当前位置: 仪器信息网 > 行业主题 > >

高精度低温冷箱

仪器信息网高精度低温冷箱专题为您提供2024年最新高精度低温冷箱价格报价、厂家品牌的相关信息, 包括高精度低温冷箱参数、型号等,不管是国产,还是进口品牌的高精度低温冷箱您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高精度低温冷箱相关的耗材配件、试剂标物,还有高精度低温冷箱相关的最新资讯、资料,以及高精度低温冷箱相关的解决方案。

高精度低温冷箱相关的论坛

  • 皓天分享│高精度高低温冷热冲击试验箱 TSD-36F-2P

    [align=left][font='calibri'][size=13px][color=#333333]皓天分享│[/color][/size][/font][font='calibri'][size=13px][color=#333333]高精度高低温冷热冲击试验箱[/color][/size][/font][font='calibri'][size=13px][color=#333333] [/color][/size][/font][font='calibri'][size=13px][color=#333333]TSD-36F-2P[/color][/size][/font][font='calibri'][size=13px][color=#333333]随着科技的不断进步,高低温冷热冲击试验箱作为一款重要的测试设备,在科研、工业生产等领域的应用越来越广泛。本文将重点介绍高精度高低温冷热冲击试验箱TSD-36F-2P的特点、优势、应用场景以及使用注意事项。[/color][/size][/font][/align][table][tr][td][align=left][img]https://ng1.17img.cn/bbsfiles/images/2024/01/202401231014131781_1657_6279606_3.jpeg[/img][/align][/td][/tr][/table][align=left][font='calibri'][size=13px]1、 [/size][/font][font='calibri'][size=13px][color=#333333]TSD-36F-2P高低温冷热冲击试验箱的特点[/color][/size][/font][font='calibri'][size=13px][color=#333333]1. 高精度控温:TSD-36F-2P采用先进的PID温度控制技术,控温精度高,可满足各种高精度测试需求。[/color][/size][/font][font='calibri'][size=13px][color=#333333]2. 快速温度变化:该试验箱具有快速温度变化的特点,可在短时间内完成温度的快速切换,大大缩短了测试时间。[/color][/size][/font][font='calibri'][size=13px][color=#333333]3. 温差范围广:TSD-36F-2P的温差范围很广,可在极低温度和极高温度之间进行测试,满足各种不同材料和产品的测试需求。[/color][/size][/font][font='calibri'][size=13px][color=#333333]4. 自动化程度高:该试验箱采用先进的控制系统,可实现自动化控制、数据采集和记录等功能,提高了测试的准确性和可靠性。[/color][/size][/font][font='calibri'][size=13px][color=#333333]5. 人性化设计:TSD-36F-2P采用人性化设计,操作简单方便,同时具备良好的安全保护功能,保障操作人员的安全。[/color][/size][/font][font='calibri'][size=13px][color=#333333]二、TSD-36F-2P高低温冷热冲击试验箱的优势[/color][/size][/font][font='calibri'][size=13px][color=#333333]1. 高可靠性:该试验箱采用优质材料和先进工艺制造而成,具有高可靠性和长寿命,可满足长期使用的要求。[/color][/size][/font][font='calibri'][size=13px][color=#333333]2. 节能环保:TSD-36F-2P采用先进的节能技术,能有效降低能源消耗和减少对环境的影响。[/color][/size][/font][font='calibri'][size=13px][color=#333333]3. 良好的扩展性:该试验箱具有良好的扩展性,可根据用户需求进行定制和升级,满足各种特殊测试需求。[/color][/size][/font][/align][align=left][font='calibri'][size=13px][color=#333333]三、[/color][/size][/font][font='calibri'][size=13px][color=#333333]TSD-36F-2P高低温冷热冲击试验箱的[/color][/size][/font][font='calibri'][size=13px][color=#333333]技术参数[/color][/size][/font][/align][align=left][font='calibri'][size=13px][color=#333333]品名:二箱式冷热冲击试验箱[/color][/size][/font][/align][align=left][font='calibri'][size=13px][color=#333333]型号:TSD-36F-2P[/color][/size][/font][/align][align=left][font='calibri'][size=13px][color=#333333]标准内容积:36L[/color][/size][/font][/align][align=left][font='calibri'][size=13px][color=#333333]内形尺寸(宽W*高H*深D):W350*H350*D300mm[/color][/size][/font][/align][align=left][font='calibri'][size=13px][color=#333333]外形尺寸(宽W*高H*深D):W1600*H1800*D1350mm[/color][/size][/font][/align][align=left][font='calibri'][size=13px][color=#333333]温度冲击范围:( 60~ 150)℃/(-40~-10)℃[/color][/size][/font][/align][align=left][font='calibri'][size=13px][color=#333333]控制器:韩国三元进口控制器TEMI8226S[/color][/size][/font][/align][align=left][font='calibri'][size=13px][color=#333333]压缩机:比泽尔压缩机[/color][/size][/font][/align][align=left][font='calibri'][size=13px][color=#333333]电源:AC380V 三相四线 保护地线[/color][/size][/font][/align][table][tr][td][align=left][img]https://ng1.17img.cn/bbsfiles/images/2024/01/202401231014136013_696_6279606_3.jpeg[/img][/align][/td][/tr][/table][align=left][font='calibri'][size=13px][color=#333333]四[/color][/size][/font][font='calibri'][size=13px][color=#333333]、TSD-36F-2P高低温冷热冲击试验箱的应用场景[/color][/size][/font][font='calibri'][size=13px][color=#333333]1. 电子行业:高低温冷热冲击试验箱在电子行业中的应用非常广泛,可用于测试电子产品的可靠性和稳定性,如集成电路、电子元器件等。[/color][/size][/font][font='calibri'][size=13px][color=#333333]2. 汽车行业:该试验箱也可应用于汽车行业中,对汽车零部件进行高低温测试和冷热冲击测试,以确保其性能和可靠性。[/color][/size][/font][font='calibri'][size=13px][color=#333333]3. 航空航天:在航空航天领域,高低温冷热冲击试验箱可用于测试飞机零部件、火箭发动机等产品的可靠性和稳定性。[/color][/size][/font][font='calibri'][size=13px][color=#333333]4. 科研实验:该试验箱还广泛应用于科研实验中,对各种材料和产品进行高低温测试和冷热冲击测试,以研究其性能和变化规律。[/color][/size][/font][font='calibri'][size=13px][color=#333333]五[/color][/size][/font][font='calibri'][size=13px][color=#333333]、使用TSD-36F-2P高低温冷热冲击试验箱的注意事项[/color][/size][/font][font='calibri'][size=13px][color=#333333]1. 正确操作:操作人员应经过专业培训,熟悉试验箱的操作规程和安全注意事项,避免因误操作导致设备损坏或安全事故。[/color][/size][/font][font='calibri'][size=13px][color=#333333]2. 定期维护:为保证设备的正常运行和使用寿命,应定期对试验箱进行维护和保养,检查设备的各项性能指标和安全装置是否正常。[/color][/size][/font][font='calibri'][size=13px][color=#333333]3. 设备安装环境:试验箱的安装环境应符合设备要求,避免阳光直射、潮湿等不良环境因素的影响。同时,应确保设备周围有足够的空间,以便于设备的通风和维护。[/color][/size][/font][font='calibri'][size=13px][color=#333333]4. 样品放置:在放置样品进行测试时,应遵循试验箱的要求,避免因样品放置不当导致测试结果不准确或设备损坏。[/color][/size][/font][font='calibri'][size=13px][color=#333333][/color][/size][/font][/align][align=left][font='calibri'][size=13px][color=#333333][/color][/size][/font][/align]

  • 高精度半导体恒温箱保养说明

    高精度半导体恒温箱是半导体行业常用的设备之一,作为比较常用的设备,其保养也是相当重要,那么无锡冠亚高精度半导体恒温箱的保养有哪些要点呢?怎么进行保养比较好呢?  高精度半导体恒温箱由蒸发器出来的状态为气体的冷媒;经收缩机绝热收缩后期,变成高温高压状态,被收缩后的气体冷媒,在冷凝器中,等压冷却冷凝,经冷凝后转变成液态冷媒,再经节流阀膨胀到低压,变成气液混合物。此中低温低压下的液态冷媒,在蒸发器中摄取被冷物资的热量,从头变成气态冷媒,气态冷媒经管道从头进来收缩机,开头新的轮回,这便是高精度半导体恒温箱轮回的四个过程。  高精度半导体恒温箱密封部位调养,鉴于装配式高精度半导体恒温箱是由若干块保温板拼而成,因而板之间存在必需的间隙,施工中这类间隙会用密封胶密封,为了避免空气和水份进来,因而在利用中对一些密封无效的部位实时修理.  高精度半导体恒温箱地面调养,通常小型装配式高精度半导体恒温箱的地面利用保温板,利用高精度半导体恒温箱时应为了避免地面存有大量的冰和水,假如有冰,处理时切不可利用硬物敲打,损害地面。  高精度半导体恒温箱装配完结或长久停用后再次利用,降温的速率要适宜:每日操纵在8-10℃为宜,在0℃时应保留一段时间。  高精度半导体恒温箱库板调养,留意利用中应留意硬物对库体的碰撞和刮划,鉴于不妨变成库板的凹下和锈蚀,严重的会使库体片面保温功能下降。  高精度半导体恒温箱的保养是离不开我们操作人员的细心操作,所以,我们在日常操作中也要善待我们的设备,不要太过粗暴。

  • 超高精度低温程序控制中的电增压液氮泵稳压恒流解决方案

    超高精度低温程序控制中的电增压液氮泵稳压恒流解决方案

    [size=16px][color=#339999][b]摘要:当前各种测试仪器中的低温温度控制过程中,普遍采用电增压液氮泵进行制冷和辅助电加热形式的控温方式。由于液氮温度和传输压力的不稳定,这种方式的控温精度仅能达到0.5K,很难实现小于0.1K的高精度控温。为此本文基于饱和蒸气压原理提出了液氮温区高精度温度控制解决方案,通过对液氮罐内的正压压力进行恒定控制,使液氮温度处于准确稳定状态并提供恒定的液氮输送流量,为后续试验台的电加热控温提供了稳定的制冷量。[/b][/color][/size][align=center][size=16px][color=#339999][b]---------------------------[/b][/color][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 液氮作为一种廉价且易于获得的低温介质,在科学仪器领域的低温环境实现中应用十分广泛,如各种各种探测器、热分析仪(TGA,STA,TMA,DMA,DMTA)、激光器、电子显微镜和各种低温试验平台等,都在采用液氮进行低温控制。在这些液氮温度范围内的低温控制系统中,普遍采用加压泵送方式将液氮传输到指定容器或试验平台中,如果进行低温宽温区的温度控制则还需在低温管路和试验平台上增加辅助加热器进行温度调节和控制。[/size][size=16px] 现有的加压输送液氮的手段主要是基于增大液氮罐内压力,从而将液氮压出,具体增加罐内压力的方式是通气法和电加热法。这两种方式利用了液氮自身物理变化而获得液氮蒸汽压力,没有借助其他介质的加压,不会影响液氮的纯度,关键是可以采用不同压力输送出低温氮气和气液混合液氮,以满足不同低温温度的需要。[/size][size=16px] 由于电加热方式结构简单,加热功率大且易于控制,液氮输送速度速度快,目前绝大多数低温温度控制多采用这种电加热方式的液氮泵,结合试验台上配备辅助电加热器,可对试验台或样品温度进行一定精度的低温温度控制。这种液氮试验平台的温度控制系统典型结构如图1所示。[/size][align=center][size=16px][color=#339999][b][img=常用液氮冷却低温温度控制系统结构示意图,500,444]https://ng1.17img.cn/bbsfiles/images/2023/07/202307271408453472_5868_3221506_3.jpg!w690x614.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 常用液氮冷却低温温度控制系统结构示意图[/b][/color][/size][/align][size=16px] 如图1所示的常用低温控制系统,通过液氮冷却并配合加电热器的正反向PID调控可实现低温温度控制,但这种方式只适用于远离液氮沸点区域(≥110K)的低温控制,不能在接近液氮沸点附近(77~110K)达到优于±0.1K以内的高精度控温,因为在接近液氮沸点附近存在气液两相共存状态,这两种状态在接近液氮沸点的温度区域非常不稳定,特别是在杜瓦瓶内压力波动较大时极易出现两相互转现象,从而导致冷却温度出现比较大的无规律波动。[/size][size=16px] 另一个影响低温温度产生无法控制波动的因素是室温环境对输送管路和阀门内液氮的加热作用,这对高精度的低温控制影响十分明显且不稳定。[/size][size=16px] 由于冷却温度波动较大,尽管在试验台上采用了高导热材料进行快速均温,以及辅助电加热器进行补偿调节,但这种常用的流动液氮形式低温控制方法也只能勉强达到±0.5K的控温精度,基本无法提高低温温度的高精度控制。由此可见,在必须采用流动液氮进行低温冷却的情况下,实现高精度的低温控制是个需要解决的技术问题,为此本文提出如下解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 根据影响高精度低温控制的压力因素和室温环境加热因素,基于饱和蒸汽压时气液处于两相平衡的物理现象,本文提出的解决方案所设计的流动液氮高精度低温温度控制系统如图2所示,实现高精度低温控制的具体方法主要包括以下两方面的内容:[/size][align=center][size=16px][color=#339999][b][img=高精度液氮冷却低温温度控制系统结构示意图,500,468]https://ng1.17img.cn/bbsfiles/images/2023/07/202307271409104704_2148_3221506_3.jpg!w690x647.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 高精度液氮冷却低温控制系统结构示意图[/b][/color][/size][/align][size=16px] (1)对液氮罐内气体压力进行高精度恒定控制,使杜瓦瓶中的液氮始终处于已知可控的温度下,由此获得温度和流量稳定的液氮输出源。[/size][size=16px] (2)液氮输出管路中,避免使用很难进行绝热处理的各种阀门,而是采用了真空输送管,最大限度减小室温环境对管路内液氮的影响。[/size][size=16px] 此解决方案的核心是将液氮温度控制和试验台温度控制分开构成两个独立控制回路,通过双通道PID控制器同时进行控制,具体如下:[/size][size=16px] (1)压力控制通道是由压力传感器、电加热器和PID控制器第一通道构成的闭环回路,通过调节电加热器功率使杜瓦瓶内气体的正压压力保持恒定,使得整个杜瓦瓶内的气液两相液氮温度相同,此压力同时将液氮压出进行输送。[/size][size=16px] (2)加热控制通道是由温度传感器、电加热器和PID控制器第二通道构成的闭环回路,在加载到均热试验台上的制冷量恒定的条件下,通过调节电加热器功率使样品控制在不同的设定温度上,由此最终实现样品不同低温温度的精密控制。[/size][size=16px] 对于液氮输送管的热防护,尽管采用了液氮真空输送管,但要做好输送管两端的隔热防护,尽可能减少室温环境的加热影响。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 综上所述,通过上述解决方案,可很好的解决液氮温度精密控制问题,关键是采用控压方式可使得杜瓦瓶内的液氮温度保持恒定,压力稳定的同时也使得所液氮介质的压出流量也同样稳定,这使得液氮介质的整个输送过程处于可控稳定状态,为高精度低温控制提供了最为重要的温度稳定的冷媒。[/size][size=16px][/size][align=center][b][color=#339999]~~~~~~~~~~~~~~~[/color][/b][/align][size=16px][/size]

  • 超低温、高精度型温度传感器

    超低温、高精度型温度传感器

    超低温、高精度型温度传感器是我们的强项,欢迎来电咨询,13585791751 .[sub]?[url=WWW.SENMATIC.COM]点击打开链接[/url][/sub][img=,268,232]https://ng1.17img.cn/bbsfiles/images/2022/01/202201121337188777_532_5521199_3.png!w268x232.jpg[/img]

  • 低温超导测试系统中实现高精度液氦压力控制的解决方案

    低温超导测试系统中实现高精度液氦压力控制的解决方案

    [color=#ff0000]摘要:针对目前两种典型低温超导测试系统中存在的液氦压力控制精度较差的问题,本文提出了相应的解决方案。解决方案分别采用了直接压力控制和流量控制两种技术手段和配套数控阀门,结合24位AD和16位DA的超高精度的PID真空压力控制器和压力传感器,大幅提高了液氦压力控制精度,最终实现低温超导性能的高精度测试。[/color][color=#ff0000][/color][color=#ff0000][/color][align=center][img=低温超导测试系统中实现高精度液氦温度控制的解决方案,690,411]https://ng1.17img.cn/bbsfiles/images/2023/01/202301031120120633_4214_3221506_3.jpg!w690x411.jpg[/img][/align][align=center]~~~~~~~~~~~~~[/align][size=14px][/size][size=18px][color=#ff0000][b]1. 项目概述[/b][/color][/size] 各种超导部件如超导磁铁和超导腔体在装机前都需要在低温超导测试系统中对其性能进行测试,为了使超导部件达到低温环境则需要将被测部件浸泡在液氦介质内,并采用低温杜瓦盛装液氦介质。在整个测试过程中,对低温测试系统内的液氦压力要求极高,即要求杜瓦顶部氦气压强(绝对压力)有极好的稳定性,否则会导致测试不稳定,给测试结果带来严重误差。 目前国内现有的很多低温超导测试系统都存在液氦压力控制不稳定的严重问题,有些客户提出了相应的技术升级改造要求。 如图1所示的低温超导测试系统中,采用了两个不同口径的第一和第二泄压阀来粗调和细调液氦压力,但这种调节方法的液氦压力只能控制在1.2~1.6Bar范围内,对应4.39~4.74℃范围的液氦温度变化,造成0.35℃的温度波动。目前客户提出要设法将温度波动控制在0.1℃以内或更高的稳定性上,以提高超导部件性能测试精度。[align=center][color=#ff0000][b][img=超导试件测试时氦压控制系统,500,356]https://ng1.17img.cn/bbsfiles/images/2023/01/202301031123466941_8802_3221506_3.jpg!w690x492.jpg[/img][/b][/color][/align][align=center][color=#ff0000][b]图1 低温超导测试系统液氦压力控制装置[/b][/color][/align] 如图2所示的高场超导磁体低温垂直测试系统,其压力控制范围1~1.3Bar,尽管在图2所示系统中采用了液氦加热器来改变液氦压力,但由于压力控制阀的调节精密度不够,最终造成压力控制精度远达不到测试要求,客户也提出了技术改造要求。[align=center][b][color=#ff0000][img=高场超导磁体低温垂直测试系统,400,557]https://ng1.17img.cn/bbsfiles/images/2023/01/202301031123146762_3661_3221506_3.jpg!w522x728.jpg[/img][/color][/b][/align][align=center][b][color=#ff0000]图2 高场超导磁体低温垂直测试系统[/color][/b][/align] 针对上述两种典型低温超导测试系统中存在的液氦压力控制精度不足的问题,本文将提出相应的解决方案。解决方案将分别采用直接压力控制和流量控制两种技术手段和配套数控阀门,结合超高精度的PID真空压力控制器和压力传感器,可大幅度提高液氦压力控制精度,最终减小低温超导性能测试误差。[b][size=18px][color=#ff0000]2. 解决方案[/color][/size][/b] 在图1和图2所示的两种典型低温超导测试系统中,它们各自的液氦压力变化起因不同,因此要实现液氦压力准确控制的技术手段也不同。以下是解决方案中对应的两种不同技术途径。[b][color=#ff0000](1)直接压力调节法[/color][/b] 在图1所示的低温超导测试系统中,造成液氦蒸发的因素并不可控,只能通过调节液氦上方的氦气压力来使得测试系统保持稳定。因此,为了实现液氦上方的压强控制,解决方案采用了直接压力调节法,如图3所示,即采用数控压力控制阀代替图1中的第一和第二泄压阀。此压力控制阀与高精度PID控制器和压力传感器构成闭环控制回路,实现自动泄压和高精度压力控制。[align=center][color=#ff0000][b][img=纯压力控制结构,500,350]https://ng1.17img.cn/bbsfiles/images/2023/01/202301031124390427_8017_3221506_3.jpg!w690x483.jpg[/img][/b][/color][/align][align=center][color=#ff0000][b]图3 直接压力调节法控制装置结构[/b][/color][/align] 数控压力控制阀是一种数控正压减压控制阀,正好可以满足低温超导测试系统的微正压控制需求。通过氦气源和减压阀提供的驱动压力,可在控制阀出口处实现高精度的压力控制,同时还保持很小的漏气以节省氦气。 另外,此数控压力控制阀具有很高的控制精度,结合高精度的压力传感器和PID真空压力控制器,可将液氦压力控制在0.1%的高精度水平。[b][color=#ff0000](2)流量调节法[/color][/b] 在图2所示的低温超低测试系统中,其不同之处之一是具有液氦加热器,即通过液氦加热器和压力控制阀构成的控制回路可进行不同液氦压力的控制,由此实现不同液氦温度的控制。 为实现不同液氦压力的精密控制,解决方案在此采用了流量调节法。如图4所示,解决方案采用了电动针阀作为图2中的压力控制阀,电动针阀与双通道高精度PID控制器、压力传感器和液氦加热器构成闭环控制回路,可以按照任意设定值进行高精度的压力控制。[align=center][color=#ff0000][b][img=流量控制结构,500,290]https://ng1.17img.cn/bbsfiles/images/2023/01/202301031125069440_4211_3221506_3.jpg!w690x401.jpg[/img][/b][/color][/align][align=center][color=#ff0000][b]图4 流量调节法控制装置结构[/b][/color][/align] 电动针阀是一种数控的微小流量调节阀,可通过PID压力控制器自动调节针阀开度,流出的氦气可通向氦气回收气囊。电动针阀同样具有很高的控制精度,结合高精度的压力传感器和PID真空压力控制器,同样可将液氦压力控制在0.1%的高精度水平。[b][size=18px][color=#ff0000]3. 总结[/color][/size][/b] 通过上述解决方案的技术手段,可实现低温超低测试系统中液氦压力的准确控制,控制精度最高可达±0.1%。 按照绝对压力进行计算,饱和蒸气压为1.2Bar时,液氦温度为4.4K。由此,如果压力控制精度为±0.1%,液氦压力的波动范围为±1.2mBar(相当于绝对压力±120Pa),对应的液氦温度波动范围为4.4mK,即所控的液氦温度为4.4±0.0044K。 由此可见,通过本文所述的解决方案,仅通过采用工业级别较低造价的PID真空压力控制器和压力传感器,结合数控压力控制阀和电动针阀,就可实现很高精度的液氦压力控制,温度控制精度可达到mK量级,完全能满足绝大多数低温超导测试系统的需要。[align=center]~~~~~~~~~~~~~~~~~[/align]

  • 真空压力控制技术在低温恒温器高精度温度恒定中的应用

    真空压力控制技术在低温恒温器高精度温度恒定中的应用

    [color=#990000]摘要:针对低温恒温器中低温介质温度的高精度控制,本文主要介绍了低温介质减压控温方法以及气压控制精度对低温温度稳定性的影响,详细介绍了低温介质顶部气压高精度控制的电阻加热、流量控制和压力控制三种模式,以及相应的具体实施方案和细节。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=left][size=18px][color=#990000]1. 引言[/color][/size][/align] 在低温恒温器中,低温介质(液氦和液氮等)温度波动产生的主要原因是沸腾的低温介质顶部气压(真空度)的变化。因此,为了实现低温介质内部的温度稳定,就需要对低温介质顶部的气压进行准确控制。 国内外针对低温恒温器的温度控制大多采用以下三种技术途径: (1)主动控制方式:在浸没于低温介质的真空腔里直接引入加热电路,利用温度计对真空腔温度的实时监测数据,与目标温度值进行比较后来控制加入到加热电路中的电流。 (2)被动控制方式:对低温介质顶部气压进行控制,使低温介质温度稳定。 (3)复合控制方式:复合了上述两种控制方式,在浸没于低温介质的真空腔里直接引入加热控制电路之外,还同时对低温介质上部的气压进行控制。 电阻加热控温方式已经是一种非常成熟的技术,本文将主要针对低温介质顶部气压控制方式,介绍气压控制精度对低温温度稳定性的影响,以及高精度气压控制的实现途径和具体方案。[align=center][img=真空度控制,690,396]https://ng1.17img.cn/bbsfiles/images/2021/12/202112080959307199_6660_3384_3.png!w690x396.jpg[/img][/align][align=center][color=#990000]图1 液氦饱和蒸气压与温度关系曲线[/color][/align][size=18px][color=#990000]2. 气压控制精度与温度稳定性关系[/color][/size] 以液氦为例,液氦的饱和蒸汽压与对应温度变化曲线如图1所示。 由图1可以看出,在很小的温度范围内,上述曲线可以用直线段来描述,所以可以得到4K左右的温度范围内,气压大约100Pa的波动可引起1mK左右的温度波动。由此可以认为,如果要实现1mK以下的波动,气压波动不能超过100Pa。[size=18px][color=#990000]3. 顶部气压控制的三种模式[/color][/size] 低温介质顶部气压控制一般采用三种模式:电阻加热、流量控制和压力控制。[size=16px][color=#990000]3.1 电阻加热模式[/color][/size] 在低温恒温器的恒温控制过程中,电阻加热模式是在低温介质中放置一电阻丝加热器,如图2所示,真空计检测顶部气压变化,通过PID控制器改变加热电流大小来调节和控制顶部气压,将顶部气压恒定在设定值上。从图2可以看出,电阻加热模式比较适合增加顶部气压的升温控温方式,但无法实现减压降温。[align=center][color=#990000][img=真空度控制,690,569]https://ng1.17img.cn/bbsfiles/images/2021/12/202112081000054776_8294_3384_3.png!w690x569.jpg[/img][/color][/align][align=center][color=#990000]图2 电阻加热模式示意图[/color][/align][size=16px][color=#990000]3.2 流量控制模式[/color][/size] 流量控制模式是一种典型的减压降温模式,如图3所示,真空泵按照一定抽速连续抽取低温恒温器来降低顶部气压,真空计、电动针阀和PID控制器构成闭环控制回路,通过电动针阀调节抽气流量使顶部气压准确恒定在设定真空度上。由此可见,流量控制模式比较适合降低顶部气压的降温控温方式,但无法实现增压升温。[align=center][color=#990000][img=真空度控制,690,504]https://ng1.17img.cn/bbsfiles/images/2021/12/202112081000399321_2525_3384_3.png!w690x504.jpg[/img][/color][/align][align=center][color=#990000]图3 流量控制模式示意图[/color][/align] 另外流量控制模式中,真空泵的连续抽气使得低温介质的无效耗散比较严重。[size=16px][color=#990000]3.3 压力控制模式[/color][/size] 压力控制模式是一种即可增压也可减压的控温模式,如图4所示,当采用真空泵抽气时为减压模式,当采用增压泵时为增压模式,由此可实现宽温区内温度的连续控制。所采用的调压器自带一路进气口(大气压),结合真空泵在对顶部气压进行恒压控制的同时,可有效避免低温介质的大量无效耗散。[align=center][color=#990000][img=真空度控制,690,518]https://ng1.17img.cn/bbsfiles/images/2021/12/202112081000533816_3012_3384_3.png!w690x518.jpg[/img][/color][/align][align=center][color=#990000]图4 压力控制模式示意图[/color][/align] 另外,这里的增压方式也可以采用低温介质中增加电加热器来实现。[size=18px][color=#990000]4. 其他实施细节[/color][/size] 在上述三种控制模式实施过程中,还需特别注意以下细节: (1)真空计的选择 真空计是测量顶部气压变化的传感器,是决定低温恒温器温度控制稳定性的关键,所以一定要选择高精度真空计。 目前高精度真空计一般为电容薄膜规,一般整体精度为0.2%。 如前所述,在液氦4K左右的恒温控制过程中,要求气压波动不超过100Pa,及±50Pa,如果对应于100kPa的气压控制,则真空计的精度要求需要高于±0.05%。由此可见,对于温度波动小于1mK的恒温控制,还需要更高精度的真空计。 (2)PID控制器的选择 在恒温控制过程中,PID控制器通过A/D转换器采集真空计的测量值,计算后再将控制信号通过D/A转换器发送给执行器(电动针阀、调压器和加热电源等)。为此,要保证能充分发挥真空计的高精度和控制的准确性,需要A/D和D/A转换器的精度越高越好,至少要16位,强烈建议选择24位高精度的PID控制器。 (3)调压器的配置 调压器是一种集成了真空压力传感器、控制器和阀门的压力控制装置,但真空压力传感器的精度远不如电容薄膜规,控制器精度也比较低。为此在使用调压器时,要选择外置控制模式,即采用电容薄膜规作为控制传感器。 另外,需要特别注意的是,调压器中控制器的A/D和D/A转换器精度较低,因此对于高精度和高稳定性的顶部气压控制而言,不建议采用控压模式,除非采用特殊订制的高精度调压器。[hr/]

  • 基于半导体制冷片的高精度温度控制系统

    基于半导体制冷片的高精度温度控制系统

    成果简介 半导体制冷片是利用特殊半导体材料构成的PN结产生Peltier效应制成,具有无噪声、体积小、结构简单、加热制冷切换方便、冷热转换具有可逆性等优点。化工安全组对基于半导体制冷片温控系统的影响因素进行了全面、系统分析和实验研究,设计完成了大功率、高可靠性的半导体制冷片驱动电路,并积累了半导体制冷片加热制冷切换双向温控算法的丰富经验,形成了半导体制冷片整套的研究方法和应用手段。目前,半导体制冷片的高精度温度控制系统已应用在产品中。系统组成http://ng1.17img.cn/bbsfiles/images/2016/07/201607121459_600117_3112929_3.jpg图1 基于半导体制冷片的温度控制单元结构http://ng1.17img.cn/bbsfiles/images/2016/07/201607121500_600118_3112929_3.png图2 高精度温度控制系统硬件组成技术指标(1)温度范围:0~120℃;(2)控温精度:±0.05℃;(3)半导体制冷片驱动电路能够最大支持20V 15A输出。http://ng1.17img.cn/bbsfiles/images/2016/07/201607121500_600119_3112929_3.jpg图3 0℃和120℃温度控制曲线图http://ng1.17img.cn/bbsfiles/images/2016/07/201607121500_600120_3112929_3.jpg图4 37.8℃温度控制过程曲线图 http://ng1.17img.cn/bbsfiles/images/2016/07/201607121500_600121_3112929_3.jpg图5 37.8℃稳态控制精度曲线图技术特点(1)高精度温度采集电路:创新性采用比率法和激励换向技术,系统温度分辨力达到0.001℃,检测精度达到±0.01℃。(2)大功率高可靠性的半导体制冷驱动:采用H桥电路形式实现半导体制冷片加热制冷方式的切换,解决了该类驱动电路无死区防护、功率小等问题;设计引入滤波和保护电路,大大增强了半导体制冷片的寿命及驱动电路的可靠性。(3)双向多模式温控:温控策略充分考虑半导体制冷片加热制冷输出功率差异、功率随温度变化以及系统加热制冷方式切换的随机性等因素,综合采用了单点与扫描结合、高低温分段处理、随环境温度变化动态调节等多重温控调节方式。获得研发资助情况浙江省公益项目前期应用示范情况已用于微量蒸气压测定仪产品中的温度控制,温度范围为0~120℃,控温精度为±0.05℃,驱动电路输出12V/10A。相关产品已通过批量试产,温控系统运行稳定可靠,可复制性强,实现成本低,适合于批量生产。转化应用前景半导体制冷片因加热制冷切换方便、结构简单、系统噪音小、控温精确度高以及成本低等优点,有望在科学仪器温度控制、温度发生和电气设备散热等领域获得广泛应用。特别是随着仪器仪表尤其是生命科学仪器、化学分析仪器等逐渐向高精度、小型化方向快速发展,高精度的小型温度控制系统需求越来越旺盛,因此半导体制冷片具有良好的应用前景。合作方式(1)技术转让;(2)委托开发;(3)双方联合开发。应用领域分析仪器、医疗仪器、生命科学测试仪器、家用电器等领域中高精度的恒温、匀速升降温等多模式的温度控制,以及电气装置散热等。联系人:杨遂军;联系电话:0571-86872415、0571-87676266;Email:yangsuijun1@sina.com;工贸所网址:http://itmt.cjlu.edu.cn;工贸所微信公众号:中国计量大学工贸所。中国计量大学工业与商贸计量技术研究所简介 中国计量大学是以“计量、测试、标准”为特色的院校,主要培养测试技术、仪器开发方向的专属人才。 中国计量大学工业与商贸计量技术研究所是学校为进一步推动高水平研究团队的建设而在2014年设立的两个学科特区之一,主要针对工业生产与贸易往来中关乎国计民生的计量测试问题,以新方法、技术、设备及评价为研究对象,主要研究方向为化工产品及工艺安全测试技术与仪器、零部件无损检测技术与设备、光栅信号处理与齿轮精密测量,涉及的单元技术有高精度温度检测技术、快速热电传感技术、高稳态温度场发生技术、低热惰性高压容器制备工艺、激光和电磁加热、非稳态传热反演、基于幅值分割原理的光栅信号数字细分、光栅信号短周期误差补偿、机器视觉高精度尺寸测量。研究所同时是化工产品安全测试技术及仪器浙江省工程实验室,先后承担国家重大科学仪器设备开发专项、国家公益性行业科研专项、国家自然基金、973等国家级项目,科研经费超千万。现有专职科研人员9人、工程技术人员2人、在读研究生30余人、行政与科研管理人员3人。 “应用驱动、产研融合”是研究所的标签,以应用驱动为前提,通过方法技术化、技术产品化、产品市场化,将科研成果落脚于实际应用,为经济与社会发展提供推动力,同时为研究所提供持续发展所需资金、影响力、信息等各类资源的支撑,目前研究所已拥有2家产业化公司。 更多研究所介绍请登录研究所网站itmt.cjlu.edu.cn或微信公众号。

  • 半导体系统专用高精度控制电源的水泵相关说明

    半导体系统专用高精度控制电源应用在国内半导体行业中,无锡冠亚的半导体系统专用高精度控制电源中每个配件都是很重要的,其中,关于水泵是比较重要,我们也需要对其有一定的认识。  半导体系统专用高精度控制电源是一类广泛应用于国内工业生产领域的专业制冷设备,在半导体系统专用高精度控制电源中,水泵的运行是否正常对于保证低温半导体系统专用高精度控制电源设备的正常运转是非常重要的,定期对低温半导体系统专用高精度控制电源的水泵进行检测是非常关键的,那么,怎样合理的评估和检测低温半导体系统专用高精度控制电源水泵的情况好呢?  半导体系统专用高精度控制电源水泵的情况在较大程度上影响着低温半导体系统专用高精度控制电源设备的整体运行。在半导体系统专用高精度控制电源工作的时候,水泵在运行中,应注意检查各个仪表工作是否正常、稳定,特别注意电流表是否超过电动机额定电流,电流过大,过小应立即停机检查。  另外,半导体系统专用高精度控制电源设备的水泵相关工作系统能够较好的反映半导体系统专用高精度控制电源设备的工作状态。比如,水泵流量是否正常,检查出水管水流情况,根据水池水位变化,估计水泵运行时间,及时与调度联系。同时,还要检查水泵填料压板是否发热,滴水是否正常,每班不得少于八次。  半导体系统专用高精度控制电源的水泵性能是很关键的,需要我们认真对待,认真保养,只有每个配件的性能都可以的话,半导体系统专用高精度控制电源才能更好的使用。

  • TEC半导体制冷加热式微型高精度温度环境试验箱在压电传感器频率温度特性测试中的应用

    TEC半导体制冷加热式微型高精度温度环境试验箱在压电传感器频率温度特性测试中的应用

    [size=16px][color=#339999]摘要:为解决石英晶体微量天平这类压电传感器频率温度特性全自动测量中存在的温度控制精度差和测试效率低的问题,本文在TEC半导体制冷技术基础上,提出了小尺寸、高精度和全自动程序温控的解决方案,给出了温控装置的详细结构和实现高精度温度程序控制的具体手段。解决方案在为压电传感器频率温度特性测量提供精密温控能力的同时,关键是可快速进行全过程的自动温度程序运行,由此既保证精度又提高效率。[/color][/size][size=16px][color=#339999][/color][/size][align=center][size=16px][img=TEC半导体制冷加热式微型高精度温度环境试验箱在压电传感器频率温度特性测试中的应用,550,309]https://ng1.17img.cn/bbsfiles/images/2023/02/202302141513442750_3958_3221506_3.jpg!w690x388.jpg[/img][/size][/align][b][size=18px][color=#339999]1. 问题的提出[/color][/size][/b][size=16px] 石英晶体微天平(Quartz Crystal Microbalance,QCM)作为一种超高灵敏的质量检测装置,其测量精度可达纳克级,并广泛应用于化学、物理、生物、医学和表面科学等领域中,用以进行气体、液体的成分分析以及微质量的测量、薄膜厚度及粘弹性结构检测等。石英晶体微天平实际上是一种压电传感器,它利用了石英晶体的压电效应,将石英晶体电极表面质量变化转化为石英晶体振荡电路输出电信号的频率变化,进而通过计算机等其他辅助设备获得高精度的测量结果。石英晶体微天平除了具有高灵敏度高和高精度之外,最大特点是结构简单和成本低,它由一薄的石英片组成,两侧金属化,提供电接触。QCM的工作原理类似于用于时间和频率控制的晶体振荡器,但QCM表面常暴露在周围环境中,且对环境温度变化非常敏感,QCM的一个重要技术指标就是频率温度特性。在QCM的具体应用中,温度变化会严重影响QCM测量结果,因此准确测量频率温度特性是表征评价QCM的一项重要内容。但在目前的各种频率温度特性测试装置中,特别是高精度温度控制装置,还存在以下问题:[/size][size=16px] (1)在常用的-10~+70℃的温度范围内需要对QCM进行多个设定点的高精度温度控制和频率测量,而目前常用温控技术往往控制精度偏低,若提高控制精度又带来测试时间过长的问题。[/size][size=16px] (2)专门用于压电晶体频率温度特性测试的恒温装置往往体积普遍偏大,内部温度均匀性较差,同样会带来温控精度差的问题,仅能用于批量压电晶体较低精度的频率温度特性测试。[/size][size=16px] (3)尽管采用了TEC半导体制冷技术可实现QCM的高精度温度控制,实现了小型化和快速温控和频率测量,但存在的问题是多个温度点的自动化程序控制能力差,无法实现全温度区间内多个温度点的自动控制和频率测量。[/size][size=16px] 为了解决QCM这类压电传感器频率温度特性全自动测量中存在的上述问题,本文在TEC半导体制冷技术基础上,提出了高精度和全自动程序温控的解决方案,给出了温控装置的详细结构和实现高精度温度程序控制的具体手段。解决方案在为压电传感器频率温度特性测量提供精密温控能力的同时,关键是可快速进行全过程的自动温度程序运行,由此既保证精度又提高效率。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 为了进行石英精度微天平(QCM)的频率温度特性测量,需要将QCM放置在一个受控的热环境中。为了提高热环境的温度控制精度,热环境的尺寸空间较小,并采用TEC模组进行加热和制冷,整个热控装置的结构如图1所示。[/size][align=center][size=16px][color=#339999][b][img=压电传感器频率温度测量温控系统示意图,690,209]https://ng1.17img.cn/bbsfiles/images/2023/02/202302141516237559_7391_3221506_3.jpg!w690x209.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 石英精度微天平频率温度特性温控装置结构示意图[/b][/color][/size][/align][size=16px] 如图1所示,TEC被放置在铝制均热套和散热器之间,铝制均热套作为热稳定工作的密闭腔体,为整个腔体提供均匀的温度环境。散热器直接浸泡在水浴中使得TEC的工作表面达到较低的负温度,散热器也可以直接采用水冷板,水冷板内通循环冷却水。[/size][size=16px] 另外,在频率温度特性测试过程中,TEC要提供高低温范围内温度控制,那么在高低温运行时,TEC工作表面和散热器之间存在较大差异,因此,在TEC周围布置隔热材料以减少其两侧之间的热流,从而增加TEC工作面的温度均匀性。[/size][size=16px] 铝制均热套放置在TEC工作表面的顶部,在均热套与TEC之间采用银胶以减小均热套与TEC工作表面之间的接触热阻,铝制均热套被隔热材料包裹以减少与环境的热交换。[/size][size=16px] 在铝制均热套内布置了两只电阻型温度传感器,其中一只安装在铝制均热套的侧壁上作为控温传感器,此温度信号提供给超高精度的PID控制器进行温度自动控制。另一只用来测量固定在铝制支架上的QCM组件温度。[/size][size=16px] 在图1所示的温控装置中,为满足不同尺寸和结构的TEC温控装置,采用了独立的TEC换向电源以满足不同加热功率的需要。在温控器方面,则采用了超高精度的PID控制器,可直接对TEC进行加热制冷双向控制,其中AD为24位,DA为16位,最小输出百分比为0.01%,PID参数自整定,可编程程序控制,由此可实现高精度的温度控制。[/size][size=16px] 对于图1所示结构的温控装置,在全温区范围内设定点从-10变化到+70℃,步进5℃,其温度控制可实现±12mK的温度稳定性和±15mK的设定值精度。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 上述压电传感器频率温度特性测试的温控解决方案,主要具备以下几个特点:[/size][size=16px] (1)采用了TEC半导体制冷组件,可低成本的实现压电传感器频率温度特性测试过程中的精密温度控制,并使得整个频率温度特性测试装置的体积非常小巧。[/size][size=16px] (2)整个温控结构的设计简便,但可以实现0.02℃以内的控制精度和重复性,完全能满足各种压电传感器的频率温度特性测试需要。[/size][size=16px] (3)由于采用了目前最高精度的工业级可编程PID控制器,具有24位AD、16位DA和0.01%的最小输出百分比,这是实现高精度TEC温度控制的必要条件。[/size][size=16px] (4)高精度的可编程PID控制器可按照设定程序进行全测试过程的温度自动控制,设定程序可通过随机的计算机软件进行编辑和修改,控制过程参数可自动进行显示和存储。[/size][size=16px] 总之,本文为实现高精度、简便小巧和低价格的压电传感器频率温度特性测试中的温度控制提供了切实可行的解决方案,为单个或少量压电传感器稳频特性评价提供了有效的技术途径。[/size][size=16px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 基于半导体制冷片的高精度温度控制系统-仪器温控-成果推广

    基于半导体制冷片的高精度温度控制系统-仪器温控-成果推广

    基于半导体制冷片的高精度温度控制系统成果简介半导体制冷片是利用特殊半导体材料构成的PN结产生Peltier效应制成,具有无噪声、体积小、结构简单、加热制冷切换方便、冷热转换具有可逆性等优点。化工安全组对基于半导体制冷片温控系统的影响因素进行了全面、系统分析和实验研究,设计完成了大功率、高可靠性的半导体制冷片驱动电路,并积累了半导体制冷片加热制冷切换双向温控算法的丰富经验,形成了半导体制冷片整套的研究方法和应用手段。目前,半导体制冷片的高精度温度控制系统已应用在产品中。系统组成http://ng1.17img.cn/bbsfiles/images/2016/05/201605302242_595303_3112929_3.png图1 基于半导体制冷片的温度控制单元结构http://ng1.17img.cn/bbsfiles/images/2016/05/201605302242_595304_3112929_3.jpg图2 高精度温度控制系统硬件组成技术指标(1)温度范围:0~120℃;(2)控温精度:±0.05℃;(3)半导体制冷片驱动电路能够最大支持20V 15A输出。http://ng1.17img.cn/bbsfiles/images/2016/05/201605302243_595305_3112929_3.jpg 图3 0℃和120℃温度控制曲线图http://ng1.17img.cn/bbsfiles/images/2016/05/201605302243_595306_3112929_3.jpg 图4 37.8℃温度控制过程曲线图 http://ng1.17img.cn/bbsfiles/images/2016/05/201605302243_595307_3112929_3.jpg 图5 37.8℃稳态控制精度曲线图技术特点(1)高精度温度采集电路:创新性采用比率法和激励换向技术,系统温度分辨力达到0.001℃,检测精度达到±0.01℃。(2)大功率高可靠性的半导体制冷驱动:采用H桥电路形式实现半导体制冷片加热制冷方式的切换,解决了该类驱动电路无死区防护、功率小等问题;设计引入滤波和保护电路,大大增强了半导体制冷片的寿命及驱动电路的可靠性。(3)双向多模式温控:温控策略充分考虑半导体制冷片加热制冷输出功率差异、功率随温度变化以及系统加热制冷方式切换的随机性等因素,综合采用了单点与扫描结合、高低温分段处理、随环境温度变化动态调节等多重温控调节方式。获得研发资助情况浙江省公益项目前期应用示范情况已用于微量蒸气压测定仪产品中的温度控制,温度范围为0~120℃,控温精度为±0.05℃,驱动电路输出12V/10A。相关产品已通过批量试产,温控系统运行稳定可靠,可复制性强,实现成本低,适合于批量生产。转化应用前景半导体制冷片因加热制冷切换方便、结构简单、系统噪音小、控温精确度高以及成本低等优点,有望在科学仪器温度控制、温度发生和电气设备散热等领域获得广泛应用。特别是随着仪器仪表尤其是生命科学仪器、化学分析仪器等逐渐向高精度、小型化方向快速发展,高精度的小型温度控制系统需求越来越旺盛,因此半导体制冷片具有良好的应用前景。合作方式(1)技术转让;(2)委托开发;(3)双方联合开发。应用领域分析仪器、医疗仪器、生命科学测试仪器、家用电器等领域中高精度的恒温、匀速升降温等多模式的温度控制,以及电气装置散热等。联系人:杨遂军;联系电话:0571- 86872415、0571-87676266;Email: yangsuijun1@sina.com。微信公众号:中国计量大学工贸所工贸所网站:itmt.cjlu.edu.cn中国计量大学工业与商贸计量技术研究所中国计量大学是以“计量、测试、标准”为特色的院校,主要培养测试技术、仪器开发方向的专属人才。中国计量大学工业与商贸计量技术研究所是学校为进一步推动高水平研究团队的建设而在2014年设立的两个学科特区之一,主要针对工业生产与贸易往来中关乎国计民生的计量测试问题,以新方法、技术、设备及评价为研究对象,主要研究方向为化工产品及工艺安全测试技术与仪器、零部件无损检测技术与设备、光栅信号处理与齿轮精密测量,涉及的单元技术有高精度温度检测技术、快速热电传感技术、高稳态温度场发生技术、低热惰性高压容器制备工艺、激光和电磁加热、非稳态传热反演、基于幅值分割原理的光栅信号数字细分、光栅信号短周期误差补偿、机器视觉高精度尺寸测量。研究所同时是化工产品安全测试技术及仪器浙江省工程实验室,先后承担国家重大科学仪器设备开发专项、国家公益性行业科研专项、国家自然基金、973等国家级项目,科研经费超千万。现有专职科研人员9人、工程技术人员2人、在读研究生30余人、行政与科研管理人员3人。“应用驱动、产研融合”是研究所的标签,以应用驱动为前提,通过方法技术化、技术产品化、产品市场化,将科研成果落脚于实际应用,为经济与社会发展提供推动力,同时为研究所提供持续发展所需资金、影响力、信息等各类资源的支撑,目前研究所已拥有2家产业化公司。

  • 【求助】高精度恒温油(水)、低温槽标准测试仪建标名称及其它问题.

    1.烘箱、培养箱、恒温箱应该是对设备内的温度场进行校准,依据JJF1101-2003 《环境试验设备温度、湿度校准规范》来进行,测试设备内温度场的温度偏差温度波动度和温度均匀度三项参数,建标名称可以叫环境试验设备温度校准装置比较合适,这样它就包括了烘箱、培养箱等多种能够提供温度试验环境的设备,多功能温度检定装置是不合适的,如果标准器同时可以测湿度场的话也用这规范,可以测恒温恒湿箱以及试验室的温度湿度进行校准,建标名称就叫环境试验设备温度、湿度校准装置。2.我们还将购置一台:高精度恒温油(水)、低温槽标准测试仪。请问:建标名称怎样填写(如XXX检定/标准装置)?相对规程有几个(好象有四个规程)?谢谢!

  • 基于半导体制冷片的高精度温度控制系统-生命科学测试仪器温控-成果推广

    基于半导体制冷片的高精度温度控制系统-生命科学测试仪器温控-成果推广

    基于半导体制冷片的高精度温度控制系统成果简介半导体制冷片是利用特殊半导体材料构成的PN结产生Peltier效应制成,具有无噪声、体积小、结构简单、加热制冷切换方便、冷热转换具有可逆性等优点。化工安全组对基于半导体制冷片温控系统的影响因素进行了全面、系统分析和实验研究,设计完成了大功率、高可靠性的半导体制冷片驱动电路,并积累了半导体制冷片加热制冷切换双向温控算法的丰富经验,形成了半导体制冷片整套的研究方法和应用手段。目前,半导体制冷片的高精度温度控制系统已应用在产品中。系统组成http://ng1.17img.cn/bbsfiles/images/2016/05/201605302259_595308_3112929_3.png 图1 基于半导体制冷片的温度控制单元结构http://ng1.17img.cn/bbsfiles/images/2016/05/201605302259_595309_3112929_3.jpg图2 高精度温度控制系统硬件组成技术指标(1)温度范围:0~120℃;(2)控温精度:±0.05℃;(3)半导体制冷片驱动电路能够最大支持20V 15A输出。http://ng1.17img.cn/bbsfiles/images/2016/05/201605302314_595310_3112929_3.jpg 图3 0℃和120℃温度控制曲线图http://ng1.17img.cn/bbsfiles/images/2016/05/201605302314_595311_3112929_3.jpg 图4 37.8℃温度控制过程曲线图 http://ng1.17img.cn/bbsfiles/images/2016/05/201605302315_595312_3112929_3.jpg 图5 37.8℃稳态控制精度曲线图技术特点(1)高精度温度采集电路:创新性采用比率法和激励换向技术,系统温度分辨力达到0.001℃,检测精度达到±0.01℃。(2)大功率高可靠性的半导体制冷驱动:采用H桥电路形式实现半导体制冷片加热制冷方式的切换,解决了该类驱动电路无死区防护、功率小等问题;设计引入滤波和保护电路,大大增强了半导体制冷片的寿命及驱动电路的可靠性。(3)双向多模式温控:温控策略充分考虑半导体制冷片加热制冷输出功率差异、功率随温度变化以及系统加热制冷方式切换的随机性等因素,综合采用了单点与扫描结合、高低温分段处理、随环境温度变化动态调节等多重温控调节方式。获得研发资助情况浙江省公益项目前期应用示范情况已用于微量蒸气压测定仪产品中的温度控制,温度范围为0~120℃,控温精度为±0.05℃,驱动电路输出12V/10A。相关产品已通过批量试产,温控系统运行稳定可靠,可复制性强,实现成本低,适合于批量生产。转化应用前景半导体制冷片因加热制冷切换方便、结构简单、系统噪音小、控温精确度高以及成本低等优点,有望在科学仪器温度控制、温度发生和电气设备散热等领域获得广泛应用。特别是随着仪器仪表尤其是生命科学仪器、化学分析仪器等逐渐向高精度、小型化方向快速发展,高精度的小型温度控制系统需求越来越旺盛,因此半导体制冷片具有良好的应用前景。合作方式(1)技术转让;(2)委托开发;(3)双方联合开发。应用领域分析仪器、医疗仪器、生命科学测试仪器、家用电器等领域中高精度的恒温、匀速升降温等多模式的温度控制,以及电气装置散热等。联系人:杨遂军;联系电话:0571- 86872415、0571-87676266;Email: yangsuijun1@sina.com。微信公众号:中国计量大学工贸所工贸所网站:itmt.cjlu.edu.cn中国计量大学工业与商贸计量技术研究所中国计量大学是以“计量、测试、标准”为特色的院校,主要培养测试技术、仪器开发方向的专属人才。中国计量大学工业与商贸计量技术研究所是学校为进一步推动高水平研究团队的建设而在2014年设立的两个学科特区之一,主要针对工业生产与贸易往来中关乎国计民生的计量测试问题,以新方法、技术、设备及评价为研究对象,主要研究方向为化工产品及工艺安全测试技术与仪器、零部件无损检测技术与设备、光栅信号处理与齿轮精密测量,涉及的单元技术有高精度温度检测技术、快速热电传感技术、高稳态温度场发生技术、低热惰性高压容器制备工艺、激光和电磁加热、非稳态传热反演、基于幅值分割原理的光栅信号数字细分、光栅信号短周期误差补偿、机器视觉高精度尺寸测量。研究所同时是化工产品安全测试技术及仪器浙江省工程实验室,先后承担国家重大科学仪器设备开发专项、国家公益性行业科研专项、国家自然基金、973等国家级项目,科研经费超千万。现有专职科研人员9人、工程技术人员2人、在读研究生30余人、行政与科研管理人员3人。“应用驱动、产研融合”是研究所的标签,以应用驱动为前提,通过方法技术化、技术产品化、产品市场化,将科研成果落脚于实际应用,为经济与社会发展提供推动力,同时为研究所提供持续发展所需资金、影响力、信息等各类资源的支撑,目前研究所已拥有2家产业化公司。

  • 混合法比热容测试中绝热量热计的高精度等温绝热技术介绍

    混合法比热容测试中绝热量热计的高精度等温绝热技术介绍

    [b][color=#339999][size=16px]摘要:在下落法比热容测试中绝热量热计的漏热是最主要误差源,为实现绝热量热计的低漏热要求,本文介绍了主动护热式等温绝热技术以及相应的解决方案。方案的核心一是采用循环水冷却金属圆筒给量热计和护热装置提供低温环境或恒定冷源,二是采用三通道分布式温差传感器和[/size][size=16px]PID[/size][size=16px]控制器使绝热屏对量热计进行动态温度跟踪。此单层绝热屏技术可以达到小于[/size][size=16px]0.02K[/size][size=16px]的温差控制精度,对于更低漏率量热计和更高温度均匀性的要求可采用多层屏技术。[/size][/color][/b][align=center][size=16px][color=#339999][b]------------------------------------[/b][/color][/size][/align][size=18px][color=#339999][b]1. 背景介绍[/b][/color][/size][size=16px] 下落法,也称之为铜卡计混合法,是一种测量固态材料比热容的绝热量热计标准测试方法,常用于测量100℃至超高温温度范围固态材料的比热容,特别适用于要求更具代表性的较大试样尺寸复合材料和各种低密度材料。[/size][size=16px] 下落法比热容测试的基本原理如图1所示,将已知质量的试样悬挂于加热炉中进行加热,当试样的温度达到设定温度且稳定后使其落入置于自动绝热环境且初始温度为20℃的铜块量热计中。试样放热使量热计温度升高到末温,通过测量量热计的温升,可求出试样的平均比热容。[/size][align=center][size=16px][color=#339999][b][img=下落法原理及其量热计温升变化,650,260]https://ng1.17img.cn/bbsfiles/images/2023/08/202308181720089359_1047_3221506_3.jpg!w690x277.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 下落法原理及其量热计温升变化[/b][/color][/size][/align][size=16px] 从上述下落法原理可以看出原理十分简单,但要实现比热容的准确测量,最关键的技术是要使量热计始终处于绝热环境,且量热计的起始温度要准确恒定,具体要求如下:[/size][size=16px] (1)下落法测试过程要求量热计始终处于绝热状态,避免量热计热量向四周散失而降低量热计的温升。为此需要采用高精度的主动绝热技术,使位于量热计周围的主动护热装置的温度动态跟踪量热计的温度变化并保持一致,从而形成动态等温绝热效果。[/size][size=16px] (2)为了保证测试的连贯性和准确性,样品下落前量热计的初始温度始终要保持一个恒定值,如20℃,由此要求量热计在处于绝热环境的同时,还需准确控制量热计温度恒定在20℃。[/size][size=16px] 上述两点几乎是所有绝热量热计准确测量最重要的边界条件,也是绝热量热计的关键技术,需要采用精密的温控技术才能实现。为此,本文介绍了实现此关键技术的解决方案。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 解决方案的整体思路是样品通过顶部入口落入量热计,对圆柱形量热计按照上中下三个方向进行全方位的主动式护热,量热计及其护热装置全部放置在比20℃起始温度略低的温度环境内,此温度环境由19℃循环水冷却的金属圆筒提供。依此设计的量热计整体结构如图2所示。[/size][align=center][size=16px][color=#339999][b][img=下落法比热仪绝热量热计结构示意图,550,451]https://ng1.17img.cn/bbsfiles/images/2023/08/202308181721406706_1103_3221506_3.jpg!w690x567.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 下落法比热仪绝热量热计结构示意图[/b][/color][/size][/align][size=16px] 如图2所示,量热计内镶嵌了一个圆柱形落样井,落样井外侧镶嵌有金属细丝以提供量热计标定加热功能,测温热电阻则由量热计底部插入固定。[/size][size=16px] 在量热计的侧向四周安装有一个侧向护热圆桶以提供量热计径向绝热所需的径向温度跟踪控制。同样,在量热计的上下两端分别安装有底部护热板和顶部护热板,以提供量热计轴向绝热所需的温度跟踪控制。由此通过径向和轴向的温度动态跟踪控制,使护热装置的温度始终与量热计相同,从而使量热计总是处于等温绝热状态。[/size][size=16px] 由于量热计和护热装置都处于一个温度19℃左右的低温环境,此低温环境就相当于一个恒定冷源,那么护热装置仅采取加热方式就可以对高于此低温环境的量热计温度进行快速跟踪控制,同时也这样可以很精确的控制量热计的20℃起始温度。[/size][size=16px] 为了实现高精度的起始温度控制和跟踪温度控制,除了需要采用高精度铂电阻温度计之外,关键是还需在上中下护热装置与量热计之间分别配置高分辨率的分布式温差传感器,以及三通道的超高精度PID温度控制器,温差传感器的分辨率以及PID温控器的AD和DA精度决定了温度跟踪精度和量热计绝热效果,最终决定了比热容的测量精度。本解决方案所采用的温差传感器以及超高精度PID控制器,可使温度跟踪精度达到0.02K以下,优于标准方法中规定的0.05K精度要求。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 等温绝热是各种高精度绝热量热计普遍使用的技术手段,也是各种高精度温度环境控制首选的技术途径之一。针对下落法比热容测试中的绝热量热计,本解决方案采用的是单层绝热屏结构,而对于绝热或环境温度恒定有更高要求的仪器设备和试验环境,在单层结构基础上可以采用多层绝热屏结构,特别是在恒定的真空压力环境下,单层或多层绝热屏结构更是首选技术方案。[/size][align=center][size=16px][color=#339999][b][/b][/color][/size][/align][align=center][b][color=#339999]~~~~~~~~~~~~~~~[/color][/b][/align][size=16px][/size]

  • 大型高低温步入试验室的水冷机组说明

    大型高低温步入试验室具有极宽的温湿度控制范围,可满足用户的各种需要。采用独特的平衡调温调湿方式,可获得安全、精确的温湿度环境。具有稳定、平衡的加热、加湿性能,可进行高精度、高稳定的温湿度控制。其装备高精度智能化的温度调节器,温湿度采用LED数字显示方式。高低温湿热试验箱可选配温湿度记录仪。 大型高低温步入试验室制冷回路自动选择,自控装置具有随温度的设定值自动选择运转制冷回路的性能,实现高温状态下直接启动制冷机,直接降温。装有先进的安全、保护装置漏电断路器、超温保护器、缺相保护器、断水保护器。 大型高低温步入试验室的水冷机组: 1.大型步入式试验室把水冷凝器、冷却塔、循环水泵、连接水管道连接起来,具有设计合理、节水节能、换热量大、结构紧凑、占地面积小,接管少等特点; 2.试验室在传统的基础上,又新开发了铜管作冷凝盘管,取代了铁管,大大缩小了外形,减轻了重量,缩短了现场施工周期,降低了运输和安装费用; 3.循环水泵选用小功率,大流量、噪音低、耗电小等特点; 4.水分配系统采用PVC塑料结构,具有流量大、防堵塞、喷洒均匀、易维护、寿命长等特点; 5.大型高低温步入试验室轴流风机叶轮采用铝合金,叶片采用高强度尼龙风叶,具有风压高、风量大、噪音小、运行平稳等特点。大型高低温步入试验室的水冷机组说明http://www.bjyashilin.com

  • TEC温控器:半导体制冷片新型超高精度温度程序PID控制器

    TEC温控器:半导体制冷片新型超高精度温度程序PID控制器

    [align=center][size=18px][color=#990000]TEC温控器:半导体制冷片新型超高精度温度程序PID控制器[/color][/size][/align][align=center][color=#666666]TEC Thermostat: A New Type of Ultra-high Precision Temperature Program PID Controller for Semiconductor Refrigerator[/color][/align][color=#990000]摘要:针对目前国内外市场上TEC温控器控温精度差、无法进行程序控温、电流换向模块体积大以及造价高的现状,本文介绍了低成本的超高精度PID控制器。24位模数采集保证了数据采集的超高精度,正反双向控制功能及其小体积大功率电流换向模块可用于半导体制冷、液体加热制冷循环器和真空压力的正反向控制,程序控制功能可实现按照设定曲线进行准确控制,可进行PID参数自整定并可存储多组PID参数。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#990000]一、TEC温控器国内外现状[/color][/size]半导体致冷片(Thermo Electric Cooler)是利用半导体材料的珀尔帖效应制成的一种片状器件,可通过改变电流方向来实现加热和制冷,在室温附近的温度范围内可作为冷源和热源使用,是目前温度控制精度最高的一种温控器件。在采用半导体制冷片进行控温时,需配合温度传感器、控制器和驱动电源一起使用,它们的选择决定了控温效果和成本。温度传感器可根据精度要求选择热电偶和热电阻传感器,控制器也是如此,但在高精度控制和电源换向模块方面,国内外TEC温控器普遍存在以下问题:(1)目前市场上二千元人民币以下的国内外温控器,普遍特征是数据采集精度不高,大多是12位模数转换,无法充分发挥TEC的加热制冷优势,无法满足高精度温度控制要求。(2)绝大多数低价的TEC温控器基本都没有程序控制功能,只能用于定点控制,无法进行程序升温。(3)极个别厂家具有高精度24位采集精度的TEC温控器,但没有相应的配套软件,用户只能手动面板操作,复杂操作要求的计算机通讯需要用户自己编程,使用门槛较高,而且价格普遍很高。(4)目前国内外在TEC控温上的另一个严重问题是电源驱动模块。在具有加热制冷功能的高档温控器中,TEC控温是配套使用了4个固态继电器进行电流换向,如果再考虑用于固态继电器的散热组件,这使得仅一个电流换向模块往往就会占用较大体积,且同时增加成本。[size=18px][color=#990000]二、国产24位高精度可编程TEC温控器[/color][/size]为充分发挥TEC制冷片的强大功能,并解决上述TEC温控器中存在的问题,控制器的数据采集至少需要16位以上的模数转换器,而且具有编程功能。目前我们已经开发出VPC-2021系列24位高精度可编程通用性PID控制器,如图1所示。此系列PID控制器功能十分强大,配套小体积大功率的电流换向器,可以完全可以满足TEC制冷片的各种应用场合,且性价比非常高。[align=center][color=#990000][img=TEC温控器,650,338]https://ng1.17img.cn/bbsfiles/images/2021/12/202112232210356263_6759_3384_3.png!w650x338.jpg[/img][/color][/align][align=center][color=#990000]图1 国产VPC-2021系列可编程PID温度控制器[/color][/align]VPC-2021系列控制器主要性能指标如下:(1)精度:24位A/D,16位D/A。(2)多通道:独立1通道或2通道。可实现双传感器同时测量及控制。(3)多种输出参数:47种(热电偶、热电阻、直流电压)输入信号,可实现不同参量的同时测试、显示和控制。(4)多功能:正向、反向、正反双向控制、加热/制冷控制。(5)PID程序控制:改进型PID算法,支持PV微分和微分先行控制。可存储20组分组PID,支持20条程序曲线(每条50段)。(6)通讯:两线制RS485,标准MODBUSRTU 通讯协议。(7)软件:通过软件计算机可实现对控制器的操作和数据采集存储。可选各种功率大小的集成式电流换向模块,只需一个模块就可以完成控制电流的自动换向,减小体积和降低成本。[align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 电动针阀和双通道控制器在真空冷冻干燥高精度压力控制中的应用

    电动针阀和双通道控制器在真空冷冻干燥高精度压力控制中的应用

    [color=#990000]摘要:目前真空冷冻干燥过程中已普遍使用了电容压力计,使得与电容压力计相配套的压力控制器和电动进气调节阀这两个影响压力控制精度和重复性的主要环节显着尤为突出。为解决控制精度问题,本文介绍了国产最新型的2通道24位高精度PID压力控制器和步进电机驱动电动针阀的功能、技术指标及其应用。经试验验证,上游控制模式中使用电动针阀和高精度控制器可将压力精确控制在±1%以内,并且此控制器还可以同时用于冷冻干燥过程中皮拉尼真空计的监控,以进行初次冻干终点的自动判断。[/color][size=18px][color=#990000]一、问题的提出[/color][/size] 压力控制是真空冻干过程中的一个重要工艺过程,其控制精度严重影响产品质量,对于一些敏感产品的冷冻干燥尤为重要。因此,为使冷冻干燥过程可靠且可重复地进行,必须在干燥室内准确、重复地测量和控制压力,这是考察冷冻干燥硬件设备能力的重要指标之一。同时因为一次干燥时的压力或真空度,直接影响产品升华界面温度,因此准确平稳的控制压力,对于一次干燥过程至关重要。但在实际真空冷冻干燥过程中,在准确压力控制方面目前国内还存在以下问题: (1)压力控制器不匹配问题:尽管冷冻干燥工艺和设备都配备了精度较高的电容压力计,其精度可达到满量程的0.2%~0.5%,但目前国内大多配套采用PLC进行电容压力计直流电压信号的测量和控制,PLC的A/D和D/A转换精度明显不够,严重影响压力测量和控制精度。A/D和D/A转换精度至少要达到16位才能满足冷冻干燥过程的需要。 (2)进气控制阀不匹配问题:对于冷冻干燥中的真空压力控制,其压力恒定基本都在几帕量级,因此一般都采用上游进气控制模式,即在真空泵抽速一定的情况下,通过电动调节阀增加进气流量以降低压力,减少进气流量以增加压力。但目前国内普遍还在使用磁滞很大的电磁阀来进行调节,严重影响压力控制精度和重复性,而目前国际上很多已经开始使用步进电机驱动的低磁滞电动调节阀。 为解决上述冷冻干燥过程中压力控制存在的问题,本文将介绍国产最新型的2通道24位高精度PID压力控制器、电动针阀的功能、技术指标及其应用。经试验考核和具体应用的验证,上游控制模式中使用电动针阀和高精度PID压力控制器可将压力精确控制在±1%以内,并且2通道PID控制器还可以同时用于冷冻干燥过程中皮拉尼真空计的监控和记录。[size=18px][color=#990000]二、国产2通道24位高精度PID压力控制器[/color][/size] 为充分利用电容压力计的测量精度,控制器的数据采集和控制至少需要16位以上的模数和数模转化器。目前我们已经开发出VPC-2021系列高精度24位通用性PID控制器,如图1所示。此系列PID控制器功能强大远超国外产品,但价格只有国外产品的八分之一。[align=center][img=冷冻干燥压力控制,550,286]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211608584555_3735_3384_3.png!w650x338.jpg[/img][/align][align=center][color=#990000]图1 国产VPC-2021系列温度/压力控制器[/color][/align] 压力控制器其主要性能指标如下: (1)精度:24位A/D,16位D/A。 (2)多通道:独立1通道或2通道。2通道可实现双传感器同时测量及控制。 (3)多种输出参数:47种(热电偶、热电阻、直流电压)输入信号,可实现不同参量的同时测试、显示和控制。 (4)多功能:正向、反向、正反双向控制。 (5)PID程序控制:改进型PID算法,支持PV微分和微分先行控制。可存储20组分组PID,支持20条程序曲线(每条50段)。 (6)通讯:两线制RS485,标准MODBUSRTU 通讯协议。 在冷冻干燥的初级冻干终点判断中,VPC-2021系列中的2通道控制器可同时接入电容压力计和皮拉尼压力计,其中电容压力计用作真空压力控制,皮拉尼计用来监视冻干过程中水汽的变化,当两个真空计的差值消失时则认为初级冻干过程结束。整个过程的典型变化曲线如图2所示。[align=center][color=#990000][img=冷冻干燥压力控制,586,392]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211609304857_1459_3384_3.png!w586x392.jpg[/img][/color][/align][align=center][color=#990000]图2. 初级干燥过程中的典型电容压力计和皮拉尼压力计的测量曲线[/color][/align][size=18px][color=#990000]三、国产步进电机驱动电子针阀[/color][/size] 为实现进气阀的高精度调节,我们在针阀基础上采用数控步进电机开发了一系列不同流量的电子针阀,其磁滞远小于电磁阀,如图3所示,价格只有国外产品的三分之一,详细技术指标如图4所示。[align=center][img=冷冻干燥压力控制,400,342]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211609435684_1917_3384_3.png!w599x513.jpg[/img][/align][align=center][color=#990000]图3 国产NCNV系列电子针阀[/color][/align][align=center][color=#990000][img=冷冻干燥压力控制,690,452]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211610002292_1250_3384_3.png!w690x452.jpg[/img][/color][/align][align=center][color=#990000]图4 国产NCNV系列电子针阀技术指标[/color][/align][size=18px][color=#990000]四、国产PID控制器和电子针阀考核试验[/color][/size] 考核试验采用了1Torr量程的电容压力计,电子针阀作为进气阀以上游模式进行控制试验。首先开启真空泵后使其全速抽气,然后在68Pa左右对PID控制器进行 PID参数自整定。自整定完成后,分别对12、27、40、53、67、80、93和 107Pa 共 8 个设定点进行了控制,整个控制过程中真空度的变化如图 5所示。 [align=center][color=#990000][img=冷冻干燥压力控制,690,418]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211610175473_9598_3384_3.png!w690x418.jpg[/img][/color][/align][align=center][color=#990000]图5 多点压力控制考核试验曲线[/color][/align] 将图5曲线的控制效果以波动率来表达,则得到如图6所示的不同真空压力下的波动率。从图6可以看出,整个压力范围内只有在12Pa控制时波动率大于1%,显然将68Pa下自整定得到的PID参数应用于12Pa压力控制并不太合适,还需要进行单独的PID 参数自整定。[align=center][color=#990000][img=冷冻干燥压力控制,690,388]https://ng1.17img.cn/bbsfiles/images/2021/12/202112211610294377_3818_3384_3.png!w690x388.jpg[/img][/color][/align][align=center][color=#990000]图6. 多点压力恒定控制波动率[/color][/align][align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 低温烹饪装置中高精度压力控制问题的彻底解决

    低温烹饪装置中高精度压力控制问题的彻底解决

    [color=#000099]摘要:真空低温烹饪法作为已经经典的高品质烹饪方法,并未得到广泛的应用,主要问题是无法针对各种食材进行真空度的准确设定和控制。本文将针对低温烹饪目前存在的真空度控制问题,提出相应的解决方案。解决方案的核心是采用动态平衡法进行真空压力控制,真正解决真空度精密控制难题,同时采用智能控制器兼顾温度控制,使得真空低温烹饪技术及其相应装置真正实用化,特别是满足大型低温烹饪装置和实验室研究设备的需求。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~[img=低温慢煮中真空度的准确控制方法,500,379]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301033507148_223_3221506_3.jpg!w690x524.jpg[/img][/align][size=18px][color=#000099][b]1. 真空低温烹饪技术现状和存在的问题[/b][/color][/size] 真空低温烹饪法(Sous Vide)作为一种经典的食品高品质烹饪方法,是基于气压越低加热介质的液体沸点越低这一基本物理原理,通过控制气压来实现加热介质较低的沸点温度,最终达到食品低温烹饪的目的。在食品发生热交换过程中,根据热力学定律,食品周围加热介质的压力、温度和体积彼此相关。温度的增加会使得压力升高和体积变大,并且压力的增加会使得沸点升高。因此,真正的真空低温烹饪法应该是能消除由于加热介质引起的压力以及控制体积变化,以便能更好地了解和控制食品烹饪温度,即完美的实现真空低温烹饪,需要准确控制真空压力、温度和时间这三个变量。根据烹饪形式的不同,真空低温烹饪法可以分为几个大类:[b][color=#000099]1.1 密封袋浸泡式低温烹饪法[/color][/b] 密封袋浸泡式低温烹饪法是将食品放入特制塑料袋后抽真空并密封,然后将此内部装有食品并具有一定真空度的密封袋浸泡在温度受控的水中进行烹饪,水温需要精确控制在55~70℃范围内的某个设定温度点上,由此通过水对密封袋内食品的低温加热,实现食品的真空低温烹饪。 密封袋浸泡式低温烹饪法具有较长的历史,因造价低和便于实现,是目前低温烹饪的主流技术,市场上也有众多相应产品和装置。尽管近年来也有不少技术试图进行改进,但绝大多数主要都聚焦在如何提高温度控制精度、改进搅拌加热均匀性和替换升级真空密封袋结构。 现有真空密封袋式低温烹饪法及其装置中,普遍存在以下几方面的不足: (1)抽真空时真空密封塑料袋的内部气压并不准确已知,不同真空泵和不同抽气时间会造成密封袋内的气压差别很大,由此使得外部加热液体的温度设置很难达到准确,往往需要操作人员根据具体装置和食品最终口感来进行摸索和粗略确定。如果要进行不同食品的不同真空度和不同温度下的烹饪,这就显着尤为不便和难以准确把控,这是限制真空低温烹饪法在家庭中普遍应用的主要因素。 (2)密封袋抽取真空后,真空密封食品的塑料袋中并不是没有一点气体,残存气体会随着烹饪过程中的温度升高而使得真空塑料袋中的压力变大,密封袋产生膨胀,从而使得沸点温度逐渐升高,造成采用密封塑料袋的真空低温烹饪法无法准确确定合理的烹饪温度,很难形成真空度和加热温度的准确对应关系。 总之,这种烹饪过程中的真空度不稳定和难以准确控制问题,是目前真空低温烹饪法采用塑料密封袋形式存在的主要缺陷,因此也限制了真空低温烹饪法的普及和应用。[b][color=#000099]1.2 开放浸泡式低温烹饪法[/color][/b] 为了解决真空密封袋浸泡式低温烹饪法存在的不足,近几年来开发了各种开放浸泡式低温烹饪法,即将食品直接放置在浸泡在水中,用传统烧、煮、炖方法和燃烧、电阻、电磁和微波等加热方式的条件下,增加了真空度控制技术,以真正有效和便捷的实现低温烹饪。 通过对众多相关技术的分析发现,现有各种开放浸泡式低温烹饪法和装置中,在真空度控制方面存在以下严重问题: (1)大多数技术只是涉及了真空度控制的原理性方案,具体方案都是静态模式形式,仅对真空泵端的抽气流量进行调节和控制。在实际低温烹饪过程中如果应用这种静态控制模式,在控制真空泵抽气流量的同时,需要等待密闭烹饪容器的自然漏气来缓慢补充进气,这种静态控制模式会使得真空度达到设定值的过程非常缓慢,基本都无法实现对真空度的准确控制。 (2)实际低温烹饪中的真空度控制需要很快的速度,对于低温烹饪中所用的密闭式器皿,需要采用动态控制模式,即分别调节进气流量和出气流量才能实现真空度的快速准确控制,由此需要配备传感器、进出气调节装置和PID控制器。很多现有技术明显缺少这方面的内容,如有些技术没有使用真空度传感器,或没有将进气口和出气口独立分开,或没有对进气口和出气口进行独立控制,控制器也多为简单的开关控制而不是精密的PID控制。 (3)在有些低温烹饪过程中,如蒸米饭和煮粥等,必须控制执行不同的真空度变化速度程序,以避免真空度突变所带来的爆沸、液体溢出和噪音大等问题。这些真空度程序化控制方面的高级功能,现有技术都无法实现。 (4)在食物真空低温烹饪过程中,很容易有溢出的汤水进入抽真空管路和器件中而造成堵塞和出现故障。现有技术明显缺少这些防堵塞的技术手段,同时也缺少维护维修堵塞的结构设计。 总之,缺乏真空度精密控制技术以及合理的辅助功能和结构设计,是这种开放浸泡式低温烹饪技术和装置目前存在的主要缺陷,也限制了这种真正实用且有发展前景的真空低温烹饪法的普及应用。[b][color=#000099]1.3 蒸烤烘焙炸熏式低温烹饪法[/color][/b] 除了上述烧、煮、炖形式的开放浸泡式低温烹饪法之外,通过增加真空度控制技术,也能在蒸、烤、烘、焙、炸和熏等常用烹饪方式中有效应用真空低温烹饪法。同时,真空度对面团制作中也起着重要作用,一定真空度的混合还可以使面团的微观结构更加连续和致密,并增加面条的断裂力和延伸率。 与上述开放浸泡式低温烹饪法一样,蒸烤烘焙炸熏式低温烹饪法现有技术存在同样的共性问题,同样缺乏动态真空度精密控制技术以及合理的辅助功能和结构设计。[b][color=#000099]1.4 腌制和卤制低温烹饪法[/color][/b] 腌制和卤制是传统的常温常压下美食制作方法,采用真空低温烹饪技术可以大幅提高传统腌制和卤制方法的效率和效果,可使入味速度更快和更深。 与上述现有低温烹饪技术一样,腌制和卤制低温烹饪法的现有技术存在同样的共性问题,同样缺乏动态真空度精密控制技术以及合理的辅助功能和结构设计。另外,腌制和卤制低温烹饪法的不同之处是需要采用真空脉冲技术,而真空脉冲技术更需要真空度的精确控制才能实现对不同食品的腌制和卤制。 从上述几种真空低温烹饪技术可以看出,应用和改进的重要方向之一就是解决真空度的精密控制问题,设法将目前的真空度静态控制技术升级为更准确的动态控制技术,而这恰恰是当前针对低温烹饪装置需要解决的难题之一。更有意义的是,真空度精密控制也是今后人们饮食习惯向着低温、低醇和低农残等方面发展的重要技术保障。 本文将针对真空低温烹饪目前存在的上述问题,提出相应的解决方案。解决方案的核心是采用动态平衡法进行真空压力控制,真正解决真空度精密控制难题,同时采用智能控制器同时兼顾温度的准确控制,使得真空低温烹饪技术及其相应装置真正实用化。[b][color=#000099][size=18px]2. 解决方案[/size]2.1 解决方案的工作原理[/color][/b] 任何烹饪装置或器皿都可以设定为具有一定气密性的容器,其内部真空压力的控制可采用静态和动态两种控制模式,其基本原理如图 1所示。[align=center][color=#000099][img=真空度控制中的静态和动态模式示意图,690,331]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301035266906_5954_3221506_3.jpg!w690x331.jpg[/img][/color][/align][align=center][color=#000099]图1 真空度控制中的静态和动态模式示意图[/color][/align] (1)静态模式 控制原理:采用静态模式对密闭容器真空度进行控制时,控制器首先关闭进气阀门并打开抽气阀门,开启真空泵对容器进行抽气,同时真空度传感器监测容器内的真空度变化。当真空度达到设定值时,关闭抽气阀门或真空泵,停止对密闭容器,理想情况下此时密闭容器内的真空度应保持稳定而实现真空度的恒定控制。如果要打开密闭容器进行操作,需要开启进气阀门通入外部大气。 控制结果:在实际真空度控制中,任何密闭容器都存在漏气现象。由于存在漏气,密闭容器的真空度会发生改变,漏气越严重这种变化速度越快,停止抽气后真空度会发生改变。当真空度由于漏气而超过设定值时,控制器自动再开启抽气阀门或真空泵进行抽气,达到设定值后停止抽气,由此循环往复使真空度在设定值上下波动,如图1所示。 适用范围:静态模式是一种开关式简单控制形式,因此静态模式比较适用于漏气比较严重、低真空度且对控制精度要求不高的情况,特别是无法应用于密闭容器内存在热源和内部物体会产热气体时的真空压力控制。 (2)动态模式 控制原理:动态模式是静态模式的一种自动化升级,在静态模式基础上给控制器增加了PID控制算法,并将静态模式中的进气和抽气阀门改变为开度可渐变控制的数字阀门,PID控制器根据真空度传感器采集数据和设置值,自动调节进气阀和出气阀开度,使得进气与出气流量达到动态平衡,由此实现真空度的准确控制。 控制结果:动态模式的真空度控制精度和速度要远优于静态模式,采用PID参数自整定功能可以根据设定值自动确定控制参数,采用不同精度的真空度传感器和PID控制器,可以实现高精度和高稳定性的真空度控制,如图1所示。 适用范围:动态模式是一种数字化的高级控制形式,控制过程中无需考虑密闭容器的漏气速度,可以覆盖整个真空度范围的控制,对于小体积密闭容器的真空度控制具有很高的相应速度,更适用于密闭容器内存在热源和内部物体会产热气体时的真空度控制,而且PID控制器还可以同时兼顾各种加热方式的温度控制。[b][color=#000099]2.2 解决方案[/color][/b] 真空低温烹饪法解决方案基于上述的动态模式的真空度控制方法,并考虑了其他实用性功能。解决方案的整体结构如图2所示。[align=center][color=#000099][img=真空低温烹饪压力控制系统结构示意图,690,438]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301035575049_4516_3221506_3.jpg!w690x438.jpg[/img][/color][/align][color=#000099][/color][align=center][color=#000099]图2 真空低温烹饪压力控制系统结构示意图[/color][/align] 在图2所示的解决方案中,使用真空泵作为真空源,进气和排气分别通过卫生级电动阀调节进气和排气流量。采用一个双通道的真空控制器来采集烹饪器皿中的气压信号,并根据所采集的气压信号来快速控制两个电动阀的开度,使烹饪器皿内的压力快递恒定在设定值上。为了避免高温蒸汽对压力传感器和电动阀的影响,在排气口处配置了一个冷凝器以降低排气气体温度。 在真空低温烹饪中,另一个重要控制参数是温度,且真空控制通常伴随着温度控制功能一起使用。本解决方案中的真空控制器可以很容易增加温度控制功能,只需在图2所示的PID控制器中增加一路用于温度控制,由此可实现真空度和温度的同时控制。 温度和真空压力控制的工作过程完全一样,可以根据需要按照图3所示的设定曲线进行程序设定,只是设定量分别是温度和真空度。[align=center][color=#000099][img=真空度控制设定曲线,450,277]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301038053568_7396_3221506_3.jpg!w690x425.jpg[/img][/color][/align][align=center][color=#000099]图3 真空度程序控制设定曲线[/color][/align] 本解决方案的真空压力精密控制装置,主要特点就是可以实现密闭容器内真空度的快速和准确控制,此特点非常便于满足低温烹饪中对各种真空度复杂变化的要求,最典型的应用是可以实现精确的真空脉冲控制,即控制真空度严格按照设定的脉冲幅度、脉冲周期和不同斜率进行变化,可完美实现不同品类食物的低温烹饪、不同咖啡和茶叶的快速冷冲泡、以及不同食材的腌制和卤制等。 真空脉冲控制方法的使用首先是要在真空度控制器中输入控制程序,典型的真空脉冲控制程序如 所示。按照实际烹饪、冲泡和腌制卤制等应用中的真空脉冲过程要求,真空脉冲控制程序一般包括脉冲过程、恒定过程和脉冲恒定过程的组合形式,不同食材和烹饪过程需要不同的真空脉冲参数和程序。在实际应用中,将设计好的控制程序输入到真空度控制器后既可自动运行,也可调用存储在真空度控制器中验证过的真空脉冲控制程序。[align=center][color=#000099][img=真空脉冲控制设定曲线,500,315]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301036559194_9044_3221506_3.jpg!w690x436.jpg[/img][/color][/align][align=center][color=#000099]图4 真空脉冲控制设定曲线[/color][/align] 真空低温烹饪真空度和温度同时控制的典型应用之一是咖啡和茶叶的快速冷泡过程,冷泡过程采用真空脉冲法。由于在真空度变化过程中,冲泡水的沸点会随之发生变化,因此在冷泡过程中需要设置精确的真空度和温度控制程序才能在较短时间内得到满意的饮品。典型的冷泡控制程序如图5所示。[align=center][color=#000099][img=快速冷泡过程中的真空度和温度控制设定曲线示意图,550,320]https://ng1.17img.cn/bbsfiles/images/2022/11/202211301037374359_9780_3221506_3.jpg!w690x402.jpg[/img][/color][/align][align=center][color=#000099]图5 快速冷泡过程中的真空度和温度控制设定曲线[/color][/align][b][size=18px][color=#000099]3. 总结[/color][/size][/b] 真空低温烹饪中的关键技术是准确的真空控制,本文提出的解决方案可以完美解决真空压力控制问题,非常适用于各种大型低温烹饪装置和实验室研究设备。由于真空度的精确、快速和可编程控制控制,此解决方案可在多种食品低温食品烹饪、饮品冲泡和腌制卤制中得到应用。[align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 选购恒温恒湿箱高精度仪器注意事项

    恒温恒湿箱属高精度仪器,购买时一定要注意以下几点。   一、尺寸选择一般恒温恒湿尺寸根据试验产品的尺寸来决定   二、恒温恒湿箱电源选择不管是220V还是380V都是三相以上电源的,如果温度在-40度以下,而且箱体在225L以上的,建议选择380V四相电源接口,因这样对整个实验室的用电比较稳定,对设备本身的寿命也有好处;   三、风冷与水冷选择:恒温恒湿箱一般采用风冷就足够了,采用水冷的一般是大型的恒温恒湿室或大箱体的快速升降温试验机,一般冷热冲击试验箱采用水冷的比较多;四、恒温恒湿箱使用环境环境试验,特别是可靠性试验,试验周期长,试验的对象有时是价值很高的军工产品,试验过程中,试验人员经常要在现场周围进行操作或测试工作,因此要求环境试验设备必须具有运行安全、操作方便、使用可靠、工作寿命长等特点,以确保试验本身的正常进行。试验设备的各种保护、告警措施及安全联锁装置应该完善可靠,以保证试验人员、被试产品和试验设备本身的安全可靠性.

  • 高低温试验箱(皓天循环老化箱)的温度控制精度如何保证?

    [align=center][font='helvetica'][size=18px][color=#333333]高低温试验箱(皓天循环老化箱[/color][/size][/font][font='helvetica'][size=18px][color=#333333])的温度控制精度如何保证?[/color][/size][/font][/align][font='新宋体'][size=18px]高低温试验箱(皓天循环老化箱)[/size][/font][font='新宋体'][size=18px]的温度控制精度可以通过以下几种方式来保证:[/size][/font][font='新宋体'][size=18px]1. 精确的温度传感器:使用高精度的温度传感器,能够准确测量箱内的温度。[/size][/font][font='新宋体'][size=18px]2. 良好的隔热性能:皓天鑫试验箱具有良好的隔热性能,减少热量的散失或吸收,确保温度的稳定性。[/size][/font][font='新宋体'][size=18px]3. 控制系统:采用可程式控制系统,如 PID [/size][/font][font='新宋体'][size=18px]控制算法,能够精确调节加热或制冷设备的输出,以维持稳定的温度。[/size][/font][font='新宋体'][size=18px]4. 均匀的空气循环:通过合理的风道设计和风扇布局,确保箱内空气循环均匀,避免温度梯度。[/size][/font][font='新宋体'][size=18px]5. 精确的加热和制冷设备:配备高精度的加热和制冷设备,能够快速响应温度变化,并提供稳定的温度输出。[/size][/font][font='新宋体'][size=18px]6. 定期校准:定期对温度传感器和控制系统进行校准,以确保其准确性。[/size][/font][font='新宋体'][size=18px]7. 优化的试验箱结构:合理的高低温试验箱结构设计,有助于减少温度波动和提高控制精度。[/size][/font][font='新宋体'][size=18px]8. 稳定的电源供应:提供稳定的电源,避免电压波动对温度控制的影响。[/size][/font][font='新宋体'][size=18px]9. 良好的密封性能:确保试验箱的密封性能良好,防止外界环境对箱内温度的干扰。[/size][/font][font='新宋体'][size=18px]10. 专业的维护和保养:定期进行维护和保养,检查设备的运行状况,及时发现和解决问题。[img=,690,750]https://ng1.17img.cn/bbsfiles/images/2024/06/202406260957352892_5801_6279606_3.jpg!w690x750.jpg[/img][img=,690,979]https://ng1.17img.cn/bbsfiles/images/2024/06/202406260957354665_8402_6279606_3.jpg!w690x979.jpg[/img][img=,690,628]https://ng1.17img.cn/bbsfiles/images/2024/06/202406260957354928_2381_6279606_3.jpg!w690x628.jpg[/img][img=,690,882]https://ng1.17img.cn/bbsfiles/images/2024/06/202406260957360697_8566_6279606_3.jpg!w690x882.jpg[/img][img=,690,759]https://ng1.17img.cn/bbsfiles/images/2024/06/202406260957361061_194_6279606_3.jpg!w690x759.jpg[/img][img=,690,986]https://ng1.17img.cn/bbsfiles/images/2024/06/202406260957358034_8911_6279606_3.jpg!w690x986.jpg[/img][img=,690,928]https://ng1.17img.cn/bbsfiles/images/2024/06/202406260957357275_3703_6279606_3.jpg!w690x928.jpg[/img][img=,690,692]https://ng1.17img.cn/bbsfiles/images/2024/06/202406260957361420_5701_6279606_3.jpg!w690x692.jpg[/img][/size][/font]

  • 【原创】高精度动态色谱法比表面仪十项特征

    动态色谱法比表面仪在比表面积测试方面优势明显,被客户认可并大量使用,但客户在选型时,应该从哪些方面进行比较和评判,现简单介绍如下:高精度动态色谱法比表面仪应具有以下十项特征:1、是否具有程控风热助脱系统 当样品在液氮温度-195.8℃下吸附饱和后要升温脱附时,需要使温度迅速升高,使吸附在粉体表面的氮气迅速脱附出来进入检测器;高速脱附可以使信号集中,得到尖而锐的脱附峰,有利于提高仪器的灵敏度和分辨率,另外尖而锐的脱附峰可以降低背景噪声影响,提高仪器测试准确度,尖锐的脱附峰是色谱工作者追求的理想峰形。在之前的半自动化仪器中通常使用人为将液氮杯更换为水杯,利用水大比热的特性使样品温度迅速升高到常温;但在全自动化仪器中,如果为便自动化而放弃辅助加热脱附,进行空气中自然升温脱附,由于玻璃的导热系数很低,升温缓慢,将使脱附峰矮而宽, 使背景噪声影响增大,降低灵敏度和分辨率,损失测试精度,对于小比表面积样品影响尤为明显。程控风热助脱装置,全自动程控启停,风热时间可根据样品脱附快慢设定,保证得到尖锐快速的脱附峰,使出峰时间缩短,脱附峰尖而锐,减少背景误差。2、氮气分压检测控制是通过流量传感器法还是浓度色谱检测器法 BET多点法测试中,按BET理论要求氮气浓度需要从5%调整到30%,氮气浓度检测是测试结果准确度的关键环节。在氮气浓度测试方面,流量传感器法是分别测量氮气和载气流量的方式来求氮气浓度。所采用的进口霍林威尔流量传感器的标称极限精度是0.1ml/min,对于5ml/min的氮气流速的测试最高精度只能达到2%。色谱浓度传感器测试氮气浓度,精度可达到0.1%以上,色谱法检测精度是流量法的10倍以上;3、是否具有程控六通阀标定系统;定量管体积是否可程控切换 六通阀是色谱仪定量的主要标定装置,有手动六通阀和电动六通阀之分;程控电动六通阀标定系统,标定过程软件全自动控制;定量管体积程控可选功能;对于不同样品,比表面从相差可能数千倍,其吸附氮气量也就相差悬殊,不能一个体积的定量管来标定所有样品吸附量。所以对于标定系统应接入不同体积的定量管,可达到更高的精确度。人工更换不同体积的定量管比较复杂,甚至打开机壳更换。程控定量管切换只需要在软件中设置接入号,电动切换。4、是否具有一体式原位吹扫装置 分体吹扫炉形式的吹扫方式,样品吹扫处理时需要安装在与主机分置的吹扫炉上,处理完毕后拆卸下来再重新安装在仪器主机上进行测试。一体化吹扫处理系统相对分体吹扫炉具有两个优势:一是操作方便,只需一次安装;二是处理效果更好,避免了拆装样品管时样品再次与空气接触;(对于部分有机和生物粉体材料,其水份的质量百分含量可能比较大,若超过1%则需要吹扫处理前先进行烘箱干燥后再进行,否则需要吹扫处理后重新称重;)5、是否具有吹扫定时功能 吹扫程序定时,到时停止加热,声音提示,此功能使吹扫处理条件统一一致,也使操作者更安心于其他工作,而不必担心吹扫超时造成处理条件不一致;6、是否具有气体净化冷阱装置 比表面测试所使用的高纯氮气和高纯氦气纯度一般为99.99%到99.999%,其中0.001%-0.01%的杂质气体(主要为水分等高沸点易吸附气体)在低温吸附时会首先被吸附,从而对吸附氮气量造成影响;由于色谱法比表面测试中气体是连续流过待测样品,所以样品表面的水份等气体杂质会逐渐积累;具体影响见《水份对吸附过程的影响》。冷阱是消除高沸点气体杂质的有效方式,一般在高要求设备中会配备此装置;比表面仪配备的冷阱,使本会被样品吸附的水份等高沸点杂质提前被冷阱捕获,使得经过净化后的高纯氮和高纯氦气体中的水分含量低于10e-17Pa,达到超高纯气体状态;7、是否具有检测器恒温系统 色谱法比表面仪采用热导池做检测器;温飘是热导池检测器的主要误差成因,一般高精度色谱仪的检测器都具有复杂的恒温系统和温飘抑制消除系统,但同时使仪器成本增加;检测器恒温装置前后,可以使零点漂移由1%降低到0.1%,该装置对测试小比表面积样品(10m2/g)效果尤为明显;8、是否具有液氮温度实时监测功能 比表面测试使用的液氮都是使用单位就近采购,一般都是气体厂制氧的副产品,其纯度不稳定性相差较大,使得液氮温度有±1℃左右的变化;氮气吸附量对液氮温度的变化很敏感;另外液氮杜瓦杯内液氮面的高低也对吸附量有影响;液氮温度监测传感器,可监测液氮温度和杜瓦杯中的液氮量是否充足。9、是否具有气源开关指示与保护装置 色谱仪一般都要求操作者在没有开气的时候不要打开电源,即“先开气后开电,先关电后关气”,否则可能发生检测器在没有通气的情况下通电而烧坏的危险;而气源指示与保护装置则使此危险去除。10、仪器参数是否软硬件同时显示 比表面仪器的主要参数包括主检测器电压、电流、浓度检测器电压、电流、主检测器输出电压信号、浓度检测器输出信号、信号放大倍数、液氮温度等。若仪器具有不但在软件上检测显示外,还在仪器的LCD液晶显示屏上硬件显示的功能,即使在电脑没打开或通讯异常时仍能明确掌握仪器状态,使得仪器可靠度更高;另外仪器的机械部分,如电机、脱附风扇、吹扫定时、气源开关状态等都具有硬件指示灯指示工作状态,复杂设备的各个部分工作正常与否的状态,在通过软件显示的同时,再使硬件指示是必要的; 气体流量的显示在有电子传感器之外,再通过机械转子流量计显示,将使流量有无、大小一目了然,更稳定可靠可靠的现代分析仪器可以只有一个控制按钮,但显示屏、指示灯等各部分运行状态指示不可省;来源:比表面论坛

  • 实验室用冷冻干燥机中如何实现高精度的压力和真空度控制

    实验室用冷冻干燥机中如何实现高精度的压力和真空度控制

    [size=14px][b][color=#cc0000]摘要:本文针对实验室用冷冻干燥机的真空度控制,提出了干燥过程中的真空度精密控制解决方案。解决方案主要是采用双真空计(电容真空计和皮拉尼真空计)测量干燥过程中的真空度变化,双通道PID真空度控制器一方面采集电容真空计信号并通过电动针阀对干燥腔室的真空度进行高精度控制,同时采集皮拉尼真空计信号显示和记录整个干燥过程中的真空度变化曲线。此解决方案可完美的实现干燥过程中的真空度精密控制和监测。[/color][/b][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=14px][/size][size=14px] 在典型的真空冷冻干燥过程中,为了监控整个过程的真空度变化,一般会采取真空度比较测量方式,即在腔室和冷凝器上分别配置电容真空计和皮拉尼真空计。由此在冷冻干燥过程中,用电容真空计测量和控制腔室真空度,同时使用皮拉尼真空计进行真空度监测。这种方法利用了皮拉尼真空计的[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]成分依赖性,该皮拉尼计的输出变化反映了当过程从一次干燥过渡到二次干燥时[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]成分的变化。这个典型过程中的真空度和温度变化如图1所示。一般是基于电容真空计来控制腔室真空度,这不仅仅是因为它独立于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url]成分而测量绝对压力(绝对真空度)。电容式压力计比皮拉尼压力计更准确、线性和稳定。[/size][size=14px][/size][align=center][size=14px][color=#cc0000][img=真空冷冻干燥过程中的典型真空度和温度变化曲线,600,400]https://ng1.17img.cn/bbsfiles/images/2022/11/202211231817231440_186_3221506_3.jpg!w690x460.jpg[/img][/color][/size][/align][color=#cc0000][size=14px][/size][/color][align=center]图1 真空冷冻干燥过程中的典型真空度和温度变化[/align][size=14px][/size][align=center]皮拉尼压力表(洋红色),电容压力计(红色)[/align][size=14px][/size][align=center][color=#cc0000]隔板温度用黑线表示,其他线是热电偶测量的单个产品温度[/color][/align][size=14px] 从上述真空冷冻干燥过程中可以看出,冷冻干燥机上需要配备两只真空计,一个是电容真空计,另一个是皮拉尼计。其中电容真空计用来控制腔室真空度,真空度控制范围在几十豪托左右,而皮拉尼计则用来监控整个真空度的变化过程并用来判断干燥过程的变化。为此,我们设计了如图2所示的冷冻干燥机真空度控制系统。[/size][align=center][size=14px][color=#cc0000][img=真空冷冻干燥机真空度控制系统结构示意图,500,428]https://ng1.17img.cn/bbsfiles/images/2022/11/202211231818284971_7024_3221506_3.jpg!w690x592.jpg[/img][/color][/size][/align][size=14px][/size][align=center][color=#cc0000]图2 真空冷冻干燥机真空度控制系统结构示意图[/color][/align][size=14px] 图2所示的控制系统主要四个部分组成,分别描述如下:[/size][size=14px] (1)真空泵:主要用于抽取真空。在冷冻机干燥过程中,由于真空腔室一般工作在较高真空范围,所以真空泵要求处于全速开启抽取状态而无需调节排气速率。[/size][size=14px] (2)真空计:真空计包含了电容真空计和皮拉尼真空计,其中高精度的真空计为绝对真空传感器,用来作为真空度控制用传感器。精度稍差的皮拉尼真空计由于测试量程较大,用来监视整个过程的真空度变化,并作为第一次和第二次干燥变化的判断。[/size][size=14px] (3)电动针阀:通过步进电机来快速调节针阀的开度,以调节进气流量。[/size][size=14px] (4)双通道PID真空度控制器:此控制器为带有PID参数自整定功能的双通道控制器,其中第一通道与电容真空计和电动针阀组成闭环控制回路用来控制腔室真空度,第二通道与皮拉尼真空计连接作为测试和显示。此双通道PID控制器具有24位AD和16位DA,采用了双浮点计算方法可使得最小输出百分比达到了0.01%的高控制精度,非常适合冷冻干燥过程中的真空度控制。而且此控制器具有标准的MODBUS协议,可与上位机进行通讯实现远程遥控。[/size][size=14px] 总之,本文所述的解决方案非常适合实验室冷冻干燥机的真空度精密控制和干燥过程的监测,强大的双通道PID控制器除了可保证真空度控制精度和自动控制之外,还可以通过随机配备的计算机软件独立进行冷冻干燥机真空度控制过程的参数设置、PID参数自整定、自动运行、真空度设置和测量值的测量、曲线显示和存储。[/size][align=center]~~~~~~~~~~~~~~~~~~~~~[/align][size=14px][/size][size=14px][/size][size=14px][/size]

  • 半导体低温工艺中制冷系统的压力和温度准确控制解决方案

    半导体低温工艺中制冷系统的压力和温度准确控制解决方案

    [color=#990000]摘要:针对半导体低温工艺中制冷系统在高压防护和温度控制中存在的问题,本文将提出一种更简便有效的解决方案。解决方案的核心是在晶片托盘上并联一个流量可调旁路,使制冷剂在流入晶片托盘之前进行部分短路。即通过旁路流量的变化调节流出晶片托盘的制冷剂压力,一方面保证制冷剂低压工作状态,另一方面实现晶片温度的高精度控制。[/color][align=center]~~~~~~~~~~~~~~~~~~[/align][b][size=18px][color=#990000]1. 问题的提出[/color][/size][/b] 随着新一代半导体工艺技术的发展,如低温刻蚀和沉积,需要晶片达到更低的温度。更低温度的实现目前可选的技术途径一般是采用循环流体介质直接作用在晶片卡盘,而介质可以是单一制冷剂(如液氮)和混合制冷剂。目前,更具有应用前景的是使用混合制冷剂的自复叠混合工质低温制冷技术,但在半导体低温工艺的具体应用中,需要处理好以下两方面的问题: (1)当制冷系统连接到晶片托盘后,混合工质就在一个容积固定管路内循环运行。在压缩机启动初期,整个系统基本处于较高温度,系统内大部分工质为[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url],随着制冷温度的降低,除压缩机和冷凝器外的其他部件内的[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]工质含量逐渐增加,当制冷温度达到最低时,系统内的[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相[/color][/url]工质含量达到最高。由于气液两相工质的比容相差较大,不同相态的工质通过节流单元的能力不同,工质间的沸点也不同,所以在制冷系统启动初期,通过节流单元的几乎全部为气态工质,压缩机的排气压力也将会很高。而在半导体工艺设备中,半导体晶片托盘及其回路部件的最大工作压力通常在1~1.4MPa范围内,那么在低温制冷过程中,冷却剂压力可能会超过晶片托盘冷却回路的最大操作压力而造成系统损坏。因此,要在晶片制冷系统中增加低温压力控制装置,避免出现高压问题,保证制冷系统在整个运行过程中制冷剂压力符合要求。 (2)晶片冷却温度是半导体低温工艺的一项重要技术参数,晶片冷却过程中的低温温度要求按照设定值进行准确控制。尽管大多数低温制冷系统都具有温度控制功能,可通过外部温度传感器、调节回路和控制器组成的闭环回路实现低温温度控制,调节回路基本都是通过调节制冷剂流量和膨胀方式,有些则通过辅助加热方式进行温度控制,但这些温控方式普遍结构复杂且控温精度不高,特别是在多个晶片同时冷却的半导体设备中这些问题更是突出。 针对上述半导体低温工艺中制冷系统在压力和温度控制中存在的问题,本文将提出一种更简便有效的解决方案。解决方案的核心是在晶片托盘上并联一个流量可调旁路,使制冷剂在流入晶片托盘之前进行部分短路。即通过旁路流量的变化调节流出晶片托盘的制冷剂压力,一方面保证制冷剂低压工作状态,另一方面实现晶片温度的高精度控制。[b][size=18px][color=#990000]2. 解决方案[/color][/size][/b] 对于半导体低温工艺中的晶片托盘进行冷却,一般所采用的技术方案是直接将自复叠混合工质制冷机与晶片托盘连接,其结构如图1所示。这种方案在温度控制时是在晶片托盘上安装温度传感器,并与控制器连接进行温度控制,但这种方案存在压力过高和温度控制不准确的问题。[align=center][color=#33ccff][size=14px][b][img=半导体晶片低温冷却实施方案示意图,400,235]https://ng1.17img.cn/bbsfiles/images/2022/12/202212270900279759_748_3221506_3.jpg!w690x406.jpg[/img][/b][/size][/color][/align][align=center][b][color=#990000]图1 半导体晶片低温冷却常规方案[/color][/b][/align][align=center][size=14px][b][img=半导体晶片低温冷却改进后方案,400,240]https://ng1.17img.cn/bbsfiles/images/2022/12/202212270900037860_9891_3221506_3.jpg!w690x414.jpg[/img][/b][/size][/align][b][/b][align=center][b][color=#990000]图2 半导体晶片低温冷却改进后方案[/color][/b][/align] 本文提出的改进方案如图2所示,为了使冷却过程中的混合工质压力始终处于安全工作范围,在图1所示的冷却管路上增加了一个短接旁路,通过一个调节阀控制此旁路中的工质流量可以降低晶片卡盘及其管路的内部压力达到安全范围。同时,此旁路调节阀具有高精度动态精密调节能力,可使晶片卡盘内部的制冷剂压力波动非常小而实现更准确的温度控制,由此可在制冷机现有温度控制能力的基础上,降低压力波动和提高温度稳定性。具体实施方案如图3所示。[align=center][size=14px][b][color=#33ccff][img=半导体晶片低温冷却实施方案示意图,690,266]https://ng1.17img.cn/bbsfiles/images/2022/12/202212270900506941_8802_3221506_3.jpg!w690x266.jpg[/img][/color][/b][/size][/align][align=center][b][color=#990000]图3 半导体晶片低温冷却系统压力和温度精密控制方案示意图[/color][/b][/align] 在图3所示的解决方案中,采用了以下几个控制部件: (1)气动调节阀:此气动调节阀也称之为背压阀,即通过较小的气体压力来驱动较大压力下流体介质中阀门的开度变化。通过此低温调节阀开度变化来改变旁路流量进而实现压力调节。 (2)先导阀:先导阀是一个低压气体压力调节阀,可对表压(如0.6MPa)的进气压力进行高精度减压调节,调节控制信号为模拟量(如4~20mA或0-10V),由此来驱动气动调节阀。 (3)传感器:晶片低温冷却系统包含了压力和温度传感器,以分别检测晶片冷却剂回路中的压力和晶片温度,并将检测信号传输给双通道PID控制器。压力传感器可根据实际需要布置在制冷剂管路中的不同位置,以提供合理和准确的压力监测。 (4)双通道控制器:此双通道控制器是具有两路独立控制通道且具有很高精度的PID控制器,一路通道与压力传感器和先导阀构成压力控制回路,另一通道与温度传感器和制冷机构成温度控制回路。 总之,通过这种增加旁路并进行压力精密调节的解决方案,即可满足降低制冷剂压力提供安全防护功能,又可以提高晶片温度控制精度,是一种可用于晶片低温工艺的更优化方案。[align=center]~~~~~~~~~~~~~~[/align]

  • 高精度计数秤的参数有哪些?

    高精度计数秤的参数高精度计数秤型号最大称量分度值最大可读精度ACS-3-SC713kg0.05g1/60000ACS-6-SC716kg0.1g1/60000秤盘尺寸:275mm*220mm接口:DC接口,RS232接口(选配),RJ45以太网接口(选配)电源:4V/4A电子秤专用蓄电池http://www.xiangshanscale.com/uploads/sc71/sc71canshu.pnghttp://www.xiangshanscale.com/uploads/chanpinsucai/chanpinmiaoshu.png使用中航电测高精度130mm传感器,品质符合世界标准新款高精度计数秤ACS-SC71称重可读性高达1/60000精度;内部解析精度高达1/600000具有抗静电,高频干扰,读数稳定具有LCD三窗白色背光液晶显示,字幕清晰易读取计数秤ACS-SC71具有运送保护,过载保护设计高精度计数秤采用触摸式薄膜按键,容易操作,防水性能佳超低功耗,一次充电可使用180小时具有电池低电压报警功能,可降低电池过量放电损坏几率高精度计数秤ACS-SC71外壳采用ABS耐冲击塑料;秤盘采用ABS塑料载物盘和不锈钢材料托盘双盘结构,应对各种使用场合,经久耐用,使用寿命长

  • 解读高低温冷热冲击箱的分类及特性

    解读高低温冷热冲击箱的分类及特性

    高低温冷热冲击箱的分类:从结构上看,可分为三厢式和两厢式;从冷却方式来看,可分为水冷式和风冷式,由于南北地区的差异,北方多采用风冷式,而南方多采用水冷式。  高低温冷热冲击箱的用途:通过模拟高温与低温之间的瞬间变化环境,用于检测电子、橡胶、塑料及通信器材等产品在反复冷热变化下的抵抗能力,以此判断产品的可靠性及稳定性能等参数是否合格。通过试验还可提高产品的可靠性和进行产品的质量控制。  高低温冷热冲击箱的特性:  1、采用PID自动演算控制,温度控制精度高;  2、采用触摸式彩色液晶显示控制器,操作简单、易学;  3、可选择始动位置,高温或低温开始循环;  4、可设定循环次数及自动除霜;  5、设备左侧有一直径为50mm的测试孔,可供外加电源负载配线测试部件;  6、可独立设定高温、低温及冷热冲击三种不同条件的功能;并在执行冷热冲击条件时,可选择二槽式或三槽式及冷冲、热冲进行冲击的功能,具备高低温试验机的功能。http://ng1.17img.cn/bbsfiles/images/2016/11/201611281656_01_3081755_3.jpg

  • TEC半导体可编程超高精度温度控制装置在热电化学电池性能测试中的应用

    TEC半导体可编程超高精度温度控制装置在热电化学电池性能测试中的应用

    [size=16px][color=#339999]摘要:电化学热电池(electrochemical thermcells)作为用于低品质热源的热电转换技术,是目前可穿戴电子产品的研究热点之一,使用中要求具有一定的温差环境。电化学热电池相应的性能测试就对温度和温差形成提出很高要求,特别是要求温度控制仪器具有高控制精度、可编程控制、周期交变控制、通讯和随机软件功能。本文介绍了新型超高精度具有多功能的PID控制仪,并详细描述了电化学热电池特性测试中的温度控制系统结构。[/color][/size][align=center][size=16px][img=电化学热电池性能测试中的TEC半导体制冷片温度控制解决方案,600,379]https://ng1.17img.cn/bbsfiles/images/2023/04/202304171026207841_631_3221506_3.jpg!w690x436.jpg[/img][/size][/align][size=18px][color=#339999][b]1. 问题的提出[/b][/color][/size][size=16px] 温差发电在固体材料与半导体材料的发展上均比较成熟,而近年出现了一种新型的电化学热电池(electrochemical thermcells)拥有更高的塞贝克系数,同时成本较低、能够适应复杂热源表面,因而具有一定的应用前景,成为当前研究的热点方向之一。如图1所示,这种电化学热电池的基本原理是利用电化学体系中的赛贝克效应,将冷热电极之间的温差直接转化为电势差而产生发电效果,因此温差环境是使用和测试评价电化学电池的必要条件。[/size][align=center][size=16px][color=#339999][b][img=01.电化学热电池原理图,450,396]https://ng1.17img.cn/bbsfiles/images/2023/04/202304171027053355_4631_3221506_3.jpg!w690x608.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图1 电化学热电池基本原理[/b][/color][/size][/align][size=16px] 电化学热电池中的电解质、材料和电极受温度的影响,以及整个热电池的相关性能测试评价,对测试过程中的温差形成有十分复杂的要求,具体内容如下:[/size][size=16px] (1)热电池的两个冷热端电极要处于不同温度以形成温差,两个电极温度要具有一定的变化范围以便在不同电极温度和不同温差条件下测试评价热电池的各种性能。[/size][size=16px] (2)对于冷端温度,可采用TEC半导体制冷片进行调节和控制,但热端温度普遍较高,采用制冷片无法实现高温加热,需采用电阻等加热。[/size][size=16px] (3)在热电池性能测试过程中,需要在冷热电极处实现台阶式或周期交变式可编程温度变化。这样一方面是能够测试不同电极温度和不同温差下的热电池性能,得到热电池最佳工作状态时的温度和温差条件,另一方面是测试考核热电池的疲劳衰减特性。[/size][size=16px] (4)新型的电化学热电池往往很薄,如各种可穿戴电子产品用热电池。在实际应用中,这类薄片或薄膜状热电池上形成的温差很小,这就要求热电池性能测量装置需要具备在冷热电极之间提供小温差的能力。[/size][size=16px] 根据上述要求可以看出,一旦电化学热电池形状确定,热电池性能测试装置的结构也基本确定,而测试装置中温度控制的关键是确定合理的加热方式和温控仪表。[/size][size=16px] 对于加热形式,采用电阻加热和TEC半导体制冷片两种形式,可满足绝大多数电化学热电池在任意温度和温差范围内的测试需要,对于温度不高的测试,可仅使用TEC半导体制冷片进行温度控制。电阻加热用于热电极处的高温加热,温度范围为50~150℃以上。TEC半导体制冷片加热用于冷电极处的低温加热和冷却,温度范围为-10~60℃。[/size][size=16px] 对于温控仪表,满足上述温度控制要求的控温仪表需具备以下功能:[/size][size=16px] (1)可对电阻加热和TEC半导体制冷片分别进行控制。[/size][size=16px] (2)可编程控制功能,可控制温度按照编程设定的温度折线进行变化。[/size][size=16px] (3)交变温度控制功能,可控制温度按照设定周期和幅度进行交替变化。[/size][size=16px] (4)带PID自整定功能,避免繁琐的人工调整PID参数,并可存储和调用多组PID参数。[/size][size=16px] (5)测量和控温精度高,特别是要满足薄膜热电池的温差控制,控温精度要达到0.01℃。[/size][size=16px] (6)带通讯功能可与上位机连接,由上位机进行设置、编程、控制运行、显示和存储。[/size][size=16px] (7)带计算机软件,无需编程,可通过计算机进行设置、编程、控制运行、显示和存储。[/size][size=16px] 从上述功能要求中可以看出,电化学热电池性能测试中对温度和温差形成的要求很高,特别是要求温控仪表具有高控制精度、可编程控制、周期交变控制、通讯和随机软件功能,而这些很多都是目前电化学热电池性能测试用控温仪无法具备的功能。为此,本文介绍了新型超高精度具有多功能的PID控制仪,并详细描述了电化学热电池特性测试中的温度控制系统结构。[/size][size=18px][color=#339999][b]2. 解决方案[/b][/color][/size][size=16px] 解决方案设计的温控系统典型结构如图2所示。[/size][align=center][size=16px][color=#339999][b][img=02.电化学热电池性能测试温控系统结构示意图,690,343]https://ng1.17img.cn/bbsfiles/images/2023/04/202304171027488618_9875_3221506_3.jpg!w690x343.jpg[/img][/b][/color][/size][/align][align=center][size=16px][color=#339999][b]图2 电化学热电池性能测试温控系统结构示意图[/b][/color][/size][/align][size=16px] 图2所示的解决方案示意图包含了电化学热电池性能测量装置和温度控制系统两部分。其中的电化学热电池测量装置示出的是对块状、板状或薄膜状热电池的测试结构,电极分别贴服在热电池的顶部和底部,顶部的阴极电极处通过TEC半导体制冷片进行低温控制形成冷电极,底部的阳极电极处通过电阻加热方式(电热膜和电热块)进行高温控制形成热电极,由此在热电池上下两端形成所需温差。需要说明的是,解决方案在冷电极处选择TEC半导体制冷片的主要目的是为了实现高精度的温度控制,这在测试评价薄膜式可穿戴用热电池中实现高精度小温差时非常重要。在热电极出选择电阻加热方式主要是为了满足更高温度的大温差测试需要。[/size][size=16px] 由于半导体制冷片和电阻加热是两种完全不同的发热制冷原理,它们的温度控制方式也完全不同,因此图2所示解决方案设计了两个独立的温控回路,两个温控回路采用的是相同的超高精度PID控制器VPC2021-1。选择使用VPC202-1这种PID控制器,是出于多功能和超高精度的考虑,此控制器可以满足前面所述的对温度控制器的所有要求。[/size][size=16px] 在TEC半导体制冷片温控回路中,使用了VPC2021双向控制功能,通过采集温度传感器信号与设定温度进行比较后,驱动双向电源对TEC制冷片进行加热或制冷控制,由此实现高精度的温度控制。[/size][size=16px] 在电阻加热温控回路中,使用了VPC2021基本的温度控制功能,通过采集温度传感器信号与设定温度进行比较后,驱动固态继电器进行加热,由此实现高精度的温度控制。这里需要注意的是,如果要在电阻加热中实现较高精度的温度控制,除了采用高精度的温度传感器(如铂电阻或热敏电阻)之外,还需要与相应的冷源配合以减小热惯性,如在电阻发热体下面配备冷却装置以便能够形成快速散热。如果是测量薄膜热电池,则无需这些考虑,只需在电阻发热体下面增加绝热层即可,因为热电池和电阻加热膜厚度很小,热惯性自然也小,冷电极的低温可以对热电极进行快速散热,有利于热电极处的温度高精度控制。[/size][size=16px] 为了实现热电池的温度交变试验,解决方案采用了VPC2021控制器的高级功能:远程设定点功能,即在辅助输入通道上接入外部信号发生器以生成各种周期性波形信号作为交变设定值,由此可控制热电极温度按照此设定波形进行周期性变化,从而形成交变温差。如图2所示,此远程设定点功能的选择可以通过一个外置开关进行选择,实现正常控温和交变控温之间的切换。[/size][size=18px][color=#339999][b]3. 总结[/b][/color][/size][size=16px] 本文提出的解决方案,可以满足绝大多数电化学热电池性能测试中的温差环境控制需要,为测试评价热电池性能和优化使用条件提供了便利的试验和考核手段。[/size][size=16px] 更重要的是高精度PID控制器配备了相应的计算机软件,采用了具有标准MODBUS通讯协议的RS485接口,与计算机一起可以组成独立的测控系统,通过计算机可方便的对PID控制器进行远程操控,设置控制器的各种参数,采集、存储和曲线形式显示PID控制器的过程参数,无需再进行任何编程即可进行测试试验,非常适应于实验室研究试验。[/size][size=16px] 此解决方案的另外一个特点是具有很强的灵活性和拓展性,可通过外置不同传感器和信号发生器实现多种物理量和波形的准确控制,更可连接上位机直接与中央控制器进行集成,与整个设备形成很好的配套。[/size][align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~[/align]

  • 气象专用高精度数字压力计

    高精度压力数字压力计以其量程的灵活匹配,最大限度满足客户需求。此设备标配为单通道单模块,还可以选装大气压参考模块以模拟表压和绝压。可根据用户具体需求定制。这个特点使LPG2500特别适合用于需要对不同量程的压力装置进行数据比对的场合。应用领域:实验室,工业现场等LPG2500高精度数字压力计可测量当前压力。精确定度可达到:0.01%,解决现场测量标准,比如:实验室测量当前大气压力,达到高精度要求。解决风洞微压测量和高压风洞测量。产品特点. 精确度最高达到:0.01%FS. 支持多通道. 人性化智能设计. 支持外部通讯. 可用于差压表测试等. 多精度可选择:0.01%、0.02%、0.05%. 工作最大压力范围可订制应用客户:理化研究所、中国物理所等。服务理念:系统软件终身免费服务;定期进行用户回访;免费系统使用培训提供7X24小时服务,服务热线:13520277456选购配件l 工业级仪表箱:工业级仪表箱用于 LPG2500的运输,也可作为LPG2500空运容器。箱子由高强度抗冲击材料做成,外观为黑色,包含一个把手和一个伸缩拉杆;箱体内部专门根据LPG2500定制的高密度EVC泡沫,并且箱体内具有设备备件的储存空间。仪表箱体结实的特性和在恶劣环境的对设备的保护,非常适合成为LPG2500运输的保护箱体。l 校准证书每台LPG2500出厂时可溯源至计量院,可代送国家计量单位出具证书。

  • 超导重力仪器中的超高精度温度(0.1mK)和气压控制解决方案

    超导重力仪器中的超高精度温度(0.1mK)和气压控制解决方案

    [size=14px][color=#ff0000]摘要:超低重力仪器中要求液氦池温度恒定,为实现小于0.1mK的波动度,气压控制的波动度要小于10Pa。为此本文提出了相应技术方案,核心内容是实现缓冲罐的气压精密控制,采用了双向控制模式,并使用了万分之一精度的气压传感器、电动针阀和PID控制器。[/color][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][color=#ff0000]一、问题的提出[/color][size=14px]超导重力仪器有超导重力仪和超导重力梯度仪,都是用来对重力信号进行精密测量的仪器。超导重力仪器需要在低温条件对极微弱信号进行测量,所以对低温温度恒定有很高的要求,即要求液氦池温度波动在0.1mK以内。[/size]对于液氦池温度的精密控制可以通过控制液氦池内的气压来实现,这就要求气压的测量和控制达到极高水平。本文将针对超导重力仪器中液氦池内气压的高精密控制问题,提出相应的解决方案。此方案的优势是液氦池温度的控制精度主要受压力传感器精度的影响,选择超高精度的压力传感器,并通过精密数控针阀和高精度PID控制器,采用下游抽气流量控制模式,可使液氦温度的波动稳定控制在0.1mK以内。[size=14px][color=#ff0000]二、技术方案[/color][/size]液氦温度的精密控制原理是基于液氦饱和蒸气压与对应温度的关系。根据液氦饱和蒸气压与温度的对应关系,液氦温度要控制在4K左右,并要求温度波动小于0.1mK,则要求液氦上部气压控制在100kPa左右时,气压的波动要小于10Pa以内。[size=14px]为了实现上述气压控制精度,本文提出的技术方案具体包括以下几方面的内容:[/size][size=14px](1)液氦池上部的气压控制可以抽象为一个密闭容器内的压力控制。对于密闭容器的压力控制需要增加一个缓冲罐,通过缓冲罐的压力控制实现液氦池的压力控制,结构如图1所示。[/size][align=center][size=14px][img=气压控制,550,490]https://ng1.17img.cn/bbsfiles/images/2022/05/202205230927573218_8908_3384_3.png!w690x615.jpg[/img][/size][/align][align=center][size=14px]图1 高精度气压控制系统结构示意图[/size][/align][size=14px][/size][size=14px](2)缓冲罐的压力控制采用了上下游双向控制模式,通过调节进气和抽气流量进行控制。[/size](3)整个控制系统包括缓冲罐、气压传感器、PID控制器、数字针阀和真空泵。[size=14px](4)如果气压控制在100kPa并要求波动小于10Pa,则要求气压的测量和控制要有10/100k=0.0001(万分之一)的精度,由此需要配备万分之一精度的气压计和PID控制器。[/size]总之,本文所述的技术方案,其控制精度主要受气压传感器和PID控制器精度的限制,结合步进电机驱动的小流量电动针阀,通过高精度传感器和控制器,可以实现超导重力仪液氦温度的精密控制,温度波动可以控制在0.1mK以内,且不受外部环境温度变化影响。[size=14px][/size][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][size=14px][/size]

  • 短程分子蒸馏器的升级改造以实现高精度的真空控制

    短程分子蒸馏器的升级改造以实现高精度的真空控制

    [align=center][img=通过超高精度真空控制提高分子蒸馏分离纯度的方法,550,392]https://ng1.17img.cn/bbsfiles/images/2022/11/202211040202188410_3231_3221506_3.jpg!w690x492.jpg[/img][/align][color=#990000]摘要:为了提升蒸馏纯度,针对现有分子蒸馏中气体流量计式真空度控制系统存在精度较差和响应速度慢的问题,本文提出了更高精度的真空度控制解决方案。解决方案采用更直接、精密和快速的电动针阀来代替现有的气体质量流量计,并同时使用精度更高的薄膜电容规和24位AD、16位DA控制器,可实现任意设定真空度下±0.5%的控制精度,同时对温度等因素所带来的真空度变化有极快的响应,可保证分子蒸馏过程中真空控制的高精度和稳定性。[/color][align=center][color=#990000]~~~~~~~~~~~~~~~~~~~~~~~~~[/color][/align][color=#990000][size=18px]一、问题的提出[/size][/color]分子蒸馏是一种特殊的液-液分离技术,它不同于传统蒸馏依靠沸点差分离原理,而是靠不同物质分子运动平均自由程的差别实现分离。当液体混合物沿加热板流动并被加热,轻、重分子会逸出液面而进入[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相[/color][/url],由于轻、重分子的自由程不同,因此,不同物质的分子从液面逸出后移动距离不同,若能恰当地设置一块冷凝板,则轻分子达到冷凝板被冷凝排出,而重分子达不到冷凝板沿混合液排出,由此达到物质分离的目的。短程蒸馏器是一个工作在0.001~1mbar(0.1~100Pa)绝对压力下热分离技术过程,它较低的沸腾温度,非常适合热敏性和高沸点物。在分子蒸馏工艺中,真空度的控制精度决定了分离物质的纯度,目前绝大多数分子蒸馏设备中真空度控制系统普遍还都采用液环真空泵与旋片式真空泵结合气体流量计的技术,这种通过气体流量计调节进气流量的方法无法实现高精度的真空度稳定控制,具体是以下几方面原因:(1)分子蒸馏过程的真空度变化范围一般为0.1~100Pa,这种高真空范围对气体流量计的真空漏率有较高要求,一般气体流量计很难满足要求,必须使用专门用于高真空的气体流量计。(2)气体流量计的调节精细度普遍较粗,如果要实现高精密的气体流量调节,同样要使用高档更精密的气体流量计。(3)通常气体流量计的响应速度比较慢,很难实现在1秒之内完成全闭到全关的动作时间。(4)多数分子蒸馏中的真空传感器普遍采用精度较差的数字皮拉尼电阻规和电热偶规等。(5)绝大多数调节气体流量计的PID控制器精度较差,多为12位AD和DA转换器,极少用到16位的AD和DA转换器,PID控制器的精度是决定分子蒸馏真空度控制精度的关键。为了提升蒸馏纯度,针对上述现有分子蒸馏中气体流量计式真空度控制系统存在的问题,本文提出了更高精度真空度控制的解决方案。解决方案将采用更直接、精密和快速的电动针阀来代替现有的气体质量流量计,并同时使用精度更高的薄膜电容规和24位AD、16位DA控制器,由此可实现分子蒸馏工艺中任意设定真空度下±0.5%的控制精度,并对温度等因素所带来的真空度变化有极快的响应,有效保证分子蒸馏过程中真空度的高精度和高稳定性。[size=18px][color=#990000]二、解决方案[/color][/size]通过上述分析可以看出,限制现有短程分子蒸馏工艺真空度控制精度的主要因素分别是:(1)气体质量流量计调节精度和响应速度。(2)真空度传感器的测量精度。(3)PID控制器的测量和控制精度。为解决上述问题,本文提出的具体解决方案是采用相应的三个替换装置,如图1所示。[align=center][color=#990000][img=短程分子蒸馏高精度真空度控制装置,690,282]https://ng1.17img.cn/bbsfiles/images/2022/11/202211040201378335_1412_3221506_3.jpg!w690x282.jpg[/img][/color][/align][align=center][color=#990000]图1 短程分子蒸馏高精度真空度控制装置[/color][/align]如图1所示,为提高蒸馏纯度,实现高精度真空度控制,解决方案采用了以下三个装置:[color=#990000](1)采用高速电动针阀代替气体质量流量计[/color]分子蒸馏高真空度控制的基本原理是调节蒸馏器的进气流量和出气流量并达到一个动态平衡,所以这里的技术关键是如何实现进气流量的精密调节。尽管气体质量流量计可以进行进气流量调节,但采用的是电磁阀技术,有着较大的迟滞现象和较慢的响应速度,这些都会影响真空度的控制精度。解决方案中所采用的高速电动针阀是一种高速步进电机驱动的纯机械式针型阀,在大幅度减少迟滞误差的同时,还将整体响应时间缩短到了800微秒,同时精细步长可实现阀门的快速精密调节。驱动控制只需采用0-10V的模拟电压,整体结构简单且可靠性强。多个规格的电动针阀具有不同的气体流量调节能力,可满足不同容积的蒸馏器的真空度控制,同时还可以采用FFKM全氟醚橡胶密封提高耐腐蚀性。[color=#990000](2)采用薄膜电容规代替皮拉尼电阻规和电热偶规[/color]薄膜电容规的测量精度要远高于皮拉尼电阻规和热偶规,在任意真空度下其精度都可以达到±0.25%。那么对于短程蒸馏器0.001~1mbar(0.1~100Pa)的真空度量程内,可直接选择一只1Torr的薄膜电容规即可满足全量程的真空度测量,如果为了保证0.1~1Pa范围内的测量精度,还可以再补充一只0.1Torr的薄膜电容规。这样,通过两只不同量程的薄膜电容规可覆盖全真空度范围内的准确测量。[color=#990000](3)采用超过精度真空控制器代替普通精度PID控制器[/color]在任何PID反馈式闭环控制系统中,无论传感器和执行器精度多高,最终的控制精度都需要控制器的精度予以保证,为此,在解决方案中采用了超高精度的PID真空控制器。此超高精度PID真空度控制器具有24位AD和16位DA,采用了双精度浮点运算可实现0.01%的最小输出百分比,这是目前国内外最高技术指标的工业用PID控制器。采用此真空控制器可充分发挥电动针阀执行器和薄膜电容规真空传感器的精度优势,而且此系列控制器具有单通道和双通道不同型号。单通道控制器是可编程PID控制器,突出特点是可以进行不同量程双真空计的自动切换来实现全量程自动控制。双通道控制器是一种定点控制器,两个通道可以分别独立控制真空度和温度。[size=18px][color=#990000]三、结论[/color][/size]新型的真空控制系统对短程分子蒸馏工艺的真空度控制过程进行了优化,对其中的真空度控制系统做出了以下三方面的改进:(1)采用电动针阀代替气体质量流量计,提高了进气流量调节执行器的精度。(2)采用薄膜电容规代替拉尼电阻规和电热偶规,提高了真空度测量的精度。(3)采用真空控制器代替传统的PID控制器,提高了PID控制精度,并扩展了控制功能,可实现双传感器自动切换和两个工艺参数同时控制。总之,通过以上改进可大幅提高短程分子蒸馏工艺的真空度控制水平,通过大量考核试验和实际应用已经证明,此解决方案成熟度很高,在全真空度范围内可轻松实现±0.5%的控制精度,如果采用更高精度的真空计,此解决方案可进一步达到±0.1%的控制精度。[align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 高精度一乎面加工与检浏

    高精度平面主要包括平晶、平行平晶、标准平面和分划板等。高精度平面的平面度一般γ/20,平行度<2′′。 1高箱度平面的加工方法 a古典抛光法 在一般抛光机上采用柏油模、分离器抛光.这种方法与操作者的技能有较大关系, b.蟹钳式分离器加工法 它在很人程度上减小了倒翻力矩的挤压作用,同时也采用新型抛光模(如混合模、聚四氟乙烯抛光模等),明显提高了加效率利和精度。 c.环形抛光模加工法 它用校正板和夹持器代替分离器.不仅能保持分离器的功能,又使抛光速度趋于均匀。采用了膨胀系教很小的玻璃作为基底,其上涂以聚四氟乙烯塑料为抛光膜层,加上校正板的连续自动修正作用,所以可在连续加工中保持抛光模的面形稳定.能获得γ/10~γ/200的面形精度和平行度为1"~0.1"的平行平晶.也可加工棱镜、多面体等。 d.离子抛光法 一般是将氢等惰性气体原子在真空中用高频放电方法使之离子化,由高压场使离子加速,轰击光学玻璃表面。通常能以原子为单位去除表面材料,形成所需要的抛光面。这种方法可获得高精度的光学表面,井能通过控制程序进行自动加工。 e.电子计算机控制撇光法 用计算机控制光学磨具在零件表面上的运动轨迹、进给速度和压力等工艺因素达到修磨零件表面的目的。这种方法的优点是工具位置、停留时间、运动轨迹及操作参数等均可实现最优化、加工精度可达γ/80,适合于高精度大型光学零件的最后修磨加工。2.高精度平面的检测 测试方法有液面法、等倾干涉法、多光束干涉法、阴影法和三面法等。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制