当前位置: 仪器信息网 > 行业主题 > >

轻骨料强度承压筒

仪器信息网轻骨料强度承压筒专题为您提供2024年最新轻骨料强度承压筒价格报价、厂家品牌的相关信息, 包括轻骨料强度承压筒参数、型号等,不管是国产,还是进口品牌的轻骨料强度承压筒您都可以在这里找到。 除此之外,仪器信息网还免费为您整合轻骨料强度承压筒相关的耗材配件、试剂标物,还有轻骨料强度承压筒相关的最新资讯、资料,以及轻骨料强度承压筒相关的解决方案。

轻骨料强度承压筒相关的论坛

  • 【原创】焦炭机械强度测定转鼓机使用说明

    焦炭机械强度测定转鼓机使用说明 一、用途MKM-2000焦炭机械强度测定转鼓机,是用于测定焦炭机械强度(M40、M25、M10)、焦炭试样的专用设备,该机采用优化设计,使其结构紧凑,操作简便,严格按照GB/2006-94《冶金焦炭机械强度测定方法》设计制作,各项指标符合中华人民共和国国家标准,是各钢球厂、焦化厂、铸造厂等生产和使用焦炭厂家理想首选专用检测设备。转鼓直径Φ1000±5mm转鼓长度1000±2mm转 速25±1.5r/min电机功率2.2KW试样重量50kg电 压380V/220V预置转数0-9999重 量约750kg二、技术参数三、结构概述转鼓主要由机架、转筒、减速系统、放料系统、控制装置等组成。机架由优质钢材焊接而成,通过两端半轴、轴承、轴承座安放于机架上,形成一个回转的筒体。焦炭放入转筒内转动时,焦炭随之滚动,在钢板筋的作用下,被抛下自碰破碎和与桶体磨损而碎,达到检测强度的目的。达到预置数后,转筒停止转动,物料从料口放出,完成一个试验周期。减速系统:由电机、联轴器、蜗轮减速机等组成。起到带动转筒恒定运转。减速系统配有手动调整装置,便于放料。卸料装置:有转筒卸料口、活络支撑架、卸料板等组成。转鼓达到预置转数停止后,进入放料工作。因蜗转减速机有自锁功能,需人工搅动装在减速机输入轴上的摇把,使活络支撑架对准料口上的卡座,然后松动压紧螺栓,掀开料口盖板,进行卸料工作。摇把只用于放料工作,放料工作完成即取下,以防止通电转动时出现危险。计数装置:主要起到预置转数、数字显示转数、自动停机的作用。四、安装与试车转鼓要安装在混凝土地基上,地基深度在600±50毫米以上。混凝土地基达到凝固期后,地脚螺栓拧紧,电源线接上,接地线可靠接地。也可以将机器放于平整的

  • 【分享】混凝土力学性能检测项目

    1. 混凝土力学性能:抗压强度、轴心抗压强度、静力受压弹性模量、劈裂抗拉强度、抗折强度、圆柱体劈裂抗拉强度、芯样切割抗压强度、喷射混凝土切割抗压强度;2. 混凝土耐久性能:慢冻、收缩、抗渗、碳化;3. 普通混凝土拌和物:稠度、凝结时间、泌水和压力泌水、表观密度、含气量;4. 配合比设计:普通混凝土配合比设计、轻骨料混凝土配合比设计、喷射混凝土配合比设计、砌筑砂浆配合比设计、净浆配合比设计;5. 建筑砂浆:稠度、密度、分层度试验、立方体抗压强度、抗冻性能、静力受压弹性模量;6. 聚合物砂浆增加:抗压抗折、压折比、拉伸粘结强度、可操作时间、吸水量;7. 砂:筛分析、表观密度、吸水率、含水率、堆积密度和紧密密度、含泥量、泥块含量、云母含量、碱活性、石粉含量;8. 石:筛分析、表观密度、吸水率、含水率、堆积密度和紧密密度、含泥量、泥块含量、针状和片状颗粒总含量、岩石抗压强度、压碎指标值、碱活性;

  • 生活垃圾污染的治理对策

    ①填埋法。垃圾填埋场的选址。选址时遵循的原则是:远离生活区和水源地;避开上风口和水源地上游;自然 地理条件不适宜飘浮扩散和渗漏。②构建固体废物回收、处理、利用的长效机制。借鉴发达国家固体废物资源化的成功经验和做法,完善促进固体废物资源化的扶持和鼓励政策。不仅要重视资源的减量化,也要重视固体废物的回收和资源化,提高资源利用效率。③固体废物优化方法。许多工业废渣的成分,性质类似于天然建筑材料或人工制成的建筑材料,建筑固体废物污染的资源化防治也就是要转变对固体废物的认识,将建筑固体废物看成一种资源,对固体废物进行二次利用,既解决固体废物污染的问题,又能创造出一定经济效益的处理方法。建筑固体废物污染的资源化防治主要分为两步,也就是将固体废物分类和选择合适的处理技术。如:再生骨料混凝土主要是指利用建筑固体废物中的一些水泥块、石块等代替骨料混凝土中的石子,以增强混凝土硬度和强度一种技术;建筑过程中的废砖,如果形状比较完整,而且强度、硬度上没有太大的变化,则可以作为砖块重新利用起来。如果已经破碎,就可以采取将其粉碎,作为再生骨料混凝土的骨料使用。对建筑固体废物中的废陶瓷,可以采用破碎成砂的方式,将其破碎到5-10mm,可以广泛的应用于建筑物的外墙装饰。在解决固体废物污染的同时,也创造一种较高的经济效益。

  • 【原创】【第三届原创参赛】混凝土的传说

    【原创】【第三届原创参赛】混凝土的传说

    本文为smallstrong 原创作品,本作者是该作品唯一合法使用者,该作品暂不对外授权转载。其他任何网站、组织、单位或个人等将该作品在本站以外的任何媒体任何形式出现的,均属侵权违法行为。说说历史:混凝土是目前土建施工,尤其是高层住宅建筑的主要施工材料。据说混凝土早在古代就被聪明的希腊人使用,当时的主要建筑材料是石材。但石材的可取材地区十分稀少,搬运困难,而且品质不一。后来人们发现将水泥(主要成分是硅酸盐)、砂石混合后能够形成具有一定强度的并且十分具有可塑性的形状类似石材的物体,而且最关键的是混凝土为水硬性材料,说通俗点,适合在湿度较大的环境中提升强度,或者干脆在水中,它的强度也能不断增长。当时广大建筑师对此十分长草。混凝土的中文简称为“砼”,分解开即为“人工石”,即为人造石材。但是问题又来了,混凝土和石材的特性很相似,抗压强度很好,但是抗剪切和抗拉的强度却只有其抗压强度的约十分之一。因此造成了梁以及楼板等有剪应力和拉应力参与受力的构件设计极为放不开,跨度十分之小。因此我们现在看到的古罗马神庙宫殿建筑,基本都是一个模式,虽然可能只需要极少数柱子即可承受屋面的重量,但是还是不得不缩短梁的跨度,加大梁的高度,搞的一个大型建筑立柱成林。屋顶也是尽量的盖成穹顶,加大水平角以减少对柱子的横向推力。十分浪费材料。后来这个问题被一个法国园艺师莫尼埃解决了。从花的根部包裹土壤的现象中获得灵感,将钢筋包裹进混凝土当中,从此成了钢筋混凝土的发明人。当然这也许是杜撰,就和凯库勒发现苯环结构式一样。无论怎样,钢筋混凝土的发明是有十分严谨的科学成分的。之所以这两种东西能够完美结合,是因为以下原因:1、 相近的线膨胀系数,保证两者能够“同进退”。2、 良好的粘结性,想要钢筋帮助混凝土承受拉力和剪力,需要做好钢筋的工作。在钢筋身上加上“肋条”,或者让钢筋轻度锈蚀,用钢筋调直机一拉,松脆的锈蚀立刻掉落,在钢筋表面流下无数的小坑洞。3、 混凝土中碱性的环境能够保护钢筋不锈蚀。钢筋混凝土的弱点:知道了钢筋混凝土结合的原因,也不免分析出混凝土的弱点。1、 钢筋不给力:钢筋若锈蚀严重,或者干脆能够承受的力度不够,自然整个构件会破坏;2、 混凝土不争气——氯化腐蚀、硫酸盐腐蚀和碱骨料反应:众所周知,铁块放在盐水中比放在清水中腐蚀的快。另外,水泥是碱性的,可以保护钢筋,但是碱含量过大时也能与砂石中一些二氧化硅等活性成分反映,这种反应的产物通常不具有太大强度,而且膨胀系数超大,能将混凝土涨开。同样,硫酸盐也会对混凝土造成同样的影响。3、 碳化:二氧化碳和碱是能够反应的,正如可乐能够除水碱一样。混凝土凝固后是有一定的毛细孔的,经过长期的碳化反应,一旦保护钢筋的混凝土碱性环境丧失,钢筋也面临被腐蚀的窘境。混凝土的亲戚:混凝土本身就是十分复杂的个体,它的亲戚自然也少不了。上文已述,混凝土主要是由水、水泥、砂石等组成,这里砂石被称为骨料。顾名思义,骨料即承受强度的主要物体。骨料讲究“粒径”选择,并不是越硬越大的石头就好,要讲究级配。我们想让混凝土达到的理想效果是:大石头的缝隙里主要是小石头,小石头缝隙里是小石子,小石子缝隙里是大沙粒,大沙粒缝隙里是小沙粒,其他地方填充细细的水泥以构成统一的整体。其次,水和水泥也是一对矛盾体,水灰比也是影响混凝土强度很重要的一项,水少了太稠,水多了强度低。故使用现场严禁往罐车中加水,否则可能引起严重的质量事故。例如北京市大兴区旧宫三角地明锐湾项目,就是由于私自加水而导致拆除部分结构重新浇筑,造成了极大的不良后果。上述两项加起来就是所谓的“配合比”了。商品混凝土厂家每批混凝土都要有符合规范规定的配合比要求,根据工程的要求来满足各种不同使用功能。混凝土的亲戚众多,被叫做各种外加剂和掺合料,根据不同的环境和使用功能,外加剂和掺合料的类型也五花八门,主要功能有几点:1、 加快混凝土早期增长:主要适用于冬季施工或拆模快的情况2、 延缓混凝土过快增长:夏天气温高,长距离运输防止混凝土过稠3、 减少水的用量增加流动性:防止混凝土过稠打灰不易堵塞4、 减少毛细孔增强防水性能:防水加强5、 加强混凝土防冻性能:防冻抗裂6、 防止各种不利反映:防止碱骨料反应等其他一系列不利反应。施工现场关于混凝土的实验主要有以下几个方面:1、 原材料:1.1 水泥:细度、标准稠度用水量、凝结时间、安定性、强度1.2 砂:细度模数、级配区域、含泥量、泥块含量、表观密度、堆积密度、碱活性指标1.3 碎(卵)石:级配情况、级配结果、最大粒径、含泥量、泥块含量、针、片状颗粒含量、压碎指标值、表观密度、堆积密度、碱活性指标1.4 掺合料:细度、需水量比、吸铵值、[/font

  • 【分享】生产石墨电极的原材料有哪些呢?

    [font=&]石墨电极是采用石油焦、针状焦为骨料,煤沥青为粘结剂,经过混捏、成型、焙烧、浸渍、石墨化、机械加工等一 系列工艺过程生产出来的一种耐高温石墨质导电材料。[/font][font=&]  石墨电极是电炉炼钢的重要高温导电材料,通过石墨电极向电炉输入电能,利用电极端部和炉料之间引发电弧产生的高温作为热源,使炉料熔化进行炼钢。其他一些冶炼黄磷、工业硅、磨料等材料的矿热炉也用石墨电极作为导电材料。利用石墨电极优良而特殊的物理化学性能,在其他工业部门也有广泛的用途。[/font][font=&]  生产石墨电极的原料有石油焦、针状焦和煤沥青[/font][font=&]  石油焦是石油渣油、石油沥青经焦化后得到的可燃固体产物。色黑多孔,主要元素为碳,灰分含量很低,一般在0.5%以下。石油焦属于易石墨化炭一类,石油焦在化工、冶金等行业中有广泛的用途,是生产人造石墨制品及电解铝用炭素制品的主要原料。[/font][font=&]  石油焦按热处理温度区分可分为生焦和煅烧焦两种,前者由延迟焦化所得的石油焦,含有大量的挥发分,机械强度低,煅烧焦是生焦经煅烧而得。中国多数炼油厂只生产生焦,煅烧作业多在炭素厂内进行。[/font][font=&]  石油焦按硫分的高低区分,可分为高硫焦(含硫1.5%以上)、中硫焦(含硫0.5%-1.5%)、和低硫焦(含硫0.5%以下)三种,石墨电极及其它人造石墨制品生产一般使用低硫焦生产。[/font][font=&]  针状焦是外观具有明显纤维状纹理、热膨胀系数特别低和很容易石墨化的一种优质焦炭,焦块破裂时能按纹理分裂成细长条状颗粒(长宽比一般在1.75以上),在偏光显微镜下可观察到各向异性 的纤维状结构,因而称之为针状焦。[/font][font=&]  针状焦物理机械性质的各向异性十分明显, 平行于颗粒长轴方向具有良好的导电导热性能,热膨胀系数较低,在挤压成型时,大部分颗粒的长轴按挤出方向排列。因此,针状焦是制造高功率或超高功率石墨电极的关键原料,制成的石墨电极电阻率较低,热膨胀系数小,抗热震性能好。[/font][font=&]  针状焦分为以石油渣油为原料生产的油系针状焦和以精制煤沥青原料生产的煤系针状焦。[/font][font=&]  煤沥青是煤焦油深加工的主要产品之一。为多种碳氢化合物的混合物,常温下为黑色高粘度半固体或固体,无固定的熔点,受热后软化,继而熔化,密度为1.25-1.35g/cm3。按其软化点高低分为低温、中温和高温沥青三种。中温沥青产率为煤焦油的54-56%。煤沥青的组成极为复杂,与煤焦油的性质及杂原子的含量有关,又受炼焦工艺制度和煤焦油加工条件的影响。表征煤沥青特性的指标很多,如沥青软化点、甲苯不溶物(TI)、喹啉不溶物(QI)、结焦值和煤沥青流变性等。[/font][font=&]  煤沥青在炭素工业中作为粘结剂和浸渍剂使用,其性能对炭素制品生产工艺和产品质量影响极大。粘结剂沥青一般使用软化点适中、结焦值高、β树脂高的中温或中温改质沥青,浸渍剂要使用软化点较低、 QI低、流变性能好的中温沥青。[/font]

  • 沸石的用处

    沸石的作用有:1、在化学蒸馏或加热实验当中常用来防止暴沸,这是因为沸石的结构当中有大量的小孔,可作为气泡的凝结核,使反应液平稳沸腾。可用敲碎至米粒大小的素烧瓷片代替。2、在轻工行业用于造纸、合成橡胶、塑料、树脂、涂料充填剂和素质颜色等。在国防、空间技术、超真空技术、开发能源、电子工业等方面,用作吸附分离剂和干燥剂。3、在建材工业中,用作水泥水硬性活性掺和料,烧制人工轻骨料,制作轻质高强度板材和砖。在农业上用作土壤改良剂,能起保肥、保水、防止病虫害的作用。4、在医学上沸石用于血液、尿中氮量的测定。沸石还被开发成为保健用品,用于抗衰老,去除体内积累的重金属。

  • 【转帖】如何处置地震灾区建筑垃圾? 尽量资源化利用成政府部门和专家学者的一致意见

    四川汶川特大地震造成了巨大的人员伤亡和财产损失,众多建筑物的损毁也产生了大量的建筑垃圾。大地震产生了多少建筑垃圾,这些建筑垃圾要如何清理和处置已成为社会各界共同关注的问题。目前抗震救灾已进入恢复重建阶段。震后要在废墟上重建家园,首先要解决的就是建筑垃圾的清理和处置问题,越是破坏严重的地震,这个问题就越突出。日前,记者在采访中了解到,住房和城乡建设部近日制定并发布的《地震灾区建筑垃圾处理技术导则》(试行)提出,对四川汶川大地震产生的大量建筑垃圾要尽量做到资源化利用。实现重建过程中资源最大程度的节约是政府部门和专家学者们的一致意见。  震区建筑垃圾总量有多大?  地震所造成的建筑垃圾量远远超过我国每年建筑施工所产生的建筑垃圾的总和  据国务院新闻办公布的数字,这次8.0级的地震已造成倒塌房屋530多万间,其中四川灾区倒塌损坏房屋超过440万间,损毁程度空前惨烈。这样的损毁程度,会产生多少建筑垃圾?到目前为止,尚无准确的统计数字。住房和城乡建设部专家委员会环境卫生专家、中国城市建设研究院总工程师徐海云认为,从这次受灾人口和倒塌裂损房屋的数量初步估计,建筑垃圾量有可能超过5000万立方米。重庆大学的一位研究人员依据这次地震损毁房屋的数字估计,按平均每间10平方米,每平方米产生1吨建筑垃圾计算,由此产生的建筑垃圾约3亿吨。  住房和城乡建设部制定的《地震灾区建筑垃圾处理技术导则(试行)》在评估部分给出以下经验数据:城镇地区砖混和框架结构的建筑物,建筑垃圾产生量约为1.0~1.5吨/平方米;其他木质和钢结构的建筑物,产生量约为0.5~1.0吨/平方米。农村地区建筑垃圾产生量参照上述数据的低限。  有研究人员告诉记者,不论估计数字是多少,地震所造成的建筑垃圾量十分庞大,远远超过我国每年建筑施工所产生的建筑垃圾的总和。据资料显示,我国每年施工建设所产生的建筑垃圾有4000万吨。  短时间内建筑垃圾怎么处置?  资源化利用成为关注的热点,指出资源化利用的不同方式  显然,在这么短的时间内遇到这样多的建筑垃圾,是我们从未经历过的事情,广大建设者正面临前所未有的挑战。随着灾区重建的逐步展开,如何清理建筑垃圾,越来越成为各方关注的问题,其中资源化利用成为关注的热点。  国务院发布的《汶川地震灾后恢复重建条例》第三条要求,地震灾后恢复重建应遵循经济社会发展与生态环境资源保护相结合的原则;第四十二条要求,对现场清理过程中拆除或者拆解的废旧建筑材料以及过渡安置期结束后不再使用的活动板房等,能回收利用的,应当回收利用。重建条例是重建工作的纲领,它为建筑垃圾的处理指明了方向。  震后建筑垃圾的资源化利用,也是住房和城乡建设部制定的《地震灾区建筑垃圾处理技术导则(试行)》的基本原则。导则明确了适用于灾后重建的建筑垃圾资源化利用方式:一是利用废弃建筑混凝土和废弃砖石生产粗细骨料,可用于生产相应强度等级的混凝土、砂浆或制备诸如砌块、墙板、地砖等建材制品。粗细骨料添加固化类材料后,也可用于公路路面基层。二是利用废砖瓦生产骨料,可用于生产再生砖、砌块、墙板、地砖等建材制品。三是渣土可用于筑路施工、桩基填料、地基基础等。四是对于废弃木材类建筑垃圾,尚未明显破坏的木材可以直接再用于重建建筑,破损严重的木质构件可作为木质再生板材的原材料或造纸等。五是废弃路面沥青混合料可按适当比例直接用于再生沥青混凝土。六是废弃道路混凝土可加工成再生骨料用于配制再生混凝土。七是废钢材、废钢筋及其他废金属材料可直接再利用或回炉加工。  记者还了解到,住房和城乡建设部正在编制的《地震灾后建筑修复和重建工程技术手册》中,对建筑垃圾的处理和综合利用技术也给予了特别的强调。  怎样保证建筑垃圾资源化利用?  我国建筑垃圾综合利用专利技术已达172项,绝大多数已经实现成果转化  震后建筑垃圾的资源化利用需要相应的技术手段。中国水利水电科学研究院的李枫告诉记者,我国目前建筑垃圾资源化处理技术已经比较成熟,取得大量成果。据记者了解,在汶川地震灾害发生后不久,一些从事建筑垃圾处理的企业就与灾区联系,希望用自己的技术为灾区的重建贡献力量。  在此次住房和城乡建设部公布的《地震灾区建筑垃圾处理技术导则》中,推荐了一些技术成果。如用建筑垃圾中的废砖瓦生产骨料,用于生产再生砖,其生产工艺和设备比较简单、成熟。据测算,1亿块再生砖可消纳建筑垃圾37万吨。这种建筑垃圾普通再生砖可用于低层建筑的承重墙及建设工程的非承重结构,再生古建砖适用于仿古建筑修建。再如建筑垃圾再生混凝土,利用建筑垃圾中的废混凝土生产粗细骨料,用于C30及以下强度等级的混凝土中,适用于现浇混凝土及预制混凝土制品。  记者了解到,目前我国建筑垃圾综合利用专利技术已达172项,其中绝大多数都已经实现成果转化,在生产建设中发挥着作用。  震后建筑垃圾综合利用的途径是多种多样的。有专家提出,对那些不利于处理的建筑垃圾,可以在实现无害化处理后,运用园艺技术“堆山造景”,美化新家园。这种处理在国内外不乏先例。不仅可以销纳大量建筑垃圾,还能增加景观,美化环境。  建筑垃圾资源化利用一举多得  既能解决环境问题,还可缓解建筑和建材业对砂石等自然资源的大量消耗和破坏  徐海云指出,堆放地震后的建筑垃圾需要大量地皮,每10万立方米的建筑垃圾至少需要6万平方米的堆放场地,一般临时建筑垃圾堆放场地高度在3米左右,堆放场地还需要留有50‰以上的面积用作道路、缓冲区以堆放分拣的其他垃圾等。简单的处理方法对土地、人力资源的消耗十分巨大,运输成本高。这对地处山区的灾区来说,是非常不利的。  有些专家指出,灾后重建所需的建筑材料的数量同样巨大,新建建筑对水泥、砂石等资源的消耗量大,虽然震区砂石资源丰富,但如此大量地使用对自然环境的影响还是非常巨大的。因此,加快建筑垃圾的资源化利用,不仅可解决建筑垃圾带来的环境问题,而且可以缓解建筑和建材业对砂石等自然资源的大量消耗和破坏。  建筑垃圾资源化利用一举多得,住房和城乡建设部的一位官员说,震后建筑垃圾资源化利用,是一个新的课题,也是一个挑战。这一问题的提出,是建设资源节约型、环境友好型社会的具体体现。此次震后建筑垃圾的资源化利用,将为我国今后对这一问题的处理,起到良好的示范作用,进而提高我国建筑垃圾的综合利用水平。

  • 【转帖】固体废弃物的综合利用

    固体废弃物主要包括工业废渣和生活垃圾两大类。据估计,当物体消耗100份时,就会平均产生固体废物42份。近20年来全世界固体废物年均增长速度高达8.42%;我国的400多个主要城市,至少2/3的城市已处于固体废物的重重包围之中。 由于工业废渣综合利用率不高,城市生活垃圾的处理率更低,往往堆积在城市郊区或荒滩野地上,弄得堆放处臭气冲天,蝇鼠孳生,传染疾病,或渗入地下、流人江海、污染水源、恶化土壤。即使采用焚化措施,也会将其中含硫、氮的化合物,化为有害气体,从而增加大气中的污染物。致癌性极强的二唿英就是焚化时生成的产物。 工业废渣的数量很大,种类繁多,如冶金渣、煤矸石、粉煤灰各种类化工渣等。据计,每炼1 t生铁的产生的高炉渣约为300~900 kg,每炼1 t钢产生的钢渣在300 kg左右。它们不仅占用大量土地,浪费资源,而且长期堆积,废物中的有害物质,将污染土壤、江河,最终危及人体健康。同时,也应看到固体废弃物仍是一种可开发的资源,只要对其综合利用,即可收到“化废为宝”之功。 固体废弃物的综合利用方法很多,但可概括为:单纯再利用;部件的回收再利用;作为原料的利用;能源的回收利用和生产建材、化肥和其他新产品等。试分述如下: 1.冶金渣 冶金渣范围极广,包括高炉渣、钢渣、有色金属渣等。其中以高炉渣和利用最为广泛(利用率在80%以上),废钢渣和有色金属渣则利用得较少。 (1)制造矿渣水泥 用水淬高炉渣作为水硬性混合材料,与水泥熟料混合粉磨,生产矿渣水泥,与普通硅酸盐水泥相比,其耐热性和不透水性较好,后期强度较高,加之成本低,故得到广泛应用。 (2)矿渣碎石 用高炉渣经过破碎制得的矿渣碎石,含有许多小气孔,对光的漫反射性能好,摩擦系数大,用它铺设的沥青路面,既明亮、又能提高抗变形性,增强防滑性能,是很理想的筑路材料,获得广泛应用。 (3)矿渣微晶玻璃 它比铝轻,耐化学侵蚀性、耐热性和机械强度都高,还是良好的电气绝缘和装饰材料,故其用途很广,常用作冶金、化工、机械制品等各部门容器设备的防蚀层和金属表面的耐磨保护层等。 (4)矿渣铸石 是将高炉渣熔成玻璃状熔体后浇铸成制品,再经结晶、退火等工序,代替以玄武岩、辉绿石等作原料而得的产品。如在浇铸时配以钢筋,即可制成钢筋铸石件。如直接用从高炉出来的高温熔渣,更为经济。铸石耐磨耐蚀、绝缘、硬度大、抗压强度高,可代替金属、合金及橡胶制品,最宜于作耐磨耐酸材料使用。 (5)农业肥料 高炉渣作硅钙肥料使用的历史,已近半个世纪。将矿渣送人回转炉烘干后、粉碎再筛分即得。它除起硅钙肥料作用外,还起土壤改良剂和微量元素肥料的作用,对水稻、蔬菜、果树等都有肥效。 (6)矿渣棉和连续纤维 用高炉渣生产的矿渣棉,可用作保温、隔热和防火材料;由矿渣棉制成的耐火材料,在700℃下使用不变质、不燃烧。日本以高炉渣为原料拉制连续纤维,它不仅成本低,且耐酸耐碱性均好。 此外,膨胀矿渣还可作轻质混凝土骨料;高炉渣还可作为制砖、瓷砖和搪瓷等的原料,等等。 2.粉煤灰 是燃煤电厂的烟道气经除尘分离收集的细灰,其化学成分以SiO2、Al2O3为主,其次为Fe2O3和少量未燃尽的碳。 粉煤灰在我国年发生量在1亿吨以上,大部分(约占总量的80%~90%)为小粒飞灰,能与石灰或水泥水化产生的Ca(OH)2等反应生成水化硅酸钙、水化铝酸钙等产物,硬化后有明显的强度,可作混凝土特定的胶凝组分。 粉煤灰的综合利用技术有三个层次:初级层次是结构回填、矿井回填等,是大量利用的有效途径;中级层次是在建筑上用作水泥混合料和混凝土掺和料等,其应用量也大,技术较成熟;高级层次则是高技术综合治理,实现深度开发,从其中提取漂珠、微珠、选铁、选碳,并探索微珠在塑料、橡胶中作填料等途径。这些层次既解决了环境污染又可获得较大的经济效益。 3.煤矸石 是在成煤过程中与煤层伴生的一种含碳量低而质地坚硬的黑色岩石,发热量一般为4~12 kJ·kg-1。一般每开采1 t原煤,排矸石1 t以上,煤矿坑口边的矸石山已成一大公害,亟需加以综合利用。 含碳量较高的煤矸石可与煤混合用作燃料;含碳量较低的可用来生产水泥、砖瓦和轻骨料;含碳量少的则用于回填或路基材料;有的煤矸石还用于改良土壤或作肥料。尚未充分利用的煤矸石,可充填矿井、沟谷和塌陷区,也可覆土造田、种草植树。 4.化工废渣 种类极多,包括无机化工和有机化工生产的废渣。其综合利用途径如下: (1)提取金属及化工产品。如从电解精炼铜阳极泥中提取铂、金等贵金属;从废塑料、橡胶中提取燃料油,等等。 (2)作二次原料资源。如从硫铁矿渣中炼铁;炼油酸性渣加氨水制造化肥硫酸铵等。 (3)生产建筑、轻工材料;或用于农牧业。 5.城市垃圾 成分十分复杂,有各种无机物和有机物;还有微量元素和有害元素以及各类生物病原体。处理好城市垃圾,使之成为有用资源,是艰巨而又必不可少的任务。 (1)分选回收 城市垃圾应逐步推广分类收集,将分选的金属、玻璃、塑料和橡胶等分送不同部门制作新产品。磁选、重介质分选和静电分选等机械化、自动化分选技术已用于生产中。 (2)金属废料可提取和精炼得到再生金属,发达国家使用的再生金属量为总消费量的1/4,有的金属(如铜)竟达52.6%;废玻璃可回炉处理,再生产各类制品;也可综合利用,如制造微晶玻璃、泡沫玻璃、玻璃微珠、玻璃化肥等;或用于生产通用建材(如陶瓷质建材、水磨石、玻璃、马赛克和人造大理石、花岗岩等)以及公路路面覆盖层等。 废纸回收和再利用的意义极大。它节省原材料,降低成本;保护森林;减缓水体的污染并节省外汇支出。废纸可以制成强度较高的复合材料,可用于改良土壤,制作饲料和培育农副产品 (如废纸育菇)等。 废塑料、废橡胶的利用有极大的经济意义。以废塑料而论,它可再生(单纯再生与复合再生两类);也可经热解为单体再聚合为高聚物或直接得到燃油、燃气;也可与其他垃圾混合焚烧,回收热量或用于发电;还可制作建筑材料、化工新产品与日杂用品等。废橡胶的综合利用与此类似,还可得到大量的活性炭。

  • 普通混凝土力学性能试验方法标准

    新三思公司提供完全版,以下目录仅供参考参考,有需求者请跟贴索取,或发邮件至:rosymuzi@sohu.com 免费提供,需者从速!目 次1总则………………………………………………………………… 72取样………………………………………………………………………… 83试件的尺寸、形状和公差……………………………………………………… 83.1 试件的尺寸 …………………………………………………………………… 83.2 试件的形状 ………………………………………………………………… 83.3 尺寸公差………………………………………………………………… 8 4 设备………………………………………………………………… 94.1 试模………………………………………………………………………… 94.2 振动台……………………………………………………………………… 94.3 压力试验机 …………………………………………………………………… 94.4 微变形测量仪 ………………………………………………… 94.5 垫块、垫条与架………………………………………………………………… 94.6 钢垫饭……………………………………………………………………104.7其他量具及器具…………………………………………………… 10 5 试件的制作和养护………………………………………………………… 10 5.1 试件的制作 ……………………………………………………………… 10 5.2试件的养护………………………………………………………… 11 5.3试验记录……………………………………………………………… 11 6 抗压强度试验………………………………………………………… 11 7 轴心抗压强度试验……………………………………………… 128 静力受压弹性模量试验……………………………………… 13 9 劈裂抗拉强度试验……………………………………………………… 1510 抗折强度试验………………………………………………… 16附录A 圆柱体试件的制作和养护……………………………………… 17附求B 圆柱体试件抗压强度试验………………………………………… 18附录C 圆柱体试件静力受压弹性模量试验………………………………… 19附录D 圆柱体试件劈裂抗拉强度试验………………………………………… 21本标准用词、用语说明…………………………………………………… 22条文说明………………………………………………………… 23l 总 则(略去)2 取 样2.0.1 混凝土的取样应符合《普通混凝土拌合物性能试验方法标准》(GB/T 50080)第2章中的有关规定。2.O.2 普通混凝土力学性能试验应以三个试件为一组,每组试件所用的拌合物应从同一盘混凝土或同一车混凝士中取样。3 试件的尺寸、形状和公差3.1 试件的尺寸3.1.1 试件的尺寸应根据混凝土中骨料的最大粒径按表3.1.1选定。表3.1.1 混凝土试件尺寸选用表 3.1.2 为保证试件的尺寸,试件应采用符合本标准第4.1节规定的试模制作。3.2试件的形状3.2.1 抗压强度和劈裂抗拉强度试件应符合下列规定: 1 边长为150mm的立方体试件是标准试件。 2 边长为100mm和200mm的立方体试件是非标准试件。 3 在特殊情况下,可采用Φ150mm ×300mm的圆柱体标准试件或ΦlOOmm × 200mm和Φ200mm × 400mm的圆柱体非标准试件。3.2.2 轴心抗压强度和静力受压弹性模量试件应符合下列规定: l 边长为150mm×150mm×300mm的棱柱体试件是标准试件。 2 边长为lOOmm×lOOmm×300mm和200mm ×200mm ×400mm的棱柱体试件是非标准试件。 3 在特殊情况下,可采用Φ150mm×300mm的圆柱体标准试件或ΦlOOmm×200mm和Φ200mm×400mm的圆柱体非标准试件。3.2.3 抗折强度试件应符合下列规定: 1 边长为150mm×150mm×600mm(或550mm)的棱柱体试件是标准试件。 2 边长为lOOmm×lOOmm×400mm的棱柱体试件是非标准试件。3.3 尺寸公差3.3.1试件的承压面的平面度公差不得超过O.0005d(d为边长)。3.3.2试件的相邻面间的夹角应为90°,其公差不得超过0.5°。3.3.3试件各边长、直径和高的尺寸的公差不得超过1mm。4 设 备4.1 试 模4.l.l 试模应符合《混凝土试模》(JG 3019)中技术要求的规定。4.1.2 应定期对试模进行自检,自检周期宜为三个月。4.2 振 动 台4.2.l 振动台应符合《混凝土试验室用振动台》(JG/T 3020)中技术要求的规定。4.3压力试验机4.3.1 压力试验机除应符合《液压式压力试验机》(GB/T3722)及《试验机通用技术要求》(GB/T 2611)中技术要求外,其测量精度为±1%,试件破坏荷载应大于压力机全量程的20%且小于压力机全量程的80%。4.3.2 应具有加荷速度指示装置或加荷速度控制装置,并应能均匀、连续地加荷。4.3.3 应具有有效期内的计量检定证书。4.4 微变形测量仪4.4.1 微变形测量仪的测量精度不得低于0.001mm。4.4.2 微变形测量固定架的标距应为150mm。4.4.3 应具有有效期内的计量检定证书。4.5 垫块、垫条与支架4.5.1 劈裂抗拉强度试验应采用半径为75mm的钢制弧形垫块,其横截面尺寸如图4.5.1所示,垫块的长度与试件相同。4.5.2 垫条为三层胶合板制成,宽度为20mm,厚度为3~4mm,长度不小于试件长度,垫条不得重复使用。 图4.5.1 垫块 支架示意1-垫块;2-垫条;3-支架4.5.3 支架为钢支架,如图4.5.3所示。4.6 钢 垫 板4.6.1 钢垫板的平面尺寸应不小于试件的承压面积,厚度应小于25mm。4.6.2 钢垫板应机械加工,承压面的平面度公差为O.04mm;表面硬度不小于55HRC;硬化层厚度约为5mm。4.7其他量具及器具4.7.1 量程大于600mm、分度值为lmm的钢板尺。4.7.2 量程大于200mm、分度值为0.02mm的卡尺。4.7.3 符合《混凝土坍落度仪》 (JG 3021)中规定的直径16mm、长600mm、端部呈半球形的捣棒。

  • 挤压套筒连接抗拉试验 钢筋套筒连接工艺性检测

    [font=&][size=16px][color=#333333]点击链接查看更多:[url]https://www.woyaoce.cn/service/info-39689.html[/url]服务背景[/color][/size][/font][font=&][color=#333333][/color][/font]挤压套筒连接是建筑工程中用量很大的建筑材料,主要用于增加钢筋长度,为钢筋混凝土浇灌提供基础。为了保证钢筋混凝土工程整体质量,钢筋接头需要进行相关检测项目达到标准后才能使用。[font=&][size=16px][color=#333333]检测内容[/color][/size][/font][font=&][color=#333333][/color][/font]挤压套筒连接抗拉试验 钢筋套筒连接工艺性检测检测机构:国家金属制品质量检验检测中心判定依据 JGJ 107-2016《钢筋机械连接技术规程》检测项目:1.高应力反复拉压:残余变形:u20,2.高应力反复拉压:抗拉强度/破坏形态,3.大变形反复拉压:残余变形:u4,4.大变形反复拉压:残余变形:u8,5.大变形反复拉压:抗拉强度/破坏形态。[font=&][size=16px][color=#333333]检测标准[/color][/size][/font][font=&][color=#333333][/color][/font][table][tr][td]产品名称[/td][td]检测项目[/td][td]检测标准[/td][/tr][tr][td]钢筋机械连接[/td][td]高应力反复拉压[/td][td]JGJ 107-2016[/td][/tr][/table][font=&][size=16px][color=#333333]我们的优势[/color][/size][/font][font=&][color=#333333][/color][/font]国家金属制品质量检验检测中心是专业的金属材料检测机构,可以检测钢筋、套筒、锚具、钢绞线等建筑材料,出具的报告全国认可。

  • 抗拉强度/拉伸强度/屈服强度/弯曲强度/弹性模量/抗拉强度计算公式

    抗拉强度(tensile strength)抗拉强度计算公式抗拉强度( бb )指材料在拉断前承受最大应力值。抗拉强度(tensile strength)拉力机,拉力试验机,万能材料试验机测试定义:试样拉断前承受的最大标称拉应力。抗拉强度是金属由均匀塑性变形向局部集中塑性变形过渡的临界值,也是金属在静拉伸条件下的最大承载能力。对于塑性材料,它表征材料最大均匀塑性变形的抗力,拉伸试样在承受最大拉应力之前,变形是均匀一致的,但超出之后,金属开始出现缩颈现象,即产生集中变形;对于没有(或很小)均匀塑性变形的脆性材料,它反映了材料的断裂抗力。符号为RM,单位为MPA。试样在拉伸过程中,材料经过屈服阶段后进入强化阶段后随着横向截面尺寸明显缩小在拉断时所承受的最大力(Fb),除以试样原横截面积(So)所得的应力(σ),称为抗拉强度或者强度极限(σb),单位为N/mm2(MPa)。它表示金属材料在拉力作用下抵抗破坏的最大能力。计算公式为:σ=Fb/So式中:Fb--试样拉断时所承受的最大力,N(牛顿); So--试样原始横截面积,mm2。抗拉强度( Rm)指材料在拉断前承受最大应力值。当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值称为强度极限或抗拉强度。单位:N/mm2(单位面积承受的公斤力)抗拉强度=Eh,其中E为杨氏模量,h为材料厚度目前国内测量抗拉强度比较普遍的方法是采用上海发瑞仪器的拉力机,万能材料试验机等来进行材料抗拉/压强度的测定! 当钢材屈服到一定程度后,由于内部晶粒重新排列,其抵抗变形能力又重新提高,此时变形虽然发展很快,但却只能随着应力的提高而提高,直至应力达最大值。此后,钢材抵抗变形的能力明显降低,并在最薄弱处发生较大的塑性变形,此处试件截面迅速缩小,出现颈缩现象,直至断裂破坏。钢材受拉断裂前的最大应力值称为强度极限或抗拉强度。单位:kn/mm2(单位面积承受的公斤力)抗拉强度:extensional rigidity.抗拉强度=Eh,其中E为杨氏模量,h为材料厚度目前国内测量抗拉强度比较普遍的方法是采用万能材料试验机等来进行材料抗拉/压强度的测定!拉伸强度(1) 在拉伸试验中,试样直至断裂为止所受的最大拉伸应力即为拉伸强度,其结果以MPa表示。有些错误的称之为抗张强度、抗拉强度等。(2) 用仪器测试样拉伸强度时,可以一并获得拉伸断裂应力、拉伸屈服应力、断裂伸长率等数据。(3) 拉伸强度的计算:σt = p /( b×d)式中,σt为拉伸强度(MPa);p为最大负荷(N);b为试样宽度(mm);d为试样厚度(mm)。注意:计算时采用的面积是断裂处试样的原始截面积,而不是断裂后端口截面积。弯曲强度:材料在弯曲负荷作用下破裂或达到规定挠度时能承受的最大应力,用公斤/厘米2表示杆件在受弯时其断面的上部是受压区,而下面是受拉区.以矩形匀质断面为例,受压、受拉区的最外沿的强度就叫做弯曲强度。它与弯矩成正比与断面模数成反比。目前国内测量弯曲强度比较普遍的方法是采用上海发瑞仪器的拉力机,万能材料试验机等来进行材料弯曲强度的测定!可由下公式表示:σ=KM/W 其中K为安全系数,M为弯矩,W就是断面模数,不同的断面就有不同的断面模数可在材料力学手册中查到。一般材料的抗弯强度,采用三点抗弯。R=(3F*L)/(2b*h*h)F—破坏载荷L—跨距b—宽度h—厚度屈服强度拉力机,拉力试验机,万能材料试验机材料拉伸的应力-应变曲线yield strength是材料屈服的临界应力值。(1)对于屈服现象明显的材料,屈服强度就是在屈服点在应力(屈服值);(2)对于屈服现象不明显的材料,与应力-应变的直线关系的极限偏差达到规定值(通常为0.2%的永久形变)时的应力。通常用作固体材料力学机械性能的评价指标,是材料的实际使用极限。因为材料屈服后产生颈缩,应变增大,使材料失去了原有功能。当应力超过弹性极限后,变形增加较快,此时除了产生弹性变形外,还产生部分塑性变形。当应力达到B点后,塑性应变急剧增加,曲线出现一个波动的小平台,这种现象称为屈服。这一阶段的最大、最小应力分别称为上屈服点和下屈服点。由于下屈服点的数值较为稳定,因此以它作为材料抗力的指标,称为屈服点或屈服强度(σs或σ0.2)。有些钢材(如高碳钢)无明显的屈服现象,通常以发生微量的塑性变形(0.2%)时的应力作为该钢材的屈服强度,称为条件屈服强度(yield strength)。首先解释一下材料受力变形。材料的变形分为弹性变形(外力撤销可以恢复原来形状)和塑性变形(外力撤销不能恢复原来形状,形状发生变化)目前国内测量屈服强度比较普遍的方法是采用上海发瑞仪器的拉力机,拉力试验机,万能材料试验机等来进行材料屈服强度的测定!屈服强度的计算公式:σ=F/S,其中σ为屈服强度,单位为“帕”,对塑性材料来讲F为材料屈服时所受的最小的力,单位为“牛”,对脆性材料来讲F为材料发生塑性变形量为原长的0.2%时所受的力,单位还是:“牛”,S为受力材料的横截面积,单位为“平方米”。拼音:tanxingmoliang英文名称:Elastic Modulus,又称 Young 's Modulus(杨氏模量)定义:材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量。单位:达因每平方厘米。意义:弹性模量可视为衡量材料产生弹性变形难易程度的指标,其值越大,使材料发生一定弹性变形的应力也越大,即材料刚度越大,亦即在一定应力作用下,发生弹性变形越小。弹性模量E是指材料在外力作用下产生单位弹性变形所需要的应力。它是反映材料抵抗弹性变形能力的指标,相当于普通弹簧中的刚度。说明:又称杨氏模量。弹性材料的一种最重要、最具特征的力学性质。是物体弹性t变形难易程度的表征。用E表示。定义为理想材料有小形变时应力与相应的应变之比。E以单位面积上承受的力表示,单位为牛/米^2。模量的性质依赖于形变的性质。剪切形变时的模量称为剪切模量,用G表示;压缩形变时的模量称为压缩模量,用K表示。模量的倒数称为柔量,用J表示。拉伸试验中得到的屈服极限бb和强度极限бS ,反映了材料对力的作用的承受能力,而延伸率δ 或截面收缩率ψ,反映了材料缩性变形的能力,为了表示材料在弹性范围内抵抗变形的难易程度,在实际工程结构中,材料弹性模量E的意义通常是以零件的刚度体现出来的,这是因为一旦零件按应力设计定型,在弹性变形范围内的服役过程中,是以其所受负荷而产生的变形量来判断其刚度的。一般按引起单为应变的负荷为该零件的刚度,例如,在拉压构件中其刚度为:式中 A0为零件的横截面积。由上式可见,要想提高零件的刚度E A0,亦即要减少零件的弹性变形,可选用高弹性模量的材料和适当加大承载的横截面积,刚度的重要性在于它决定了零件服役时稳定性,对细长杆件和薄壁构件尤为重要。因此,构件的理论分析和设计计算来说,弹性模量E是经常要用到的一个重要力学性能指标。在弹性范围内大多数材料服从胡克定律,即变形与受力成正比。纵向应力与纵向应变的比例常数就是材料的弹性模量E,也叫杨氏模量。弹性模量 在比例极限内,材料所受应力如拉伸,压缩,弯曲,扭曲,剪切等)与材料产生的相应应变之比,用牛/米^2表示 。弹性模量:材料的抗弹性变形的一个量,材料刚度的一个指标。它只与材料的化学成分有关,与其组织变化无关,与热处理状态无关。各种钢的弹性模量差别很小,金属合金化对其弹性模量影响也很小。弹性模量计算公式E=(ΔF/S0)/(Δ1/Le1),简化就是E=(ΔF*Le1)/(S0*Δ1)其中,ΔF——应力(一般是0.5MPa到1/3轴向极限力的差值)Le1——测量标距(一般15cm)S0——混凝土试块承压面积(注意15*15cm和10*10cm是不一样的)Δ1——应变(一般是0.5MPa到1/3轴向极限力之间的变形)

  • 再也不用撒盐和铲雪:可自动熔化道路冰雪的新型复合相变材料

    再也不用撒盐和铲雪:可自动熔化道路冰雪的新型复合相变材料

    美国德雷克塞尔大学的研究人员最近研制出一种新型相变混凝土材料,用这种材料铺设的道路可以在冬季具有自动融雪化冰功能,他们的秘密就是在道路混凝土混合物中加入一点石蜡。[align=center][img=,600,400]http://ng1.17img.cn/bbsfiles/images/2017/11/201711052058_01_3384_3.jpg!w600x400.jpg[/img][/align] 由美国德雷塞尔大学助理教授Yaghoob Farnam博士领导的研究团队最近在“水泥与混凝土复合材料”期刊上发表的一篇论文中,描述了采用石蜡油(一种典型蓄热相变材料)使混凝土储存和释放热量以熔化路面积雪方面所做的研究工作。[b][color=#ff0000]1. 目前国内外常用化雪除冰措施及存在的问题[/color][/b] 目前国内外常用的化雪除冰措施一般是在下雪之前对路面进行预先撒盐,这有助于防止路面结冰和下雪后留出一些时间来进行除雪,有时也会在盐中加入沙子。通常配制高浓度的盐溶液进行路面喷洒,主要使用氯化钠,有些地方还使用氯化钙或氯化镁。下雪后通常会使用干盐和沙子进行路面喷洒,同时也会用铲雪车进行快速清理。[align=center] [img=,600,301]http://ng1.17img.cn/bbsfiles/images/2017/11/201711052058_02_3384_3.jpg!w600x301.jpg[/img][img=,600,329]http://ng1.17img.cn/bbsfiles/images/2017/11/201711052058_03_3384_3.jpg!w600x329.jpg[/img] [/align] 大量使用盐首先不利于环境,其次是对人行道或道路影响,它使周围土壤咸性并伤害植被。在路面上的盐会使混凝土或沥青变质冰产生冻融破坏和路面剥落问题,这使得政府部门每年花费大量经费修复或重建路面,寒冷地区的大部分路面破坏来自于水冻结以及大量使用盐。[align=center][img=,600,449]http://ng1.17img.cn/bbsfiles/images/2017/11/201711052100_01_3384_3.jpg!w600x449.jpg[/img][/align] 在比较寒冷地区,环境非常恶劣,寒冷的天气、冻结和解冻循环和大量使用除冰剂对道路产生很强的破坏性。在寒冷温度下大多数材料变得更脆,很容易破碎或损坏,如果再把冻融的冰水浇在材料上,这将更会加重材料损坏。 另外,当水结成冰后会使得自身体积膨胀9%,如果水渗入路面然后结冰,体积膨胀会造成内部压力而破坏路面。另外大量使用的盐会与路面材料产生化学反应并导致材料退化,这方面已经做了大量研究工作证明了盐是如何破坏混凝土路面。这就是为什么在冬天道路看起来会退化得更快,春天到来后路面上似乎总是有更多的坑洼的原因。[align=center][img=,600,442]http://ng1.17img.cn/bbsfiles/images/2017/11/201711052100_02_3384_3.jpg!w600x442.jpg[/img][/align] [b][color=#ff0000]2. 破损道路修补面临的困境[/color][/b] 如果没有资金进行大规模的基础设施改进,国内外基本都采用“快速修补”这一无奈措施来处理基础设施日益恶化的情况。 之所以称之为无奈之举,是因为尽管可以对破损道路打补丁,这些补丁也会起到道路平坦的作用,但所面临的问题是需要中断交通并快速完成修复和打补丁。通常将道路中断后,道路修复的唯一时间段是在夜间的几个小时内。这将带来另一个严峻问题,就是在这个时间段打补丁并不能做到补丁合理的填补和粘接,这就是为什么我们总是年复一年在同一地点看到损坏的原因。 尽管试图研究提高混凝土路面质量,设法缩短路面修复施工时间,这都是交通和交通管理部门所追求的目标,毕竟道路封闭的时间越长管理部门会面临更多的指责,但这不是一个长期正确有效的解决方法。[b][color=#ff0000]3. 具有自动融雪除冰功能的新型道路材料[/color][/b] 为了解决冬季交通所面临的严峻挑战,国内外研究人员一直在寻找一种更好的冬季道路融雪除冰方法。 美国德雷塞尔大学Yaghoob Farnam博士领导的研究小组与普杜大学和俄勒冈州立大学的研究人员合作,首先证明使用相变材料作为环境友好的除雪替代品可以与标准的撒盐和铲雪方法一样有效。 研究团队将具有蓄热和放热功能的相变材料灌装进多孔轻质骨料或嵌入式管道再复合到混凝土中,在冷却过程中相变材料从液体转变为固体并释放出热量用于融化冰雪,由此抑制路面或桥面上冰雪的形成,从而可以减少或消除对现有除雪方式的需求、节省资金和减少对环境的影响。 研究团队选用石蜡油做为相变材料。石蜡油是蜡烛、蜡抛光剂、化妆品和防水化合物中的常见物质,因为它是有机物且应用广泛、化学稳定性好并相对便宜,所以它们是这种技术改良的首选材料。与所有相变材料一样,石蜡油在物理状态发生变化时会释放出热能,这意味着随着温度下降,油开始凝固,通过熔化潜热释放能量。这意味着石蜡油可以设法置入到路面上,使道路路面具有融雪除冰能力,从而在下雪时或需要除冰时路面具有一定温度。 为了测试相变材料及其构件融化冰雪的能力,研究团队制作了一组混凝土板,其中一块混凝土板包含石蜡填充管、一块已灌装石蜡的多孔轻质骨料的混凝土板,以及一块无石蜡灌装的多孔轻质骨料做为参比的混凝土板。每块混凝土板都被密封在一个冻融室内,然后用大约125mm厚实验室制造的“雪”进行覆盖。[align=center] [img=,600,398]http://ng1.17img.cn/bbsfiles/images/2017/11/201711052100_03_3384_3.png!w600x398.jpg[/img][/align] 冻融室内的温度保持在0~6℃之间,两块石蜡处理过的混凝土板能够在25小时内完全融化雪,而参考混凝土板上仍然冻结着积雪,包含石蜡填充管的混凝土板要比灌装石蜡的多孔轻质骨料混凝土板更快一点的将雪融化。研究团队认为这是因为管子内部的石蜡能够更快速凝固和释放出能量,同时因为管径非常规则,而骨料孔隙的直径大小不一。 但在第二次实验中,先将冻融室内的环境温度降低至冰冻然后再覆盖积雪,此时封装了石蜡骨料的混凝土板就要比嵌入石蜡管的混凝土板化雪更有效,这是因为毛细管孔隙压力延迟了石蜡的冻结,从而使其在更长时间内释放热量。当需要融雪或除冰时,混凝土会受到各种温度变化的影响,多孔轻质骨料中的不同孔径尺寸会使得石蜡逐渐放热,这会更有利于融雪。因此研究团队认为使用多孔轻质骨料结构可能是更具有潜质的方法,因为它很容易进行工程实施,并且可以覆盖不同地区化雪除冰的环境条件,尤其是特别寒冷地区桥梁和道路上的融雪或除冰。[b][color=#ff0000]4.需要进一步开展的研究工作[/color][/b] 这种可自动熔化道路冰雪的基础设施技术的首要用途之一可能是在机场,机场跑道上要求不能存在积雪和冰面,这在冬天来说是至关重要,也是一个永久性的挑战。做为加热型机场路面项目之一,美国联邦航空局已经开始支持此项可自动熔化道路冰雪的复合相变材料研究工作。 美国德雷塞尔大学Yaghoob Farnam博士领导的研究团队认为在此项目研究中还需进一步开展的工作包括以下几方面的内容: (1)尽管相变材料石蜡的热性能可以采用差热扫描量热技术进行测试,但差热扫描量热技术测试样品非常小,对加入石蜡后的大尺寸混凝土非均质材料的热性能则无法测试,不能准确量化混凝土板吸热和放热能力,由此无法准确设计真正工程用混凝土制作的工艺参数,还需要开发新型大尺寸工程材料的量热测试技术,以实现能直接测量各种结构形式的相变复合材料构成的混凝土。 (2)需要进行更深入的研究来进一步了解影响混凝土施工的其他因素,包括含有相变材料时混凝土老化和硬化性能以及不同地区相变材料的热性能。 (3)还需要更好地了解它对混凝土路面耐久性、防滑性和长期稳定性的影响。

  • 【分享】操作准则之路面材料强度试验仪

    在操作路面材料强度试验仪的时候需要注意一下问题,操作规程如下:  1.将路面材料强度试验仪安置于坚实平整的基座上,接好地线。  2.根据所做实验的升降速度要求,选择手柄进退位置。  3.路面材料强度试验仪使用的时候应当经常擦拭,保持仪器的整洁。  4.接通电源检查丝杆升降速度是否符合实验要求。  5.将路面材料强度试验仪所用的测力环用紧固螺钉固定在支架上,然后安装上附件及测力百分表。  6.将试件置于丝杆盘上,放正后进行实验。  7.丝杆盘最大升级距离应保持在125MM内。  8.测力环内百分表读书为实验所施加荷载量,其余百分表读书为丝杆盘所升距离。  9.丝杆盘螺纹部分,每工作应滴注机油,以保证其结合部位的润滑。  10.接通电源检查电机旋转方向是否正确。

  • 塑料介电强度测试经验分享

    这几年来一直在网站上潜水,学到不少东西。从事改性塑料分析测试这一行也有几年了,明白从新手上路的艰辛,为此,想把自己的一些经验跟大家分享,旨在抛砖引玉,共同进步。今天想跟各位分享的是塑料介电强度测试的一些东西。在这个性能测试上,个人觉得ASTM D149这个标准的描述算比较棒的,在这份标准的附录上,讲解了电击穿的机理,有兴趣的可以了解一下。塑料介电强度的测试结果受到几个因素的影响:1.电极的类型。不同的电极类型适用在不同形状的材料。对于塑料材料而言,通常选用1型和2型电极。测试介质。通常在空气中或电机油中进行测试。在空气中进行测试的时候一定要注意涂抹防护材料以避免“闪络”的发生。3.样品厚度。在标准中没有明确规定测试样品的厚度。根据本人的经验,尽量制备成薄的样品(1.0mm以下)。4.升压速率。好的击穿应该是在10-20秒内完成测试;这也是为了方便测试结果间的比较。5.样品的预处理。这个主要是针对容易吸水的材料,因为水的存在会导致介电强度降低,所以针对这类材料都建议放在干燥器中进行调节。在测试过程中会有一些技巧,比如样品的夹持,闪络的规避,击穿形貌的观测等等,这些在标准中都没有写明,有很多个人经验的东西在里面。

  • 【分享】抗弯强度 - 名词解释

    抗弯强度 - 名词解释 抗弯强度是指材料抵抗弯曲不断裂的能力,主要用于考察陶瓷等脆性材料的强度。一般采用三点抗弯测试或四点测试方法评测。其中四点测试要两个加载力,比较复杂;三点测试最常用。其值与承受的最大压力成正比。抗弯强度(弯曲强度)bendingstrength又称挠曲强度或抗弯强度,在试件的两支点之间施加载荷,至试件破坏时的单位面积载荷值。 1. 抗弯强度 - 特点机械性能(machnicalproperties):当材料受外力时表现出来的各种力学性能。2.应力(stress):当材料受外力时材料内部对外力的反应。应力的大小用下述公式表示:应力(δ)=作用(F)/材料单位面积(A),单位为Pa。3.应变(strain):当材料受外力作用时引起的形变。应变的大小用下述公式表示:应变(ε)=变化长度(△L)/初始长度(L)。4.拉应力或张应力(tensilestress):材料受到拉伸时的内部应力。5.压应力或压缩应力(compressivestress):材料受到压缩时的内部应力。6.剪应力(shearstress):材料受到切错作用力时,相互平行的部分发生滑动时的内部应力。但当某一段材料或修复体受力时,往往是三种应力形式同时存在。例如咀嚼压力作用于固定桥时,桥体倪面受到的力为压应力,桥体的龈底则为拉应力,基牙修复体与桥体连接处为剪应力。7.抗拉强度或抗张强度(tensilestrength)8.压缩强度或抗压强度(compressivestrength):在试件上施加压缩载荷,至试件破坏时的单位面积载荷值。9.弯曲强度(bendingstrength):又称挠曲强度或抗弯强度,在试件的两支点之间施加载荷,至试件破坏时的单位面积载荷值。10.硬度(hardness):材料抵抗其它硬物压入引起凹陷变形的能力。常用的硬度单位有布氏硬度(HB或BHN),维氏硬度(Hv或VHN),洛氏硬度(HRA、HRC或RHN)奴氏硬度(HK或KHN)。材料的表面硬度是其强度、比例极限、韧性、延展性及抗磨损、抗切割能力等多种性质综合作用的结果。11.冲击强度(impactstrength):材料在冲击力作用下折断所需的能量。12.延性和展性(ductilityandmalleability):延性是材料在拉力作用下不折断而经受恒久变形的能力。展性是材料在压力作用不折断而经受恒久变形的能力。13.比例极限(proportionallimit):材料经受外力时,应力和应变能保持比例关系时的最大应力值。14.弹性模量(modulusofelasticity):在比例极限内,应力和应变之比(E=(δ/ε)。15.流变(flow):非晶体结构的物质在持续应力作用下持续恒久变形的性质。液体和糊剂的流变通常用粘稠度来测量。16.蠕变(creepage):晶体结构的物质在持续应力作用下恒久变形的性质。蜡和汞合金的蠕变容易发生,并随时间延长而增加。17.热膨胀系数(a)(coefficientofthermalexpension):温度每变化1度而引起物体单位长度的增加,即a=△L/Lo/△T℃-1。热膨胀系数关系到热运动大小,与金-塑、金-瓷及界面稳定性、持久性有关,也关系到包埋材料的膨胀量是否能补偿铸件或塑料的收缩。18.润湿性(wetting):液体或糊剂在固体表面上的分散能力。它通常用接触角“θ”表示,代表表面渗透能力,它与表面能有关。19.粘着和内聚(adhesionandcohesion):两种材料的表面附着为粘着,而同种材料间的结合为内聚。编辑本段 回目录 抗弯强度 - 英文解释bendingstrength flexural strength bending resistance bendingstrength

  • 你怎么看?——海底捞承认勾兑骨头汤及饮料

    http://img1.gtimg.com/finance/pics/hv1/110/54/846/55025030.jpg本报讯 (记者陈荞)由于骨头汤和饮料被指勾兑,昨日,知名火锅连锁海底捞公司连发声明和通报,承认确系勾兑。海底捞公关部经理曹静表示,勾兑只是在做还原工作,并非等同于使用添加剂。据《城市信报》报道,海底捞的骨头汤以及饮料包括柠檬水和酸梅汤等均是冲兑而成,海底捞新员工培训时,老师会特别提醒,回避向客人回答汤料以及饮料的成分。昨日,海底捞公司在官网上发布声明称,媒体报道中反映的一些问题确实可能在部分门店客观存在,海底捞的白味汤锅、柠檬水及酸梅汤均由合格资质证明的正规厂家提供原材料。海底捞公司公共关系部经理曹静称,勾兑并不等同于使用添加剂,所以没有在公示的范围中。“我们的汤料和饮料等原材料都是从北京华都鸡肉公司采购,勾兑对市民不会有任何害处,不管是原材料的采购还是勾兑的比例等,都是符合国家法律法规的。”她表示,骨头汤是购买的浓缩骨膏加水兑制而成,骨膏也是用骨头汤熬制的,“市民买的酸梅晶,买回家后也要用水冲开,我们做的就是这个还原工作。”中国农业大学食品科学与营养工程学院一教授称,勾兑在餐饮行业中非常普遍,从食品加工角度不存在问题,“关键是要看原材料的成分,里面是否含有违法添加物等有害成分。”他表示,如果原材料中不含有害物质,那么勾兑出的汤自然也是无害的。你们是如何看待这类事情的?

  • 童车知识解读

    产品简介  童车主要包括儿童自行车、儿童三轮车、儿童推车、婴儿学步车、电动童车、其它玩具车辆等几大类,这些类童车均实行了强制性认证制度。儿童自行车和儿童三轮车主要依靠儿童自身的肌肉力量驱动,儿童推车主要由成人操作,承担运载儿童的功能,婴儿学步车主要供幼儿学步用,电动童车主要依靠内置电池驱动。童车一般需要承载儿童体重,因此安全要求比普通玩具更高。  重要质量指标  1.标志和使用说明。童车作为列入强制性认证目录的产品,在市场上销售必须通过CCC认证。童车产品必须标注产品执行 标准、制造商名称和地址、适用年龄范围、承载重量、安全警示信息、安装使用说明等内容,其中适用年龄范围、承载重量和安装使用说明对消费者至关重要。市场上部分童车未标注适用年龄范围、产品承载重量,并且缺少必要的安全警示信息,导致这种状况的原因主要是企业对标准不理解、不重视、缺乏责任心。  2.可拆卸小零件。儿童推车、婴儿学步车主要供3岁以下儿童使用,国家标 准中规定供3岁以下儿童使用的玩具不应存在小零件,而部分供3岁以下儿童使用的儿童推车、婴儿学步车产品存在容易置入口中的可拆卸小零件。导致“小零件”项目不合格的原因主要有两个:一是产品设计本身的缺陷,结构中设计了细小部件;二是生产过程中产品部件固定、连接不牢固。  3.锐利尖端和边缘。可触及的锐利尖端和边缘也是童车中一个重要的危险隐患。童车的制造材料主要是金属及塑料,金属、塑料部件在加工过程中经常存在外露的管口、溢边、毛刺等现象,使得童车中存在危险锐利边缘或尖端。产生锐利尖端和边缘的原因主要是制造装配过程中工艺粗糙,且未采取后处理措施。  4.机械强度。童车大多需要承载儿童体重,机械强度反映了童车的承载受力和抵抗受力变形的能力。机械强度不合格的主要原因有两个,一是采用的金属部件本身存在缺陷,抗压强度较差;二是采用的焊接、铆接等连接工艺不达标等。  5.危险夹缝、剪切和挤夹点。童车的结构因功能需要存在很多活动部件,在处于正常使用位置时,儿童可触及区域内的活动部件运动时可能会出现危险的夹缝、剪切和挤夹点,这些部位可能会挤夹儿童的肢体,造成严重伤害。出现危险夹缝、剪切和挤夹点的主要原因在于设计的不合理,在设计时未能考虑到儿童的身体特性,预留的自由空间偏小。  6.折叠锁定机构。为便于存放或携带,儿童推车、婴儿学步车等类型童车大多具有折叠锁定机构,在正常使用及各类强度测试时,童车的折叠锁定机构不应失效。若使用过程中折叠锁定机构松脱或失效,容易造成儿童摔伤。此类不合格的原因在于采用的锁定机构设计不合理,或受力强度较差。  选购指南  1.查看包装。首先查看包装上是否有强制性认证的标志,寻找是否有警示信息或其他安全信息,如年龄警示标志、特定危险的警示标志、制造商或销售商的名称及地址、执行 标准等,并查看是否附带安装使用说明。特别是需要消费者自行安装的童车产品。消费者应购买适合儿童年龄范围的玩具,童车的功能一般对儿童的年龄有限定,如儿童推车主要供尚未具备行走能力的幼儿使用,婴儿学步车仅供幼儿学步阶段使用,电动童车需要儿童具备一定的肢体协调能力才能玩耍。  2.查看外观。观察童车做工是否精细,部件应圆滑不能有毛边、毛刺等。用力压童车主体结构,查看整体结构是否出现松动。  3.检查折叠锁定机构,童车处于正常使用状态时,折叠锁定机构是否自动生效,且锁定牢固。  4.检查有无危险挤夹点。观察童车的活动部件中是否存在危险的剪切和挤夹部位。  5.电动童车的速度不宜过快(不得超过8km/h)。如果选购的电动童车速度过快,监护的成人将不能跟上童车的速度,从而使儿童失去有效监护而造成乘骑事故的发生。

  • 儿童餐具强度检测|儿童餐具重金属检测

    [font=&][size=16px][color=#333333]点击链接查看更多:[url]https://www.woyaoce.cn/service/info-39081.html[/url]服务背景[/color][/size][/font][font=&][color=#333333][/color][/font]儿童餐具,是指给儿童用的专用餐具因为年龄的问题,需要针对这个年龄段做些特别的设计如颜色,导热性,化学物质挥发性握把的设计杯盖的设计辅助功能等根据年龄段的不同还要对不同年龄段的儿童设计不同的餐具。儿童餐具检测范围稻壳儿童餐具、儿童抗菌餐具、竹纤儿童维餐具、陶瓷儿童餐具、塑料儿童餐具、不锈钢儿童餐具、甘蔗纤维餐具、木头儿童餐具、密胺儿童餐具、聚乳酸儿童餐具、硅胶儿童餐具、木质儿童餐具、植物纤维儿童餐具等。[font=&][size=16px][color=#333333]检测内容[/color][/size][/font][font=&][color=#333333][/color][/font]儿童餐具检测项目扭矩测试、强度检测、刚性检测、跌落试验、重金属检测、撕裂强度测试、拉伸强度测试、视觉和触觉检查、甲醛释放量检测、物理机械性能检测、有机物挥发量检测等。[font=&][size=16px][color=#333333]服务背景[/color][/size][/font][font=&][color=#333333][/color][/font]儿童餐具,是指给儿童用的专用餐具因为年龄的问题,需要针对这个年龄段做些特别的设计如颜色,导热性,化学物质挥发性握把的设计杯盖的设计辅助功能等根据年龄段的不同还要对不同年龄段的儿童设计不同的餐具。儿童餐具检测范围稻壳儿童餐具、儿童抗菌餐具、竹纤儿童维餐具、陶瓷儿童餐具、塑料儿童餐具、不锈钢儿童餐具、甘蔗纤维餐具、木头儿童餐具、密胺儿童餐具、聚乳酸儿童餐具、硅胶儿童餐具、木质儿童餐具、植物纤维儿童餐具等。[font=&][size=16px][color=#333333]检测内容[/color][/size][/font][font=&][color=#333333][/color][/font]儿童餐具检测项目扭矩测试、强度检测、刚性检测、跌落试验、重金属检测、撕裂强度测试、拉伸强度测试、视觉和触觉检查、甲醛释放量检测、物理机械性能检测、有机物挥发量检测等。

  • 【原创】UV固化技术中紫外灯的强度要求

    如今紫外线技术广泛应用于工业当中,以及生活中人们常用紫外线灯来照射杀菌消毒;UV是紫外线的英文(Ultra-Violet Ray)缩写,紫外光源的光谱范围是200nm-400nm,按波段的不同,分别为UV-A,UV-B,UV-C,各具有不同的用途。 但凡使用到紫外线来作用于不同的事物,都需要保证紫外线的辐射能量,也叫UV辐射强度,辐射强度是到达表面单位面积内的辐射功率。检测紫外线的辐射强度可以使用紫外辐照计来测量;辐射强度,以每平方厘米瓦特(W/cm2)或毫瓦特(mW/cm2)来表示。0.001W/cm2=1mW/cm2。 UV-A波段紫外线常应用在工业上UV固化中,以365nm为中心;UV固化是光化学反应,UV固化过程即:在特殊配方的树脂中加入光引发剂(或光敏剂),经过吸收紫外线(UV)光固化设备中的高强度紫外光后,产生活性自由基或离子基,从而引发聚合、交联和接枝反应,使树脂(UV涂料、油墨、粘合剂等)在数秒内(不等)由液态转化为固态。 UV灯的寿命一般指其能维持足够的能量进行操作的时间,在此期间其能量逐渐衰减直至低于可接受的范围为止,一般情况标准的UV灯能放射足够的UV能量达800小时。UV固化广泛用于竹木地板、家具、装饰材料、印刷、印铁制罐、塑胶涂装、标牌、电路板、光盘等行业;也是半导体、电子元件、液晶等粘接固化的理想光源。 UV固化过程要注意UV灯的照射强度和使用时间,随着uv灯使用时间的延长,灯的辐射强度就会逐渐衰减,速度要随之调慢,尽量及时更换新的uv灯管。 目前市场上的UV灯分高压汞灯和金属卤素灯两种。国内设备普遍采用高压汞灯,进口设备有一部分采用金属卤素灯(建议使用金属卤素灯)。 关于UV灯管的选择及更换: 灯管选择要注重灯的紫外线辐射强度,UV灯的功率即UV灯光的辐射强度,也称穿透力。一些市场上出售的紫外线功率与实际功率不相符合,使用紫外辐照计便可测量。 首先,它一定要满足UV油墨(光油)吸收的光谱波长及功率密度的要求。若UV灯的功率不够,即使光照时间再长,过UV固化装置的次数再多,产品也达不到完全固化。相反,还会使UV油墨(光油)表层老化、封闭、变脆等,同时油墨(光油)的附着力也不好,会使叠印的层间结合力差。因为低功率的UV灯光不能穿透墨层底部,使底部未固化或固化不充分。 UV灯功率一般要满足80-120W/cm2的要求,但功率越大热量也会越大,因此要根据固化物和固化速度不同来选择功率。 紫外灯管的更换同样需要用紫外辐照计来检测其照射强度是否达到UV固化的强度标准,UV灯的强度取决于UV灯管的功率密度,一般常用规格有:80W/cm2、120W/cm2、160W/cm2和240W/cm2。 当长时间使用紫外线灯管照射的紫外线强度变弱时,会影响固化效果。同时建议在使用期内根据生产环境(空气的含尘量)不同,在适当时间用无水乙醇清洁灯管表面及反射罩表面的反射板,再将UV灯管转90°。这样有利于UV射线全部有效辐射到UV油墨或光油。

  • 【分享】混凝土配合比设计计算书

    C40 1. 计算混凝土配制强度:fcu,k=fcu,o+1.645*σ=40+1.645*6=49.872. 计算水灰比:w/c=αa*fce/( fcu,k+αa*αb* fce) =0.46*42.5/( 49.87+0.46*0.07*42.5) =0.38αa,αb为回归系数,中砂取αa为0.46,αb为0.073. 计算水泥用量:取用水量为Wo= 180 kg/m3Co /′=Wo/( w/c)= 180/0.38=474 Co = Co/ *(1-0.15)=403Fo= Co/-Co =474-403=714. 计算混凝土砂、石用量:Co+So+Go+Wo+Xo+Fo=Cp So/( So+ Go)*100%= Sp假定混凝土容重为2410 kg/m3 选取混凝土砂率为45%Co+So+Go+Wo+Fo=2410 ①So/( So+ Go)*100%=40% ②由①、②两式求得So=790,Go=964式中Co / ………每立方米混凝土中胶凝材料用量(kg);Co ………每立方米混凝土中水泥用量(kg);So ………每立方米混凝土中细骨料用量(kg);Go ………每立方米混凝土中粗骨料用量(kg);Wo ………每立方米混凝土中水用量(kg);Xo ………每立方米混凝土中外加剂用量(kg);Fo ………每立方米混凝土中粉煤灰用量(kg);Cp ………每立方米混凝土假定重量(kg)Sp ………砂率(%)5. 计算理论配合比:Co:So :Go :Wo :Xo :Fo=403:790:964:180:8.06:71 =1.00:1.96:2.39:0.45:0.02:0.186. 确定施工配合比:经试拌,实际用水量为170kg,混凝土实测容重为2408 kg/ m3Co1:So1 :Go1 :Wo1 :Xo1 :Fo1=403:790:964:170:8.06:71=1.00:1.96:2.39:0.42:0.02:0.18

  • 手性固定相(CSPs)所能承受的压降限度是多少?

    几乎没有限制!多聚糖键合型手性固定相Kromasil AmyCoat和CelluCoat,和构建在网状交联多聚物上的手性固定相,Kromasil TBB和DMB,都是在自制耐机械高压的多孔硅胶微球上的衍生产品。此外,生成多聚糖基固定相的专利键合方式确保这些手性固定相能承受流体动力的冲击。所有Kroamsil手性固定相能在反压400巴的环境下工作。在经典高效液相色谱仪上发掘全程压降范围的工作潜能,能加快样品分析速度,而且在高流速下也得以非常迅速地完成柱平衡步骤。

  • 金属材料规定残余延伸强度Rr0.2测定

    金属材料规定残余延伸强度Rr0.2测定

    实验原理和方法 金属材料的屈服点(屈服强度)是工程实际应用中的一个重要强度性能指标。但在工程实际中,多数塑性材料如高碳钢、黄铜、硬铝等没有明显的屈服阶段,这时我们通常用名义屈服极限Rr0.2来代替金属材料的屈服点。国标GB/T228—2002中把Rr0.2称为规定残余延伸强度。它是指试样在拉伸过程中,卸除拉力后,试样标距部分内的残余伸长变形(塑性变形)量达到原标距长度的0.2%时所对应的应力。其表达式为:http://ng1.17img.cn/bbsfiles/images/2011/09/201109242101_319127_1622447_3.jpg式中,Fr0.2为规定产生0.2%的残余伸长变形所对应的拉力,S0为试样原始横截面面积。

  • 看完这些你或许会对磁性玻碳电极有更多的了解

    磁性玻碳电极是玻璃碳电极的简称。玻碳电极可作为惰性电极直接溶于阳极溶出,阴极和变价离子的伏安测定,还可作为化学修饰电极。  磁性玻碳电极的优点是导电性好,化学稳定性高,热胀系数小,质地坚硬,气密性好,电势适用范围宽(约从-1~1V,相对于饱和甘汞电极),可制成圆柱、圆盘等电极形状,用它作基体还可制成汞膜玻碳电极和化学修饰电极等。在电化学实验或电分析化学中得到日益广泛的应用。  因磁性玻碳电极是惰性电极,所以在使用镀扫描材料就是扫描电极,如镀汞,铜,金就是汞膜,铜膜,金膜电极。  磁性玻碳电极是采用石油焦为骨料,煤沥青为粘结剂,经过破碎、配料、混捏、成型、焙烧、浸渍、石墨化、机械加工等一系列工艺生产的一种耐高温抗氧化的导电材料。广泛用于炼钢电弧炉、精炼炉、生产铁合金、工业硅、黄磷、刚玉等矿热炉及其他利用电弧产生高温的熔炼炉中。  磁性玻碳电极有良好的电性能和化学稳定性,在高温下机械强度高,杂质含量少,抗振性能好。是热和电的良好导体。  根据使用时功率和电流的不同,采用不同原材料和生产工艺生产,可分为普通功率石墨电极、高功率石墨电极、超高功率石墨电极。按电极的直径不同,有φ75~600mm不同规格。根据用户的特殊要求,可加工生产特殊规格的石墨电极和异型石墨产品。  当溶出伏安法在较正电位范围内进行时,可采用磁性玻碳电极。玻碳电极有较高的氢过电位、导电性能良好、耐化学侵蚀性强以及表面光滑不易沾附气体及污物。做修饰电极的原电极及氧化还原反应测量。

  • 碳材料2D与G峰强度比较的意义

    大家好!对于碳材料 2D peak 和G peak的相对强度的比较有什么意义吗?我目前查到文献是单层石墨烯和polyheral crystal graphite and graphite whisker(tip) 的 拉曼光谱的2d/G 强度大于一。这个强度有什么实际的物理意义吗?或者说具有什么样结构的碳材料会出现2d/G 大于一呢? 目前我做的拉曼结果显示2D与G的强度远远大于1 ,而且通过SEM和TEM却未发现上述三种物质,请高手给与指点。是测试时出现问题还是新的碳结构,或者说我所不知的碳结构导致2D 的强度非常强。谢谢!共享两篇2D强于G 的文献,欢迎大家讨论。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制