当前位置: 仪器信息网 > 行业主题 > >

高速拍音探测器

仪器信息网高速拍音探测器专题为您提供2024年最新高速拍音探测器价格报价、厂家品牌的相关信息, 包括高速拍音探测器参数、型号等,不管是国产,还是进口品牌的高速拍音探测器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高速拍音探测器相关的耗材配件、试剂标物,还有高速拍音探测器相关的最新资讯、资料,以及高速拍音探测器相关的解决方案。

高速拍音探测器相关的资讯

  • 非制冷势垒型InAsSb基高速中波红外探测器
    高速响应的中波红外探测器在自由空间光通信和频率梳光谱学等新兴领域的需求逐渐增加。中长波XBₙn势垒型红外光探测器对暗电流等散粒噪声具有抑制作用。近期,由中国科学院半导体研究所、昆明物理研究所、中国科学院大学和陆装驻重庆军代局驻昆明地区第一军代室组成的科研团队在《红外与毫米波学报》期刊上发表了以“非制冷势垒型InAsSb基高速中波红外探测器”为主题的文章。该文章第一作者为贾春阳,通讯作者为赵俊总工程师和张逸韵研究员。本工作制备了不同直径的nBn和pBn结构的中波InAsSb/AlAsSb红外接地-信号-接地(GSG)探测器。对制备的探测器进行了变温暗电流特性,结电容特性和室温射频响应特性的表征。材料生长、器件制备和测试通过固态源分子束外延装置在2英寸的n型Te-GaSb衬底上外延生长nBn和pBn器件。势垒型器件的生长过程如下所示:先在衬底上生长GaSb缓冲层来平整表面以及减少应力和位错,接着生长重掺杂(10¹⁸ cm⁻³)n型InAsSb接触层,然后生长2.5 μm厚的非故意掺杂(10¹⁵ cm⁻³)InAsSb体材料吸收层。之后生长了150 nm厚的AlAsSb/AlSb数字合金电子势垒层,通过插入超薄的AlSb层实现了吸收区和势垒层的价带偏移的显著减少,有助于空穴向接触电极的传输,同时有效阻止电子以减小暗电流。最后分别生长300 nm厚的重掺杂(10¹⁸ cm⁻³)n型InAsSb和p型GaSb接触层用于形成nBn和pBn器件结构。其中,Si和Be分别被用作n型和p型掺杂源。生长后,通过原子力显微镜(D3100,Veeco,USA)和高分辨X射线衍射仪(Bede D1,United Kingdom)对晶片进行表征以确保获得高质量的材料质量。通过激光划片将2英寸的外延片划裂为1×1 cm²的样片。样片经过标准工艺处理,包括台面定义、钝化和金属蒸镀工艺,制成直径从10 μm到100 μm的圆形台面单管探测器。台面定义工艺包括通过电感耦合等离子体(ICP)和柠檬酸基混合溶液进行的干法刻蚀和湿法腐蚀工艺,以去除器件侧壁上的离子诱导损伤和表面态。器件的金属电极需要与射频探针进行耦合来测试器件的射频响应特性,因此包括三个电极分别为Ground(接地)、Signal(信号)和Ground,其中两个Ground电极相连,与下接触层形成欧姆接触,Signal电极与上接触层形成欧姆接触,如图1(c)和(f)所示。通过低温探针台和半导体参数分析仪(Keithley 4200,America)测试器件77 K-300 K范围的电学特性。器件的光学响应特性在之前的工作中介绍过,在300 K下光电探测器截止波长约为4.8 μm,与InAsSb吸收层的带隙一致。在300 K和反向偏置为450 mV时,饱和量子效率在55%-60%。通过探针台和频率响应范围10 MHz-67 GHz的矢量网络分析仪(Keysight PNA-XN5247B,America)对器件进行射频响应特性测试。结果与讨论材料质量表征图1(a)和(d)的X射线衍射谱结果显示,从左到右的谱线峰分别对应于InAsSb吸收层和GaSb缓冲层/衬底。其中,nBn和pBn外延片的InAsSb吸收区的峰值分别出现在60.69度和60.67度,GaSb衬底的峰值则出现在60.72度。因此,InAsSb吸收层与GaSb 衬底的晶格失配分别为-108 acsec和-180 acsec,符合预期,表明nBn和pBn器件的InAsSb吸收区和GaSb衬底几乎是晶格匹配的生长条件。因此,nBn和pBn外延片都具有良好的材料质量。原子力显微镜扫描的结果在图1的(b)和(e)中,显示出生长后的nBn和pBn外延片具有良好的表面形貌。在一个5×5 μm²的区域内,nBn和pBn外延片的均方根粗糙度分别为1.7 Å和2.1 Å。图1 (a)和(a)分别为nBn和pBn外延片的X射线衍射谱;(b)和(e)分别为nBn和pBn外延片的原子力显微扫描图;(c)和(f)分别为制备的圆形GSG探测器的光学照片和扫描电子照片器件的变温暗电流特性图2(a)显示了器件直径90 μm的nBn和pBn探测器单管芯片的温度依赖暗电流密度-电压曲线,通过在连接到Keithley 4200半导体参数分析仪的低温探针台上进行测量。图2(b)显示了件直径90 μm的nBn和pBn探测器在77 K-300 K下的微分电阻和器件面积的乘积R₀A随反向偏压的变化曲线,温度下降的梯度(STEP)为25 K。图2(c)显示了在400 mV反向偏压下,nBn和pBn探测器表现出的从77 K到300 K的R₀A与温度倒数(1000/T)之间的关系,温度变化的梯度(STEP)为25 K。图2 从77K到300K温度下直径90 μm的nBn和pBn探测器单管芯片(a)暗电流密度-电压曲线;(b)微分电阻和器件面积的乘积R₀A随反向偏压的变化曲线;(c)R₀A随温度倒数变化曲线器件暗电流的尺寸效应由于势垒型红外探测器对于体内暗电流可以起到较好的抑制作用,因此研究人员关注与台面周长和面积有关的表面泄露暗电流,进一步抑制表面漏电流可以进一步提高探测器的工作性能。图3(a)显示了从20 μm到100 μm直径的nBn和pBn器件于室温工作的暗电流密度和电压关系,尺寸变化的梯度(STEP)为10 μm。图3(b)显示从20 μm-100 μm的nBn和pBn探测器的微分电阻和台面面积的乘积R₀A随反向偏压的变化曲线。图3(d)中pBn器件的相对平缓的拟合曲线说明了具有较高的侧壁电阻率,根据斜率的倒数计算出约为1.7×10⁴ Ωcm。图3 从20 μm到100 μm直径的nBn和pBn器件于室温下的(a)暗电流密度和电压变化曲线和(b)R₀A随反向偏压的变化曲线;(c)在400 mV反偏时,pBn和nBn器件R₀A随台面直径的变化;(d)(R₀A)⁻¹与周长对面积(P/A)变化曲线器件的结电容图4(a)显示了使用Keithley 4200 CV模块在室温下不同直径的nBn和pBn探测器的结电容随反向偏压的变化曲线,器件直径从20 μm到100 μm按照10 μm梯度(STEP)变化。对于势垒层完全耗尽的pBn探测器,预期器件电容将由AlAsSb/AlSb势垒层电容和InAsSb吸收区耗尽层电容的串联组合给出,其中包括势垒层和上接触层侧的InAsSb耗尽区。图4 (a)在室温下不同直径的nBn和pBn探测器的结电容随反向偏压的变化曲线;(b)反偏400 mV下结电容与台面直径的变化曲线。器件的射频响应特性通过Keysight PNA-X N5247B矢量网络分析仪、探针台和飞秒激光光源,在室温和0-3 V反向偏压下,对不同尺寸的nBn和pBn探测器在10 MHz至67 GHz之间进行了射频响应特性测试。根据图5推算出在3V反向偏压下的40 μm、50 μm、70 μm、80 μm、90 μm、100 μm直径的圆形nBn和pBn红外探测器的3 dB截止频率(f3dB)。势垒型探测器内部载流子输运过程类似光电导探测器,表面载流子寿命对响应速度会产生影响。图5 在300 K下施加-3V偏压的40 μm、50 μm、70 μm、80 μm、90 μm、100 μm直径的nBn和pBn探测器的归一化频率响应图图6 不同尺寸的nBn和pBn探测器(a)3 dB截止频率随反向偏压变化曲线;(b)在3 V反向偏压下的3 dB截止频率随台面直径变化曲线图6(a)展示了对不同尺寸的nBn和pBn探测器,在0-3 V反向偏压范围内的3 dB截止频率的结果。随着反向偏压的增大,不同尺寸的器件的3 dB带宽也随之增大。因此,在图6(a)中观察到在低反向偏压下nBn和pBn器件的响应较慢,nBn探测器的截止频率落在60 MHz-320 MHz之间而pBn探测器的截止频率落在70 MHz-750 MHz之间;随着施加偏压的增加,截止频率增加,nBn和pBn器件最高可以达到反向偏压3V下的2.02 GHz和2.62 GHz。pBn器件的响应速度相较于nBn器件提升了约29.7%。结论通过分子束外延法在锑化镓衬底上生长了两种势垒型结构nBn和pBn的InAsSb/AlAsSb/AlSb基中波红外光探测器,经过台面定义、工艺钝化工艺和金属蒸镀工艺制备了可用于射频响应特性测试的GSG探测器。XRD和AFM的结果表示两种结构的外延片都具有较好的晶体质量。探测器的暗电流测试结果表明,在室温和反向偏压400 mV工作时,直径90 μm的pBn器件相较于nBn器件表现出更低的暗电流密度0.145 A/cm²,说明了该器件在室温非制冷环境下表现出低噪声。不同台面直径的探测器的暗电流测试表明,pBn器件的表面电阻率约为1.7×10⁴ Ωcm,对照的nBn器件的表面电阻率为3.1×10³ Ωcm,而pBn和nBn的R₀A体积项的贡献分别为16.60 Ωcm²和5.27 Ωcm²。探测器的电容测试结果表明,可零偏压工作的pBn探测器具有完全耗尽的势垒层和部分耗尽的吸收区,nBn的吸收区也存在部分耗尽。探测器的射频响应特性表明,直径90 μm的pBn器件的响应速度在室温和3 V反向偏压下可达2.62 GHz,对照的nBn器件的响应速度仅为2.02 GHz,相比提升了约29.7%。初步实现了在中红外波段下可快速探测的室温非制冷势垒型光探测器,对室温中波高速红外探测器及光通讯模块提供技术路线参考。论文链接:http://journal.sitp.ac.cn/hwyhmb/hwyhmbcn/article/abstract/2023157
  • 高芯科技“晶圆级红外探测器”项目摘得“金燧奖”中国光电仪器品牌榜银奖
    12月16日,“2023世界光电科学与技术大会”在成都盛大召开。在开幕式现场,第二届“金燧奖”颁奖典礼同期而至,高芯科技首次入围即获颁中国光电仪器品牌榜银奖。“金燧奖”中国光电仪器品牌榜是由中国光学工程学会领衔发起的国家级光电项目评选,面向国家重大战略需求,重点推选出我国自主研发、制造、生产的高端光电仪器,展现自主核心竞争力,树立民族品牌自信心。本次评选,高芯科技凭借“晶圆级红外探测器”项目一举斩获银奖奖项。这项荣誉,既是大会主办方给予高芯科技在红外热成像技术创新所做努力的极大鼓励,也是国内光电行业权威对高芯科技在红外传感器领域具备深厚实力的官方认可。轻量化、低成本是红外热成像产业的大势所趋。晶圆级红外探测器更小更轻的尺寸和重量促成红外成像模块的轻量化升级,更高的产能又进一步降低热像集成的成本。高芯科技在业内率先实现晶圆级红外探测器量产,更多形态晶圆级红外热成像模组和机芯在这里诞生,更多行业红外应用解决方案从这里输出。未来,高芯科技将继续秉承“智慧传感、芯联万物”的经营理念,助推红外技术普及,用热像之“芯”惠及大众。关于高芯科技武汉高芯科技有限公司掌握了红外热成像技术的核心——红外焦平面探测器,致力于为全球红外热成像用户提供专业的非制冷和制冷红外探测器、机芯模组以及应用解决方案。 公司在红外探测器及相关领域获得多项技术专利,可同时提供非制冷和制冷红外探测器。建立了8英寸0.11μm氧化钒非制冷红外探测器、8英寸0.5μm碲镉汞制冷红外探测器、8英寸0.5μm二类超晶格制冷红外探测器三条批产线,自主完成原材料提纯、生长,到芯片的流片、制造、封装与测试的全套工艺。公司产品品类丰富,覆盖多种面阵规格、多种像元尺寸以及多种波段组合 。产品灵敏度高、可靠性好,各项性能指标达到国际先进水平,已广泛应用于人体测温、工业测温、安防监控 、无人机载荷、气体泄漏检测、户外夜视、智能驾驶、物联网、智能家居、智能硬件等领域。
  • 中国红外探测器技术航空科技重点实验室挂牌成立
    近日,红外探测器技术航空科技重点实验室在中航工业导弹院挂牌成立。中航工业科技与信息化部部长魏金钟与中航工业导弹院党委书记、副院长刘松柏共同为实验室揭牌,标志着该实验室正式投入运行。  红外探测器技术航空科技重点实验室的设立评审会由中航工业科技与信息化部主持召开。专家组认真听取了重点实验室的设立申请报告,考察了实验室现场,一致通过了该实验室的设立申请。  红外探测器技术是导弹院的一个重要研究领域。多年来,导弹院重视红外探测器技术的发展,于2005年成立了院级重点实验室,在科学研究、手段建设、人才培养等方面取得了长足的进步,部分研究领域走在国内前列,开发出30多种各类短波、中波、长波红外探测器,获得多项国家级、省部级科技成果奖,发表高质量论文90多篇,申请国家或国防发明专利40多项。  红外探测器是各类红外仪器设备的“眼睛”,广泛应用于众多的民用和军事领域。该实验室的成立,搭建了开放的红外探测器技术研究平台,必将进一步加强国内外同行的合作与交流,促进该领域的科学研究、人才培养,进而促进我国红外探测器技术的发展。
  • WidePIX光子计数X射线探测器-高探测效率、高分辨率工业相机
    通过开发一系列X射线光子计数型HPC探测器,来自捷克的ADVACAM团队积累了大量科研及工业领域的应用经验。探索的脚步从未停止,通过不断开发新的成像解决方案,ADVACAM探测器的能力得到不断提升。例如,WidePIX系列探测器就很好的展现了团队的创新能力。新一代的widepix探测器可广泛用于各行各业,包括矿物分析、临床前医学测试、安检、食品检测、艺术品检测等。WidePIX F:世界上最快的高分辨率工业相机基于光子计数技术,WidePIX F光谱相机拥有颠覆性的X射线成像技术,是目前处于世界领先级别的高性能工业相机。它进一步优化、提升了快速移动物体的扫描能力,是进行矿物分析,矿石分选到食品检测,临床前医学,安检或任何带有传送带系统应用的理想工具。分辨率:55微米-比目前采矿作业中常规使用的系统高20倍。探测速度:高达5米/秒 -食品检查的标准速度约为20厘米/秒,这意味着在同样的时间内,WidePIX F可以比常规方案多扫描25倍的材料。颜色/材料灵敏度:提高灵敏度对于矿石分选至关重要,请参考以下应用。MinningWidePIX可直接观察到矿石的内部结构并区分有价值的矿石和废石。使用WidePIX高分辨成像探测器,矿石通常呈现出微粒或脉络状的典型结构。由于该探测器具有多光谱高灵敏度的特性,可以通过图像中采集到的不同颜色来区分各类矿石。欧洲X-MINE项目Advacam为欧洲采矿项目X-MINE定制光子计数型X射线探测器WidePIX 1X30的结果表明,WidePIX探测器甚至可以分选铜矿石,这是传统的成像系统无法实现的。MedicineWidePIX L探测器还可用于非侵入式医学成像。例如,我们可以制作活体小老鼠的实时X射线影像,观察心跳,所有行为不会对小动物造成任何伤害。Others超快WidePIX探测器,可以在设备保持高速运行的同时(例如发动机,涡轮机等),对快速移动的物体进行X射线检测。Advacam可提供不同规格尺寸的光子计数型X射线探测器,其产品线包括WidePIX系列、MiniPIX系列及AdvaPIX系列,除标准尺寸外也可根据需求定制。相关产品阅读:最新到货—超高性价比教育版辐射粒子探测器MiniPIX EDU来咯!Advacam新品|Widepix 2(1)x10-MPX3探测器:双读出网口,170帧/sADVACAM再添新成员,MiniPIX TPIX3即将面世!ADVACAM辐射检测相机 -应用于粒子追迹Advacam同NASA(美国航空航天局)及ESA(欧洲航空航天局)保持很好的项目合作关系, 其产品及方案也应用于航空航天领域。目前Advacam已将其探测器应用到了多个项目中。相关应用案例:探寻宇宙奥秘的脚步从未停歇,ADVACAM参与研发项目合辑 关于Advacam公司最新合作项目:搭载Minipix探测器,可搜寻辐射的辐射探测无人机使用Widepix 1x5 MPX3 CdTe探测器进行X射线谱学成像Minipix探测器用于NASA未来项目辐射剂量监测
  • 测温仪背后的故事——红外探测器
    一场突如其来的新冠肺炎疫情,成为了2020开年的头等大事。全民防疫的举措让这场没有硝烟的战争不再猝不及防。飞机场、火车站、公司、小区、超市等入口处都能见到防疫工作者的身影。他们是防疫先锋,是公共健康的卫士,是居民区的守护者。而他们的必备神器之一——手持测温仪,也进入了公众的视野,广为人知。今天,我们就来聊一聊测温仪的那些事。受疫情影响,很多人在家办公,出门不是去超市买菜,就是门口取快递。当然,还有不少人在硬核上班。无论出入小区,还是车站进站,现阶段都要经过体温检测。相信大家都有经历过,防疫工作者手持测温仪,对着额头一扫,立刻就显示你的体温数据,非常方便。有很多人对这测温仪都深感好奇,想知道它是怎么工作的。也有人担心它的准确性,担心把自己体温测高了。那么,我们就从测温仪的原理和精确度控制这两点说起。首先,大家都熟悉传统体温计测温的方法,而这种方法显然不适合用于传染性强的新型冠状病毒的防护工作。在这次防疫战中,小巧便携,无需身体接触的手持测温仪就成了急先锋。扫一扫,一秒之内测出体温的测温神器让人们眼前一亮;更令人印象深刻的,还有车站、机场等带有视频的成像测温仪,后者能在快速行进的人流中,辨别每个人的体温,并用保存视频成像。相信你肯定好奇过它们究竟是怎么做到的。接着,我们来一探究竟其中的科学原理。[1] 地铁站检票口的体温监测站(图片摘自人民网)温度和光我们都知道,水银体温计能够测人体的温度,是水银玻璃泡和人体接触后,经过一段时间的热量传递,最终与人体温度达到一致的原理(热平衡)。而测温仪并没有和人体接触,为何能如此快速采集温度信息呢?[2] 水银温度计(图片摘自百度网)答案其实大家也是耳熟能详,那就是---光!没错,就是我们所熟知的那个光!但是这个光,并不是人眼能看到的可见光,而是与可见光相邻的红外光,这里需要科普一下,我们平时所说的可见光实际上是电磁波的一种,电磁波有连续的波谱分布,红外光的波段在红色光之外,因此得名红外光。再简单提一下,除了可见光和红外光,很多电磁波都与大家的生活息息相关,按波长由短到长,有医院CT的X射线,防晒霜防的紫外线,太阳光,灯光,微波炉的微波,电台的射频信号等等,都属于电磁波。[3] 生活中的电磁波(图片摘自NASA Science)说到这里,肯定有人表示,道理我都懂,但是红外光跟人体温度有什么关联呢?关联是必然的,因为人体发射的光,就是红外光!没说错,人体是发光的,而且是无时无刻的在发光。复杂的原理就不赘述了,大家只要记住,任何温度高于绝对零度(零下273.15摄氏度)的物体都会以电磁波的形式向外辐射能量,至于绝对零度(-273.15℃)的物体嘛,大家放心,那是不存在的!红外光和人体温度的关系那么问题来了,既然每人每时每刻都在发射红外光,仪器凭什么就能辨别出正常温度和高烧呢?还能准确读出每个人的温度?这里,我们请一位大佬帮忙解答,他就是与爱因斯坦并称20世纪最重要的两大物理学家,量子力学奠基人之一的马克斯普朗克,他于1900年提出的普朗克黑体辐射定律,完美诠释了温度与辐射的关系。马克斯普朗克简单来讲就是,不同温度的物体发射的光是不一样的,如下示意图, 四条不同的曲线,代表不同温度下黑体辐射的光谱分布,这里的K是热力学温度,数值等于摄氏度+273.15。大家可以看到,温度越高,黑体辐射光的强度就越大,峰值的位置就越靠近紫外区域。那么,答案就呼之欲出了,如果探测到了人体的辐射强度和波谱分布,就完全可以反推出温度T!这就是测温仪测体温的原理。(人体虽不是黑体,却也遵循普朗克定律)。利用红外光探测人体温度究竟准不准?说完测温仪原理的故事,我们再来说说怎么确保每个测温仪都能测得准。上文中,细心的小伙伴发现,普朗克定律图示并没有想象中那么简单,图中展示差异性的谱图都相差了1000℃,人体怎么可能差上1000℃呢?没错,我们人体的温度平均值也就在36℃到37℃之间了,高过37℃的,抗疫期间怕是要去隔离观察了。那么关键点来了,相差几摄氏度的人体辐射谱图中,辐射强度和波谱的差异是非常小的,如何确保测温仪能把握这细小的差异呢?要知道,人体测温的准确性要求是比较高的,特别是在抗疫期间,正常的体温就是大家的通行证。这点上,咱们国家更是不含糊,对于此类测温装置也出台了相应的国家标准来规定精准度。那么,生产厂家是如何确保每台测温仪的准确性呢?下面就让我们来剖析测温仪,探究这里的科学原理。测温仪的"CPU"是什么?我们先从测温仪的构成说起,可以看到下图中,真正与红外光直接相关的,便是红外探测器,顾名思义,这正是测温仪利用红外测温的核心元件,就好比CPU芯片是手机电脑的核心。而它的质量直接决定了测温的准确性。那么,如何判定红外探测器的质量呢?[4] 额温枪(图片摘自网络)这就需要了解红外探测器测红外的细节。简单来说,红外探测器也是由材料构成,红外探测器上的特殊光感材料可以接收外界的红外辐射,并将其转换为电信号,再进行分析计算,最终给出温度值。因此评价红外探测器的好坏,就是评判其将光转换为电信号的能力。在讲红外探测器的评价之前,我们插一句,火车站,机场中带成像系统的测温仪,采用的是更高端的焦平面阵列红外探测器(FPA技术)。[5] 设置在火车站的带成像系统的测温仪(图片摘自包头新闻网)这类成像测温仪就如同照相机或摄像仪,内部感光平面内,分布了很多像素点,焦平面上每一个像素点就是一个红外探测器,这种技术具有二维空间分辨的能力,具备红外成像功能,可以将发高烧的人从人群中辨别出来。如何评价红外探测器,确保其准确性?一般来说,无论是采用单点红外检测器的耳温枪还是FPA焦平面检测器的红外成像测温仪都不需要极快的反应时间或极高的空间分辨率,甚至无需光谱分辨率。所以这类红外检测器的精确度通常是采用激光功率计或热敏电阻等方法来评定的。但是,类似原理的红外探测器还有很多其他的应用领域,尤其是需要FPA焦平面检测器的红外成像仪已经被广泛的应用于军需夜视或热追踪系统、高速热成像、质检或产品研发(针对散热或热工特性)、医疗热成像及红外显微镜等诸多方面。这些应用领域对红外检测器件本身以及对由这些器件组成的测量仪器的性能都有更严苛的要求,比如,需要微秒甚至纳秒级的超短反应时间,需要光谱信息用于化学成像,需要较高的空间分辨率以表征微小物品,需要较高的光谱分辨率,最佳的灵敏度和信噪比,甚至对FPA检测器中每个像素点的均匀一致性都有要求。为了研制和开发这些高端的红外检测器件,科学家们需要用到一种重要的表征方法---傅立叶红外光谱法。实现该法的核心设备就是在科学研究、监测分析领域常见的傅立叶红外光谱仪(简称FTIR红外光谱仪)。FTIR红外光谱仪——表征红外探测器FTIR红外光谱仪是专门应用于红外光谱研究相关的科学仪器,配有标准的红外光源,所发射的红外光经过干涉仪后,经过照射样品,最终到达红外探测器,解析探测器的电信号,并进行FT转换计算,即可得到包含能量强度和波谱分布的红外谱图。科学家们就是把这种检测技术应用到了评价红外探测器材料好坏的研究中,在对光敏度、稳定性等等复杂的研究分析之后,才研发出适合于各种不同应用领域的红外探测器材料,进而工厂将其研究的材料转化为探测器并且大量生产而成为真正实用的商品(包括红外测温仪及其他更为复杂的尖端仪器),发挥了科学家研究的作用。换言之,红外光谱仪对于探测器的表征研究,就好比是一把精准的卡尺,用它来检验每一根直尺的长度是否达到科学家们想要实现的标准。傅立叶变换红外光谱仪以上就是测温仪背后故事的小科普,相信大家对于最近很亮眼的测温仪会有更进一步的了解,对红外探测器精确度的控制以及红外探测器的诸多应用领域也有了更深层次的认知。通过科学家们的努力,和我们生活息息相关的大型红外成像测温仪的准确度、检测能力、检测距离、检出速度和检测区域内的均匀性(即精准度)都会越来越好。所谓工欲善其事必先利其器,实际上并不是所有的红外光谱仪都能做红外探测器的研究与表征,能作为标尺的设备,当然只有技术过硬,具备特殊技能红外光谱仪才能实现!如果您对检测器表征科研课题感兴趣,可以阅读布鲁克的相关应用信息。如果您对红外整体技术感兴趣,长按下方二维码填写产品需求信息表,与我们取得联系。疫情期间,大家做好防护,注意安全。一起为祖国加油!为武汉加油!点击下载布鲁克应用手册——红外检测器表征如果您对我们的红外技术感兴趣,欢迎与我们取得联系,请拨打400热线电话400-777-2600。
  • Timepix3 |易于集成的多功能直接探测电子探测器
    混合像素探测器技术最初是为了满足欧洲核子中心-CERN大型强子对撞机LHC的粒子跟踪需求而开发的。来自欧洲核子中心-CERN 和一些外部合作小组的研究人员看到了将混合像素探测器技术转移到高能物理领域以外的应用的机会。于是Medipix1 Collaboration 诞生了。Medipix系列是由Medipix Collaborations 开发的一系列用于粒子成像和检测的像素探测器读出芯片。Timepix系列是从 Medipix系列开发演变而来的。其中Timepix芯片更针对于单个粒子的探测以获得时间、轨迹、能量等信息。 目前基于Timepix和Timepix3的探测器,由于其单电子灵敏、高动态范围及独特的事件驱动模式被广泛地应用于电子背散射(EBSD),4维电子显微(4D SEM)等领域。捷克Advacam公司是一家涵盖传感器制造、微电子封装、混合像素探测器(Timepix,Medipix)及解决方案的全产业链公司,致力于为工业和学术需求开发成像解决方案。ADVAPIX TPX3F与 MINIPIX TPX3F系列是基于Timepix3芯片的多功能探测器,其探测器与读出采用软排线连接,整个设计非常小巧,性价比高,非常适用于电子显微镜厂家将其二次开发并集成到现有系统中,以提升系统性能。▲ MINIPIX TPX3F探测器实物展示▲ ADVAPIX TPX3F探测器实物展示▲ 使用MINIPIX TPX3F探测器鉴别电子、质子,Alpha粒子及μ介子ADVAPIX TPX3F与MINIPIX TPX3F主要规格参数MINIPIX TPX3FADVAPIX TPX3F芯片类型Timepix3像素尺寸55 x 55 μm分辨率256 x 256 pixels传感器100µm,300µm,500µm硅,1mm CdTe 暗噪声无暗噪声接口高速USB 2.0超高速USB 3.0事件驱动模式最大读出速度*2.35 x 10^6 hits/s40 x 10^6 hits / s帧模式速率16fps30fps事件时间分辨能力1.6ns1.6ns*受限于Flex软排线实际长度测量模式类型模式范围描述帧读出模式(曝光后读出所有像素信息)Event+iToT10 bit + 14 bit每次曝光输出两帧数据:1. Events:每个像素中的事件数量2. iToT:每个像素中所有事件的过阈总时间iToT14 bit输出一帧:每个像素中所有事件的过阈总时间ToA18 bit输出一帧:ToA+FToA3 =第一个到达像素事件的到达时间像素/事件驱动模式(在曝光过程中,连续读出被击中像素信息)ToT+ToA10 bit + 18 bit每个像素的每个事件可同时获得: Position, ToT, ToA and FToAToA18 bit每个像素的每个事件可同时获得: Position, ToA and FToA.Only ToT10 bit每个像素的每个事件可同时获得: Position and ToTADVAPIX TPX3F与MINIPIX TPX3F像素/事件驱动模式最大读出速率测试:主要特点单电子灵敏零噪声耐辐射高动态范围无读出死时间主要应用(4D)STEM in SEM/TEMµED(microelectron diffraction)EBSDEELSPtychography应用案例ThermoScientific' s™ Helios™ 5 UX DualBeam采用了Advacam的探测技术新一代 Thermo Scientific Helios 5 DualBeam 具有 Helios DualBeam 产品系列领先业界的高性能成像和分析性能。经过精心设计,它可满足材料科学研究人员和工程师对各种聚焦离子束扫描电子显微镜 (FIB-SEM) 的需求—即使是最具挑战性的样品。 Helios 5 DualBeam 重新定义了高分辨率成像的标准:高材料对比度、快速、简单和精确的高质量样品制备(用于 S/TEM 成像和原子探针断层扫描 (APT))以及高质量的亚表面和3D 表征。新一代 Helios 5 DualBeam 在 Helios DualBeam 系列成熟功能的基础上改进优化,旨在确保系统于手动或自动工作流程下的最佳运行状态。参考发表文章Jannis, Daen, et al. "Event driven 4D STEM acquisition with a Timepix3 detector: microsecond dwell time and faster scans for high precision and low dose applications." Ultramicroscopy 233 (2022): 113423.Foden, Alex, Alessandro Previero, and Thomas Benjamin Britton. "Advances in electron backscatter diffraction." arXiv preprint arXiv:1908.04860 (2019).Gohl, S., and F. Němec. "A New Method for Separation of Electrons and Protons in a Space Radiation Field Developed for a Timepix3 Based Radiation Monitor."Mingard, K. P., et al. "Practical application of direct electron detectors to EBSD mapping in 2D and 3D." Ultramicroscopy 184 (2018): 242-251.ADVACAMAdvacam S.R.O.源自捷克技术大学实验及应用物理研究所,致力在多学科交叉业务领域提供硅传感器制造、微电子封装、辐射成像相机和X射线成像解决方案。Advacam最核心的技术特点是其X射线探测器(应用Timepix芯片)、没有拼接缝隙(No Gap),因此在无损检测、生物医学、地质采矿、艺术及中子成像方面有极其突出的表现。Advacam同NASA(美国航空航天局)及ESA(欧洲航空航天局)保持很好的项目合作关系, 其产品及方案也应用于航空航天领域。北京众星联恒科技有限公司作为捷克Advacam公司在中国区的总代理,也在积极探索和推广光子计数X射线探测技术在中国市场的应用,目前已有众多客户将Minipix、Advapix和Widepix成功应用于空间辐射探测、X射线小角散射、X射线光谱学、X射线应力分析和X射线能谱成像等领域。同时我们也在国内有数台Minipix样机,Widepix 1*5 CdTe的样机可免费借用,我们也非常期待对我们探测器感兴趣或基于探测器应用有新的idea的老师联系我们,我们可以一起尝试做更多的事情。
  • 帕克太阳探测器发射升空 开启历时7年的逐日之旅
    p style="text-align: justify " 美东时间8月12日凌晨3时31分,帕克太阳探测器由美国联合发射联盟的Delta-4重型火箭于佛罗里达州卡纳维拉尔角空军基地成功发射升空,开启历时7年的逐日之旅。这将是人造航天器首次抵达恒星大气层。/pp/pp style="text-align: center "img src="http://img1.17img.cn/17img/images/201808/insimg/95d0d2d7-10a6-4050-935a-4843bcc1cd83.jpg" title="7Jaj-hhqtawx6152749.jpg"//pp style="text-align: justify "帕克太阳探测器将是人类首次抵达恒星大气层,也是目前人类唯一可以接近的恒星。/pp style="text-align: justify " 美国宇航局消息,Delta-4重型火箭载着帕克太阳探测器于当日成功发射升空。美国宇航局的这颗耗资15亿美元的航天器将成为有史以来距离太阳最近、速度最快的太空探测器。美国宇航局科学任务理事会副主任托马斯· 佐伯琴(Thomas Zurbuchen)表示,这一任务标志着人类首次探访太阳系中的大明星。/pp style="text-align: justify " 帕克太阳探测器预计于2018年11月1日第一次抵达近日点,执行首个探日任务。届时它将飞抵距太阳光球层1500万英里处。科学家最快于12月可收到第一批“太阳信息”。探测器的最后一次探日任务预计于2025年6月执行。这是探测器第24次飞抵近日点,也是该任务最接近太阳的一刻,届时与太阳光球层的距离约600万千米。/pp style="text-align: justify " 帕克太阳探测器任务旨在追踪能量和热量如何通过日冕,探索加速太阳风和太阳能粒子的作用。它携带了四组仪器,可测量电场、磁场,探测太阳风的成分,并拍摄日冕图景。/pp style="text-align: justify " 据《纽约时报》报道,帕克太阳探测器将打破人类有史以来飞行速度最快、最耐高温的人造航天器的纪录。/pp style="text-align: justify " 一方面为接近太阳,科学家将航天器的速度提升至最高速度达每小时50万英里,相当于只需不到一分钟的时间可从芝加哥到北京。另一方面,科学家设计出抵挡高温的隔热罩。它是一块直径2.3米,厚度为11.43厘米的碳-碳复合材料隔热罩,表面附有陶瓷涂层,内部充满碳结构,能将大部分太阳光反射回去。它像一块盾牌,保护着背面的探测器免受太阳高温的辐照加热,并将其温度控制在85华氏度。/pp style="text-align: justify " 在太阳日冕层内,温度最高达到2500华氏度。这是钢的熔化温度。60多年来,科学家一直在寻找如何让航天器不受太阳炙烤的答案。今天,随着热工程技术进步,才有可能实现这趟旅程。目前,距离太阳最近的探测器纪录由20世纪70年代发射的德国太阳神2号探测器保持,距太阳约2700英里。/pp style="text-align: justify " 值得一提的是,这是首个以健在的人物命名的太空任务。现代太阳风和磁重联理论的奠基人、美国科学院院士尤金· 帕克(Eugene Parker)于1958年首次预测太阳风的存在。此次任务将证实帕克的预言。当日,91岁的帕克在空军基地现场观看了发射全程。火箭升空后,他在美国宇航局广播中说:“(这趟旅途)终于开始了!”/pp style="text-align: justify " 此外,帕克太阳探测器贴上了一块铭牌和一枚芯片。铭牌上写着:献给专注于研究太阳和太阳风的尤金· 帕克博士,他的贡献彻底改变了我们对太阳和太阳风的认识。芯片上存储了超过110万公众的名字,将与探测器一起开启逐日之旅。/ppbr//p
  • 研究人员在二维材料光电探测器研究方面取得新进展
    光电探测器的原理是由辐射引起被照射材料电导率发生改变。光电探测器的工作原理是基于光电效应,热探测器基于材料吸收了光辐射能量后温度升高,从而改变了它的电学性能,它区别于光子探测器的最大特点是对光辐射的波长无选择性。   为了提高传输效率并且无畸变地变换光电信号,光电探测器不仅要和被测信号、光学系统相匹配,而且要和后续的电子线路在特性和工作参数上相匹配,使每个相互连接的器件都处于最佳的工作状态。   具有宽带探测能力的光电探测器在我们日常生活的许多领域中发挥着重要作用,并已广泛应用于成像、光纤通信、夜视等领域。迄今为止,基于传统材料的光电探测器如:GaN 、Si 和 InGaAs占据着从紫外到近红外区域的光电探测器市场。   然而,相关材料复杂的生长过程和高昂的制造成本阻碍了这些探测器的进一步发展。为了应对这些挑战,人们一直在努力开发具有可调带隙、强光-物质相互作用且易于集成的二维材料光电探测器。   如今,许多二维材料如石墨烯、黑磷和碲等已经表现出优异的宽带光探测能力。尽管如此,目前基于二维材料的高性能宽带光电探测器数量仍然有限,特别是许多基于二维材料的光电探测器虽然表现出较高的光响应度和探测率,但响应速度较慢,这可能归因于其较长的载流子寿命,这种较低的响应速度限制了二维光电探测器的实际应用。   最近,石墨烯、黑磷和部分过渡金属二硫属化物(TMDs)范德华异质结器件已经展现出二维材料在高速宽带光电探测领域的潜力。然而,石墨烯是一种零带隙材料,黑磷在环境条件下并不稳定,TMDs异质结的制造工艺相对复杂,这些问题同样限制了这些材料在光电探测领域的应用。   鉴于此,中科院合肥研究院固体所纳米材料与器件技术研究部李广海研究员课题组李亮研究员与香港理工大学应用物理系严锋教授合作,开发了一种基于层状三元碲化物InSiTe3的光电探测器,合成出高质量的InSiTe3晶体,并通过拉曼光谱分析了其拉曼振动模式。InSiTe3的间接带隙可以从1.30 eV(单层)调节到0.78 eV(体块)。   此外,基于InSiTe3的光电探测器表现出从紫外到近红外光通信区域(365-1310 nm)的超快光响应(545-576 ns),最高探测率达到7.59×109 Jones。这些出色的性能价值凸显了基于层状InSiTe3的光电探测器在高速宽带光电探测中的潜力。   论文第一作者为纳米材料与器件技术研究部博士生陈家旺。该工作得到了国家自然科学基金、安徽省领军人才团队项目、安徽省自然科学基金、安徽省先进激光技术实验室开放基金和香港理工大学基金的支持。
  • Science:具有超过500吉赫兹带宽的超材料石墨烯光电探测器
    01. 导读石墨烯已经实现了许多最初预测的特性,并且正朝着市场迈进。然而,尽管预测的市场影响巨大,基于石墨烯的高性能电子和光子学仍然落后。尽管如此,已经报道了一些令人印象深刻的光电子器件演示,涉及调制器、混频器和光电探测器(PDs),特别是利用石墨烯的高载流子迁移率、可调电学特性和相对容易集成的石墨烯光电探测器已经得到了证明,例如展示了利用光增益效应的高响应度或超过100 GHz的带宽。从紫外线到远红外线之间,尽管石墨烯几乎具有均匀吸收特性,但其相对低的吸收率约为2.3%,这是其中一个主要挑战。因此,大多数速度最快、性能最佳的探测器都是在硅或硅化物等光子集成电路(PIC)平台上进行演示的。通过石墨烯的电场的平行传播,可以提供更长的相互作用长度,从而增加吸收率。通过使用等离子体增强技术,甚至可以实现更短和更敏感的探测器。尽管在光子集成电路上使用石墨烯已经展示了多种功能应用,但光子集成电路的整合也有其代价。光子集成电路的整合限制了可访问的波长范围,无论是由于波导材料(如Si)的透明度限制,还是由于集成光学电路元件(如光栅耦合器、分光器等)的有限带宽。此外,光子集成电路的整合对偏振依赖性和占地面积都有一定的限制,这是由于访问波导的原因。光子集成电路的模式和等离子体增强也意味着所有光线只与石墨烯的一个非常有限的体积相互作用,导致早期饱和的发生,有效地将最大可提取的光电流限制在微安级别。作为一种替代方案,可以直接从自由空间垂直照射石墨烯。这种方法可以充分利用石墨烯的光电检测能力,而不会受到所选择光子平台的限制。然而,这需要一种结构来有效增强石墨烯的吸收。此外,由于器件尺寸较大,对整体器件几何结构和接触方案的额外考虑更加关键。尽管如此,已经证明即使是与自由空间耦合的石墨烯探测器也可以达到超过40 GHz的带宽。由于没有光子集成电路的一些约束,整体效率不会受到耦合方案的影响,而且其他属性,如不同波长和偏振,现在也可以自由访问。例如,最近利用任意偏振方向来演示了中红外区域的极化解析检测中的定向光电流。石墨烯提供了多种物理检测效应:与传统的光电探测器(如PIN光电二极管或玻璃热计)只使用一种特定的检测机制不同,石墨烯探测器具有多种不同的检测机制,例如基于载流子的机制[光电导(PC)和光伏(PV)],热机制[玻璃热(BOL)和光热电(PTE)],或者增益介质辅助的机制。最近的器件演示已经朝着光热电复合操作的方向推进,以克服依赖偏置检测机制时的高暗电流问题。对石墨烯的时间分辨光谱测量表明,载流子动力学可以实现超过300 GHz的热和基于载流子的石墨烯光电探测器。对于设计高速、高效的石墨烯光电探测器来说,目前仍不清楚哪种直接检测机制(PV、PC、BOL或PTE)可以实现最高的带宽,并且这些效应中的许多效应可以同时存在于一个器件中,使得专门的设计变得困难。02. 成果掠影鉴于此,瑞士苏黎世联邦理工学院电磁场研究所Stefan M. Koepfli报道了一种零偏置的石墨烯光电探测器,其电光带宽超过500 GHz。我们的器件在环境条件下可以覆盖超过200 nm的大波长范围,并可适应各种不同的中心波长,从小于1400 nm到大于4200 nm。材料完美吸收层提供共振增强效应,同时充当电接触,并引入P-N掺杂,实现高效快速的载流子提取。光可以通过标准单模光纤直接耦合到探测器上。直接的自由空间耦合使光功率可以分布,导致高于100 mW的饱和功率和超过1 W的损伤阈值。该探测器已经经过高速操作测试,最高速率可达132 Gbit/s,采用两电平脉冲幅度调制格式(PAM-2)。多层结构几乎可以独立于基底进行加工处理,为成本效益高的技术奠定了基础,该技术可以实现与电子器件的紧密单片集成。我们进一步展示了该方法的多样性,通过调整超材料的几何形状,使其在中红外波长范围内工作,从而在原本缺乏此类探测器的范围内提供高速和成本效益高的探测器。因此,这种新型传感器为通信和感知应用提供了机会。相关研究成果以“Metamaterial graphene photodetector with bandwidth exceeding 500 gigahertz”为题,发表在顶级期刊《Science》上。03. 核心创新点本文的核心创新点包括:1. 基于图形石墨烯的光电探测器:本文提出了一种利用单层石墨烯的光电探测器。与传统的光电二极管或波尔计可以利用一种特定的探测机制不同,图形石墨烯探测器具有多种不同的探测机制,包括载流子机制、热机制和增益介质辅助机制。2. 电光带宽:本文展示了具有大于500 GHz的电光带宽的图形石墨烯探测器。这意味着该探测器能够高速响应光信号,适用于高速通信和数据传输。3. 多波段操作和宽光谱范围:图形石墨烯探测器能够在多个波段上工作,并且具有超过200 nm的宽光谱范围。这使得该探测器在通信和传感等领域具有广泛的应用潜力。4. 自由空间耦合和紧凑集成:本文展示了通过自由空间耦合的方式将光信号直接耦合到探测器中,避免了光子集成电路中的限制,并且实现了紧凑的集成。这使得探测器具有更好的灵活性和可扩展性。5. 高饱和功率和低压操作:图形石墨烯探测器具有高饱和功率,能够抵消响应度的影响。此外,它还能在低电压范围内进行操作,与CMOS技术兼容,使得探测器具有更低的功耗和更好的性能。04. 数据概览图1. 间隔式石墨烯超材料光电探测器的艺术视角。(A)从顶部直接通过单模光纤照射器件的艺术化表现。(B)器件结构的可视化。光电探测器由金反射层背板、氧化铝间隔层、单层石墨烯和相连的偶极子谐振器组成。金属线具有交替的接触金属,由银或金制成。然后,该结构由氧化铝钝化层封顶。图2. 制备的器件和模拟的光学和电子行为。(A至D)所提出的超材料石墨烯光电探测器(钝化前)的扫描电子显微图,放大倍数不同。显微图展示了从电信号线到活动区域再到谐振器元件的器件结构。在(D)中显示了四个单元格(每个单元格大小为1 mm × 1 mm),位于x和y坐标系中。比例尺分别为50mm(A),5 mm(B)和1 mm(C)。(E至G)同一单元格的模拟光学和静电行为。图(E)中展示了电磁场分布下的偶极子天线行为,图(F)中展示了相应的吸收分布。大部分吸收都集中在偶极子谐振器附近。图(G)中展示的模拟接触金属引起的电势偏移显示了由于交替接触金属而引起的P-N掺杂。沿着每种模拟类型((E)至(G))的中心线(y = 1000 nm)的横截面位于每个面板的底部,显示光学信号和掺杂在接触区域附近最强。图3. 用于电信波长的器件性能。(A)用光学显微镜拍摄的器件在与电子探针接触时的顶视图(顶部)和侧视图(底部)图像。图像显示了与单模光纤的直接光学耦合。DC表示直流,RF表示射频。(B)归一化的光电响应随照射波长变化的曲线图,显示了共振增强和宽带工作。FWHM表示半峰全宽。(C)光输入功率变化范围内提取的光电流,范围跨越了五个数量级(黑线)。蓝线对应于器件上的光功率(Int.),而黑线对应于单模光纤输出的功率(Ext.)。响应度分别为Rext = 0.75 mA/W和Rint = 1.57 mA/W。(D)石墨烯光电探测器在2至500 GHz范围内的归一化频率响应。测量结果显示平坦的响应,没有滚降行为。WR代表波导矩形。(E)不同射频音调下的归一化射频响应随栅压的变化。发现理想的栅压在-2.5 ±1 V附近,使得响应平坦,这对应于轻微的P掺杂,可以从底部的电阻曲线中看出。电阻曲线进一步显示靠近0 V的狄拉克点和非常小的滞后行为(在图S2中进一步可视化)。(F)测量栅电压范围的相应模拟电势剖面,显示了理想的栅电压(以红色突出显示),对应于两个接触电平中心处的掺杂。图4. 光谱可调性和多共振结构。(A至C)模拟(A)和测量(B)不同元件共振器长度的光谱吸收,展示了元件结构的可调性。图中给出了四个示例的极化无关设计的扫描电子显微镜图像(C),其中颜色对应于(A)中所示的共振器长度刻度。比例尺为1 mm。(D至G)多共振器件的概念。(D)针对1550和2715 nm的双共振器件的扫描电子显微镜图像。顶部比例尺为1 mm,底部比例尺为5 mm。(E)相应的电场模拟,使用3个单元单元格乘以2个单元单元格的双共振器件,激发波长分别为1550和2715 nm,显示了两个不同尺寸共振器的清晰偶极子行为。(F)器件上的光电流与光功率的关系图和(G)两个波长的测量响应度与电压的关系图。05. 成果启示我们展示的2 GHz至500 GHz以上的电光带宽光电探测器与传统的PIN光电探测器技术和单向载流子光电二极管相媲美。垂直入射的元件结构图形PD在单个器件中充分发挥了图形的预期优势。从概念上讲,该探测器的性能利用了元件吸收增强、通过图形-金属接触掺杂的内置电场、通过静电门实现的良好控制的工作点以及化学气相沉积生长的图形的有效封装。探测器依赖于相对简单的金属-绝缘体-图形-金属-绝缘体的层状结构,这种结构潜在地可以在几乎任何衬底上进行后处理,并支持与现有结构的高度密集的单片集成,类似于等离子体调制器的示例。与大多数先前关于图形探测器的工作不同,我们展示了在无冷却条件下的空气稳定操作,使用了与互补金属氧化物半导体(CMOS)兼容的低电压范围的栅压,这是由于直接生长的封装层结构与底部绝缘体设计的结合效果所致。通过这些器件,我们展示了132 Gbit/s的数据传输速率,这是迄今为止已知的最高速度的图形数据传输速率。高饱和功率使得高速检测成为可能。在受到射击噪声限制的通信系统中,高饱和功率可以抵消适度的响应度,因为信噪比与响应度和输入功率成正比。此外,适度的响应度可以改善。以前的自由空间照明的图形光电探测器依赖于载流子倍增或基于剥离的多层图形而达到了更高的响应度,而没有任何光学增强。因此,还有很大的空间来共同努力进一步完善这个概念,改进制造工艺,并实现更高质量的图形材料。这些努力很可能会导致新一代的基于图形的探测器,具有足够的响应度。最后,大于500 GHz的高带宽和图形的波长无关吸收使得探测器可以在从1400 nm到4200 nm及更远的范围内的任何波长上工作。这对于传感和通信都是相关的。例如,在电信领域,持续增长的数据需求导致了对新通信频段的强烈需求。这种具有紧凑尺寸和与CMOS集成能力的新型探测器可能能够满足当前迫切需求。原文详情:Metamaterial graphene photodetector with bandwidth exceeding 500 gigahertzStefan M. Koepfli, Michael Baumann, Yesim Koyaz, Robin Gadola, Arif Gngr, Killian Keller, Yannik Horst, ShadiNashashibi, Raphael Schwanninger, Michael Doderer, Elias Passerini, Yuriy Fedoryshyn, and Juerg Leuthold.Science, 380 (6650), DOI: 10.1126/science.adg801
  • “完美的探测器设计” :探索正反物质差异有了灵敏探针
    北京正负电子对撞机上的北京谱仪III(BESIII)实验实现了一种全新方法,为研究物质和反物质之间的差异提供了极其灵敏的探针。6月2日,相关研究成果刊发于《自然》杂志。  论文所有匿名评审都对这一成果大加赞赏:“创新的测量方法”“很重要”“很新颖”“吸引人”“非常有前景”… … 到底是什么成果,竟让匿名评审们如此兴奋?  不好好“组CP”的反物质  “正反物质不对称性”是困扰科学界半个多世纪的问题,也是粒子物理学家一直在寻找的现象。他们常会提到一个词——“CP破坏”。  “CP破坏”里的“CP”,和我们平时常说的“组CP”里的“CP”(情侣档)并不是一码事。  130亿年前,宇宙在发生大爆炸之后迅速膨胀、冷却,大量正反粒子彼此结合、湮没。然而,就像闹了别扭的情侣一样,正反粒子在结合湮没的过程中,行为出现了一些不同。每十亿个正反粒子湮没的过程中,就有一个正物质粒子被留了下来,并最终组成了当今宇宙中所有的物质。  科学家将正粒子和反粒子衰变过程不一样的现象,称为“CP破坏”。  “CP破坏”的名字与李政道、杨振宁密切相关。他们提出并获得诺贝尔物理学奖的“宇称不守恒定律”认为,粒子的弱相互作用中存在“镜像”空间反射不对称性。  在此基础上,科学家总结出了“CP破坏”。“CP破坏现象可以用来解释为什么我们的世界中只有正物质,没有反物质。”中国科学院高能物理研究所所长、中国科学院院士王贻芳告诉《中国科学报》。  宇宙原初反物质为何消失?  超子CP破坏有望解谜  自上个世纪60年代以来,国外科学家已经相继在介子系统中发现了CP破坏。可是,正反物质的不对称性并没有因此得到完美解释。  “在构成世界的主要粒子中,介子数量很少,介子衰变时多出来的正物质并不足以形成现在的世界。”王贻芳说。  与数量稀少的介子不同,重子是构成世界的主要粒子。“如果能在重子中找到CP破坏,我们就能够更好地理解宇宙原初反物质消失之谜。”王贻芳说。  遗憾的是,科学家从未在重子衰变中发现过CP破坏,原因在于“弱衰变信号有时会被强相互作用掩盖”。“所以要想看到重子的CP破坏,就需要有足够高灵敏度和创新性的实验方法,把弱相互作用与强相互作用的信号区分开来。”王贻芳说。  超子是重子中的一种,类似于质子,但寿命很短,因此不像质子那样可以存在于我们身边。在超子中,有一个名叫“科西超子”的成员,由两个奇异夸克和一个轻夸克组成,当奇异夸克发生弱衰变时,它便消失了。  超子衰变被科学家视为“寻找CP破坏的一个很有希望的狩猎场”,因为测量CP破坏时需要的一些信息可以通过超子的衰变直接测量。  发现了高精度测量方法  从2009年起,BESIII实验从正负电子对撞出的“碎片”中,收集到了约100亿J/psi粒子。这种名叫“J/psi”的粒子会衰变产生正—反科西超子,之后,正—反科西超子还会继续衰变、消失。  BESIII实验组的科研人员用了100亿粒子事例中的13亿,分析出了正—反科西超子的诞生过程,重建出7万多个正—反科西超子对。如此一来,BESIII就成了一个干净、小巧的科西超子“工厂”。  “干净”是因为本底污染率小于千分之一水平。“小”是因为BESIII实验中,超子产额并不算多。“巧”是因为BESIII实验的敏感度足够高。  “我们的超子产额只有美国费米实验室一个叫HyperCP实验产额的千分之一,但单事例的敏感度是HyperCP单事例的一千倍。”BES III实验发言人、中科院高能物理研究所研究员李海波说。  在分析数据时,BESIII实验组的科研人员发现了一种高精度测量超子CP破坏的方法。  早先,他们发现,刚衰变出来的正科西超子和反科西超子之间存在一种特殊的现象——“量子纠缠”。于是,利用这种独特的量子纠缠效应,再结合科西超子其他数据信息,实验人员不仅从海量数据中同时找出了正科西超子、反科西超子的衰变信号,还以前所未有的精度测量出正—反科西超子的不对称参数。  “新方法解决了30年来不能同时高效地对超子和其反粒子测量的困境,也给出了更丰富的CP破坏测量结果。”李海波说。  “这一成果已经引起国际同行的关注,相关研究人员被2021年国际轻子光子大会邀请作大会专题报告,成为这一领域的新星。”王贻芳说。  暂未发现新物理现象,将分析更多数据  遗憾的是,BESIII实验组此次的测量结果并没有显示出超子的CP破坏迹象。即便如此,新方法的发现依然得到了国际匿名评审的认可。  一位匿名评审点评说:“即使尚未发现CP破坏的新迹象,但研究方法上仍然很有趣。”另一位匿名评审认为:“新方法为将来的实验指明了方向,铺平了道路。”  “这一创新方法为我们未来确认或排除超出标准模型的CP破坏来源带来了希望。”王贻芳说。  抱着这样的希望,实验组正在向更高的测量精度发起挑战。“我们希望在不远的将来,能够用这种测量方法发现超子CP破坏的实验证据。”王贻芳表示,BESIII实验组正在分析100亿粒子衰变数据,测量精度有望再提高3倍左右。  目前,这支由我国主要开展研究的实验团队面临着激烈的国际竞争。  “欧洲核子中心的大型强子对撞机底夸克探测器(LHC-b)也正在大量制造超子。不过,他们的本底污染率比我们高。”李海波告诉《中国科学报》,BESIII实验组在测量上的优势在于BESIII实验“完美的探测器设计”。  BESIII是我国历史上最早的粒子物理大科学装置——北京正负电子对撞机上的探测器。它关注两个科学问题:夸克如何组成物质粒子和宇宙物质—反物质不对称的起源。  王贻芳介绍,从2009年至今,BESIII实验已经发表了400余篇研究成果。该探测器计划运行到2030年。  作为我国自主研发的大型高能实验装置,BESIII实验吸引了来自17个国家80家科研机构的约500个科研人员,是目前国内正在运行的最大国际合作组。此次发表的新成果由中国科学家和国外合作者共同完成。
  • 国内首个室温太赫兹自混频探测器问世
    记者日前从中科院苏州纳米所获悉,该所成功研制出在室温下工作的太赫兹自混频探测器,从而填补了该类探测器的国内空白。  据了解,作为人类尚未大规模使用的一段电磁频谱资源,太赫兹波有着极为丰富的电磁波与物质间的相互作用效应,不仅在基础研究领域,而且在安检成像、雷达、通信、天文、大气观测和生物医学等众多技术领域有着广阔的应用前景。目前,室温微型的固态太赫兹光源和检测器技术尚未成熟,众多太赫兹发射&mdash 探测应用还处于原理演示和研究阶段。室温、高速、高灵敏度的固态太赫兹探测器技术是太赫兹核心器件研究的重要方向之一。  自2009年起,苏州纳米所秦华、张宝顺、吴东岷课题组就致力于太赫兹波&mdash 低维等离子体波相互作用及其调控研究。该团队在2009年年底取得突破性进展,在GaN/AlGaN高电子迁移率晶体管的基础上研制成室温工作的高灵敏度高速太赫兹探测器,首次实现了对1000GHz的太赫兹波的灵敏检测。  经过3年多的技术攻关,研究团队进一步突破了太赫兹天线、场效应混频和器件模型等关键技术,掌握了完整的场效应自混频太赫兹探测器技术。  目前,苏州纳米所研制的太赫兹探测器探测频率达到800~1100GHz,电流响应度大于70mA/W,电压响应度大于3.6kV/W,等效噪声功率小于40pW/Hz0.5,综合指标达到国际上商业化的肖特基二极管检测器指标,并成功演示了太赫兹扫描透视成像和对快速调制太赫兹波的检测。  据介绍,该项技术可进一步发展成大规模的太赫兹焦平面成像阵列和超高灵敏度的外差式太赫兹接收机技术,为发展我国的太赫兹成像、通信等应用技术提供核心器件与部件。
  • 新型探测器可快速获取二维图像
    由新型材料制造的探测器可以立刻扫描出整个物体,并生成二维图像。图片来源:http://phys.org  近日,美国杜克大学的研究团队利用一种性能独特的材料,成功研制出部件更少、获取图像效率更高的探测器。相关研究成果日前在线发表于《科学》。  据介绍,这种新型材料名为“超级材料”,其微观结构是由一个个方形孔隙组成,每个方形孔隙都经过调谐,可以通过特定频率的光波。将这种材料蚀刻在铜片上后,即可收集图像,起到传统探测器摄像头的作用。  “利用这种材料,我们无需借助传统探测器摄像头中的透镜以及相关机械传动装置,即可获得被检测物体的微波图像。”该研究团队成员、杜克大学普拉特学院电气工程和计算机系研究生约翰亨特说。  他告诉记者,这种材料在被蚀刻于铜片之后,具备了很强的可塑性,并且坚固耐用。在使用时,可以被挂在安保场所的墙上,甚至像地毯一样被铺在地上。由于该材料上每个孔隙都可以单独接收某一频率光波所形成的图像,因此,将不同频率光波形成的图像合成后,即可获得被检测物体的全景图像。  亨特表示,机场中的安检设备等传统探测仪器,需要用透镜以及配套的机械传动装置对物体进行扫描。“在得到图像之前,你必须等待扫描过程的完成。而‘超级材料’中的每个孔隙,都相当于一个单独的‘摄像头’,因此,由这种材料制造的探测器可以立刻扫描出整个物体,并生成二维图像。其效率要比传统仪器高出许多,并使得我们可以在获取图像的同时,对图像进行压缩、处理。”他说。  此外,“用这种材料作为‘摄像头’的探测器也不再需要透镜、机械传动装置以及配套的信息存储与传送系统了。”该研究团队另一成员、美国加州大学博士后汤姆得利斯科尔说。  目前,研究者正对这一新型探测器进行改进,以使其能够获取三维图像。  据悉,该研究获得了美国空军科学研究办公室的资助。
  • 一文了解|制冷型和非制冷型红外探测器的区别
    红外探测器是一种能够探测红外辐射的设备,主要由探测元件和信号处理电路组成。根据其工作原理的不同,红外探测器可以分为制冷型和非制冷型两种类型。本文将详细介绍制冷型红外探测器和非制冷型红外探测器的原理、特性、区别、应用场景等。制冷型红外探测器【原理】制冷型红外探测器采用红外辐射的吸收来产生电信号,其探测元件是一种特殊的半导体材料,例如氧化汞、锑化铟等。当红外辐射照射到探测元件上时,将会激发探测元件中的载流子,进而产生电信号。但由于载流子的寿命非常短,为了保证探测器的灵敏度和响应速度,需要将探测元件制冷至低温,通常为77K。这种制冷技术通常采用制冷剂制冷的方法,例如液氮和制冷机等。【特性】制冷型红外探测器具有高灵敏度、高分辨率、高响应速度和宽波段响应等特点。由于探测元件的制冷温度非常低,因此可以有效减少热噪声的影响,提高探测器的灵敏度和分辨率。同时,制冷型红外探测器具有极高的响应速度,可以实现高速实时探测,非常适合于远距离监测、目标跟踪等应用场景。【应用场景】制冷型红外探测器广泛应用于远距离监测、目标跟踪、导弹导航、航空、航天、军事侦察、安防监控等领域。例如,制冷型红外探测器可以用于导弹的制导和跟踪,对于高速飞行的目标,需要具备高灵敏度和高响应速度,这正是制冷型红外探测器的优势所在。此外,制冷型红外探测器还可以用于医学诊断和科学研究等领域,例如在医学诊断中,可以通过制冷型红外探测器来检测人体的体表温度分布,从而诊断疾病。非制冷型红外探测器【原理】非制冷型红外探测器采用红外辐射的吸收来产生电信号,其探测元件通常是一种半导体材料,例如硅和锗等。当红外辐射照射到探测元件上时,将会激发探测元件中的载流子,进而产生电信号。由于探测元件的电阻随温度的变化而变化,因此可以通过测量探测元件的电阻来实现对红外辐射的探测。【特性】非制冷型红外探测器具有体积小、重量轻、价格低廉等特点,相较于制冷型红外探测器来说,更加便于制造和使用。同时,非制冷型红外探测器还具有响应速度快、适用于宽波段的特点,因此在一些特定的应用场景中具有优势。【应用场景】非制冷型红外探测器广泛应用于热成像、火灾报警、工业检测、安防监控等领域。例如,在热成像领域,非制冷型红外探测器可以用于检测建筑物和设备的热分布,从而提高能源利用效率和安全性。此外,非制冷型红外探测器还可以用于火灾报警,可以及时发现火灾并进行报警处理。在工业检测中,非制冷型红外探测器可以检测工业设备的异常热量,从而及时发现设备故障。在安防监控领域,非制冷型红外探测器可以用于监测人员和车辆等移动目标的热分布,从而提高监控的精度和准确性。区别【灵敏度与精度】制冷型红外探测器由于配备了制冷机组件,可以使红外探测器工作温度降低到很低的水平,从而提高了灵敏度,并具备更高的测量精度,能够实现更高的信号检测和分辨能力【工作波长】制冷式红外热像仪是敏感型红外热成像仪,可探测物体间细微的温差,它们工作在光谱短波红外(SWIR)波段、中波红外(MWIR)波段和长波红外(LWIR)波段。因为从物理学角度来讲在这些波段热对比度较高,热对比度越高就越容易探到那些目标湿度与背景差异不大的场景。非制冷型红外热像仪光谱集中在长波红外(LWIR)波段,8~14um范围。【使用功耗】制冷型红外探测器需要通过制冷机维持较低的工作温度,这个制冷系统通常需要耗费较高的电能来驱动。所以,相对于非制冷红外探测器,制冷型红外探测器的功耗一般较高。【应用】制冷型红外探测器通常具有更高的灵敏度和分辨率,适用于需求更高性能的应用场景,例如远距离探测系统等、科学研究等。非制冷型红外探测器虽然相对于制冷型红外探测器性能较低,但价格更经济实惠,适用于安防监控、消防救援、无人机载荷、户外观测等领域。举例说明以非制冷型红外探测器在安防监控领域的应用为例,一些商业场所需要进行24小时的监控,以确保安全。在这种情况下,非制冷型红外探测器可以用于监测人员和车辆等目标的热分布,从而提高监控的精度和准确性。例如,在停车场的监控中,可以通过非制冷型红外探测器来检测停车位上是否有车辆,以及车辆的数量和位置。当检测到停车位上有车辆时,就可以向管理人员发送相应的通知,以便及时采取措施维护停车场的秩序和安全。另外,非制冷型红外探测器还可以用于火灾报警。在一些需要保持高温的场所,例如电力设施、化工厂等,火灾的风险较高。这些场所可以使用非制冷型红外探测器来监测设备的温度,一旦检测到异常温度变化,就可以及时发出火灾报警信号,通知相关部门进行应急处理。综上所述,红外探测器作为一种重要的光学传感器,在热成像、安防监控、工业检测、医学诊断等领域中发挥着重要作用。制冷型红外探测器和非制冷型红外探测器各有优缺点,在不同的应用场景中都有广泛的应用前景。
  • 二维X射线探测器的研制项目通过验收
    6月7日,中国科学院计划财务局组织专家对高能物理研究所承担的院重大科研装备研制项目“二维X射线探测器的研制”进行了现场验收。  二维X射线探测设备采用200mm×200mm气体电子倍增器膜(GEM)为主要探测部件,项目组经过多年潜心研究,开发了相关探测器的制作工艺,解决了电极结构设计的关键技术问题,研制了多路快读出前端电子学及高速数据获取系统。  该设备的特点是:有效探测面积大、位置分辨好、计数率高,具有同步辐射晶体衍射和二维成像功能,现已在北京同步辐射大分子实验站进行了晶体衍射实验,实现了X射线的高计数率、高分辨率探测,可以满足同步辐射的使用需求,有望在X射线衍射、小角散射和成像等方面开展广泛的应用研究。  验收专家组听取了项目负责人陈元柏的研制工作和使用报告、财务报告及测试专家组的测试报告,现场核查了研制设备的运行情况,审核了相关的文件档案及财务账目。专家组对该项目研制做出了高度评价,认为各项技术指标达到或优于实施方案规定的要求,实现了X射线探测的二维精确定位,填补了国内高计数率X射线气体成像探测器的技术空白 技术档案齐全,经费使用合理,单位自筹资金到位,一致同意通过验收。鉴于该成果具有广阔的应用前景,专家组建议该项目的研究特别是小型化研究要不停顿地进行下去,促进项目成果的应用和推广。验收会现场测试现场二维X射线探测设备
  • 赛默飞发布新型UltraDry硅漂移(电制冷)探测器
    -- 为NORAN System 7微区分析系统提供最优的探测器尺寸、分析速度和分辨率中国上海,2012年8月10日 &mdash &mdash 7月30日,科学服务领域的世界领导者赛默飞世尔科技(以下简称:赛默飞)在2012显微镜学和微区分析大会上发布新型赛默飞UltraDry硅漂移(电制冷)X射线探测器。该探测器为同类最优,为金属和矿物、先进材料和半导体等行业应用提供更快速、准确的(微区)X射线分析。它进一步提升了广受赞誉的赛默飞NORAN System 7 X射线微区分析系统的性能。赛默飞副总裁兼分子光谱和微区分析产品总经理John Sos指出:&ldquo 我们的UltraDry硅漂移(电制冷)探测器在超高的采集速率下具有优异的分辨率,这在当今的纳米技术和先进材料应用分析中是至关重要的!我们对该探测器的卓越改进使我们NORAN System 7系统整体能以最快的速度获得最多的数据。加之使用我们独有的高级数据处理工具 &mdash &mdash COMPASS软件和直接倒相软件,用户可以满怀信心地将其EDS分析结果提升至全新的水平。&rdquo UltraDry硅漂移(电制冷)探测器性能的提升是其设计和技术工艺改进的直接成果。该探测器提升了能量分辨率的界限,在Mn-K&alpha 的能谱谱峰分辨率高达123eV。采用尺寸较小先进的场效应晶体管(FET)与晶体一体化的卓越设计在最大程度上减小了导致电噪声的分布电容。UltraDry探测器能够高效地操控脉冲堆积处理,使其在高速处理中具有最佳的分辨率和最小的死时间比率。无需外部附属设备或液氮制冷。新型的UltraDry探测器提供宽范围的晶体有效面积选择(10mm2,30mm2,60mm2 和100mm2),并具有先进的窗口工艺技术和独一无二的可分析至元素铍的轻元素完整的分析算法。其他关键特征包括:&bull 旨在使样品至探测器距离最小化和探测器立体角最大化的用户定制设计&bull 独有的旨在创造最大工作距离范围的垂直开槽的准直器&bull 操作环境温度至35° CNORAN System 7是非常适用于金属和采矿、先进材料、学术研究、半导体和微电子、失效分析、缺陷审查等材料电子显微微区应用分析的卓越平台!欲了解更多有关NORAN System 7和UltraDry(电制冷)探测器的信息,请访问网站www.thermoscientific.com。关于赛默飞世尔科技赛默飞世尔科技(纽约证交所代码: TMO)是科学服务领域的世界领导者。我们的使命是帮助客户使世界更健康、更清洁、更安全。公司年销售额120亿美元,员工约39,000人。主要客户类型包括:医药和生物技术公司、医院和临床诊断实验室、大学、科研院所和政府机构,以及环境与过程控制行业。借助于Thermo Scientific、Fisher Scientific和Unity&trade Lab Services三个首要品牌,我们将创新技术、便捷采购方案和实验室运营管理的整体解决方案相结合,为客户、股东和员工创造价值。我们的产品和服务帮助客户解决在分析领域所遇到的复杂问题与挑战,促进医疗诊断发展、提高实验室生产力。欲了解更多信息,请浏览公司网站:www.thermofisher.com关于赛默飞中国赛默飞世尔科技进入中国发展已有30年,在中国的总部设于上海,并在北京、广州、香港、成都、沈阳等地设立了分公司,目前已有超过1900名员工、6家生产工厂、5个应用开发中心、2个客户体验中心以及1个技术中心,成为中国分析科学领域最大的外资企业。赛默飞的产品主要包括分析仪器、实验室设备、试剂、耗材和软件等,提供实验室综合解决方案,为各行各业的客户服务。为了满足中国市场的需求,目前国内已有6家工厂运营,苏州在建的大规模工厂2012年也将投产。赛默飞在北京和上海共设立了5个应用开发中心,将世界级的前沿技术和产品带给国内客户,并提供应用开发与培训等多项服务;位于上海的中国技术中心结合国内市场的需求和国外先进技术,研发适合中国的技术和产品;遍布全国的维修服务网点和特别成立的维修服务中心,旨在提高售后服务的质量和效率。我们致力于帮助客户使世界更健康、更清洁、更安全。欲了解更多信息,请登录www.thermofisher.cn
  • 上海交大张月蘅课题组在新型超宽谱光电探测器方面获进展
    近日,Science Advances发表了题为“Broadband and photovoltaic THz/IR response in the GaAs-based ratchet photodetector”的研究工作(Sci. Adv. 8, eabn2031 (2022))。该论文提出了一种基于GaAs/AlxGa1-xAs异质结的量子棘轮结构。这种结构综合利用了电泵浦实现的热载流子注入效应、自由载流子吸收和从轻、重空穴带到自旋轨道分裂带的光跃迁等多种吸收机制,突破了界面势垒的限制,实现了从近红外到太赫兹波段(4-300太赫兹)的超宽谱光响应。A. 量子棘轮探测器结构. B. 探测器能带结构. C. 器件PL光谱. D.探测器微观机制示意图. 近年来,红外(IR)/太赫兹(THz)光电探测器已经引起了极大的关注。然而,设计高性能的宽带红外/太赫兹探测器一直是个巨大的挑战。在宽谱探测器领域,一直是热探测器占据主要地位,但热探测器难以实现高速探测。光子型探测器具有可调节的响应范围、良好的信噪比和非常快的响应速度。量子阱探测器(QWP)响应速度快,灵敏度高,光子响应范围灵活可调,是性能优异的光子型红外/太赫兹光电探测器。但窄带特性使其覆盖波段十分有限。内光发射探测器(IWIP)由于其正入射响应机制、宽谱响应以及可调的截止频率,一直被认为是极具竞争力的宽带红外/太赫兹光电探测器。但其激活能低,导致较大的暗电流,需要在极低的温度(液氦温区)下工作。量子点探测器可以在高温下实现太赫兹探测和正入射响应,但可靠性和可重复性仍然是一个巨大的挑战。光泵浦热空穴效应探测器(OPHED)基于热-冷空穴的能量转移机制进行探测,可以突破带隙光谱的限制,实现超宽谱的红外/太赫兹探测。其探测波长可调,同时能够抑制暗电流和噪声。然而,依赖于外部光学激励的热空穴注入是太赫兹探测的前置条件,这大大增加了OPHED的复杂性。A.暗电流随温度变化 B. 暗电流与常用太赫兹探测器对比 C. 零偏压下微观响应机制 D. 量子棘轮探测器光响应谱. 应用物理与计算数学研究所白鹏与上海交通大学张月蘅、沈文忠研究组提出了一种基于GaAs/AlxGa1-xAs量子棘轮新结构的超宽谱光子型探测器。该探测器能实现正入射响应,响应范围覆盖4-300THz,远超其他光子类型的探测器的覆盖范围。此外,该器件即使在零偏置电压下也能产生明显的光电流。其峰值响应率达7.3 A/W,比OPHED高出五个数量级。由于量子棘轮能带结构的不对称性,器件的响应在正负偏压下也表现出明显的差别。在温度低于 77K时,由于量子棘轮效应,探测器表现出明显的整流行为,器件暗电流比现有的光子型探测器低得多,噪声等效功率低至3.5 pW·Hz−1/2,探测率高达2.9 × 1010 Jones,展示出其在高温下工作的潜能。 该项研究中展示了一种新型超宽带太赫兹/红外光电探测器。在无任何光耦合结构设计的情况下,这种成像器件具备很宽的光谱探测范围(4-300THz),快响应速度,低噪声等效功率和高探测率,为发展高温高速的超宽谱光电探测器件奠定了基础。 该工作近日发表于Science Advances (Sci. Adv. 8, eabn2031 (2022))上。共同第一作者北京应用物理与计算数学研究所助理研究员白鹏和张月蘅课题组博士研究生李晓虹,共同通讯作者为应用物理与计算数学研究所楚卫东研究员、上海交通大学张月蘅教授和清华大学赵自然教授。研究工作得到了国家自然科学基金、上海市科技自然科学基金、博士后基金和上海交通大学“人工结构及量子调控”教育部重点实验室开放课题的经费支持。上海交通大学张月蘅课题组承担并参与了器件设计、器件性能测试表征及论文写作方面的工作。
  • 高性能InGaAs单行载流子探测器芯片取得重大进展
    中国科学技术大学王亮教授和韩正甫教授课题组研发的InGaAs单行载流子探测器芯片取得重大进展。该研究团队通过设计优化表面等离激元结构,开发成功低暗计数、高响应度、高带宽的单行载流子探测器芯片,为近红外探测器性能提升提供了开创性的方法,相关研究成果以“Plasmonic Resonance Enhanced Low Dark Current and High-Speed InP/InGaAs Uni-Traveling-Carrier Photodiode”为题,发表在电子工程技术领域的知名期刊ACS Applied Electrical上。   基于等离基元结构的InGaAs材料的单行载流子探测器芯片具有极高带宽,低暗电流和高响应度,为近红外高速垂直光电二极管的设计提供了一种新型的方法。为应用于数据中心的光接收模块提供了核心芯片,突破未来更高速光模块开发的关键硬件技术壁垒   王亮教授研究团队通过调整MOCVD的温度、V/III比、掺杂浓度等生长参数实现低缺陷密度和高掺杂精度的外延结构生长。在单行载流子器件结构的基础上提出并设计了新型的表面等离激元增强单行载流子探测器,利用光在金属表面的局域表面等离激元效应,增强吸收区对于光信号的吸收。研究团队的所制造的器件具有0.12A/W的高响应度,在-3 V偏压下具有2.52 nA的暗电流,当芯片结区面积小于100 μm2时3dB带宽超过40 GHz。相比于同类器件,响应度增强了147%,具备更高的信噪比,为高速光互联网络提供优质国产化芯片。 图1表面等离激元增强单行载流子探测器示意图   中国科学技术大学光学与光学工程系王亮教授为该论文的通讯作者,博士研究生张博健为该论文的第一作者。本项研究得到国家科技部、国家自然科学基金和安徽省科技厅的资助,也得到了中国科大物理学院、中国电子科技集团第13研究所、中国科大微纳研究与制造中心、中国科学院量子信息重点实验室的支持。
  • 大科学工程“拉索”首个探测器阵列建成
    新年伊始,大科学工程高海拔宇宙线观测站“拉索”(LHAASO)传来喜讯。5日,记者从中国科学院高能物理研究所获悉,拉索水切伦科夫探测器阵列(WCDA)三号水池注水达到正常工作水位,这标志着WCDA探测器全部建成,全阵列投入科学运行。这是拉索四种类型的探测器阵列中最早完成的一个阵列。WCDA是拉索探测器阵列的重要组成部分之一,探测器总面积为78000平方米,由三个水池组成,内有3120个探测器单元,6240个光敏探头。WCDA水池采用了国内首创的“薄壁混凝土现浇边墙+软基土工膜防渗系统+大跨度轻钢屋面结构”设计,在没有国标可参考的情况下,满足了探测器对避光、防冻、防锈蚀和水位保持等的超高指标要求。“根据国际前沿发展动态,项目组在WCDA建设过程中进行了方案优化,在二号和三号水池中采用了我国自主研发的、具有国际上最大灵敏面积的新一代20寸光电倍增管,降低了探测器阈能,大幅增强了探测器在50-500 GeV能段的伽马射线探测能力。”拉索项目首席科学家、中科院高能物理所研究员曹臻说。曹臻表示,WCDA的有效探测面积是国际上最大同类型实验HAWC的4倍,能够对银河系内外的伽马暴、快速射电暴、引力波电磁对应体等具备瞬变特性的高能辐射信号进行探测,具备5-10年的国际领先优势,预期将获得一系列非常重要的观测与研究成果。拉索是国家重大科技基础设施项目,位于四川省稻城县海子山,由电磁粒子探测器阵列、缪子探测器阵列、水切伦科夫探测器阵列、广角切伦科夫望远镜阵列组成。
  • 多国探测器飞抵火星,科学仪器助力火星探测
    近日,中国“天问一号”、美国“毅力号”以及阿联酋“希望号”火星探测器飞抵火星轨道。中国“天问一号”携13台科学仪器踏入环火轨道2月10日,“天问一号”火星探测器顺利实施近火制动,完成火星捕获,正式踏入环火轨道。据了解,天问一号共携带了13个高科技科学仪器,火星磁力仪,火星矿物学光谱仪,火星离子和中性粒子分析仪,火星高能粒子分析仪,火星轨道地下探测雷达,地形摄像机,火星探测器地下探测雷达,火星表面成分检测器,火星气象监测器,火星磁场检测器,光谱摄像机,还有两个先进摄像头。其中,轨道器配备了7个科学仪器,火星巡视车配备了6个科学仪器。火星表明成分探测仪结合了被动短波红外光谱探测和主动激光诱导击穿光谱探测技术,可以探测火星表面物质反射太阳光的辐射信息,同时其可主动对几米内的目标发射激光产生等离子体,测量原子发射光谱可准确获取物质元素的成分和含量。火星矿物光谱分析仪搭载在火星环绕器上。在环绕器对火星开展科学遥感探测期间,该仪器可在近火段800km以下轨道,通过推帚式成像、多元实时动态融合的总体技术,获取火星表面的地貌图像与相应位置的光谱信息,为探测火星表面元素与矿物成分等提供科学数据。小型化、高集成化是深空探测载荷发展的主要趋势。火星离子与中性粒子分析仪采用从传感器到电子学进行最大限度共用的设计思路,在一台仪器中实现对离子和能量中性原子进行能量、方向和成分的探测,大大降低了仪器对卫星平台的资源需求。仪器采取静电分析进行离子的方向和能量测量、采取飞行时间方法进行离子成分的测量。中性原子采用电离板电离成带电离子,后端的能量测量和成分测量与离子相同。鉴定件样机已经完成了初步的测试定标,结果表明其满足设计要求。 阿联酋“希望号”携3组设备抵达火星当地时间2月9日,阿联酋“希望号”火星探测器抵达火星,对火星大气开展科学研究。这是阿联酋首枚火星探测器,由阿联酋和美国合作研制。“希望”号探测器历经半年时间,飞行近5亿公里,阿联酋由此成为第五个到达火星的国家。“希望”号于2020年7月20日从日本鹿儿岛县种子岛宇宙中心发射升空。“希望”号主要任务是研究火星气候和大气的日常和季节变化。由于阿联酋政府明确要求该国项目团队不能直接从别国购买探测器,阿联酋的工程师深度参与了合作研发。“希望”号高约2.9米,其太阳能电池板完全展开时宽约8米,重1.5吨,携带3组研究火星大气层和监测气候变化的设备。“希望”号的主要任务是拍摄火星大气层图片,研究火星大气的日常和季节变化。与人类今年计划发射的另外两个火星探测器不同,“希望”号不会在火星着陆,而是在距火星表面2万至4万公里的轨道上环绕火星运行。“希望”号绕火星运行一周需要大约55小时,它将持续围绕火星运行至少两年。美国“毅力号”漫游者火星车将登录火星美国宇航局的“毅力号(Perseverance)”漫游者火星车目前计划于2021年2月18日着陆。该次着陆顺序大多为自动化。据了解,“毅力号”(Perseverance)火星探测器为NASA公布的新一代火星车,由美国的初一学生亚历山大马瑟命名,用于搜寻火星上过去生命存在的证据。2020年5月18日,NASA公布“毅力号”火星车多项测试视频集锦,由于火星车登陆后无法对其进行维修,团队需确保其能承受极端温度变化及持续辐射的环境。2020年7月30日,美国“毅力”号火星车从佛罗里达州卡纳维拉尔角空军基地升空。毅力号探测器将进行一次近7个月的火星旅行,并于2021年2月18日在火星杰泽罗陨坑(Jezero)内以壮观的“空中起重机”方式安全着陆。“毅力号”是一个2300磅(1043千克)的火星车,是世界最大的行星漫游车。其样品处理臂由一对组件组成:Bit Carousel和Adaptive Caching Assembly(自适应缓存装置),它们将用于收集、保护这些灰尘和岩石样本并将其返回给科学家。Bit Carousel 由9个钻头组成,火星车将使用它们钻入地面,拉动样本并将它们传递到火星车内部,以通过自适应缓存装置进行分析。该系统具有七个电机和总共3000个零件,并负责存储和评估岩石和灰尘样品。毅力号身上总共安装了五款成像工具,首先是桅杆头上的SuperCam(位于大的圆形开口中),其次是两个位于桅杆下方灰框中的Mastcam-Z导航摄像头。激光、光谱仪、SuperCam成像仪将用于检查火星的岩石和土壤,以寻找与这颗红色星球的前世有关的有机化合物。两台高分辨率的Mastcam-Z相机能够与多光谱立体成像仪器一起工作,以增强毅力号火星车的行驶和岩心采样能力。该探测器的10个科学设备中有一个叫做“MOXIE”,它能从火星稀薄、以二氧化碳为主的大气层中制造氧气,这些的设备一旦扩大规模,就可以帮助未来宇航员探索火星,这是美国宇航局将在21世纪30年代实现的重要太空目标。此外,一架被命名为“Ingenuity”的1.8公斤重的小型直升机将悬挂在毅力号腹部位置抵达火星,一旦毅力号找到合适位置,Ingenuity直升机将分离,并进行几次试飞,这将是首次旋翼飞行器在地外星球飞行。美国宇航局官员表示,如果Ingenuity直升机成功飞行,未来火星任务可能经常采用直升机作为探测器或者宇航员的“侦察兵”。旋翼飞行器可以进行大量科学勘测工作,探索难以到达的区域,例如:洞穴和悬崖。同时,Ingenuity直升机配备一个摄像系统,可以拍摄具有重要研究价值的火星表面结构 。美国洞察号执行任务失败,被迫“冬眠”然而,火星探测并非一帆风顺,与此同时,也传来了美国“洞察号”任务失败的消息。“洞察”号火星无人着陆探测器是美国宇航局向火星发射一颗火星地球物理探测器,它的机身设计继承先前的凤凰号探测器,着陆火星之后将在火星表面安装一个火震仪,并使用钻头在火星上钻出迄今最深的孔洞进行火星内部的热状态考察。根据项目首席科学家布鲁斯巴内特(Bruce Banerdt)的说法,这一探测器将是一个国际合作进行的科学项目,并且几乎是先前大获成功的凤凰号探测器的翻版。据了解,洞察号搭载完全不同的3种科学载荷,包括两台由欧洲提供的仪器,专门设计用于探查这颗红色星球的核心深处,从而了解与其形成过程相关的线索。它将探测这里是否存在任何地震现象,火星地表下的地热流值,火星内核的大小,并判断火星的内核究竟处于固态还是液态。巴内特说:“地震仪设备(即SEIS,全称为‘内部结构地震实验’)由法国提供,地热流值探测仪(HP3,即热流和物理属性探测仪)则由德国提供。按照计划,热流探测器需要将探头打入地下5米深的位置。然而,由于热探针始终无法获得挖掘所需的摩擦力,美国NASA官方宣布,用于探索火星的洞察号执行任务失败。与此同时,由于“洞察”号使用太阳能电池板从太阳获取能量,而火星的冬季也是火星距离太阳最远的时候,再加上洞察号火星探测车的太阳能电池板目前被灰尘覆盖,大大减小了它能获取到的太阳能,“洞察”号将被迫进入“冬眠”。火星探测道阻且长。
  • 滨松参展慕尼黑上海分析生化展,将发布全新质谱用探测器技术
    慕尼黑上海分析生化展将于2018年10月31日-11月2日在上海新国际博览中心开展。此次展会,滨松中国(展位:E3.3222)也将一如既往的从探测器到光源,全方位展示物质分析之“眼”——光电探测技术。应用覆盖光谱、色谱以及环保中的水质、大气、烟气监测等等。 而本次展会将重点呈现的,则为近年持续火热的质谱应用。滨松拥有65年光电探测器的研制经验,在质谱用探测器技术的耕耘也已有40年的历史,可提供离子化光源、微通道板(MCP)、电子倍增器(EM)、高速荧光体等产品。这些都将在此次的展会中全面呈现。2018年,滨松集中发布了一系列全新的质谱用探测器技术,包括:栅网阳极结构第三代MCP高气压下(达1Pa),仍可高增益正常工作。MCP复合雪崩二极管结构具备高速、高增益、宽动态范围的特点。通道式电子倍增器(CEM)具备无铅、宽动态范围、高气压的特点。辅助离子化基板DIUTHAME用于MALDI-TOF-MS,大幅缩短前期处理时间。从2018年5月开始,新品就陆续在日本、美国初步面世。而此次慕尼黑上海分析生化展,则是首次登陆中国,也是本次滨松中国展台中不可错过的一大亮点。欢迎莅临展台参观交流。
  • 意大利引力波探测器因故障推迟重启
    不久以后,物理学家将继续对天体物理学“怪物”——黑洞和中子星碰撞产生的引力波进行探测。但是,3个探测器之一、位于意大利的室女座探测器(Virgo)目前却遇到了技术问题,将延迟其重新启动的时间。3年前,所有探测设施为了维护和升级而关闭。而在接下来的几个月里,将只有美国路易斯安那州和华盛顿州激光干涉引力波天文台 (LIGO)的两个探测器接受数据,这使得在太空中精确定位信号源变得更加困难。意大利国家核物理研究所(INFN)物理学家、Virgo的调试协调员Fiodor Sorrentino说,问题似乎不是来自于升级,而是产生噪声的旧部件,这些噪声会淹没许多信号。2015年,LIGO首次探测到两个巨大的黑洞相互旋转合并时产生的涟漪。两年后,LIGO和Virgo在附近发现了两颗中子星的合并。迄今为止,这3个探测器已经记录了90多次黑洞合并和两次中子星合并。每个探测器都是一个巨大的L形光学装置,称为干涉仪。镜子悬挂于干涉仪每条臂的两端,激光在镜子之间反射。整个装置处于真空室中,一个精心设计的悬挂系统支撑着每面镜子。Virgo的问题似乎出现在悬挂系统和镜子上。每面重达40公斤的镜子挂在一对薄玻璃纤维上。2022年11月,支撑一面镜子的纤维断裂。Sorrentino说,虽然镜子下降的距离很小,但震动似乎使附着在镜子上用于固定它的4块磁铁中的一块松动了。磁铁的运动使玻璃产生了振动。此外,另一条臂上的一面镜子在2017年遭遇了类似的情况,现在看来,其内部似乎有一个小裂缝。INFN的物理学家Gianluca Gemme说,这些问题直到最近才变得明显起来。研究人员要打开真空室,从一面镜子上取下松动的磁铁,并更换另一面镜子。 Gemme说,这项工作应该会在7月之前完成。“如果一切顺利,没有额外的隐藏噪声源,Virgo应该能够在秋天加入LIGO。”Gemme说。威斯康星大学密尔沃基分校天体物理学家Patrick Brady说,两个LIGO探测器运行良好,应该为5月24日的重启做好了准备。但Virgo的暂时缺席将限制科学研究的开展。3个探测器可以精确定位天空中的信号源,误差在几十平方度以内。如果是两个,定位会变得不精准。但Brady说,即使只有LIGO,长达18个月的运行也应该产生大量的科学成果。LIGO探测器的灵敏度已经比以前提高了30%,每2至3天就能发现一次黑洞合并。在这样的情况下,科学家应该能确定黑洞质量的分布,并有可能揭示不寻常的合并,比如向不同方向旋转的黑洞之间的合并。这些信息有助于揭示黑洞对是如何形成的。
  • 什么?韦布天文望远镜也用上了碲镉汞红外探测器?
    题注:韦布通过将冷却至极低温的大口径太空望远镜(预计是斯皮策红外天文望远镜的50倍灵敏度和7倍的角分辨率)和先进的红外探测器工艺相结合,带来了科学能力的巨大进步。它将为以下四个科学任务做出重要贡献:1. 发现宇宙的“光”;2. 星系的集合,恒星形成的历史,黑洞的生长,重元素的产生;3. 恒星和行星系统是如何形成的;4. 行星系统和生命条件的演化。而这一切,都离不开部署在韦布上的先进的红外探测器阵列! ============================================================近日,NASA公布了“鸽王”詹姆斯韦布望远镜拍摄的一张照片! 图1. 韦布拍的一张照片,图源:NASA 什么鬼?!这台花费百亿美金的望远镜有点散光啊… … 怕不是在逗我玩呢吧… … 别急,这确实是韦布望远镜用它的近红外相机(NIRCam)拍的一张照片。确切来说,这只是一张马赛克拼图的中间部分。上面一共18个亮点,每个亮点都是北斗七星附近的同一颗恒星。因为韦布的主镜由18块正六边形镜片拼接而成,之前为了能够塞进火箭狭窄的“货舱”发射升空,韦布连主镜片都折叠了起来,直到不久前才完全展开。但这些主镜片还没有对齐,于是便有了首张照片上那18个看似随机分布散斑亮点。对于韦布团队的工程师而言,这张照片可以指导他们接下来对每一块主镜片作精细调整,直到这18个亮点合而为一,聚成一个清晰的恒星影像为止。想看韦布拍摄的清晰版太空美图,我们还要再耐心等几个月才行。小编觉得,大概到今年夏天,就差不多了吧。=============================================================================中红外仪器MIRI如果把韦布网球场般大小的主反射镜,比作人类窥探宇宙的“红外之眼”的晶状体的话,韦布携带的中红外仪器,可以说就是这颗“红外之眼”的视网膜了。今天,小编要带大家了解的,就是韦布得以超越哈勃望远镜的核心设备——中红外仪器 (MIRI,Mid-infared Instrument)。图2. 韦布望远镜的主要子系统和组件,中红外仪器MIRI位于集成科学仪器模组(ISIM)。原图来源:NASA如图2所示,韦布望远镜的主、副镜片经过精细调整和校准后,收集来自遥远太空的星光,并将其导引至集成科学仪器模组(ISIM)进行分析。ISIM包含以下四种仪器:l 中红外仪器(MIRI)l 近红外光谱仪 (NIRSpec)l 近红外相机 (NIRCam)l 精细导引传感器/近红外成像仪和无狭缝光谱仪 (FGS-NIRISS)其中,最引人注目的,便是韦布望远镜的中红外仪器 (MIRI,Mid-infared Instrument) 。MIRI包含一个中红外成像相机和数个中红外光谱仪,可以看到电磁光谱中红外区域的光,这个波长比我们肉眼看到的要长。 图3. MIRI 将工作在 5 至 28 微米的中远红外波长范围。图源:NASAMIRI 的观测涵盖 5 至 28 微米的中红外波长范围(图3)。 它灵敏的探测器将使其能够看到遥远的星系,新形成的恒星,以及柯伊伯带中的彗星及其他物体的微弱的红移光。 MIRI 的红外相机,将提供宽视场、宽谱带的成像,它将继承哈勃望远镜举世瞩目的成就,继续在红外波段拍摄令人惊叹的天文摄影。 所启用的中等分辨率光谱仪,有能力观察到遥远天体新的物理细节(如可能获取的地外行星大气红外光谱特征)。MIRI 为中红外波段天文观测提供了四种基本功能:1. 中红外相机:使用覆盖 5.6 μm 至 25.5μm 波长范围的 9 个宽带滤光片获得成像;2. 低分辨光谱仪:通过 5 至 12 μm 的低光谱分辨率模式获得光谱,包括有狭缝和无狭缝选项,3. 中分辨光谱仪:通过 4.9 μm 至 28.8 μm 的能量积分单元,获得中等分辨率光谱;4. 中红外日冕仪:包含一个Lyot滤光器和三个4象限相位掩模日冕仪,均针对中红外光谱区域进行了优化。韦布的MIRI是由欧洲天文科研机构和美国加州喷气推进实验室 (JPL) 联合开发的。 MIRI在欧洲的首席研究员是 Gillian Wright(英国天文技术中心),在美国的首席研究员是 George Rieke(亚利桑那大学)。 MIRI 仪器科学家,是 英国天文技术中心 的 Alistair Glasse 和 喷气推进实验室 的 Michael Ressler。 ===============================================================================深入了解MIRI的技术细节 图4. 集成科学仪器模组(ISIM)的三大区域在韦布上的位置。图源:NASA 将四种主要仪器和众多子系统集成到一个有效载荷 ISIM 中是一项艰巨的工作。 为了简化集成,工程师将 ISIM 划分为三个区域(如图4): “区域 1” 是低温仪器模块,MIRI探测器就包含在其中。这部分区域将探测器冷却到 39 K,这是必要的最初阶段的冷却目标,以便航天器自身的热量,不会干扰从遥远的宇宙探测到的红外光(也是一种热量辐射)。ISIM和光学望远镜(OTE)热管理子系统提供被动冷却,而使探测器变得更冷,则需使用其他方式。“区域 2” 是ISIM电子模块,它为电子控制设备提供安装接口和较温暖的工作环境。“区域 3”,位于航天器总线系统内,是 ISIM 命令和数据处理子系统,具有集成的 ISIM 飞行控制软件,以及 MIRI 创新的低温主动冷却器压缩机(CCA)和控制电子设备(CCE)。 图5. MIRI整体构成及各子系统所处的区域。图源:NASA图5示出了MIRI的整体构成及其子系统在韦布三大区域中的分布情况。包含成像相机,光谱仪,日冕仪的光学模块 (OM) 位于集成科学仪器模块 (ISIM) 内,工作温度为 40K。 OM 和焦平面模块 (FPM) 通过基于脉冲管的机械主动冷却器降低温度,航天器中的压缩机 (CCA) ,控制电子设备 (CCE) 和制冷剂管线 (RLDA) 将冷却气体(氦气)带到 OM 附近实现主动制冷。仪器的机械位移,由仪器控制电子设备 (ICE) 控制,焦平面的精细位置调整,由焦平面电子设备 (FPE) 操作,两者都位于上述放置在 ISIM 附近的较温暖的“区域 2”中。 图6. ISIM低温区域1(安装于主镜背后)中的MIRI结构设计及四个核心功能模块的位置。原图来源:NASA MIRI光模块由欧洲科学家设计和建造。来自望远镜的红外辐射通过输入光学器件和校准结构进入,并在焦平面(仪器内)在中红外成像仪(还携带有低分辨率光谱仪和日冕仪)和中等分辨率光谱仪之间分光。经过滤光,或通过光谱分光,最终将其汇聚到探测器阵列上(如图6)。 探测器是吸收光子并最终转换为可测量的电压信号的器件。每台光谱仪或成像仪都有自己的探测器阵列。韦布需要极其灵敏的,大面积的探测器阵列,来探测来自遥远星系,恒星,和行星的微弱光子。韦布通过扩展红外探测器的先进技术,生产出比前代产品噪音更低,尺寸更大,寿命更长的探测器阵列。 图7. (左)韦布望远镜近红外相机 (NIRCam) 的碲镉汞探测器阵列,(右)MIRI 的红外探测器(绿色)安装在一个被称为焦平面模块的块状结构中,这是一块1024x1024 像素的砷掺杂硅像素阵列(100万像素)。图源:NASA。 韦布使用了两种不同材料类型的探测器。如图7所示,左图是用于探测 0.6 - 5 μm波段的近红外碲镉汞(缩写为 HgCdTe或MCT)“H2RG”探测器,右图是用于探测5 - 28 μm波段的中红外掺砷硅(缩写为 Si:As)探测器。 近红外探测器由加利福尼亚州的 Teledyne Imaging Sensors 制造。 “H2RG”是 Teledyne 产品线的名称。中红外探测器,由同样位于加利福尼亚的 Raytheon Vision Systems 制造。每个韦布“H2RG”近红外碲镉汞探测器阵列,有大约 400 万个像素。每个中红外掺砷硅探测器,大约有 100 万个像素。(小编点评:以单像素碲镉汞探测器的现有市场价格计算,一块韦布碲镉汞探测器阵列的价格就要四十亿美金!!!为了拓展人类天文知识的边界,韦布这回真是不计血本啊!) 碲镉汞是一种非常有趣的材料。 通过改变汞与镉的比例,可以调整材料以感应更长或更短波长的光子。韦布团队利用这一点,制造了两种汞-镉-碲化物成分构成的探测器阵列:一种在 0.6 - 2.5 μm范围内的汞比例较低,另一种在 0.6 - 5 μm范围内的汞含量较高。这具有许多优点,包括可以定制每个 NIRCam 检测器,以在将要使用的特定波长上实现峰值性能。表 1 显示了韦布仪器中包含的每种类型探测器的数量。 表1. 韦布望远镜上的光电探测器,其中MIRI包含三块砷掺杂的硅探测器,一块用于中红外相机和低分辨光谱仪,另外两块用于中分辨光谱仪。来源:NASA而MIRI 的核心中红外探测功能,则是由三块砷掺杂的硅探测器(Si:As)阵列提供。其中,中红外相机模块提供宽视场,宽光谱的图像,光谱仪模块在比成像仪更小的视场内,提供中等分辨率光谱。MIRI 的标称工作温度为7K,如前文所述,使用热管理子系统提供的被动冷却技术无法达到这种温度水平。因此,韦布携带了创新的主动双级“低温冷却器”,专门用于冷却 MIRI的红外探测器。脉冲管预冷器将仪器降至18K,再通过Joule-Thomson Loop热交换器将其降至7K目标温度。 韦布红外探测器工艺及架构 图8. 韦布太空望远镜使用的红外探测器结构。探测器阵列层(HgCdTe 或 Si:As)吸收光子并将其转换为单个像素的电信号。铟互连结构将探测器阵列层中的像素连接到 ROIC(读出电路)。ROIC包含一个硅基集成电路芯片,可将超过 100万像素的信号,转换成低速编码信号并输出,以供进一步的处理。图源:Teledyne Imaging Sensors 韦布上的所有光电探测器,都具有相同的三明治架构(如上图)。三明治由三个部分组成:(1) 一层半导体红外探测器阵列层,(2) 一层铟互连结构,将探测器阵列层中的每个像素连接到读出电路阵列,以及 (3) 硅基读出集成电路 (ROIC),使数百万像素的并行信号降至低速编码信号并输出。红外探测器层和硅基ROIC芯片是独立制备的,这种独立制造工艺允许对过程中的每个组件进行仔细调整,以适应不同的红外半导体材料(HgCdTe 或 Si:As)。铟是一种软金属,在稍微施加压力下会变形,从而在探测器层的每个像素和 ROIC阵列之间形成一个冷焊点。为了增加机械强度,探测器供应商会在“冷焊”工艺后段,在铟互连结构层注入流动性高,低粘度的环氧树脂,固化后的环氧树脂提高了上下层的机械连接强度。 韦布的探测器如何工作?与大多数光电探测器类似,韦布探测器的工作原理在近红外 HgCdTe 探测器和中红外 Si:As 探测器中是相同的:入射光子被半导体材料吸收,产生移动的电子空穴对。它们在内置和外加电场的影响下移动,直到它们找到可以存储的地方。韦布的探测器有一个特点,即在被重置之前,可以多次读取探测器阵列中的像素,这样做有好几个好处。例如,与只进行一次读取相比,可以将多个非重置性读取平均在一起,以减少像素噪声。另一个优点是,通过使用同一像素的多个样本,可以看到信号电平的“跳跃”,这是宇宙射线干扰像素的迹象。一旦知道宇宙射线干扰了像素,就可以在传回地球的信号后处理中,应用校正来恢复受影响的像素,从而保留其观测的科学价值。 对韦布探测器感兴趣的同学们,下面的专业文献,可供继续学习。有关红外天文探测器的一般介绍,请参阅Rieke, G.H. 2007, "Infrared Detector Arrays for Astronomy", Annual Reviews of Astronomy and Astrophysics, Vol. 45, pp. 77-115有关候选 NIRSpec 探测器科学性能的概述,请参阅Rauscher, B.J. et al. 2014, "New and Better Detectors for the Webb Near-Infrared Spectrograph", Publications of the Astronomical Society of the Pacific, Vol 126, pp. 739-749有关韦布探测器的一般介绍,请参阅Rauscher, B.J. "An Overview of Detectors (with a digression on reference pixels)" 参考资源:[1]. 亚利桑那大学关于MIRI的介绍网页. http://ircamera.as.arizona.edu/MIRI/index.htm[2]. Space Telescope Science Institute 关于MIRI的技术网页 https://www.stsci.edu/jwst/instrumentation/instruments[3]. 韦布的创新制冷设备介绍 https://www.jwst.nasa.gov/content/about/innovations/cryocooler.html
  • 中国红外探测器技术航空科技重点实验室成立
    歼11战机配备的光学红外探测器。  近日,红外探测器技术航空科技重点实验室在中航工业导弹院挂牌成立。中航工业科技与信息化部部长魏金钟与中航工业导弹院党委书记、副院长刘松柏共同为实验室揭牌,标志着该实验室正式投入运行。  红外探测器技术航空科技重点实验室的设立评审会由中航工业科技与信息化部主持召开。专家组认真听取了重点实验室的设立申请报告,考察了实验室现场,一致通过了该实验室的设立申请。  红外探测器技术是导弹院的一个重要研究领域。多年来,导弹院重视红外探测器技术的发展,于2005年成立了院级重点实验室,在科学研究、手段建设、人才培养等方面取得了长足的进步,部分研究领域走在国内前列,开发出30多种各类短波、中波、长波红外探测器,获得多项国家级、省部级科技成果奖,发表高质量论文90多篇,申请国家或国防发明专利40多项。  红外探测器是各类红外仪器设备的“眼睛”,广泛应用于众多的民用和军事领域。该实验室的成立,搭建了开放的红外探测器技术研究平台,必将进一步加强国内外同行的合作与交流,促进该领域的科学研究、人才培养,进而促进我国红外探测器技术的发展。
  • 知芯外延:聚焦短波红外探测器研发,助力西安走上“追光”路
    陕西知芯外延半导体有限公司(简称:知芯外延)于2022年在秦创原平台支持下成立,基于西安电子科技大学微电子学院的研发团队,企业研究的硅基四族外延晶圆打破了国外的设备、技术封锁,解决了我国的“卡脖子”技术,带动了我国高端光电探测器、硅光集成产业、超高速通讯器件等各个方向产品的升级。知芯外延主要研究具有硅基四族外延晶圆,在不同掺杂、厚度、纳米结构等参数下的成熟生长工艺,同时团队还研发出了基于硅锗外延晶圆的红外探测器芯片。目前企业生产的外延晶圆以硅基四族材料为主,包括硅基锗、硅基硅锗,硅基锗锡等,可应用于红外探测器、激光雷达、光通讯、三四族材料硅基衬底等各个领域。基于硅锗外延片的硅锗短波红外探测器,作为一种全新的短波探测器技术路径,其高集成度、低成本的优势,将能够成为代替传统材料实现短波红外大规模、各领域应用。在世界各国争相发展短波红外探测技术的当下,陕西知芯外延半导体为我国的技术突破持续发力。公司已入选陕西省光电子产业重点项目,并与多所研究院、军工单位达成合作。项目促进光电子产业创新链发展的同时,也为产业链的发展提供了核心技术支撑,助力西安走上“追光”路。
  • 更多宇宙的声音可以被新探测器听见
    欧洲爱因斯坦望远镜艺术图 图片来源:ET概念设计团队 5年前,当物理学家首次探测到引力波时,他们为宇宙打开了一扇新的窗户。引力波是大质量黑洞或中子星碰撞时产生的涟漪。现在,研究人员已经在计划更大、更灵敏的探测器。而且,美欧之间的竞争已经初露端倪,美国科学家提出建造更大的探测器,而欧洲研究人员则在追求更激进的设计。  “目前,我们只捕捉到最罕见、最响亮的事件,但在宇宙中还有更多的声音。”美国加州州立大学天体物理学家Jocelyn Read说。加州理工学院物理学家David Reitze也表示,物理学家希望新的探测器能在21世纪30年代运行,这意味着他们必须现在就开始计划。“引力波的发现已经吸引了全世界的目光,所以现在是思考接下来会发生什么的好时机。”  目前的探测器都是L形的仪器,叫做干涉仪。激光在悬挂在每条臂的两端的镜子之间反射,有些光线会漏出来,在L形臂的弯处会合。在那里,光的干涉方式取决于臂的相对长度。通过监测这种干扰,物理学家可以发现通过的引力波,这种引力波会使臂的相关数值产生不同程度的变化。  因此,为了探测空间的微小拉伸,干涉仪的臂必须很长。发现了第一个引力波的位于路易斯安那州和华盛顿州的激光干涉仪引力波天文台(LIGO),臂长达4公里。位于意大利的Virgo探测器有3公里长的臂。  现在,研究人员现在想要一种灵敏度比现有设备高10倍的探测器。它能发现可观测宇宙中所有的黑洞合并,甚至可以追溯到第一批恒星出现之前,从而寻找大爆炸中形成的原始黑洞。它还应该能发现数百个“千新星”,揭示中子星超密度物质的本质。  美国科学家对新探测器的愿景很简单。“我们只想把它做得非常非常大。”Read说。Read正在帮助设计“宇宙探索者”—— 一个臂长40公里的干涉仪,本质上是一个放大了10倍的LIGO。  指导了LIGO建设的加州理工学院物理学家Barry Barish说,这种批量设计可能使美国能够负担得起多个分离的探测器,这将有助于新设备像现在的LIGO和Virgo一样精确定位天空中的事件源。  但安置这样巨大仪器可能很棘手。40公里的臂必须是直的,但地球是圆的。如果L形的弯道位于地面上,那么干涉仪的末端可能必须放在30米高的护堤上。因此,美国研究人员希望找到一个碗状区域,以便容纳这种结构。  相比之下,欧洲物理学家设想了一个地下引力波天文台,称为爱因斯坦望远镜(ET)。意大利国家核物理研究所物理学家、ET指导委员会联合主席Michele Punturo说:“我们想要实现一个能够在50年内承载(探测器)所有进化的基础设施。”  ET将由多个V形干涉仪组成,臂长10公里,排列在一个深埋地下的等边三角形中,以帮助屏蔽振动。借助指向三个方向的干涉仪,ET可以确定引力波的偏振度,帮助科学家在天空中定位引力波的来源,并探测引力波的基本性质。  Punturo表示,ET预计耗资17亿欧元,包括用于隧道和基础设施的9亿欧元。研究人员正在考虑两个地点,一个靠近比利时、德国和荷兰的交汇处,另一个在撒丁岛。相关计划正在等待审议。  美国的提议则不那么成熟。研究人员希望美国国家科学基金会提供6500万美元用于设计工作,这样就可以在本世纪20年代中期对这台价值10亿美元的机器做出决定。但物理学家们都希望这两台新设备能在2030年代中期启动。
  • 长春光机所研制出高性能微米线日盲紫外探测器
    器件的结构示意图以及各项性能指标  近日,中科院长春光学精密机械与物理研究所研究员赵东旭带领的团队采用氧化锌/氧化镓核/壳微米线,研制出具有雪崩增益的高灵敏度日盲紫外探测器。  日盲光谱区是指波长在200~280nm波段的紫外辐射,由于太阳辐射在这一波段的光波几乎完全被地球的臭氧层所吸收,即在这个波段大气层中的背景辐射几乎为零,所以称为“日盲”。  在该光谱范围内,由于具有极低的背景噪音,同红外探测技术相比,紫外探测具有虚警率低、不需低温冷却、不扫描、告警器体积小、重量轻等优点。因此此项探测技术有着极其广泛的应用前景及应用需求,可用于紫外天文学、天际通信、火灾监控、汽车发动机监测、石油工业和环境污染的监测等。  赵东旭团队研发出的高性能微米线日盲紫外探测器对日盲紫外光具有高灵敏度、高探测度、高量子效率和高速的响应,为目前同类器件当中性能最好的结果,其主要性能高于目前商业Si(硅)雪崩二极管。团队对器件的性能进行了深入的研究,发现器件具有雪崩增益,其增益高达104。  该团队多年从事于半导体微纳结构光电器件的研制,在微纳光探测器的研究中积累了丰富的经验,先后制备出基于仿生叶脉结构的高灵敏度紫外光探测器,以及基于交叉结构的,具有高光谱选择性的氧化锌p-n同质结紫外光探测器等。
  • 想了解IVD用光电探测器前沿信息?还不赶快...
    据《中国医药健康蓝皮书》数据,2014年我国体外诊断产品市场规模达到了306亿元,预计2019年将达到723亿元,年均复合增长率高至18.7%。市场如火如荼,充满机会,也充满挑战。体外诊断仪器如何达到更高的行业要求?如何应对更广泛的市场需求? 3月7日至9日,诚邀您前来CACLP 2016滨松中国展台(西安曲江国际会议中心,B2馆 321/322)。从核心探测力,这最关键的第一步出发,了解仪器成为“实力派”的更好可能。 本次我们将展示的产品可覆盖生化分析、血液分析、分子诊断、免疫分析等多个方面。模块化产品将进行着重呈现,如光电倍增管模块、闪烁氙灯模块、光学模块,可为仪器开发提供更多的便捷。此外,新型探测器——MPPC(硅光电倍增管)的系列新品,也将于本次将首次出展。各种不同的探测器、光源各有特征,不论从尺寸、性能,还是应用、成本,都可灵活满足众多体外诊断应用需求,欢迎您届时前来现场观览详询。(B2馆 321/322)
  • 山大为大型强子对撞机实验研制400台探测器
    3月30日,世界最大的大型强子对撞机(LHC)实验成功,成功刷新质子流对撞最高能级记录,首次达到设计目的。记者今天获悉,山东大学在ATLAS(超环面仪器)探测器的建造项目中承担了400台探测器的研制生产任务。实验中所使用的探测器就是在山东大学研发并制造的。   山东大学物理学院教授、博士生导师何瑁带领的科研团队从1998年开始参加LHC的ATLAS实验。该团队用了四年的时间为ATLAS研制400台探测器,能够覆盖800平方米的测量面积,是ATLAS实验的第一级触发探测器。为开发研制探测器,科研团队曾派遣相关人员赴以色列学习,并在山东大学南新校区专门建造了物理研究所。探测器的研发、制作总共投入资金近300万元。每台探测器都有6层楼之高,根据规定其测粒子的误差要在1毫米之内,达到几亿分之一秒的精确度。经过以色列及欧洲多国的严格检测,400台检测器全部合格,质量完全达到设计要求,得到国外同行的高度赞扬。
  • 长春光机所研制出高性能微米线日盲紫外探测器
    日盲光谱区是指波长在200~280nm波段的紫外辐射,由于太阳辐射在这一波段的光波几乎完全被地球的臭氧层所吸收,即在这个波段大气层中的背景辐射几乎为零,所以称为&ldquo 日盲&rdquo 。在该光谱范围内,由于具有极低的背景噪音,同红外探测技术相比,紫外探测具有虚警率低、不需低温冷却、不扫描、告警器体积小、重量轻等优点。因此此项探测技术有着极其广泛的应用前景及应用需求,可用于紫外天文学、天际通信、火灾监控、汽车发动机监测、石油工业和环境污染的监测等。近日,中国科学院长春光学精密机械与物理研究所研究员赵东旭带领的团队采用氧化锌/氧化镓核/壳微米线,研制出具有雪崩增益的高灵敏度日盲紫外探测器(Nano Lett. 2015, 15, 3988&minus 3993)。  氧化锌/氧化镓核壳结构微米线采用一步CVD生长法制备。这种方法所生长的核壳结构微米线,核层氧化锌和壳层氧化镓都是高晶体质量的单晶,并且两种材料的界面非常陡峭,无明显界面缺陷和位错的存在。通过在核层与核层分别制备金属电极,就构成了异质结结构的日盲紫外探测器件。器件的响应峰值在254 nm,响应截至边266nm,对日盲紫外光具有高灵敏度、高探测度、高量子效率和高速的响应。在-6 V的电压驱动下,器件的明暗电流比可以达到106以上,响应度可达到1.3× 103 A/W, 探测率为9.91× 1014 cm· Hz1/2/W,响应时间小于20 &mu s,该结果为目前同类器件当中性能最好的结果,其主要性能高于目前商业Si雪崩二极管。通过对器件的性能进行深入的研究,发现器件具有雪崩增益,其增益高达104。  该团队多年从事半导体微纳结构光电器件的研制,在微纳光探测器的研究中积累了丰富的经验,先后制备出基于仿生叶脉结构的高灵敏度紫外光探测器(Nanoscale, 2013, 5, 2864),以及基于交叉结构的,具有高光谱选择性的氧化锌p-n同质结紫外光探测器等(J. Mater. Chem. C, 2014, 2,5005)。器件的结构示意图以及各项性能指标
  • 华南理工研制新型有机半导体红外光电探测器,性能超越传统近红外探测器
    随着近红外(NIR)和短波红外(SWIR)光谱在人工智能驱动技术(如机器人、自动驾驶汽车、增强现实/虚拟现实以及3D人脸识别)中的广泛应用,市场对高计数、低成本焦平面阵列的需求日益增长。传统短波红外光电二极管主要基于InGaAs或锗(Ge)晶体,其制造工艺复杂、器件暗电流大。有机半导体是一种可行的替代品,其制造工艺更简单且光学特性可调谐。据麦姆斯咨询报道,近日,华南理工大学的研究团队研制出基于有机半导体的新型红外光电探测器。这项技术有望彻底改变成像技术,该有机光电二极管在近紫外到短波红外的宽波段内均优于传统无机探测器。这项研究成果以“Infrared Photodetectors and Image Arrays Made with Organic Semiconductors”为题发表在Chinese Journal of Polymer Science期刊上。研究团队采用窄带隙聚合物半导体制造薄膜光电二极管,该器件探测范围涵盖红外波段。这种新技术的成本仅为传统无机光电探测器的一小部分,但其性能可与传统无机光电探测器(如InGaAs光电探测器)相媲美。研究人员将更大的杂原子、不规则的骨架与侧链上更长的分支位置结合起来,创造出光谱响应范围涵盖近紫外到短波红外波段的聚合物半导体(PPCPD),并制造出基于PPCPD的光电探测器,相关性能结果如图1所示。图1 基于PPCPD的光电探测器性能在特定探测率方面,该器件与基于InGaAs的探测器相比具有竞争力,在1.15 μm波长上的探测率可达5.55 × 10¹² Jones。该有机光电探测器的显著特征是,当其集成到高像素密度图像传感器阵列时,无需在传感层中进行像素级图案化。这种集成制造工艺显著简化了制备流程,大幅降低了成本。图2 短波红外成像系统及成像示例华南理工大学教授、发光材料与器件国家重点实验室副主任黄飞教授表示:“我们开发的有机光电探测器标志着高性价比、高性能的红外成像技术的发展向前迈出了关键的一步。与传统无机光电二极管相比,有机器件具有适应性和可扩展性,其潜在应用范围还包括工业机器人和医疗诊断领域。”该新型有机光电探测器有望对各行各业产生重大影响。它们为监控和安全领域的成像系统提供了更为经济的选择。未来,基于有机技术的医疗成像设备有望更加普及,价格也会更加合理,从而在医疗环境中实现更全面的应用。该器件的适应性和可扩展性还为尖端机器人和人工智能等领域的应用铺平道路。这项研究得到了国家自然科学基金(编号:U21A6002和51933003)和广东省基础与应用基础研究重大项目(编号:2019B030302007)的资助。论文链接:https://doi.org/10.1007/s10118-023-2973-8
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制