粉体剪切测试仪

仪器信息网粉体剪切测试仪专题为您提供2024年最新粉体剪切测试仪价格报价、厂家品牌的相关信息, 包括粉体剪切测试仪参数、型号等,不管是国产,还是进口品牌的粉体剪切测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合粉体剪切测试仪相关的耗材配件、试剂标物,还有粉体剪切测试仪相关的最新资讯、资料,以及粉体剪切测试仪相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

粉体剪切测试仪相关的厂商

  • HT ITALIA来自于美丽的欧洲小镇——意大利法恩莎,公司自1983年成立以来,产品年销售额超过4000万欧元。并在2009年在中国广州建立办事处,负责中国地区的产品销售和售后服务。 HT ITALIA公司设立专业的研发团队,在1992年研制生产出HT2038,1999年研制生产了世界上第一台带电能质量分析仪功能的便携式多功能电气安全测试仪——GENUIS 5080,在2001推出具有三相电能质量分析仪功能的多功能电气安全测试——GSC系列,刷新了便携式仪器的多功能之最。2007年HT公司开始涉及太阳能光伏系统测试,以提供太阳能光伏电站的现场测试仪表,HT可提供全面的太阳能光伏电站测试仪表:并网太阳能光伏电站性能验证测试SOLAR300N,太阳能电池I-V特性曲线分析测试仪I-V400,离网太阳能光伏电站性能验证测试SOLAR I-V等。近年来,HT公司又基于自身的设计现场测试理念,推出自主品牌的全新系列红外热像仪产品,以充分满足客户的个性化需求,HT品牌的红外热像仪家族包括:THT41/42/44的经济型系列,THT49的专业级红外热像仪和THT50专家型红外热像仪。现在HT公司拥有:红外热成像仪,电气安全测试仪(含:绝缘电阻测试仪,接地电阻测试仪,漏电保护开关-RCD测试仪,耐压测试仪和多功能电气安全测试仪)、电能质量分析仪、通用测试仪表(含:数字万用表,数字电流钳表,红外测温仪,数字测温仪,数字噪声计,激光测距仪等)、GEF专业绝缘工具(含:绝缘镙丝批,各种绝缘剪钳,各种型号的工具套包,工具箱等)等系列产品。
    留言咨询
  • 山东省潍坊瑞格测试仪器有限公司是一家专业从事分析检测仪器的研发、生产、销售及服务于一体的高科技企业。公司产品主要应用于农业科研、土壤分析、地质勘探、公路建设、食品、医药、化工、卫生防疫、环保检测等领域。 目前公司主要有四大系列产品,分别为粉碎系列、药残检测系列、田间信息管理系列、样前处理系列。产品获得国家17项专利,其中自主研发的“改进型土壤粉碎机”入围2011年度国家星火计划。产品在中科院、社科院、环科院、中国农业大学、山东大学等多个科研院校中得到广泛应用,并在全国多个省土肥站测土配方施肥项目仪器采购中中标。公司还积极拓展海外业务,且远销印度及东南亚等地区。 公司自创立以来,本着“质量第一,用户至上”的原则,秉承“科技服务社会”的理念,积极引进吸收国内外的先进技术,不断研制开发出优质、高效、实用的新型产品。
    留言咨询
  • 山东省潍坊瑞格测试仪器有限公司成立于2008年3月,是一家专业生产和销售分析检测仪器设备的高科技公司,总注册资金100万元,现有员工35人,其中工程技术人员14人,高级职称技术人员3人。公司积极引进国内外的先进技术,目前,我们开发的PRT系列农药残毒速测仪,采用国内先进技术,具有新颖的操作界面、精准的测量装置及池位自动识别功能等优点,已领先于国内同行业; FT系列土壤粉碎机是我公司具有多项技术专利的产品,其中FT-2000\FT-3000型粉碎机上运用的特殊除尘装置解决了普通粉碎机在粉碎土样时粉尘飞扬的情况,可有效地保护实验室环境和操作人员的身体健康,产品在全国23个省土肥站测土配方施肥项目仪器采购中中标,得到广大用户的好评,与国内同类产品相比优势明显;行星式球磨机系列产品主要应用于环境监测和土壤污染治理实验室以及土肥检测中的微量元素检测,具有效率高、无样品污染、噪音低等优点;针对测土配方施肥项目我们成功开发出土壤养分速测仪、土壤水分测试仪等一系列产品,解决了农民在农业生产中的实际问题;另外我公司成功开发出氮吹仪系列产品和实验室器皿消毒清洗机等产品,为实验室的玻璃器皿清洗问题提供更加优化的清洗方案。我公司有较强的开发与技术合作能力,主要致力于各类化验、检测设备的研究与开发,并且与国家重点科研院校建有长期合作关系,并聘请多位行业内著名学者、专家担任公司的技术顾问。公司与山东大学控制科学与工程学院签署产学研合作协议,依托高校的技术优势,结合我公司的社会资源共同开发相关产品,服务社会。
    留言咨询

粉体剪切测试仪相关的仪器

  • FT-3200智能粉体剪切测试仪 一、描述:粉体工业在加工、存储、运输、料仓中常出现拱架/鼠孔结构;在粉粒料的贮存与输送系统中,物料的流动性、物料之间及物料与固体壁面的摩擦;在料斗的设计中,排料口的大小、料斗壁的倾斜角以及粉料对料斗壁的压力,设计不合理的料斗会给生产造成很大的困难;这些影响粉体流动行为特征;通过测量粉体流动函数FF、内摩擦函数、壁面摩擦及开放屈服强度、空气中的温湿度等数据定量分析上述现象和状态. 常用于质量部门、研发新品、改善生产工艺、配比分析、预测性研究及数据模型的建立等. FT-3200智能粉体剪切测试仪 二、功能描述:参照ASTM_D6128-97;ASTM D6682-2008和Jenike方法采用环剪方式分析粉体流动行为表征特性, 提供7寸触摸屏操作界面和PC软件曲线图位及过程数据分析操作,有中文及英文两种语言,自带数据管理及存储,系统管理,仪器自检及校准功能;高精度集成电路系统进行数据处理,可实时分析粉体流动函数FF、内摩擦函数、壁面摩擦及开放屈服强度、莫尔应力圆、屈服轨迹、的数据来定性和定量分析粉体的特性.测试预压缩直至稳态流动状态. 三、适用范围:广泛用于化工、农业、陶瓷加工、食品、化妆品、颜料.制药、金属粉末、石墨粉、塑料、橡胶、混泥土、沙粒物等粉体散粒物料领域质量管控和研究,常用于生产加工企业、科研院所和大中专院校. FT-3200智能粉体剪切测试仪 四、技术参数:1.主应力(垂直压力):0-500N 2.扭矩范围: 0-200N.m 3.剪切速度:0.1 mm/sec~5 mm/sec.4.采用摩尔圆定律分析摩擦函数5.自动数据测量与处理 6.采用预压实对样品进行处理.7.剪切方式:正、反向剪切模式8.仪器自动自我校准功能 9.剪切盒,自带两种铝制盖子分别适用于内摩擦和壁摩擦,其他材料可以定制.10.溢料收集盘和样品整理刀片 11.通讯接口:USB,RS-232,485接口 12.温湿度范围:8-40℃ 相对湿度在35-80% 13. 电源采用220V+10% /50Hz
    留言咨询
  • 环形剪切测试仪 400-860-5168转4187
    环形剪切测试仪RST-XSS可执行计算机控制的关于粉体和其它散装固体材料的流动性能测试,模拟实际流体所处环境。流动性能在很多场合有重要的应用,包括产品研发、产品表征、质量控制、比较性测试、故障排除和流道设计等。 材料流动性能决定了它在料桶、漏斗和进料器及其它处理设备中的行为。了解这些性能对于产品开发非常关键,能够避免流动性问题。流动性能对于质量控制同样非常重要。在将散装固体放入体系之前测试它的流动性能, 你可以舍弃不满意的批次料,从而避免去解决因流动性而引起的耗费巨大的工艺问题。 重要的流动性能包括粘结强度(它会随时间增加)、内部及容器壁摩擦、体积密度(松密度)和可压缩性,虽然这里的每一种性能都会受到材料的粒径分布、粒子形状、表面特性和水分含量的影响,但并没有直接的数量关系可由这些影响因素来计算出流动性能。因此,我们只能考虑选择测试仪来直接测试上述这些流动性能。 环形剪切测试仪是受到广泛认可的测量粉体和散装固体的流动性能的方法。本测试仪使用方便, 操作者只需要极少量的培训即可上手,此外,测试和结果分析所需时间也很短。 这款测试仪功能很强大,从自由流动,到流动性很差,甚至是需要很大剪切变形力才能流动的材料,它都能测试。可施加的应力覆盖范围很大,与您的材料的处理方式保持一致。不同大小的剪切池可适应不同量的样品,甚至是极少量。该款测试仪甚至还可用于测试材料的损耗性能,比如颗粒料、片料和小丸料。
    留言咨询
  • 环形剪切测试仪 400-860-5168转4187
    环形剪切测试仪RST-01.pc可执行计算机控制的关于粉体和其它散装固体材料的流动性能测试,模拟实际流体所处环境。流动性能在很多场合有重要的应用,包括产品研发、产品表征、质量控制、比较性测试、故障排除和流道设计等。 材料流动性能决定了它在料桶、漏斗和进料器及其它处理设备中的行为。了解这些性能对于产品开发非常关键,能够避免流动性问题。流动性能对于质量控制同样非常重要。在将散装固体放入体系之前测试它的流动性能, 你可以舍弃不满意的批次料,从而避免去解决因流动性而引起的耗费巨大的工艺问题。 重要的流动性能包括粘结强度(它会随时间增加)、内部及容器壁摩擦、体积密度(松密度)和可压缩性,虽然这里的每一种性能都会受到材料的粒径分布、粒子形状、表面特性和水分含量的影响,但并没有直接的数量关系可由这些影响因素来计算出流动性能。因此,我们只能考虑选择测试仪来直接测试上述这些流动性能。 环形剪切测试仪是受到广泛认可的测量粉体和散装固体的流动性能的方法。本测试仪使用方便, 操作者只需要极少量的培训即可上手,此外,测试和结果分析所需时间也很短。 这款测试仪功能很强大,从自由流动,到流动性很差,甚至是需要很大剪切变形力才能流动的材料,它都能测试。可施加的应力覆盖范围很大,与您的材料的处理方式保持一致。不同大小的剪切池可适应不同量的样品,甚至是极少量。该款测试仪甚至还可用于测试材料的损耗性能,比如颗粒料、片料和小丸料。
    留言咨询

粉体剪切测试仪相关的资讯

  • Granutools发布粉体剪切性能分析仪 Granudrum新品
    说明GranuDrum是一种基于转鼓原理的粉体流动性自动测量方法。实验时,粉体样品将带有透明侧壁的水平圆筒的一半填满。圆筒绕轴旋转的角速度从每分钟2转到每分钟60转。运动到每一个角速度时,CCD相机都会拍很多快照。然后,对于每个转速,从平均界面位置计算出流动角度(一些文献中也称为“静止的动态角度”),从界面波动量计算出动态内聚指数。流动角值越低,则流动性越好。原理流动角度受一系列参数的影响:颗粒间的摩擦、颗粒的形状、颗粒间的内聚力(范德瓦尔斯力、静电力和毛细管力)。动态粘聚指数只与颗粒间的粘聚力有关。粘性粉体趋向于间歇流动,而非粘性粉体则为规则流动。因此,接近于零的动态粘性指数对应于非粘性粉体。当粉体的粘结性增大时,粘结指数也随之增大。因此,粘结指数也可以量化粉体的展布性。优势测量简单、快速、直观、易于解释。圆筒的填充和清洗简单快捷。在安全转移到仪器之前,圆筒可以放在手套箱、防尘罩或封闭的环境中进行操作。通过软件的直观性,平均和方差结果都很容易获得,并允许结果的比较。自动收集和存储所有的图片和数据,以便后期处理。数据传输和自动生成报告也非常方便。标准操作程序是可记录,增加了测量的重复性。圆筒具有化学涂层,可以处理各种规格的粉粉体。独特性测量范围广:低速和高速(1至70转/分,即4至290毫米/秒)下的动态静止角。简单明了的数据解释和物理原理。使用波动量来量化粉体的粘结力。在实验过程中,粉体的粘结力可能会发生变化,这种被称为“粉体触变性”的特性可以通过GranuDrum来表达。高测量重复性(例如不锈钢等高密度材料= 1.8%,或其他低密度材料= 4.2%)。理想的设计保证了稳定性和长使用寿命。圆筒可以通过手套箱在特定的环境(惰性气体、湿度和温度)下调节。应用在具有广泛的应用,需要对粉体流动性进行分析。适用于高剪切、低压力的工况下,如增材制造、铺展性、制药行业涉及的气力输送等。在增材制造的铺粉过程中,可用于量化粉体铺展能力和优化铺粉速度 (由于其原有的粘性指数分析)。气力输送过程中粉体流动特性的预测。可选附件额外的测量圆筒,满足小样品量测量 (10、20、30和40ml),特别适用于制药和贵金属。适用于高温工况的测量圆筒,可使用高达200℃校准套件。离线分析软件授权许可:一台计算机运行测量,同时可使用另一台计算机分析数据,从而提高实验和数据分析效率。GRANUDRUM 参数图 1: 增材制造中的粉体铺展性研究图 2: 气动传输工艺优化创新点:1.测量范围广:低速和高速(1至70转/分,即4至290毫米/秒)下的动态静止角。2.简单明了的数据解释和物理原理。3.使用波动量来量化粉体的粘结力。4.在实验过程中,粉体的粘结力可能会发生变化,这种被称为“粉体触变性”的特性可以通过GranuDrum来表达。5.高测量重复性(例如不锈钢等高密度材料= 1.8%,或其他低密度材料= 4.2%)。6.理想的设计保证了稳定性和长使用寿命。7.圆筒可以通过手套箱在特定的环境(惰性气体、湿度和温度)下调节。粉体剪切性能分析仪 Granudrum
  • 施一公组首次报道人源剪切体原子分辨率结构
    p  span style="font-family: 楷体, 楷体_GB2312, SimKai "施一公教授是剪切体结构和功能研究的权威,自2015年8月以来在Science杂志先后发表了6篇研究文章,解析了酵母中剪切体催化过程中5个关键状态的高分辨率结构。5月11日,施一公教授领导的团队又在Cell杂志上发表了题为“An Atomic Structure of the Human Spliceosome”的论文,这是该研究组在这一领域发表的第7篇高水平论文,也是首个人源剪切体关键状态的原子分辨率结构,第一次在原子水平解释了剪切体催化第二步转酯反应的功能机理。该论文的第一作者分别为张晓峰、闫创业和杭婧,施一公教授和闫创业博士为共同通讯作者。特别值得一提的是,这篇Cell论文从投稿到接收只用了11天。鉴于该成果的重要意义,BioArt特别邀请了著名的结构生物学家、清华大学生命科学学院杨茂君教授撰写了该篇特别评论文章,以飨读者。/span/ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "/span/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/4bc262af-0d77-4cd2-9b46-7d997bd2ca4c.jpg" title="微信图片_20170512000929_副本.jpg"//ppspan style="font-family: 楷体, 楷体_GB2312, SimKai "/spanbr//pp  5月11日,清华大学施一公教授研究组在《细胞》杂志发表研究文章,首次报道了人源剪切体C* complex的原子分辨率结构。施一公教授是剪切体结构和功能研究的权威,自2015年8月以来在《科学》杂志先后发表了6篇研究文章,解析了酵母中剪切体催化过程中5个关键状态的高分辨率结构。这是施一公教授研究组在这一领域发表的第7篇高水平论文,也是首个人源剪切体关键状态的原子分辨率结构,第一次在原子水平解释了剪切体催化第二步转酯反应的功能机理。/pp  剪切体催化的前体mRNA剪切过程是生物体内最基础最关键的生命活动之一,是遗传信息从DNA传递给蛋白质的中心法则中关键的一环。在所有真核细胞中,基因表达分为三步进行,分别由RNA聚合酶 (RNA polymerase)、剪接体(Spliceosome)和核糖体 (Ribosome)执行。第一步简称转录(transcription),即储存在遗传物质DNA序列中的遗传信息通过RNA聚合酶的作用转变成前体信使RNA(pre-mRNA) 第二步简称剪接(splicing),即由多个内含子和外显子间隔形成的前体信使RNA通过剪接体的作用去除内含子、连接外显子,转变为成熟的信使RNA 第三步简称翻译(translation),即成熟的信使RNA通过核糖体的作用转变成蛋白质,从而行使生命活动的各种功能。描述这一过程的规律被称为分子生物学的中心法则,多个诺贝尔奖围绕此发现和阐述产生。其中,RNA聚合酶的结构解析获得2006年的诺贝尔化学奖,而核糖体的结构解析获得2009年的诺贝尔化学奖。/pp  由于真核生物中的基因编码区中存在不翻译成蛋白质的序列(称为内含子),染色体DNA转录出来的前体mRNA(pre-mRNA)并不直接参与蛋白质翻译,而是需要先将其中的内含子片段去除,才能进入核糖体进行蛋白质合成。内含子的去除需要通过两步转酯反应来实现:首先,位于内含子序列中下游被称为分支点(branch point sequence)的序列中有一个高度保守的腺嘌呤核苷酸(A),其2’羟基亲核攻击内含子5’末端的鸟嘌呤(G),于是第一步反应发生,形成套索结构 然后,5’外显子末端暴露出的3’-OH向内含子3’末端的鸟嘌呤发起攻击,第二步反应发生,两个外显子连在一起。通过这两步反应,前体信使RNA中数量、长度不等的内含子被剔除,剩下的外显子按照特异顺序连接起来从而形成成熟的信使RNA(mRNA)(下图)。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/8c47205d-f67a-471b-b897-662b42995cae.jpg" title="微信图片_20170512001013_副本.jpg"//pp  这两步化学反应在细胞内是由庞大、复杂而动态的分子机器——剪接体催化完成的。对于每一个内含子来说,为了调控反应的各个基团在适当时机呈现合适的构象从而发挥其活性,剪接体各组分按照高度精确的顺序结合和解离,组装成一系列具有不同构象的分子机器,统称为剪接体。根据它们在RNA剪接过程中的生化性质,这些剪接体又被区分为E、A、B、Bact、B*、C、C*、P、ILS等若干状态。剪接体由五个小核核糖核蛋白(snRNP)、十九号复合物(Nineteen Complex,简称NTC)、十九号复合物相关蛋白(NTC Related)和一系列的辅助蛋白所构成,共涉及到100多个蛋白质和至少五条RNA分子。在剪接的过程中,剪接体以前体信使RNA分子为中心,按照高度精确的顺序进行逐步组装并发生大规模结构重组,使之得以完成复杂的剪接任务。剪接是真核细胞进行正常生命活动不可或缺的核心环节,因此具有重大的生物学意义,获取剪接体在组装、激活、催化反应过程中各个状态的结构是最基础也是最富挑战性的结构生物学难题之一。/pp  此前,施一公教授研究组共报道了酵母来源的剪接反应中5个关键状态的剪接体复合物的高分辨率结构,分别是3.8埃的预组装复合物tri-snRNP、3.5埃的激活状态复合物Bact complex、3.4埃的第一步催化反应后复合物C complex、4.0埃的第二步催化激活状态下的C* complex以及3.6埃的内含子套索剪接体ILS complex。这5个酵母来源的高分辨率结构所代表的剪接体状态,基本覆盖了整个剪接通路中关键的催化步骤,提供了迄今为止最为清晰的剪接体不同工作状态下的结构信息,大大推动了RNA剪接研究领域的发展。而最新的这一篇《细胞》论文所报道的3.76埃第二步催化激活状态下的人源C* complex使我们第一次在原子分辨率上看到了人源剪切体的工作状态,并首次详细阐释了人源剪切体催化第二步转酯反应的功能机理。/pp  人源C* complex与酵母来源C* complex在结构上有许多不同。与酿酒酵母来源的复合物结构相比,在这一原子分辨率人源复合物结构中额外鉴定出9个蛋白亚基(Aquarius、Brr2、PPIL1、PRKRIP1、U5-40K、以及EJC的4个蛋白亚基)。另外,第二步反应的关键因子Slu7和Prp17在人源复合物中更加清晰。相反的,酵母复合物中第二步反应的关键因子Prp18在人源复合物中缺失,反映了人和酵母在催化第二步反应过程中功能机理的细微差别。另一个重要的差别是酵母复合物中的Ecm2和Cwc2亚基被人源复合物中的RBM22亚基所取代,使得其周围的蛋白亚基重新排布(下图)。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/f0ba68fc-ec88-43f2-b80b-2353dc5f37a3.jpg" title="微信图片_20170512001027_副本.jpg"//pp  此次发表的关于人源剪切体复合物原子分辨率结构的研究承接之前酵母来源剪切体复合物的研究工作,在攻克剪切过程详细反应机理的道路上再进一步。施一公教授这一系列的研究工作具有极为重要的意义,是对中心法则的研究中最为复杂、最为关键的一环。自1993年RNA剪接的发现被授予诺贝尔生理及医学奖以来,科学家们一直在步履维艰地探索其中的分子奥秘,期待早日揭示这个复杂过程的分子机理。剪切体一系列关键状态复合物高分辨率结构的解析,一步一步揭开了RNA剪接这一复杂生化过程神秘的面纱,可以说,这一系列研究工作是当今结构生物学领域里一项里程碑式的、有望获得诺贝尔奖的重量级工作。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201705/insimg/95c0871b-e076-40e5-8e71-19b0f0a22f55.jpg" title="微信图片_20170512001044_副本.jpg"//pp style="text-align: center "图为Cell论文的通讯作者施一公教授和卓越中心创新学者闫创业博士/pp style="text-align: right "span style="font-family: 楷体, 楷体_GB2312, SimKai "撰文丨杨茂君 (清华大学生命科学学院、结构生物学高精尖创新中心教授,“长江学者”特聘教授,国家“杰青”)/span/pp  span style="font-family: 楷体, 楷体_GB2312, SimKai "后记:到目前为止,闫创业博士已发表的53篇SCI论文中,其中在Nature、Science和Cell杂志上以第一作者(包含共同一作)或共同通讯作者身份已发表10篇研究型论文。自闫创业博士2005年进入清华化学系以来到如今成为清华结构生物学高精尖创新中心卓越学者总共已经快12年了。从施一公教授课题组的相继发表的这7篇有关剪接体结构的论文署名来看,闫创业博士是这7篇论文的第一作者(三篇)或共同第一作者(4篇),特别值得一提的是在这篇Cell文章中首次成为共同通讯作者。可以说,整个剪接体系列工作中,闫创业博士起到了中流砥柱般的作用,称得上当今结构生物学领域“夜空中最亮的星”/span。/ppbr//p
  • 高分子表征技术专题——流变技术在高分子表征中的应用:如何正确地进行剪切流变测试
    2021年,《高分子学报》邀请了国内擅长各种现代表征方法的一流高分子学者领衔撰写从基本原理出发的高分子现代表征方法综述并上线了虚拟专辑。仪器信息网在获《高分子学报》副主编胡文兵老师授权后,也将上线同名专题并转载专题文章,帮助广大研究生和年轻学者了解、学习并提升高分子表征技术。在此,向胡文兵老师和组织及参与撰写的各位专家学者表示感谢。高分子表征技术专题前言孔子曰:“工欲善其事,必先利其器”。我们要做好高分子的科学研究工作,掌握基本的表征方法必不可少。每一位学者在自己的学术成长历程中,都或多或少地有幸获得过学术界前辈在实验表征方法方面的宝贵指导!随着科学技术的高速发展,传统的高分子实验表征方法及其应用也取得了长足的进步。目前,中国的高分子学术论文数已经位居世界领先地位,但国内关于高分子现代表征方法方面的系统知识介绍较为缺乏。为此,《高分子学报》主编张希教授委托副主编王笃金研究员和胡文兵教授,组织系列从基本原理出发的高分子现代表征方法综述,邀请国内擅长各种现代表征方法的一流高分子学者领衔撰写。每篇综述涵盖基本原理、实验技巧和典型应用三个方面,旨在给广大研究生和年轻学者提供做好高分子表征工作所必须掌握的基础知识训练。我们的邀请获得了本领域专家学者的热情反馈和大力支持,借此机会特表感谢!从2021年第3期开始,以上文章将陆续在《高分子学报》发表,并在网站上发布虚拟专辑,以方便大家浏览阅读.期待这一系列的现代表征方法综述能成为高分子科学知识大厦的奠基石,支撑年轻高分子学者的茁壮成长!也期待未来有更多的学术界同行一起加入到这一工作中来.高分子表征技术的发展推动了我国高分子学科的持续进步,为提升我国高分子研究的国际地位作出了贡献.借此虚拟专辑出版之际,让我们表达对高分子物理和表征学界的老一辈科学家的崇高敬意!原文链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304.2020.20230《高分子学报》高分子表征技术专题链接:http://www.gfzxb.org/article/doi/10.11777/j.issn1000-3304流变技术在高分子表征中的应用:如何正确地进行剪切流变测试刘双1,2,曹晓1,2,张嘉琪1,2,韩迎春1,2,赵欣悦1,2,陈全1,21.中国科学院机构长春应用化学研究所高分子物理与化学国家重点实验室 长春1300222.中国科学技术大学应用化学与工程学院 合肥230026作者简介:陈全,男,1981年生.中国科学院长春应用化学研究所研究员.本科和硕士毕业于上海交通大学,2011年在日本京都大学取得工学博士学位,之后赴美国宾州州立大学继续博士后深造.于2015年回国成立独立课题组,同年当选中国流变学学会专业委员会委员;于2016年获美国TA公司授予的DistinguishedYoungRheologistAward(2~3人/年),同年入选2016年中组部QR计划青年项目;于2017年获基金委优青项目资助;于2019年入选中国化学会高分子学科委员会委员,同年获得日本流变学会奖励赏(1~2人/年),目前担任《NihonReorojiGakkaishi》(日本流变学会志)和《高分子学报》编委 通讯作者:陈全,E-mail:qchen@ciac.ac.cn摘要:流变学是高分子加工和应用的重要基础,流变学表征对于深入理解高分子流动行为非常重要,获取的流变参数可用于指导高分子加工.本文首先总结了剪切流变测试中的基本假设:(1)设置的应变施加在样品上,(2)应力来源于样品自身的响应和(3)施加的流场为纯粹的剪切流场;之后具体阐述了这些假设失效的情形和所导致的常见的实验错误;最后,通过结合一些实验实例具体说明如何培养良好的测试习惯和获得可靠的测试结果.关键词:流变学/剪切流场/剪切流变测试目录1.流场分类2.剪切旋转流变仪概述2.1测试原理2.2测试模式3.旋转流变仪测试中的常见问题3.1测试过程的基本假设和常见问题概述3.1.1输入(输出)应变为施加在样品上的应变3.1.2流场为简单的剪切流场3.1.3输入(输出)应力为样品的黏弹响应3.2测试中常见问题I:仪器和夹具柔量3.3测试中常见问题II:仪器和夹具惯量的影响3.4测试中常见问题III:样品自身惯量的影响3.5测试中常见问题IV:二次流的影响3.5.1同轴圆筒夹具二次流边界条件3.5.2锥板和平板夹具二次流边界条件3.6测试中常见问题V:样品表面张力3.6.1样品的各向对称性3.6.2样品本身表面张力大小3.6.3大分子聚集3.7测试中常见问题VI:测试习惯3.7.1样品的制备:干燥和挥发问题3.7.2确定样品的热稳定性3.7.3样品体系是否达到平衡态3.7.4夹具热膨胀对测试的影响3.7.5夹具不平行和不同轴对测试的影响4.结论与展望参考文献流变学是研究材料形变和流动(连续形变)的科学,其重要性已在学术界和工业界得到了广泛的认可.流变仪是研究材料流变性能的仪器,利用流变仪进行流变测试已成为食品、化妆品、涂料、高分子材料等行业的重要表征和研究手段[1~8].本文从流变测试的角度,详细介绍了流场的分类和旋转流变仪测试的基本原理和测试技巧,重点阐述了剪切流变学测试中的基本假设和这些假设在特定的条件下失效的情况.最后,通过结合具体的实验测试实例,详细地阐述了如何避免流变测试中的错误和不良测试习惯.笔者希望本文能够对流变学测试人员有一定的帮助和启发,找到获得更可靠和准确的实验测试结果的有效途径.1.流场分类高分子加工过程中的流场往往非常复杂,例如:在共混与挤出的工艺里,占主导的流场是剪切流场;在吹塑和纺丝等工艺里,占主导的流场是拉伸流场.更多加工过程中,用到的流场是剪切与拉伸等流场的复合流场[9~12].在流变学测试中,为了得到更明确的测试结果,往往选择比较单一和纯粹的流场,如剪切或者单轴拉伸流场(此后简称“拉伸流场”).流变仪的设计往往需要实现特定的流场,并表征材料在该特定流场下的响应.虽然剪切流场和拉伸流场在高分子加工中同等重要,高分子流变学的测试研究却呈现了一边倒的局面:目前大量常用的商用流变仪,如应力和应变控制型的旋转流变仪、转矩流变仪、毛细管流变仪的设计基础都是针对剪切流场的(利用这些仪器仅可进行比较粗略的拉伸流变测试,例如在旋转流变仪的基础上添加如SentmanatExtensionalRheometer在内的附件测量拉伸黏度[13]或者利用毛细管流变仪的入口效应来估算拉伸黏度.),而针对拉伸流场的拉伸流变仪则比较稀缺.剪切和拉伸流场自身的区别是造成以上局面的主要原因.图1中分别展示了剪切和拉伸2种形变[14].施加剪切形变时(图1上),力位于样品顶部,力的方向与上表面平行,该应力会造成样品的剪切形变,而连续的剪切形变则称为剪切流动.剪切流动的特点是,底部速度为0(不考虑滑移),顶部速度最大,速度梯度的方向与速度的方向垂直.而施加拉伸形变时(图1下),力位于样品右侧,力的方向与右侧面垂直,该应力会造成样品拉伸形变.同样,连续的拉伸形变称为拉伸流动.拉伸流动的特点是,样品左侧固定,速度为0,右侧拉伸速度最大,因此速度梯度的方向与速度方向平行.施加剪切流场时,剪切速率等于上表面的绝对速率除以两板间的距离.在旋转流变仪中,使用匀速转动的锥板或者同轴圆筒即可实现单一的剪切流场.然而,拉伸速率的大小等于右侧表面绝对速率除以样品的长度.在拉伸过程中,样品越拉越长,因此右侧面的速度需要越来越大,方可实现稳定的拉伸流场.假设t时刻样品的长度为L,则此时的拉伸速率等于[15]:图1Figure1.Illustrationoftworepresentativemodesofdeformation:thesimpleshearforwhichthedirectionofvelocitygradientisperpendiculartothatofvelocity,andtheuniaxialelongationforwhichthedirectionofvelocitygradientisparalleltothatofvelocity.(ReprintedwithpermissionfromRef.[14] Copyright(2012)Elsevier)将式(1)进行积分可以得到L(t)=L0exp(ε˙t),表明样品的长度正比于时间的幂律函数.为了实现稳定的拉伸流场,实验中右侧面速度随时间呈指数增长,因此拉伸流场相较剪切流场更难以实现,这就是造成拉伸流变仪器较为稀缺的主要原因.有人要问,为什么需要测试2种典型流场,我们能从剪切实验的结果来推导其拉伸的行为吗?对于线性流变的行为,答案是肯定的.即当体系位于平衡态附近,施加微弱的扰动时,拉伸黏度ηE,0与剪切黏度η0存在着简单的正比关系ηE,0=3η0=3∫0tG(t′)dt′,其中G(t)为线性剪切模量相对于时间的函数[16,17].该正比关系由Trouton在牛顿流体中发现,被称作Trouton比[18].然而,对于流场较强的非线性的流变测试,无法从剪切流变行为直接推导拉伸流变行为,或反之,从拉伸流变行为推导剪切流变行为,主要原因是,剪切与拉伸测试不同流场下的应力张量的不同分量:如在图1中可见,剪切测试中主要测量上板作用力Fs,其除以上板面积可得到剪切条件下应力张量σ的xy分量,而拉伸测试中主要测量右侧力FE,其除以右侧面面积主要得到拉伸条件下应力张量的xx分量.2.剪切旋转流变仪概述本文重点介绍剪切流变测试中的仪器原理和测试技巧(笔者计划在后续文章介绍拉伸测试的原理和技巧).目前商业的用于剪切测试的流变仪为旋转流变仪和毛细管流变仪.本小节主要围绕旋转流变仪展开介绍.旋转流变仪主要分为应力控制型和应变控制型2种.应力控制型旋转流变仪一般使用组合式马达传感器(combinedmotortransducer,CMT),即驱动马达和应力传感器集成在一端,也被简称为“单头”设计;应变控制型的流变仪一般使用分离的马达和传感器(separatemotortransducer,SMT),即驱动马达和应力传感器分别集成在上下两端,简称为“双头”设计,这2种设计的主要区别在于:“单头”设计更为简单,仪器容易保养和维护,但是夹具和仪器的惯量、马达内部的摩擦力容易对应力的测试结果造成影响,需要对仪器定期进行校正;“双头”的设计更为复杂,仪器操作步骤较多,需要更专业的仪器培训和仪器维护来防止操作不当带来的仪器损害,但是由于其马达和应力传感器分离的优势,可以更准确地进行应变和应变速率控制模式的测量,“双头”的流变仪的测试范围更宽,可以在更高的频率和更低的扭矩下得到准确的测试结果.下面我们将从旋转流变仪的测试原理(2.1节)和测试模式(2.2节)两个方面分别对于剪切流变测试进行简单的概述,这部分内容对于“单头”或者“双头”流变仪同样适用.之后,我们会结合具体例子详细地介绍流变仪测试中需要注意的问题,部分内容会涉及“单头”和“双头”流变仪的区别.对于流变测试比较熟悉的读者可以跳过2.1和2.2小节,直接阅读第3节.2.1测试原理对于旋转流变仪,无论是应力控制还是应变控制模式,应变γ和应变速率γ˙均分别通过电机马达旋转的角位移θθ和角速率Ω转换得到,而应力均通过扭矩T(T=R×F,其中F为力,R为力臂)转化得到,上式中Kγ和Kσ分别为应变因子和应力因子,由测试夹具的类型、大小、间距等夹具的几何因子决定,而流变学测得的所有流变学参量,如剪切模量,黏度等都是应力应变的函数.因此,可以从原始测量的角位移θθ、角速率ΩΩ、扭矩T和应变因子Kγ、应力因子Kσ计算得到:剪切流变测试中通常用到的夹具为平行板、锥板和同轴圆筒3种,其基本结构、流场特征,应变和应力因子(Kγ和Kσ)总结在图2中.图2Figure2.GeometryandparametersKγandKσofparallel-plate,cone-and-plateandCouettefixtures平行板、锥板和同轴圆筒三者基本结构的特点也决定了其使用场合不同,具体总结如下:(1)平行板夹具具有剪切流场分布不均一的特点,施加应变时,其圆心处剪切应变为0,最外侧剪切应变最大,应变沿半径方向线性增加;平行板夹具的优点是制样和上样都很方便,但由于其内部流场不均一的特点,平行板夹具一般只用于线性流变测试.但是,对于一些特殊的实验需求,选择平板进行剪切实验具有一定的优越性.例如,可以利用平板间剪切速率随半径线性增加的特性,研究不同剪切速率下的流动诱导结晶行为[19,20].(2)锥板夹具相对于平行板夹具具有内部剪切流场均一的特性,但其制样和上样相对于平行板要复杂,特别是难以流动的样品上样比较困难,因此一般仅在非线性流变测试时选择.此外,需要注意的是,为了避免测试时锥板和其对面板直接接触,通常在锥面顶点处截去一小段锥尖,使用锥板测试时,设定的夹具间距即被截去的锥尖高度.(3)同轴圆筒夹具相对于平行板和锥板通常需要使用更多的样品,但是由于其具有较平行板和锥板更大的夹具/样品接触面积和测试力臂(介于样品内径R1和外径R2之间),使用其测试可得到更高的扭矩,因此,其可用于测试更低黏度的样品.2.2测试模式仪器测试的基本原理通常是对样品施加一个扰动或者刺激并记录其响应.在旋转流变仪的测试中,通常对样品施加应变并记录应力响应,或反之,施加应力并记录应变的响应.根据施加应变或应力随着时间的变化情况,流变测试通常可以分为稳态、瞬态、动态3种测试模式(如图3),总结如下:图3Figure3.ThedifferentresponsesofNewtonianfluid,Hookeansolid,andviscoelasticmaterialstotheimposedsteadyflow(stressgrowth,transientorsteadymodethatdependsonthefocus),stepstrain(stressrelaxation,transientmode),stepstress(creepandrecovery,transientmode)andsmallamplitudeoscillatoryshear(SAOS,dynamicmode).(1)稳态测试模式通常测试样品在外加流场达到稳定状态下的响应.通常,达到稳定的状态需要一定的时间,如果测试关注的是体系达到稳态过程,其测试模式一般称作瞬态模式,而如果测试关注的是体系达到稳态之后的过程,则测试模式为稳态模式.通常仪器的软件内置了一些检验样品是否达到稳态的标准,如剪切速率扫描测试的过程中,仪器会记录应力的变化,当其测试应力在一定的时间内稳定后,仪器才会记录此时的应力.剪切条件下,牛顿流体通常可以瞬间达到稳态流动,黏弹体通常需要一定的时间达到稳态流动,而胡克固体通常应力随应变增加,在结构不破坏的前提下无法达到稳态流动.(2)瞬态测试模式通常指从一个状态瞬间变化到另一个状态的过程,如施加阶跃应变(应变控制模式)、阶跃应力(应力控制模式)或者阶跃剪切速率等.其中最典型的测试就是,施加一个固定应变,记录应力随时间变化的应力松弛(stressrelaxation)测试,施加或撤销一个固定的应力,记录应变随时间变化的蠕变和回复(creepandrecovery)测试,或者施加一个阶跃剪切速率,记录瞬态黏度随时间变化的应力增长测试(stressgrowth).这些测试的共性是关注样品在一个特定刺激下的转变过程.以阶跃应变为例,迅速施加应变后,牛顿流体的应力可迅速松弛,胡克固体的应力达到一个恒定值无法松弛,而黏弹体的应力需要经过一定的时间松弛,这个时间通常反映黏弹体系在应变下结构重整的特征时间.(3)动态测试模式是施加一个交变的应变或者应力,如正弦变化的交变应变或者应力,并记录响应.以施加正弦应变的测试为例,由于测试的频率和应变大小均可调整,因此,测试有很大的参数空间.通常,小应变下,体系结构仅稍微偏离无扰状态,应力响应的信号也是正弦波,该测试通常被称作小振幅振荡剪切(smallamplitudeoscillatoryshear,简称SAOS).对于胡克固体,应力的相位与应变相位相同;而对于牛顿流体,则应力的相位与应变速率(应变对时间的导数)的相位相同,与应变相位差π/2;对于黏弹体,应力的相位与应变的相位在0~π/2之间.当应变较大时,体系的结构严重偏离无扰状态且随时间改变,此时的应力响应通常不是正弦波,该测试通常被称作大振幅振荡剪切(largeamplitudeoscillatoryshear,简称LAOS).需要指出的是,一些仪器软件会用正弦波来拟合非正弦的应力结果得到包括模量在内的测量结果,此时对于结果的解读需要非常小心.因此,一般的测试过程中建议打开仪器的应力记录来观察测量应力波的波形,并据此判定测试的线性/非线性.3.旋转流变仪测试中的常见问题3.1测试过程的基本假设和常见问题概述上文提到,旋转流变仪的原始测量的角位移θ和扭矩T可转化为应变和应力.然而,测量的应变和应力是否就是施加在样品上的真实的应变和应力呢?这显然是流变测试中最关键的问题.需要指出的是,旋转流变仪的测试结果是建立在3个基本假设上面的:(1)应变作用在样品上;(2)应力为样品自身的响应;(3)流场为简单剪切流场.这些假设都是会在一定的测试条件下失效,从而导致测试结果不可靠.接下来我们将详细地介绍这些假设条件分别在什么测试情况下失效.3.1.1输入(输出)应变为施加在样品上的应变该假设的关键在于没有考虑仪器和夹具柔量的影响,即假设样品的应变可以直接从角位移得到.然而,在力的作用下,仪器和夹具自身也会旋转一定的角度.只有当该角位移远小于作用在样品上角位移时,上述假设才能成立.由于夹具通常由不锈钢或者其他金属材料制造,其模量通常在~1011Pa或者更高的范围,而测试样品,特别是高分子材料即使是在玻璃态,模量通常小于1010Pa,因此,似乎夹具的形变可以忽略.但是,需要指出的是,平板和锥板的夹具通常被设计成细长空心的圆柱形,而夹具中间的样品通常为扁平的圆片状,这种形状上的差异会显著增加夹具柔量的影响.除此之外,夹具与样品之间的滑移也可造成施加应变和样品实际应变的区别[21~23].这种滑移会消耗一部分施加的角位移,假设被消耗的角位移为θslip,则样品上的实际角位移θeff小于施加的角位移θ(=θslip+θeff).对于平行板样品,由于应变参数Kγ=R/H,这使得在相同的实际应变Kγθeff下,旋转的角位移θeff随着板间距H的增加而增加,而θslip则改变较少,因此,滑移的效应会随着板间距的增加而弱化,该结果也可以用做滑移是否存在的间接判据:即如果存在滑移,则其造成的误差会随着板间距的增加而减少.对于滑移效应更为直接的判据就是通过微小的示踪粒子直接观测板附近的粒子的运动是否和板的运动一致.3.1.2流场为简单的剪切流场上文中提到,剪切流变仪设计的一个基本原则就是生成纯粹的剪切流场并记录样品在该流场下的响应.然而,由于受到界面和样品自身的影响,样品中实际的流场未必为纯粹的剪切流场,该效应通常在大剪切速率下出现.例如,对于同轴圆筒夹具测试低黏度样品,当泰勒数大于一个定值时,或者对于平行板和锥板测试低黏度样品,当雷诺数大于一个定值时,流场会偏离简单的剪切流场.以平行板为例(如图4所示),在高雷诺数下,由于离心作用,旋转的上板附近的流体沿着板的径向向外运动,为了填补这些流体流出的空隙,静止下板附近的流体会沿着径向向内运动,这2种流体的运动就会造成一次流基础上出现叠加的二次流,从而导致测试扭矩的增加和相应的剪切增稠假象[24].图4Figure4.Thesecondaryflowoccurswhensampleunderrotarygeometrymovesradiallyoutwardandsampleonthestaticgeometrymovesradiallyinward.对于具有一定弹性的样品,假设其自身的松弛时间为τ,当韦森堡数Wi=τγ˙大于1时,也可能会在低泰勒数(同轴圆筒)或者低雷诺数(平行板或者锥板)的条件下出现弹性非稳定二次流,这种二次流的出现也会造成剪切增稠的假象.下文中,我们会对同轴圆筒和锥板以及平板出现二次流的边界条件进行更详细的讨论.此外,在高度缠结的高分子溶液或者高分子熔体等黏度较高的体系中,剪切速率过高的时候可能会出现剪切带或者较强的壁面滑移,这种剪切速率的非均一分布往往有利于体系自由能的降低.对于高分子熔体,在高剪切速率时,自由表面附近可能出现熔体破裂的现象.这些现象的出现也都会导致测量体系的流场严重偏离简单剪切流场.通常,剪切带、壁面滑移和熔体破裂等现象都会导致体系的应力减少及随之增强的剪切变稀效应(应力或者黏度随时间急剧下降).对于一些极端的情况,甚至会出现剪切应力σ不随剪切速率γ˙γ˙的增加而增加的特殊现象(此时黏度η=σ/γ˙γ˙~γ˙β且β≤−1).为了减弱熔体破裂的现象带来的实验误差,通常可以采用锥板加组合板的特殊夹具(cone-partitionedplate,简称CPP夹具)(如图5所示).CPP夹具中,锥板(绿色)与马达相连,组合板分为2个部分,中心平板(尺寸小于锥板,灰色)和环绕中心平板的环状板(蓝色),两者同轴且分离,共同组合成类似于与锥板同等大小的平板.其中,中心板与传感器相连并记录扭矩,环状板与仪器相连且被固定.测试过程中,一般熔体破裂发生在样品边缘.因此,只要当破裂的边缘没有深入到中心板,所记录的扭矩受到边界熔体破裂的影响就可以忽略[25].图5Figure5.SchematicviewoftheCPPfixture.Green:cone red:sample blue:outerpartition(section) yellow:translationstages(section) orange:bridge(section) grey:innertool(Drawingnotinscale).Thesamplediskshouldhavesizesufficientlylargerthantheinnerplate.(ReprintedwithpermissionfromRef.[25] Copyright(2016)AmericanChemicalSociety)3.1.3输入(输出)应力为样品的黏弹响应其实,上述二次流出现是由样品内部流场的不稳定性带来的效应,会导致额外的应力.在流变测试中,另一个无法忽略的就是测试扭矩的贡献中包含仪器和夹具自身的惯量的贡献.对于真实样品的测试扭矩应该等于测试总扭矩减去仪器和夹具自身的惯量造成的额外扭矩.上面文中提到,对于纯弹性的流体,流变测试中其自身的弹性产生的扭矩T与旋转角度θ具有正比的关系,即T~θ,此时T相对于θ的相位角δ为0°;对于纯黏性的样品,流变测试中其自身的黏性所产生的扭矩与旋转角度相对于时间的导数具有正比的关系,即T~θ˙,此时T相对于θ的相位角δ为90°;对于惯性导致的扭矩,其大小与加速度成正比,即T~θ¨,此时T相对于θ的相位角δ为180°,这种区别可以作为出现惯量效应的判据.例如,在动态测试中,样品黏弹性引起的相位角在0°和90°之间,一旦测试时出现了90°和180°之间的相位角,则必然出现了仪器惯量效应.特别是在高频动态测试中,由于θ=θ0sin(ωt),则惯量I贡献的扭矩高达T0=Iω2θ0,因此,商业的旋转流变仪通常频率ω的测试上限在102rad/s.虽然有些仪器支持测试更高的频率,如103rad/s或者更高,但是测试高于102rad/s的数据时,需要时刻注意分析惯量对于扭矩的贡献.此外,由于自由表面的存在,表面张力对于扭矩的贡献有时也是难以忽略的,该贡献在低黏度的样品中表现得尤为突出.由于表面张力的存在,样品具有收缩表面积的趋势,这会造成剪切作用下界面形状或面积变化时额外的法向力或者剪切力.例如,在平板和锥板夹具中,样品过度充满或者未充满的时候,样品的自由表面会产生突出或者凹陷的曲面结构,这种曲面结构的产生会引起额外的法向力.当样品在剪切流场中,自由表面的面积也会随之出现波动性的变化,这种变化通常会产生弹性应力响应,从而导致额外的应力贡献.通常可以通过填充合适量的样品、增加样品的各方向对称性和引入表面活性剂降低表面张力等方法来抑制表面张力的影响.下文中,我们会结合一些实验实例进一步阐释上述旋转流变仪测试的假设条件失效的情况.此外,我们总结了流变测试中一些不良测试习惯导致无法正确获取实验数据的情况.最后,我们会针对上述内容,给出一些避免类似错误结果的建议.3.2测试中常见问题I:仪器和夹具柔量流变仪能够准确测量样品模量的一个前提是传感器和夹具的柔量远小于样品的柔量,或者换言之,传感器和夹具的刚度远大于样品的刚度(刚度等于柔量的倒数).其中,夹具的刚度不仅与夹具的模量相关,也与夹具的尺寸和形状相关.如果将夹具设计成圆柱形,则其刚度κ与夹具横截面半径R的4次方成正比,与圆柱体的高h成反比:一方面,为了抑制样品的温度对传感器和马达的影响,并减少夹具的惯量,平行板和锥板夹具常被设计成细长的形状(较小的R和较大的h),这种结构会减少夹具的刚度;另一方面,为了增加样品的测试扭矩,常将样品制成扁平的形状,这种形状的差别使得夹具与样品刚度的区别远低于制造夹具的材料和样品模量上的区别,而导致实际施加在样品上的真实应变低于设定应变,这种应变的误差会导致样品流变测试结果的显著误差.例如,刘琛阳等分析了双头应变控制型流变仪ARESG2(TA)的仪器柔量对线性黏弹性的影响[26].如图6(a)所示,在样品模量大于105Pa时,用25mm平行板的测量结果明显偏离8mm平行板的测量结果.虽然样品的模量不发生变化,样品的刚度随着尺寸R的增加而增加,造成了测量时夹具产生了更多的形变,这导致了实际施加在样品上的应变的减少和相应的测试模量的降低;为了说明这个问题,图6(b)展示了相对于指令应变(黑色方块),经过传感器校正后的实测应变(红色圆点)较小,而经过夹具校正后的应变则更小(绿色三角),该应变可反映施加在样品的实际应变.图6Figure6.(a)Theeffectofgeometrycomplianceonlinearviscoelasticity (b)Comparisonofcommandedstrain(as100%),measuredstrain(withforcerebalancetorquetransducers(FRT)compliancecorrection),andcorrectedstrain(withtoolcorrection)obtainedforapolyisobutylenesampleat−20°Cusing25mmparallelplates(ReprintedwithpermissionfromRef.[26] Copyright(2011)SocietyofRheology)为了准确地测量样品的模量,通常建议选取合适尺寸的夹具来直接测量.由于夹具的形变通常正比于扭矩,因此在测量较高模量范围的样品时,为避免柔量的影响,需减少样品和夹具尺寸来降低扭矩.而对于测量较低黏度的样品,需要增加样品和夹具的尺寸来增加扭矩,使得扭矩大于仪器传感器的测试下限.笔者的经验是,25mm板使用的上限通常为~105Pa,8mm板的使用上限为~107Pa,而如果需要准确地测量高分子玻璃态模量(~109Pa),需要使用3mm左右的夹具.对于黏度极低的样品,除了选择更大的板(如50或60mm的夹具)以外,还可以使用过采样技术(oversampling)[27],拓宽动态测试的扭矩测试下限,提高相位角的准确程度.但是考虑到小夹具上样的困难,可利用柔量校正来拓展夹具的使用上限.很多流变学者具体研究了柔量的校正方法,例如1982年,Gottlieb和Macosko[28]讨论了仪器柔量对动态流变测量的影响以及力传感器的校正方法.在2008年,Hutcheson和McKenna[29]详细地研究了夹具尺寸对玻璃化转变区附近的流体的动态振荡测试和应力松弛测试结果的影响,并提出相应的校正方法.本文以Hutcheson和McKenna的校正方法为例[29],简单介绍一下动态剪切数据的校正方法.为了准确测定特定夹具下整个仪器系统的柔量系数,作者设计加工了上下板“连体”的参比夹具(如图7所示),并直接测量了参比夹具的柔量.根据柔量相加原则,流变仪器实测复合扭转刚度κ0∗的倒数等于仪器夹具刚度κt和样品刚度κs∗的倒数之和:由于仪器和夹具的柔量均来源于其固体弹性,可以将两者简化为一个与黏弹样品串联的弹簧,其刚度可简化为实数κt.在已知κt的基础上,可利用公式(6)校正测试的实验数据κmes∗,得到样品的实际复数刚度κs∗.图7Figure7.Asimpleschematicshowingthegeometryofthesolidrodandthedisposableplatens(ReprintedwithpermissionfromRef.[29] Copyright(2008)AmericanInstituteofPhysics).3.3测试中常见问题II:仪器和夹具惯量的影响对于仪器和夹具惯量的校正是准确进行瞬态和动态流变测试的基础.旋转流变仪测得的扭矩不仅来源于样品自身的应力响应,也来源于马达和夹具在加速过程中的惯量贡献.早在1991年,Krieger等讨论了单头的应力控制型流变仪仪器和夹具惯量对测试的影响[30],他们发现,当仪器施加恒定的扭矩时,部分扭矩用于加速驱动马达和夹具旋转,当旋转速度达到稳定时候,测试的扭矩才是真实的样品扭矩.最近,Lauger等研究了流体在振荡剪切模式下的仪器和夹具惯量的影响[31],并给出了通过流变仪测量的实测扭矩、样品产生的扭矩以及仪器和夹具自身惯量产生的扭矩的三者之间的矢量关系(图8).图8Figure8.Vectordiagramoftorques,includingaccelerationtorqueTa,totalorelectricaltorqueT0,andsampletorqueTs,whereδδandααarephaseangleofT0andTs,respectively.ThesampletorquecanbedecomposedintoviscouspartTvandelasticpartTe(ReprintedwithpermissionfromRef.[31] Copyright(2016)SocietyofRheology).其中,仪器测试的实测扭矩T0等于样品扭矩Ts和仪器加速惯量产生的扭矩Ta之和.换言之,样品产生的扭矩应该等于总扭矩减去仪器加速时惯量产生的扭矩,该扭矩可利用相位角分解成弹性贡献部分Te和黏性贡献部分Tv.此外,Lauger等研究表明[31].:对于牛顿流体,惯量产生的扭矩与样品扭矩的比率可表达为其中I为测量设备的转动惯量,|G∗|为样品的复数模量的绝对值,ω为测试的角频率.然而,需要指出的是公式(8)仅适用于牛顿流体,对于黏弹性体系并不准确.据此,可以通过计算仪器和夹具惯量产生的扭矩与样品扭矩之比来判断仪器和夹具惯量的影响.例如:图9展示了Lauger等利用单头的MCR系列流变仪(AntonPaar)测试黏度为4mPas的S4oil频率扫描测试.在测试的频率范围内,该流体应为牛顿流体.其中蓝色正三角表示实测的扭矩T0,绿色倒三角表示校正了仪器和夹具惯量贡献后的样品贡献的扭矩Ts.在最低频区域,实测扭矩与样品贡献扭矩近似相等,说明样品的贡献占主导,此时测得的复数黏度(红色圆)接近样品稳态黏度4mPas.但是随着频率的增加,实测扭矩大于样品贡献的扭矩且两者差距逐渐增加,在频率小于25rads−1(竖箭头所示)的区域,虽然实测扭矩已经远大于样品的扭矩贡献,即实测的T0/Ts已接近2个数量级(横箭头所示,这与通过公式(8)计算的结果Ta/Ts=Iω2Kσ/(Kγ|G∗|)=IωKσ/(Kγ|η∗|)=95近似相等),经过校正得到的样品扭矩计算的黏度仍然接近4mPas,说明测试结果仍然有效.该例子展示了当前流变仪的技术水平已经臻于成熟:即使在惯量贡献的扭矩占主导的情况下,仍然可以通过仪器校正得到准确的样品扭矩.但是在频率高于25rads−1区域惯量校正开始失效,造成了稳态黏度激增的假象.图9Figure9.FrequencysweepmeasurementontheS4oilsamplewithviscosityof4mPas(CP60-0.5geometry).Inadditiontothecomplexviscosity,themeasuredtotaltorqueT0andthesampletorqueTsobtainedaftertheinertiacorrectionareplottedagainstangularfrequencyωω.Arrowspointtodatapointsat25rads−1(seetext),abovewhichtheinertiacorrectionfails.(ReprintedwithpermissionfromRef.[31] Copyright(2016)SocietyofRheology)在动态振荡测试中,样品黏弹性引起的相位角应当在0°和90°之间(图8所示),因为90°和0°相位角分别对应纯黏性和纯弹性的扭矩贡献Tv和Te,而惯量产生的相位角为180°.图8中,高频处仪器测试的实测扭矩T0远大于样品测试扭矩Ts,表明仪器加速扭矩Ta在测试T0中占据主导,此时的相位角应接近180°.因此,一旦测试时出现了90°和180°之间的相位角,或者动态测试出现G' ~G"~ω2的结果,即可判定出现了仪器惯量效应[32].为了避免实验测试中的不良数据,仪器惯量造成的扭矩Ta与材料自身产生的扭矩Ts之比Ta/Ts应小于一个极限值(该值与仪器的状态和校正的准确性相关).减少惯量影响的一个行之有效的方法是选择合适的夹具.公式(8)中,与夹具几何尺寸相关的参数为Kσ/KγKσ/Kγ.对于锥板,Kσ/Kγ=3β/(2πR3),因此,减少锥角ββ和增加板半径R均有利于减少惯量影响,而对于平板,Kσ/Kγ=2h/(πR4),因此,减少板间距h和增加板半径R均有利于减少惯量影响,或者选择更轻质的夹具来减少I亦可减少惯量影响.总之,无论锥板或平板,增加R或者选择轻质夹具都是减少惯量影响的有效手段.为了降低仪器和夹具惯量影响,对于单头的应力控制型流变仪,需要定期进行惯量的校正,并在更换夹具时做相应的校正.对于双头的应变控制型的流变仪,使用具有力反向平衡功能的传感器可以极大地抑制惯量带来的误差,其表现虽远超单头的流变仪,但也无法完全消除惯量的影响.因此,需要对具体的实验测试结果进行综合的分析和甄别.3.4测试中常见问题III:样品自身惯量的影响剪切流变仪测试中一个基本假设是流场的单一性,即流场是纯粹的剪切流场,这一假设在高速振荡测试过程中失效[33].即在振荡测试中,流变仪通过夹具迫使样品产生往复运动,使得样品内部产生剪切波,当板(夹具)间距与剪切波波长相当或大于剪切波波长时,样品的自身惯量的影响会使得施加样品的剪切流场偏离纯粹的剪切流场.Schrag给出了在剪切流变测试不受该剪切波干扰的临界条件[34],即板间距需远小于其波长λs,其表达式为:式中ρ是流体的密度,|η∗|=|G∗|/ω是复数黏度的绝对值,其中|G∗|是复数模量的绝对值,δ是相位角.研究表明,在给定的频率范围内选取合理的板间距h是减少样品惯量影响数据误差的关键.以水为例,密度为ρ≈1gcm−3,黏度为η≈10−3Pas,相位角δ≈90°,当频率ω=102rads−1时,可估算出λs≈0.9mm.用平板测试一般要求间距在0.5~1mm,因此无法满足hλs.当使用锥板测试时,板间距最宽的部分可以估算为h=βR,因此,半径为25mm、锥角为1°的锥板,h=0.44mm,同样也无法满足hλs.由公式(9)可知剪切波长λs随着样品黏度的增加而增加,因此,上述问题一般不会在黏度较高的高分子溶液或高分子熔体中出现.图10展示了Lauger等利用双头的MCR系列流变仪(AntonPaar)对牛顿流体S4oil在半径相同(R=30mm),锥角分别为0.5°(红色)、1°(绿色)、2°(蓝色)不同的夹具下的振荡剪切测试,研究了样品惯量对流体相位角的影响[31].该流体在测试范围内为牛顿流体.我们发现样品在低频区域表现牛顿流体性质,相位角均为90°,随着频率的增加,相位角逐渐降低,流体出现了一定的弹性响应,且锥角越大,相位角降低越多(箭头指向).相位角的减少导致了储能模量G' ~ω2的标度区域的出现,该结果非常类似于黏弹流体的松弛末端行为,但其实为样品惯量造成的实验假象.显然,此相位角减少的不同来源于测试夹具的区别而非样品的区别.究其原因,是锥板最外侧的板间距βR(0.5°,1°,2°板分别为0.26,0.52和1.05mm)逐渐逼近于通过公式(9)计算出来的λs≈2.0mm,使得样品惯量造成的实验误差逐渐显现.图10Figure10.Phaseangle(circles)andstorageG' (triangles)andlossmodulusG"(squares)fortheS4oilmeasuredinSMTmodewiththreeconeangles,0.5°(red),1°(green),2°(blue).Thearrowindicatesthedirectionofincreasingtheconeangle.(ReprintedwithpermissionfromRef.[31] Copyright(2016)SocietyofRheology)3.5测试中常见问题IV:二次流的影响在稳态或瞬态测试中,高剪切速率时,由于流动不稳定性的影响可能导致剪切流场出现失稳,造成二次流的出现[24,35~37],使得剪切流变仪测试中剪切流场单一性的基本假设失效.二次流叠加在剪切流场上,会增加仪器测量的扭矩,导致测试样品的表观黏度突然增加.研究表明,对于不同夹具,均可出现二次流.下面我们将对同轴圆筒、锥板和平板3种夹具的几何流场出现二次流的边界条件进行阐述,并通过实例展示二次流对实验数据的影响.3.5.1同轴圆筒夹具二次流边界条件泰勒给出了牛顿流体在同轴圆筒夹具的测量过程中失稳的临界条件[38~40]:可避免Taylor-Couette涡流出现的稳定区间的泰勒数Ta满足:其中R1和R2分别为同轴圆筒夹具中流体的内径和外径(如图2所示),而同轴圆筒夹具的剪切速率为:γ=ΩKγ≈ΩR1/(R2−R1),由此可以得到避免Taylor流的条件:3.5.2锥板和平板夹具二次流边界条件锥板和平板具有不同于同轴圆筒的边界条件,其产生二次流的一个主要原因是离心作用:即高速转动的板附近的流体产生沿着半径方向向外的速度分量,同时诱发静止板附近的流体向内流动(如图4所示).对于锥板和平板夹具,雷诺数Re可定义为[41]:其中h为特征的板间距(平行板h等于间距,锥板h=βR).Turian等研究表明[41],对于利用锥板和平板测试的牛顿流体,实际扭矩T和理想稳定流场下的扭矩T0之比与雷诺数相关:给定T/T0误差1%,即T/T0=1.01,可以得到一个特征的临界雷诺数Recrit=4,该情况下尚未发生持续的湍流.利用Recrit和剪切速率γ˙=ΩR/h,可以估算锥板和平板稳态剪切的临界条件:据此我们可以根据实验条件和夹具参数计算出不稳定流场的临界条件.从公式(14)可以看出,选择较小h的平行板可以抑制二次流,但h过小的时候,两板间微小的不同轴或不平行都会被放大,影响测试的准确性[42].因此,需要选择合适的板间距.为了更直观地展示牛顿流体的二次流不稳定流场对实验数据的影响,图11是我们利用单头应力控制型流变仪MCR-302(AntonPaar)实测的水在剪切速率扫描实验中的黏度相对剪切速率的图,可以看出,在低剪切速率出现的类似于剪切变稀的现象(蓝色区域)可能由于传感器扭矩低于仪器测试下限(Tmin=0.11~0.25μNm)或者表面张力的影响,而在高剪切速率下(红色区域),剪切增稠的异常现象是由于板的高速转动引发了二次流.图11Figure11.SteadyshearflowmeasurementsofH2Ousingcone-and-platewithdiameterof50mm,thescatteredplotsintheblueregimeareobtainedfromtorquebelowthelow-torquelimit,thethickeningbehaviorintheredregimeisduetosecondaryfloweffect.3.6测试中常见问题V:样品表面张力在使用旋转流变仪测试低黏度的牛顿流体时,表面张力往往会影响到测试结果.很多低黏度流体异常的实验数据都和其表面张力有关[42,43].而表面张力的产生与样品的各向对称程度、样品的自身表面张力以及样品是否存在吸附和聚集有着密切关系[32,44~47].为了使读者更加清楚地了解表面张力对流变实验数据的影响,下面我们将分别从样品的各向对称性、样品自身表面张力的大小以及样品自身存在吸附和聚集3种情况阐述表面张力对实验结果的影响.3.6.1样品的各向对称性保证样品的各向对称是流变测试中获得准确实验数据的基础,样品的各向非对称性可能在填充上样时即存在,如过度填充或者填充不足均可造成样品的各向非对称性,各向非对称性也可能在测试过程中产生,如样品的边界在流场下存在一定的形状的波动,或样品不对称的挥发引起样品边缘与板的接触线和接触角的不对称性.Ewoldt等[32,44]研究低黏度样品的剪切流变测试时,发现测试扭矩会受到这些边缘形状变化的影响(如图12所示).对比完全对称的理想条件,非理想情况下接触线、接触角Ψ(s)和半径都发生了明显的变化.将接触线看作闭合曲线,可沿闭合曲线积分得到由表面张力引起的扭矩变化.例如,沿z轴的扭矩Tz可表示为:图12Figure12.(a)Contactlineandinterfaceangle:idealversusnon-idealcases.Inthenon-idealcase,asymmetriesareexaggeratedcomparedtotypicalloadingandcanalsooccurasaresultofoverfilling (b)Contactlineinz=0planerepresentedbyanarbitraryparametriccurve,r–r_(s).(ReprintedwithpermissionfromRef.[44] Copyright(2013)SocietyofRheology).公式中,r(s)是半径,Γ(s)是表面张力,t^l,r是闭合曲线的切线矢量.从公式(15)中可知表面张力产生的扭矩与接触线的几何形状、样品的表面张力和界面角均相关.样品填充不足或过量填充都会导致表面张力引起扭矩增加.此外,样品挥发也可导致样品填充不足,是高分子溶液或水凝胶体系流变测试过程中最容易忽略的问题.图13显示了Johnston等[44]研究了随着水分蒸发,样品从填充过度到填充不足过程中扭矩的变化.他们发现,刚开始填充过度会随着水蒸发而缓解,扭矩先减小并保持了一定时间,之后的样品量继续减小导致样品填充不足,接触线断开,此时产生更大的扭矩,然后扭矩会继续保持,直到在更长的时间再次提高.出现此现象的原因是水蒸发会同时导致接触线和接触角的改变,从而增加了样品的各向非对称性.因此,对于溶液体系的测试,需要考虑溶剂挥发、样品填充不足导致表面张力引起的扭矩增加,这些因素会影响测试结果.图13Figure13.Evaporation-inducedcontactlinemigration,whichcausessurfacetensiontorque.Thegeometryisparallelplate(diameter40mm)withconstantvelocityΩΩ=0.01rads−1.Insetimages(viewsfrombelow)illustratethecontactlinesoftheoverfilledandunderfilledcases(ReprintedwithpermissionfromRef.[44] Copyright(2013)SocietyofRheology).3.6.2样品本身表面张力大小样品自身的表面张力的不同也可造成测试结果的显著不同.Johnston等[44]讨论了水和正癸烷在稳态剪切测试过程中测试扭矩与剪切速率的依赖关系,虽然两者室温下的黏度近似,分别为1.17和1.57mPas,利用同轴圆筒测量的低剪切速率下的扭矩却大相径庭,这主要源于水和正癸烷表面张力的不同(75和25.3mNm−1),从图14可以看到,相对于正癸烷溶液,具有更高表面张力的水在低剪切速率下显示出由表面张力导致的扭矩平台1μNm,值得注意的是,其中4组水的测试结果表现出该扭矩平台,但仍有2组水的测试结果没有表现出扭矩平台,Johnston等认为这可能与前面3.6.1节讨论的接触线的不确定性有关.图14Figure14.Steadyshearflowwithdifferentsurfacetension(waterandn-Decane)usingtheconcentricdoublegap(DG)geometry(ReprintedwithpermissionfromRef.[44] Copyright(2013)SocietyofRheology)3.6.3大分子聚集对于一些低黏度的蛋白溶液体系,在低剪切速率下的流变测试时,通常需要考虑空气与水界面处形成的蛋白表面膜产生的界面张力和蛋白溶液中蛋白聚集的影响[46,47],表面膜形成和蛋白聚集可导致包括黏度增加、剪切变稀增强和表观屈服应力的出现,这些表面的因素有时会误导研究人员对溶液的整体流动特性的判断.例如,Castellanos和Colby等研究了牛血清蛋白和抗体溶液黏度对剪切速率的依赖性[47].他们发现:不含表面活性剂成分的牛血清蛋白在液-气界面处形成聚集膜,在低剪切速率下出现明显的表观屈服应力和相应的η∼γ˙−1η∼γ˙−1的屈服区域(图15(a)).添加表面活性剂能抑制和延缓蛋白表面膜的产生,从而弱化了屈服区域,但经过较长的等待时间(41天),蛋白聚集导致屈服区域逐渐重新形成(图15(b)).图15Figure15.(a)Increaseofapparentviscosityofsurfactant-freeBSAsolutionsduringtheproteinaggregation.(b)Increaseofviscositywithtime,owingtotheproteinaggregationinthemAbsolutionsevenafterintroductionofthesurfactant.(ReprintedwithpermissionfromRef.[47] Copyright(2014)TheRoyalSocietyofChemistry)3.7测试中常见问题VI:测试习惯如上面所述,3个基本假设都是在比较极端的情况下会失效,如样品刚度足够高,需要考虑仪器和夹具柔量的影响;黏度足够低或者剪切强度足够大,需要考虑仪器夹具惯量和样品惯量的影响以及施加流场是否为纯粹的剪切流场.而在实际流变测试中,也有一些情况满足上述3个基本假设,却得不到准确的测量数据.下面总结了流变测试过程中一些容易忽略的问题.为了避免这些问题,提高流变测试的正确性和准确性,需要建立良好的测试习惯.3.7.1样品的制备:干燥和挥发问题对于聚合物熔体,如果样品干燥不充分时,或者测试过程中暴露在湿度较大的环境中,样品中的微气泡和水分会对测试结果产生显著影响,尤其含有氢键和离子极性组分的聚合物(如离聚物),溶剂(如水)对其流变行为的影响明显.此外,对于水凝胶和溶液体系,测试前和测试过程中需要考虑样品自身溶剂挥发对测试结果的影响,对于溶剂高挥发性的溶液体系这是常见的问题,通常可以使用液封(如用石蜡油密封水溶液)的方法避免溶剂的挥发.图16展示的是Wolff等[48]对聚二甲基硅氧烷树脂(PDMS)在具有气泡(圆)和无气泡(三角)条件下的频率扫描测试,发现损耗模量几乎不受气泡的影响,松弛末端满足G' ' ∼ω1∼ω1标度关系,而储能模量受气泡影响较大,逐渐偏离G' ∼ω2标度关系,这是气泡/样品界面的慢松弛过程导致的.图16Figure16.ThestorageandlossmoduliasfunctionsoftheangularfrequencyforaPDMSsiliconeoilwithandwithoutbubbles(ReprintedwithpermissionfromRef.[48] Copyright(2013)Spring)图17展示了Shabbir等[49]对聚四氢呋喃磺酸锂离聚物(PTMO-Li)在干燥和一定湿度条件下的频率扫描测试,他们发现湿度对离聚物的流变性能有很大影响,储能模量和损耗模量相较干燥条件下下降一个数量级左右,由此可见干燥样品对于流变测试的重要性.图17Figure17.ThestorageandlossmoduliasfunctionsoftheangularfrequencyforPTMO-Liindriedandundriedstates.(ReprintedwithpermissionfromRef.[49] Copyright(2017)SocietyofRheology)3.7.2确定样品的热稳定性在进行流变测试之前,对于不熟悉的聚合物样品,需要进行TGA和DSC测试,了解样品的热稳定性和玻璃化转变温度,以便于测试条件的选择,比如:低温测试时样品接近玻璃态,模量接近109Pa左右,样品较高的模量下突然变化夹具间隙会导致仪器法向力的激增,损坏空气轴承和力传感器;高温测试时,不了解样品热稳定性,测试温度过高会导致样品发生化学交联和降解行为,影响测试结果.通常,对于容易交联的样品,可以采取添加少量稳定剂的办法抑制化学交联,获取准确的实验数据.图18展示了Stadler等[50]对低分子量低密度聚乙烯分别在加入少量稳定剂和不加稳定剂条件下,复数黏度随时间扫描变化,可以看出当时间经过4300s之后,样品黏度突然增加,这主要由于体系中含少量双键的组分发生化学交联导致,而加入少量稳定剂的样品持续到8.24×105s(~9.5天)后,样品才开始降解,说明加少量稳定剂的办法可以有效抑制样品的化学交联.此外,为排除样品在测试过程中发生变化,对测试产生的影响,建议完成所有测试后,再次重复第一步测试,通过数据重复性来考察样品是否在测试过程中发生变化,以保证样品数据的可靠性.图18Figure18.ThermalinstabilityofsamplemLLDPEF18F.Thesamplewithoutstabilizerexceedsthe±5%criterionafter4300sowingtothecrosslinking,whilethesamplewithstabilizerstayswithinthiscriterionfor8.24×105s(≈9.5days).(ReprintedwithpermissionfromRef.[50] Copyright(2014)Springer).3.7.3样品体系是否达到平衡态在测试过程中确保样品体系在测试前是否达到平衡稳态是获取准确数据的前提.例如超高分子量聚乙烯样品,从结晶状态加热到熔体状态后,往往需要较长时间才能达到链充分缠结的平衡态.例如,图19展示了超高分子量聚乙烯样品在加热到160°C熔融后,体系从低缠结状态达到缠结平衡态的过程中储能模量G' 的变化,作者发现,热平衡时间随着合成分子的时间(图中标示),也即分子量增加而增加,对于合成30min的样品,热平衡时间长达约一天之久[51].这种缠结程度低于平衡缠结程度的样品也可以通过在稀溶液中沉降高玻璃化温度的长链高分子(如高于缠结分子量的聚苯乙烯)来制备[52,53].图19Figure19.Buildupofmodulusindisentangledpolymermeltswithtimeofultra-high-molecular-weightpolyethylene.ThetopschemeshowsthemechanismandthebottomfigureshowsthemeasuredstoragemodulusG' (t)againsttime(symbols),whereG' (t)hasbeennormalizedbytheequilibriumplateaumodulusGN0.Curvesarethepredictionsbasedontubetheory.(ReprintedwithpermissionfromRef.[51] Copyright(2019)AmericanChemicalSociety)此外,对于高填充体系、不相容聚合物共混物等极难达到平衡态的体系,常需高速施加预剪切,使体系保持初始态的一致性.需要注意的是,该初始态往往处于非平衡态.3.7.4夹具热膨胀对测试的影响除了前面3.1和3.2节提到夹具柔量和惯量对测试结果的影响,在测试过程中还需要考虑夹具的热膨胀对测试结果的影响,不同材质的夹具具有不同的热膨胀系数.现在很多仪器在输入夹具类型时已经考虑到热膨胀系数.但是很多自制的夹具和可抛弃的夹具在使用之前需要人为地测量热膨胀系数并输入.此外,样品也具有一定的热膨胀系数,因此在测试温度范围很宽时,需要在加热过程中适当增大板间距,在降温过程中适当减少板间距,从而保持样品的填充程度一致.此外,还需考虑控温组件的结构也会对夹具的传热温度梯度造成影响[54],即使是同一个夹具在不同控温组件下的膨胀系数也是不同的,夹具膨胀系数的差异直接会影响设置夹具间距的大小,尤其在设置夹具间距很小的情况下(如锥板),板受热膨胀可能会使两板直接接触,造成法向应力的激增从而损坏空气轴承和力传感器.3.7.5夹具不平行和不同轴对测试的影响保证夹具的平行与同轴也是获取实验数据的关键.随着测试夹具频繁使用,以及不小心跌落,非常容易造成夹具不平行和不同轴,这样会导致仪器校零出现误差以及仪器法向力影响测试结果.因此,在测试中需要注意夹具的正确使用,特别是不要将不使用的夹具立在桌面上或者高处,以防止跌落造成夹具的变形.4.结论与展望本文结合作者多年的流变测试经验,从流场类型和仪器的特征出发,对流变仪进行了简单的分类.重点阐述了旋转流变仪的工作原理,剪切流变测试的假设条件及其失效的情况,和实际测试中一些不良的测试习惯及其导致的结果.简言之,流变仪器测试时,只有当输入或输出的应变或应力为施加在样品上的应变或应力,且流场为纯粹的剪切流场时,测试的结果才是可靠的结果.这些基本前提都是会在一定的测试条件下失效.我们结合一些实验实例,具体解释了这些假设条件失效的情况,以及在实际流变测试中仪器完全满足基本假设的情况下,一些不良测试习惯对测试的影响,具体总结如下:(1)当样品的刚度接近仪器夹具和传感器的刚度时,在样品形变的同时,仪器夹具和传感器也会发生一定的形变,造成样品的真实应变低于仪器设定的应变.此时,准确校正夹具和传感器的扭转柔量对于样品的测试是非常重要的.一般的校正过程中考虑夹具和传感器的柔量(或者刚度)为常数.然而,真实测试中,该柔量也会随着测试条件(如温度)和仪器状态的变化而变化.因此,从实验操作上来讲,更可行的方法就是选择合适的夹具来增加施加在样品上的应变和因仪器柔量消耗的应变之比.(2)当仪器施加恒定的扭矩时,部分扭矩用于加速驱动马达和夹具旋转,当旋转速度达到稳定时候,测试的扭矩才是真实的样品扭矩.因此,在瞬态和动态等具有加速过程的测试中,当样品反馈的实际扭矩较小时,源于仪器和夹具加速度过程中的惯量贡献会影响到测试结果.对于单头的旋转流变仪来说,马达和传感器集成在一边,仪器惯量的影响更大.虽然双头的旋转流变仪具有力反向平衡功能的传感器,可以很大程度上抑制仪器惯量的影响,但是也无法完全消除该影响.由于仪器的惯量影响与夹具和仪器的状态相关,需要对仪器进行定期的惯量校正.(3)在高速振荡测试过程中,样品在往复运动过程中会产生剪切波,当(夹具)板间距与该剪切波波长相当时,样品自身的惯量影响会使得施加样品内部的流场偏离纯粹的剪切流场,造成相位角的变化和相应的测试模量的变化;在高剪切速率时(如稳态或瞬态测试时),流动的不稳定性使剪切流场产生失稳,造成二次流的出现,二次流叠加在剪切流场上会增加仪器测量的扭矩,导致测试中出现“剪切增稠”的假象.因此,给定的频率范围内选取合理的板间距h是减少样品惯量影响和抑制二次流的关键.(4)对于低黏度的牛顿流体,表面张力对实验结果的影响往往会被忽略.表面张力产生的扭矩大小与样品的各项对称性、样品的自身表面张力以及样品是否存在吸附和聚集有着密切关系.因此,在低黏度样品测试过程中,建议结合显微工具在线地观测测试过程中样品形状的变化.(5)上述四个方面是在样品模量足够高、黏度足够低或者剪切强度足够大的极端情况下,测试中3个基本假设失效的情形.其实,在实际流变测试中即使仪器完全满足测试需求和基本假设的情况下,流变测试者如果没有养成良好的测试习惯,也会得不到准确的数据.因此,我们总结了一些常见容易忽略的问题,例如样品干燥和挥发、样品自身热稳定性,样品是否达到平衡态,夹具和样品热膨胀、夹具的不平行不同轴等问题.我们针对上述容易忽略的问题进行了阐述,希望有助于流变测试的初学者养成良好的测试习惯,了解这些知识对于维护仪器、保护样品以及获取准确的测试数据都是十分重要的.虽然流变仪器测试过程中会存在上述因素的干扰,但是读者在熟悉流变仪的原理和养成良好的测试习惯的前提下,是很容易判断出实验数据出现问题的“症结”所在,使得流变仪不再成为科研工作中的“黑箱”.最后需要指出,本文关注的测试手段仅限于剪切流场.由于拉伸流场较剪切流场难实现,高分子流变学的实验研究多数在剪切流场下进行.对于加工过程中同等重要的拉伸流场下测试的仪器和研究还在快速的发展之中[15,55~57].笔者计划在后续的综述中探讨拉伸测试的仪器原理和测试技巧.参考文献[1]TadmorZ,GogosCG.PrinciplesofPolymerProcessing.2nded.Hoboken,NewJersey:JohnWiley&Sons,2013[2]PtaszekP.LargeAmplitudeOscillatoryShear(LAOS)measurementandfourier-transformrheology:applicationtofood.In:AhmedJ,PtaszekP,BasuS,eds.AdvancesinFoodRheologyandItsApplications.London:WoodheadPublishing,2017.87−123[3]KanedaI.RheologyControlAgentsforCosmetics.RheologyofBiologicalSoftMatter.Tokyo:Springer,2017,295−321[4]EleyRR.JCoatTechnolRes,2019,16(2):263−305doi:10.1007/s11998-019-00187-5[5]AhmedJ,PtaszekP,BasuS.AdvancesinFoodRheologyandItsApplications.London:WoodheadPublishing,2016[6]ZhangZ,LiuC,CaoX,GaoL,ChenQ.Macromolecules,2016,49(23):9192−9202doi:10.1021/acs.macromol.6b02017[7]ChenQ,TudrynGJ,ColbyRH.JRheol,2013,57(5):1441−1462doi:10.1122/1.4818868[8]LiuS,WuS,ChenQ.ACSMacroLett,2020,9:917−923doi:10.1021/acsmacrolett.0c00256[9]LarsonRG.TheStructureandRheologyofComplexFluids.NewYork:OxfordUniversityPress,1999[10]MihaiM,HuneaultMA,FavisBD.PolymEngSci,2010,50(3):629−642doi:10.1002/pen.21561[11]AriawanAB,HatzikiriakosSG,GoyalSK,HayH.AdvPolymTechnol:JPolymProcessInst,2001,20(1):1−13[12]LundahlMJ,BertaM,AgoM,StadingM,RojasOJ.EurPolymJ,2018,109:367−378doi:10.1016/j.eurpolymj.2018.10.006[13]LiB,YuW,CaoX,ChenQ.JRheol,2020,64(1):177−190doi:10.1122/1.5134532[14]WatanabeH,MatsumiyaY,ChenQ,YuW.Rheologicalcharacterizationofpolymericliquids.In:MatyjaszewskiK,MöllerM,eds.PolymerScience:AComprehensiveReference.Amsterdam:Elsevier,2012.683−722[15]MarínJMR,HuusomJK,AlvarezNJ,HuangQ,RasmussenHK,BachA,SkovAL,HassagerO.JNon-NewtonFluid,2013,194:14−22doi:10.1016/j.jnnfm.2012.10.007[16]WatanabeH,MatsumiyaY,InoueT.Macromolecules,2002,35(6):2339−2357doi:10.1021/ma011782z[17]YoshidaH,AdachiK,WatanabeH,KotakaT.PolymJ,1989,21(11):863−872doi:10.1295/polymj.21.863[18]TroutonFT.ProcRSocLondon,SerA,1906,77(519):426−440doi:10.1098/rspa.1906.0038[19]LiuC,ZhangJ,ZhangZ,HuangS,ChenQ,ColbyRH.Macromolecules,2020,53(8):3071−3081doi:10.1021/acs.macromol.9b02431[20]ZhangJ,LiuC,ZhaoX,ZhangZ,ChenQ.SoftMatter,2020,16(21):4955−4960doi:10.1039/D0SM00572J[21]BuscallR,McGowanJI,Morton-JonesAJ.JRheol,1993,37(4):621−641doi:10.1122/1.550387[22]BuscallR.JRheol,2010,54(6):1177−1183doi:10.1122/1.3495981[23]BallestaP,PetekidisG,IsaL,PoonW,BesselingR.JRheol,2012,56(5):1005−1037doi:10.1122/1.4719775[24]MagdaJ,LarsonR.JNon-NewtonFluid,1988,30(1):1−19doi:10.1016/0377-0257(88)80014-4[25]CostanzoS,HuangQ,IannirubertoG,MarrucciG,HassagerO,VlassopoulosD.Macromolecules,2016,49(10):3925−3935doi:10.1021/acs.macromol.6b00409[26]LiuCY,YaoM,GarritanoRG,FranckAJ,BaillyC.RheolActa,2011,50(5−6):537doi:10.1007/s00397-011-0560-3[27]PogodinaN,NowakM,LäugerJ,KleinC,WilhelmM,FriedrichC.JRheol,2011,55(2):241−256doi:10.1122/1.3528651[28]GottliebM,MacoskoC.RheolActa,1982,21(1):90−94doi:10.1007/BF01520709[29]HutchesonS,McKennaG.JChemPhys,2008,129(7):074502doi:10.1063/1.2965528[30]KriegerIM.JRheol,1990,34(4):471−483doi:10.1122/1.550138[31]LäugerJ,StettinH.JRheol,2016,60(3):393−406doi:10.1122/1.4944512[32]EwoldtRH,JohnstonMT,CarettaLM.Experimentalchallengesofshearrheology:howtoavoidbaddata.ComplexFluidsInBiologicalSystems.In:SpagnolieSE,ed.ComplexFluidsinBiologicalSystems.NewYork:Springer,2015.207−241[33]YosickJA,GiacominJA,StewartWE,DingF.RheolActa,1998,37(4):365−373doi:10.1007/s003970050123[34]SchragJL.TransactionsoftheSocietyofRheology,1977,21(3):399−413doi:10.1122/1.549445[35]ShaqfehES.AnnuRevFluidMech,1996,28(1):129−185doi:10.1146/annurev.fl.28.010196.001021[36]McKinleyGH,PakdelP,ÖztekinA.JNon-NewtonFluid,1996,67:19−47doi:10.1016/S0377-0257(96)01453-X[37]PakdelP,McKinleyGH.PhysRevLett,1996,77(12):2459doi:10.1103/PhysRevLett.77.2459[38]ChandrasekharS.HydromagnetsandHydrodynamicsStability.NewYork:DoverPublishing,1981[39]LarsonRG.RheolActa,1992,31(3):213−263doi:10.1007/BF00366504[40]TaylorGI.PhilosTransRSocLondon,SerA,1923,223(605-615):289−343doi:10.1098/rsta.1923.0008[41]TurianRM.IndEngChemFundam,1972,11(3):361−368doi:10.1021/i160043a014[42]Andablo-ReyesE,VicenteJd,Hidalgo-AlvarezR.JRheol,2011,55(5):981−986doi:10.1122/1.3606633[43]GriffithsD,WaltersK.JFluidMech,1970,42(2):379−399doi:10.1017/S0022112070001337[44]JohnstonMT,EwoldtRH.JRheol,2013,57(6):1515−1532doi:10.1122/1.4819914[45]ShipmanRW,DennMM,KeuningsR.IndEngChemRes,1991,30(5):918−922doi:10.1021/ie00053a014[46]SharmaV,JaishankarA,WangYC,McKinleyGH.SoftMatter,2011,7(11):5150−5160doi:10.1039/c0sm01312a[47]CastellanosMM,PathakJA,ColbyRH.SoftMatter,2014,10(1):122−131doi:10.1039/C3SM51994E[48]WolffF,MünstedtH.RheolActa,2013,52(4):287−289doi:10.1007/s00397-013-0687-5[49]ShabbirA,HuangQ,BaezaGP,VlassopoulosD,ChenQ,ColbyRH,AlvarezNJ,HassagerO.JRheol,2017,61(6):1279−1289doi:10.1122/1.4998158[50]StadlerFJ.Korea-AustRheolJ,2014,26(3):277−291doi:10.1007/s13367-014-0032-2[51]HawkeLGD,RomanoD,RastogiS.Macromolecules,2019,52(22):8849−8866doi:10.1021/acs.macromol.9b01152[52]WangX,TaoF,SunP,ZhouD,WangZ,GuQ,HuJ,XueG.Macromolecules,2007,40(14):4736−4739doi:10.1021/ma0700025[53]TengC,GaoY,WangX,JiangW,ZhangC,WangR,ZhouD,XueG.Macromolecules,2012,45(16):6648−6651doi:10.1021/ma300885w[54]LippitsDR,RastogiS,TalebiS,BaillyC.Macromolecules,2006,39(26):8882−8885doi:10.1021/ma062284z[55]StadlerFJ,StillT,FytasG,BaillyC.Macromolecules,2010,43(18):7771−7778doi:10.1021/ma101028b[56]LingGH,WangY,WeissR.Macromolecules,2012,45(1):481−490doi:10.1021/ma201854w[57]ScherzLF,CostanzoS,HuangQ,SchlüterAD,VlassopoulosD.Macromolecules,2017,50(13):5176−5187doi:10.1021/acs.macromol.7b00747

粉体剪切测试仪相关的方案

  • 流动测试中的最小剪切速率限制
    对于给定的测量夹具系统,旋转流变仪的最低扭矩实际限制了其能所量测的最小应力,又由于量测的应力总是等于样品黏度与施加剪切速率的乘积,因此,对于低黏度样品来说,测试时允许施加的最小剪切速率不可避免地会受到所用测试夹具系统所能量测的最小应力限制。换句话说,对于黏度比较低的样品,流动测试中所允许设置的最小剪切速率并不是仪器所能达的速率最小值,而是与被测样品的黏度存在关联关系。实际测量中可以设定的最小剪切可由测量系统所能量测的最小应力除以黏度估算。
  • 北京微讯超技:通过剪切测试桃子的坚实度
    实验样品:桃子实验目的:通过剪切测试桃子的坚实度在过去的5年里,一种测试桃子硬度的方法已经在桃子工业方面发展的很成熟了。最近,收获的桃子非常硬,以至要使用刀具剪切刀具进行测量,而单个的大片在此已经不适用。刀具剪切刀具的力量可以测量100kg以上的。桃子不适于穿刺测试,因为穿刺测试有太多的可变性。 这个方法是用于桃子品控的。此方法非常有效。大约2min内操作者可以完成10次实验。
  • 流体剪切力系统在生物医学研究应用的简要介绍
    在生理状态下,许多细胞类型被流体环境包围。典型例子包括:血管内皮细胞,形成血管内层,淋巴管内皮细胞,形成淋巴管内层,肾和肺的上皮细胞。这种液体流动引起剪切应力,这是一种机械力,以多种方式影响细胞形态和行为。流体剪切力系统是一种通过在流体灌注的蓄液器内施加空气压力来产生液体流动的装置。该装置通过使用特殊切换模式来循环液体,产生恒定的单向流动。 这使其成为在长期细胞培养中应用确定的剪切应力的理想设置。使用流体剪切力泵系统,可以模拟连续和脉动层流以及振荡流动。从而模拟生理状态下血管,淋巴管等组织液体流动环境,进而开展相关细胞研究工作。

粉体剪切测试仪相关的资料

粉体剪切测试仪相关的论坛

  • 【求助】毛细管流变仪的剪切速率问题

    说毛细管流变仪是高剪切速率的流变仪,那么多高的剪切速率才是高剪切呢?说旋转流变仪是低剪切速率的流变仪,那是不是说在测试原料加工温度的时候,毛细管流变仪更为准确啊。

  • 拉伸剪切取样

    各位师傅,为了提高板材拉伸制样效率,打算通过直接剪切取样(现有的加工工序为剪切——切割——刨——双开肩成标准样品);各位有没有做过样品直接剪切成型和标准样品两者的测试结果对比方面的试验?

粉体剪切测试仪相关的耗材

  • 高端炭基材料高剪切乳化机,环保水性纳米碳材高速乳化机,碳纳米管材料高剪切乳化机,碳纳米管浆液高剪切乳化机混合机,碳纳米复合母胶高剪切乳化机,液体黄金复合母胶高剪切乳化机混合机设备,超导电纳米碳材高速自吸粉混合机乳化机,炭黑高速自吸粉混合机设备
    高端炭基材料高剪切乳化机,环保水性纳米碳材高速乳化机,碳纳米管材料高剪切乳化机,碳纳米管浆液高剪切乳化机混合机,碳纳米复合母胶高剪切乳化机,液体黄金复合母胶高剪切乳化机混合机设备,超导电纳米碳材高速自吸粉混合机乳化机,炭黑高速自吸粉混合机设备 碳纳米管是一维的纳米材料,在工程材料域,碳管以其优异的物理机械性能成为聚合材料理想的填料。具有优异的力学性能、导电、导热性能,因而被认为是聚合物基复合材料理想的力学强化和功能改性材料,采用碳纳米管制成的复合材料表现出良好强度、弹性和抗疲劳性,碳纳米管也逐渐用于橡胶制品、轮胎、塑料等工业中。 但是,碳纳米管的呈纳米纤维状,自身易团聚和缠结,且碳纳米管表面为规整的石墨晶片结构,表面惰性大,与聚合物基体亲和性差,导致碳纳米管在橡胶基质中的分散性差,而且成本也高,这些限制了碳纳米管在橡胶中的规模化应用。 在橡胶工业中,将碳纳米管填充到各种橡胶基体以提高橡胶基体的性能成为研究高端橡胶产品的理想共混复合材料之一,但碳纳米管自身有着很高的表面自由能,易发生团聚现象,碳纳米管与基体间的相互作用是另一个难题,碳管表面没有任何反应官能图,碳管的惰性使其与聚合物基体间化学界面作用弱,碳纳米管对聚合物基体的改善效果难达到预期,因此制备出尺寸均匀,分散好,性能稳定的碳纳米管及其复合材料是拓展其应用域的需要。 目,在碳管的分散性及其复合材料研究中已经取得许多进展。常用的方法中是将采用表面活性剂对碳管表面改性,将其悬浮液与胶乳复合制得复合母胶,该技术在一定程度解决了碳纳米管的分散,但由于表面活性剂中其它基团的加入会降低复合母胶的性能;因此需要提供一种避免活性剂的加入影响碳纳米管与聚合物间结合的技术方案。 针对现阶段技术中存在的问题,在碳纳米管分散均匀的基础上在其表面引入羧基、羟基等官能团,避免偶联剂的加入影响碳纳米管与胶乳之间的结合。一种高分散碳纳米复合母胶的制备方法,包括以下步骤:1、将碳纳米管在分散液中剪切,制得短切碳纳米管悬浮液;2、通入氧化气体对短切碳管悬浮液氧化,制得短切碳纳米管氧化液;3、将补强材料加入短切碳纳米管氧化液,制得碳纳米管浆液;4、在碳纳米管浆液中加入偶联剂,制得复合浆液;5、将天然橡胶胶乳分散于复合浆液中,制得碳纳米管-天然橡胶复合材料;6、将碳纳米管-天然橡胶复合材料凝固、干燥制得高分散碳纳米复合母胶。 上海依肯根据市场技术需求结合多年来积累的成功案例经验特别推出ERS2000系列高剪切乳化机(混合机),ERS2000在线式高速高剪切乳化机,主要用于微乳液及超细悬浮液的生产。由于工作腔体内三组乳化分散头(定子+转子)同时工作,乳液经过高剪切后,液滴更细腻,粒径分布更窄,因而生成的混合液稳定性更好。三组乳化分散头均易于更换,适合不同的工艺应用。该系列中不同型号的机器都有相同的线速度和剪切率,非常易于扩大规模化生产。 上海依肯ERS2000系列高剪切乳化机(混合机)设备参数选型表:型号 标准流量L/H输出转速rpm标准线速度m/s马达功率KW进口尺寸出口尺寸ERS 2000/4300-100014000442.2DN25DN15ERS 2000/5300010500447.5DN40DN32ERS 2000/10800073004415DN50DN50ERS 2000/202000049004437DN80DN65ERS 2000/304000028504455DN150DN125ERS 2000/407000020004490DN150DN125高端炭基材料高剪切乳化机,环保水性纳米碳材高速乳化机,碳纳米管材料高剪切乳化机,碳纳米复合母胶高剪切乳化机,液体黄金复合母胶高剪切乳化机混合机设备,超导电纳米碳材高速自吸粉混合机乳化机,炭黑高速自吸粉混合机设备。。。需要了解更多详情请致电上海依肯机械设备有限公司 销售工程师 徐蒙蒙 182-0189-1183,公司有样机可以免费为客户进行测试验证实验。
  • 影响医药微球均质乳化机的因素其实很简单,布洛芬缓释微球高剪切均质机,载药微球均相高剪切均质机,医药双入口高剪切均质机
    影响医药微球均质乳化机的因素其实很简单,布洛芬缓释微球高剪切均质机,载药微球均相高剪切均质机,医药双入口高剪切均质机 微球(microsphere)是指药物分散或被吸附在高分子、聚合物基质中而形成的微粒分散体系。制备微球的载体材料很多,主要分为天然高分子微球(如淀粉微球,白蛋白微球,明胶微球,壳聚糖等)和合成聚合物微球(如聚乳酸微球)目药剂学上关于微球(microspheres)的定义是指药物溶解或分散于高分子材料中形成的微小球状实体,球形或类球形,一般制备成混悬剂供注射或口服用。微球粒径范围一般为1-500um,小的可以是几纳米,大的可达800um,其中粒径小于500nm的,通常又称为纳米球或纳米粒,属于胶体范畴。 简单介绍下O/W乳化法制备微球,大致过程:将药物溶于有机溶剂,制备成油相,将PVA等表面活性剂溶于水中制备成水相,然后将油相打入到水相中进行乳化(在均质、高速剪切或搅拌,超声、磁力搅拌等乳化),然后经过慢速搅拌(真空泵抽气,加压空气或氮气)等条件下,挥发有机溶剂固化微球,然后收集并洗涤微球,后冻干!涉及的参数有:PLGA分子量,PLGA浓度,水相PVA浓度,理论载药量(药物与PLGA比例),油相水相比例,均质或高速搅拌的速度,制备温度等....微球洗涤方法:过滤,离心.....冻干:真空干燥,冷冻干燥.... 传统的乳化设备是批次式均质机,油相和水相混合,再通过均质机进行搅拌乳化,这时微球已大量生成,再减小微球颗粒就比较困难。上海依肯研发的双入口高剪切均质机,油相或水相单独进料,并瞬间剪切乳化,使微球在生成的过程中颗粒就可以变小。 微球油水相乳化均质机,医药微球均质机,药物高分子微球均相均质机,高聚物多功能均质机,双入口高剪切均质机,油水相双入口乳化均质机是上海依肯应对两相不能直接接触的问题研发而成的高新产品,有些物料水相和油相不能直接接触,接触之后会立即生产新的物质,出现固化现象,再想细化物料的粒径就十分困难,然而有了双入口乳化机的存在,避免了这种现象的发生。如需了解更多详情可咨询IKN 销售工程师 徐工 18201891183,公司实验室有样机可以免费为客户进行购买设备的实验验证。双入口均质机的工作原理: 双入口均质机就是将水相和油相同时分别进口不同的进料口,一同进入乳化机的工作腔体中,然后在水相和油相接触的同时,通过定转子的高速转动,得到瞬间的剪切力,来将物料颗粒瞬间细化,从而得到高品质的产品。德国双入口均质均质机的特点:①具有非常高的剪切速度和剪切力,粒径约为0.2-2微米可以确保高速分散乳化的稳定性。②该设备可以适用于各种分散乳化工艺,也可用于生产包括对乳状液、悬浮液和胶体的均质混合。③双入口均质机由定、转子系统所产生的剪切力使得溶质转移速度增加,从而使单一分子和宏观分子媒介的分解加速。④双入口进口方式的设计,避免两种不能长期接触物料,可以得到瞬间的剪切。一、乳化机:采用德国博格曼双端面机械密封,在保证冷却水的提下,可24小时连续运行。而普通乳化机很难做到连续长时间的运行,并且普通乳化机不能承受高转速的运行。二、均质机:主要用于生物技术域的组织分散、医药域的样品准备、食品工业的酶处理,,食品中农药残留以及兽药残留检测以及在制药工业、化妆品工业、油漆工业和石油化工等方面。均质机采用不锈钢系统,可有效的分离护体样品表面和被包含在内的微生物均一样品,样品装在一次性无菌均质袋中,不与仪器接触,满足快速、结果准确、重复性好的要求。三、分散机:可以处理量大,运转更平稳,拆装更方便,适合工业化在线连续生产,粒径分布范围窄,分散效果佳,无死角,物料全部通过分散剪切。具有非常高的剪切速度和剪切力,粒径约为0.2-2微米可以确保高速分散乳化的稳定性。该设备可以适用于各种分散乳化工艺,也可用于生产包括对乳状液、悬浮液和胶体的均质混合。四、胶体磨:对流体物料进行精细加工的机械。它综合了均质机、球磨机、三辊机、剪切机、搅拌机等机械的多种性能,具有优越的超微粉碎、分散乳化、均质、混合等功效。物料通过加工后,粒度达2~50微米,均质度达90%以上,是超微粒加工的理想设备。五、乳化泵:属于捡起较小的在线式乳化机械,高流量,站姿圆周线速度约为10-20m/s,适用于无剪切,但依然可得到稳定的溶液。六、成套设备:指生产成品或半成品的工业联合装置。它可以是一个工段、一条生产线、一个车间或一个工厂。它可以是某一业的单项设备,也可以是数个业的综合设备。它综合了研磨机、分散机、均质机、乳化机、混合等优点。影响医药微球均质乳化机的因素其实很简单,布洛芬缓释微球高剪切均质机,载药微球均相高剪切均质机,医药双入口高剪切均质机如需了解更多详情可咨询IKN 销售工程师 徐工 18201891183,公司实验室有样机可以免费为客户进行购买设备的实验验证。
  • 质构仪探头-直口剪切刀具 TA/BS
    质构仪探头-直口剪切刀具 TA/BS刃口装置包括一平刃刀口和平刃刀口。可测量长面包、香肠、面条、水果、蔬菜等,主要观察剪力与切断时力的变化,适用表面硬度以及内部材料、质地的变化测试。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制