当前位置: 仪器信息网 > 行业主题 > >

高内涵筛选系统

仪器信息网高内涵筛选系统专题为您提供2024年最新高内涵筛选系统价格报价、厂家品牌的相关信息, 包括高内涵筛选系统参数、型号等,不管是国产,还是进口品牌的高内涵筛选系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高内涵筛选系统相关的耗材配件、试剂标物,还有高内涵筛选系统相关的最新资讯、资料,以及高内涵筛选系统相关的解决方案。

高内涵筛选系统相关的资讯

  • 英国谢菲尔德大学神经转化研究所(SITraN)高内涵筛选成像大赛投票结果揭晓
    11月9日,由英国谢菲尔德大学神经转化研究所(SiTraN)组织的高内涵筛选成像大赛结果火热出炉。来自Mohammed Karami的Transformers从一系列优秀的参选图片中脱颖而出。获奖图片据悉,在多个研究小组及个人的捐赠与支持下,SiTraN中心一年多前引进了PerkinElmer Opera PhenixTM高内涵成像系统,并使用该成像系统上进行了大量聚焦神经科学及转化方向的科研项目,通过此次成像大赛SiTraN各研究组展示多项相关工作成果。据SiTraN中心介绍,这台自动化的成像设备一天可以完成普通共聚焦显微镜需要耗费100天才能完成的工作,这极大的提高了药物筛选的实验效率。此次高内涵成像大赛吸引了该研究中心7个研究小组及个人的参与,其中两个小组在这台系统上进行了多方向的研究项目。SiTraN中心在Opera Phenix高内涵成像系统上运行了各种细胞及动物实验模型,从简单的单细胞培养成像观察,如标记线粒体到更复杂的两种或多种类型的亚细胞结构的检测,通过成像以及设备高内涵数据分析软件,对混合培养的细胞进行计数或者进行类神经结构的定量分析。值得注意的是,该中心还使用Opera Phenix成像系统进行了针对治疗运动神经元病以及帕金森病的新型药物筛选等多个研究项目。从患者身上进行很小的皮肤成纤维细胞样本采样,从这些皮肤细胞可以进一步研究这些患者特异的基因突变或者可以通过干细胞技术将这些细胞重编程为神经细胞或其他的神经支持细胞,研究神经性疾病中神经系统病变。这些研究中研发的技术可以更广泛的用于阿尔茨海默症、神经硬化症以及相应的药物筛选从而帮助学界加深对这些疾病过程的了解或探索新的治疗靶点。还有一些课题组使用该成像系统进行斑马鱼成像。这些实验中,想保证每一条斑马鱼样本的成像方向一致是件非常有挑战性的工作,通过使用Opera Phenix 成像系统配置的特殊成像功能,研究者们在自动寻找目标神经细胞群这块取得了很大的进展。斑马鱼是可以进行基因编辑的很好的疾病模型,为在体药物筛选提供了理想的方案。比如,在运动神经元疾病中起神经保护作用药物以及在多发性硬化症促进髓鞘形成药物。这些患者来源的细胞和斑马鱼可以帮助科学家们探索运动神经元疾病、帕金森病,多发性硬化症以及其他神经系统疾病:这正是nihr 谢菲尔德大学医学研究中心的使命。于此同时,Opera Phenix 高内涵成像筛选系统也凭借其优越的性能已成为该药筛平台最受欢迎的筛选设备。参赛作品除了以上几个选项,这次竞赛还收集到一些非常有意思的Opera Phenix的参选图像,一并列出供大家欣赏。图片作者信息: aurelie schwarzentruber, ruby macdonald, mohammed karami, chris hastings and camilla boschian are all part of dr heather mortiboy’s team. noemi gatto, chloe allen and monika myszczynska are part of dr laura ferraiuolo’s team. dr alex mcgown is a member of dr tennore ramesh’s team.如您想了解更多微信搜索关注珀金埃尔默生命科学
  • PerkinElmer 推出可获得更优质的高内涵筛选结果的全新微孔板
    更优质的图像数据和更可靠的结果有助于生命科学研究人员更深入地了解疾病 专注于提高人类健康及其生存环境安全的全球领先公司 PerkinElmer Inc. 今天宣布推出专为高内涵筛选 (HCS) 而打造的 CellCarrier? Ultra 384 孔微孔板。该孔板设计经过改进,可在 HCS 应用(例如表型筛选和三维疾病模型研究)中获得更高质量的图像数据和更可靠的结果。这种功能组合让研究人员能够更深入地了解疾病,有助于加速更为高效的新型疗法的研发。 “PerkinElmer 在 HCS 仪器与消耗品方面拥有深厚的专业背景,有助于我们利用指示人体生理学状况的生理相关疾病模型,为希望以无偏差且具有统计学意义的方式测定细胞内变化的科学家开发创新型解决方案。”PerkinElmer 生命科学与技术部总裁 Brian Kim 说道,“诸如此类微孔板的创新为科学家配备了强大的研究工具,让他们可以更加准确地对疾病进行深入分析,从而开发出更为有效的新型治疗方案。”CellCarrier? Ultra 384 孔微孔板专为在高内涵筛选应用中获得更高性能而设计,而在该应用中成像表面对于高分辨率图像和高质量数据的生成而言至关重要。此孔板拥有黑色外观,经精密设计,其表面极其平整,可实现高效成像。孔板采用环烯烃制成,这是一种光学性质与玻璃类似的塑料,能提供更为清晰的图像。 微孔板的其他功能包括:采用高数值孔径水浸式透镜并结合超低孔板底部时能够更好地观察孔、经过改进的板盖设计可减少蒸发、拐角预留空间可在堆叠时避免损坏成像表面、提供多种包被选择以适应具体应用。此微孔板是 PerkinElmer 高内涵筛选完整解决方案的一部分,该解决方案包括:Operetta? 高内涵成像系统、Opera? Phenix? 高内涵筛选系统、Columbus? 图像数据管理和分析系统以及 HC Profiler?。有关 PerkinElmer Cell Carrier Ultra 384 孔微孔板的详细信息,请单击此处。 PerkinElmer, Inc. 是一家专注于提高人类健康及其生存环境安全的全球领先公司。据报道,该公司 2013 年收入约为 22 亿美元,拥有约 7,600 名员工,为超过 150 个国家/地区的客户提供服务,同时该公司也是标准普尔 500 指数的成员。有关其它信息,请致电 1-877-PKI-NYSE 或访问 www.perkinelmer.com。
  • 新药研发成功率降低,高内涵筛选能否力挽狂澜?
    p style="text-indent: 2em text-align: left "研究人员认为,结合机器学习算法的高内涵筛选将广泛用于药物的研发/pp style="text-indent: 2em text-align: justify "上个世纪80年代,科研人员开发出了高通量筛选(high throughput screening),这是一种能对大量化合物样品进行药理活性评价分析的技术。在过去的几十年里,高通量筛选曾在新药的研发中发挥了重要的作用。/pp style="text-indent: 2em text-align: justify "但在最近10年,开发一个新药的成本增加了整整一倍。在大规模筛选中发现的候选药物往往会在临床试验中遭遇失败,其中Ⅱ期临床试验更是新药研发中的一道难关。/pp style="text-indent: 2em text-align: justify "只有大约1/100的候选药物能顺利走完新药研发之路,如此低的成功率也促使药物开发者重新考虑其筛选方法。/pp style="text-indent: 2em text-align: justify "许多研发人员正在寻找实现高内涵筛选(high content screening),并同时保持可接受的筛选通量的方法。/pp style="text-indent: 2em text-align: justify "“如果我们看看过去三十年的新药研发情况,比如小分子和蛋白质药物,就可以发现我们在选择候选药物时过于简单化了。”Jean-Philippe Stephan博士说,他在施维雅公司负责药物筛选、化合物管理和生物银行的运行。Stephan博士研究小组的工作重点是在药物研究的早期阶段,从大量的化合物中选出有潜力的候选药物,“为了更好的完成这一工作,我们将高内涵筛选引进了我们的工作平台。”/pp style="text-indent: 2em text-align: justify "平衡筛选的通量和内涵/pp style="text-indent: 2em text-align: justify "“在过去很长一段时间里,我们都认为药物的筛选只要不断尝试就可以完成。不管我们用的筛选方法多么简单,即使这犹如大海捞针一般,只要我们尽可能多地筛选化合物,我们最终都会找到想要的那根针。”Stephan博士说。/pp style="text-indent: 2em text-align: justify "这种观点鼓励人们开发出含有数百万种化合物的大型化学库,然后一一进行筛选,以确定其中感兴趣的药物。/pp style="text-indent: 2em text-align: justify "“但在筛选数百万种化合物时,筛选方法不能过于复杂。” Stephan博士说,“因为药物开发是一场分秒必争的竞赛,所以用于筛选的时间不能太长。”/pp style="text-indent: 2em text-align: justify "在最近一项关于当前药物研发可持续性的研究中,Stephan博士及其同事强调了高内涵筛选对药物研发的益处和挑战。该研究探讨了如何将高内涵功能(如图像捕获、处理以及数据分析)纳入大规模筛选工作,并同时保持足够的筛选通量。/pp style="text-indent: 2em text-align: justify "“我们需要一种能够概括整个身体状况的模型。”Stephan博士强调,“但这非常困难,在高通量或高内涵筛选方面更是如此。”/pp style="text-indent: 2em text-align: justify "例如,几十年来,研究人员都在使用二维培养系统培养细胞,但它无法模拟人体组织的生理特性。三维培养系统虽然能更准确地模拟人体组织的生理学特性,但对三维培养系统的运用仍处于早期阶段。/pp style="text-indent: 2em text-align: justify "“为了在培养皿中创造出接近体内的生理环境,研究人员需要将不同类型的细胞混合培养。” Stephan博士说,“但人体是很复杂的,想在小小的培养皿中重现类似的生理环境实在太困难了。”/pp style="text-indent: 2em text-align: justify "即使有理想的实验模型,开发人员也必须处理另一个难题:选择最佳的筛选指标。这一指标可能包括细胞核的大小,特定染色的强度,特定细胞区域中抗体的结合情况或细胞的运动。/pp style="text-indent: 2em text-align: justify "而高内涵筛选的优势之一恰好是可以同时测量多个参数,但有些筛选指标的选择会面临一些技术限制。例如,可以通过显微镜分辨的波长数通常限于四个,这些参数的选择数量有限可能会导致后续的分析出现错误。/pp style="text-indent: 2em text-align: justify "高内涵筛选面临的另一个困难是需要限制数据偏差的可能性,例如使用阳性对照时产生的数据偏差。在高通量筛选中,研究人员需要在多个步骤进行阳性对照。控制数据偏差以前只被视为一个技术问题,但研究人员已经开始意识到在药物研发的多个步骤中控制偏差的重要性。/pp style="text-indent: 2em text-align: justify "最后,高内涵筛选还需要继续结合机器学习算法,这些算法有望在药物研发中广泛运用。零碎的信息可能不准确或生物复杂性太小,但深度神经网络可以充分利用这些信息,在筛选的第一阶段先预选出一些化合物,然后再使用更复杂的模型进行鉴定。/pp style="text-indent: 2em text-align: justify "在高通量筛选中,需要在多个步骤中进行阳性对照/pp style="text-indent: 2em text-align: justify "球体光学处理/pp style="text-indent: 2em text-align: justify "“我们开发了一套高通量光学处理的方案,可用于球体成像、荧光高内涵共聚焦成像和核分割。”美国国立卫生研究院国家转化科学中心的生物学家Molly E. Boutin博士说,这项工作有助于完善3D细胞培养模型。/pp style="text-indent: 2em text-align: justify "许多生物学的3D模型都是球状的,然而在高通量筛选时,研究人员很难得到清晰的球状体图像并进行分析。/pp style="text-indent: 2em text-align: justify "“光通过一层层细胞成像时会产生大量的散射。”Boutin博士说。使用这套光学处理方案可以在球体更深的区域成像,但是现在只有少量的研究者在高通量筛选中使用它们。“这些都是非常简单的分析技术,”她继续说道,“但是研究人员通常没有想过去观测细胞在球体培养模型的哪个位置。”/pp style="text-indent: 2em text-align: justify "例如,在预测药物细胞毒性的实验中,普通显微镜图像中球体的大小会被看作细胞是否死亡的指标。“但这些图像并不能说明死亡的细胞是在球体培养模型的外部还是内部,甚至根本就没有细胞死亡。”Boutin博士说。/pp style="text-indent: 2em text-align: justify "因此,Boutin博士及其同事最近开发了这套高通量球体光学处理和细胞核分割方案,并使用它检查了来自乳腺癌和原发性胶质母细胞瘤细胞系3000个球体培养模型的558,000个图像文件。使用这套自动化处理方案,科学家们可以在1-2.5小时内对384孔板进行成像。在这项研究中,Boutin博士及其同事还证明了分割算法能够根据荧光标记识别单个球体内细胞的几个亚群。/pp style="text-indent: 2em text-align: justify "“机器学习算法正在快速发展,它允许用户自己训练程序,让程序了解数据集。”Boutin博士告诉我们。“从学习过程中,人们还可以预测未知数据集的内容。”/pp style="text-indent: 2em text-align: justify "例如,使用对照图像和治疗图像数据集,可以训练程序判断未知的治疗是否会引起特定的反应。机器学习的优点是可以减少手动选择阈值时产生的偏差,Boutin博士表示他们今后会设法在算法中引入机器学习来进行分析。/pp style="text-indent: 2em text-align: justify "定向分化/pp style="text-indent: 2em text-align: justify "“我们实验室对不同的遗传和环境因素如何促进疾病进展,以及如何找到治疗这些疾病的药物感兴趣。”威尔康奈尔医学院外科和生物化学副教授Shuibing Chen博士说。在最近的一项研究中,Chen博士及其同事开发了一种分化方案,用于检测Glis3(一种与糖尿病相关的基因)在人胰腺β细胞生物学中的作用。/pp style="text-indent: 2em text-align: justify "这项研究表明,人胚胎干细胞中Glis3的缺失削弱了它们向胰腺祖细胞和β样细胞的分化能力,并引成了这些细胞的死亡。为了寻找能拮抗这种损伤的药物,Chen博士实验室的研究人员使用了高内涵筛选,最终发现了一种TGF-β抑制剂,目前正在进行II期临床试验。/pp style="text-indent: 2em text-align: justify "这种叫galunisertib的TGF-β抑制剂能特异性地在体外和体内拮抗由Glis3缺失引起的细胞死亡,而对正常细胞却没有任何影响。识别出了galunisertib的高内涵筛选十分有前景,Chen博士预测它将越来越广泛地被用于药物研发。/pp style="text-indent: 2em text-align: justify "Chen博士及其同事开发的用于区分个体胰腺细胞类型和模拟人类疾病的方案具有几个优点。“当我们进行筛查时,我们可以将胰岛素(一种胰岛β细胞标记物)和胰高血糖素(一种胰岛α细胞标记物)结合起来,获得促进分化为这些细胞谱系的小分子的信息。”/pp style="text-indent: 2em text-align: justify "另一个优点是能够同时评估细胞死亡和细胞增殖,同时检测这两个指标可以帮助我们识别导致细胞死亡的某些小分子。”Chen博士断言,“我们已经从细胞的初步筛选中获得了一些机制线索。”/pp style="text-align: center "img src="https://img1.17img.cn/17img/images/201810/uepic/9520f1e0-13aa-46e1-a789-eb7d436b772d.jpg" title="201810150846408915.png" alt="201810150846408915.png"/br/span style="text-align: left text-indent: 2em "Shuibing Chen博士通过高内涵筛选发现新药的研究成果发表于《nature communications》/span/pp style="text-indent: 2em text-align: left "抗体研发中的流式细胞仪/pp style="text-indent: 2em text-align: justify "“我们开发了一种依靠高通量流式细胞仪(HTFC)来鉴定抗体结合物的方法,”武田制药公司肿瘤研究部门的科学家,Yana Wang博士说。他们将iQue Screener(一种高通量悬浮细胞/微珠筛选系统)与模块化机器人系统相结合,形成了这套高通量流式细胞仪。/pp style="text-indent: 2em text-align: justify "HTFC将样本小型化、高速采集和培养板管理相结合,为集成应用提供了灵活的模块化解决方案,并且可以同时准确地测量多个参数。/pp style="text-indent: 2em text-align: justify "研究人员可以使用HTFC来同时监测多种细胞因子的表达水平和细胞活性参数,从而得到大量的数据。这种新平台的效率也很高,可以在8小时内处理完16个384孔板。/pp style="text-indent: 2em text-align: justify "在过去几年中,武田制药的科学家们在高内涵筛选上付出了很多努力。“我们正在尝试利用已有的高通量筛选,结合高内涵筛选构建一个新的平台,以应对武田制药不断发展的生物制品需求。”Yana Wang博士说。/p
  • 100%进口垄断,全国高内涵细胞成像分析系统市场谁占鳌头?
    高校及科研院所重大科研基础设施和大型科研仪器是国家科技基础条件资源的重要组成部分。但由于管理模式及制度,高内涵细胞成像分析系统等科学仪器设备不对外开放,大多养在“深闺”,大量科研资源潜能没有得到充分发挥。为解决这个问题并加速释放科技创新的动能,中央及各级政府在近几年来制订颁布了关于科学仪器、科研数据等科技资源的共享与平台建设文件。2021年1月22日,科技部和财政部联合发布《科技部 财政部关于开展2021年度国家科技基础条件资源调查工作的通知(国科发基〔2020〕342号)》,全国众多高校和科研院所将各种科学仪器上传共享。仪器信息网对平台高校和科研院所上传的高内涵细胞成像分析系统数量和品牌分布进行统计分析,在一定程度上可反映科研用高内涵细胞成像分析系统的市场信息。(注:本文搜集信息来源于重大科研基础设施和大型科研仪器国家网络管理平台,不完全统计分析仅供读者参考)。高内涵细胞成像分析系统是什么?高内涵细胞成像分析系统又称高内涵筛选系统(high content screening, HCS),是一种结合自动化荧光显微镜的细胞定量成像分析技术。HCS可同时检测多个细胞参数,通过实时监测多种信号通路阐明细胞损伤,在单一实验中获取大量与基因、蛋白及其他细胞成分相关的信息, 确定其生物活性和潜在毒性,被广泛应用于大规模的药物筛选,具有微量、快速、灵敏和准确等特点。全国共享HCS市场调研据统计,网络管理平台上HCS的总数量为144台,涉及25个省份、直辖市、自治区。其中,北京、上海、江苏等地区共享HCS数量最多,分别为40台、16台、16台。除此之外,湖北、广东、浙江均大于5台,分别为9台、9台、8台。从全国共享HCS地区分布图可以看出,共享HCS主要分布在高校教育资源集中的地区。全国共享HCS地区分布图这144台HCS的单位来源共涉及113所高校及研究院所,共享HCS数量超过1台的单位有15所,分别为北京大学、清华大学、中山大学、中国科学院上海药物研究所等。其中,北京作为共享HCS最多的地区,涉及28所高校及研究院所,且高校的共享HCS数量比科研院所多。全国共享HCS数量超过1台的单位北京28所共享HCS单位从全国共享HCS品牌分布来看,HCS市场完全被进口垄断。美谷分子、珀金埃尔默、赛默飞世尔、GE占据了85%的市场,其中,前二者更是抢占到总份额的60%,在高校和科研院所中占据绝对优势。除此之外,BD、奥林巴斯、Leica也在HCS市场中存在一定的竞争力。全国共享HCS品牌分布从全国共享HCS产地分布来看,HCS市场完全被来自美国的仪器生产厂商垄断,它们占据总市场份额的90%。日本的尼康、奥林巴斯等,德国的Leica、蔡司,抢占剩余的市场,在高校和科研院所的仪器采购中占有一席之地。全国共享HCS产地分布更多高内涵细胞成像分析系统讯息,点击专场查看。
  • 1180万!海南大学采购共聚焦显微镜、高内涵系统等仪器,部分仅限国产!
    7月7日,某招标采购网站上发布海南大学采购激光共聚焦显微镜、高内涵成像系统、流式细胞仪等仪器的项目,项目总计金额超过1180万元。其中全自动生化分析仪,二氧化碳培养箱到水浴箱要求为国产。以下为详细招标信息:招标单位:海南大学招标产品:液相色谱质谱联用仪 ,石英晶体微天平 ,切片机 ,水浴/油浴/恒温槽 ,移液器/移液枪 ,共聚焦显微镜 ,生物显微镜 ,流式细胞仪/细胞分析仪 ,动物麻醉机 ,生化分析仪 ,液氮罐 ,生物安全柜 ,CO2培养箱/二氧化碳培养箱 ,血液分析系统 招标编号:HD2022-1-027流式细胞分析仪等招标公告招标编码为【HD2022-1-027】,招标项目内容包括【流式细胞分析仪、激光扫描共聚焦显微镜、高内涵筛选系统、全自动生化分析仪、移液器、液相色谱/三重串联四极杆质谱联用系统、全自动模块式动物血液体液分析仪、电子天平、生物显微镜、二氧化碳培养箱、生物安全柜、小动物麻醉机、液氮罐、水浴锅、切片机】,投标截止到【2022-07-26 08:30】,欢迎合格的供应商前来投标。项目编号:HD2022-1-027项目名称:药学院美安实验平台设备购置一、采购需求:包号采购品目名称数量预算(万元)A激光扫描共聚焦显微镜1260B高内涵筛选系统1265流式细胞分析仪198.8C超高效液相色谱/三重串联四极杆质谱联用系统1260D全自动模块式动物血液体液分析仪170全自动生化分析仪131.5E自发行为记录分析系统127F包:171.35 万元序号采购品目名称数量预算(元)1全自动脱水机13120002石蜡包埋机11840003全自动石蜡切片机12090004倒置显微镜1990005体视显微镜1620006生物显微镜1960007二氧化碳培养箱2398008生物安全柜3395009双开门冰箱2450010灭菌锅14200011烘箱1580012显微镜17500013台式低速离心机2750014水浴锅2180015掌上离心机5160016涡旋仪2120017液氮罐2780018防爆柜1450019大容量离心机22000020培养箱12000021二氧化碳培养箱12000022生物安全柜13500023小动物麻醉机23500024小动物呼吸机22500025大小鼠耳标钳3100026大鼠脑模具2300027小鼠脑模具2300028大鼠心模具2350029小鼠心模具2350030大鼠气管插管套装2230031小鼠气管插管套装2210032小鼠固定装置650033大鼠固定装置650034兔固定装置1030035犬固定装置3400036小型无影灯11000037消毒喷雾机5100038电子天平(1g)250039电子天平(0.1g)3100040电子天平(0.001g)1400041电子台秤(10g)2200042电子体温计410043电子数显游标卡尺1100044冰箱(4度)11190045冰箱(-20度)11060046冰柜(-20度)1980047单道可调量程移液器1170048单道可调量程移液器1170049单道可调量程移液器1170050单道可调量程移液器1170051单道可调量程移液器1170052单道可调量程移液器1170053电动移液器1280054水浴箱15000包D中的全自动生化分析仪,包F中的二氧化碳培养箱到水浴箱国产,其余允许进口。本项目不接受联合体投标。合同履行期限: 非进口产品合同签订后30天内交货且安装调试完毕,进口产品合同签订后90天内交货且安装调试完毕。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定 2.本项目的特定资格要求:1、如投标人不是所投产品生产厂家的,属于三类医疗器械的须具有医疗器械经营许可证,属于二类医疗器械的须具有医疗器械经营备案凭证 2、所投产品属于二、三类医疗器械产品的须具有医疗器械注册证、医疗器械生产许可证(若所投产品为进口产品,则无需提供医疗器械生产许可证) 属于一类医疗器械产品的须具有产品备案登记凭证、生产企业备案登记凭证(若所投产品为进口产品,则无需提供生产企业备案登记凭证)。三、获取招标文件时间: 2022年07月06日00时00分 至 2022年07月12日23时59分(提供期限自本公告发布之日起不得少于5个工作日)(北京时间,法定节假日除外)。地点:全国公共资源交易平台(海南省)(http://zw.hainan.gov.cn/ggzy/)方式: 网上购买售价: 0元四、提交投标文件截止时间、开标时间和地点2022年07月26日08时30分(北京时间) 地点: 海南省公共资源交易服务中心(海口市国兴大道9号)202 开标室。五、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:海南大学企业信息 地 址:海南省海口市美兰区人民大道58号联系方式:赵老师0898-662790302.采购代理机构信息名 称:中科高盛咨询集团有限公司地 址:海南省海口市龙华区金贸中路1号半山花园海天阁第32层3238房联系方式:蔡广杰0898-685910773.项目联系方式项目联系人:蔡广杰电 话:0898-68591077六、采购项目需要落实的政府采购政策:《政府采购促进中小企业发展管理办法》、《财政部印发通知进一步加大政府采购支持中小企业力度》、《财政部 发展改革委 生态环境部 市场监管总局关于调整优化节能产品、环境标志产品政府采购执行机制的通知》、《关于信息安全产品实施政府采购的通知》、《关于促进残疾人就业政府采购政策的通知》、《财政部 司法部关于政府采购支持监狱企业发展有关问题的通知》、《关于政府采购支持绿色建材促进建筑品质提升试点工作的通知》、《财政部国务院扶贫办关于运用政府采购政策支持脱贫攻坚的通知》、《海南省财政厅关于印发《海南省绿色产品政府采购实施意见(试行)》的通知》、《海南省财政厅 海南省工业和信息化厅关于落实超常规举措加大对中小企业政府采购支持的通知》。
  • 持续升温的高内涵细胞成像与火热的类器官研究——横河电机高级技术顾问杨林立
    高内涵细胞成像分析系统是一种利用高倍镜成像技术对细胞进行图像采集和分析的仪器设备。得益于显微成像、自动化和计算机等技术的迅猛发展,使其能够对大量细胞进行高分辨率成像和数据分析,实时提供海量多维生物学信息,广泛应用于生物医学、药物筛选等领域。为帮助大家及时了解高内涵成像分析前沿技术、创新产品与解决方案,仪器信息网特别组织策划《窥微探秘,高内涵细胞成像前沿技术与进展》专题。本期,特别邀请到横河电机(中国)有限公司高级技术顾问杨林立谈一谈日本横河电机YOKOGAWA高内涵成像分析系统发展历程、创新技术以及他对未来市场的看法。仪器信息网:请介绍一下高内涵成像技术的发展历史。杨林立:目前,高内涵成像技术主要包括宽场和共聚焦两种,其中共聚焦又细分为激光点扫描共聚焦、单转盘共聚焦和微透镜双转盘共聚焦。相较宽场和点扫描共聚焦,转盘共聚焦兼顾了图像质量和扫描速度,可以实现高速获取高质量的动态图像,展现出广阔的应用前景。接下来,我将围绕转盘共聚焦技术展开重点介绍。1997年,美国Cellomics公司成功开发出首个高内涵高通量筛选技术平台ArrayScan system,其中的共聚焦模块采用的是Nipkow单转盘,在保证高质量图像的基础上显著提升了成像速度,实现了短时间内获取大量图像和数据的目标,帮助科研人员进一步对细胞内部或细胞与细胞之间连续发生的动态变化的研究。1996年,横河电机成功研制出首套微透镜增强双转盘共聚焦模块CSU10,在列阵单转盘的基础上引入了微透镜列阵转盘。其中,微透镜盘的使用能够大幅增加透光量,减小噪音,提高图像信噪比,同时进一步减小了激光曝光时间,实现低光漂白和低光毒性。微透镜双转盘共聚焦示意图随后,横河电机在2008年推出了首款微透镜双转盘高内涵系统CV6000,搭配4台高视角相机和水浸式镜头,进一步提升了拍照速度和图像分辨率。2015年,横河电机首款超高分辨的转盘共聚焦模块CSU-W1 SORA诞生,其分辨率可达到120 nm,使图像分辨率再次大幅提升。近年来,随着图像荧光均一度要求越来越高,原有的光路设计亟需改造升级,横河电机和英国Andor公司分别开发出Uniformizer和Borealis技术,使视野内的荧光亮度更加均一化,从而提升了高内涵系统的成像质量。仪器信息网:请点评荧光成像系统、透射光成像系统和共聚焦成像系统等不同成像方式的优劣势?杨林立:成像技术可以分为两类:一类是透射光技术,即俗称明场或明视野,另一类是荧光技术。明场的定义相对广泛,具体又可以分为明场(Bright Field,BF)、微分干涉对比(Differential Interference Contrast,DIC)、霍夫曼调制对比(Hoffman Modulation Contrast,HMC)、相差(Phase Contrast,PH)、偏光(Polarized Light)和暗场(Dark Field,DF)。而荧光技术是指光源通过透镜激发细胞染料,染料发射荧光再经透镜进入相机,将光信号转化为电信号形成细胞图像。近年来,市场不断涌现出一些新颖复杂的成像技术,例如光片显微镜、共聚焦显微镜和双光子显微镜,大体上基于荧光成像技术发展而来的。与传统显微镜不同,共聚焦显微镜采用单色光作为光源,在入射光滤光片位置附近增加一个针孔装置使入射光源变成点光源,点光源相比普通场光源方向性更强、发散更小、强度更大,能够在某一时间点激发焦平面内单个样品点的荧光信号,周围的样品点对被激发点的干扰极小,从而大大提升了显微镜的XY轴分辨率。在信号检测器的前方也设置了一个针孔装置,光源针孔和检测针孔的位置都刚好位于物镜的焦平面上,但通过分光器的作用之后,两者的位置形成“共轭”,这就是所谓的“共聚焦”。共聚焦的成像方式能很好地阻挡非焦平面的信号,进而提升显微镜的Z轴分辨率。仪器信息网:请介绍当前全球及中国高内涵细胞成像分析系统市场规模及现状。杨林立:据调研报告显示,全球高内涵筛选(HCS)的市场规模大概在6亿美元左右。从2019年到2024年间,预计将以9.8%的年复合成长率保持较高的增速发展,市场规模也将成长到10.5亿美元左右。其中,北美地区(占比38.5%)是高内涵筛选的最大市场,其次是欧洲(31.7%)、亚太地区(23.1%)、拉丁美洲(5.0%)、中东和非洲(1.6%)。北美地区由于研发投入强度高、主要医药市场参与者的存在、以及政府大力支持等多重因素导致长期占据较大的市场份额。与此同时,随着全球医药行业高速发展、新药研发投入力度持续加大、跨国公司对新兴市场的日益关注以及研发基础设施不断完善,预计亚太地区市场将在预测期内实现最高增长。目前市场主要参与者包括:美谷分子(美国)、瑞孚迪(原PE,美国)、赛默飞(美国)、思拓凡(原GE,美国)、伯腾(美国)、横河电机(日本)、帝肯(瑞士)和伯乐(美国)等。根据仪器信息网报道,从全国共享高内涵筛选系统品牌分布来看,市场被进口垄断。前二者更是抢占到总份额的60%,在高校和科研院所中占据绝对优势。根据2021上半年高内涵分析仪中标记录,从高内涵细胞成像分析系统的品牌分布来看,中标数据中瑞孚迪占比最高。横河的占比为4%,其中的CQ1型号有着最多的中标。仪器信息网:贵司高内涵细胞成像分析系统的发展历程是怎样的?有哪些里程碑事件?杨林立:横河电机的高内涵分析系统最早可追溯到2008年——首款微透镜双转盘高内涵系统CV6000的诞生,它曾一度成为当时通量最高且成像质量极高的明星产品,随后于2011年完成了重大更新,并命名为CV7000;2014年,又推出了首款桌面式微透镜双转盘共聚焦高内涵分析系统CQ1,兼顾了成像速度和质量及经济性;2018年,成功研制出集细胞培养、加样、成像和分析于一体高内涵筛选系统CV8000,通过将专有的高速共焦扫描单元、水浸式镜头、带有细胞培养环境的显微镜台和集成机器人移液器相结合,不仅实现了高内涵、高分辨率成像,还可以通过更复杂的评估系统进行细胞表型筛选;2022年,横河电机重磅推出了首款高内涵单细胞及亚细胞内容物取样系统Single Cellome™ SS2000,这也是业内首次将高内涵系统与细胞取样系统相结合,具有跨时代融合创新。是全球首次将高内涵系统与细胞取样系统结合,提高稀有细胞及细胞内容物的取样便捷度,同时保留细胞的原始形态和位置信息,流式分选系统需要大样本,需要细胞悬浮,不能获取细胞容物,它的出现弥补了流式的不足,在高内涵成像分析的基础上,通过设定取样参数可提取整个细胞或细胞内容物。仪器信息网:目前贵司主推的高内涵细胞成像分析系统产品有哪些?并谈谈该产品的核心竞争力(包括成像、数据处理、算法分析和自动化等方面)。杨林立:根据市场需求和侧重目标不同,目前横河电机主推CQ1台式高内涵分析系统、CellVoyager CV8000高内涵筛选系统和Single Cellome™系统SS2000三款产品。就核心竞争力而言,横河电机高内涵产品的成像质量在业内是有口皆碑的,采用微透镜增强双转盘共聚焦光路,通光量高达70%,而单转盘仅有1-2%,同时,微透镜双转盘凿刻的针孔能够有效阻断杂散光,图像信噪比显著高于单转盘。此外,光源使用固体激光,单色性和亮度及穿透性比LED高,此外软件功能强大,界面简洁,操作方便。综上,横河电机的高内涵产品具有图像质量高、成像速度快、分析便捷等显著优势。CellVoyager CQ1高内涵成像分析系统CellVoyager CQ1是一款小巧紧凑、简单易用且价格亲民的高内涵成像分析系统,拥有有多种配置选择,并支持智能整合从而实现全自动成像分析。得益于横河电机微透镜双转盘共焦技术可以实现快速、温和地获取3D图像。同时,微透镜双转盘共聚焦的低光毒性使延时和活细胞分析成为可能。提供类似流式细胞术分析功能,支持包括数量、形态学、荧光强度、纹理和示踪及其他自定义参数的高内涵分析。此外,CellVoyager CQ1也是开放平台,可作为图像采集或分析设备扩展为整合检测系统,也可连接机械臂实现全自动成像分析。CQ1可配备高阶的高通量高内涵分析软件CellPathfinder。CellVoyager CV8000 高内涵筛选系统作为一款高端高内涵分析系统,CellVoyager CV8000将独特的高速共焦扫描仪、水浸物镜、高视场相机、带有细胞培养环境的显微镜台和机器人移液器集于一身,不仅实现了高内涵、高分辨率成像,还可以通过更复杂的评估系统进行表型筛选。此外,配备功能强大的CellPathfinder专业分析软件,可对细胞、细胞器、蛋白颗粒、神经细胞等进行多参数分析,如形态参数、荧光参数、纹理参数、细胞示踪参数等,并且具备深度学习和机器学习能力,能够提高对目标对象识别的精度性和准确性,从而帮助用户更好地分析图像,实现批量化分析,批量化导出数据结果,导出多种可视化数据。Single Cellome™系统SS2000高内涵自动亚细胞取样系统SS2000是一套直接自动取样的系统,它可在单细胞水平上自动对细胞的特定区域或整个细胞进行采样,同时使用共聚焦显微镜对培养中的细胞进行成像。由于在培养过程中可以仅对目标细胞进行取样而无需分离细胞,因此,取样后可保留细胞的位置和形态信息。仪器信息网:贵司高内涵细胞成像分析系统主要应用哪些领域的哪些实验环节?有哪些代表性用户单位?杨林立:横河电机的高内涵产品广泛应用于各种生物学实验环节,例如药物毒性与活力、类器官的培养与杀伤评价、神经细胞的发育与调节、胚胎干细胞的生长发育和分化、转录因子调控、TPD靶向蛋白复合体水解和细胞自噬等。凭借值得信赖的产品质量和快速细致的服务,横河电机的高内涵产品获得了广大用户的认可和赞誉,比如诺华制药、阿斯利康、强生制药等国际知名药企,哈佛大学医学院、美国国立卫生研究院(NIH)和食品药品监督管理局(FDA)等美国研究机构,以及北京大学、中科院微生物所、西湖大学和香港科技大学等国内科研院校。仪器信息网:未来高内涵细胞成像分析系统技术发展趋势如何?最看好哪些应用细分?杨林立:现阶段一线科研工作者们对高内涵成像仪器操作和数据分析的熟练程度仍有很大进步空间,比如,一些研究单位时常因为高内涵使用不熟练,而不能得到清晰的图像以及准确的分析结果。为此,高内涵成像分析系统需要更具智能化和智慧化,通过先进的语音交互系统将录入的语音准确无误地转化为操作指令或者编程语言,帮助操作人员熟练地使用各项功能。这也是横河电机未来重要发展方向之一。2019年,类器官技术被The New England Journal of Medicine杂志评为优良的人类临床前疾病模型,它在细胞水平和个体水平药物评价之间建立了一座关口,能更高效提升药物进入临床的成功率,在3D水平上筛除低效药物。在医院科室,患者的组织可用于体外肿瘤类器官培养,进而药敏筛查,指导病人的临床用药及组合用药。此外,改造后的免疫细胞对肿瘤组织是否具有杀伤或抑制作用,同样需要类器管模型进行检测评价。因此,类器官拥有众多且重要的应用场景,而对3D类器官的成像和分析,目前只有高内涵能够胜任,尤其微透镜双转盘高内涵能够更好地成像与分析。我认为,在类器官研究领域,高内涵细胞成像分析系统是明确、持续且重要的需求。杨林立 横河电机(中国)有限公司高级技术顾问杨林立,生物学博士,毕业于上海交通大学,专注于细胞功能及表型研究,具有丰富的高内涵成像和分析经验,对于高内涵的整体解决方案,对于类器官的研究有着深入的理解和经验。欢迎投稿!投稿文章将在《高内涵成像技术》专题展示并在仪器信息网相关渠道推广。投稿邮箱:zhaoyw@instrument.com.cn,关于征稿内容要求也可邮件咨询或电话联系:13331136682(同微信)。
  • 肿瘤干细胞克隆的高内涵筛选应用
    肿瘤干细胞(CSC)除了具有高度致瘤性、无限的增殖潜力和产生恶性肿瘤的能力外,还在肿瘤转移和治疗后原发肿瘤的再增殖中发挥作用,更可以抵抗传统的化疗以及更现代的靶向治疗,CSC的这些特性使得开发治疗恶性肿瘤的有效疗法变得复杂。克隆形成试验作为CSC功能研究的一个标准,通过检测CSC形成克隆的能力,既可以评估其干性,也可以对后续的放化疗进行个性化的用药指导,但是目前对CSC的克隆表征进行高通量筛选还存在,考虑到CSC的复杂性及其临床相关性,需要有更高效的方法来对CSC的克隆表征进行高通量筛选分析,并在此基础并开发更有效地针对这些人群的药物或其他疗法。Advanced High-Content-Screening Applications of Clonogenicity in Cancer一文就提出了一种运用高内涵系统来量化2D和3D细胞培养模型中CSC克隆数量、大小和形态,并基于荧光标记区分克隆的高通量方法。图一:2D培养模式下用化合物61预处理的SW620细胞克隆图像,全实验组克隆计数、平均表面积和全孔融合率定量分析在2D培养模式中,使用极限稀释法将SW620结直肠癌细胞从2500个细胞/孔稀释至1个细胞/孔,并配合不同化合物处理,在培养的第8天对细胞进行核染色。结合明场与Hoechst 33342染色图像,对细胞形成的克隆数量、面积和融合度进行了分析,数据显示SW620细胞的克隆形成对TOP2A抑制剂(化合物61)的处理呈现出浓度依赖性反应,并且不同处理方式(预处理VS.连续处理)克隆的生长情况也有所不同。图二:3D培养模式中SW620细胞克隆的计数和形态学分析在3D培养模式中,采用同样的方法对SW620细胞(混于基质胶中)进行稀释,从40000个细胞/400μl稀释至约1248个细胞/200μl,并以50μl/孔接种于96孔培养板中,培养到第7-10天时同样对细胞进行核染色(Hoechst 33342)并使用高内涵系统对样品进行3D成像和分析,结果显示与2500个细胞相比,在5000个铺板细胞上观察到的克隆数量增加了一倍以上,而克隆表面积和体积则保持相对一致。图三:3D培养模式中A549细胞克隆的形态学分析为了评估这一体系在不同种类、不同形态的肿瘤细胞中的适用性,研究中还用A549肺癌细胞进行了验证,形态学进行分析发现A549细胞球长成了两种不同典型形态的克隆—“圆形”、“分支”,随后用高内涵分析软件对这两种细胞球的体积、表面积、椭球轴(长度、短轴与长轴之比、中轴长度、最短轴长度、倾斜度和方向)、球度和最大厚度等形态学参数进行定量,这些结果表明A549细胞可能含有两种不同的CSC亚群。图四:2D培养SW620克隆中CD44和CD24的免疫荧光染而对CSCs的细胞表面标志物(高CD44 ,低CD24)进行图像分析后发现,CD24表达在所有细胞接种浓度下不变,CD44表达随着细胞数量的减少而增加,CD44high/CD24low在细胞中的表达与其干细胞潜能一致。对比只分析膜区域的荧光强度和全细胞区域分析的结果其表达趋势是相似的。本文中介绍的工作概述了克隆形成集落的2D和3D分析的方法、算法和工作流程,可广泛适用于其他HCS仪器和成像分割软件。这些高内涵技术可用于研究促进CSC干性的复杂机制,但也可广泛用于其他药物的发现,以及评估小分子药物、生物制剂和放射治疗的治疗潜力。高内涵系统的智能预扫功能允许灵活地执行初始低倍镜大范围扫描以定位感兴趣的克隆,并自动以更高的放大倍数仅对所需克隆的XYZ位置进行重新扫描。在大量样本中定位研究人员感兴趣的特殊对象大大减少了使用整个成像过程所需的时间。参考文献Esquer H , Zhou Q , Abraham A D , et al. Advanced High-Content-Screening Applications of Clonogenicity in Cancer[J]. SLAS DISCOVERY Advancing the Science of Drug Discovery, 2020
  • Molecular Devices 2012 Molecular Devices 高内涵成像大赛正式启动
    高内涵图像分析(HCS): 即以保持活细胞结构和功能完整性为前提,在亚显微形态下同时检测不同条件对细胞形态、生长、分化、迁移、凋亡、代谢途径及信号转导等方面的影响。Molecular Devices作为行业内的先行者之一,自1998年以来一直致力于高内涵筛选系统的研发。为提高和普及高内涵成像技术和知识,促进先进成像技术在生命科学领域的应用,加强科研人员之间的交流合作,举办本届高内涵成像大赛。 分享高内涵成像图片,轻松赢取:iPod, iPad多重大奖 注册评论,即有机会获得:Molecular Devices精美礼品 报名参赛:2012年9月12日 &ndash 2012年10月31日网络投票:2012年11月5日 &ndash 2012年11月26日
  • Molecular Devices 2012 Molecular Devices高内涵用户会议在京成功举办
    随着生命科学的不断发展与技术的进步,细胞成像的需求已经从单一的手动成像记录,发展为集合着自动化操作与软件数据分析为一体的全新高内涵成像技术。 拥有着14年高内涵成像经验的Molecular Devices,秉承着分享精神,一直致力于将推广和介绍生命科学领域当前最新技术,为广大的细胞成像用户提供一个探讨细胞成像新技术、分享高内涵技术在科学研究和药物研发使用经验以及应用技巧的平台,于十月下旬,在北京成功举办了“2012 Molecular Devices高内涵用户会议”,50位细胞成像领域的专家和学者出席了本次用户会议,会议现场气氛活跃,讨论热烈,互动积极。 大会现场Molecular Devices全球副总裁大中华区总经理仇建平先生,致欢迎词,并对Molecular Devices公司在生命科学领域以及细胞成像领域十多年的的发展经验进行了简短的介绍。台湾国立成功大学药理学研究所,成大医院光学影像中心主任沈孟儒教授为大家介绍“基于成像的高内涵筛选技术用于化疗有道的神经毒性研究”的相关实验和技术Molecular Devices公司生物成像系统产品经理Grisha Chandy 博士与大家分享多通路高内涵检测应用和高内涵产品全新的软件技术中国科学院上海药物所研究组组长,研究员李佳博士,介绍如何使用高内涵系统筛选亚细胞器小分子调节剂北京大学工学院生物工程系博士生导师席建忠博士,介绍如何使用高通量筛选技术柴璇肿瘤转移的关键基因江苏先声制药研发中心药物研发科学家张正平先生,为大家介绍高内涵筛选系统在药物研发领域的相关应用军事医学科学院毒物药物研究所研究员,博士生导师王莉莉老师为大家介绍高内涵系统在新药研究中的应用和实践与会专家和学者对此次高内涵用户大会提供的交流和互动平台表示非常欢迎,也感谢Molecular Devices让他们了解到国内外目前最新的高内涵筛选的技术和应用;同时,对Molecular Devices公司的高内涵产品有了更为全面和深入的认识,并对应用MD的高内涵产品和服务能够成功解决科学研究以及药物开发以及筛选中的实际问题充满信心。 更多高内涵成像活动,请点击!!
  • 岛津应用:Nexera UC手性筛选系统自动优化分离条件
    光学活性(手性)物质是分子内具有不对称碳、呈镜像对称而无法完全重合的化合物。以往利用色谱法分离手性化合物以HPLC为主,但近年来,使用超临界流体色谱法(Supercritical FluidChromatography:SFC)进行分析的方法日益增加。通过SFC法对手性化合物进行分析时,主要使用低极性、低粘度、高扩散的超临界二氧化碳作为流动相,向其添加极性有机溶剂(改性剂)来控制溶解性和极性。HPLC分析中,正相条件实现手性化合物的常规分离和高速分析,还能够减少有机溶剂的使用量,因而分析成本和环境负荷低。 但是,使用SFC法分析手性化合物时,需要探索各种柱和改性剂,因此需要花费大量人力和时间。本文中的岛津Nexera UC手性筛选系统能够最多切换12个色谱柱和4种改性剂及各种溶液混合比例,自动探索多种分离条件,从而大幅度提高了分析效率。 亮相BCEIA2015的岛津Nexera UC 了解详情,敬请点击《使用Nexera UC手性筛选系统自动优化手性化合物的分离条件》 关于岛津 岛津企业管理(中国)有限公司是(株)岛津制作所于1999年100%出资,在中国设立的现地法人公司,在中国全境拥有13个分公司,事业规模不断扩大。其下设有北京、上海、广州、沈阳、成都分析中心,并拥有覆盖全国30个省的销售代理商网络以及60多个技术服务站,已构筑起为广大用户提供良好服务的完整体系。本公司以“为了人类和地球的健康”为经营理念,始终致力于为用户提供更加先进的产品和更加满意的服务,为中国社会的进步贡献力量。 更多信息请关注岛津公司网站www.shimadzu.com.cn/an/ 。 岛津官方微博地址http://weibo.com/chinashimadzu。岛津微信平台
  • 赛默飞Cellomics高内涵技术高端用户会成功举办
    2012年6月11日 -- 近日,赛默飞2012年度Cellomics高内涵技术高端用户会成功在沪举办。如今,干细胞研究、多维细胞模型、原代培养和组织观察、神经退行性疾病和肿瘤学等研究均需要大规模、高通量、多参数的生物学技术。高内涵分析(High Content Analysis)因其特别适合细胞的复杂形态学分析,正日益广泛地被使用,为生命科学家研究固定后细胞或者活细胞的细胞功能提供了一个平台。早在1998 年,赛默飞世尔科技就推出了第一台全自动图像分析仪平台(Thermo Scientific Cellomics高内涵筛选分析仪)用于早期的药物研发,高内涵分析仪就此诞生。2011年赛默飞推出的 Cellomics ArrayScan Infinity 高内涵分析仪更是提供了在多维成像与分析上的多项最新技术,使科学家更加自由的探索细胞生物学研究领域的未解之谜。为了让国内科研工作者更多了解高内涵技术及其应用,赛默飞于2012年5月30日,在上海徐汇区嘉汇华美达大酒店成功举办了为期一天的&ldquo 2012年度Cellomics高内涵技术高端用户会&rdquo 。来自中科院生化所、复旦大学和上海交通大学等行业内50多名相关高端用户齐聚一堂,共话高内涵技术的国内外最新进展,解读国内高内涵应用最新动态,分析、分享实验数据,并特邀使用Cellomics高内涵技术在《Cell》等高端学术杂志上发表了文章的用户介绍研究经验。 与会人员认真听取产品介绍并作笔记赛默飞生命科学部商务总监谭斯其出席大会并致欢迎辞,表达了作为行业领导者对高内涵技术应用的信心;来自生命科学部美国总部的专家, Martin Pietila 介绍了高内涵技术的沿革和最新进展;来自葛兰素史克中国研发中心、中科院上海有机化学研究所和上海交通大学的3名研究人员分别介绍了他们的研究领域、实验方案、方法、结果以及高内涵技术在其间的应用;最后赛默飞应用专家向大家展示了最新一代的高内涵筛选系统样机,并演示了软件的操作方法。 赛默飞生命科学部商务总监谭斯其致欢迎辞与会人员表示,此次高端用户会不仅让他们了解了高内涵技术及其应用,对赛默飞提供的解决方案也有更有信心。 关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额120亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com关于赛默飞世尔科技中国赛默飞世尔科技进入中国发展已有30年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳等地设立了分公司,目前已有超过1900名员工、6家生产工厂、5个应用开发中心、2个客户体验中心以及1个技术中心,成为中国分析科学领域最大的外资企业。赛默飞的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,目前国内已有6家工厂运营,苏州在建的大规模工厂2012年也将投产。赛默飞在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国技术中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;遍布全国的维修服务网点和特别成立的维修服务中心,旨在提高售后服务的质量和效率。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn
  • 【会议回顾】Molecular Devices 第六届高内涵用户会议圆满完成
    Molecular Devices 第六届高内涵用户会议圆满完成 Molecular Devices举办的第六届高内涵用户会议于2018年10月19日在南京香格里拉大酒店圆满完成。约有150多位老师、研究员参加了此次研讨会,30多位老师通过线上直播平台观看了这次会议。 高内涵成像筛选是对每个细胞进行多通道、多靶点的荧光扫描检测,由成像技术捕获图像信息后,经专用分析系统进行多指标在线分析,最终高效率地定量获取药物或外界刺激对细胞作用的综合生物学评价。近年来高内涵系统在生命科学基础研究领域以及药物筛选领域使用愈加广泛,为给用户搭建一个良好的交流平台,Molecular Devices 邀请到了九位演讲嘉宾带来精彩演讲。 第一位美国埃默里大学杜宇红主任,从3D构建细胞开始,到后期的药物筛选,使用高内涵对细胞的药理毒理进行了演讲。 第二位是中国药科大学曹征宇教授,曹老师主要讲了两个新颖的课题利用了高内涵以及FLIPR筛选系统阐明杀虫剂对神经发育的毒性。 第三位是中科院基因组学的栗世铀研究员,高内涵可以用在细胞的表型基因型上,大大拓宽了高内涵的应用。 第四位是韩国的Young Min Oh首席研究员,高内涵不仅仅可用于科研领域,也可用于观察单克隆细胞,进行细胞筛选。 第五位是中科院昆明动物所杨东副研究员,以干细胞为研究对象,使用高内涵系统筛选抗肿瘤药物。 第六位是来自宝岛台湾的邱浩傑副教授,邱老师着重研究的是抗生素,因此使用了高内涵系统进行抗生素的筛选,尤其是将所用板子的高度与台湾摩天大楼相比,突出高内涵快速的优势。 第七位是上海交通大学的吴方研究员,吴老师主要介绍了硫化氢产生酶CBS抑制剂发现及机制研究,用高内涵仪器对细胞生长状态进行监测研究了化合物抑制机理。 第八位是中科院健康所的郭文静老师,郭老师熟练地使用MD高内涵仪器,解决一个又一个实验难题,对仪器的熟练程度,让我们MD 的工程师都自叹不如。 最后一位是来自Molecular Devices的市场总监Sarah女士,她详细介绍了MD推出的新仪器ImageXpress Pico 个人型高内涵系统,小巧灵活,满足实验室的日常需要。 在茶歇与午餐期间,Molecular Devices展出了三台样机,一台高端高内涵仪器、一台个人型小型高内涵以及多功能酶标仪,现场老师亲身体验便捷的仪器,MD 工程师也现场解答老师疑问。 此次会议规模创下了历史新高,期待下次高内涵会议,能有更多参会人员参与我们的会议,MD一如既往提供一个良好的平台供各位老师交流。
  • Cell 主刊:高内涵筛选助力攻克毒性蛋白质病难题
    毒性蛋白质病(Proteinopathy)通常由细胞内或细胞外沉积大量折叠变异的蛋白质(Misfolded protein)所致。在蛋白合成和成熟过程中的任何一个环节出现问题,如蛋白突变、折叠以及翻译后修饰出现异常都有可能会导致蛋白质病的发生。虽然蛋白质病这个术语对很多人来说还比较陌生,但现已证明其和多种严重的神经性疾病,如阿尔兹海默症、帕金森病和肌萎缩性侧索硬化症(ALS)的发生密切相关。靶向蛋白质病的研究也为屡屡受挫的神经退行性疾病治疗提供了新的曙光[1,2]。高内涵整体解决方案的优异体现在七月的Cell主刊中,研究将目光转至由MUC1基因移码突变导致的肾病(MUC1 kidney disease ,MKD)[3]。与神经性退行性疾病类似,MKD目前尚无有效治疗手段。结合细胞系、小鼠模型、病人组织和日益火热的类器官来源样本,研究证实MUC1突变蛋白(MUC1-fs)会大量聚集在细胞内,并最终激活未折叠蛋白应答(Unfolded protein response UPR),诱发细胞损伤和毒性。因此,MKD也属于蛋白质病的一种。针对该发病机制,研究实施基于高内涵平台的高通量筛选,并成功获得能特异清除突变MUC1蛋白的小分子药物BRD4780。该研究不仅深入我们对蛋白转运异常发生机制的了解,也为多种毒性蛋白质病提供了新的治疗策略和切入点。在七月的研究热点版块中,Nature Review Drug Discovery专门针对发现进行了解析[4]。该研究也体现了珀金埃尔默高内涵整体解决方案的高效应用。成像平台Opera Phenix配合CellCarrier Ultra系列微孔板主导高内涵筛选的同时,并通过水镜优势参与了基于上述四种样本的所有荧光拍摄和动态追踪分析细胞凋亡进程。针对类器官样本的拍摄,PreciScan功能被用于提速拍摄进程和排除不需要的图像采集和分析。所有的荧光分析由Harmony软件完成,尤其是‘spot’分析功能的应用。a疾病解析通过MKD病人和体外模型等样本,研究使用抗体染色方式分析野生型MUC1和对应突变产物的组织和细胞分布。在不同来源的样本中,值得一提的是基于病人诱导性多能干细胞(induced pluripotent stem cells , iPS cells)建立的类器官(Organoid)样本。基于干细胞技术的类器官模型建立和分析也是近年来高内涵的优势应用方向之一[5]。与病人的切片结果一致,野生型MUC1主要分布在类器官的顶膜部位,而突变蛋白则分布在细胞内。进一步研究证明聚集在细胞内的突变MUC1会诱发细胞应激,活化ATF6-UPR通路并最终导致细胞损伤,表明MKD是蛋白质病。基于MKD病人的肾类器官模型染色,图片由Opera Phenix拍摄。红色指示野生型MUC1蛋白;绿色指示突变体MUC1蛋白;蓝色为E-cadherin;黄色为Na/K ATPase标记基底外侧膜。b高内涵筛选为了发现能有效清除突变蛋白的药物,研究针对病人样本建立永生化细胞系,并利用Opera Phenix开展大规模、多指标高内涵筛选。在初筛中,研究关注能清除突变蛋白并无显著细胞毒性的药物,并在此基础上细化筛选药物浓度开展二轮筛选。通过两轮筛选后,研究通过特异性、mRNA水平调控和是否能抑制ER应激药物thapsigargin的细胞毒性三个指标来进一步分析候选药物。高内涵筛选流程图最终,从3713种化合物中,研究成功发现BRD4780满足上述的指标,能有效特异清除突变蛋白的同时不影响MUC1转录水平,并能保护病人模型细胞系不受thapsigargin的应激压力。进一步的实验证明BRD4780能工作于类器官模型和小鼠模型,是非常有潜力的MKD治疗药物。左图:基于细胞系的染色结果,黄色指示野生型MUC1蛋白;绿色指示突变体MUC1蛋白;灰色指示细胞核。右图:对应的统计分析和细胞数变化分析。c机制研究为了解析MUC1突变体亚细胞聚集原理和BRD4780工作机制,研究利用成像技术进行大量共定位研究,并发现病人来源细胞系中MUC1突变体滞留在内质网和高尔基体之间的早期分泌通路中,并与运货受体TMED9有显著的共定位趋势,且这个现象能进一步在多种模型和病人组织中重现。通过动态成像追踪,研究证明BRD4780能将滞留的突变蛋白从早期分泌途径中释放出来,并促进其进入溶酶体降解途径。基于细胞系的亚细胞共定位研究,分析基于Harmony软件的‘spot’ 分析功能。基于细胞系、小鼠模型、病人组织和类器官来源样本的荧光染色分析,红色指示TMED9;绿色指示突变体MUC1蛋白;灰色指示细胞核。* 荧光图片均由Opera phenix 拍摄。非常有意思的是,在病人样本中研究同时也发现TMED9蛋白水平的上升,而BRD4780处理同样能降低TMED9蛋白水平。此外,通过CRISPR技术敲除TMED9能表型模拟BRD4780的处理效果,清除突变蛋白。因此,TMED9参与了MUC1突变体在早期分泌途径的滞留和积累,并可能是BRD4780的直接作用靶点。针对此,研究采取细胞热移位测定法(Cellular thermal shift assay,CETSA)证实细胞内BRD4708和TMED9存在直接相互作用。凭借其能在生理条件下进行细胞水平分析的优势,CETSA成为了内源蛋白-药物相互作用分析技术的生力军,是表性筛选下游药物解析的利器。基于CETSA方法在细胞水平确认BRD4708能直接结合TMED9综合上述的发现,研究向我们阐释了MKD的发病以及BRD4780的作用机制。通过直接结合TMED9,BRD4780将突变的MUC1蛋白从内质网和高尔基体之间的早期分泌通路中释放出来,加速溶酶体对其的清除。令人兴奋的是,在具有很好的药理性质的同时,BRD4780不仅能作用于MKD,还能作用于其他多种膜相关蛋白导致的毒性蛋白质病,如UMOD突变相关的慢性肾病和色素性视网膜炎等,是非常有潜力的候选药物。MKD的发病机制和BRD4780的作用机制图同时,该研究也是高内涵两大应用领域的精华案例。首先是亚细胞水平成像应用,研究中涉及到的大量定位、共定位研究和动态追踪蛋白转运过程都是高内涵的优势应用场景。其次,更为关键的是,该研究也是成像筛选主导的药物发现案例。从疾病模型表型的建立到靶向逆转疾病相关表型的筛选,和最后下游的药物机制研究,都离不开珀金埃尔默高内涵解决方案。高内涵解决方案,伴随着机器学习的逐渐成熟,将成为创新药物研发行业的新鲜血液[6]。参考文献1. Ganguly G, et al.Proteinopathy, oxidative stress and mitochondrial dysfunction: cross talk in Alzheimer' s disease and Parkinson' s disease. Drug Des Devel Ther. 2017 Mar 16 11:797-810.2. Scotter EL, et al.TDP-43 Proteinopathy and ALS: Insights into Disease Mechanisms and Therapeutic Targets. Neurotherapeutics. 2015 Apr 12(2):352-63. doi: 10.1007/s13311-015-0338-x.3. Dvela-Levitt M, et al.Small Molecule Targets TMED9 and Promotes Lysosomal Degradation to Reverse Proteinopathy. Cell. 2019 Jul 25 178(3):521-535.e23.4. A novel approach to reverse proteinopathies https://www.nature.com/articles/d41573-019-00133-55. Czerniecki SM, et al.High-Throughput ScreeningEnhancesKidneyOrganoid Differentiation from HumanPluripotent Stem Cells and Enables Automated Multidimensional Phenotyping. Cell Stem Cell. 2018 Jun 1 22(6):929-940.e4.6. Machine learning brings cell imaging promises into focus https://www.nature.com/articles/d41573-019-00144-2关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn。
  • 美谷分子微生物筛选系统 QPix亮相央视晚间新闻 ,助力创新中国
    2024 年 7 月 9 日,中国中央电视台新闻联播 CCTV-13 《新思想引领新时代改革开放丨“创新中国”筑梦新征程》重点报道了我国一系列科技创新及促进科研创新的密集落地举措,助力中国式现代化。高通量微生物克隆筛选系统 QPix XE 作为加速科研创新的工具亮相在新闻联播中。中国式现代化要靠科技现代化做支撑,实现高质量发展要靠科技创新培育新动能。科学技术推动经济发展,科学技术的发展离不开科研团队软硬件的配套支持。国家的全社会研发经费在 2012 年的 1.03 万亿元增涨到 2023 年的 3.3 万亿元。在国家大力投入科研创新的举措之下,传统行业转型发展,新兴产业蓬勃发展,未来产业布局建设。其中,生命科学的蓬勃发展,为科研创新注入新动力。创新是科技发展的核心动力,QPix 系列作为经典的微生物克隆筛选系统,客观的成像筛选、高达 3000 克隆/小时通量的自动化挑选、可定制和整合的扩展性、多种功能集成等特性,使其不论是在生物药开发、工业菌株筛选、基因合成还是合成生物学等领域都能发挥重要的作用,促进创新加速。一睹它的风采⬇ ️ ⬇ ️ ⬇ ️ 美谷分子仪器,赞27QPix 高通量微生物克隆筛选系统在生物制造中的应用:随着基因编辑技术的发展,研究人员可以通过基因操纵,让微生物或者其他底盘细胞高效生产之前靠化学合成的产品,用生物合成代替化学合成,提高效率的同时降低污染和风险,也可以让底盘细胞高效生产自然界难以提取的物质,降低低剂量产品提取成本,还可以通过基因改造令微生物具有将有害物质转化为产品的能力等。以“DBTL”循环(Design-Build-Test-Learn)为指导的合成生物学流程,增加了对底盘细胞高通量筛选的需求。传统的微生物挑选为手工铺板、手工挑菌,在挑选的流程中遵循 5 个动作的循环过程:拿吸头、观察、挑菌落、接种至孔板、扔吸头。这种手工挑选有很多局限性:动作重复且技术含量低,挑选的准确性依赖操作人员的熟练程度;挑选速度受限;挑选的标准为肉眼判断,并且菌挑至哪个孔没有数据追溯等。高通量克隆筛选系统 QPix 可以实现克隆挑取的高效化、标准化,替代手工挑选,助力高效生物制造。QPix 400 系列微生物克隆筛选系统QPix 系统全球装机量已经超过 600 套,广泛用于世界各地的研究机构、测序服务单位、生物科技和制药公司。在人类基因组项目中,QPix 系统的稳定性和准确性获得了测序中心的赞誉。2023 年,QPix 400 系列增添新成员,新品 QPix XE 专为空间紧凑型、中高通量需求的实验室而设计。体积和通量上的更新并不影响 QPix XE 强大的功能和高质量的结果,依旧能够轻松实现高效、精准的克隆识别和挑取!基于菌落形态特征和荧光强度的克隆识别和筛选,尽早发现阳性克隆,减少下游工作量轨道运行实现高位置精度,确保准确挑取克隆多种类型挑针可选,匹配不同形态菌落,实现更高效的挑取复制、重排、抑菌圈/水解圈等多种功能可选,一机实现多种用途自动数据存储和样本跟踪功能确保数据完整性QPix 系列广泛的应用场景仍然适用 QPix XE,例如合成生物学、生物技术、生物燃料、农业、微生物组学、环境科学、食品和饮料等广泛的科研活动。同时,QPix 系列与 Molecular Devices 其他高通量产品结合,可以提供完善的高通量应用解决方案,为您的研究提供更多可能!细胞株开发解决方案合成生物学解决方案抗体药物开发-噬菌体展示解决方案结语QPix 高通量微生物克隆筛选系统以其稳定的性能、多样的功能、广泛的应用领域提高了科研人员的生产力,加速科技创新步伐,助力科技现代化。Molecular Devices 与科研人员一起,不断探索,践行创新使命。
  • 网络讲座 | 高内涵筛选在转化医学与个性化医疗领域的应用:化疗药物反应的检测
    转化医学系列网络讲座又来啦!本期webinar邀请到的是多伦多大学Sunnybrook研究所的李响博士。李博士现就职于David Andrews实验室,研究方向为利用高通量,高内涵筛选药物组合和使用人工智能进行图像的大数据分析。在David Andrews教授的带领下研发临床Chemoresponse Assay,立志于推动个人化精准医疗的临床转化与应用。Chemoresponse Assay目前可以为CLL的生理和病理药物反应提供功能强大、用途广泛的临床检测。接下来将把检测方式应用于AML临床验证。针对固体肿瘤,Andrews团队利用新型化合胶质建立了基于乳腺癌,肺癌病人原发癌细胞的3D类器官配合Chemoresponse Assay的检测筛选。转化医学系列网络讲座讲座题目:高内涵筛选在转化医学与个性化医疗领域的应用:化疗药物反应的检测讲座时间:8月29日下午14:00-15:00主讲人:李响 博士(多伦多大学)讲座形式:网络讲座,手机或PC即可参与(会议链接和如下报名链接相同)内容简介本期讲座李博士将结合自己的研究给大家介绍以下内容:1. 概括介绍目前癌症治疗的方法,利弊和趋势以及对精准医疗的需求。2. Andrews实验室创立了利用高内涵药物筛选结合机器学习从而对癌症病人化疗药物反应的快速检测:HCS Chemoresponse Assay。结合目前进行的慢性淋巴细胞白血病CLL临床验证来讲述检测流程和检测原理。HCS Chemoresponse Assay的优势以及临床实验结果举例。针对固体肿瘤的肿瘤类器官的建立与HCS Chemoresponse Assay的结合简单介绍。HCS Chemoresponse Assay在转化医学,药物研发和临床检测的展望。扫描下方二维码,即刻报名主讲人简介李响 博士Melbourne University墨尔本大学生物医学学士;Melbourne University Honours墨尔本大学生物医荣誉学士;Melbourne University-Walter and Eliza Hall institute(WEHI) PhD墨尔本大学-伊莉莎霍尔研究所博士;University of Toronto-Sunnybrook Research Institute Post-doctoral fellow多伦多大学Sunnybrook研究所博士后;博士阶段在WEHI主攻细胞死亡与癌症研究。现就职于David Andrews实验室,研究方向为利用高通量,高内涵筛选药物组合和使用人工智能进行图像的大数据分析。更多转化医学系列网络讲座安排,具体时间以珀金埃尔默微信推送时间为准。敬请关注! 主题预计时间小分子激酶抑制剂研究最新进展9/19/2019使用Alpha技术研究RNA甲基化“橡皮擦” (ALKBH5)10/24/2019研究蛋白相互作用就是这么简单11/7/2019细胞成像分析前沿应用案例心得分享11/28/2019原来药物研发还可以这样做—基于表型筛选的药物研发11月小动物活体成像技术助力脑靶向载体的研究12/19/2019关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn。
  • 大连华微推出新产品:无极通量“阵列式单细胞超高通量柔性筛选系统”
    —“HW—TORNADO龙卷风”系列大连华微生命科技有限公司(Dalian Life Huawei Technology Co., Ltd.)(以下简称大连华微),是一家拥有自主知识产权,集研发、生产、销售及服务为一体的微流控系统一站式解决方案供应商。大连华微推出“HW—TORNADO龙卷风”系列单细胞液滴制备、混匀、检测、柔性操控与分选综合控制系统,引起业内客户高度关注。“HW—TORNADO龙卷风”系列产品,全球业内具有特色的“N×”阵列式并行模块单元结构,可积木式定制扩展,针对细胞、细菌、酶、病毒、蛋白、线虫等尺寸在0.1微米至2000微米范围的活性生物颗粒,实现高通量筛选:5亿×N个液滴/日(N=1,2,4,8,16…选用阵列数,理论上速度可任意增加);对尺寸在100纳米至2毫米米范围的生物颗粒进行液滴包裹、检测、分析及筛选,可删除空液滴,实现单个液滴只包含一个细胞、菌、酶(或其它生物颗粒);多频激光(405/488/532/561/638等)可根据用户需求配置,共聚焦实时协同作业,并可实现灵活的更换和快速升级;触摸屏软件,智能识别,实现自动化的操作处理;系统可根据客户需求定制生物芯片,实现液滴检测、混匀,以及无损操控与筛选。 大连华微成立伊始,就定位于世界前沿科技的研发与生产,其自主研发的“细胞、菌、酶液滴高通量制备、检测及柔性筛选系统”秉持民族品牌,已经发展5个系列数十种型号,成为业内知名、拥有完全自主知识产权的单细胞液滴自动化控制产品。公司本次重磅推出的:阵列式100%单细胞-巨高通量柔性筛选系统“HW—TORNADO龙卷风”系列,支持全面广泛的应用及科研需求,涵盖单细胞基因测序、基因编辑、细菌分选、药物筛选、疾病诊断、酶活筛选、基因文库构建等多个重要领域。 近一两年,国内出现很多仿制的实验室DIY型“分选系统”——依靠国外成型的功能组件、电源、信号控制部件搭接而成,智能程度低、可靠性差、误差不可控,分选过程对生物颗粒活性影响不可逆,且操作繁琐。最重要的:如果采购这种DIY型“产品”,一旦其进口电源、主控功率部件出现故障或损坏,DIY供应者无法修复,只有更换,且更换成本极高(至少需要RMB十万元以上,维修周期超过两个月,如西方限制进口则无法继续使用)。华微产品源于元器件级别的自主研发,客户众多,质量经过中科院、三甲医院、985高校等高端客户应用及检验,产品可靠性、柔性控制的性能远优于上述DIY型“产品”。华微产品除保修一年外,部件还终身享受成本价格换修(最贵的单个元件更换,不高于前述DIY供应者换修价格的三分之一),维修周期一般不超过一周,自主研发产品不存在受西方限制的核心组件,可大幅节省客户后续使用成本,这是拥有自主核心技术的底气。大连华微生命科技有限公司,依靠自有专利技术,立足独立研发民族品牌,致力于国际前沿领域的微流体控制科技产品的研发与生产,历经十年的探索磨砺,为中国乃至世界的业内客户带来全新的选择。未来公司将一如既往地重视创新科研,与广大华微客户一起携手进步,共同推动着中国生命科学的发展,做世界细分领域有话语权的中国高科技民族企业。关于华微生命科技:大连华微生命科技有限公司,坐落于素有中国“浪漫之都”之称的海滨城市大连高新区火炬路,是大连市第六批“海创工程”企业;成立伊始,就定位于世界最前沿科技的研发与生产,提供生物技术、生命科学、医疗健康、环境保护等领域的专业设备、耗材、服务,以及相关完整解决方案。
  • 艾玮得:AI助力高内涵成像系统,开启类器官研究新纪元
    高内涵细胞成像分析系统是一种利用高倍镜成像技术对细胞进行图像采集和分析的仪器设备。得益于显微成像、自动化和计算机等技术的迅猛发展,使其能够对大量细胞进行高分辨率成像和数据分析,实时提供海量多维生物学信息,广泛应用于生物医学、药物筛选等领域。为帮助大家及时了解高内涵成像分析前沿技术、创新产品与解决方案,仪器信息网特别组织策划《窥微探秘,高内涵细胞成像前沿技术与进展》专题(点击查看),本期,特别邀请到江苏艾玮得生物科技有限公司谈一谈艾玮得高内涵成像分析系统发展历程、创新技术以及对未来市场的看法。仪器信息网:请介绍一下高内涵成像技术的发展历史。艾玮得:上世纪90年代,随着光学技术和高分辨率显微镜的出现,科学家们开始意识到利用高倍镜成像技术对细胞进行观察和分析的潜力。而高内涵细胞成像分析系统的诞生正是基于传统显微镜的改进与创新,通过将高倍数物镜和高灵敏度的图像采集设备与显微镜相结合,实现了对细胞进行高分辨率成像的技术突破。然而,尽管早期高内涵细胞成像分析系统具备高分辨率成像能力,但由于需要手动操作,图像采集效率低下。随着计算机技术和自动化控制技术不断创新与突破,高内涵细胞成像分析系统得到了快速发展。通过引入自动化控制系统和图像处理算法,高内涵系统具有了自动对焦、快速采集、图像处理和数据分析等功能。同时,硬件设备的升级和优化也大幅提升了成像质量和分辨率。近年来,随着高通量筛选技术和单细胞测序技术的兴起,高内涵细胞成像分析系统变得尤为重要。不仅能够对大量细胞进行高分辨率成像和数据分析,显著提高了研究效率和数据准确性,同时,随着细胞生物学和药物研发等领域的发展,高内涵细胞成像分析系统也在不断创新和改进,为科学研究和药物开发提供更全面的支持。仪器信息网:请介绍当前全球及中国高内涵细胞成像分析系统市场规模及现状。艾玮得:据调查报告显示,当前全球高内涵的整体市场规模在15亿美元左右。随着生物技术和制药研发的不断发展,对高内涵的需求也会与日俱增,这也是为何高内涵产品的年复合增长率(CAGR)能够稳定保持在8~10%的快速增长状态,预计亚太地区市场将在预测期内实现最高增长。根据仪器信息网报道,从全国招标数据来看,主要玩家以进口品牌为主,包括Molecular Devices(美谷分子,美国)、Revvity(瑞孚迪,前身是PE,美国)、Thermo Fisher Scientific(赛默飞,美国)、Agilent(安捷伦,美国)、YOKOGAWA(横河电机,日本)等,国产品牌所占空间较小。另外,市场细分之下,超半数集中在医院、高校和科研院所。艾玮得自23年异军突起,已经在上述市场中有所建树,未来随着工业市场的复苏和蓬勃发展,艾玮得高内涵产品的市场占有率将进一步提升。仪器信息网:贵司高内涵细胞成像分析系统的发展历程是怎样的? 艾玮得:江苏艾玮得生物科技有限公司(AVATARGET)成立于2021年,是一家专注于人体器官芯片及生命科学设备研发与生产的创新科技公司。艾玮得核心技术转化于东南大学器官芯片科研团队,技术成果已成功应用在新药研发、精准医疗、疾病建模、美妆安全性评价等科研场景中。通过产学研转化与自主研发,艾玮得已布局专利近百件,其中发明专利申请占比50%,专利分布涵盖器官芯片、生物模型及材料、仪器设备及软件等核心产品。2023年7月,艾玮得正式推出了AvatarInsight高内涵智能成像分析仪重磅新品,将AI技术融入底层架构设计中,深度学习的图像分析结合高内涵筛选(HCS)的一体化成像分析工作流程,强大的人工智能训练单元帮助科研人员解放双手,更加专注于科研过程。另外,AvatarInsight高内涵智能成像分析仪除独立使用外,还可以与细胞成像环境控制系统、器官芯片摇摆灌注仪、器官芯片灌流控制系统、微型类器官培养自动化液体处理工作站等艾玮得智能设备结合,为科研人员提供生命科学内的多场景一站式解决方案。仪器信息网:目前贵司主推的高内涵细胞成像分析系统产品有哪些?并谈谈该产品的核心竞争力(包括成像、数据处理、算法分析和自动化等方面)。艾玮得:艾玮得AvatarInsight高内涵智能成像分析仪以AI智能分析为核心,集结光学显微成像、智能传感器、可视化呈现等关键技术,实现了精湛成像、多层扫描、智能训练等多项功能,满足用户对科研力、稳定性、智能一体化的多样化需求,为新药研发、生命科学等研究构建了一个“无限”3D智能成像分析平台。AvatarInsight高内涵智能成像分析仪AvatarInsight高内涵智能成像分析仪具有多项亮眼功能。首先,可以精准识别待检测样本孔位并高速自动定位对焦,对96孔整板精细对焦成像仅在5分钟内即可完成。其次,孔板导航功能可以自动记录孔板的孔位具体位置,实现实时或定时在同一位置的连续成像,实现对同一视野的定时追踪。同时,AvatarInsight具备超高清成像和全景拼接能力,自动切换Koehler照明不同模式,生成对应光学图像,可同时进行明场、相差、荧光高分辨率观察,并始终保持成像画质的高精确度。此外,艾玮得多年深耕AI领域在高内涵产品的应用,强大的软件功能、AI算法与数据管理等模块可针对类器官、肿瘤球、心肌球、皮肤等不同项目样本类型进行AI识别,自动分析识别出的半径、周长、面积等定量数据并出具报告。仪器信息网:贵司高内涵细胞成像分析系统主要应用哪些领域的哪些实验环节?有哪些代表性用户单位?艾玮得:凭借软件设计和硬件研发的强强结合,艾玮得高内涵产品适用多种应用场景,包括但不限于类器官的培养与药敏检测、药物敏感型评价、大规模药物筛选、安全性评价、血管生成、皮肤模型构建等,囊括了细胞、组织、类器官、器官芯片等多种样本的高质量成像及数据分析。目前,艾玮得高内涵产品凭借过硬的产品实力和高质量服务与诸多客户建立了战略合作,并赢得了一大批用户的认可和赞誉。目前代表性用户包括但不限于北京协和医院、江苏省疾病预防控制中心、江苏省人民医院、复旦肿瘤医院等大型医院和疾控中心,以及东南大学、中国科学院、中国药科大学、天津大学等高校院所,还有赛诺菲、药明康德等知名生物制药企业。仪器信息网:未来高内涵细胞成像分析系统技术发展趋势如何?最看好哪些应用细分?艾玮得: 目前一线科研工作者在使用不同品牌的高内涵细胞成像分析系统时,需要投入大量精力和时间学习并精通仪器操作,为了获得高质量的图像数据,必须针对不同样本的目标位置、成像信噪比和荧光强度等一系列参数进行调整优化,这往往涉及复杂多维度考量。即便如此,得到理想图像数据的过程仍充满挑战。AI智能图像分析的出现使得高内涵更具智能化,基于AI自动分析海量图像,不仅能够获得精准的定量数据,而且有效消除人为误差,从而极大提升工作效率,这必将是高内涵日后的发展方向,同时也是艾玮得一直以来的战略目标。就如今的细分领域而言,随着类器官技术的不断发展,类器官可逐步替代部分传统体外、体内药物评价模型成为药筛新宠,有望成为临床疾病模型构建、新药研发、大规模药筛的新窗口,准确地反应药效在评价体系中的真实数据,极大地提升新药研发效率。目前只有高内涵可以胜任这一艰巨任务,所以高内涵在类器官领域的作用无可估量。欢迎投稿!投稿文章将在《高内涵成像技术》专题展示并在仪器信息网相关渠道推广。投稿邮箱:zhaoyw@instrument.com.cn,关于征稿内容要求也可邮件咨询或电话联系:13331136682(同微信)。
  • 评新而论Vol.01 达普Cytospark CSP高通量细胞筛选系统
    听用户真实评价,晓新品技术进展!【评新而论】第1期,本期主角是达普Cytospark CSP高通量功能性细胞筛选系统,分享3位来自高校及生物企业用户的真实评价。 仪器新品区 产品名称:Cytospark CSP 高通量功能性细胞筛选系统点击查看展位详情仪器特点:独特性:基于细胞表型的筛选,整合流式分选与ELISPOT 检测为一体,可依据细胞分泌产物(蛋白),并兼顾细胞表面及胞内标志物的单参数或多参数分选;高通量:单次实现106 B细胞的功能筛选;高效率:筛选速度相对传统 96 孔板法,提高 3-4 个数量级;低成本:减少试剂用量,试剂消耗降至传统方法的百万分之一;产品介绍:CSP高通量筛选系统改变了常规以微孔板为筛选体系的思路,利用液滴微流控技术,可实现单次百万级细胞包裹检测和分离。突破了常规高通量筛选的通量上限,为功能性细胞或困难靶点提供更多可能。在抗体发现工作流程中,使用 CSP 高通量筛选系统可将之前数周的筛选工作压缩到 1~ 2 天内完成, 精准且高效地完成对百万级单 B 细胞的筛选。为抗体药物的发现提供了更高效的解决方案。单 B 细胞抗体制备技术是最近十几年发展起来的一种可直接用原代 B 细胞制备全天然性抗体的技术,其原理是从免疫动物或患者的组织或外周血中分离抗原特异性 B 细胞,并筛选出分泌目标抗体分子的 B 细胞,结合单细胞 PCR 技术,扩增出 IgG 重链和轻链可变区基因,构建表达载体,之后进行表达、纯化、筛选和鉴定,以获取有效功能性抗体。该技术具有开发周期短,抗体保持重轻链天然配对,多样性丰富且亲和力高等优势。 用户评论区 用户1:“PL级反应体系,甚至可以实现基于稀少的原代细胞药物筛选”单位:上海某高校药学院评论:我们采购的达普基于微液滴高通量筛选系统,系统操作简单,且仪器免维护,系统使用PL级反应体系的功能性细胞筛选方式,不但节省了试剂用量,还可用稀少的原代细胞进行药物的筛选,以能更接近体内环境的方式筛选出有效的药物,系统不但能研究药物作用机制,在前期药物开发的过程中,还可用进行高通量化合物DEL库的筛选,是药物开发过程一个非常有用的先进工具!用户2:“一机多用!为我们节省大量试剂和时间,单B抗体筛选利器” 单位:上海抗体开发公司评论:我们因为抗体开发过程中高通量筛选的需求,采购了达普生物基于液滴微流控技术开发的CSP高通量功能性细胞筛选系统,该系统操作比较简单,并且通量很高,单次可以实现106B细胞的筛选,以帮助从大量的原代B细胞中筛出分泌高性能抗体的细胞,相比基于流式分选,培养,ELISA检测的方式,PL级的微液滴体系和1-2h的孵育时间,基于细胞外分泌抗体直接筛选高性能浆细胞,节省了大量的试剂和时间消耗。另外该系统可以根据不同的需求,基于磁珠法,报告细胞法等分别对可溶性抗原抗体或跨膜蛋白抗原抗体进行筛选, 一机多用,是单B抗体筛选不可缺少的先进工具。用户3:“解决了我们之前膜蛋白抗原获得难,跨膜蛋白抗体筛选难或无法进行的问题”单位:广州抗体开发公司评论:我们因为膜蛋白抗体筛选的需求购买了达普生物CSP高通量功能性细胞筛选系统;该系统基于微液滴技术,可将报告细胞与抗体表达细胞共包裹,基于报告细胞将阳性B细胞进行分选富集打印到96孔板,直接基于天然抗原筛选高性能抗体,解决了我们之前获得膜蛋白抗原难,跨膜蛋白抗体筛选难或无法进行的问题,目前我们已经基于该系统在跨膜蛋白抗体筛选上取得一些不错的进展,期待改系统未来在更多膜蛋白抗体筛选项目及我们真在规划的双特异性抗体筛选项目给我们带来更多惊喜!你还想看到哪款仪器新品的真实用户评价,请留言给我们。新品首发,尽在仪器信息网!相关服务欢迎垂询010-51654077-8215
  • GE推出新型高内涵细胞成像分析系统助力干细胞研究与应用
    20世纪60年代,自骨髓移植成功治疗造血系统疾病以来,人们对干细胞治疗的研究产生了极大的兴趣。干细胞是具有自我复制和多向分化潜能的原始细胞,是机体的起源细胞。在一定条件下,它可以分化成多种功能细胞或组织器官。干细胞治疗是把健康的干细胞移植到病人体内,以达到修复病变细胞或重建功能正常的细胞和组织的目的。 在刚刚结束的&ldquo 2011细胞治疗技术研讨会&rdquo 上, GE医疗的全球研发总监Dr. Stephen Minger做了题为《Therapeutic and Research Potential of Human Stem Cells》的演讲,分享了他对人类干细胞研究与临床应用潜力的看法。 Dr. Stephen Minger 演讲现场 干细胞疗法就像给机体注入新的活力,相比于常规方法,具有很多突出优势。目前很多细胞退行性疾病的发病机理幵不明确,如心脑血管疾病、糖尿病、肝硬化、肢体缺血性疾病等,由于干细胞具有"修复再生"的生物学特性,干细胞治疗有可能成为此类疾病的终结者。无论是自体干细胞移植还是异体干细胞移植,由于所采用的干细胞免疫原性非常低,几乎不引起排异反应,因此,干细胞治疗高效安全、无毒副作用,同时,干细胞治疗可以很好的与基因治疗相结合,还是基因治疗的良好载体。成体干细胞取自成人自体或胎盘和脐带血,因此来源十分广泛,不用担心治病"原材料"短缺的问题。 干细胞技术是当今生命科学的聚焦点,被誉为二十一世纪生物和医学技术领域可能取得革命性突破的项目,有望启动具有划时代影响的一场"医学革命",将会为社会带来巨大的社会效益。 干细胞研究和临床应用需要严格的监测细胞的属性,以确定该细胞是否保留其多能性,处于分化阶段,这对于确认干细胞性质非常重要。此外,也需要有适当的分析方法用于测试和优化干细胞的培养和分化条件。这些方法通常包括使用流式细胞仪分析生物标志物的表达,以及用RT - PCR迚行基因表达的研究。然而当前,高内涵分析技术较上述技术体现了更多的研究优势,帮助研究者更好地定量研究干细胞的多能性与分化作用,实现科研与临床的转化。 通用电气医疗集团(GE Healthcare)推出了IN Cell系列最新一代高端产品IN Cell Analyzer 6000 激光共聚焦高内涵细胞成像分析系统,它将高质量激光光源和高内涵细胞成像分析相结合的系统,使高速度和高质量细胞图像获取和分析达到统一,为客户提供了快速而精准的细胞技术分析平台。它可以满足要求更高的高内涵分析和筛选。拥有专利技术的光学系统采用了全新的设计理念:IN Cell Analyzer 6000的共聚焦光阑是可变的,类似于眼球虹膜控制瞳孔的大小;感光成像采用了新一代科研级sCMOS技术。针对不同要求和难度的实验,IN Cell Anaylzer 6000提供成像速度和图像质量最优组合。 与此同时,GE还推出了以金属卤素为荧光光源的IN Cell Analyzer 2000全自动荧光显微镜型细胞高内涵成像分析系统。该系统非常灵活,使用广泛,可以为您实现一些以前无法完成的实验设想。可实现从显微观察到自动化筛选,以及细胞器、细胞、组织和整个生物体的成像。IN Cell Analyzer 2000有着硬件和软件的独特组合,能够非常快速地获取图像,是筛选的理想选择。该仪器是利用六西格玛原理来设计的,结构坚固,能确保它在多用户环境中高通量应用的可靠性。
  • 高内涵成像市场持续升温,“人工智能+自动化”成发展趋势——美谷分子仪器(上海)有限公司产品经理苏园园博士
    高内涵细胞成像分析系统是一种利用高倍镜成像技术对细胞进行图像采集和分析的仪器设备。得益于显微成像、自动化和计算机等技术的迅猛发展,使其能够对大量细胞进行高分辨率成像和数据分析,实时提供海量多维生物学信息,广泛应用于生物医学、药物筛选等领域。为帮助大家及时了解高内涵成像分析前沿技术、创新产品与解决方案,仪器信息网特别组织策划《窥微探秘,高内涵细胞成像前沿技术与进展》专题。本期,特别邀请到美谷分子仪器(上海)有限公司产品经理苏园园博士谈一谈Molecular Devices高内涵成像分析系统发展历程、创新技术以及她对未来市场的看法。仪器信息网:请介绍一下高内涵成像技术的发展历史。苏园园:基于细胞或者小型模式生物的高内涵细胞成像与分析筛选(HCS,High-content screening)属于现代表型筛选系统的一种,主要由高速显微镜、图像分析和数据管理三个部分组成。有别于传统显微镜或共聚焦,高内涵系统以高通量、高分辨率、高度自动化、多参数分析等特点被广泛应用于药物筛选、细胞生物学和生物医学等研究领域。在保持活细胞结构和功能完整性的前提下,高内涵系统可以在亚显微形态下同时检测不同条件对细胞形态、生长、分化、迁移、凋亡、代谢途径及信号转导等方面的影响,从单一实验中获取大量相关信息,利用灵活且丰富的分析手段,对复杂的细胞学机理和相互作用有更深入的研究,从而确定分子的作用机制、代谢途径和潜在毒性。这些特点使其能够最大程度上避免传统显微镜的主观性或其他高通量筛选检测方式因检测指标相对单一而带来的假阳性和假阴性结果。高内涵细胞成像分析系统的诞生可以追溯到20世纪90年代。随着光学技术、形态学分析方法和自动化控制的发展,科学家们开始意识到利用高通量自动化技术对细胞进行观察和分析的潜力。1997年,美国Cellomics公司成功开发出首个高内涵高通量筛选技术平台,其后随着生命科学的高速发展和生物医药研发活动的激增,高内涵成像系统不断迭代。根据成像方式的不同,高内涵细胞成像分析系统分为荧光成像系统和透射光成像系统。荧光成像系统主要用于观察和分析荧光标记的细胞分子、蛋白质或细胞器等,特异性强易追踪;透射光成像系统则用于直接观察非荧光标记的细胞结构和形态,无需标记简便快捷。根据光路设计的不同,高内涵又分为共聚焦高内涵及宽场高内涵两大类。通常来说宽场成像可以满足大部分日常需求,例如荧光强度、类器官球体大小、神经生长、细胞形态、细胞迁移、细胞周期等。但是在某些对信噪比要求较高的实验中,共聚焦则表现出更大的优势。例如对比较厚的样品进行三维成像并精确定量,或想要成像尺寸较小的结构时(如囊泡、细胞器等),由于宽场非焦面信息的干扰,图像信噪比较差,无法获得准确的分析数据。而共聚焦最大的优势在于去除了来自非焦面的信号,极大地提高了图像的信噪比,图像更清晰。目前主流的高内涵都是转盘共聚焦的设计原理,相较宽场和点扫描共聚焦,转盘共聚焦兼顾了图像质量和扫描速度,以高速获取高质量的动态图像,从而进行下游分析。仪器信息网:请介绍当前全球及中国高内涵细胞成像分析系统市场规模及现状。苏园园:据Market research的调研报告显示,2022年,全球高内涵筛选市场规模达到12亿美元,预计到2028年,市场规模将达到20亿美元,2023-2028年期间的年复合增长率(CAGR)将达到8.4%。这其中仪器设备及配套软件占比约60%~65%。生物技术和制药研发活动增加、医药研发领域对成本控制的需求、信息学解决方案和成像仪器的进步以及发达市场的政府资助和风险投资的热度是推动高内涵筛选(HCS)市场增长的主要因素。高内涵市场分布地区差异明显,北美是最大的高内涵筛选市场(40%),其次是欧洲、亚太地区、拉丁美洲以及中东和非洲。在预测期内,亚太地区市场预计将实现最高增长,这主要得益于药物发现研究的增加、政府举措、跨国公司对新兴市场的日益关注以及研发基础设施的发展。根据仪器信息网报道,从全国招标数据来看,国内高内涵筛选市场近几年稳中有升,主要玩家以进口品牌为主,包括Molecular Devices(美谷分子,美国)、Revvity(瑞孚迪,美国)、Thermo Fisher Scientific(赛默飞,美国)、Agilent(安捷伦,美国)、YOKOGAWA(横河电机,日本)等,国产品牌仍属于空白状态。从2023年中标金额来看,Molecular Devices和Revvity两家品牌抢占70%市场份额。另外,市场细分之下,超半数集中在高校和科研院所。成像技术在药物发现和研究中发挥着巨大作用,未来随着工业市场的复苏和蓬勃发展,高内涵的应用场景和采购规模在这个细分市场也会随之增加。仪器信息网:贵司高内涵细胞成像分析系统的发展历程是怎样的?有哪些里程碑事件?苏园园:Molecular Devices(以下简称美谷分子)隶属于丹纳赫集团生命科学平台,创立于1983年的美国硅谷。在1986年推出第一款酶标仪后,美谷分子通过研发投入和战略收购,不断拓展生命科学研究及药物研发产品组合方案。美谷分子也是最早进入细胞成像领域的公司之一,1991年推出了符合行业标准的显微镜自动化成像及分析软件MetaMorph。2002年推出ImageXpress 5000A自动细胞成像和分析系统。在此基础上,跟随生物医药研发领域的小分子药物、抗体药、细胞与基因治疗、核酸药物等发展浪潮,美谷分子逐步发展出更完整的ImageXpress系列高内涵筛选解决方案,在成像模式、水镜、人工智能分析等领域都实现了突破。目前美谷分子高内涵成像系统家族,主要有五款成员,包括ImageXpress Confocal HT.ai, ImageXpress Micro Confocal,ImageXpress Micro 4,ImageXpress Nano,ImageXpress Pico。从宽场到智能化共聚焦,美谷分子帮助用户实现从2D到3D、从基础科学到药物发现的一系列研究。ImageXpress全系产品都配备独特的激光/图像自动聚焦,通过多个反射面的寻找自动定位焦面,样品适用性强,无需使用特定板材,轻松实现玻片、孔板、transwell孔板、微流控芯片、组织芯片等各种类型的样品的聚焦和成像。特别是在培养耗材个性化定制、异质性越来越强的今天,如何利用对焦系统解决焦面的寻找和稳定问题是广大用户的一大呼声。有别于传统成像系统,高内涵的特点之一就是提供异常丰富的数据分析结果。美谷分子的ImageXpress产品系列配置的图像分析软件以经典软件Metamorph为基础,进化出基础模块、自定义模块、人工智能分析、AcuityXpress生信分析、StratoMineR云分析等,为图像数据提供更多洞察。同时其强大的第三方设备的可扩展性和灵活性,也为实现用户的完整工作流程和自动化设备的接入提供了优质平台。ImageXpress Confocal HT.ai智能型共聚焦高内涵成像分析系统,是美谷分子公司目前最高端型号的共聚焦高内涵产品。它在灵活的ImageXpress Micro Confocal共聚焦高内涵成像分析系统基础上,集成了智能分析软件IN Carta,使高内涵图像分析进入了AI时代。只需要画笔勾画出代表性目标和背景,AI会自动学习并形成分析方法,无需繁琐的参数设置,无需实验者花费大量的时间学习和积累经验,新手即可入手复杂的分析。Phenoglyphs 模块提供了一种强大的可训练分类,同时,硬件上使用7色激光光源、双转盘共聚焦、自动补水的水镜系统和活细胞孵育装置等,使该型号仪器可为3D细胞球及类器官等前沿应用提供更适合的成像与分析系统。宽场代表产品ImageXpress Micro 4属于第四代成像技术。新颖灵活的设计,极快的成像速度用于完成钙流、纤毛摆动等快速动力学实验;还可在未来需要时,将系统升级到共聚焦的成像水平。联合使用 MetaXpress 系列高内涵图像获取和分析软件,ImageXpress Micro 4 系统以多维化和高通量筛选的方法,帮助用户发现下一个重大突破。而ImageXpress Pico系统是桌面级的平台产品,能够方便地安装于任何实验室。跟随软件图像化的按钮,一步一步地按照工作流程进行图像的采集和分析即可。系统软件集成有超过 25 种分析方案,从简单的细胞计数到复杂的神经轴突分析,软件都能自动、快速的进行参数优化,而无需反复调试。获得的分析结果可通过各种可视化的形式进行展示,包括热图、散点图、表格、柱状图和视频等。仪器信息网:贵司高内涵细胞成像分析系统主要应用哪些领域的哪些实验环节?有哪些代表性用户单位?苏园园:借助软硬件及独特的聚焦方式,美谷分子高内涵产品适用性极强,从细胞、组织、类器官到微流控芯片、模式动物以及活细胞等样本都可实现高质量的成像和分析。各种生物学实验环节都有涉及:药物药效和毒性评价、药物筛选、活性组分评价、类器官的培养与检测、神经细胞的发育与调节、血管生成、细胞自噬等。这些研究被广泛的应用于:药物筛选、毒性毒理、肿瘤免疫、干细胞、脑科学、生物信息化技术、疾病模型构建、类器官3D模型、生物探针开发、生物医学工程、环境学和食品安全等领域。以独特的软硬件设计和快速高质量服务及广泛的合作基础上,美谷分子高内涵产品赢得了用户群的认可和赞誉。罗氏、诺华、GSK、阿斯利康、默克、拜耳等国际知名药企,斯坦福大学、剑桥大学等研究机构及相关医院都是美谷分子的用户。国内代表性用户有清华大学、上海交通大学、浙江大学、中山大学、中国药科大学、天津中医药大学、中医科学院、中科院植生所、北京大学肿瘤医院、仁济医院、中检院、CDC、恒瑞医药、义翘神州等知名科研院校、医院、政府机构及企业等。美谷分子也不断保持与行业内专家和机构的合作,持续进行方法或产品的共同开发,实现合作共赢。仪器信息网:未来高内涵细胞成像分析系统技术发展趋势如何?最看好哪些应用细分?苏园园:现阶段在分析大量图像时,显微镜的使用者需要花费时间和精力学习各种分析方法,调试合适的识别参数,还要面对不同类型的图像,如低信噪比、荧光强弱差距大的目标、各种明场图像等,甚至有可能在付出大量精力后也不一定能形成好的分析方法。人工智能图像分析软件的出现可以为高内涵生成的海量数据提供简易、省时、高效的分析手段。随着算法的精进和改良,相信以AI为基础的图像分析会是未来高内涵发展的一大趋势。另外,实验室自动化技术以超过10%的年复合增长率在加速发展,如何在药物研发降本增效压力下,将自动化与高内涵更有机的结合在一起,加速样本转移、成像和分析,消除人为误差,提高候选药物的筛选效率,也是高内涵未来的发展目标或趋势。就细分领域而言,随着技术的应用和发展,3D细胞模型的研究迎来了新的高峰。“3D Cell Culture”相关的文献,近五年的发表量占据了60%。与传统的2D培养模型相比,3D模型能够更好地模拟体内组织结构、基因表达和代谢情况。其中的类器官,凭借其高度的仿生性和大规模可及性,成为疾病机制研究、疾病治疗和药物研发的新窗口,有望提高药物筛选的效率,提升药物进入临床的成功率。在临床上类器官具备个性化治疗和构建生物样本活库的潜力,对于罕见病的机制和治疗的研究也独具优势。这些应用场景都会涉及到类器官的形态学评价,如高通量药物筛选、细胞治疗、siRNA文库筛选用于新型疗法、药效评价、毒性评估等。而对3D类器官的高速、高通量成像和大数据的分析和挖掘,目前也只有高内涵系统能够胜任。另外,对于类器官无法模拟的血液流动或多器官间的相互交流,器官芯片/类器官芯片的诞生,为科学家们带来了新的研究利器。随着研究者对体外模型仿生性的不断追求,以及药物研发过程中动物使用相关法规政策的完善,相信这一细分市场对于高内涵的需求也会越来越多。借助独特的自动聚焦、转盘技术和数据分析挖掘能力,美谷分子高内涵在3D类器官/器官芯片领域积淀多年。除了下游分析系统,在上游的类器官制备培养阶段,目前美谷分子也推出了全自动智能化类器官工作站,通过自动化流程、标准化protocol和人工智能,提升培养的标准化和一致性,大规模提供高度可重复的3D细胞模型,进而推动其大规模应用和产业化进程。苏园园 美谷分子仪器(上海)有限公司产品经理苏园园,中科院生化细胞所博士,2013年进入显微成像行业,长期从事共聚焦、高内涵及其他高端成像仪器的技术支持工作,在细胞、神经、免疫等领域有十多年的支持和推广经验,目前在美谷分子仪器担任产品经理,负责成像产品线的市场推广工作。欢迎投稿!投稿文章将在《高内涵成像技术》专题展示并在仪器信息网相关渠道推广。投稿邮箱:zhaoyw@instrument.com.cn,关于征稿内容要求也可邮件咨询或电话联系:13331136682(同微信)。
  • 220万!华南理工大学全自动微生物克隆筛选系统采购项目
    项目编号:GZZJ-ZFG-2023074项目名称:华南理工大学全自动微生物克隆筛选系统采购项目预算金额:220.0000000 万元(人民币)最高限价(如有):220.0000000 万元(人民币)采购需求:包组号序号标的名称数量(单位)简要技术需求或服务要求(具体详见采购需求)最高限价万元(人民币)11全自动微生物克隆筛选系统1套用于获取克隆形态学参数和克隆定位。系统可以根据克隆形态学参数(克隆大小、圆度、纵横比,克隆之间的距离等)对目的克隆的筛选,挑选符合要求的克隆。在工业微生物研究、酶定向进化,蛋白表达,生物燃料,宏基因组学,噬菌体展示技术,肠道微生物,文库筛选管理等方面具有广泛应用。人民币220万元经政府采购管理部门同意,本项目允许采购本国产品或不属于国家法律法规政策明确规定限制的进口产品,具体详见采购需求。本项目采购标的所属行业为:工业合同履行期限:国内供货:在合同签订后(30)天内完成供货、安装和调试并交付用户单位使用。境外货物:办理免税证明后(90)天内。本项目( 不接受 )联合体投标。对本次招标提出询问,请按以下方式联系。1.采购人信息名称:华南理工大学地址:广州市天河区五山路381号联系方式:文老师020-871129622.采购代理机构信息名称:广州中经招标有限公司地址:广州市越秀区寺右一马路18号泰恒大厦14楼1409室联系方式:陈小姐、庄小姐 020-87385151、020-37639369、020-87371812、020-873722963.项目联系方式项目联系人:陈小姐、庄小姐电话:020-87385151
  • 中科院分子细胞卓越中心陈铭、赵宏伟:高内涵成像分析系统应用心得
    生命科学研究过程离不开各类科学仪器的帮助,仪器信息网特别策划话题:“生命科学技术平台经验分享”,邀请高校、科研院所公共技术平台的老师分享技术心得和经验,方便生命科学领域研究人员了解相关技术进展,学习仪器使用方法。本篇由中国科学院分子细胞科学卓越创新中心化学生物学技术平台陈铭研究员和高级工程师赵宏伟联合供稿,以下为供稿内容:高内涵成像分析系统,通俗来讲就是自动化成像平台和图像定量分析平台的集成,于20世纪90年代中后期推出第一代产品。高内涵成像分析系统的出现得益于自动化技术的进步,也依赖于计算机辅助的图像自动采集和信息提取能力的提升,其鲜明特点就是图像采集速度快、样品检测通量高、数据分析功能强。高内涵主要应用于高通量药物筛选和功能基因组筛选的细胞表型类实验检测,也适用于中低通量的细胞学研究中实验条件的摸索和优化。本文主要从图像高通量采集和图像批量分析两个方面介绍一下应用心得,并简要介绍一下我们在高内涵使用中遇到的一些思考。1. 自动化成像:图像采集要兼顾成像速度和成像质量的平衡作为高通量检测设备,高内涵的成像速度非常快,现在的技术能在5分钟之内完成一整块384孔板的单通道单视野的高质量图像采集。高内涵的成像对象通常是板底透明的微量多孔板,包括1-1536孔板,其中以96孔板和384孔板的使用最为常见。当然,借助于适配器的使用,也可以实现对培养皿和玻片的观察。根据板底材质的不同,分为PS材质多孔板和玻璃底多孔板,其中板底透明的黑色PS材质微孔板使用较广泛。根据板底厚度的不同,板底厚度大于200 μm的属于厚底板,小于等于200 μm的属于薄底板。薄底板多用于高数值孔径物镜的成像,厚底板适配于长工作距离物镜。同时,由于高数值孔径物镜比较宽,容易与多孔板边缘的裙边相撞,导致多孔板最外面的一圈的孔无法成像,现在也有低裙边的多孔板来兼容高数值孔径物镜的整板成像。此外,出于特定的实验目的,还有一些特殊的板型,也可以在高内涵上进行图像采集,比如适用于3D 类器官培养的U型底多孔板,用于研究细胞迁移能力的Transwell孔板等。区别于一般的荧光显微镜,高内涵属于自动化的倒置荧光显微镜,通常搭配自动化的载物台来驱动多孔板的移动。目前通用的载物台是机械载物台和高精度磁悬浮载物台,可以实现连续时间点成像后稳定的视频输出。由于所有的微孔板的板底都无法保证厚度是绝对一样的,因此高质量图像采集的自动化还依赖于精确自动聚焦技术的发展。常用的聚焦方式包括基于激光的硬件聚焦和基于图像的软件聚焦。基于激光的硬件聚焦是通过光源的反射或折射实现的,利用近红外激光探测微孔板的底部界面作为自动聚焦的参照,特点是速度快、重复性高、光毒性低。我们平台目前使用的高内涵设备的聚焦方式为硬件聚焦,包括双峰探测和单峰探测两种板底探测方式。双峰探测的原理是利用激光探测微孔板板底下表面和空气之间的界面得到第一个探测峰,物镜继续向上移动,激光会探测到微孔板板底上表面和溶液之间的界面得到第二个探测峰,对于样品的聚焦就是在第二个探测界面上加上聚焦高度实现的。这种双峰探测方式可以保证同一个荧光通道的图像都是在样品的同一高度上采集得到,聚焦精确,但同时也相对容易受到一些因素的干扰造成聚焦困难,包括微孔板板底的厚度及均一度,以及溶液的性质和体积等。当使用低倍物镜或检测玻片样品时,双峰探测模式不再适用,只能使用单峰探测方式,即在自动聚焦时只能探测到多孔板板底的下表面和空气之间的界面或者玻片和空气之间的界面。单峰探测模式下,自动聚焦的实现是把单峰界面作为聚焦参照,加上板底厚度或玻片厚度作为理论上的第二个界面从而实现样品的自动聚焦。这种单峰探测方式下聚焦更容易些,但共聚焦成像的精确度会降低。需要特别注意的是硬件聚焦对于板底的洁净程度要求较高,多孔板在进行成像前最好用喷过消毒酒精的无尘纸擦拭,而且要保证物镜镜头洁净无尘,避免因为板底和物镜上的灰尘造成聚焦失败。另外有些自动化微孔板成像设备,还配置了软件聚焦模式。软件聚焦是指机器自动在z轴上拍摄一系列图像,根据算法挑选最大对比度的图像作为样品图像,这种软件聚焦模式速度通常较慢,而且容易因细胞碎片或死细胞等原因导致聚焦不精确。作为显微镜,高内涵的成像模式也包括宽场成像和共聚焦成像。高内涵仪器上宽场成像用途比较广泛,但对于一些信噪比很低的实验或者需要观察亚细胞结构的筛选则必须使用共聚焦成像。为了适配检测通量和检测速度,因此高内涵上的共聚焦只能是转盘共聚焦,有效提高了成像速度的同时但也会导致图像分辨率受一定损失。目前主流的高内涵品牌推出的共聚焦,有较低端的LED光源的单转盘共聚焦,也有激光光源的双转盘共聚焦。由于共聚焦排除了非焦平面的杂散光,到达样品的激发光的光子数量的急剧锐减,微透镜双转盘共聚焦能极大地提高到达样品的光子数量,从而达到比较好的成像效果。高内涵的共聚焦通常搭配水镜使用,与空气镜相比,水镜的透光量是空气镜的4倍以上。另外,目前虽然有的高内涵搭配了油镜,但是油镜并不适用于高通量筛选,进行稳定的大规模自动化实验时还是空气镜和水镜更为适用。作为高通量自动化仪器,高内涵通常会搭配机械臂和多孔板堆栈来提高检测通量。考虑到荧光成像样品最好避光保存,降低荧光淬灭或衰减风险,在使用多孔板堆栈时,条件允许的情况下最好能做适当的避光措施以更好地保护样品的荧光信号。在实际科研应用中,有的实验细胞密度较低,有的实验因为药物处理或siRNA处理导致的细胞毒性问题使部分样品孔内细胞比较稀疏,有的类器官成像实验中样品只存在于孔内的部分区域,对于上述这些情况可以考虑使用低倍物镜进行预扫描,对扫描结果进行简单的图像分析确认精确的检测区域,再对目标区域进行高倍物镜下的正常图像采集。这不仅可以节省大量的检测时间,同时也避免了大量冗余数据的产生。2. 细胞图像分析:标准化、多参数、高通量、无偏差高内涵图像采集速度快和检测通量高的直接结果是会产生海量的图像数据,因此,标准的、无偏差的批量图像分析是必不可少的。同一批次的筛选样品,设置一个通用的图像分析方法,可以稳定的用于所有筛选数据的批量分析。高内涵分析软件能够根据细胞图像提取数百到数千个特征参数,用于定义或区分不同细胞表型,也可以输出所有的特征参数用于实验数据的评价。高内涵的图像分析软件可包含三个难度的分析模式:简单的预设方法模式,灵活的模块化组合模式,以及难度最大的个性化分析方法开发模式。预设方法模式对操作新手比较友好,按照实验类型简单修改后套用即可,比如细胞计数、荧光强度分析、细胞增殖分析、细胞凋亡分析、蛋白核质转位分析、蛋白受体内化分析、Spot分析等等。由于面临的实验需求多种多样,在我们平台的实际科研应用中高内涵图像分析通常采用灵活的模块化组合模式,优化调整不同的模块参数使其更加贴合具体的实验需求。基于这种分析模式,细胞的亚群分析、基于图像的纹理分析、细胞周期分析、Spot分析、神经细胞分化分析、单细胞迁移轨迹追踪分析、微核分析、类器官分析、免疫细胞杀伤分析等实验类型,都已获得很好的分析效果。图像分析主要包括以下步骤:图像的处理、图像分割、特征参数的定量和提取、细胞亚群分类和结果输出。图像分析环节特别具有挑战性的步骤就是图像分割,尤其是对于样品质量比较差或者是没有荧光标记的明场图像而言。对于细胞分布不均匀,细胞核拥挤成团的样品的分割,往往要尝试很多分割方法,包括对图像进行锐化或模糊化处理、通道叠加、调整细胞识别方法的荧光阈值或对比度、优化不同切割方法的参数等,从而获得最好的分割效果。对于分割不理想的图像,可以将细胞区域和背景区域分割,对细胞区域进行整体定量。现在随着机器深度学习技术在高内涵图像分析软件中的应用拓展,软件图像分割能力已得到很大提升。当微孔板上孔内细胞表型的异质性比较大的时候,采用整孔平均值这样的参数定义不同处理之间的差异时,往往信号的窗口比较小。为了增大信号窗口,可以考虑采用将细胞群体划分为不同的亚群,针对不同的亚群进行数据分析,或者是计算某个亚群在群体细胞中的占比。对于荧光图像的分析,多数情况下平均荧光强度(即mean-mean值,每个孔内所有像素点的平均荧光强度)可以反映不同孔之间的差异,但当不同处理导致细胞形态发生变化时,总荧光强度的平均值(即sum-mean,每个孔内所有细胞的总荧光强度的平均值)更能反映真实的孔间差异。对于一些荧光强度比较低的样品,阴性样品和阳性样品的信号窗口不够大的时候, 通过扣除背景信号,也可以提高阴性阳性之间的信号窗口。我们常用的背景信号的计算方法有四种:① 通过平均荧光强度和对比度,反推背景荧光强度;②通过纹理分析,找出没有细胞的区域定义为背景区域,定量该背景区域的荧光值为背景荧光强度;③圈选细胞之外的一圈无细胞区域为背景区域,定量该区域的荧光强度;④制备没有荧光标记的细胞孔,该孔的荧光值作为背景荧光。高内涵分析软件虽然能够对细胞图像提取成百上千个生物学参数,但大多数情况下,简单表型只需要其中一个或几个参数就可以进行数据评价,判断药物处理效果和反映趋势。常用的参数包括:荧光强度、荧光总强度、细胞数量、细胞面积、阳性细胞比例、荧光强度比值等。但是有一些复杂的细胞表型,无法用单个或几个参数进行简单区分,这时候结合软件的机器自学习功能/深度学习功能,利用多参数体系对细胞群体进行分类,可能更容易实现不同表型的区分。3. 高内涵系统使用过程中需注意完善的地方总的来说,高内涵细胞成像和图像分析功能都很强大,但是在实际的使用中也面临着一些问题和挑战。首先,高内涵实验产生的数据量非常庞大,高效安全的数据存储管理非常重要。如果由于配套电脑的硬盘容量跟不上实际实验规模的需求,仪器管理员往往会处于频繁的数据备份和硬盘清理工作中。同时也需要有高速稳定的数据信息传输途径,确保采集好的图像能及时传输到分析软件系统,避免发生数据丢失的情况。其次,图像分析对电脑的运算性能要求比较高,特别是有些类型的图像分析方法步骤复杂,定量参数繁多。比如单细胞实时追踪实验,需要对单个细胞的多个连续时间点进行多参数定量统计,最后的结果输出阶段也需要对单个细胞数据进行呈现,因此对电脑的运算能力很有挑战。如果配置的数据分析电脑性能与这类图像分析的需求不太匹配,往往会导致分析速度过慢甚至容易发生宕机现象。最后,对于实心的类器官样品,目前常见的高内涵系统的激光穿透效率和成像分辨率还不足够理想,重构获得的三维图像可以用于获取体积面积等参数,但还不太能对球体深处内部细胞进行高质量分割,也较难获取准确的蛋白定位信息。相信这也是高内涵成像系统在未来发展提升中会逐渐优化解决的一些要点。本文作者:赵宏伟,化学生物学技术平台,高级工程师陈铭,化学生物学技术平台,平台主任,研究员
  • 浙江大学赵璐、葛栩涛:高内涵成像系统在斑马鱼活体成像中的应用心得
    为帮助广大实验室用户及时了解高内涵成像前沿技术、创新产品与解决方案,向用户传递准确、实用的技术干货和宝贵的实验经验,仪器信息网特别组织策划“高内涵成像技术” 主题约稿活动(点击查看)。本期,特别邀请到浙江大学药学院药物信息学研究所副教授赵璐博士和研究生葛栩涛同学谈一谈高内涵成像系统在斑马鱼活体成像中的应用心得。高内涵成像技术(High-Content Imaging,HCI)近年发展迅速,2D及3D的细胞成像技术均趋于成熟。例如,Pelkin Elmers公司推出了Opera Phenix Plus高内涵成像分析系统,采用Nipkow转盘和sCMOS相机,配套Harmony®集成软件,提供了高内涵筛选的整体解决方案。Thermo Fisher公司推出了CellInsight CX7 Pro LZR高内涵筛选平台,同样采用Nipkow 旋转和sCMOS相机,配套Amira软件,助力高内涵筛选和分析。而Molecular Devices 公司的ImageXpress Micro Confocal 共聚焦高内涵成像分析系统采用AgileOptix™转盘式共聚焦和 sCMOS 相机,具有大视野、宽动态范围,多种成像模式,支持自动加样等特点,同时其具有3D成像和分析的能力。新款的ImageXpress Confocal HT.ai系统进一步增加了自动水浸物镜、IN Carta 图像分析等功能,简化高级表型分类和 3D 成像分析的工作流程。模式生物斑马鱼凭借繁殖力强、发育迅速、幼鱼体积小且通体透明等特点,加上众多特定细胞标记转基因荧光鱼系的运用,成为目前适合活体高通量荧光成像的唯一脊椎模式生物,在大规模药物筛选领域被日益关注。然而,常规的荧光显微镜成像具有速度慢、清晰度不佳以及图像处理过程繁琐等问题。本文主要以Molecular Devices公司的ImageXpress Micro Confocal 共聚焦高内涵成像分析系统为例,分享本团队在对斑马鱼幼鱼进行高内涵成像及图片处理分析中的一些经验。首先,为了较好的成像效果,用于成像的胚胎一般需要进行以下预处理:(1) 黑色素的抑制:斑马鱼胚胎约发育至24小时左右,躯干及脑部皮肤及视网膜会开始形成逐渐黑色素,影响胚胎成像效果,所以通常在胚胎收集后1天内在培养基中添加苯硫脲(200uM),以抑制黑色素的生成;(2) 胚胎破膜:若用以成像或药物处理的斑马鱼胚胎尚未破膜,需将胚胎孵育于蛋白酶(2mg/ml)中一段时间,随后加入培养基轻轻吹打,使胚胎与绒毛膜分离;(3) 胚胎麻醉和摆放:大部分情况下,成像需保持胚胎于静止位,可考虑使用三卡因(0.016%)对斑马鱼进行麻醉,随后将斑马鱼逐孔加入96孔板内,轻吹并尽量保证其处于侧卧的体位。01 斑马鱼动态血流成像Micro Confocal系统在细胞上能够支持心肌细胞跳动和干细胞分化等快速和罕见事件进行成像。在斑马鱼模型上同样可以支持血液流动以及心脏跳动的成像。以动态血流为例,我们选择了红细胞绿色荧光标记的鱼系Tg (Lcr:eGFP)进行测试。具体拍摄流程为:首先在 2 倍镜或 4 倍镜下定位胚胎并进行初步手动对焦,也可使用高内涵成像平台自带软件MetaXpress 编程进行自动对焦。选中血管区域(一般选择在斑马鱼背主动脉和尾静脉位点,方便后续统计),切换 20 倍镜拍摄视频。另外,后续的人工量化血细胞流动通常费时费力,可以使用MetaXpress 软件的journal模块自动测算单位时间内流过的红细胞数目(Ref. 任灿, 陈雪纯, 吴慧敏, 赵璐, 王毅. (2021). 基于高内涵成像系统的斑马鱼血流动态分析. // 高内涵成像及分析实验手册. Bio-101: e1010854. DOI: 10.21769/BioProtoc.1010854)。02 斑马鱼静态多通道成像ImageXpress支持至多5或7通道的荧光成像,因此可以实现不同荧光标记细胞的共同成像。拍摄方式与动态摄影类似:先在低倍镜下初步对焦,然后选择心脏区域,切换10倍镜分别拍摄两个通道下的荧光图像。在多孔或整板成像过程中,由于孔与孔之间的斑马鱼位置存在偏差,或不同胚胎本身发育状态有所差异等原因,不同孔的最佳聚焦平面往往会变化,限制了高通量成像。为了方便焦平面的寻找,一个应对方案是使用大步长(10~30um)的Z-stack拍摄初始焦平面上下一定厚度范围内(200um)的一系列图像,再从中挑选最清晰的一帧即可。图1a展示了3dpf斑马鱼心脏和血管内皮Tg (Cmlc2:eGFP Kdrl:mcherry)共同成像的效果图,可以清晰地看到心房和主动脉连接处存在共定位。图1b为3dpf斑马鱼红细胞和血管内皮Tg (Lcr:eGFP Kdrl:mcherry) 共同成像的效果图,可以清晰地看到红细胞位于血管中。此外,目前有一些商品化的特殊孔板可帮助保持胚胎在特定位置,但使用场景仍有较多局限性,尚需进一步优化。图1 斑马鱼静态多通道成像代表图03 斑马鱼高分辨率及3D成像斑马鱼胚胎器官厚度通常在几十至上百微米之间,或拥有复杂的立体结构,因此简单的2D图片往往不能获取高质量信息。我们同样可以使用Z-stack程序拍摄立体图像,不同的是步距需要设置比较小,通常为1~3um。拍摄结束后,可以使用Z project将堆栈图三维投影成一张2D图像,也可以使用3D project将系列图重构成立体图像。另外,10倍镜下难以拍摄全鱼,可以使用多视野拼接的方式得到全鱼荧光。这一部分同样支持多通道荧光成像,图2a展示了Z project重构的中性粒细胞和血管内皮荧光Tg (Lyz:eGFP Kdrl:mcherry)共同成像的效果图,图2b展示了红细胞和血管及淋巴管细胞Tg (Gata1:dsRed Fli1:eGFP)共同成像的效果图。补充视频1和2分别展示斑马鱼脑部血管以及血管叠加红细胞的3D重构图像。图2 斑马鱼高分辨率三维投影成像代表图视频1:斑马鱼脑部血管三维重建视频2:斑马鱼血管红细胞叠加三维重建最后,使用ImageXpress成像系统进行斑马鱼成像还存在一些问题。比如,高强度的激光光源对斑马鱼有一定的刺激,可能会导致其产生应激性游动,造成成像失败,因此对麻醉效果有较高的要求,但在减少应激反应的同时也要注意不能麻醉过度(浓度太高或时间太长)引起胚胎损伤或死亡。另外,目前大部分高内涵成像系统的配套软件在自动定位斑马鱼胚胎及寻找最佳焦平面的功能模块中还有比较大的局限性。在批量成像中,大多数只能做到相似焦平面的孔间自动成像,对于焦平面差异较大的孔,则需要手动调焦,极大影响了拍摄效率。因此,高通量成像目前仅能支持孵化天数较小的胚胎(一般3dpf以内,鱼泡尚未发育且运动能力较弱)的成像,对发育后期的斑马鱼胚胎或幼鱼还不能进行批量成像。期待未来在功能模块进一步完善后,可支持孔板内任意位置及焦平面的高质量成像。最后,在图像数据分析上,尽管我们的前期工作已开发了多个模型的自动分析算法(如心脏、血流动力学),但仍有许多其他模型缺乏对应的分析算法(如血管、免疫细胞、神经系统的分布和行为)等,值得进一步开拓。本文作者: 葛栩涛(研究生) 赵璐(副教授),浙江大学药学院药物信息学研究所浙江大学药学院药物信息学研究所 赵璐 副教授赵璐博士,浙江大学药学院药物信息学研究所副教授、博士生导师、浙江大学“求是青年学者”,博士毕业于美国耶鲁大学医学院。现为浙江大学中药科学与工程学系模式生物平台负责人,研究方向为基于斑马鱼多模态成像的中药药效物质发现。获浙江省杰出青年科学基金支持,主持国家自然科学基金项目2 项,浙江省自然科学基金项目2 项,研究成果获教育部自然科学二等奖1 项。以第一或通讯作者发表PNAS, Engineering等学术论文18 篇,被Nature、Lancet等期刊引用1050 余次。浙江大学药学院药物信息学研究所 葛栩涛 研究生葛栩涛,浙江大学药物信息所21级研究生。主要研究方向为斑马鱼高内涵活体荧光成像技术在中药药效物质筛选中的应用。擅长斑马鱼相关实验技术以及多种荧光显微的斑马鱼活体成像。曾获2022长三角天然药物化学研讨会论文评选二等奖,浙江大学医学院公共技术平台显微注射比赛一等奖,2022-2023学年浙大药学院研究生学术创新能力单项荣誉。如有技术干货、科研成果、仪器使用心得、生命科学领域热点事件观点等内容,欢迎投稿,投稿邮箱:zhaoyw@instrument.com.cn,关于征稿内容要求也可邮件咨询或电话联系:13331136682(同微信)。
  • “高内涵成像技术” 主题约稿函
    “高内涵”这一术语通常指单个细胞的多个分子参数/特征(使用荧光染料测量)可以同时被评估,例如细胞周期状态、细胞和核形态、细胞活性、受体内化、蛋白质聚集等。高内涵成像技术是一种基于图像的高通量细胞筛选方法,它将自动光学成像与量化数据分析相结合,以同时评估2D和3D细胞培养中单个细胞的多种分子特征,以及其他生物样本类型。得益于近些年显微成像、自动化控制和计算机等技术的迅猛发展,使高内涵成像技术能够对大量细胞进行高分辨率成像和数据分析,实时提供海量多维度的生物学信息,广泛应用于生物医学研究、药物筛选、细胞生物学等领域。为帮助广大实验室用户及时了解高内涵成像前沿技术、创新产品与解决方案,增强业内专家与仪器企业之间的交流学习,仪器信息网特别组织策划“高内涵成像技术” 主题约稿活动。欢迎投稿,投稿文章将收录至【高内涵成像技术】专题并在仪器信息网相关渠道推广,投稿邮箱:zhaoyw@instrument.com.cn,关于征稿内容要求也可邮件咨询或电话联系:13331136682(同微信)。一、专家约稿主题聚焦高内涵细胞成像分析系统或技术,可选择以下主题(但不限于)其中之一:1.仪器专家(1)高内涵细胞成像分析系统或技术的研究进展(包括国内外研究现状、成像方式点评、关键问题、发展趋势、应用前景等);(2)高内涵成像技术的最新研究成果(包括项目概述、结构和功能、取得成果等);(3)高内涵细胞成像分析系统的操作技术要点、数据分析和样本处理技巧等。2.应用专家(1)基于高内涵细胞成像分析系统或技术取得的最新研究成果(研究背景、研究过程、取得成果等) (2)其它相关经验之谈。参考样文及链接:中科院分子细胞卓越中心陈铭、赵宏伟:高内涵成像分析系统应用心得(点击查看)。二、仪器厂商约稿提纲(1)请介绍一下高内涵成像技术的发展历史。(2)贵司高内涵细胞成像分析系统的发展历程是怎样的?有哪些里程碑事件?(3)请介绍当前全球及中国高内涵细胞成像分析系统市场规模及现状。(4)目前贵司主推的高内涵细胞成像分析系统产品有哪些?并谈谈该产品的核心竞争力(包括成像、数据处理、算法分析和自动化等方面)。(5)贵司高内涵细胞成像分析系统主要应用哪些领域的哪些实验环节?有哪些代表性用户单位?(6)请点评荧光成像系统、透射光成像系统和共聚焦成像系统等不同成像方式的优劣势?(7)未来高内涵细胞成像分析系统技术发展趋势如何?最看好哪些应用细分?此外,仪器厂商还可聚焦【面向高内涵细胞成像分析系统用户在日常操作中需要注意的技术要点,以及相关数据分析技巧】主题,撰写成文。三、回稿要求:您可以根据上述问题进行稿件撰写,也可以由此展开相关话题。1.稿件字符数不少于1200字,欢迎多提供图片,图片像素应不低于300DPI 2.稿件无抄袭、署名排序无争议,文责自负,请勿一稿多投 3.投稿须为Word文档,本网编辑有权对文稿进行修改,如不同意请注明。4.请在稿件末尾注明供稿者姓名、单位、个人简介。
  • 周四开播!“高内涵成像技术与创新应用”会议日程公布
    高内涵成像技术(High-Content Imaging,HCI)融合了日趋成熟的显微成像技术和先进图像分析系统,能快速、批量、自动地捕获细胞、亚细胞或组织图像,并对细胞表型进行量化处理,批量实现图片信息到数值信息的转换,为研究人员提供海量多维立体和实时快速的生物学信息,目前被广泛应用于药物筛选及细胞信号通路、肿瘤以及神经生物学等研究领域。为帮助广大实验室用户及时了解HCI技术最新进展及创新应用,仪器信息网将于2023年7月27日举办“高内涵成像技术与创新应用”主题网络研讨会,欢迎大家踊跃报名!报名链接:https://insevent.instrument.com.cn/t/ZNs (点击报名)精彩报告预览赵璐 副教授浙江大学药学院《基于斑马鱼高内涵成像的中药药效物质研究》【报告摘要】斑马鱼模式生物具备体型小、繁殖力强、胚胎透明等优势,在中药药效物质研究领域的应用日益广泛。高内涵成像可实时观察体内病理过程,为中药药效物质研究提供有力工具。本课题组近年基于斑马鱼高内涵成像技术构建多向药效评价体系,系统诠释多种活血化瘀中药药效物质及配伍机制。报名占位赵宏伟 高级工程师中国科学院分子细胞科学卓越创新中心《高内涵成像分析仪使用经验及案例分享》【报告摘要】高内涵成像分析系统集高通量快速成像与图像的批量分析于一体,在药物筛选领域和基础细胞生物学研究中都有广泛的使用。本报告主要是分享我们平台在高内涵成像及样品准备方面积累的一些经验技巧,以及通过4个应用案例分享高内涵图像分析方面的心得体会。报名占位王娅 高级工程师中国科学院生物物理研究所《高通量筛选平台建设及高内涵成像分析系统实验案例分享》【报告摘要】简单介绍高通量高内涵筛选平台相关仪器设备、文库管理和配套设施。分享基于高通量高内涵筛选平台完成的实验案例包括:小鼠肠道原位3D成像与分析、促进TFEB转录因子融合的化合物筛选、单基因糖尿病致病基因变异分类研究、线粒体自噬药物筛选、裂殖酵母筛选统计、巨胞饮调控基因筛选和rVSV-GFP-S-CoV-2假病毒感染后阳性率检测等。报名占位童昕 生命科学部产品经理徕卡显微系统(上海)贸易有限公司《高内涵成像的未来之路:徕卡MICA全场景显微平台助理科学突破》【报告摘要】待定。报名占位会议日程(持续更新)高内涵成像技术与创新应用(2023年7月27日)报告时间报告主题专家信息14:00-14:30基于斑马鱼高内涵成像的中药药效物质研究浙江大学药学院赵璐 副教授14:30-15:00高内涵成像分析仪使用经验及案例分享中国科学院分子细胞科学卓越创新中心赵宏伟 高级工程师15:00-15:30高通量筛选平台建设及高内涵成像分析系统实验案例分享中国科学院生物物理研究所王娅 高级工程师15:30-16:00高内涵成像的未来之路:徕卡MICA全场景显微平台助理科学突破徕卡显微系统童昕 生命科学部产品经理扫码加入高内涵成像技术交流群(发送备注姓名+单位+职位)扫码直达报名页面温馨提示:1) 报名后,直播前一天助教会统一审核,审核通过后,会发送参会链接给报名手机号。填写不完整或填写内容敷衍将不予审核。2) 通过审核后,会议当天您将收到短信提醒。点击短信链接,输入报名手机号,即可参会。会议内容及报告赞助:仪器信息网 赵先生:13331136682,zhaoyw@instrument.com.cn
  • 预算超9500万!10月高校21项高内涵分析仪采购意向汇总
    9月28日,人民银行宣布设立设备更新改造专项再贷款,霎时间点燃了仪器采购市场。国内高校、科研院所纷纷启动仪器设备采购工作,预算动辄过亿。笔者汇总了10月内高校意向采购高内涵细胞成像分析系统的情况,供相关从业者参考。据不完全统计,本轮高校仪器采购意向,共有21项高内涵分析仪采购意向,涉及12所高校,累计预算金额约9526.5万元。华南理工大学以预算2050万元居首,紧随其后的分别是北京化工大学(预算1220万元)和湖南大学(预算1050万元)。12所高校意向采购高内涵细胞成像分析系统项目详情如下:序号采购单位采购项目名称采购需求概况预算金额(万元)预计采购时间1北京化工大学智能共聚焦实时高内涵成像分析系统项目详情 4702022-112智能共聚焦高内涵成像分析系统项目详情 4502022-113CellInsight 高内涵分析筛选平台项目详情 3002022-114东北师范大学高内涵细胞成像分析系统项目详情 3502022-125高内涵细胞成像分析系统项目详情 3202022-116高内涵细胞成像工作站项目详情 2002022-117湖南大学转盘式激光共聚焦高内涵筛选成像系统项目详情 4002022-128激光共聚焦高内涵筛选平台项目详情 3502022-119激光共聚焦高内涵筛选成像系统项目详情 3002022-1110华南理工大学跨膜态高内涵定量定位分析系统项目详情 15002022-1111双转盘激光共聚焦高内涵系统项目详情 5502022-1112华中科技大学高内涵成像分析系统项目详情 3502022-1113吉林大学多模态超分辨高内涵分析系统项目详情 7002022-1214兰州大学第一第二临床医学院西部高发肿瘤诊疗创新平台建设项目-高内涵细胞培养仪项目详情 3502022-1215公共卫生学院+高内涵成像分析系统项目详情 3302022-1216山东大学全自动高内涵细胞成像系统项目详情 7002022-1217四川大学高内涵细胞分析系统项目详情 3502022-1118高内涵细胞成像系统项目详情 3502022-1119天津大学高内涵共聚焦成像分析系统项目详情 6902022-1120浙江大学IX-Pico个人型高内涵系统项目详情 116.52022-1221中山大学高内涵成像分析系统项目详情 4002022-12合计9526.5
  • 高内涵——基于FRET分析活细胞中的ERK信号转导
    Extracellular signal-regulated kinase(ERK)是胚胎发生,细胞分化,细胞增殖和细胞死亡调控的关键组成部分。ERK途径起源于质膜中的活化受体,并通过Ras/Raf/MEK至ERK(图1)。图1. Ras/Raf/MEK/ERK信号级联将信号从细胞表面受体如EGF受体(EGFR)传播到细胞内蛋白质。ERK是该途径的最终组分,并且在被生长因子(例如EGF(表皮生长因子))激活后,触发下游效应,如激酶或转录因子的激活。该途径被不同类型的受体激活,包括受体酪氨酸激酶 (例如EGF受体)以及G蛋白偶联受体。作为信号传导途径的最终组分,ERK磷酸化不同的细胞内蛋白质,包括大量其他激酶和转录因子。ERK信号传导途径存在于各种癌症类型中,因此正在研究作为治疗干预的靶标。在这里,我们描述了如何在Operetta CLS高内涵分析系统上自动化研究ERK信号传导的活细胞FRET测定。该测定可以用于药物发现。基于FRET的ERK生物传感器FRET是从供体分子到受体分子的非辐射能量转移。能量转移需要供体和受体间隔小于10nm,因此提供了研究分子接近度变化的敏感工具,例如蛋白质 - 蛋白质相互作用(分子间FRET)或蛋白质的构象变化(分子内FRET)。在这项研究中,我们专注于分子内FRET,使用称为EKAREV的CFP-YFP生物传感器(图2)。稳定表达EKAREV的细胞由Somponnat Sampattavanich博士友情提供(图3)。在该生物传感器中,供体和受体荧光团以单一融合蛋白编码。EKAREV生物传感器经过优化,可以减少随机触发的基础FRET信号,并使其可靠地与距离相关。ERK对EKAREV的磷酸化触发构象变化,使CFP和YFP靠近诱导FRET。图2.细胞外信号调节激酶活性报告基因(EKAREV)的示意图。在该生物传感器中,两种荧光蛋白通过ERK底物结构域,接头和结合结构域分开。一旦ERK底物结构域经过ERK的磷酸化,就会触发构象变化,使CFP和YFP紧密接近并允许FRET发生。EKAREV生物传感器是分子内FRET的实例,其中供体和受体以1:1的固定化学计量存在。因此,进行双通道比率实验就足够了,通道1检测受体发射光(IAcceptor),通道2检测供体发射(IDonor),将得到的两个荧光信号强度进行背景校正,并计算它们的比率以给出相对FRET效率EFRET:测定方法将1.2×104EKAREV细胞/孔接种到CellCarrier-96Ultra微量培养板(PerkinElmer#6055300),150μl培养基(表1)中。孵育2天后(37℃,5%CO2),150μl饥饿培养基洗涤两次并在饥饿培养基中孵育5小时以降低基础ERK活性。另外,在孵育开始时向细胞中加入各种浓度的抑制剂或DMSO。4.5小时后,将细胞核用4μM DRAQ5在37℃,5%CO2下染色30分钟。然后用饥饿培养基洗涤细胞一次,并加入含有8μl 20x浓缩抑制剂或DMSO对照的150μl新鲜饥饿培养基。作为对照,在某一时间点,向细胞中加入8μl20x浓缩诱导物(PMA或EGF)。为了抑制FRET信号,应用PD184352,SCH772984和Ulixertinib。含有或不含有所测试化合物的最高DMSO浓度的培养基用作对照。试剂,化合物和介质列表成像在宽场模式下使用20x高NA物镜(NA 0.8)在Operetta CLS系统上建立长时间实验,获取图像总共97分钟。将FRET诱导化合物添加到血清饥饿细胞后,开始时间序列,测量间隔为每8分钟一次,在此设置中获得了四个渠道:DRAQ5 (ex 615-645,em655-760),CFP(ex 435-460,em 470-515),YFP(ex490-515,em 525-580)和FRET(ex 435-460,em 515-580)(图3)。图3.稳定表达EKAREV生物传感器的人乳腺上皮细胞。细胞核用DRAQ5染色。随后,在Operetta CLS系统上使用宽场模式的20x高NA物镜对细胞成像。分析策略使用Harmony高内涵成像和分析软件进行自动图像分析。简言之,将图像分割成细胞和背景。计算细胞质和背景中的供体和FRET强度,然后计算背景校正的FRET比率作为最终结果(图4)。图4.使用Harmony软件进行比率FRET定量的图像分析工作流程:细胞和背景的细胞质被分段,低表达细胞被强度阈值排除。量化供体和FRET通道的强度及其适当的背景,并计算背景校正的FRET强度比。减去背景强度在活细胞应用中尤其有利,其中具有自发荧光组分的培养基通常导致更高的背景并因此导致更小的测定窗口。结果为了探索是否可以使用基于FRET的生物传感器在Operetta CLS上研究ERK信号传导的调节,用不同的ERK和MEK激活剂和抑制剂处理EKAREV细胞。(图5)。图5.外源添加的活化剂(绿色)和抑制剂(红色)示意图及其对ERK信号通路的影响。表达EKAREV的细胞用EGF或PMA处理以诱导ERK活化,另外,用三种MEK和ERK特异性抑制剂(PD184352,SCH772984,Ulixertinib),在途径的不同位置中断信号转导。PMA和EGF充当Ras/Raf/MEK/ERK信号级联的特异性激活剂。EGF特异性结合细胞表面上的EGF受体,而PMA作为亲脂性,膜可渗透的分子通过直接激活RAF激活该途径。PD184352可以通过选择性抑制MEK1/2来抑制ERK途径,而Ulixertinib和SCH772984都是ERK1/2的有效和选择性抑制剂。首先,为了更多地了解FRET诱导和抑制的动态性质,记录了97分钟的长时实验。正如所料,与未处理的对照相比,单独用EGF或PMA处理细胞导致FRET比率的强烈增加(图6)。大约30分钟后信号处于高位。对照显示较低水平的ERK活化,并且观察到随时间稳定增加。由于ERK1/2可以通过多种生长因子和有丝分裂来调节,这可能是由活细胞成像过程中的自分泌或旁分泌信号引起的。用不同浓度的ERK抑制剂(SCH772984)共同处理细胞导致ERK反应的剂量依赖性降低。在5μMSCH772984中,通过EGF的ERK活化几乎可以忽略不计,表明在该浓度下ERK被完全抑制。请注意,0.5%DMSO是实验中使用的最高浓度,确实对FRET比率有影响,因此需要包括此对照。用第二种ERK1/2特异性抑制剂Ulixertinib获得了类似的结果(数据未显示)。图6.在Operetta CLS系统上使用基于EKAREV FRET的生物传感器的ERK信号传导的时间进程。通过EGF或PMA刺激ERK诱导快速FRET信号增加,在约30分钟后平稳。高浓度的SCH772984(5μM)导致几乎完全抑制ERK活化(1μg/ ml EGF),没有可测量的FRET信号增加。较高稀释度的SCH772984仅部分抑制EGF诱导的ERK活化。control显示没有任何处理的样品有中间轻微上升的FRET信号。0.5%DMSO略微抑制FRET信号,这是实验中使用的DMSO的最高浓度。测定统计:Z' = 0.87(在时间点32分钟计算,DMSO为阴性,EGF为阳性对照)当FRET信号在32分钟后达到恒定水平时,选择该时间点以确定SCH772984的IC50值。用1μg/ mL EGF和系列稀释的SCH772984处理EKAREV细胞,稀释范围为10pM至3μM。计算的IC50值为272nM的剂量反应曲线如图7所示。图7.ERK抑制剂SCH772984导致基于FRET的EKAREV信号的剂量依赖性降低。在1μg/ ml EGF存在下,用递增浓度的SCH772984处理EKAREV细胞。在孵育32分钟后,在Operetta CLS系统上测定FRET比率,因为信号在此时间点稳定。高Z' 值(Z' = 0.89)显示出优异的分析性能。为了研究EKAREV FRET成像测定是否可用于研究直接作用于MEK1/2的途径调节,测试了MEK1/2抑制剂PD184352对PMA化细胞的作用(图8)。如图所示,PD184352抑制PMA诱导的ERK活化。图8.在Operetta CLS系统上测量的PD184352对PMA活化的Ras/Raf/MEK/ERK信号级联的抑制。EKAREV细胞用另一组活化剂和抑制剂(PMA+PD184352)处理,其作用在RAF/MEK的上游(与图5比较)。用200或2000nM PMA处理的EKAREV细胞显示出高FRET反应(诱导后32分钟)。通过将细胞与MEK1/2特异性抑制剂PD184352以10μM的浓度共孵育来抑制活化。结论EKAREV FRET生物传感器可用于Operetta CLS系统的活细胞成像测定,以研究ERK的激活和抑制。级联内不同靶标的调节很容易测量,因此这种方法可以有助于鉴定干扰Ras/Raf/MEK/ERK信号级联的新化合物。该测定在活细胞中进行,因此它可用于分析ERK信号传导动力学,而定量ERK磷酸化的常规生物化学技术通常是终点测定。尽管细胞群中生物传感器表达水平相对不均匀(图3),但FRET比率的计算提供了特别好的化验数据和统计数据,Z' 值高于0.87。EKAREV生物传感器的优化设计,Operetta CLS系统的高质量成像以及Harmony内图像分析的出色工具都有助于提高这里提供的高含量FRET分析的稳定性。Harmony软件的构建模块概念允许创建易于设置和理解的图像分析序列,并且不需要专业的图像分析知识。该测定还提供了Opera Phenix™ 高含量筛选系统的可比较结果和测定统计数据。由于Operetta CLS和Opera Phenix系统比传统显微镜具有更高的通量,基于FRET的生物传感器的高含量成像为药物发现和细胞信号传导中的基础研究开辟了新的可能性。参考文献1. Pearson, G., Robinson, F., Beers Gibson, T., Xu, B-E.,Karandikar, M., Berman, K. & Cobb, M. H. (2001).Mitogen-Activated Protein (MAP) Kinase Pathways: Regulation and Physiological Functions. Endocrine Reviews, 22(2), 153-183. doi/10.1210/edrv.22.2.04282. Alberts, B., Johnson, A., Lewis, J., Morgan, D., Raff, M.,Roberts, K. & Walter, P. (2007) Molecular Biology of the Cell,Garland Science., 5th revised edition, ISBN-10: 08153410593. McCubrey, J. A, Steelman, L. S., Chappell, W. H., Abrams,S. L., Wong, E. W. T., Chang, F., Lehmann, B., Terrian, D.M., Milella, M., Tafuri, A., Stivala, F., Libra, M., Basecke, J.,Evangelisti, C., Martelli, A. M., and Franklin, R. A. (2007):Roles of the Raf/ MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochimica et Biophysica Acta, 1773,1263–84. doi:10.1016/j.bbamcr.2006.10.0014. F?rster, T. (1948). Zwischenmolekulare Energiewanderung und Fluoreszenz. Annalen der Physik 437 (1-2), 55-75.5. Sun, Y., Wallrabe, H., Seo, S.-A., & Periasamy, A. (2012). FRET microscopy in 2010: The legacy of Theodor F?rster on the 100th anniversary of his birth. Chemphyschem., 12(3), 462–474.doi:10.1002/cphc.201000664. FRET6. Fassler, M., Boettcher, K., Malle, M. (2015): Measuring FRET using the Opera Phenix High Content Screening System: A High Throughput Assay to Study Protein-Protein Interactions,Application Note published by PerkinElmer, In., Waltham,MA, USA7. Komatsu, N., Aoki, K., Yamada, M., Yukinaga, H., Fujita,Y., Kamioka, Y., & Matsuda, M. (2011). Development of an optimized backbone of FRET biosensors for kinases and GTPases.Mol Biol Cell, 22, 4647-56. doi/10.1091/mbc.E11-01-00728. Harvey, C. D., Ehrhardt, A. G., Cellurale, C., Zhong, H., Yasuda,R., Davis, R. J., & Svoboda K. (2008). A genetically encoded fluorescent sensor of ERK activity. PNAS, 105(49), 19264-19269. doi_10.1073_pnas.080459点击链接了解更多珀金埃尔默高内涵相关资料http://e86.me/0ZaJW1关于珀金埃尔默:珀金埃尔默致力于为创建更健康的世界而持续创新。我们为诊断、生命科学、食品及应用市场推出独特的解决方案,助力科学家、研究人员和临床医生解决最棘手的科学和医疗难题。凭借深厚的市场了解和技术专长,我们助力客户更早地获得更准确的洞见。在全球,我们拥有12500名专业技术人员,服务于150多个国家,时刻专注于帮助客户打造更健康的家庭,改善人类生活质量。2018年,珀金埃尔默年营收达到约28亿美元,为标准普尔500指数中的一员,纽交所上市代号1-877-PKI-NYSE。了解更多有关珀金埃尔默的信息,请访问www.perkinelmer.com.cn
  • 视频回放|高内涵成像分析与药物开发
    p style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "6月24日,仪器信息网主办的“高内涵成像分析及药物开发”主题网络研讨会成功召开,会议为期半天,共吸引近500人报名参会。 为方便更多从事蛋白质组学研究的科研人员学习相关技术,现特将会议内容剪辑整理,点击span style="color: rgb(0, 112, 192) "strong报告题目/strong/span或span style="color: rgb(0, 112, 192) "strong报告图片/strong/span即可进入视频观看页面。/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "a href="https://www.instrument.com.cn/webinar/video_112991.html" target="_blank"img style="width: 550px height: 413px " src="https://img1.17img.cn/17img/images/202007/uepic/6da2fd96-7fed-45dc-908c-58c92e3d5216.jpg" title="2.jpg" width="550" height="413" border="0" vspace="0" alt="2.jpg"//a/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "报告嘉宾:王毅(浙江大学 ) /pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " 报告题目:a href="https://www.instrument.com.cn/webinar/video_112991.html" target="_blank"《基于显微成像的中药药效物质研究》/a/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "本次报告简要介绍了浙大药信所与MD公司共建的高内涵成像平台情况,汇报了运用MD高内涵成像系统在中药药效物质筛选与活性评价方面的应用,并对高内涵分析技术在中药药效物质研究中的前景与未来发展方向做一展望。/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "a href="https://www.instrument.com.cn/webinar/video_112995.html" target="_blank"img style="width: 550px height: 413px " src="https://img1.17img.cn/17img/images/202007/uepic/7b64574e-12e8-44ed-be36-d3cf81f8c125.jpg" title="3.jpg" width="550" height="413" border="0" vspace="0" alt="3.jpg"//a/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "报告嘉宾:韩帅(中科院分子细胞科学卓越创新中心 ) /pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " 报告题目:a href="https://www.instrument.com.cn/webinar/video_112995.html" target="_blank"《高内涵与功能基因组筛选》/a/pp style="text-indent: 2em margin-top: 10px margin-bottom: 10px line-height: 1.5em "生化与细胞所化学生物学平台是旨在服务于高通量筛选项目的技术平台,主要包括化合物筛选和功能基因组筛选。高内涵可对大量细胞进行多通道、自动化快速成像和图像分析,得到细胞群体及个体多种参数的定量统计结果,帮助我们了解复杂的细胞学机理。高内涵在生命科学研究中得到了广泛的应用,包括发现新靶点、药物作用机制、细胞信号通路,肿瘤学,神经生物学,免疫学,传染病学,干细胞等领域。本报告将举例介绍高内涵成像分析系统在本技术平台的多种应用案例。/pp style="margin-top: 10px margin-bottom: 10px text-align: center line-height: 1.5em "a href="https://www.instrument.com.cn/webinar/video_112990.html" target="_blank"img src="https://img1.17img.cn/17img/images/202007/uepic/6a62ecef-1295-416f-ae96-dc8b9e124602.jpg" title="1.jpg" width="550" height="413" border="0" vspace="0" alt="1.jpg" style="width: 550px height: 413px "//a/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-align: center "报告嘉宾:栗世铀(中国科学院北京基因组研究所 ) /pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-align: center " 报告题目:a href="https://www.instrument.com.cn/webinar/video_112990.html" target="_blank"《Invetigating Genotype-phenotype Relationship Using High Content Analysis 》/a/ppbr style="white-space: normal "//pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "a href="https://www.instrument.com.cn/webinar/video_112992.html" target="_blank"img style="width: 550px height: 413px " src="https://img1.17img.cn/17img/images/202007/uepic/147eedbf-a047-4d5f-84b6-3d93e3189325.jpg" title="4.jpg" width="550" height="413" border="0" vspace="0" alt="4.jpg"//a/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "报告嘉宾:赵鸿雁(Cytiva ) /pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " 报告题目:a href="https://www.instrument.com.cn/webinar/video_112992.html" target="_blank"《基于高内涵的药物新型研发策略》/a/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-indent: 2em "近些年许多新药研发人员都在药物早期研发的手段上进行创新,在此为您介绍基于高内涵的联合新药研发策略和基于3D模型的新药筛选策略,致力于在早期新药研发对候选药物进行多方面的评价和筛选,为药物后期进入临床实验提供参考。/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "a href="https://www.instrument.com.cn/webinar/video_112993.html" target="_blank"img style="width: 550px height: 413px " src="https://img1.17img.cn/17img/images/202007/uepic/279bd73a-6071-481e-ba9c-76ad32e8fd99.jpg" title="5.jpg" width="550" height="413" border="0" vspace="0" alt="5.jpg"//a/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "报告嘉宾:王聪(赛默飞) /pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em " 报告题目:a href="https://www.instrument.com.cn/webinar/video_112993.html" target="_blank"《高内涵在病毒学研究中的应用》/a/pp style="text-indent: 2em "面对突如其来的新冠疫情,如何快速筛选出潜在的治疗药物成为全球科学家都关注的焦点。而基于成像分析原理的高内涵系统具有智能化程度高,成像速度快,分析结果快速准确的特点,特别适合高通量药物学研究的使用需求。本报告将为您带来赛默飞高内涵系统在病毒学研究方向的多种应用案列,将高内涵的特点与病毒学研究的实际需求结合起来。/pp style="text-align: center margin-top: 10px margin-bottom: 10px line-height: 1.5em "a href="https://www.instrument.com.cn/webinar/video_112994.html" target="_blank"img style="width: 550px height: 413px " src="https://img1.17img.cn/17img/images/202007/uepic/8bd9051a-63f7-426b-a1ab-a125cac00ca2.jpg" title="6.jpg" width="550" height="413" border="0" vspace="0" alt="6.jpg"//a/pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-align: center "报告嘉宾:刘文苑(珀金埃尔默) /pp style="margin-top: 10px margin-bottom: 10px line-height: 1.5em text-align: center " 报告题目:a href="https://www.instrument.com.cn/webinar/video_112994.html" target="_blank"《基于类器官模型的高内涵应用 》/a/pp style="text-indent: 2em "生化与细胞所化学生物学平台是旨在服务于高通量筛选项目的技术平台,主要包括化合物筛选和功能基因组筛选。高内涵可对大量细胞进行多通道、自动化快速成像和图像分析,得到细胞群体及个体多种参数的定量统计结果,帮助我们了解复杂的细胞学机理。高内涵在生命科学研究中得到了广泛的应用,包括发现新靶点、药物作用机制、细胞信号通路,肿瘤学,神经生物学,免疫学,传染病学,干细胞等领域。本报告将举例介绍高内涵成像分析系统在本技术平台的多种应用案例。/pp style="text-indent: 2em "点击链接,观看全部“高内涵成像分析与药物开发”网络会议视频。/ppa href="https://www.instrument.com.cn/webinar/Video/Video/Collection/10578" target="_blank"https://www.instrument.com.cn/webinar/Video/Video/Collection/10578/a/p
  • 徕卡快速高内涵荧光成像系统加速治疗性抗体药物研发
    应用专家 赵梦路 抗体药物在免疫、肿瘤治疗等多种应用中发挥越来越重要的作用,研究机构预测到2025年抗体药物市场规模将达到3000亿美元[1],下图中红色代表2018年使用量最多的10种抗体药物。图1 时间轴显示从1975年开始研发成功的治疗性抗体及应用虽然抗体药物市场巨大,但是每年通过FDA审核并成功上市的治疗性抗体依然非常少,从下图可以看出,上市药物少的很大原因是治疗性抗体药物研发存在流程复杂、体外和体内药效验证困难等原因。图2 治疗性抗体药物临床前研究路线下图可以看出传统药物筛选流程中没有影像学方法,整个研发数据单一,必须拿到上一步的结果方可进行下一步的研究。而影像学方法可以进行高通量筛选,允许同时评估多个抗体分子的效力和毒性,最关键一点是影像学方法在药物筛选早期就可以拿到药物有无毒性作用,可以预测药物在人体的毒副作用,为更好的进行临床研究提供数据支持[2]。图3 药物序列筛选和并行筛选Leica THUNDER 3D极速高内涵活细胞培养成像系统是Leica全新研发的宽场快速高分辨荧光成像系统,拥有成像速度快、分辨率高、应用范围广、光毒性低和Navigator高通量采集与自动化处理数据等优点。 优势一 成像速度快适合高通量快速筛选,视频中使用THUNDER拍摄96孔板,每孔三色荧光成像加10层 Z stack,最终3.5分钟即可全部采集完成。视频1 THUNDER快速多通道荧光数据采集 视频2 THUNDER自定义采集参数和随机性设置高速多通道采集只是获取数据的第一步,自动化分析数据才能高效的获取结果。THUNDER可在Navigator流程中添加自动分析步骤,让数据采集完成自动进入分析流程,最终将结果直接呈现出来,图4 Navigator高通量采集后自动进入分析模块 优势二 高分辨率传统宽场成像虽然可以快速采集数据,但是由于固有的光学结构无法有效滤除非焦信号造成的信号模糊、信噪比差,而点扫描共聚焦又受限于成像速度慢无法满足高通量筛选的需求。THUNDER快速高分辨荧光成像系统,基于宽场成像一次拍照即可达到136nm的超高分辨率成像,THUNDER在满足成像速度的同时具备高分辨率优势,超高分辨率和高信噪比图像使后期结构辨别、弱信号定量分析成为可能。图5 THUNDER分辨细胞核中的DNA损伤位点传统宽场显微镜由于非焦信号干扰和衍射极限的限制,无法分辨300nm以内距离较近的信号。图5中的观察病毒侵入细胞核中造成的损伤位点(黄色点信号),由于THUNDER在XY轴拥有136nm的超高分辨率,因此可以清楚分辨靠的比较近的损伤点,这一THUNDER图像可以进行更加准确的定量分析。图6 神经细胞离体3D培养在药物研究领域,经常需要验证药物分子对细胞结构及存活的影响。THUNDER图像具有高分辨率优势,可以在药物作用早期即可观察到细胞精细结构的改变,从而更灵敏的捕获药物对细胞生长增殖的影响,为后期临床研究提供数据支持。图7 高信噪比图像助力细胞计数分析图像模糊,信噪比不足一直都是图像后期分析的难题,THUNDER技术在细胞高通量计数分析方面,拥有天然的优势,高分辨和高信噪比的图像大大简化了后期分析难度,可以更方便的进行自动分析。 优势三 应用广,适用细胞和模式动物随着技术的进步,抗体药物临床前研究已经不再局限在单细胞水平的疗效验证,而是涌现出越来越多的新技术渗透到活性分子的筛选中。由于抗体药物在离体细胞中的代谢与在体内情况有很大不同,如何缩小作用环境的差距成为时下研究的热点,比如可以通过类器官的构建来研究和体内相似的微环境及渗透屏障,可以在斑马、鱼线虫等模式动物活体水平研究抗体药物在体内环境的靶向性等等。这样一系列复杂的模型都需要一种观察深度大、应用范围广的成像技术,THUNDER恰好可以满足这些需求。视频3 Pseudoislets (pancreatic beta cells)(pancreatic beta cMIN6 cells grown as pseudoislets ells). DAPI (blue), Insulin (Alexa488, green), membrane receptor (Alexa594, red), phalloidin (Alexa647, white).Sample courtesy Dr. Rémy Bonnavion, MPI for Heart and Lung Research, Bad Nauheim视频中胰岛类器官由于具有三维立体结构,所以荧光显微镜无法分辨胰岛素分泌的具体情况,THUNDER高分辨成像解决了这一难题,同时THUNDER拍摄深度深的优点也让整个类器官都可以清楚的观察。视频4 Lung Organoid Mouse lung organoids derived from alveola stem and progenitor cells20x Air through 1mm plastic bottomSample courtesy Dr. Pumaree Kanrai, MPI for Heart and Lung Research, Bad Nauheim (Germany).肺类器官是培养中普通塑料培养板中的样本,从参数可以看出THUNDER成像不仅可以清楚分辨肺泡细胞的位置,而且使用厚底培养容器和长工作距离物镜不影响THUNDER高分辨拍摄,因此THUNDER可以拍摄几乎所有培养容器,覆盖单细胞到大体积类器官样本,具有非常广泛的应用范围。图8 线虫模式动物THUNDER成像图9 线虫体细胞计数自动分析在模式动物成像方面,THUNDER依然可以做到体细胞水平的成像,并且在大尺度深度采集后可以自动进行计数分析,方便评估药物在体内代谢和对体细胞的毒性作用。总结THUNDER是Leica专利的超高分辨、高信噪比快速荧光成像系统,可以覆盖单细胞、组织、类器官和活体动物等大部分研究领域。由于THUNDER具有快速高分辨的特点,因此所以可助力抗体药物临床前研究,可应用于治疗性抗体药物的体外细胞水平药效筛选和体内活性药效验证等试验,可助力抗体药物活性筛选、杀伤效果验证、早期细胞毒性发现等方面研究。针对抗体研究中细胞遇到的细胞、类器官和活体模式动物等样本,THUNDER倒置平台和体视镜平台可以完美的覆盖。而在分子水平,由于传统光学衍射限制,无法直接观察分子间的结合及相互作用强弱,Leica FALCON可以提供FLIM-FRET方案,可以超越衍射极限限制,实现分子水平相互作用检测。基于荧光寿命系统的FRET检测不受荧光染色、漂白等强度因素影响,可以更加精准的检测分子间的相互作用。参考文献:1. Development of therapeutic antibodies for the treatment of diseases. Luet al. Journal of Biomedical Science(2020) 27:1 2. Cellular imaging in drug discovery. NATURE REVIEWS | DRUG DISCOVERY(2006)343:5
  • 420万!山东大学高内涵细胞成像分析系统采购项目
    项目编号:SDJDHF20220626-Z390项目名称:山东大学高内涵细胞成像分析系统采购项目预算金额:420.0000000 万元(人民币)最高限价(如有):420.0000000 万元(人民币)采购需求:标包货物名称数量简要技术要求1高内涵细胞成像分析系统 1套详见公告附件合同履行期限:详见招标文件要求。本项目( 不接受 )联合体投标。山东大学高内涵细胞成像分析系统采购项目公开招标公告.pdf
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制