粒物的来源、形成、污染过程,全国开始大范围建设在线监测网络,获取现场数据,为污染预警及控制以及政府决策提供依据。2015年全国环境监测工作现场会上环境保护部副部长吴晓青上谈“十三五”监测事业发展思路时提出了八项监控重点。其中之一是巩固和提升污染源监督性监测,企业自行监测及信息公开。这将涉及环境监测,卫生监察以及几十万企业,因此国a href="http://www.chinairn.com/report/20140303/084510754.html" style="color: rgb(0, 0, 0) text-decoration: underline "span style="color: rgb(0, 0, 0) "家政/span/a策将对产品应用产生巨大的推动作用。十二五期间我国的PM2.5监测覆盖了所有地级市,仅设备方面的前期投入就超过20亿元。“十三五”规划则对污染物排放总量的控制更加严格,要根据大气、水、土壤三大行动计划实施的需求,整合优化环境监测网络,不断强化污染源监测、环境应急与预警监测,这将带来可观的工业污染源、交通道路及筑建行业在线监测设备需求。除此之外颗粒物监测仪器在智能楼宇室内环境监测、净化器净化效果评价,控烟执法等市场需求也急剧增加,这些为PM2.5检测仪器撬动了一个巨大的市场。基于光散射原理制成的激光测尘仪具有成本低、体积小、重量轻、灵敏性高、操作简便、维护成本低廉以及快速直读的特性,非常适于上述应用,已成为很多系统集成商的唯一选择。但同所有原理的检测设备一样,所有光散射法检测仪器的测量值均受环境湿度影响,亟待解决,而本成果有效解决了湿度影响问题,有效提高了高湿度环境颗粒物浓度测量数据的可靠性,这对光散射法仪器大规模应用具有重要的意义。/p/td/trtrtd width="648" colspan="4"p style="line-height: 1.75em "strong知识产权及项目获奖情况: /strongbr/ 本成果已取得自主知识产权, 其中“一种高稳定可靠粉尘浓度检测仪”实用新型专利1项(专利号2015 2 0643938.5);“LD-7S激光粉尘仪软件” 软件著作权1项(证书号:软著登字第1179054)。/p/td/tr/tbody/tablepbr//p
  • 可调谐红外双波段光电探测器,助力多光谱探测发展
    红外双波段光电探测器是重要的多光谱探测器件,特别是近红外/短波红外区域,相较于可见光有更强的穿透能力,相较于中波红外可以以较低的损耗识别冷背景的物体,因此广泛应用于民用和军事领域。当前红外双波段探测器主要面临光谱不可调谐,器件结构复杂而不易与读出集成电路相结合的挑战。据麦姆斯咨询报道,近日,合肥工业大学先进半导体器件与光电集成团队在光电子器件领域取得重要进展,研究团队研发了一种光谱可调谐的近红外/短波红外双波段探测器,相关研究成果以“Bias-Selectable Si Nanowires/PbS Nanocrystalline Film n–n Heterojunction for NIR/SWIR Dual-Band Photodetection”为题,发表于《先进功能材料》(Advanced Functional Materials, 2023: 2214996.)。第一作者为许晨镐,通讯作者为罗林保教授,主要从事新型高性能半导体光电子器件及相关光电集成技术方面的研究工作。该研究使用溶液法制备了硅纳米线/硫化铅异质结光电探测器(如图1(a)),工艺简单,成功将硅基探测器的光谱响应拓宽到2000 nm。基于有限元分析法的COMSOL软件分析表明,一方面,有序的硅纳米线阵列具有较大的器件面积,提升了载流子的输运能力,且纳米线阵列具有较好的周期性,入射光可以在纳米线结构之间连续反射,产生典型的陷光效应。另一方面,小尺寸的纳米线阵列可以看作是微型谐振器,可以形成HE₁ₘ谐振模式,增强特定入射光的光吸收。通过调制外加偏压的极性,器件可以实现近红外/短波红外双波段探测、近红外单波段探测、短波红外单波段探测三种探测模式的切换。器件还具有较高的灵敏度,在2000 nm光照下的探测率高达2.4 × 10¹⁰ Jones,高于多数短波红外探测器。图1 双波段红外探测器结构图及相关仿真和实验结果图2 偏压可调的近红外/短波红外双波段探测及探测率随光强的变化曲线此外,该研究还搭建了单像素光电成像系统(如图3(a)),在2000 nm光照下,当施加-0.15 V和0.15 V偏压时,该器件能对一个简单的英文字母实现成像。但是不施加偏压时,缺无法清晰成像。这表明只需要对器件施加一个小的偏置电压时,就可以将成像系统的工作区域从近红外调整到短波红外,具有较高的灵活性。图3 光电成像系统及成像结果这项研究得到了国家自然科学基金、安徽省重点研发计划、中央高校基本科研业务费专项资金等项目的资助。
  • 新型粉尘仪"以旧折价换新“活动
    &ldquo 以旧折价换新&ldquo 市场推广活动介绍:活动时间 : 2008.09-2008.11对象:同类型粉尘监测仪包括国产或进口类产品对交换产品的要求: 所提供产品能开机工作新产品特点:DUSTTRAK II 气溶胶监测仪 8530 型, 8531 型和8532 型 1. 彩屏触摸显示 2. 台式8530,8531可以称重采样(可配37mm滤盒) 3. 采用激光法,采用激光法,应用鞘气系统来隔离光学室内的气溶胶,保持光学洁净,改进光学可靠性和低维护成本 4. 具有数据无线远传功能和数据优盘存储DUSTTRAKTM DRX 气溶胶监测仪 8533 型和8534 型 1. 彩屏触摸显示 2. 台式8530,8531可以称重采样(可配37mm滤盒) 3. 采用激光法,采用激光法,应用鞘气系统来隔离光学室内的气溶胶,保持光学洁净,改进光学可靠性和低维护成本 4. 具有数据无线远传功能和数据优盘存储 5. PM1, PM2.5,可吸入颗粒物,PM10和全粒径显示。全部同时显示产品价格:DustTrak II 大气粉尘监测仪 可分别测PM1/PM2.5/PM10质量浓度, 台式 8530 报价: 66969可分别测PM1/PM2.5/PM10质量浓度, 台式, 高浓度(400mg/m3) 8531 报价:81270可分别测PM1/PM2.5/PM10质量浓度, 手持式 8532 价: 62937DustTrak DRX 大气粉尘监测仪 同时测PM1/PM2.5/PM10的质量浓度, 台式 8533 报价:157500同时测PM1/PM2.5/PM10质量浓度, 手持式 8534 报价:125937以旧折价换新价格:产品描述 产品交换价格(人民币) DustTrak II 粉尘测量仪 可分别测PM1/PM2.5/PM10质量浓度, 台式 8530 ¥39,300 可分别测PM1/PM2.5/PM10质量浓度, 台式, 高浓度(400mg/m3) 8531 ¥48,700 可分别测PM1/PM2.5/PM10质量浓度, 手持式 8532 ¥36,600 DustTrak DRX 粉尘测量仪 同时测PM1/PM2.5/PM10的质量浓度, 台式 8533 ¥95,800 同时测PM1/PM2.5/PM10质量浓度, 手持式 8534 ¥74,9机会难得,有意者请与我公司联系!电话:010-83131370-803 传真:010-83131390
  • 国产X射线线阵探测器生产商奥龙中科正式成立
    2014年11月10日,丹东奥龙射线仪器集团有限公司旗下第五个子公司&mdash &mdash 丹东奥龙中科传感技术有限公司正式成立。  来自政府、中科院、奥龙集团的嘉宾出席了丹东奥龙中科传感技术有限公司(以下简称&ldquo 奥龙中科&rdquo )成立庆典,共同见证了这一重要时刻!丹东市邱继岩市长、中科院陈和生院士、中科院马创新等人以及奥龙集团董事长李义彬先生出席本次成立仪式,并由陈院士和邱市长为奥龙中科揭牌。  奥龙中科由奥龙集团和中国科学院高能物理所联合成立,这是继与中科院建立&ldquo 丹东奥龙射线技术及装备院士专家工作站&rdquo 之后的又一次合作。  奥龙中科主要从事:X射线数字线阵探测器系列产品的研发与应用。该产品系列化的研发与生产将成为继美国、德国、芬兰之后的第四个独立生产X射线数字线阵探测器产品的国家,中国第一台X射线线阵探测器将在奥龙中科诞生,它将提升我国X射线无损检测设备的生产制造与国际竞争力。
  • 国科大杭州高等研究院陈效双团队:基于六方氮化硼封装技术的钽镍硒非制冷红外光电探测器
    近日,国科大杭州高等研究院物理与光电工程学院陈效双研究员团队提出了一种通过六方氮化硼封装技术,实现从520 nm到4.6 μm工作波长的钽镍硒(Ta2NiSe5)非制冷红外光电探测器(PD)。该探测器在室温空气环境条件下具有较低的等效噪声功率(4.5 × 10−13W Hz−1/2)和较高的归一化探测率(3.5× 1010cm Hz1/2W−1),而且通过表征时间、偏置、功率和温度依赖等多方面因素,研究其不同波长辐射产生光电流的多重机制。此外,还展示了器件的偏振灵敏度和在不同的可见光、近红外、中波红外波长范围内的多功能成像应用。这些结果揭示了多功能的探测模式,为设计新型的纳米光电器件提供了一种新的思路。该成果以“H-BN-Encapsulated Uncooled Infrared Photodetectors Based on Tantalum Nickel Selenide”为题发表在期刊Advanced Functional Materials上(IF=19)。本工作也得到了国家自然科学基金委、上海市科委、中国科学院和浙江省自然科学基金委等项目的资助。本文利用干法转移堆叠,采用平面h-BN封装的金属-Ta2NiSe5-金属(源极和漏极)结构设计了Ta2NiSe5基PDs,如图1a所示。图1b的左侧面板显示了横截面透射电子显微镜图像,并证明原子堆中没有污染或无定形氧化物。图1d显示了在黑暗条件下和不同功率强度的激光照射(1550nm)下的I-V特性的比较,显示了近线性行为,表明Ta2NiSe5薄片和Cr/Au电极之间具有良好的欧姆接触。如图1e所示,对于窄带隙半导体Ta2NiSe5,光激发载流子的短瞬态寿命减少了电荷分离时间。Ta2NiSe5的高迁移率可以实现电场驱动的光生载流子的快速传输,降低复合的概率。520 nm至2 µm范围内的光响应机制被认为是光电导效应(PDE)。由于PDE,带间跃迁产生的电子-空穴对被施加的电场分离,并被图1h左侧面板中的电极收集。在可见光和近红外光谱中吸收光子,只要它们具有超过带隙的能量,就会触发电子-空穴(e-h)对的产生,从而调节材料的电导率。随后,这些产生的e-h对在外部电场的诱导下分离,产生光电流。基于Ta2NiSe5的PD在1550 nm处0 V和±1 V的扫描光电流映射(图1h)很好地验证了上述光电流起源的推测。图1. Ta2NiSe5基PD在大气环境中不同激光波长和功率下的光电特性。(a)基于Ta2NiSe5的PD的示意图。(b)Ta2NiSe5基PD的横截面TEM图像和相应的元素映射。(c)剥离的Ta2NiSe5纳米片的SEM图像和EDS元素图谱。(d)在1550 nm激光照射下,不同功率下的Iph-Vds曲线。(e)基于Ta2NiSe5的PD的单个响应过程,Vds为1V。(f)从具有绝对值的I-t曲线中提取的Vds和Plight相关光电流。(g)在1V偏压下基于Ta2NiSe5的PD下的光电流的线性功率和亚线性功率依赖性。(h)1550 nm激光照射下典型Ta2NiSe5基PD的扫描光电流图,以及−1、0和1 V偏压照射下从Ta2NiSe5到电极的光生载流子传输过程的说明。泡利阻塞抑制了在4.6 μm(0.27 eV)处产生电子-空穴对的直接光学跃迁。热效应机制被认为是控制MWIR区域光探测过程的潜在物理机制,如光热电效应和辐射热效应。对于辐射热效应的贡献,不需要外部偏置来产生光电流,如图2a所示,而不是依赖于自供电的工作模式。辐射热效应是指沟道材料由于吸收均匀的红外辐射而引起温度升高,从而导致电导率或光吸收等电学或光学性质变化。值得注意的是,辐射热效应需要外加电场。为了确定控制MWIR探测过程的主要机制,光响应被记录为功率和Vds的关系。光电流呈现负极性、零极性和正极性三个特征区域,分别对应图2a中的区域I、II和III。通过测量Ta2NiSe5基PDs电阻的温度依赖性(4-400 K),器件电阻的温度依赖性表现出典型的半导体热激发输运性质,表明热效应可以有效地增强器件电导(图2b)。电阻的温度系数(TCR)是辐射热效应的一个关键指标,在Vds=1 V时,Ta2NiSe5基PDs的TCR为-1.9% K-1。与快速的可见光-近红外光响应相反,在关闭光后漏极电流缓慢恢复,响应时间≈24 ms(图2c)。辐射热效应可以解释明显的光响应与缓慢的下降和上升时间,而不是光电导效应。该值是典型的辐射热特性(1-100 ms),因为吸收MWIR光子后热电子的能量转移到晶格,进一步改变沟道电导。此外,在传热和耗散过程中,h-BN利用极高的导热系数有效地消散探测器产生的热量。光电流的产生分为两种状态。首先,沟道材料在吸收MWIR光子后改变自身电导率,其次,通过驱动外电场产生光电流(图2d)。与PTE中取决于塞贝克系数的光电流符号不同,辐射热光电流的符号取决于外部电场。为了直观地揭示Ta2NiSe5基PDs的光响应机制,本文利用扫描光电流成像技术对光电流分布进行成像(图2e)。在0 V偏置照射下,几乎没有观察到光电流,而在±1 V的外偏置照射下,整个沟道的光电流相当均匀。诱导的电导变化可能是入射光下温度升高期间产生电流的载流子数量变化的结果。Ta2NiSe5基PDs具有独特的性能,它们可以在室温下工作而不会性能下降,这使得它们有希望用于辐射热探测应用。此外,该器件无需p-n结即可工作,简化了制造过程。图2. 基于Ta2NiSe5的PD在4.6 µm光照下的光响应。(a)从I-t曲线中提取的Vds和Plight相关光电流。(b)Ta2NiSe5纳米片电阻的温度依赖性。(c)Vds为1V的基于Ta2NiSe5的PD的单个响应过程。(d)基于Ta2NiSe5的器件在4.6 µm激光照射下的晶格加热的典型示意图。(e)4.6 µm激光照射下典型Ta2NiSe5基PD的扫描光电流图,以及−1、0和1 V偏压照射下测辐射热机制器件的能带对准。接下来,520 nm-4.6 µm波长范围内的光的光谱响应度如图3a(左纵轴)所示,在4.6 µm处峰值为0.86 A W−1。在图3a(右纵轴)中,在不同激发波长上进行的EQE测量表明,随着波长的增加,EQE逐渐下降。由入射光子和晶格振动之间的相互作用产生的有限的能量转换效率,以及两端电极的有限收集,通过阻碍入射光子到光生载流子的有效转换,降低了材料的量子效率。重要的是,从可见光到MWIR光谱范围(520 nm-4.6 µm)实现了0.23至82.22的EQE值。与许多传统报道的基于低维材料的PD相比,基于Ta2NiSe5的PD的EQE显著更高,如图3b所示。从1 Hz到10 kHz测量的电流噪声功率谱如图3c所示,然后将NEP计算为NEP=in/RI(图3d),其中在520 nm处获得的最小NEP≈0.45 pW Hz−1/2,在4.6 µm处获得的最低NEP≈18 pW Hz−1/2。基于Ta2NiSe5的PD的较低NEP证明了它们区分信号和噪声的优异能力。图3e显示了与传统大块材料和基于2D材料的PD相比,基于Ta2NiSe5的PD在不同偏压下的波长依赖性特异性检测。对于光电导和测辐射热计响应,D*显示出3.5×1010至8.75×108cm Hz1/2W−1的轻微波动。我们的PD的D*与最先进的商业PD相当,并且高于基于可见光到中红外区域的2D材料的PD。图3. 基于Ta2NiSe5的PD的可见光至MWIR区域的宽带光响应。(a)Vds=1时RI(蓝色实心正方形)和EQE(红色实心圆)的波长依赖性。(b)基于Ta2NiSe5的PD与2D和块体材料PD的EQE的比较。(c)从1 Hz到10 kHz测量的电流噪声功率谱。(d)基于Ta2NiSe5的PD与以前的PD的NEP性能比较,插图显示了NEP的波长依赖性。(e)不同波长下的比探测率(D*)与基于2D材料的最先进的其他PD以及商用红外PD的比较。为了确定基于Ta2NiSe5的PD的偏振依赖性,我们进行了如图4a所示的实验。垂直入射光使用格兰泰勒棱镜进行偏振,通过旋转半波片同时保持恒定的激光功率来改变样品的激光偏振方向和b轴之间的关系。对最具代表性的638 nm激光偏振特性进行研究,图4b,c显示,随着极化角的变化,光电流表现出显著的周期性变化,最大值和最小值分别沿Ta2NiSe5纳米片的b轴和a轴方向获得。值得注意的是,图4c中的偏振依赖性光响应图显示了由于Ta2NiSe5晶体的[TaSe6]2链的潜在1D排列而导致的两片叶子的形状。最终结果显示,各向异性比(Iph-max/Iph-min)达到约1.47,表明基于Ta2NiSe5的PD的整体性能优于大多数其他报道的PD,如图4f所示,并为设计未来的多功能、空气稳定的光电子器件提供了广阔的前景。图4. 基于Ta2NiSe5的PD的偏振敏感光电检测。(a)利用Ta2NiSe5材料的基于纳米片的偏振敏感光电探测器的示意图。(b)在638 nm激光源下记录的光偏振方向为0°至360°的时间分辨光响应。(c)在638 nm偏振激光下,Vds为−1至0V的光电流中各向异性响应的各向异性响应图。(d)通过在638 nm激光下扫描Ta2NiSe5基PD获得的光电流图,偏振角从0°到180°不等。(e)创建极坐标图以显示在638 nm线性偏振激光照射下在40、36和17 nm厚度下产生的角度分辨光电流。(f)与其他常用的2D和1D材料相比,光电流各向异性比和光响应范围。为了充分探索基于Ta2NiSe5单元的PD在多应用成像中的潜力,如图5a所示构建了一个成像系统。采用逐点或逐像素覆盖整个物体区域,用聚焦的可检测光束照射物体,PD检测到的光电流信号由锁定放大器、前置放大器和计算机收集,计算机记录位置坐标生成高质量图像。为了测试基于Ta2NiSe5的PD的成像能力,将具有“HIAS”图案(15 cm×5 cm)的中空金属板放置在520 nm激光器前面,并以优于0.5 mm的高分辨率成功捕获了所产生的成像,如图5b所示。通过控制外部偏置,可以改变PD在638 nm照明下的响应,并成功实现物体成像清晰度,如图5c所示。在NIR范围内,在基于Ta2NiSe5的PD中获得了覆盖载玻片的钥匙锯齿状边缘的高对比度图像(图5d)。此外,基于Ta2NiSe5的设备在近红外和MWIR区域都表现出高度稳定的响应,确保了高对比度成像以智能识别宏观物体。为了证明这一特性,在1550 nm和3.2 μm处实现了复合物体(硅片和长尾夹)的双通道成像。如图5e所示,近红外光只能检测到一半的长尾夹,而MWIR辐射可以显示整个长尾夹。结果证明了基于Ta2NiSe5的PD在军事和民用应用中检测隐藏物体的潜力。图5. Ta2NiSe5基PD的光电成像应用。(a)使用PD作为成像像素的成像系统的示意图。(b)520 nm处的“HIAS”物体(上图)和相应的高分辨率成像图(下图)。(c)在638 nm处,Vds为0.05、0.1、0.5和1 V的“H”对象。(d)1550 nm覆盖载玻片的钥匙成像。(e)在1550 nm和3.2 µm处被硅片部分隐藏的长尾夹的成像。本文揭示了h-BN封装的Ta2NiSe5基PD在环境条件下在520 nm至4.6 µm的宽光谱范围内工作的特殊光电特性,受光电导和测辐射热效应的控制。光电探测器同时表现出宽带和快速的光电探测能力,具有显著的响应性,超过了现有商业室温探测器的性能。基于Ta2NiSe5的PD的室温响应度达到了34.44 AW−1(520 nm)、32.14 AW−1(638 nm)、29.81 AW−1(830 nm)、20.92 AW−1(1550 nm),16.58 AW−1(2 µm)和0.86 AW−1(4.6 µm)。基于Ta2NiSe5的PD的独特光学特性使其适合于各种应用,包括传感、成像和通信,并且它们与其它2D材料的集成可以进一步增强它们的性能和功能。因此,这项工作的研究为利用2D材料设计稳定的光电探测器铺平了道路,为推进下一代红外光电子研究的发展做出了贡献。论文链接:https://onlinelibrary.wiley.com/doi/10.1002/adfm.202305380
  • 光学显微镜、电镜用于地震灾区石棉粉尘检测
    2013年4月20日上午八时零二分,四川省雅安市芦山县地区发生7.0级地震,地震造成重大人员伤亡和财产损失。地震发生后,科技部紧急研究部署四川雅安地震抗震救灾科技工作,并在科技部门户网站发布抗震救灾实用技术手册,供地震灾区选用。在抗震救灾实用技术手册中,发布了地震灾区石棉粉尘检测技术。具体信息如下:  灾后各灾区的损坏建筑的清理、拆除、重建工作非常繁重,在这个过程中,粉尘的污染是个十分重要的问题,特别是很多建筑使用了或多或少的石棉材料,由此产生的石棉粉尘会对人体健康造成危害。本手册内容为针对石棉粉尘的分析监测技术和使用了石棉材料的建筑物的拆解及石棉废弃物的安全处理处置操作技术,以备地震灾区在工作中参照采用。  地震灾区使用了石棉材料的建筑物的安全拆解及石棉废弃物的处理处置应遵循专人按章操作,严密防护,安全、妥善贮存运送,指定地点集中处置,在整个过程中均设立明显示警标志,确保在拆解、处理处置过程及处置后的环境安全的原则。在工作过程中,要针对工作现场及周边进行石棉纤维污染的监测,防止造成污染,确保人体健康。  石棉纤维的检测方法有多种,主要有光学显微镜法、电镜法、X-射线衍射法等。其中光学显微镜法原理简单、所使用光学显微镜较为常见。而电镜法则准确度比较高,可以检测出较为细小的石棉纤维颗粒。  一.固体样品的检测  可参照HJ/T 206-2005《环境标志产品技术要求 无石棉建筑制品》的分析方法。主要方法如下:  1.样品的采集  固体材料中石棉检测工作的样品采集方法如下。  在材料的不同部位取下样品若干块,取样量约50-200克左右。  2.样品的预处理  1)被测样品中有机物质的去除。采用高温烘烤方法,在马弗炉中在400-500℃的温度下加热2小时左右,除去被测样品中的有机物质。  2)块状样品的粉碎。采用机械手段进行破碎和研墨至粉末状。(若使用破碎机,粉碎时间不要太长。不然会造成石棉纤维成为细小颗粒,无法辨别)  3)纤维束状和絮状样品。用剪子剪碎后,可用研钵稍做研磨,以使缠绕成团的纤维和过粗的纤维束可以分离舒展。或用镊子等工具从边缘剥离少许。  4)将粉碎或研磨好的样品进行充分的混匀待用。  3.样品的分析  采用光学显微镜法分析参照HJ/T 206-2005《环境标志产品技术要求 无石棉建筑制品》。  采用扫描电镜检测参照ISO 14966-2002《环境空气—无机纤维颗粒计数浓度的测定—扫描电子显微镜法》。  二.空气样品中石棉纤维的检测  1.光学显微镜法  样品采集就是将含石棉尘的空气抽取通过采样滤膜,石棉尘于滤膜上透明固定后,在相衬显微镜下计数,根据所采气体体积计算出每立方厘米气体中的石棉尘的根数。  采样及测定方法参照HJ/T41-1999《固定污染源排气中石棉尘的测定-镜检法》。  2.扫描电镜法  样品采集及测定可参照ISO 14966-2002《环境空气—无机纤维颗粒计数浓度的测定—扫描电子显微镜法》。  样品采集时可使用适用于扫描电镜观测的0.2微米或者0.4微米孔径的核孔膜。采样流量5-10L/min.。采样时间根据粉尘污染情况确定,以不造成颗粒物重叠为宜。  参照ISO 14966-2002 标准,在2000倍下进行观察和计数,计数规则参照上述标准。  技术来源  单位名称: 国家环境分析测试中心  联系地址: 北京朝阳区育慧南路1号 邮编:100029  联系人: 董树屏  联系电话:13601358418  e-mail: yrhuang@cneac.com  石棉的定义及可能含有石棉材料的建筑材料  石棉定义:石棉主要有两类,一类指属于蛇纹岩类的纤维状矿物硅酸盐,即温石棉(白石棉) 另一类是指闪石类纤维状矿物硅酸盐,即阳起石、铁石棉(棕石棉、镁铁闪石-铁闪石)、直闪石、青石棉(蓝石棉)、和透闪石。  石棉粉尘是指环境中悬浮在空中的石棉微粒。直径小于3微米,长度与直径之比大于3,纤维测量长度大于5微米的石棉纤维对人体的危害最大。  我国建筑材料中使用的主要是温石棉。可能含有石棉材料的建筑材料包括:石棉水泥瓦,钢丝网石棉水泥波瓦,石棉水泥平板,TR建筑平板,石棉硅酸钙板,石棉水泥管,石棉纱、线,石棉绳,石棉布,石棉带,热绝缘石棉纸,衬垫石棉纸、板,保温石棉板,泡沫石棉,石棉衣著,石棉被等。在这些材料中水泥制品比较坚固稳定,而保温石棉板、绝缘材料、泡沫石棉的材料较为松散易碎,更易于进入空气中造成污染。
  • AGV呼出气体酒精含量探测器检定装置研制
    table border="1" cellspacing="0" cellpadding="0" width="600"tbodytrtd width="19%"p style="line-height: 1.75em "成果名称/p/tdtd width="80%" colspan="3"p style="line-height: 1.75em "AGV呼出气体酒精含量探测器检定装置/p/td/trtrtd width="19%"p style="line-height: 1.75em "联系人/p/tdtd width="35%"p style="line-height: 1.75em "潘义/p/tdtd width="16%"p style="line-height: 1.75em "联系邮箱/p/tdtd width="28%"p style="line-height: 1.75em "9026427@qq.com/p/td/trtrtd width="19%"p style="line-height: 1.75em "单位名称/p/tdtd width="80%" colspan="3"p style="line-height: 1.75em "四川中测标物科技有限公司/p/td/trtrtd width="19%"p style="line-height: 1.75em "成果成熟度/p/tdtd width="80%" colspan="3"p style="line-height: 1.75em "□正在研发 □已有样机 □通过小试 □通过中试 ■可以量产/p/td/trtrtd width="19%"p style="line-height: 1.75em "合作方式/p/tdtd width="80%" colspan="3"p style="line-height: 1.75em "□技术转让 □技术入股 □合作开发 ■其他/p/td/trtrtd width="100%" colspan="4"p style="line-height: 1.75em "strong成果简介: /strongbr/ /pp style="text-align:center"img src="http://img1.17img.cn/17img/images/201603/insimg/fa275657-9b17-435f-aca9-b321d2e44db0.jpg" title="5-AGV呼出气体酒精含量探测器检定装置.png" width="350" height="233" border="0" hspace="0" vspace="0" style="width: 350px height: 233px "//pp style="line-height: 1.75em " 特点: 本检定装置以国际标准《ISO 6145-8 气体分析-动态体积法制备校准混合气体 第9部分:饱和法》为理论基础,研制出连续动态产生饱和酒精气体的技术工艺,结合本单位的气体稀释配气相关技术专利,可制备浓度范围为(40~500)& #956 mol· mol-1的酒精气体,完全满足《JJG 657-2006 呼出气体酒精含量探测器检定规程》对检定装置的要求,更率先与国际权威标准接轨,依据国际法制计量技术委员会颁布的《OIML R126 Evidential Breath alcohol analyzers》最新版的要求,实现了出口酒精气体温度、湿度的准确控制。检定装置具有清晰友好的人机对话界面,简单易用。 br/ 指标:浓度范围:(40-500)× 10br/ 扩展不确定度:Urel = 2%, k = 2 br/ 浓度调节时间: 15sbr/ 重复性:0.2%br/ 酒精气体温度: 34℃± 0.5℃,相对湿度大于90%/p/td/trtrtd width="100%" colspan="4"p style="line-height: 1.75em "strong应用前景: /strongbr/ 呼出气体酒精含量检测仪标准装置是应用于保障呼出气体酒精浓度计量准确性与溯源可靠性的专业设备。近年来随着汽车保有量的迅速增长,饮酒驾驶也逐渐成为当前重要的道路交通危害来源。我国交通执法部门大量采用呼出气体酒精含量检测仪作为判断是否酒驾的执法工具,酒检仪的计量性能是否准确关系到执法的公正性和权威性。研发呼出气体酒精含量检测仪标准装置对保障社会公共及人民生命财产安全具有重要作用,也是经济可持续发展的重要保障。呼出气体酒精含量检测仪标准装置建立以后,可以作为社会公用计量标准开展各类呼出气体酒精含量检测仪的检定校准工作,为社会提供呼出气体酒精浓度检测的溯源服务;也可以作为气体酒精传感器及检测设备的计量性能测试平台,联合各生产企业及科研、计量测试单位开展研发试验,提高气体酒精传感器及检测设备的技术水平。/p/td/trtrtd width="100%" colspan="4"p style="line-height: 1.75em "strong知识产权及项目获奖情况: /strongbr/ 实用新型专利1项 br/ 专利名称:一种呼出气体酒精含量探测器检定装置 br/ 专利号:ZL201320830646.3/p/td/tr/tbody/tablepbr//p
  • 新型石墨烯光学探测器实现监测光谱从可见光到红外辐射
    德国亥姆霍兹德累斯顿罗森多夫(HZDR)研究中心的科学家通过在 SiC 上一个微小的片状石墨烯加上天线,开发出一种新的光学探测器。据称,这种新型探测器可以迅速的反射所有不同波长的入射光,并可在室温下工作。这是单个检测器首次实现监测光谱范围从可见光到红外辐射,并一直到太赫兹辐射。  HZDR 中心的科学家们已经开始使用新的石墨烯探测器用于激光系统的精确同步。据HZDR 物理与材料科学研究所的物理学家 Stephan Winnerl 称,相对于其他半导体,如硅或砷化镓,石墨烯可以承载具有超大范围光子能量的光,并将其转换成电信号,只需要一个宽带天线和恰当的衬底来。  石墨烯片和天线组件吸收光线,将光子的能量转移至石墨烯的电子中。这些“热电子”能够增加探测器的电阻,产生快速电信号,在短短 40 皮秒内便可完成入射光注入。  衬底的选择是提高捕光器的关键。过去使用的半导体衬底吸收了一些波长的光,但碳化硅可在光谱范围不主动吸收光。 此外,天线的作用就像一个漏斗,捕捉长波红外和太赫兹辐射。目前,科学家们已经能够将光谱范围增加为此前型号探测器的90倍,所能探测到的最短波长比最长的小 1000倍。而在可见光中,红光波长最长,紫光波长最短,红光波长仅是紫光的两倍。  该光学探测器已被 HZDR 中心采用,用于易北河中心的两个自由电子激光器的精确同步。这种精确同步对“泵浦探针”实验尤为重要,研究员使用其中一个激光器激发材料,再使用另一个具有不同波长的激光器进行测定。在这种实验中,激光脉冲必须精确同步。因此,科学家们使用石墨烯探测器如同使用秒表。精确同步的探测器可以显示出激光脉冲何时达到目标,大带宽有助于防止探测器变为潜在错误来源。该种探测器的另一个优点是,所有的测量可以在室温下进行,避免了其他探测器所需的昂贵和费时的氮气或氦气冷却过程。
  • 华南理工研制新型有机半导体红外光电探测器,性能超越传统近红外探测器
    随着近红外(NIR)和短波红外(SWIR)光谱在人工智能驱动技术(如机器人、自动驾驶汽车、增强现实/虚拟现实以及3D人脸识别)中的广泛应用,市场对高计数、低成本焦平面阵列的需求日益增长。传统短波红外光电二极管主要基于InGaAs或锗(Ge)晶体,其制造工艺复杂、器件暗电流大。有机半导体是一种可行的替代品,其制造工艺更简单且光学特性可调谐。据麦姆斯咨询报道,近日,华南理工大学的研究团队研制出基于有机半导体的新型红外光电探测器。这项技术有望彻底改变成像技术,该有机光电二极管在近紫外到短波红外的宽波段内均优于传统无机探测器。这项研究成果以“Infrared Photodetectors and Image Arrays Made with Organic Semiconductors”为题发表在Chinese Journal of Polymer Science期刊上。研究团队采用窄带隙聚合物半导体制造薄膜光电二极管,该器件探测范围涵盖红外波段。这种新技术的成本仅为传统无机光电探测器的一小部分,但其性能可与传统无机光电探测器(如InGaAs光电探测器)相媲美。研究人员将更大的杂原子、不规则的骨架与侧链上更长的分支位置结合起来,创造出光谱响应范围涵盖近紫外到短波红外波段的聚合物半导体(PPCPD),并制造出基于PPCPD的光电探测器,相关性能结果如图1所示。图1 基于PPCPD的光电探测器性能在特定探测率方面,该器件与基于InGaAs的探测器相比具有竞争力,在1.15 μm波长上的探测率可达5.55 × 10¹² Jones。该有机光电探测器的显著特征是,当其集成到高像素密度图像传感器阵列时,无需在传感层中进行像素级图案化。这种集成制造工艺显著简化了制备流程,大幅降低了成本。图2 短波红外成像系统及成像示例华南理工大学教授、发光材料与器件国家重点实验室副主任黄飞教授表示:“我们开发的有机光电探测器标志着高性价比、高性能的红外成像技术的发展向前迈出了关键的一步。与传统无机光电二极管相比,有机器件具有适应性和可扩展性,其潜在应用范围还包括工业机器人和医疗诊断领域。”该新型有机光电探测器有望对各行各业产生重大影响。它们为监控和安全领域的成像系统提供了更为经济的选择。未来,基于有机技术的医疗成像设备有望更加普及,价格也会更加合理,从而在医疗环境中实现更全面的应用。该器件的适应性和可扩展性还为尖端机器人和人工智能等领域的应用铺平道路。这项研究得到了国家自然科学基金(编号:U21A6002和51933003)和广东省基础与应用基础研究重大项目(编号:2019B030302007)的资助。论文链接:https://doi.org/10.1007/s10118-023-2973-8
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制