当前位置: 仪器信息网 > 行业主题 > >

伽马射线密度仪

仪器信息网伽马射线密度仪专题为您提供2024年最新伽马射线密度仪价格报价、厂家品牌的相关信息, 包括伽马射线密度仪参数、型号等,不管是国产,还是进口品牌的伽马射线密度仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合伽马射线密度仪相关的耗材配件、试剂标物,还有伽马射线密度仪相关的最新资讯、资料,以及伽马射线密度仪相关的解决方案。

伽马射线密度仪相关的资讯

  • 新突破!我国观测到迄今最亮伽马射线暴
    图①:科学载荷“高能爆发探索者”(示意图)。  图②:“慧眼”卫星(示意图)。  图③:中国高海拔宇宙线观测站(“拉索”)。  以上均为中科院高能所供图  制图:张丹峰中国科学院高能物理研究所负责建设和运行管理的中国高海拔宇宙线观测站(“拉索”)、科学载荷“高能爆发探索者”和“慧眼”卫星三大科学装置,近日同时探测到迄今最亮的伽马射线暴(GRB 221009A)。这是我国首次实现对伽马射线暴的天地多手段联合观测,打破了伽马射线暴亮度最高、光子能量最高、探测能量范围最高等多项伽马射线暴观测纪录,对于揭示伽马射线暴的爆发机制具有重要价值。  比以往最亮伽马射线暴亮10倍以上  伽马射线暴是宇宙中最剧烈的天体爆发现象,首次发现于上世纪60年代。伽马射线暴短至几毫秒,长达数小时,释放的能量超过太阳在其一生辐射能量的总和。持续时间较长的伽马射线暴产生于比太阳大几十倍的恒星星体坍缩爆炸,而持续时间较短的伽马射线暴则产生于两个致密天体(如黑洞或中子星)合并爆炸,还可能伴随发射引力波。  伽马射线暴的观测研究是天文前沿领域,近年来不断取得重大突破。2017年8月17日,在一个由两颗中子星合并爆炸产生的伽马射线暴之前观测到伴随产生的引力波,这是人类首次在电磁波和引力波窗口同时观测宇宙天体,开启了多信使天文学的新时代。  此次,迄今最亮的GRB 221009A伽马射线暴,近日被三大科学装置同时探测到。在这个伽马射线暴发生之前,人类探测到的伽马射线暴亮度纪录保持者是2013年4月27日发生的编号为GRB 130427A的一个伽马射线暴,全世界几乎所有重要望远镜都进行了观测。  本次观测中,“拉索”将伽马射线暴光子最高能量纪录提升近20倍,在国际上首次打开10万亿电子伏波段的伽马射线暴观测窗口,并与“慧眼”卫星和“高能爆发探索者”一起,发现这个爆发事件比以往人类观测到的最亮伽马射线暴亮了10倍以上。  实现对伽马射线暴的天地多手段联合观测  本次探测到的高强度爆发,发生在距离地球24亿光年处。如此明亮的伽马射线爆发,预计每几十年甚至百年才会出现一次。本次“拉索”探测到了大量的高能光子,最高光子能量达到了18万亿电子伏,在国际上首次打开了10万亿电子伏波段的伽马射线暴观测窗口。  “拉索”实验中科院高能所团队首席科学家曹臻研究员说:“这次‘拉索’在千亿电子伏以上的甚高能区记录到几万个光子信号,将给出伽马射线暴最高能段的光变曲线最精细的测量。”  凭借先进的探测器设计,“高能爆发探索者”成功对伽马射线暴GRB 221009A的软伽马射线光变特征进行高精度观测,展现出初期爆发和后随闪耀的演化过程。“慧眼”卫星的高能、中能和低能X射线望远镜首次在伽马射线暴观测中同时探测到信号,而且因为“慧眼”卫星当时正在扫描观测该天区,从而对这个迄今最亮伽马射线暴的余晖进行了及时监测。  得益于中科院高能所近些年天地一体化观测能力建设的高速发展,尤其是“拉索”的成功建造和运行占据国际领先地位,高能所首次实现对伽马射线暴的天地多手段联合观测,并独家实现从最高的十几万亿电子伏光子(“拉索”)到百万电子伏伽马射线(“高能爆发探索者”)和千电子伏X射线(“慧眼”卫星)的多谱段精细测量,跨越超9个量级。  曹臻说:“在过去半个多世纪探测到的数千个伽马射线暴中,最高能量光子达到大约1万亿电子伏(TeV)。本次‘拉索’探测到大量的高能光子,最高光子能量达到18万亿电子伏。”  引发巨大反响,大量相关研究迅速展开  “拉索”是以宇宙线观测研究为核心的国家重大科技基础设施,由中国自主提出并设计建造。该观测站位于四川省稻城县海拔4410米的海子山,主体工程于2021年7月完成建设并投入科学运行,是目前世界上灵敏度最高的超高能伽马射线天文台,其运行开启了“超高能伽马天文学”观测时代。捕捉和高统计量观测伽马射线暴是“拉索”的重要科学目标之一,此次亮度空前的爆发正好发生在“拉索”视场的中心附近,为完成该项科学目标奠定了强大的观测基础。  “慧眼”卫星是我国第一颗空间X射线天文卫星,于2017年6月发射运行,在轨观测5年多来,已在黑洞、中子星、快速射电暴等方面取得一大批重要原创成果。  “高能爆发探索者”是今年7月发射的空间新技术试验卫星的主要科学载荷之一,它采用“怀柔一号”卫星所开创的新型探测技术以及基于北斗短报文的准实时星地通信方案,能够迅速下传观测数据。“高能爆发探索者”目前处于在轨测试阶段,预计将获得更多重要成果。  伽马射线暴GRB 221009A发生后,“拉索”实验中科院高能所团队迅速展开数据分析,在爆发后不到两天就通过伽马射线暴协同观测网(GCN)向国际同行发布初步观测结果。进一步的数据分析和科学研究正由“拉索”国际合作组成员全力开展。中科院高能所“慧眼”卫星和“高能爆发探索者”观测运行团队、载荷团队和数据分析团队正迅速投入观测分析,并及时启动机遇观测。在项目团队密切协作下,“慧眼”卫星和“高能爆发探索者”已得到初步分析结果,并通过天文电报和伽马射线暴协同观测网向国际同行发布。  目前,探测结果已在国际引发巨大反响,大量相关研究展开,涌现出关于新物理可能性的许多讨论。这些测量对宇宙中存在的背景光场等基本物理参数和模型将作出强烈的限制,预计会产生重要的认知水平提升。
  • 科学家利用地基广角相机阵GWAC探测到伽马射线暴的瞬时光学辐射
    4月10日,《自然-天文》发表了中国科学院国家天文台中法天文小卫星SVOM科研团队完成的一项重要研究成果。该团队利用位于国家天文台兴隆基地试运行中的地基广角相机阵(GWAC),成功探测到一例伽马射线暴(GRB 201223A)的瞬时光学辐射及其向极早期余辉的转变过程。  伽马暴源于大质量恒星晚期坍缩或双中子星并合瞬间伴随着新生黑洞或磁陀星的极端相对论喷流,短时间内辐射出巨大能量,包括喷流内激波导致的暴发瞬时辐射和喷流撞击外部介质产生的余辉。典型的高能暴发仅持续豪秒到几十秒,但地面光学设备接收到高能卫星的伽马暴触发警报时,很难做到实时跟进,故目前只有几例瞬时光学辐射探测——对应高能暴发的持续时间较长(30秒),且观测数据中存在反向激波的污染成分,难以明确从瞬时光学辐射到余辉的转变。   SVOM首席科学家、国家天文台研究员魏建彦提议并带领研制的GWAC具有超大的观测视场和15秒的高时间采样分辨率,作为卫星项目的重要地基设备,探测深度达到星等16等,并计划对SVOM发现的伽马暴的瞬时光学辐射开展系统性研究。   伽马暴GRB 201223A同时被Swift卫星和Fermi卫星在伽马射线波段探测到,其时,试运行中的GWAC正对所在的上千平方度天区做实时监测,成功在光学波段完整记录下暴发的全过程(图1)。这是国际上首次将瞬时光学辐射的探测突破到暴发持续不到30秒的伽马暴,远短于之前的事例。GWAC的观测实际上在高能暴发之前便已开始,在探测极限内未发现任何前驱(precursor)信号,但在整个高能暴发阶段均探测到明显的光学辐射(图2),结合60cm望远镜的后随观测数据,清晰地记录了从瞬时光学辐射到余辉的完整的演变过程。   GRB 201223A是高能波段的中等亮度伽马暴,其瞬时光学辐射的观测亮度比从高能能谱外延到光学波段的值高4个数量级(图3)。该特性与超亮伽马暴GRB 080319B类似。更具意义的是,对多波段数据的联合分析表明,GRB 201223A前身星的暴前质量损失率远低于后者,可能是一颗不大于3.8倍太阳质量的沃尔夫-拉叶星,恒星演化模型所对应的主序阶段质量不大于20倍太阳质量。   由于伽马暴发生在时间和空间上的随机性,通过GWAC对SVOM卫星的实时监测天区开展高帧频观测,将为探索极端相对论喷流、暴周环境及前身星特性提供独特数据,并具有捕获中子星并合引力波事件电磁对应体的重要潜力。   上述工作由国家天文台、美国内华达大学拉斯维加斯分校、广西大学、南京大学、中国科技大学、法国原子能署、淮北师范大学、北京师范大学等合作完成。 图1.GWAC对GRB 201223A高能爆发前后的连续观测图像。时间分辨率是15秒。中间黄色箭头指向的是光学对应体。第一行第三列是覆盖高能警报触发时刻的图像。 图2.GRB 201223A光学、X射线、伽马射线暴联合观测光变曲线。横坐标是相对于警报触发的时间,单位是秒。纵坐标流量或者星等。红色点是GWAC和F60A的观测数据。在高能警报触发前,GWAC没有探测到任何暴前辐射成分,在爆发开始后,探测到一个明亮的光学辐射,并清晰解析出从瞬时辐射到余晖的相变过程。 图3.GRB201223A瞬时辐射能谱图。横坐标是观测频率,做坐标是流量。GWAC探测到瞬时辐射光学亮度远远高于高能最佳能谱的预期。
  • 新型高敏感成像技术研发成功 集磁共振和伽马射线优点于一身
    英国《自然》杂志28日公开的一篇论文,描述了一种集磁共振成像和伽马射线成像优点于一身的新型光谱成像技术,有望为开发新型医学诊断工具打下基础。  磁共振成像是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。这是医学领域非常重要的诊断工具,因为它具有卓越的空间分辨率,能够分辨图像中的个体特征。而伽马射线探测器则具有高度敏感性,可用于探测微量放射性示踪剂。这些示踪剂能够定位特定的目标,因此这种图像可用于诊断癌细胞的分布和数量以及脑和心血管畸形。一直以来,这两种技术各有千秋,但双方的优点却很难兼得。  此次,美国弗吉尼亚大学研究人员高登盖茨、威尔逊米勒及其团队成员,发明了一种全新的成像技术,先利用磁共振收集空间信息,再利用伽马射线收集图像信息。研究人员通过在玻璃槽中进行放射性原子成像操作,证明了该技术的可行性。而传统的磁共振成像方法需要几十亿甚至更多的原子才能生成图像。  在目前阶段,如使用该技术获取示例图像的数据,大约需要60个小时,这对于临床应用而言并不理想。不过论文作者提出,虽然该技术手段在某些方面仍需改进,譬如说处理速度,但提高探测器的规模或者放射性示踪剂的数量或有助于克服这些问题。  在论文随附的新闻与观点文章中,英国诺丁汉大学科学家认为,该技术将有助于生物学和非生物学系统的研究。
  • 北京市核与辐射安全中心343万采购伽马射线成像谱仪等设备
    项目编号:11000022210200005753-XM001项目名称:核与辐射环境应急监测能力建设项目预算金额:343 万元(人民币)采购需求:序号标的名称数量交货地点简要技术需求或服务要求1伽马射线成像谱仪1套采购人指定地点分析特定区域辐射强度空间分布、快速确定放射性场所同位素种类及其热点所在方位。详见第四章采购需求书。2便携式特殊核(中子)材料甄别仪1套采购人指定地点对样品中的γ射线和中子进行测量,实现放射性预警的同时,通过后端算法分析进行特殊核材料及中子材料的甄别。详见第四章采购需求书。3低本底α、β测量仪1套采购人指定地点用于环境实验室、保健物理、放化实验室、工业安全、食品安全、核医学等领域的样品中α、β放射性测量。详见第四章采购需求书。4液氮回凝制冷系统2套采购人指定地点为顶部插拔式高纯锗探测器的工作提供高可靠的冷却系统。详见第四章采购需求书。5碘采样器2套采购人指定地点采集空气中气溶胶、微粒碘(或其它碘成份)等成分,详见第四章采购需求书。6应急移动单兵系统1套采购人指定地点用于采集核事故应急情况下单兵检测人员在应急现场的音/视频信息、核与辐射应急检测数据及GPS 定位信息,详见第四章采购需求书。7大流量气溶胶采样器1套采购人指定地点高效地收集室内外空气中的气溶胶成分。详见第四章采购需求书。8长杆γ剂量率仪1套采购人指定地点用于对难以接近区域或对热点作长距离测量γ剂量率。详见第四章采购需求书。9氚采样器1套采购人指定地点对环境中气态氚和气态氚水收集,详见第四章采购需求书。注:投标人必须针对本项目所有内容进行投标,不允许拆分投标。合同履行期限:合同签订后6个月内交货,并通过采购人验收。本项目不接受联合体投标。
  • 218万!扶风县人民医院计划采购红外热像仪、双能X射线骨密度仪等设备
    一、项目基本情况项目编号:BJTZ-2023-FF0109项目名称:医用红外热像仪、双能X射线骨密度仪等设备采购采购方式:公开招标预算金额:2,180,000.00元采购需求:合同包1(医用红外热像仪、双能X射线骨密度仪等设备采购):合同包预算金额:2,180,000.00元合同包最高限价:2,180,000.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他医疗设备医用红外热像仪1(台)详见采购文件850,000.00850,000.001-2医用 X 线诊断设备双能X射线骨密度仪技术1(台)详见采购文件500,000.00500,000.001-3医用电子生理参数检测仪器设备人体成分分析仪1(台)详见采购文件200,000.00200,000.001-4其他医疗设备全自动免散瞳眼底照相机1(台)详见采购文件350,000.00350,000.001-5医用超声波仪器及设备超声经颅多普勒血流分析仪1(台)详见采购文件160,000.00160,000.001-6其他医疗设备便携式肺功能检测仪1(台)详见采购文件120,000.00120,000.00本合同包不接受联合体投标合同履行期限:合同签订后30日历天内二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定 2.落实政府采购政策需满足的资格要求:合同包1(医用红外热像仪、双能X射线骨密度仪等设备采购)落实政府采购政策需满足的资格要求如下:①《政府采购促进中小企业发展管理办法》(财库〔2020〕46号)、财政部关于进一步加大政府采购支持中小企业力度的通知(财库〔2022〕19号);?②财政部司法部关于政府采购支持监狱企业发展有关问题的通知---财库〔2014〕68号;③《国务院办公厅关于建立政府强制采购节能产品制度的通知》---国办发〔2007〕51号;④《财政部?发展改革委?生态环境部市场监管总局关于调整优化节能产品环境标志产品政府采购执行机制的通知》---财库〔2019〕9号;⑤《财政部民政部中国残疾人联合会关于促进残疾人就业政府采购政策的通知》--(财库〔2017〕141号);⑥陕西省财政厅关于印发《陕西省中小企业政府采购信用融资办法》(陕财办采〔2018〕23号);⑦陕西省财政厅《关于进一步加强政府绿色采购有关问题的通知》陕财办采〔2021〕29号;⑧其他需要落实的政府采购政策;⑨如遇国家政策调整或者有最新文件按最新政策执行。3.本项目的特定资格要求:合同包1(医用红外热像仪、双能X射线骨密度仪等设备采购)特定资格要求如下:3.1投标人应具有独立承担民事责任的能力且具备向采购人提供相关货物的企业法人、事业法人、其他组织,企业法人应提供合法有效的营业执照等证明文件,事业法人应提供合法有效的事业单位法人证等证明文件,其他组织应提供合法有效的证明文件;3.2截止至投标文件递交截止时间之前,投标人不得被列入“信用中国”网站(www.creditchina.gov.cn)中重大税收违法案件当事人名单及未在“中国执行信息公开网”(http:/zxgk.court.gov.cn/shixin/)中被列入失信被执行人名单;不得被列入“中国政府采购网(www.ccgp.gov.cn)”?政府采购严重违法失信行为记录名单;3.3投标人为代理商的须提供《医疗器械经营许可证》(或医疗器械经营备案凭证)及加盖生产厂家公章的《医疗器械生产许可证》(或医疗器械生产备案凭证)复印件和所投产品的《医疗器械产品注册证》复印件;3.4投标人为制造厂家应出具《医疗器械生产许可证》(或医疗器械生产备案凭证)和所投产品《医疗器械产品注册证》;3.5单位负责人为同一人或者存在直接控股、管理关系的不同投标人,不得参加同一合同项下的政府采购活动。3.6本项目为专门面向中、小企业项目,投标人应为中型企业或小型企业或微型企业。三、获取招标文件时间: 2023年02月08日 至 2023年02月15日 ,每天上午 09:30:00 至 11:30:00 ,下午 14:30:00 至 17:00:00 (北京时间)途径:陕西省公共资源交易中心平台方式:在线获取售价: 0元四、提交投标文件截止时间、开标时间和地点时间: 2023年03月02日 09时00分00秒 (北京时间)提交投标文件地点:宝鸡市公共资源交易中心五楼第11开标室(不见面开标室席位2)开标地点:宝鸡市公共资源交易中心五楼第11开标室(不见面开标室席位2)五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1.投标人须按照陕西省财政厅《关于政府采购投标人注册登记有关事项的通知》中的要求,通过陕西省政府采购网(http://www.ccgp-shaanxi.gov.cn/) 注册登记加入陕西省政府采购投标人库并及时办理 CA 数字证书 (陕西CA 锁)。2.本项目有意向投标投标人须登录全国公共资源交易平台(陕西省宝鸡市)宝鸡市公共资源交易中心(http://bj.sxggzyjy.cn/),交易平台〖首页〉电子交易平台〉企业端〗后,在〖招标公告/出让公告〗模块中选择有意向的项目点击“我要投标”,并打印回执单。在文件发售时间段内:2023年2月8日至2023年2月15日每天上午09:30:00至11:30:00,下午14:30:00至17:00:00(北京时间,法定节假日除外)将网上回执单、介绍信原件、被介绍人身份证复印件(加盖企业公章)及被介绍人的在截止日前一年内已缴纳的任意一个月的社保证明材料复印件(加盖企业公章)送至陕西省宝鸡市扶风县新区南二路自来水公司二楼,采购代理机构确认,待审核确认无误后填写文件领取登记表,方可报名成功,报名成功后即可从〖我的项目〉项目流程〉交易文件下载〗中下载招标文件(*.SXSZF格式),逾期下载通道将关闭,未及时下载招标文件将会影响后续开评标活动;4.制作电子投标文件(*.SXSTF)需要使用专用制作工具进行编制,编制完成后使用CA锁对电子投标文件进行签章、加密递交电子投标文件。软件下载及操作说明详见宝鸡市公共资源交易平台〖首页〉服务指南〉下载专区〗中的《政府采购项目投标文件制作软件及操作手册》。提交电子投标文件:在提交投标文件截止时间前及时提交加密后电子投标文件,逾期提交的,系统将会拒收。5.本项目采用“不见面开标”方式。不见面开标大厅登录方式为:全国公共资源交易平台(陕西省宝鸡市)→不见面开标系统。相关操作流程详见全国公共资源交易平台(宝鸡市)网站〖首页〉服务指南〉下载专区〗中的《宝鸡公共资源交易不见面开标大厅投标人操作手册》。6.因投标人自身设施故障或自身原因导致无法完成签到、解密或投标的,由投标人自行承担后果。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名称:扶风县人民医院地址:陕西省宝鸡市扶风县新区西大街联系方式:158298784182.采购代理机构信息名称:宝鸡天正项目管理咨询有限公司地址:扶风县新区自来水公司二楼联系方式:0917-52276153.项目联系方式项目联系人:权敏电话:0917-5227615宝鸡天正项目管理咨询有限公司2023年02月08日
  • 众星携新一代光子计数x射线探测器亮相第二届射线成像会议
    得益于第一届射线成像会议的完美呈现,第二届射线成像会议于期望中在合肥顺利开展。仅仅两天(2018年11月3日-4日)的会议报告时间,来自全国各地的老师百花齐放,各显神通,围绕射线成像领域呈现精彩的报告内容。 本次大会围绕X射线光源和探测器;X射线成像方法及技术;中子、质子及伽马射线成像方法及技术;应用研究等多个议题展开,邀请到来自三大同步辐射光源、中国原子能科学研究院、中国工程物理研究院、中国科学院上海光学精密机械研究所、上海科技大学等多家国家重点研究单位该领域的知名专家和学者到会共同交流,深入探讨以及分享射线成像技术领域取得的最新研究成果。为该领域的发展又增加了一把新的力量。 本次会议北京众星联恒科技有限公司作为赞助商,强势推出代理产品-来自捷克advacam厂家基于Timepix芯片的混合光子计数探测器,并于会议中做了精彩报告。 Advacam公司生产的Timepix光子计数x射线探测器拥有高动态范围,无噪声,高灵敏度,能量甄别-阈值扫描(技术/阈值扫描模式)以及过阈时间分析(TOT模式)以及大面积无缝拼接等特点,在多个领域如小动物显微CT,微米/纳米CT,K边成像,全光谱成像进行材料厚度测量、能量/空间分辨X射线荧光成像拥有显著特点和性能优势。本次报告吸引多位成像用户对本产品的关注,纷纷于会后到我司展台进行咨询,由我司技术支持进行了逐一解答。大会现场图片 我司技术经理于大会中介绍ADVCAM产品 专家学者莅临我司展会深度咨询产品信息 北京众星联恒科技有限公司代理的德国GREATEYES的科学级相机;捷克ADVACA的光子技术x射线探测器(成像);德国X-SPECTRUM的光子计数探测器(衍射)、德国INCOATEC公司光源、德国Microworks的光栅等光学组件、覆盖了X射线领域从光源到探测器的整个产品线,在物质超快过程研究、精细分辨成像等多个领域研究提供重要科学支持,广泛用于光谱和成像等应用。 更多产品信息欢迎来电咨询!
  • 小角X射线散射技术:研究纳米尺度微结构的重要手段
    本文由马尔文帕纳科医药行业应用专家陈丽供稿本文摘要本文将简单介绍研究纳米尺度微结构的重要手段:小角X射线衍射(Small Angle X-Ray Scattering, SAXS)技术原理及相关产品。X射线衍射与小角X射线散射 X射线是具备相应波长的电磁波或带有相应能量的光子束。X射线的波长和能量介于γ-射线和紫外线之间。其波长范围为0.01-10nm;对应的能量范围为0.125-125Kev。小角散射(Small Angle X-ray Scattering,SAXS):如果样本具有不同电子密度的周期性结构,X射线被不相干散射,散射 X 射线的角度就与入射 X 射线的角度相差很小(一般2θ≤ 5°),称为小角X射线散射效应。主要用于研究亚微米尺度的固态及液态样品结构。小角散射效益来自物质内部1~100nm量级范围内电子密度的起伏,通过对小角X射线散射图或散射曲线的计算和分析即可推导出微结构的形状、大小、分布及含量等信息。这些微结构可以是孔洞、粒子、缺陷、材料中的晶粒、非晶粒子结构等。广角散射(Wide Angle X-ray Scattering,WAXS):如果样本具有周期性结构(晶区),X射线被相干散射,入射光和散射光之间没有波长的改变,这个过程称为 广角X射线衍射。主要用于研究较晶体结构和非晶体结构。与小角散射相比,广角散射的散射角度较大,可以覆盖从几度到几十度的范围。通过检测广角散射信号,可以获得关于晶体晶格参数、晶胞体积、颗粒尺寸和颗粒形貌等信息。SAXS - WAXS表征Empyrean Nano版锐影Empyrean Nano版锐影多功能 X 射线散射系统基于Empyrean平台和Pre-FIX预校准概 念,为纳米材料研究/小角散射专家特殊定制的 高性能多功能散射研究平台操作简单,无需校准高性能散射研究平台,但不局限于散射(1D/2D SAXS/WAXS;USAXS;GI-SAXS;PDF;CT)多种配置可选多功能 X 射线散射系统Empyrean Nano版+PIXcel3D 基于铜靶应用Empyrean Nano版+GaliPIX3D 兼顾对分布函数(PDF)分析高分辨光管+聚焦透镜+ScatterX78+3D探测器2D WAXS, 最低2theta 0.1°, 最高±22°(PIXcel)或±30°(GaliPIX)变温毛细管样品架,温度范围5-70℃ Scatter X78 样品架能实现液体,固体,纤维等纳米材料分析,仪器自动校准光路,真空启动3分钟即可测试样品。
  • 宽视场X射线望远镜获首批科学成果
    5日,记者从中科院获悉,经过一个月的在轨测试,由该院微小卫星创新院抓总研制的创新X系列首发星,即空间新技术试验卫星(SATech-01)工作正常,搭载的多个科学载荷按计划开展了测试,并获得首批科学成果。  SATech-01卫星搭载的伽马射线暴探测载荷(HEBS)已首次加电开始在轨测试。在此期间,HEBS探测到其在轨运行以来的首个伽马暴,表明HEBS已经具备伽马暴的探测研究能力。HEBS与我国前期发射运行的“慧眼”卫星和“怀柔一号”极目卫星已组成伽马射线爆发天体探测网络。  同时,SATech-01卫星搭载的龙虾眼宽视场X射线望远镜载荷成功获得一批天体的真实X射线实测图像和能谱,这是国际上首次获得并公开发布的宽视场X射线聚焦成像天图。  对此,中科院高能所研究员张双南表示,宽视场X射线望远镜与HEBS同时同视场的观测特别令人期待,尤其是对于新的爆发天体和现象,不但能够获得很宽能段的X射线和伽马射线能谱与光变,X射线望远镜还能够精确定位,这个能力目前在国际上是独一无二的,预期会有很激动人心的科学发现。  由中科院西光所研制的全铝自由曲面相机,也随SATech-01卫星发射,并获得了首批图像。其中,对地观测正常工作模式下拍摄的地物可见光全色图像表明,成像幅宽和分辨率等指标均达到设计要求,图像清晰。  此外,中科院工程热物理所研制的无机材料太空固化验证平台,也已在SATech-01卫星上开展材料的在轨加热测试。结果表明,无机材料已基本固化,未发生结构损伤,该项测试将为未来建造大型充气展开式柔性太空舱提供技术储备。  除上述有效载荷外,地球磁场精密测量仪(CPT)、展开式辐射器、先进热控材料等一些新材料、新技术验证载荷也已陆续在轨开机,将获得测试结果。  “一个月的在轨测试获得如此多的科学成果,令人振奋,也说明这种新技术的快速验证思路非常正确。”创新X系列卫星首席科学家、中科院微小卫星创新院研究员龚建村说。  据了解,SATech-01卫星于7月27日12时12分由“力箭一号”火箭在酒泉卫星发射中心成功发射。未来,中科院微小卫星创新院与运载火箭方将联合建立“航班式”新技术飞行验证模式,提供常态化、开放式、低成本服务,助力越来越多的科学成果从实验室走向太空。
  • 2021数理科学部发布X射线反射镜等10个重大项目指南,拟资助5个
    8月5日,国家自然科学基金委员会发布“十四五”第一批重大项目指南及申请注意事项。其中,2021年数理科学部共发布10个重大项目指南,拟资助5个重大项目,项目申请的直接费用预算不得超过1500万元/项。2021年数理科学部共发布10个重大项目指南如下:“超大型航天结构空间组装动力学与控制”重大项目指南“材料长效使役性能高通量表征的力学理论与实验方法”重大项目指南“活动星系核反馈在星系演化中的作用”重大项目指南“致密天体活动与爆发的宽能段时变与能谱研究”重大项目指南“基于强太赫兹源的声子调控诱导电子新结构与物性研究”重大项目指南“基于铌酸锂薄膜的超高速多维光场调控及其应用基础研究”重大项目指南“粲夸克衰变中标准模型的精确检验”重大项目指南“基于LHAASO实验的粒子天体物理前沿问题研究”重大项目指南“先进核能系统中材料的若干协同损伤作用机理研究”重大项目指南“高精度X射线反射镜的关键科学与技术问题”重大项目指南10个重大项目指南关键内容如下:“超大型航天结构空间组装动力学与控制”重大项目指南一、科学目标瞄准超大型航天结构的减重设计和空间组装需求,提出满足在轨动力学要求的组装结构轻量化设计新理论;建立空间组装过程的“轨道-姿态-结构”耦合动力学新模型,揭示空间组装过程的耦合动力学演化新规律;提出空间组装过程的“轨道-姿态-结构”一体化稳定控制新理论;探索解决超大型航天结构动力学试验“天地一致性”问题的新方案。二、研究内容(一)超大型航天结构的轻量化和可控性设计。(二)超大型航天结构空间组装过程的动力学演化。(三)空间组装过程轨道-姿态-结构一体化稳定控制。(四)空间组装过程动力学与控制的地面模拟试验。“材料长效使役性能高通量表征的力学理论与实验方法”重大项目指南一、科学目标建立基于全场分析的梯度材料表征力学理论,发展多重物性宏微观高通量测试技术,通过结构与性能关系的多尺度机理研究和机器学习,构建材料短时数据与长效使役性能之间的映射关系,实现对其使役寿命的精准预测,应用于具有重要战略意义的高速列车车轴材料和全固态电池材料。二、研究内容(一)基于梯度样品全场分析的高通量表征力学理论。(二)梯度样品宏观层次高通量表征实验方法。(三)梯度样品微观层次高通量表征实验方法。(四)机理驱动的使役行为跨时空尺度映射。“活动星系核反馈在星系演化中的作用”重大项目指南一、科学目标获得不同光度活动星系核风的观测证据、以及风的速度、质量流与活动星系核光度的定量关系;将低红移星系气体的探测深度和中高红移星系的光谱数量提高一个数量级,并结合数值模拟,得到在不同红移处星系以及星系际介质的各种性质,特别是星系的恒星形成率、气体含量、星系际介质的X射线、发射和吸收线,及其与活动星系核反馈的内在关系;发展并完成星系尺度上的高分辨率数值模拟程序,获得不同的反馈模式分别对星系中气体和恒星形成率的影响以及风与辐射各自在反馈中起到的作用;将基于最真实和准确的活动星系核物理,完成一组包含新模型的宇宙学数值模拟,大幅改进目前的宇宙学尺度星系形成与演化研究。二、研究内容(一)活动星系核风的观测研究:反馈的内边界条件。(二)星系尺度上的活动星系核反馈:观测研究。(三)星系尺度上的活动星系核反馈:数值模拟研究。(四)星系外大尺度上的研究:观测约束以及宇宙学数值模拟。“致密天体活动与爆发的宽能段时变与能谱研究”重大项目指南一、科学目标发现几百个伽马射线暴,建立MeV能区高统计性的伽马暴样本,理解伽马暴相对论喷流的伽马射线辐射机制;监测上百例引力波、高能中微子、快速射电暴等爆发现象,揭示它们的爆发机制以及黑洞、中子星等致密天体的并合物理过程和机制;系统地获得十余个吸积中子星双星和黑洞双星的高能X射线时变和能谱演化特征和分类,理解黑洞周围的吸积过程、相对论喷流的产生以及硬X射线辐射机制;测量约十个致密星(中子星或者黑洞)的基本参数(质量、磁场、自转),理解致密天体的基本性质;开展银道面巡天,监视约200个X射线天体的活动,发现致密天体硬X射线新的活动并且开展后随观测证认研究。二、研究内容(一)极端天体爆发的物理机制。(二)黑洞X射线双星系统吸积与喷流过程。(三)中子星X射线双星系统吸积盘与中子星相互作用。(四)河内宽能段的巡天监测和后随观测研究。“基于强太赫兹源的声子调控诱导电子新结构与物性研究”重大项目指南一、科学目标围绕声子调控诱导电子新结构与新奇物性的研究目标,在研究手段上发展必要的突破现有太赫兹光源性能极限的强场产生新方法,实现具有宽频(整体频谱范围覆盖0.1-50 THz)、强场(场强突破GV/m)、高重复频率、频谱连续可调等优异特征的强场太赫兹光源,并通过人工微结构实现太赫兹近场强光场微区再增强条件;重点开展强场下非平衡态电子的多自由度(电、热、磁、光、谷、轨道)动力学物理过程研究,揭示光子与各量子激发在超强太赫兹光场范畴内的相互作用新机理(如电子、声子及光子复合激发机理);探索实现声子态调控的远离平衡态的新型量子态(如高温超导相、拓扑量子相、Floquet量子态等)及化学反应(如合成氨反应)的远离平衡态相干操控新效应。二、研究内容(一)强场太赫兹源调控电子行为的理论研究。(二)超强太赫兹光场构筑及实验方法研究。(三)强场太赫兹源对量子材料相干调控研究。“基于铌酸锂薄膜的超高速多维光场调控及其应用基础研究”重大项目指南一、科学目标针对片上全域光场快速调控的需求,通过超限制备技术突破铌酸锂薄膜新微纳结构、少层结构加工工艺,利用铌酸锂材料自身的多重特性,实现对光场以及部分相干光场的多维度超高速调控,实现对光场的强局域与非线性调控;发展基于电光效应的人工微结构光场多维调控新方法,并阐明其物理机理。从基础铌酸锂薄膜材料微纳加工技术开始,到片上集成光子器件,最后到片上光场快速调控,建立不同于现有光场调控的新体系。二、研究内容围绕基于铌酸锂薄膜的超高速多维光场调控技术,发展基于电光效应的人工微结构光场多维调控新机理与方法;突破现有微纳加工技术的能力限制,开展铌酸锂薄膜刻蚀机理及微纳芯片制造工艺研究,利用高品质铌酸锂薄膜光场调控芯片实现超高速多维光场调控及其应用。(一)铌酸锂刻蚀机理及铌酸锂薄膜微纳芯片制造技术。(二)铌酸锂薄膜莫尔晶格结构中光场局域及片上非线性增强。(三)铌酸锂薄膜少层微纳体系时空光场多维联合调控。(四)基于铌酸锂薄膜的光场相干性快速调控及应用。“粲夸克衰变中标准模型的精确检验”重大项目指南一、科学目标利用BESIII采集的海量粲强子样本,特别是在3.773 GeV采集的20 fb-1的数据,充分发挥近阈粲强子成对产生、背景低和量子关联等独特优势,开展中性粲介子量子关联特性的研究,精确测量相关不同末态的平均强相位差和CP本征态成分比例,为CKM矩阵的相角的精确测量提供关键参数;精确测量CKM矩阵元和,检验CKM矩阵的幺正性,探索新的CP破坏来源;精确测量粲强子衰变常数和半轻衰变形状因子,与格点QCD理论计算值比较,刻度格点QCD计算,探寻超出标准模型新现象;系统地研究粲强子的强子末态衰变,研究强子谱学和末态相互作用,检验夸克味对称性;研究粲强子衰变,高精度检验轻子普适性,寻找稀有或禁戒的衰变过程,精确检验标准模型理论、寻找超出标准模型的新物理;在理论上发展和完善非微扰能区的格点QCD计算和有效理论模型,理解粲强子弱衰变的动力学,检验相关的唯象模型,提高对粲强子衰变中CP破坏、衰变常数和形状因子等理论预言的精度。二、研究内容(一)阈值处中性粲介子量子关联性研究。(二)粲强子的强子末态衰变机制研究。(三)精确测量CKM矩阵元和粲介子衰变常数。(四)精确测量粲介子半轻衰变形状因子和检验轻子普适性。(五)粲强子衰变中探索新粒子和新相互作用。“基于LHAASO实验的粒子天体物理前沿问题研究”重大项目指南一、科学目标瞄准银河系内1015eV宇宙线起源这一重大问题,基于LHAASO实验数据精确测量每个超高能伽马射线源的辐射能谱、空间分布和时变,联合国内外射电、光学、X射线等设备数据完成相应天体源的多波段观测和分析,建立和优化多波段辐射模型,研究带电粒子在天体中的加速过程与辐射特征,寻找宇宙线起源和加速证据,同时基于LHAASO数据完成银盘弥散伽马射线、膝区宇宙线分成分能谱和宇宙线大尺度各向异性测量,建立宇宙线在银河系内的起源、加速和传播的整体图像。二、研究内容(一)超高能伽马射线源的搜寻与测量。(二)伽马射线源多波段多信使研究。(三)伽马射线源内的粒子加速、辐射与输运过程的研究。(四)星际介质中弥散伽马射线相关物理研究。(五)基于宇宙线的能谱和各向异性测量研究其起源和传播。“先进核能系统中材料的若干协同损伤作用机理研究”重大项目指南一、科学目标瞄准服役于聚变能等先进核能的典型材料,充分利用国内大型托克马克、高热负荷测试和多束离子辐照等装置,厘清高能中子-嬗变氢氦、中子辐照-粒子流-热负荷两类协同损伤作用的耦合机制;阐明多种因素作用下材料遭受的协同损伤效应的机理;建立能够模拟上述协同损伤作用的实验与计算模拟方法;基于计算和实验模拟,实现在聚变堆等综合服役环境下国产低活化钢、氧化物弥散强化(ODS)钢、钨基合金等关键材料的筛选及性能评估。二、研究内容(一)高能中子辐照的离位损伤与氢、氦对材料的协同损伤作用机制研究。(二)高能中子辐照离位损伤与热负荷、粒子流对聚变堆第一壁协同损伤的作用机制研究。(三)多因素协同损伤效应的长时大尺度计算模拟方法建立。(四)聚变中子-氢-氦协同效应的多离子束模拟实验方法建立。“高精度X射线反射镜的关键科学与技术问题”重大项目指南一、科学目标基于超高精度反射镜表面形貌对相干X射线波前传输的影响,研究单晶硅纳米形貌的原子级构建规律,揭示超强X射线辐照下单晶硅材料和薄膜的损伤机理及力热变形机制;建立跨尺度全频谱纳米表面形貌的在线和离线高精度表征方法,发展大尺寸超高精度反射镜的复合加工技术和集成技术,实现相干X射线波前的在线实时操控和自适应主动补偿;形成具有自主知识产权的X射线高精度反射镜的全链条创新技术体系。二、研究内容(一)大尺寸复杂轮廓单晶硅纳米精度表面形貌构造规律研究。(二)全频谱纳米形貌的综合检测评估方法研究。(三)高亮度相干X射线与材料表面相互作用机制。(四)光机集成系统中跨尺度表面形貌的多物理场影响规律研究。
  • 第一届射线成像新技术及应用研讨会在无锡成功举办
    2016年11月21日- 23日,由中国光学工程学会联合国内三大光源举办“射线成像新技术及应用研讨会”,在位于无锡中国饭店成功举办。会议以x射线光源、伽马射线、中子光源及其应用研究等为主要方向,吸引了来自中科院高能所,中科院上海应物所,中国科学技术大学,中国工程物理研究院,中国原子能科研院、台湾中央研究院、中科院上海光机所、中科院动物研究所、上海交通大学、北京师范大学、清华大学、北京航空航天大学、深圳大学等多所高校以及企业等逾150名专家和技术人员参会。北京众星联恒科技有限公司精心组织参加第一届射线成像新技术及应用研讨会。本次会议期间,我公司向与会专家和技术人员介绍本公司新产品femtox ii,该产品具有超短(短于100fs脉宽)、超亮(优于1011/s光子通量)、超微(微米量级的光源焦斑)等特点,在超微x射线源静态成像、超快x射线动态衍射、超快x射线动态吸收谱学、超快x射线时间动态成像等方向具有较为广阔的应用前景。同时公司代理德国incoatec微焦源及光学镜片针孔、德国greateyes ccd相机、德国x-spectrum光子计数探测器、捷克advacam光子计数探测器等产品也得到相关专家与技术人员的关注与咨询。
  • 新加坡国立大学刘小钢团队:制备用于提高射线成像性能的像素化双锥形光纤阵列
    当前,在全球范围内科技与产业革新的浪潮中,信息光电子、激光加工、激光全息、光电传感等技术正在快速发展。光电产业与能源、信息、医疗等领域的结合和渗透也在加速,推动着新技术、新产品和新商业模式的不断涌现,全球光电产业的竞争格局经历重大重塑。据Market Research Future预测,到2032年,光电市场的规模将从2024年的381.9亿美元增长至845亿美元。预计在2024至2032年期间,该市场的年复合增长率为10.44%,其中光电子在多个不同领域的应用增加以及红外元件利用率的提高是促进市场增长的关键市场驱动力。随着光电子技术的进步和规模化生产,社会生产对光电子相关器件的需求日益增加,互联网与光电产业深度融合。作为高新技术产业基础的光电元件,正快速朝着微型化、精密化、轻薄化以及集成化的方向发展。然而,由于其发展历程相对较短,仍面临诸多挑战和问题需要逐步解决。其中,高能射线成像是一种利用高能射线(如X射线、伽马射线等)进行成像的技术,主要用于医学、工业检测、安全检查和科学研究等领域。但该技术受到的主要限制因素在于厚层闪烁体材料内部存在的自吸收和散射现象。近年来,钙钛矿纳米闪烁体已直接集成到电荷耦合器件中以实现X射线成像。然而,为了有效吸收高能射线,钙钛矿闪烁体层必须达到毫米至厘米的厚度。但由于横向光子散射和固有的自吸收,毫米厚度的钙钛矿闪烁体的光穿透和空间分辨率仍将受到限制。基于此,新加坡国立大学(NUS)化学系的刘小钢教授研究团队开发了一种用于提高射线成像性能的像素化双锥形光纤阵列。该阵列通过双锥面设计可以有效地吸收传递闪烁体层激发的光子,降低闪烁体材料内部的散射和自吸收,从而有效提高射线成像的空间分辨率和成像性能。相关成果以“A double-tapered fibre array for pixel-dense gamma-ray imaging”为题,发表在《Nature Photonics》期刊上。光纤可以增强光耦合,执行光信号传输,并实现具有低损耗接口的光子集成电路。此外,理论研究表明,锥形或双锥形光纤可以通过促进倏逝波在锥形区域的基模上的传播来充当高功率放大器。在这里,研究人员扩展了理论分析,并通过实验验证了使用柔性双锥形光纤阵列和钙钛矿纳米晶闪烁体实现高灵敏度伽马射线成像的可能性。图1. 用于定向光收集的透明双锥形光纤阵列的结构特性研究人员对光收集特性进行了表征,并优化了锥形光纤的几何形状,以最大限度地提高光收集效率和传输效率。研究团队通过成型和层压聚氨酯和有机硅弹性体制造双锥形纤维阵列,首先采用摩方精密面投影微立体光刻(PμSL)3D打印技术制作出光纤阵列模具(nanoArch S130,精度:2μm),并结合PDMS翻模技术得到双锥形纤维阵列。钙钛矿纳米晶充当闪烁体,通过测量其激发光谱对钙钛矿纳米晶进行表征,其表示作为波长的函数的相对发光强度。钙钛矿闪烁体表现出相对较小的斯托克斯位移和较高的量子产率,导致发射光子的大量重吸收。图2. 用于光子回收和高分辨率X射线成像的双锥形光纤阵列的光学特性双锥形光纤阵列系统的一个关键特征是它适用于发光穿透深度不足的所有情况,例如,具有上转换材料的近红外探测器、具有钙钛矿闪烁体的X射线或伽马射线探测器以及电激发发光二极管。通过将光纤阵列和钙钛矿纳米晶相结合,在实验中实现了输出信号增加了三倍,并通过4 mm厚的闪烁体层实现了6 MeV和10 MeV的伽马射线成像。伽马射线成像对于测量放射治疗、医学诊断和工业三维伽马射线断层扫描期间的皮肤剂量非常重要,因为这需要深度穿透。鉴于双锥形光纤阵列与硅技术的兼容性以及材料的可延展性,有望被大规模生产用于制造超灵敏光子探测器和用于高能辐射的大面积柔性成像设备,在仿复眼学、光场成像、生物分子传感、光学放大器以及发光二极管等领域也有着潜在应用。
  • “悟空”巡天两年 获最精确高能电子宇宙射线能谱
    p  暗物质探测又有了新的进展。伦敦时间11月29日,《自然》杂志在线发表了中国科学家的一项研究成果:利用“悟空”卫星获得了世界上最精确的高能电子宇宙射线能谱,这将对判定能量低于1TeV(1TeV=1万亿电子伏特)的电子宇宙射线是否来自于暗物质起到关键作用,并有可能为暗物质的存在提供新证据。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/bf37f730-b28d-45d8-a92e-cb59ec24077d.jpg" title="2a8fb7ae86d94782b2b85138fe237d53_副本.jpg"//pp style="text-align: center "span style="font-family: 楷体, 楷体_GB2312, SimKai "在中国科学院紫金山天文台,“悟空”首席科学家、中科院紫金山天文台副台长常进在介绍暗物质粒子探测卫星的科学成果。/span/pp  暗物质问题是粒子物理和宇宙学的核心问题之一。暗物质不发光,不发出电磁波,从来没有被直接“看”到过。中科院院士吴岳良说,根据最新天文观测结果,宇宙是由27%的暗物质、68%的暗能量和5%的普通物质组成的。对于神秘的暗物质,科学家迫切想知道它到底是什么,对它们的研究很可能会引发科学上的革命。/pp  2015年12月17日,暗物质粒子探测卫星“悟空”发射成功,这是中科院空间科学战略先导专项的首发星。“悟空”卫星首席科学家、中科院紫金山天文台研究员常进说,“悟空”卫星是基于暗物质粒子湮灭或衰变的假设(即暗物质粒子的湮灭或衰变可以产生各种正、反粒子,这些粒子在太空中传播就成了宇宙射线和伽马射线的一部分)而工作的。“悟空”卫星便通过收集高能宇宙射线粒子和伽马射线光子,并分析其能谱和空间分布来寻找暗物质粒子存在的证据。/pp  “悟空”采用了紫金山天文台自主提出的分辨粒子种类的新探测技术方法,实现了对高能(5GeV—10TeV)电子、伽马射线的“经济适用型”观测。“悟空”在轨运行的前530天共采集了约28亿颗高能宇宙射线,其中包含约150万颗25GeV(1GeV=10亿电子伏特)以上的电子宇宙射线。基于这些数据,科研人员成功获取了目前国际上精度最高的电子宇宙射线探测结果。/pp  早在“悟空”上天之前,国际上已有一些空间探测器在尝试搜寻暗物质。但由于探测器规模或设计方案的限制,它们的探测能区相对较低,分辨率和粒子鉴别本领也有限。而“悟空”采用了创新的设计方案,既可探测低能区,也能探测高能区,是世界上第一台能在空间观测直至10TeV能量电子和伽马射线的仪器。/pp  现在“悟空”采集了大量高能电子宇宙射线,清晰地勾勒出电子宇宙射线在宽能量段的能谱行为,以高置信度观测到了能谱在TeV处的拐折行为,并且在1.4TeV能量处发现存在精细结构的迹象。/pp  中科院紫金山天文台研究员范一中说,电子能谱在高能区突然出现拐折,一定是有什么“源”影响了它。现在我们不能确定就是暗物质影响了它,但如果能够证明影响它的不是我们已知的物质,那就很有可能是暗物质了。/pp  据常进介绍,与以前的测量结果相比,“悟空”的能量测量范围比其他空间项目显著提高,打开了宇宙观测新窗口 “悟空”测量到的TeV电子的“纯净”程度最高,能谱的准确性更高 “悟空”首次直接测量到了电子宇宙射线能谱在1TeV处的拐折,其精确的下降行为对于判定部分电子宇宙射线是否来自于暗物质起着关键作用。当然,“悟空”的科学发现有待理论物理学家做进一步的分析阐释。/pp  对于这次暗物质探测上的进展,常进兴奋地说,电子宇宙射线能谱在高能段出现了“引人瞩目的现象”。中科院院长白春礼则认为,“悟空”成果的取得,表明中国科学家已经从自然科学前沿理论的学习者、继承者、围观者,逐渐走到了舞台中央,中国科学家长期以来在基础科学前沿的投入和付出终于有了回报。/p
  • 天津研制成新型国产通用型工业射线胶片
    技术人员使用粒度分布仪检测卤化银粒径技术人员使用卤素水分测定仪检测胶片  天津市研制成功新型国产通用型工业射线胶片Ⅳc,该胶片采用创新型设计,使胶片检测钢质材料壁厚范围从30mm扩大至55mm以上,接近或达到国际先进水平。适用于石化管道,航空航天及核电等项目的无损检测。  11月16日,天津美迪亚影像材料有限公司,天津世纪天感影像科技发展有限公司,中科院理化所共同完成新型国产通用型工业射线胶片Ⅳc并进行专家鉴定。  该新型射线胶片Ⅳc既适用于X射线,同时适用于高能射线和伽马射线无损检测,是新型国产通用型工业射线胶片。
  • 我国碳纳米X射线成像技术获进展
    成像装置图  日前,由中科院深圳先进技术研究院承担的国家科技支撑计划“基于碳纳米X射线发射源的CT系统研发”课题团队利用自主研发的碳纳米管薄膜,成功地获取首张X射线二维成像图。专家组认为这是我国在碳纳米管X射线源成像研究方面取得的突破性进展和成果。  据介绍,碳纳米管X射线源是近几年发展起来的,被认为是具有革命性的新型X射线源。碳纳米管X射线源创新性地用碳纳米管场发射阴极取代热阴极,从而使该X射线源具有可控发射、高时间分辨、低功耗且易于集成等诸多优势。这些优势将给X射线CT带来结构上的突破。其中,最具潜力的方向之一即基于碳纳米管X射线源阵列的静态扫描CT。该CT以电子式的扫描取代传统的机械转动来获取不同角度的图像,可消除机械转动带来的成像伪影,缩短扫描时间,从而减少病人的辐射剂量,提高CT扫描的图像精度。  经过近两年的技术攻关,中科院深圳先进院医工所劳特伯医学成像中心研究团队制备出性能优异的碳纳米管薄膜并研制了基于新光源的X射线成像系统。自主研发的碳纳米管薄膜发射电流密度已达到国际先进水平,研制的X射线源成像系统获得了首张X射线二维成像图。团队目前正在进一步提高阴极稳定性、优化射线源结构,以期开展CT的三维成像。
  • 探秘世界最强X射线激光器:比地球光源亮10亿倍
    在实验中,科学家将X射线聚焦于一个直径比人类头发丝还要细30倍的小点上,在1万亿分之一秒内将金属箔加热到200万摄氏度。   北京时间1月30日消息,据国外媒体报道,美国国家加速器实验室近日利用世界上最强大的X射线激光器--直线加速器相干光源激光器再现恒星内部强大的压力与高温情形。这种激光器的激光能量迸发可超过一个小国家全年的发电总量。  在实验中,科学家将X射线聚焦于一个直径比人类头发丝还要细30倍的小点上,在1万亿分之一秒内将金属箔加热到200万摄氏度。金属在如此短的时间内被熔化,其所产生的极度高温和高压状态,通常只有在恒星内部才会出现。  英国牛津大学物理系科学家萨姆-文科博士等人参与了直线加速器相干光源激光器实验。文科博士表示,“如果我们要想了解现存恒星内部的情形以及我们太阳系内外巨型行星中心的情形,那么制造高温、高密度的物质非常重要。直线加速器相干光源激光器是一台神奇的机器,我们已经在多个科学领域取得了重大发现,如材料科学、生物学等。”  直线加速器相干光源激光器的实验成果近日发表于《自然》杂志之上。直线加速器相干光源长约2公里,可以产生密集的X射线爆发,亮度超过地球上任何光源10亿倍。在高峰时,光脉冲的能量甚至比一些小国家一年的发电总量都要多。
  • 这台发射宇宙射线的神秘设备,能给西安古城墙做“CT”
    ◎ 采写丨科技日报记者 王迎霞 颉满斌◎ 策划丨赵英淑 滕继濮 林莉君吴春至今记得第一次做CT的情景。被推进舱里的那一刻,她紧张、害怕,担心查出问题,也担心射线对身体造成影响。多年过去,她再次经历了这样的不安,只不过,这次做CT的是古城墙。吴春是陕西省西安城墙管理委员会副主任,在她的积极联系和鼎力支持下,兰州大学核技术创新与产业化团队带着研发的国内首套塑闪宇宙射线缪子成像设备,给西安古城墙做了一次“CT”。“一定不要给城墙造成损伤,但也一定要知道‘五脏六腑’都有啥毛病。”吴春提出要求。这是她作为历史文化遗产守护者的底线。叫缪子的宇宙射线有着600多年历史的西安古城墙,也像人体一样,会随着时间的推移出现“健康”问题。北方夏季雨水较多,西安古城墙被雨水长时间浸泡后,部分墙面出现了快速裂缝和沉陷的现象。尽管城墙管委会一直都在高度关注城墙的各类安全问题,但有些损害在墙体内部,仅凭肉眼无法观测。如何检测古城墙内部情况,进而有针对性地展开修复工程,成为摆在西安城墙管委会面前的重要难题。西安城墙正北门—安远门在现代医学技术的加持下,要想掌握人体的病灶情况,我们可以使用B超、CT、核磁共振等各种影像仪器。想知道一座几十米高的古城墙的健康状况,该怎么办?“以往,我们用得最多的是钻孔法,就是通过在墙体上打孔取材的方式,来判断其内部情况。但这种勘探方式会直接破坏墙体,后期还需要对损坏部分进行修复。”吴春说。另一种是雷达监测法。雷达的频率越小,穿透程度便会越深,但其精度会相应变差,成像可能出现偏差;而如果探测太浅,又不能够满足古建筑、山脉等大型物体的探测深度需要。“钻孔法对城墙有损,而使用雷达法,基本上70%的情况都探不出来。”吴春做梦都想找到能够无损探测的方法。一个偶然的机会,她结识了兰州大学核技术创新与产业化团队。在给城墙南门的一面墙做三维激光扫描的过程中,吴春不由地感慨:“这激光扫描呀,如果能透视到里面就好了。省得我们苦苦找隐患点,又无计可施。”这时,操作扫描的老师说自己认识一位兰州大学教授,他能用一种宇宙射线对物体进行成像,或许可以帮到她。是物探,还是遥感?对方说好像都不是,是一种新方法,具体是什么,他也说不清。这下吴春来了兴致:“刚好58号马面(在城墙外侧依一定距离修建的凸出墩台,平面有长方形和半圆形,因外观狭长如马面,故名)出了一些问题,我联系试试!”他们说的宇宙射线,就是缪子。星际空间有很多高能粒子,其中最主要的是质子。高能的质子通过大气层时会发生核反应、电离等级联反应,从而一生二、二生四,从上往下越来越多,有点像烟花,也像射灯。到达海平面时,里面就富含各种组分,缪子只是其一,还有中子、β射线和γ射线等。它们都被称为“宇宙射线次级射线”。“根据估算,海平面上每平方米面积上每分钟会落下10000个缪子,也就是说,每秒钟就会有一个缪子穿过我们的手掌。”兰州大学核技术创新与产业化团队相关负责人打比方道,“它们就像下雨一样浇着我们,淋着我们,时时刻刻穿透我们的身体。”作为宇宙中的基本粒子之一,缪子的带电量为一个负电荷,质量为电子的207倍,它与物体发生相互作用的方式与电子类似。相比于中子、X射线和γ射线等,宇宙射线缪子具有更强的穿透能力。很多人都好奇这种神奇的物质,究竟是如何为我所用的。原来,科研人员在被测物体周边放置缪子探测器,根据缪子射线在物体中不同方向的穿透情况,搜集肉眼看不见的缪子计数,进而在计算机上进行分析,通过数据分析计算实现被测物体的三维成像。工作人员正在组装探测器“对于城墙这样十几米甚至几十米厚的物体来说,如果里面有个一米大的空洞,我们完全可以通过缪子成像技术检测到。”该团队成员刘军涛从团队2018年着手干这件事开始,他就跟着全程参与了缪子成像系统的研发。藏着秘密的“冰柜”2021年9月,兰州大学核科学与技术学院两位骨干教师,带着由两位工程师以及四五位学生组成的团队,向着古都西安出发。与他们同行的,是一个长1.6米形状酷似冰柜的仪器。“之所以看起来像一台冰柜,是因为我们给原来只能在实验室使用的探测仪器增设了金属外壳,使设备可以防潮、避光,方便移动。”刘军涛说。正在作业中的探测器刘军涛告诉吴春,仪器定型的时间不长,没有成熟商业产品那样漂亮的外观,但探测效果不受影响。吴春的话给他吃了很大一颗定心丸:“不管啥方法,只要是科学的,我们都欢迎!”这台貌不惊人的方疙瘩,隐藏着能给城墙看病的秘密。它包括多对探测器层和采集板,负责收集从宇宙中散落下来的缪子与信息转换;一个用于数据传输监测与存储的主机系统;一台移动电源,可确保仪器在野外运行时有稳定的供电;一个用于调控设备内温度和湿度的空调系统……缪子成像技术研究,目前国内也有少数同行团队在做。兰州大学核技术创新与产业化团队的不同之处在于,他们已经从实验室测试阶段走向了实际应用。2020年11月,该团队成功研发我国首套塑闪宇宙射线缪子成像系统,并顺利完成专家验收。“‘塑闪’是塑料闪烁体的简写。缪子通过塑料闪烁体后会产生光,有闪烁光就代表有缪子通过这个材料。我用光电转换的器件,可以把光信号转为电信号,看到脉冲后,表示已经捕捉到了缪子。”刘军涛说。采集缪子只是第一步。随后,他们不断完善软件模型,模拟成像场景,调整各类参数,最终将其带到西安古城墙下,开始“首秀”。缪子成像技术主要有两种成像原理,即角度散射成像和强度衰减成像。此次西安古城墙探测运用的便是强度衰减成像法。这一成像方法的原理是,缪子在物体内部穿行过程中会损失能量,而当其能量损失殆尽时便会被物体吸收,这将使探测到的缪子强度减小,所以宇宙射线缪子强度减小量取决于物体的厚度及材料密度。因此,在已知物体外部轮廓的情况下,通过探测缪子强度衰减,可以推导得到被探测物体的密度,从而对物体的内部结构与物质组成进行重构。“这就像人们利用X射线扫描身体,通过透视人体骨骼从而成像一样。”刘军涛介绍说,山体、建筑物、历史遗迹等大型物体的内部结构成像,用的也是这一原理。吴春给他们指定的测试段是城墙58号马面处。正如给人体做三维影像检查会采用放射源与探测器旋转多角度成像,想要给城墙做“CT”,也需要从不同角度采集多组数据。团队采取了环绕马面设置6个观测点的方案,放置探测器进行数据采集。正在作业中的探测器没想到,刚把机器安放好,又一波全国范围的新冠疫情席卷而来。那是2021年秋,实验面临的最大问题是,因为防疫政策需要,探测器不能按照计划不停地变换位置。团队只能因陋就简,顺势而为,及时改变了测量计划。终于在2022年春节前夕,他们将仪器带回兰州。让吴春吃惊的是,这个团队成功测试出了城墙中的低密度区域——也就是一个配电室。在测试团队事先并不知道的情况下,他们通过宇宙缪子成像技术清晰地呈现出它的位置、形状、大小。“这一高精度成像再次验证了使用缪子成像技术能够完成被测物体三维成像的可行性。”刘军涛表示。他们和58号马面科研从来无坦途。兰州大学核技术创新与产业化团队虽然首战告捷,但在实际探测过程中,还是遇到了不少困难。宇宙射线缪子成像技术利用的是不需要人工放射源产生的天然射线,具有无接触勘探、不受时空限制、不会对勘探物体造成任何伤害、绿色环保等特点,但它的使用受客观条件影响较大。“不像医院里使用人工射线源,环境比较单纯,我们的仪器往往放置在室外,得经历风吹日晒等自然环境的考验。”兰州大学2020级能源动力专业硕士研究生姚凯强说。在室外使用就会出现各种问题,比如电路短路,或者电压波动较大等,设备接收到的信号也会跳动不稳。整个墙体的勘探过程耗时将近4个月,为了应对各种环境的考验,团队对实验室内原来使用的平板探测器进行了升级与调整。姚凯强和另一名师兄专门留在了西安,隔两天就得去现场调整仪器。另外,后期也需要处理那些不稳定环境下接收到的杂乱数据。与数据收集相比,更大的挑战在于开发反演成像的算法平台。“我们在进行文物探测的过程中总会遇到一个问题,就是测量到的数据比待解的未知量少很多。比如有两个变量一个方程的情况下,方程的解是无穷多的。”对2021级核技术专业硕士研究生刘国睿来说,这就需要她和小伙伴在庞杂的结果中挑选出能够同时满足多个方程的模型,选择最合理的结果。来西安之前,刘国睿、姚凯强等人首先根据描述对城墙进行了可行性分析,几何模型比较简单,仅仅知道城墙的长宽高,里面可能有什么情况。在仿真中,他们需要先把城墙的模型大致建好,再进行正演计算,用正演的结果去反演成像。“相当于我们先算一个可能得到的测量结果,然后用这个测量结果做反演,看能不能给里面的防空洞成出一个三维图像来。”刘国睿说。确定做58号马面后,他们把模型更加细化了。初期建的模型特别简单,就是一个矩形的堆,后来又加上马面,对尺寸进行调整。激光测绘把整个城墙的轮廓描绘清楚之后,他们决定换模型,尽管那时6个探测点都已确定。最后一次模拟时,探测点位早已敲定,团队更新了非常细化的城墙轮廓,决定重新建模再做一次。根据优质成像的分辨率,他们在马面里假设了一个防空洞,看能不能成像。另一个难题是遇到密度异常部分时的演算。刘国睿念大三时就加入该课题组学习,后继续在此攻读研究生,在她看来,整体测算并不困难,但密度异常体与周边部分衔接地带,算起来有难度。“这些地方的密度解出来可能会带有系统偏差。”她说。最终的研究结果就是,这次试验精度可以对城墙内部一个长宽高均为1米的防空洞成像出来。“我们还测到马面北面比较空虚,当时比较质疑这个结果,为此做了好多验证。”刘国睿强调,他们必须排除是不是自己技术方面的原因,比如数据处理不当、测量问题之类。排除过后,得出结论——58号马面北墙附近的夯土密度确实较低。回想起这一幕,这个性格沉静的女孩,终于有了笑意。追寻“中国方案” 兰州大学师生付出的所有努力,吴春都看在眼里。实际上,58号马面的情况,她早有掌握。她就想看看这宇宙射线缪子成像技术,到底行不行。刘国睿在分析马面数据的过程中发现,砖和夯土之间好像有空腔,因为不确定,就反复向吴春求证。“小姑娘问,里面是不是有空腔?为什么会有?是真的有,还是我们收集的数据不够、计算方法不对而导致的偏差?我当时就欣慰地笑了。”但吴春并没有挑明,而是让她继续往下做。后来的成果报告会上,吴春正式向有关部门汇报称,兰州大学核技术创新与产业化团队的缪子成像结果,跟西安城墙管委会掌握的情况基本吻合。从此,她对他们更加信任了。这份信任,源于科研人员对自身的严格要求。在所有人看来,大胆质疑、小心求证是科学精神最重要的品格之一,他们恪守这一理念,初心不改。“为什么是这个,而不是那个?哪一步出了错,都无法导出正确结果。”刘军涛深谙其研究之复杂,意义之深远。刘军涛给学生们讲解缪子探测系统如今,团队已经扩展至30余人,每个人分工明确。导师的悉心培养和团队的互帮互助,让青年科研人员受益匪浅。在读研二的刘国睿,已在物理学经典期刊上发表研究论文,内容便是针对宇宙射线缪子技术在实地应用中出现的问题,并提出探索性的解决方案。每一位成员的心里,都有浩瀚宇宙。中华文明上下五千年,源远流长,在悠悠岁月中厚重沉淀。当前,随着科技已经成为考古发展新动力,他们在完成西安城墙成像工作的过程中,逐渐感受到缪子成像技术未来在科技考古领域的广阔前景。“这项技术以后在大型遗迹考古中一定会发挥作用,我们也想在科技考古领域做成标杆性的亮点。”刘军涛告诉记者,今年,敦煌研究院也与团队接触并计划建立合作关系,他们将在深入探测石窟内部结构的工作中共同努力。与不断发展的成像技术相辅相成的,是持续更新的应用场景。一直以来,缪子成像技术应用的瓶颈主要在于探测系统现场应用场景的适应性、成本控制等。在团队不断优化完善下,这项技术也从考古探测发展到了地质勘查、矿产勘探、集装箱检测等更广阔的空间。前段时间,团队又有了新思路:是否可以使用缪子成像技术探测青藏高原的冰川厚度,明晰岩石边界?对他们来说,制作轻量化、耐低温的缪子成像仪器,正在成为新的探索方向。值得一提的是,从仪器组装所需要的材料等硬件到算法系统软件,兰州大学核技术创新与产业化团队都致力于将其本土化。是啊,要想获得“中国方案”、作出“中国贡献”,必须实现技术国产化,这是每位科研人员肩负的重大使命。刘军涛欣喜地透露,现在团队这项技术的国产化率已经达到了95%左右。今年,一直致力于文物保护高质量发展的吴春,又与兰州大学团队取得了联系,看实验能否深入开展。她寄希望于下一步的合作能够证实这种技术更安全、更准确,同时辅以地质勘查,为墙体的修缮工程提供可靠参考,使得预防性保护更具前瞻性。“经过这样完整的检验之后,我们希望这种技术能够得到广泛应用。可以相信,科技将助力中国考古迎来‘黄金时代’。”吴春说。考古科技化,技术国产化,归根到底都是高水平科技自立自强。这是一条遥远而艰辛的路。每个人都渴望化身滴水,汇入时代的海河,信念灼灼。科技日报•深瞳工作室出品文中图片均由受访者提供微信编辑丨宋慈审核丨朱丽终审丨王郁
  • 精工电子纳米科技X射线荧光分析仪全新上市
    精工电子纳米科技有限公司开发生产可在短时间内对微小区域中微量有害金属进行高灵敏度测量的能量色散型X射线荧光分析仪[SEA6000VX]于近期全新上市。 能量色散型X射线荧光分析仪 SEA6000VX  X射线荧光分析仪,因其便捷的操作性和分析的快速性,在对应RoHS指令等环境管制中被大量导入到零件及产品的入库出货检查中。除了RoHS指令以外,随着ELV指令、玩具规范以及RPF*1等等的无铅化、无卤化标准的建立,可以预见对于测量环境管制物质的需求将会日益增加。但是,为了进一步提高测量的效率,并对应复杂的测量需求,现有机型已经很难对应线路板等复合部件中无法拆解的特定微小区域的测量,以及线路板整体有害物质的管理等的需求,因此开发了这款能够满足这些需要的最新机型。   [SEA6000VX]大幅提升了灵敏度,实现了对微小区域的高速测量。由于配备了本公司自行研发设计的无需液氮高计数率检测器Vortex及全新设计的X射线源,更是得到了比以往机型高出10倍以上的灵敏度。对于原先在5mm~10mm左右比较大的分析范围内进行的微量有害物质测量,现在即使在0.5mm~1.2mm左右的微小区域内也能以相同或者更短的时间进行测量。   通过提高测量微小区域的灵敏度以及搭载高速电动平台,实现高速二维扫描。例如,对100mm x 100mm的实装线路板的高速扫描中,仅需2分钟左右就能检测出其中亚毫米大小的共晶焊锡。如果增加扫描的次数,大约花30分钟左右的时间就可以检测出RoHS指令中的规定值为1,000ppm级的铅含量,从而可以判断整个实装线路板中是否符合无铅制程的规范。   此外,[SEA6000VX]还配备了决定测量位置观测的高清晰度宽视野光学系统,以及高精度的X-Y平台,进一步提高了操作的便利性及测量的稳定性。   精工电子纳米科技有限公司针对有害物质测量所开发生产的X射线荧光分析仪中,既有的下方照射方式的SEA1000A、SEA1200VX等,加上此次全新上市的上方照射型「SEA6000VX」,可广泛对应不同的测量对象。   【SEA6000VX的主要特点】   1. 高速扫描测量   通过结合了大幅提高的微小区域X射线荧光分析灵敏度和高速电动平台,能够快速获得二维扫描图像。特别是强化了对线路板中铅的扫描,配备了铅扫描专用滤波器。让1,000ppm以下无铅焊锡中的铅扫描变成简单可行。   2. 宽视野高清晰度光学系统   可获得250mm x 200mm的20μm以下高清晰度的光学影像。从该光学影像可以直接精确指定测量位置,让操作性得到飞跃般的改善。此外,该光学影像可以和通过高速扫描获得的扫描图像进行重叠,可在大范围内进行高精度分析。   3. 微小区域中微量金属的高速测量   实现了高密度微小X射线束以及配备的高计数率检测器,加上充分考虑到X射线荧光检测效率的设计,实现了高灵敏度化。微小区域中微量金属或薄膜都可在短时间内测量。即使是1mm x 1mm左右的微小区域也可以以100秒左右的速度测量其中的有害物质。   4. 无需液氮的高计数率检测器   作为标准配置本公司独有的无需液氮的高计数率检测器,省去了繁琐的液氮补给程序。仅需数分钟的开机时间,同时电子冷却的规格具备了优异的可信性。运用的技术可以减少在液氮制造、搬运时产生的二氧化碳,以及提高测量速度后节省下的电力等,是一款考虑到环保问题的先进仪器。   5. 微小区域的镀层厚度测量   可在十秒左右的时间完成对0.2mm x 0.2mm面积中Au/Ni/Cu(金/镍/铜)等薄膜多镀层的镀层厚度测量。此外,也可对无铅焊锡镀层或化学镍镀层中含有的微量铅进行分析。   【上市日期】   2008年6月17日   【后注】   *1 RPF   Refuse Paper & Plastic Fuel的简称。以难以再次回收利用的旧纸、废弃塑料等作为主要原料的固体燃料。
  • 阔别四年,终于再见面了!第三届射线成像新技术及应用研讨会
    第三届射线成像新技术及应用研讨会将于 2022 年 11 月 2 - 11 月 4 日在上海举行,射线成像技术应用与发展在军用和民用领域发挥了关键作用,随着技术的发展,传统的射线成像方法不能满足现有的需求,射线成像新技术通过新颖的物理检测原理、先进的探测技术、新的射线成像方法、图像重建和定量分析相结合,提高了成像质量和效率。前沿射线成像技术被广泛地应用于国防、生物医学、材料科学等领域。大会每两年举办一届,众星联恒作为成像大会的老朋友,一直期待着第三届的到来。本次会议我们将依旧作为赞助商参与。同时,我司技术总监将于在大会上分享关于实验室 X 射线相衬成像技术核心调制和探测器件的技术分析,我们诚挚邀请各位专家学者莅临大会和我司展位交流洽谈,期待与您不见不散!壹 /会议时间地点时间:2022 年 11 月 2 日—11 月 4 日(11 月 2 日报到)地点:上海大华虹桥假日酒店(上海市闵行区七莘路 3555 号)贰 /会议议题 X 射线光源和探测器先进 X 射线光源研究成像探测器技术时间、空间、能谱分辨探测技术探测器标定其它相关技术X 射线成像方法及技术同步辐射 X 射线成像方法及技术X 射线自由电子激光成像方法及技术实验室 X 射线光源成像方法及技术人工智能在射线成像中的应用中子、质子及伽马射线成像方法及技术中子成像方法及技术质子成像方法及技术伽马射线成像方法及技术其它相关射线成像技术(电子、μ 子等)应用研究生物和医学应用安全检查无损检测材料科学辐射计量ICF、深空探测新型 CT 技术应用土壤微结构与功能电化学其它应用叁 /会议日程
  • 奥影科普| 工业CT的密度/对比度分辨率
    在现代检测领域,精度是非常重要的技术指标。具体到工业CT设备,其精度通常指代的有三个指标:空间分辨率、密度分辨率、测量误差。关于空间分辨率的影响因素、计算方式在此前的推文中已经做了介绍,本篇,我们就来详细介绍工业CT的「密度分辨率」。一、密度分辨率密度分辨率(Contrast Resolution),又称对比度分辨率或低对比度分辨率,是CT系统区分不同物质密度差异的能力。它定量地表示为影像中能显示的最小密度差别,通常以百分比(%)表示。例如,当密度分辨率为2%时,意味着两种物质的密度差异达到或超过2%时,CT图像就能清晰地区分它们。二、工业CT密度分辨率的原理我们知道,当X射线穿过不同密度的物质时,会发生不同程度的衰减。CT系统正是通过收集测量这些衰减信号,并利用重建算法将其转换为图像。密度分辨率的高低取决于系统对这些微小衰减差异的敏感度和区分能力。在工业CT中,高质量的图像可达优于1%甚至更小的密度分辨率,使得工业CT能够发现更细微的缺陷,提高检测的准确性和可靠性。这意味着工业CT能够准确地区分材料内部的微小密度变化,如气孔、裂纹、夹杂等缺陷,为质量控制和缺陷检测提供强有力的支持。 三、影响密度分辨率的因素密度分辨率的高低取决于多个因素,包括:噪声和信噪比噪声是扫描均匀物质时,其CT值的标准偏差。噪声使图像呈颗粒性,直接影响密度分辨率,尤其表现在低密度组织的可见度上。信噪比由探测器的效率和X射线剂量决定。效率越高、剂量越大,则信噪比越高,相对降低噪声,密度分辨率将提高。被检物体大小理论上,被检物体的尺寸大小并不会改变CT系统的密度分辨率(分辨能力),但是尺寸大小会影响到射线的衰减,这就在一定程度上会造成探测器在侦测信号方面存在差异,比如信噪比波动。当被检物体的几何尺寸较大时,这是因为较大的物体能够吸收更多的X射线光子,从而产生更明显的信号差异,使得不同密度的组织或物质更容易被区分开来。反之,如果被检物体较小,其吸收的X射线光子数相对较少,信号差异可能不够明显,导致图像在对比度上差异不明显。另外高密度物质对射线吸收后会造成射束硬化、金属伪影等干扰,同样也会影响设备的密度分辨力。 探测器性能探测器的灵敏度、动态范围等性能参数对密度分辨率也有重要影响。高性能的探测器能够捕捉更多的细节信息,提高图像的密度分辨率。X射线剂量X射线源的能量直接影响其穿透能力和散射程度。选择合适的X射线源的剂量,可以在保证穿透深度的同时,减少散射和衍射对对比度分辨率的影响。 四、密度分辨率测试密度分辨率的检测方法多种多样,在国标《GB/T 35386-2017 无损检测 工业计算机层析成像(CT)检测用密度分辨力测试卡》文件中,提供了空气间隙卡、固体密度差试样、液体密度差试样和圆盘卡四种测试卡。这些测试卡通过设计具有不同密度的材料组合,来模拟实际检测中可能遇到的密度差异。例如:固体密度差试样是在均制的圆柱形刚性基体材料(一般为钢、铝或塑料)的特定部位,按密度大小嵌入的一系列与基体不同的密度块。通过扫描这些试样,可以评估CT系统对固体材料密度差异的分辨能力。液体密度差试样在纯水的特定范围内加入可溶性介质(一般选用氯化钠),使介质溶液和纯水形成一定的密度差。
  • 科学家首次实现大视场龙虾眼X射线成像观测
    近日,中国科学院空间新技术试验卫星SATech-01的首个正式发表的成果在线刊出。利用卫星上搭载的EP-WXT探路者“龙虾眼天文成像仪”莱娅( LEIA,图1)的在轨测试首光,科学家成功获得了一批天体的真实大视场X射线实测图像和能谱。这是国际上首次获得并公开发布的大视场X射线聚焦成像观测结果。该成果标志着我国率先掌握了X射线龙虾眼聚焦成像技术,并实现了在轨实验验证。首批结果以《首次龙虾眼聚焦望远镜的大视场X射线在轨观测》(First Wide Field-ofview X-Ray Observations by a Lobster-eye Focusing Telescope in Orbit)为题,发表在《天体物理学快报》(Astrophysical Journal Letter)上。传统的X射线聚焦望远镜观测视场很小,一般在1度以下。40多年前,国际上提出了微孔龙虾眼成像的概念,可以实现大视场的X射线聚焦成像。尽管光子接收面积远小于传统的望远镜,龙虾眼望远镜具有大观测视场的优势,可以对一个大的天区范围内天体的活动同时进行监测,是X射线时域天文学追求的下一代设备。然而,由于研制困难,这一目标长期未能实现。近二十年多来,国际上几个空间科学机构及实验室均在开展微孔龙虾眼技术的研发。以中科院国家天文台张臣和凌志兴为带头人的团队自2011年开展了关于这一技术的研发工作,通过自主创新,掌握了该技术的原理和应用,具有完全自主知识产权。在国家自然科学基金和中科院天文联合基金支持下,国家天文台与北方夜视集团有限公司合作,突破关键技术,研制出指标国际领先的微孔龙虾眼器件。在中科院空间科学先导专项的支持下,国家天文台研制出龙虾眼聚焦镜,并由中科院上海技术物理研究所集成研制出完整的宽视场X射线望远镜,作为中科院爱因斯坦探针(EP)卫星WXT载荷的实验模块之一。该设备的关键器件,包括龙虾眼聚焦镜和由大阵列CMOS传感器组成的焦面探测器,均为我国自主研发。这也是我国科学家首次将创新性的CMOS应用于空间X射线天文探测。7月27日,该实验模块(后命名为莱娅)搭载由中科院微小卫星创新研究院抓总研制的空间新技术试验卫星(SATech-01)发射升空。作为EP卫星WXT探路者,莱娅的观测视场可达340平方度(18.6度x18.6度),是国际上首个宽视场X射线聚焦成像望远镜,其视场大小比国际上传统的聚焦望远镜提高了至少100倍。国家天文台EP卫星科学中心利用莱娅的在轨开机测试观测,首次获得了一批天体的大视场X射线实测图像和能谱。图2展示了莱娅的首光图像——对银河系中心天区单次观测获得的X射线图像(左图)和地面仿真图像(右图)。结果显示,单次(约13分钟)的观测能够同时探测到多个方向上的X射线源,包含黑洞和中子星X射线双星。同时,科研人员从数据中可获得这些天体X射线辐射强度随时间变化的信息以及天体的X射线能谱。观测结果与仿真结果高度一致。莱娅创新的、独一无二的宽视场聚焦成像能力及其所验证的龙虾眼望远镜的广阔科学潜力,引起了国际同行关注。在轨测试完成后,莱娅迄今已开展了三个多月的在轨定标实验和部分科学观测,并开始取得初步科学成果。例如,莱娅发现了一例恒星的超级X射线耀发,并引导了NASA的SWIFT和NICER空间望远镜进行跟踪观测;探测到迄今最亮的伽马射线暴的余辉辐射;完成了1/2全天X射线天图的测绘。未来,莱娅将开展常规科学观测,预计每半年可获取一次完整的全天X射线天图,发现新的X射线暂现天体和爆发天体,并将开展引力波X射线对应体的搜寻。中科院空间新技术试验卫星(SATech-01)的目标是通过快速发射验证空间新材料、新器件、新技术,助力空间科技创新;孵化出具有重大科学意义、面向国家战略需求的空间探测仪器和项目。卫星平台及载荷的经费均为自筹。莱娅的这一成果也表明空间新技术试验卫星达到了预期目标。图1.中科院空间新技术试验卫星(SATech-01)和搭载的莱娅龙虾眼望远镜,搭乘力箭1号火箭于7月27日在酒泉发射(图片来源中科院)。图2.莱娅对银河系中心天区单次观测获得的X射线图像(左图)和地面仿真图像(右图),左右图的观测时长同为798s,能段为0.5-4 keV,视场18.6度x18.6度。(左图中标记为4U 1826-24的源是捕捉到的一个变亮的中子星X射线双星)。
  • 世界首创具备AI功能的岛津高精度骨密度检测系统
    可通过深度学习缩短作业时间,实现高效利用的X射线TV系统,检测更加轻松! “SONIALVISION G4 LX edition”X射线TV系统 岛津制作所开发出了一种在骨质疏松症的诊断及经过观察、治疗过程等中测定骨密度时,通过基于AI技术的图像处理,高精度迅速提供X射线图像的新功能,并于近日在日本发售了可作为选配件引进该功能的X射线TV系统“ONIALVISION G4 LX edition”。新产品同时具备可大幅度降低射线照射量的图像处理功能。 <X射线TV系统>除可通过X射线透视(动画图)实时观察骨头和肺部、消化管等体内的状态之外,还可进行X射线摄影(静止图像),被内科、外科、整形外科、泌尿器科等诊疗科广泛采用,同时也在健康诊断方面长期使用的仪器。“SONIAVISION G4”系列自2013年发售以来,已在国内外售出了1000台以上。是唯一一套能够测定骨密度的X射线TV系统,本次的新产品可实现设备更高效的使用。据称日本的骨质疏松症患者人数约有1300万人。尤其是老年女性居多,从50岁前后起,由于激素平衡发生变化,骨量减少,很容易引起骨折,而因为骨折需要护理的情况也为数不少。随着社会上老龄化的推进,患者数量也呈增加倾向。2014年,我公司采用骨密度测定法中被评为精度最高的DXA法(使用2种X射线的测定法),在世界上第一个实现了基于X射线TV系统的骨密度测定。但是,测定部位股骨头的X射线图像需要“区域分割※(在图像上提取骨头区域的作业)”,这就需要一定的经验和作业时间。于是,我公司采用深度学习技术,开发了可瞬时完成熟练操作员工作业内容的“AI辅助功能”。X射线摄影完成后,可立即显示出高精度分割图像,进行骨密度测定(世界首创)。另外,新产品标配可实现大幅度减少被辐射的最新锐数字图像处理技术“SCORE PRO Advance”。虽然减少X射线照射量会使画质降低,但能够实时降噪,提升低剂量下图像的辨识度。通过此技术,可将射线照射量减到了以前的一半以下(与我公司产品比较)。而且,为了保证设备的高效运用,还追加了可将从X射线TV系统的X射线管(X射线照射部)到检测器(X射线受光部)之间的距离拉伸至最大180cm的功能。这样一来,也可以应对以前用被称为普通摄影系统的X射线摄影(静止图像)专用机进行的胸部摄影检查。 ※由于是根据骨头与其他部位X射线的吸收率不同来测定骨密度,因此,需要有准确提取骨头区域的作业。如果骨密度低,在低剂量X射线摄影中就很难形成清晰的图像。
  • 2022年度X射线衍射技术及应用进展网络会即将召开,日程公布
    X射线衍射技术是通过对物质进行X射线衍射,分析其衍射图谱,获得物质的成分、内部原子或分子的结构或形态等信息的研究手段。物质结构分析尽管可以采用中子衍射、红外光谱、穆斯堡尔谱等方法,但X射线衍射技术是最有效、应用最为广泛的手段,应用范围已渗透到物理、化学、材料科学以及各种工程技术科学中。为促进相关人员深入了解X射线衍射技术发展现状,掌握相关应用知识,仪器信息网将于2022年7月15日召开“X射线衍射技术及应用进展”网络会议,邀请业内技术和应用专家,聚焦X射线衍射前沿技术理论、分析方法,以及材料科学、药物研发等热点应用领域分享报告。会议日程2022年7月15日“X射线衍射技术及应用进展”网络会时间报告题目报告嘉宾09:30--10:00Rietveld结构精修原理及应用程国峰 中国科学院上海硅酸盐研究所 研究员10:00--10:30安东帕全新的自动化多功能粉末X射线仪:XRDynamic 500李经理 安东帕(上海)商贸有限公司 产品经理10:30--11:00粉末XRD数据分析---物相鉴定徐春华 国际衍射数据中心 中国区首席代表11:00--11:30二维衍射技术的最新进展杨宁 布鲁克(北京)科技有限公司 XRD应用经理11:30--12:00X射线衍射技术在药物晶型研究方面的应用周丽娜 天津大学化工学院国家工业结晶与工程技术研究中心 高级工程师11:30--14:00午休14:00--14:30毛细管聚焦的微束X射线衍射技术及其应用研究程琳 北京师范大学 教授14:30--15:00X射线衍射技术多功能化在不同衍射系统上的发展王林 马尔文帕纳科 中国区XRD产品经理15:00--15:30X射线衍射仪使用要点分享余娜 上海科技大学 高级工程师15:30--16:00赛默飞实时XRD技术及原位应用进展居威材 赛默飞世尔科技(中国)有限公司 资深应用专家16:00--16:30如何利用X射线衍射技术开展金属材料晶体学取向分析?董学光 中铝材料应用研究院有限公司 试验中心主任助理/高级工程师16:30--17:00激光驱动的超快X/γ射线辐射及应用陈黎明 上海交通大学 教授报告嘉宾及报告内容(按报告时间排序)报告嘉宾:程国峰 中国科学院上海硅酸盐研究所 研究员报告题目:《Rietveld结构精修原理及应用》报告摘要:目前对材料结构演化的表征普遍采用离位手段,这是一种对撤除温度、压力等诱导因素后的样品进行的表征,它虽具有借鉴意义,但只能给出材料的终态结构,而无法获得真实变化过程的准确信息。原位X射线衍射技术可以得到温度、气氛等对材料晶体结构影响的实时动态信息,该方法可以直观地反映结构的变化过程,是目前最先进的结构相变及结构演化的研究手段。本报告将结合具体实例,阐述原位衍射技术原理及其在材料研究中的应用。报告嘉宾:李经理 安东帕(上海)商贸有限公司 产品经理报告题目:《安东帕全新的自动化多功能粉末X射线仪:XRDynamic 500》报告摘要:本次报告介绍安东帕全新的自动化多功能粉末X射线仪- XRDynamic 500。这是一款多功能粉末衍射仪,提供全自动的和真空的光学器件以及自动化仪器和样品校准程序,结合了无与伦比的数据质量和最高的测试效率,使初学者和专家都可以轻松快速地收集高质量地XRD数据。报告嘉宾:徐春华 国际衍射数据中心 中国区首席代表报告题目:《粉末XRD数据分析---物相鉴定》报告摘要:物相鉴定是粉末XRD数据分析的基本分析之一,物相鉴定分析必须调用比对标准的衍射卡片即PDF卡片。国际衍射数据中心ICDD致力于收集、编辑、出版、发行PDF卡片已有80多年的历史,主要用于材料的物相鉴定和定量分析。本报告主要围绕粉末XRD数据的物相鉴定的原理、分析方法、数据质量等方面讲解。报告嘉宾:杨宁 布鲁克(北京)科技有限公司 XRD应用经理报告题目:《二维衍射技术的最新进展》报告摘要:二维衍射功能是衍射仪发展的趋势之一,也极大的促进了很多应用领域的快速发展。二维衍射的普及和发展得益于近些年二维探测器以及光源技术的发展。 本报告将探讨二维衍射技术的最新硬件和软件技术,并介绍二维衍射应用的最新成果和实例。报告嘉宾:周丽娜 天津大学化工学院国家工业结晶与工程技术研究中心 高级工程师报告题目:《X射线衍射技术在药物晶型研究方面的应用》报告摘要:近年来,关于药品晶型的研究被越来越多的药物研发者所重视。在药物晶型开发过程中,x射线衍射技术作为一种重要的晶型分析手段常被用于药物晶型的定性定量分析,特别是在对于药物稳定性的考查、多晶型及共晶筛选、结晶度分析,不同晶型定量分析等方面都有广泛的应用。报告嘉宾:程琳 北京师范大学 教授报告题目:《毛细管聚焦的微束X射线衍射技术及其应用研究》报告摘要:本报告介绍本实验室研制的两种毛细管聚焦的微束X射线衍射仪的特点及其应用研究。第一种微束X射线衍射仪是利用毛细管聚焦的50W小功率的X射线衍射仪的特点及其应用研究,分析样品的微区直径在30微米~100微米;第二种是利用毛细管微会聚透镜的特点,建立一种自适应束斑的X射线衍射分析。实现分析样品的焦斑直径在0.5mm~5mm的点光源的X射线衍射分析,既能实现0.5mm的微区分析,也能实现大面积的常规分析,并介绍这种自适应束斑的X射线衍射分析的应用研究。报告嘉宾:王林 马尔文帕纳科 中国区XRD产品经理报告题目:《X射线衍射技术多功能化在不同衍射系统上的发展》报告摘要:在X射线衍射分析中,不同靶材的特征辐射会激发与之对应的某些元素极强的荧光效应,引起测试数据整体背景偏高,弱衍射峰检测灵敏度降低,干扰样品的精确分析。目前,马尔文帕纳科在锐影衍射仪上搭建了独特的高清光路,以准单色化入射光路模块BBHD或聚焦光反射镜模块配合全新的全波长能量色散检测器1Der,为用户提供全元素无荧光干扰的高质量衍射数据。高清光路技术适用于衍射仪中常用的铜、钴、钼、银等靶材,用户可根据样品情况自由选择靶材,获得最佳可能测试结果。台式衍射仪受体积限制,传统上仅用于常规粉末衍射测试。马尔文帕纳科新近发布了台式衍射仪Aeris上基于PreFIX预校准概念设计的薄膜掠入射附件和透射衍射附件,将样品测试范围拓展至多晶薄膜、高分子、药物等受困于择优取向的轻吸收样品,为空间受限的用户提供更多选择。报告嘉宾:余娜 上海科技大学 高级工程师报告题目:《X射线衍射仪使用要点分享》报告摘要:第一部分:实验室仪器介绍;第二部分:具体举例介绍实验过程中学生容易遇到问题的地方以及对应的解决方法;第三部分:介绍上科大XRD实验室原位测试相关的工作。报告嘉宾:居威材 赛默飞世尔科技(中国)有限公司 资深应用专家报告题目:《赛默飞实时XRD技术及原位应用进展》报告摘要:粉末X射线衍射 (XRD) 是材料实验室常用的现代分析技术,能够准确获得详细的材料结构和物相信息。作为通用型仪器,XRD的常规的功能以及应用已经逐渐在高校、研究机构以及一些工业用户中普及,近年来越来越多的用户关注到原位应用。 本报告将介绍赛默飞的实时XRD技术,及其在原位测试方面应用进展。报告嘉宾:董学光 中铝材料应用研究院有限公司 试验中心主任助理/高级工程师报告题目:《如何利用X射线衍射技术开展金属材料晶体学取向分析?》报告摘要:1. 金属材料晶体学取向-织构概念? 2. 为什么要研究织构? 3. 有哪些方法能够测试织构,优势、劣势如何? 4. X射线织构计算最底层的“代码”是什么? 5. 面心立方金属中常见的织构有哪些?有怎样的演化规律? 6. 什么是X射线衍射原位拉伸?其技术怎样?报告嘉宾:陈黎明 上海交通大学 教授报告题目:《激光驱动的超快X/γ射线辐射及应用》报告摘要:X射线光源具有很高的时空分辨能力,对物质的瞬态结构和超快动力学过程研究意义重大。目前由于电子的库伦效应,激发辐射源的电子束密度较小,导致要么是连续的辐射(X光管)不能满足超快诊断的要求,要么辐射装置体积庞大、造价昂贵(如同步辐射),加上较长的泵浦-探针同步精度制约了其在超快领域的应用。飞秒激光驱动的台面化超快X射线源具有超亮、极短、精确同步等特征,是传统光源在超快领域的有力补充,成为领域重要的研究热点。我们长期致力于激光超快X射线领域的国际难点问题研究,揭示了制约辐射源品质提升的根源,在X射线产生效率、信噪比等方面突破了多项瓶颈,创造性地提出了多项新的物理机制(概念)并通过实验予以验证,从而开拓了系列具有重要应用价值的超强极短X射线光源,源品质参数引起了领域广泛关注并已经应用于国家重大科技基础设施建设之中。其在超快成像、超快衍射中的飞秒时间分辨能力,已经得到实验了验证。这些成果和用户装置,可广泛应用于物质的瞬态结构和超快动力学研究之中。参会方式(手机电脑均可听会)1、官网免费报名(点击此处链接或扫描下方二维码,报名听会);2、报名成功,通过审核后您将收到通知;3、会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。扫一扫,进入会议页面免费报名听会
  • 高精密度稻米重金属快速检测仪在长沙投用
    这台设备像给大米进行一次X射线的透视,3分钟之内就能查出被检大米是否重金属超标。  大米是生活必需品,其是否卫生、有没有被重金属污染,是消费者关心的问题。记者昨日在长沙市质量技术监督局了解到,高精密度稻米中重金属快速检测仪今年在长沙投用。这台设备像给大米进行一次X射线的透视,3分钟之内就能查出被&ldquo 体检&rdquo 大米是否重金属超标,相比传统的标准方法两天检测出结果提速了近千倍,极大地便利了粮食质量安全的监测。  更精确:打一&ldquo 枪&rdquo 测超标情况  这台检测仪器由湖南省食品安全生产工程技术研究中心主任彭新凯发明,并联合一家检测技术公司研发,据称是世界上首台能运用多晶X射线衍射技术开发的一款食品重金属快速检测仪,去年12月获国家专利。  记者昨日在实验室看到,这台白色检测仪外型像一台小型微波炉,只有55厘米长、33厘米宽和44厘米高。检测仪的正面是一个显示窗口,像电脑的显示屏。  对于这台检测仪的检测原理,彭新凯形象地解释为:用X射线给大米打了一&ldquo 枪&rdquo ,这一&ldquo 枪&rdquo 直接激发稻谷的重金属原子核,激发了M、K、L等壳层能量波的跃迁。仪器对跃迁产生的荧光光谱进行对应分析,从而判断被检大米含有何种重金属,&ldquo 就像美国登月车用X射线能量射手来检测月球含有哪种元素的原理一样,但仪器检出限由10-3mg/Kg提高到10-8mg/Kg,检测的精度提高了十数万倍,测试的结果符合GB/T5009.15-2003等标准和规定的要求。&rdquo   更便捷:检测步骤减少了,提速近千倍  &ldquo 这种检测仪还有更快速、无污染、零耗材的优点。&rdquo 彭新凯介绍说,根据通用的检测标准要求,农民种植的稻谷进行检测需要送样到市级及以上检测中心才能受检。接受样品之后,检测人员需要进行8个小时以上的浸泡处理,再进行相关的检测,&ldquo 整个流程做完有11个程序,需要两天的时间。而这种仪器是无损检测,操作简便,检测成本低,只要3分钟定性,12分钟定量。无需前处理,轻轻松松就完成。&rdquo   记者了解到,在今年的收粮工作中,望城区新康乡的万亩试验田基地和长株潭的试验田基地都已用上了这种检测仪。这种检测设备只有35公斤重,对于环境没有特殊要求,能在田间地头运用,适合收购现场和鉴定抽查使用,将来还可以用于环境检测、制药企业的产品检测、商超集市等食品检测机构进行运用,&ldquo 在全国的这些机构进行运用,实现产业化量产之后,未来将形成一个产值达十数亿元的检测装备市场。&rdquo 国家粮食局标准质量中心今年在多地进行了测试验证,并组织专家评审之后认为,这种方式可以满足稻米中镉含量快速检测的需要,建议推广使用。  操作简单  记者昨日在实验室采访时,工作人员现场演示了一次仪器的操作过程。  1 将一个5厘米直径的塑料容器里装满约10克稻谷,将容器放在检测仪上方一洞口里,旋紧、盖上。  2 在屏幕上设定测试时间200秒,启动扫描。约3分钟后,显示窗口出现波状图案。  3 完成检测后显示屏上显示检测报告为&ldquo 镉(Cd)的标准要求为:小于等于0.2mg/kg,测试值为0.023mg/kg,测试结果:passed&rdquo 。注:以上稿件转载自新华社,文中观点不代表本网立场,仅供读者参考。
  • 跨向理想X射线探测器的一小步-高分辨、非晶硒X射线探测器及其应用
    “对于相干衍射成像(CDI),微米级像素的非晶硒CMOS探测器将专门解决大体积晶体材料中纳米级晶格畸变在能量高于50 keV的高分辨率成像。目前可用的像素相对较大的(〜55μm像素),基于medipix3芯片光子计数、像素化、直接探测技术无法轻易支持高能布拉格条纹的分辨率,从而使衍射数据不适用于小晶体的3D重建。” 美国阿贡国家实验室先进物理光子源探测器物理小组负责人Antonino Miceli博士讲到。相干X射线衍射成像作为新兴的高分辨显微成像方法,CDI方法摆脱了由成像元件所带来的对成像分辨率的限制,其成像分辨率理论上仅受限于X射线的波长。利用第三代同步辐射光源或X射线自由电子激光,可实现样品高空间分辨率、高衬度、原位、定量的二维或三维成像,该技术在材料学、生物学及物理学等领域中具有重要的应用前景。作为一种无透镜高分辨、无损成像技术,CDI对探测器提出了较高的要求:需要探测器有单光子灵敏度、高的探测效率和高的动态范围。目前基于软X射线的相干衍射成像研究工作开展得比较多,在这种情况下科研工作者通常选用是的基于全帧芯片的软X射线直接探测相机。将CDI技术拓展到硬X射线领域(50keV)以获得更高成像分辨率是目前很多科研工作者正在尝试的,同时也对探测器和同步辐射光源提出了更好的要求。如上文提到,KAimaging公司开发了一款非晶硒、高分辨X射线探测器(BrillianSe)很好的解决的这一问题。下面我们来重点看一下BrillianSe的几个主要参数1. 高探测效率 如上图,间接探测器需要通过闪烁体将X射线转为可见光, 只有部分可见光会被光电二极管阵列,CCD或CMOS芯片接收,造成了有效信号的丢失。而BrillianSe选用了具有较高原子序数的Se作为传感器材料,可以将大部分入射的X射线直接转为光电子,并被后端电路处理。在硬X射线探测效率远高于间接探测方式。BrillianSe在60KV (2mm filtration)的探测效率为:36% at 10 cycles/mm22% at 45 cycles/mm10% at 64 cycles/mm非晶硒吸收效率(K-edge=12.26 KeV)BrillianSe在60KV with 2 mm Al filtration的探测效率,之前报到15 μm GADOX 9 μm pixel 间接探测器QE 为13%。Larsson et al., Scientific Reports 6, 20162. 高空间分辨BrillianSe的像素尺寸为8 µm x8 µm,在60KeV的点扩散为1.1 倍像素。如下是在美国ANL APS 1-BM光束线测试实验室布局使用JIMA RT RC-05测试卡,在21keV光束下测试3. 高动态范围75dB由于采用了100微米厚的非晶硒作为传感器材料。它具有较大满井为877,000 e-非晶硒材料,不同入射光子能量光子产生一个电子空穴对所需要电离能BrillianSe主要应用:高能(50KeV)布拉格相干衍射成像低密度相衬成像同步辐射微纳CT表型基因组学领域要求X射线显微CT等成像工具具有更好的可视化能力。此外需要更高的空间分辨率,活体成像的关键挑战在于限制受试者接收到的电离辐射,由于诱导的生物学效应,辐射剂量显着地限制了长期研究。可用于X射线吸收成像衬度低的物体,如生物组织的相衬X射线显微断层照相术也存在类似的挑战。此外,增加成像系统的剂量效率将可以使用低亮度X射线源,从而减少了对在同步辐射光源的依赖。在不损害生物系统的情况下,在常规实验室环境中一台低成本、紧凑型的活体成像设备,对于加速生物工程研究至关重要。同时对X射线探测器提出了更高的要求。KAimaging公司基于独家开发的、专利的高空间分辨率非晶硒(a-Se)探测器技术,开发了一套桌面高效率、高分辨的微米CT系统(inCiTe™ )。可以从inCiTe™ 中受益的应用:• 无损检测• 增材制造• 电子工业• 农学• 地质学• 临床医学• 标本射线照相 基于相衬成像技术获得优异的相位衬度相衬成像是吸收对比(常规)X射线成像的补充。 使用常规X射线成像技术,X射线吸收弱的材料自然会导致较低的图像对比度。 在这种情况下,X射线相位变化具有更高的灵敏度。因为 inCiTe™ micro-CT可以将物体引起的相位变化转为为探测器的强度变化,所以它可以直接获取自由空间传播X射线束相位衬度。 同轴法相衬X射线成像可将X射线吸收较弱的特征的可检测性提高几个数量级。 下图展示了相衬可以更好地显示甜椒种子细节特征不含相衬信息 含相衬信息 低密度材料具有更好的成像质量钛植入样品图像显示了整形外科的钛植入物,可用于不同的应用,即检查骨-植入物的界面。 注意,相衬改善了骨骼结构的可视化。不含相衬信息 含相衬信息 生物样品inCiTe™ 显微CT可实现软组织高衬度呈现电子样品凯夫拉Kevlar复合材料样品我们使用探测器在几秒钟内快速获取了凯夫拉复合材料的相衬图像。可以清楚看到单根纤维形态(左图)和纤维分层情况(右图)。凯夫拉尔复合物3维透视图 KA Imaging KA Imaging源自滑铁卢大学,成立于2015年。作为一家专门开发x射线成像技术和系统的公司,KA Imaging以创新为导向,致力于利用其先进的X射线技术为医疗、兽医学和无损检测工业市场提供最佳解决方案。公司拥有独家开发并自有专利的高空间高分辨率非晶硒(a-Se)X射线探测器BrillianSeTM,并基于此推出了商业化X射线桌面相衬微米CT inCiTe™ 。我们有幸在此宣布,经过双方密切的交流与探讨,众星已与KA Imaging落实并达成了合作协议。众星联恒将作为KA Imaging在中国地区的独家代理,全面负责BrillianSe™ 及inCiTe™ 在中国市场的产品售前咨询,销售以及售后业务。KA Imaging将对众星联恒提供全面、深度的技术培训和支持,以便更好地服务于中国客户。众星联恒及我们来自全球高科技领域的合作伙伴们将继续为中国广大科研用户及工业用户带来更多创新技术及前沿资讯!
  • 无损检测仪器——射线标准起草工作启动
    全国试标委无损检测仪器分技术委员会(以下简称标委会),于2010年4月15日-16日在丹东召开无损检测仪器——射线标准起草工作会议。参加会议的有丹东华日理学电气有限公司、丹东市无损检测设备有限公司、丹东方圆仪器有限公司、丹东通用电器有限责任公司、丹东市东方晶体仪器有限公司、丹东通广射线仪器有限公司、丹东东方电子管厂、丹东计量测试技术研究所、丹东荣华射线仪器仪表有限公司、丹东新力探伤机厂、丹东七宝电器设备制造厂、丹东东方仪器厂、丹东亚业射线仪器有限责任公司、丹东辽东射线仪器有限公司、辽宁仪表研究所有限责任公司十五家单位,参加本次会议的委员和代表24人。  本次会议由辽宁仪表研究所有限责任公司承办,会议由标委会秘书长李洪国主持并致欢迎词。秘书长李洪国系统地回顾、总结了过去一年来所做的工作,并对目前标准化的重点工作及下一步工作计划做了阐述和安排。  到会委员和代表对标委会归口的《无损检测仪器 工业X射线探伤机电气通用技术条件》、《无损检测仪器 工业X射线探伤机 通用技术条件》、《X射线晶体定向仪》、《无损检测仪器 工业软X射线探伤机》、《无损检测仪器 射线探伤用密度计》、《无损检测仪器工业用X射线管系列型谱》、《无损检测仪器X射线应力测定仪 技术条件》、《无损检测仪器工业X射线检测系统》、《无损检测仪器 工业X射线图像增强器成像系统技术条件》、《无损检测仪器 X射线轮胎检测系统》十项行业标准的六项修订标准和四项制订标准草案稿进行了认真、细致地讨论。并提出修改意见:  1、《无损检测仪器 工业X射线探伤机电气通用技术条件》:增加“3.1.5电源电压波动”、“3.1.6电磁干扰” 修改了“3.4保护措施”等。  2、《无损检测仪器 工业X射线探伤机 通用技术条件》:增加了“3.1.6电磁干扰” 修改了“3.2技术性能”和“3.3安全与可靠性要求” 对“4 试验方法”进行了逐条逐句的讨论、修改 删除了“表3”中的“13”等。  3、《X射线晶体定向仪》:对“3.2使用性能”多处做了的修改 将“刻度显示型”删掉等。  4、《无损检测仪器 工业软X射线探伤机》:修改了“5.2.1环境温度” 增加了5.6.2对高压变压器的描述 增加了6.11.3.2的参照图表“表6”等。  5、《无损检测仪器 射线探伤用密度计》:修改了“4.1环境条件”和“4.3安全要求”等。  6、《无损检测仪器 工业用X射线管系列型谱》:将表格做了简化,并根据产品发展及市场需要对表1、表2等做了详尽的修改。  7、《无损检测仪器X射线应力测定仪 技术条件》:修改了“4.1环境条件” 在“4.12散射线照射量率”中增加“参照GB22448-2008中3.1规定进行”并将“散射线照射量率”改为“散漏射线空气比样动能率” 将6.7中“射线照射量率”改为“散漏射线照射量率”等。  会议建议起草单位会后根据修改意见进行整理形成征求意见稿广泛征求意见。全体委员和代表经过两天的共同努力使大会圆满结束。
  • 低至亚微米分辨!高分辨、高灵敏度X射线CCD/sCMOS相机
    根据 X 射线能量转换为相应电荷的方式不同,X 射线相机可以分为间接和直接探测两类。目前基于光子计数的像素化 X 射线直接探测器, 得益于其高探测效率、零噪声、高帧率、能量窗口筛选能力,低点扩散等特点,使得其在 X 射线衍射,散射,关联光谱等弱光或有时间分辨要求的应用得到广泛的应用,在 X 射线能谱成像领域带来了质的飞跃,目前商业化的医用能谱 CT 已经面世。此项技术的发展充分践行科学技术造福人类的终极目的,从基础研究及应用,到科学装置,随之是实验室及商业化医学应用。但是目前光子计数的像素化 X 射线直接探测器的最小像素尺寸为 55μm*55μm,其不能满足 X 射线微纳 CT、显微成像,计量学等应用方向对于更小像素的需求。因此,目前高分辨 X 射线间接探测相机在如上领域具有不可替代的作用。1X 射线间接探测相机基本原理及类型X 射线间接探测相机基本结构是高能的 X 射线打在闪烁体上,随之转为可见光,部分可将光通过光学耦合器件耦合到后端的 CCD 或 CMOS 传感器上。光学耦合器件包含两种:透镜和光锥或光学面板。 透镜组耦合 光锥耦合主要性能差异-透镜组耦合VS光锥耦合光锥耦合 X 射线相机的的光传输效率是透镜耦合的 4 倍。主要是因为光锥的耦合效率高;透镜耦合 X 射线相机的空间分辨率可以低至亚微米水平,但是光锥不行,是因为光锥的光纤尺寸为几个微米。2捷克 RITE 公司的低至亚微米分辨的高性能X射线 CCD/sCMOS 相机捷克 RITE 公司主要提供透镜耦合(fiber coupled,LC)和光锥耦合(fiber coupled,FC)两种高分辨间接探测X射线相机。进一步根据传感器不同,可分为电荷耦合(CCD)和互补型金属氧化物(CMOS)两种版本。探测器采用一体化结构,小巧紧凑,结实坚固,易操作易集成,从原材料的采购,到生产及成品测试都经过严格的把关,不仅性能优越而且坚固耐用。适用于微米及亚微米的 X 射线显微成像、X 射线显微 CT、X 射线计量学等应用。3XSight&trade LC 透镜耦合高分辨 X 射线相机主要特点多个镜头可简单切换,实测空间分辨率500nm-7µ m; 紧凑坚固的设计,可防止因散射的 X 射线直接撞击传感器而产生噪声; 一体化设计,易于安装和操作,无需水冷,USB 传输,软件友好。可提供真空版本,光谱范围可扩展到 EUV 能段。XSight&trade LC 真空版-EUV 可更换镜头单元规格参数参数Xsight Micron LC X-rayCCD CameraXsight Micron LC X-raysCMOS Camera芯片类型CCDsCMOS像素数3300x25002048x2048视场Model LC 02700.90 mm (H) x 0.68 mm (V)Model LC 02700.67 mm (H) x 0.67 mm (V)Model LC 05401.8 mm (H) x 1.36 mm (V)Model LC 05401.33 mm (H) x 1.33 mm (V)Model LC 10803.60 mm (H) x 2.70 mm (V)Model LC 10802.66 mm (H) x 2.66 mm (V)Model LC 21607.2 mm (H) x 5.4 mm (V)Model LC 21605.32 mm (H) x 5.32 mm (V)Model LC 432014.40 mm (H) x 10.80 mm (V)Model LC 432010.64 mm (H) x 10.64 mm (V)有效像素尺寸及空间分辨率(JIMA RT RC-02(center area, 8 keV))Model LC 0270 0.275μm / 0.4 μmModel LC 0270 0.325μm / 0.5 μmModel LC 0540 0.55μm /0.6 μmModel LC 0540 0.65μm /0.8 μmModel LC 1080 1.1μm / 1.5 μmModel LC 1080 1.3μm / 1.5 μmModel LC 2160 2.2μm / 3.0 μmModel LC 2160 2.6μm / 3.0 μmModel LC 4320 4.4μm / 7.0 μmModel LC 4320 5.2μm / 7.0 μm能量范围5-30 KeV(真空版可到EUV波段>50eV)5-30 KeV(真空版可到EUV波段>50eV)读出噪声7.5e- RMS1.4e- RMS暗电流0.001e-/pix/s@-30℃0.14e-/pix/s@0℃(风冷)0.04e-/pix/s@-10℃(水冷)帧率-3 fps-40 fps动态范围2800:121400:1XSight&trade LC 透镜耦合高分辨 X 射线相机搭建在理学 nano 3D X 射线显微系统中:应用示例蜱虫0.4 micron resolution蚂蚁头部图像 taken by a 0.27 um pixel array4XSight&trade FC -光锥耦合、高灵敏度 X 射线相机二维(2D)X 射线 XSight&trade FC 系列相机,由薄荧光屏,光锥和相机组成。与透镜耦合版本相比,光纤耦合探测器的的灵敏度大约高 20 倍。也分为 CCD 和 sCMOS 版本。可应用于 X 射线显微镜,X 射线形貌术,X 射线光学调整和计量学、X 射线成像等应用。 紧凑坚固的设计,可防止因散射的 X 射线直接撞击传感器而产生噪声。机身底部配 M6(CCD版)/ ¼ " 20 UNC(sCMOS版)标准螺纹,易于集成。一体化机型,易于安装和操作,无需水冷,USB(CCD)/Camera Link Full (sCMOS) 传输,软件友好。XSight&trade FC 5400CCD 相机XSight&trade FC 2160CCD 相机XSight&trade µ RapidsCMOS相机规格参数参数Xsight Micron FCCCD CameraFC5400Xsight Micron FCCCD CameraFC2160Xsight μRapid Camera芯片类型全帧CCD全帧CCDsCMOS像素数3326 x 25043326 x 25042048 x 2048视场18mm x 13.5mm7.2mm x 5.4mm13.3mm x 13.3mm实测空间分辨率16μm@8KeV8μm@8KeV20μm@8KeV能量范围5-30KeV5-30KeV5-30KeV读出噪声10e-RMS7.5e- RMS1.5(e- rms,fast scan)1.4(e- rms,slow scan)暗电流0.02e-/pix/s@-30℃0.02e-/pix/s@-30℃0.5e-/pix/s@5℃ 帧率 1 fps 1fps100(fps@full resolution,fast scan)35(fps@full resolution,slow scan)动态范围3100:1(70dB)3100:1(70dB)20000:1(fast scan)21430:1(slow scan)XSight&trade FC -光锥耦合、高灵敏度 X 射线相机搭载在理学 XRTMicron 射线形貌成像系统中用于单晶材料的无损检测:应用示例:木槿叶(8 keV,视场18.0 mm (H) x 13.5 mm (V))老鼠爪子 CT 渲染视频(由 SLS - PSI 的 TOMCAT 光束线提供)关于RITERigaku Corporation 于 2008 年在捷克首都布拉格成立了 Rigaku Innovative Technologies Europe s.r.o. (下简称“RITE”),配有多个专业的 X 射线实验室,作为日本理学在欧洲的 X 射线光学镜片设计、开发和制造中心。 尽管理学在 2008 年才成立 RITE,但是 RITE 前身却在业内有着超过 50 年的发展历史。团队创始成员来自捷克科学院和捷克理工大学,参与了多项(原)捷克斯洛伐克空间探测项目,是目前捷克 X 射线光学领域的领先研究学者。凭借自身在 X 射线、极紫外光学领域多年的积累,除了承担母公司理学的研发 (R&D) 任务以外,RITE 秉承着开放合作的理念,也直接向全球的工业客户、实验室科研用户提供标准或定制型 EUV/X-RAY 光学镜片和高分辨 X 射线相机等。北京众星联恒科技有限公司作为捷克 RITE 公司中国区授权总代理商,为中国客户提供 RITE 所有产品的售前咨询,销售及售后服务。我司始终致力于为广大科研用户提供专业的 EUV、X 射线产品及解决方案。如果您有任何问题,欢迎联系我们进行交流和探讨。了解RITE光学复制技术:以创新为先导,聚焦EUV极紫外/X射线光学器件的研发- 捷克RITE
  • 【朗铎科普】手持式X射线荧光光谱仪辐射大吗?对人体有伤害吗?
    手持式X射线荧光光谱仪是通过内部高压发生器产生X射线激发被测物体表面电子,电子在跃迁时发生能量释放从而获得各种元素的特征谱线。在设计手持式X射线荧光光谱仪时,优先考虑的就是使用安全。手持式X射线荧光光谱仪的辐射几乎可以忽略不计,只要操作得当,不会对人体造成伤害。尽管如此,我们在使用仪器时依然要注意安全,这样才能保证操作者和其周围人员的人身安全。辐射在我们的生活中无处不在数据显示,人类每时每刻都生活在各种辐射中。来自天然辐射的个人年有效剂量全球平均约为2.4毫西弗,其中,来自宇宙射线的为0.4毫西弗,来自地面γ射线的为0.5毫西弗,吸入(主要是室内氡)产生的为1.2毫西弗,食入为0.3毫西弗。人每年摄入的空气、食物、水中的辐射照射剂量约为0.25毫西弗。戴夜光表每年有0.02毫西弗;乘飞机旅行2000公里约0.01毫西弗;每天抽20支烟,一年有0.5至1毫西弗;一次X光检查0.02毫西弗。手持式X射线荧光光谱仪辐射安全常识在设计上,赛默飞世尔尼通手持式X射线荧光光谱仪在不进入测试界面测试时,不会发出任何电离辐射(即X射线)。对于一个给定的辐射源,三个因素决定了人体所接受的辐射剂量:1受照射时间受照射的时间越长,人体所接受的辐射剂量也就越大。辐射量与受照射时间成正比。2与辐射源的距离离辐射源越近,所受的辐射剂量就越大。所接受的辐射剂量与辐射源的距离的平方成反比。例如,距离辐射源1英尺所接受到的辐射量是距离辐射源3英尺所接受到的辐射量的9倍。因此,当仪器快门打开时,应保证手和身体的各个部位远离仪器的前端,以使所受的辐射量减至最小。3辐射屏蔽屏蔽指的是任何介于操作者和辐射源之间的材料。屏蔽材料越多,材质密度越大,所受到的辐射就越少。可选购测试架作为测试样品过程中一种附加的屏蔽装置,反向散射屏蔽附件也十分有效,对于某些应用特别适合。孕妇使用时应该注意:错误操作与使用会导致辐射暴露。操作人员对设备安全需负责:使用时,设备应该始终由受过正规培训的操作人员负责。不使用时,应放到安全地方存放。测量时,不要将手部接近设备头部。当检测窗口被物体覆盖时,安全指示灯亮。如果探测器未检测到物体时,不会产生出X射线。关于X射线设备仪器的辐射安全标准对人体伤害可以参照关于X射线设备仪器的辐射安全标准。在我国国家标准GB 15208。GB15208:1-2005《微剂量X射线安全检查设备第1部分:通用技术要求》中,对微剂量X射线安全检查设备提出的辐射安全指标是:设备的单次检查剂量不应大于5μGy;在距设备外表面5cm的任意处(包括设备的入口、出口处),X射线泄漏剂量率应小于5μGy/h。Gy(戈瑞):吸收剂量,指人体受到电离辐射后吸收了多少能量。1千克被照射物吸收电离辐射的能量为1J(焦耳)时称为1Gy。即:1Gy=1J/kg。Sv(毫西弗):有效剂量,是反映各种射线或粒子被吸收后引起的生物效应强弱的电离辐射量。它不仅与吸收剂量有关,而且与射线种类、能量有关。(1Sv=1J/kg,1mSv=10-3 Sv)首先设备本身应带有射线的屏蔽装置,比如说防护铅板和铅玻璃。其次,管头有光闸或者防护罩,主要照射面应该是密不透风的。至于漏散的部分,计量相对于要照射面更小,且波长变长,对人体的危害可以认为就更小了。X射线是直线不会拐弯。综上所述,只要正确操作手持式X射线荧光光谱仪,是不会对人体造成伤害的,手持式X射线荧光光谱仪的用户们可以放心地使用。操作手持式X射线荧光光谱仪注意事项扣动扳机之前请注意X射线穿越方位。检测过程中不要将身体任何部分接近检测区域,尤其是眼睛和手部。不要手拿样品至检测窗口进行测量分析,而是要将设备测试窗口抵住样品来进行测量。在检测小且薄的样品或低密度材料,例如:塑料,木材,纸或陶瓷时,请使用配选件安全遮挡或台式样品架进行检测。操作设备时,如果有需要,可以配备有正规机构认证的剂量计。
  • 一文了解X射线成像技术及市场主流仪器品牌
    X射线是一种波长比较短的电磁波,它的波长在0.01~100埃之间,介于γ射线与紫外线之间。因为X射线的穿透能力很强,能透射很多可见光不能透射的物质,因此人们用来对物品内部缺陷进行检测。自从X射线被发现以来,由于其优异的物理化学特性,X射线检测技术取得了飞速的发展,在科学研究、医学检测及工业检测等领域已经有了广泛的应用。通过X射线检测技术的不断发展,现阶段在工业检测中主要有X射线胶片拍片检测技术和X射线实时成像检测技术。 X射线胶片拍片检测技术X射线胶片拍片法是无损检测早期使用的方法。它的工作原理是由X射线管发出X射线;射线透射被检工件后与照相胶片发生胶片感光,胶片感光是一种光化学作用;处理完已感光的照相胶片后,得到工件内部质量密度的射线胶片;最后,观察获得的X射线拍片底片来分析评价并得出评判结论。由于被检工件存在缺陷的部分与正常部分的厚度或者密度存在很大差异,被检测工件有缺陷部分和无缺陷部分使得X射线衰减的程度不同,穿过工件的X射线处于不同程度的吸收,在胶片上显影后出现有差异的影像。X射线胶片拍片检测技术以此为检测基础,X射线照相无损检测技术应用得最为广泛。通过观察胶片上记录的射线信息来判定被检材料和工件的内部是否存在缺陷,在不损坏被检材料和工件的情况下,评估其质量和使用价值。目前工业检测中普遍使用X射线胶片拍片的方法,此技术有较高空间分辨率,可以将实际大小的微小缺陷通过图像清晰地显示出来,且是永久性的。X射线胶片拍片检测技术的缺点在于无法现场直接观察被检测物体的图像。需具有丰富检测经验的人,通过实验对照相参数及胶片冲洗参数进行选择才能使检测效果达到最佳,同时X射线照相检测技术存在着效率低下,不能数字化,难于存储等缺点,尽管可以利用光胶片数字化扫描仪进行数字化,但是效率低的问题仍无法解决,在工业生产过程中检测效率低,严重制约着生产效率。 X射线实时成像检测技术X射线实时成像是一种X射线无损检测方法,是通过屏幕实时显示检测结果图像的方法,利用该图像对检测对象材料进行判断和评估对材料内部缺陷进行定性、定量的分析,从而达到无损检测的目的。X射线实时成像技术按成像原理的不同可以分为X射线图像增强器实时成像技术和X射线数字实时成像检测技术。两种技术对应着两种不同的检测系统,而成像器件的不同是两者的主要差别:X射线图像增强器实时成像检测系统的图像增强器为X射线的接收装置,在CCD上成像后,通过图像采集卡将图像采集并存储到计算机中。X射线图像增强器实时成像系统X射线数字实时成像系统的工作原理是被检测工件的X射线图像由平板探测器直接接收并转化为数字信号,平板探测器与计算机相连,将数字信号传输到计算机中存储和处理。由于采用非晶硅的闪烁检测器以及成像板采集信号,而且成像板由光电倍增器制成,所以X射线数字实时成像检测系统具有很大的动态范围和很高的分辨力,这是胶片拍片法所不能比拟的。X射线数字实时成像系统 工业X射线检测技术的发展经过了X射线胶片拍片检测、X射线荧光检测、图像增强器成像检测和平板探测器成像检测等阶段。X射线胶片拍片检测技术是使用最早,也是最成熟的检测技术,是目前工业检测中普遍使用的方法。随着计算机技术、增强技术、光电材料及接收器件技术的不断发展,现在的研究热点是直接数字化X射线成像技术。其中,X射线数字平板技术的出现使得X射线向数字图像信号的转化成为可能,标志着X射线实时成像时代的到来。 市场主流仪器品牌X射线实时成像技术在国外研究起步较早,而国内对于该技术的研究较晚,如我国适用于特定检测岗位的高精度、高分辨力的多功能X射线成像系统等还有待研究。然而,随着近年来地快速发展,国内与西方国家的差距正在日益减小。当前,我国市场上工业用X射线实时成像设备的主要有YXLON、蔡司、GE、布鲁克、岛津等进口品牌,以及三英精密、日联科技、丹东奥龙、固鸿科技、华日理学等国产品牌。三英精密成立于2013年,是一家专业从事X射线CT检测装备研发和制造的国家高新技术企业,拥有自主核心技术,现已发展为国内X射线CT产品种类齐全的解决方案提供商。公司产品涵盖X射线三维显微镜、显微CT、工业CT、计量CT、平面CT、卧式CT、X射线在线检测设备和移动车载CT检测中心等。日联科技成立于2002年,是一家专业从事X射线技术研究和X射线智能检测装备研发、制造的高新技术企业。在无锡新区自建4万多平米的现代化工厂和研发中心,并在深圳和重庆建立大型制造工厂,在西安设立软件公司,并于北京、沈阳、天津、西安、青岛、武汉、成都、宁波、厦门、乌鲁木齐等地设有销售及服务处。奥龙集团传承50年中国射线仪器研制历史,是X射线仪器和材料试验仪器的开发商和产品制造商,也是X射线检测解决方案的服务商,旗下拥有上海奥龙星迪、丹东奥龙电子、奥龙检测服务、丹东奥龙中科传感技术四个子公司。此外,奥龙集团也是无损检测行业的全球领导厂商——美国GE的合作伙伴。 固鸿科技是一家源于清华大学,集设计开发、生产制造、销售和服务与一体的高新技术企业。主要产品类型为低能工业CT(160Kv-600Kv),高能工业CT(1MeV-15MeV),电子直线加速器(0.95MeV-15MeV),车载式CT及射线照相无损检测系统等。自2005年成立以来,公司已经为全球客户提供了近100套的定制化射线类无损检测设备。华日理学,1995年创立,2018年加入中国广核集团,是生产X射线无损检测设备的专业公司。公司集科研、生产、销售和服务于一体,年产值超过亿元,生产规模、研发技术、市场占有率位居国内前列。公司拥有专业的实体研发、生产、检测基地,建有四个高等级防护的X射线试验室、一个三维成像检测技术公共服务中心、一个EMC试验室和一个高频X射线国际合作实验室,产品已形成六大系列60多个品种,年生产能力可达1000(台)套以上。 YXLON(依科视朗)于1998年成立,总部位于德国汉堡,由飞利浦工业X射线有限公司和丹麦安德烈斯公司合并而成,并迅速成长。2007年成立依科视朗(北京)射线设备贸易有限公司,主要从事X射线为基础的测试设备和系统的批发、进出口,售后和技术服务及转让,X射线为基础的测试设备和系统技术的研究和开发。ZEISS(蔡司)总部位于德国,历史可追溯到1846年,是一家在光学及光电子行业全球领先的集团公司。在全球拥有30多个生产基地、50多个销售和服务中心。ZEISS在四个战略发展领域,即工业解决方案、科研解决方案、医疗技术、消费光学,提供产品和服务,旗下产品X射线成像设备在业内享有盛名。GE(美国通用电气)创立于1892年,总部位于美国波士顿,是一家创造由软件定义的机器,集互联、响应和预测之智,致力变革传统工业的全球数字工业公司。 作为无损检测行业的全球领导厂商,GE在中国设有多家公司,可提供胶片系统、超声、涡流,X射线、计算机射线成像(CR)、数字化射线成像(DR)和工业内窥镜等多个领域的各种便携式检测仪器和大型检测设备。BRUKER(布鲁克)于1960年在德国创立,业务领域包括生命科学分子研究、应用和药物应用、显微镜和纳米分析、工业应用、细胞生物学、临床前成像、临床表型组学、蛋白质组学研究以及临床微生物学等。1997年,布鲁克X射线部门便开始在中国拓展业务。当前,布鲁克在全球拥有6000多名员以及90多个工作地。岛津是测试仪器、医疗器械及工业设备的制造厂商,自1875年创业以来,以光技术、X射线技术、图像处理技术这三大核心为基础,不断钻研领先时代、满足社会需求的科学技术,开发生产具有高附加值的产品。岛津企业管理(中国)有限公司成立于1999年日,目前已在中国设有13个分公司,7个分析中心,60多个技术维修点,开拓了岛津在中国的业务。本文X射线成像技术部分引自:王连之.多功能X射线实时成像系统的研制与应用[D].湖南大学,2020.
  • 美国开发高精密铜源X射线仪
    p  美国国家标准技术研究院(NIST)利用其开发的最新先进机器形成并精确测量了X射线频谱。该设备开发与制造费时20年,将帮助科学家制造世界上最精确的材料,可应用在基础设施和药物上,同时也确保世界上不同实验室之间材料测量的可靠性,新的专业精密仪器需要大量的机械创新和理论建模。/pp  NIST新设备形成的X射线——铜K-α线与无数其它X射线没有本质区别,是通过铜靶发射电子产生,但不同的是,经过多年的工程和计算已经构建一个可以非常精确地扫描样品周边整体的工具。此外,该设备还配备了一个X射线摄像机,提供比传统检测仪器更加丰富的信息,并提供样本一致性对标自检测,减少系统的不确定性。该机器在地下实验室中制造,具有严格控制的稳定,能开展极端精确的测量。该仪器最大的成就之一是功能强大的测角仪。/pp  新机器将使研究人员可以将晶格间距的测量与国际单位制中的计量仪定义相关联,与国际单位制计量仪之间的比较,使得质量保证在最小和最精确的水平上。研究人员的测量与过去40年的结果一致,并且获得了X射线谱的新细节。除了晶格间距外,所有进行测量的元件都可以完全溯源到国际单位制,这也保证了测量的精确性和可靠性。X射线经常与医疗相关联,但X光仪器也广泛应用于商业活动,因为它们能够帮助确定和表征日常物质,包括水泥、金属、陶瓷、电子和药物。在医疗和工业应用中,X射线为科学家提供了一种观察物质内部的方法。/p
  • X射线计算机层析成像技术解析
    X射线三维成像可以实现物体内部的无损检测。但是对于大尺寸的板状样品的三维成像一直是业界的难题,层析成像技术是目前解决这一难题的最佳方法。一、 什么是层析成像?目前比较被大众熟知的Computed Tomography(CT)通常被翻译为计算机断层成像。最早的实验室CT扫描机由英国Godfrey Hounsfield于1967年建成,第一台可供临床应用的CT设备于1971年安装在医院。CT自发明以来,经历了多代发展,这里就不再赘述。简单理解,CT就是求解一个线性方程组,最终得到的结果就是CT图像。CT扫描就是构造方程组的过程,每一条被探测器接收的射线就代表了一个方程。对二维断层成像而言,要想得到好的求解结果,需要平面内任意方向的射线。这也是要求射线源-探测器组合相对于成像目标旋转360度的原因(出于严谨考虑,这里声明不考虑短扫描等情形)。层析成像技术,早在1921年就已经出现。这个时期的层析成像可以称之为传统层析成像。由于信息交流的不便,多个国家的研究者分别独立提出了层析成像的方法,并且给予了不同的命名。目前流传下来比较被大家接受的是Tomosynthesis和Laminography。现在用于乳腺癌筛查的钼靶成像(只是用了钼靶射线源而已),严格讲应该叫作数字乳腺层析成像(Digital Breast Tomosynthesis,简称为DBT)。而工业上比较习惯于用Laminography,我们延续了这种用法。在进行中文翻译的时候为了跟计算机断层成像区分,我们将Tomosynthesis和Laminography都翻译为层析成像。CL全称即Computed Laminography。二、 传统层析成像 CL与CT到底有什么区别?在前面我们已经提到CT成像一般需要射线绕物体一周。而在有些时候这是无法实现的。比如,现场条件受限或者物体在某些角度太长,射线无法穿透。比如大尺寸的板状物体。对于下图接近一米长的PCB,如果采用显微CT扫描,只能采用先切割的破坏性方法。如果非得用一个简单粗暴的标准区分CT和CL:画一个过物体的平面,如果射线源和探测器的运动轨迹不跨越这个平面,就可以认为这是CL。可以通过下图了解传统层析成像的原理。通过采集不同角度的投影数据(那时还只有胶片),将胶片简单叠加在一起,其中一层的数据会被增强(这一层称为焦平面)。下图中Plane 2的数据(以圆形代表其细节)就被增强了。传统层析成像,每次只能增强一个焦平面内的结构,而其它层的图像仍然是模糊的。三、 现代层析成像我们所说的层析成像一般都是指现代层析成像。这里的现代是相对于上面的传统而言的。现代层析成像是指采用了数字探测器和图像重建算法的层析成像。其成像结果中每一层都得到增强。虽然与CT相比,由于其数据缺失,会造成层间混叠(后面我们会着重介绍)。但在很多应用场景,这是能得到的最好的结果。下图是几种常见的层析成像结构。如果将有限角CT也称作CL的话,可以认为是第5种结构。这里我们对各种成像结构的成像能力进行简单的分析。(I)结构简单,但数据缺失过于严重(扫描的角度等于射线的张角);(II)仅能扫描中心区域;(III)(IV)相似,可以扫描任意区域,但在探测器的运动细节上有差异。其机械实现和数据处理上的差异过于专业,我们在这里就不再展开讨论。四、 层间混叠这是CL避免不了的问题。首先通过下图来了解一下层间混叠是什么样子。其表现就是横向的边缘被弱化了。为什么会出现这个问题呢?这得从傅里叶中心切片定理讲起,还是算了吧,简单点理解就是缺少了横向穿过物体的射线。为什么会缺少?因为这个方向射线穿不透啊,回忆一下前面一米长的PCB。如果你对上面的图像不满意,不如换个方向看看。是不是感觉好了很多。有没有办法彻底解决这个问题?针对特定的扫描对象,使用复杂的模型,效果会有所提高,但离实用还有很长的距离。 五、 CL的优点 谈完缺点再来聊聊优点。首先,就像前面提到的,这是现有条件下能得到的最好的结果。CL可以对大尺寸的板状物体得到非常高的分辨率。目前,射线源的焦点尺寸可以小到几百纳米。要想实现高分辨成像,需要射线源尽可能靠近物体,而CL这种扫描方式可以很容易的实现这一点。采用光学放大透镜的探测器的显微CT,样品可以不靠近射线源,但是由于射线的利用率底,扫描的时间会很长,难以满足快速检测的需求,且同样无法解决射线在有些角度下无法穿透的问题。下面再来聊聊CL另外一个优点。CT和CL图像最终表示的是物质对射线的线衰减系数(与射线能量、物质原子序数、物质密度等有关系)。一般趋势,线衰减系数随射线能量的增加而减小,简单点理解就是能量越高的射线越不容易被物质吸收。不同材料衰减系数的差异也随射线能量的增加而减小。由于CL始终沿着容易穿透的方向照射物体,可以使用较低能量的射线,因此能够获得较高的密度分辨能力。六、 国内CL研究进展与国外相比,国内对于CL技术的研究起步较晚。北京航空航天大学、中国科学院高能物理研究所等单位是国内最早开展CL成像研究的机构。在科技部重大科学仪器设备开发项目支持下,2015年,由中国科学院高能物理研究所和古脊椎动物与古人类研究所共同成功研发专用于“板状化石”的显微CL仪器,并在2016年中安装到中科院脊椎动物演化与人类起源重点实验室高精度CT中心,该仪器同时服务其他科研院所,中国科学院南京地质古生物研究所、中国地质科学院地质研究所、北京自然博物馆、安徽博物院、广西自然博物馆、北京大学,云南大学、西北大学、首都师范大学等,累计检测化石750余件。为板状化石的三维无损检测提供了全新工具,起到了不可替代的作用。该仪器的实验结果,助力研究人员在《Nature》、《Science》等期刊上发表论文20余篇,其中五项成果分别入选并领衔2018年、2019年、2020年和2021年中国古生物学十大进展。专用于“板状化石”的显微CL设备及其应用集成电路和电力电子领域也存在大量的板状产品。随着封装集成度和密度不断提高,对其内部结构缺陷检测要求空间分辨率达到微米甚至亚微米级。2019年,在科技部重大科学仪器设备开发项目支持下,中国科学院高能物理研究所针对电子器件封装检测需求,研制了具有亚微米级缺陷检测能力的X射线三维分层成像仪,关键指标达到国际先进水平。为了更好的进行X射线精密检测设备的推广,中国科学院高能物理研究所在2021年成立了锐影检测科技(济南)有限公司。X射线三维分层成像仪及其应用2021年,锐影检测科技(济南)有限公司成功研发了用于绝缘栅双极型晶体管(IGBT)焊接缺陷检测的专用CL设备。彻底解决了超声法和X射线DR成像无法检测带散热柱的IGBT模块的问题。设备实现了大视野快速成像,可以自动定位DBC焊接区域,自动进行气孔缺陷的识别,计算气孔率、最大气孔率、最大气孔尺寸,适用于在线检测。技术指标达到国际领先水平。IGBT焊接缺陷检测专用CLCL与DR方法对于IGBT基板焊料层气孔检测效果的比较总结随着科研及制造业的升级,对CL检测设备的精度、检测速度和智能化水平提出了更高的要求。新型CL设备的研发将是科研机构及X射线无损检测公司面临的挑战和历史机遇。 参考文献:【1】 Jiang Hsieh, Computed Tomography Principles, Design, Artifacts, and Recent Advances 3rd edition, SPIE PRESS.【2】 Buzug, Thorsten M. Computed tomography: from photon statistics to modern cone-beam CT. Springer, 2008.【3】 Zenghui Wei, Lulu Yuan, Baodong Liu, Cunfeng Wei, Cuili Sun, Pengfei Yin, and Long Wei, A micro-CL system and its applications. Review of Scientific Instruments, 88, 115107, 2017.【4】 Zuber M, Laaß M, Hamann E, Kretschmer S, Hauschke N, van de Kamp T, Baumbach T, Koenig T. Augmented laminography, a correlative 3D imaging method for revealing the inner structure of compressed fossils. Sci Rep. 2017 Jan 27 7:41413. doi: 10.1038/srep41413. PMID: 28128302 PMCID: PMC5269749.【5】 https://mp.weixin.qq.com/s/_SyUUlHpJNXrLxHFKYwydw本文作者:锐影检测科技(济南)有限公司
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制