当前位置: 仪器信息网 > 行业主题 > >

高通量型混料机

仪器信息网高通量型混料机专题为您提供2024年最新高通量型混料机价格报价、厂家品牌的相关信息, 包括高通量型混料机参数、型号等,不管是国产,还是进口品牌的高通量型混料机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高通量型混料机相关的耗材配件、试剂标物,还有高通量型混料机相关的最新资讯、资料,以及高通量型混料机相关的解决方案。

高通量型混料机相关的资讯

  • 高通量组织研磨仪对生物样品粉碎研磨应用的重要性
    为何讲高通量研磨仪在对生物样品的研磨过程中占有着重要性,相信看完下面的分享,你就会明白了,高通量组织研磨仪常用于对样品的粉碎、混合、均化及破碎等实验操作,是一款制备样品的常用设备。它可快速高效的完成对样品的研磨粉碎,对其细胞破碎和DNA/RNA提取,满足理化分析实验室的要求,可进行干、湿、低温等多种方式的样品研磨,另外还配置不同规格大小的研磨耗材可进行应用。  该研磨仪设备是利用其高频往复的振动系统,来使离心管中的冻存试样与磨珠的相互碰撞摩擦,所产生的剪切力撞击力来完全破碎组织,可在非常短的时间内完成对试样的研磨粉碎、混合及破裂。    组织研磨设备对样品的快速均匀研磨,主要是借助磨珠的往复振动、冲击、剪切完成的,其研磨仪可一次同时处理36个样品,样品研磨时间短,可保持生物分子及药物分子的完整性。    在对分子生物样品的实验中,为使各类样品组织成分易于研磨,不在研磨过程中被破坏或降解,可增加组织的硬度和脆性,特别是在研磨和提取样品组织的核糖核酸RNA和脱氧核糖核酸DNA的过程中。    为快速研磨生物材料,可将其放入液氮中进行预冷处理,可终止细胞内外的所有生物反应,同时对其生物材料细胞进行完全的冻结和脆化,易于研磨,可更好的达到对其的破碎效果,将细胞研磨成粉末,释放其内部物质。    其综上可知,应用高通量研磨仪对生物样品的研磨,不但可快速高效的完成研磨,其还可进行后续的实验应用,像对其生物细胞内成分DNA、RNA的提取纯化等,对后续的实验分析都很有帮助,是一款名副其实的样品前处理设备,而这就是高通量组织研磨仪在其所起到的重要作用。
  • 康塔仪器高通量微型球磨仪:让研磨更简单
    “这是用于实验室样品制备的全新高效研磨设备,可在生物技术、药物、食品、地质研究、X射线衍射制样方面派大用场。”美国康塔仪器全新MillPrep?高通量微型球磨仪可以助您实现几乎任何材料的可重现快速研磨。 实验室分析需要对样品进行制备,MillPrep?微型球磨机让这项工作变得前所未有的简单、快捷。粗粉剂,颗粒剂,丸剂,植物材料,包装材料,几乎所有材料都可以迅速变细粉末,然后压制成片分析或直接分析或表征。甚至那些难加工的材料,如纸,软木材,和生物质材料均可以瞬间粉碎! MillPrep?微型球磨机提供不锈钢、氧化锆、碳化钨、不含重金属等多种材质的研钵和研磨球,以及离心管、样品瓶、漏斗、转接板等丰富多样的附件,可满足各种不同应用需求。同时,提供标准研磨套件、环境研磨套件、XRF/ XRD研磨套件、生物技术研磨套件等多种超值套装组合,更加优惠。详情请电话咨询:400-650-1652,或邮件至 qc.china@quantachrome.com.cn MillPrep?高通量微型球磨仪,一款让您省心的仪器: 更高通量 双罐的设计增加输出量。当双罐同时运行时,通过反振荡方式减小振动。重现性好 精确控制研磨时间和研磨频率,保证研磨结果可重现。易于使用 采用自定心夹紧系统,确保振动臂适度平衡的同时,可以快速装载和卸载样品罐。安全可靠 振动部件被密封在一个互锁机盖中,以防止样品架在振动中打开机盖。 若在操作过程中打开机盖,振动马上停止。通过机盖上的透明,耐冲击面板,可以在操作期间观查研钵。节省空间 体积小巧,占地面积小,仅占用很少的实验室工作台的宝贵空间。大范围的样品量 研钵和研磨球的范围适用于从0.2毫升到高达160毫升的样品量。满足需求的各种附件 您需要研磨,细胞破碎,还是湍流混合?都有相应的附件可选。更多详情,请访问美国康塔仪器公司中文官网:http://www.quantachrome.com.cn 美国康塔仪器美国康塔仪器(Quantachrome)被公认为是对样品权威分析的优秀供应商,它可为实验室提供全套装备及完美的粉末技术,及最佳的性能价格比。康塔公司不仅通过了ISO9001及欧洲CE认证,也取得了美国FDA IQ/OQ认证。作为开发粉体及多孔材料特性仪器的世界领导者,美国康塔仪器产品涵盖比表面、物理吸附、化学吸附、高压吸附、蒸汽吸附、真密度、堆密度、开/闭孔率、粒度粒形、Zeta电位、孔隙率、压汞仪、大孔分析 、微孔分析、滤器分析等诸多领域。 康塔仪器不仅受到科学界的青睐,装备了哈佛、耶鲁、清华等世界各个著名大学,而且已经向全世界的工业实验室发展,以 满足那里开发和改进新产品的研究与工艺需求。工厂中也依靠康塔仪器的颗粒特性技术更精确地鉴别多孔材料,控制质量,或高效率查找生产中问 题的根源 通过颗粒技术使产品上一个台阶,在当今工业界已成为一个不争的事实。 康塔克默仪器贸易(上海)有限公司作为美国康塔仪器公司在中国的全资子公司。集市场开发、仪器销售、备件供应、售后服务和应用支持于一体,它拥有国际水准的标准功能、形象和硬件配套设施,包括上海和北京的应用实验室和应用支持专家队伍。 康塔克默仪器贸易(上海)有限公司使美国康塔仪器几千家中国用户同步享受国际品质的产品和服务,将掀开美国康塔仪器公司在中国及亚太地区的全新篇章!
  • 创新性高通量SPR技术加速生物治疗药物发现
    治疗性抗体是目前市场上增速最快的一类药物,截止到2022年2月,已有109种抗体药物获得FDA批准使用,包括93款单抗,4款双抗以及12款ADC药物,同时处于临床阶段的抗体药超过了600种。连续8年,年复合增长率超过10%,2021年抗体药规模增长更是达到了16.5%。目前抗体药热门靶点主要集中于肿瘤如PD1/PD-L1,BCMA,CD38等,自身免疫性疾病,如TNFα,Th17通路等,补体通路如C5,C3,C1s等,以及各种新冠病毒的中和抗体等。如何在激烈的抗体药市场争得先机,提升相关靶点治疗性抗体的发现速度和效率,成为一个热门的话题。Carterra Bio是一家总部位于美国盐湖城的创新技术公司,旨在加速和革新新型候选治疗药物的发现与开发。Carterra开发了用于单克隆抗体(mAb)表征的高通量LSA™ 仪器,仅需要传统平台1%的样品消耗量及10%的时间,可实现100倍的检测通量。LSA将专利的微流控技术与实时免标记分子互作检测技术表面等离子体共振(SPR)以及先进易用的数据分析和可视化软件结合,彻底革新了治疗性抗体的筛选和验证开发。LSATM平台为使用者提供了与最先进的高通量抗体表达平台的输出相匹配的抗体发现与表征的通量和功能,使得所有的抗体在发现过程的早期即可得到快速全面的筛选和表征,从而确定治疗性抗体独特的表位和发现潜在的新型候选治疗药物,极大提升了发现和开发的效率及生产力。2022年,Carterra-Bio与PerkinElmer达成协议,由PerkinElmer全面负责LSA平台在中国的技术和应用推广支持与售后及测试服务,并且借助PerkinElmer专业的实验室整合能力,将LSA平台整合进实验室自动化系统及数据管理系统,打造专业的自动化治疗性抗体发现和表征平台及数据处理分析系统,通过创新性的高通量SPR技术加速实验室抗体发现与表位表征分析,实现低成本高通量的检测与筛选。图1 高通量SPR平台为治疗性抗体药物发现筛选带来了革命性的变化,允许在开发早期即可将筛选和表征在同一步骤中完成。更快速发现治疗性抗体及对功能性表位进行表征,做出决策。发现一个治疗性抗体抗体表位特异性属于抗体固有的属性,通常无法进行设计,所以一个具有适当特性的抗体主要通过经验性表达筛选得到。现代抗体表达技术可以产生大量的克隆,以满足发现管线及找到合适的抗体药物的可能性,该抗体既需要在治疗疾病方面有很好效果,还需要具有足够的差异性以确保知识产权,这些抗体的储备可以被视为制药公司的宝贵资产。筛选和分类大型抗体库,找到并确认具有治疗潜力的抗体,需要详细表征靶标和候选抗体之间的分子水平结合作用。这种抗体筛选越早在抗体库中进行越好,以确认其功能范围。评估抗体库的表位覆盖率也是至关重要的,结合其他方法的研究数据,(可以参考Carterra与PerkinElmer的联合讲座,可在默存学院中进行观看),还可以帮助研究确认相关抗体的作用机制(MOA)。抗体筛选的历史与现状常规使用的一些高通量检测方法(如ELISA和FACS)常用于初步的筛选,将一大堆候选抗体缩减到一些可很好管理的子集,然后在使用分子互作的金标准低通量高信息含量的SPR进行验证。这样的过程非常费时费力,并且步骤繁冗,也很难自动化。而且会忽略原始抗体库库的全部表位和动力学的多样性,从而漏掉具有潜力的抗体;此外可能会选择到大量次优的克隆而错过最佳潜在抗体或过早地从库中剔除掉这些抗体。而Carterra LSA平台则通过高通量SPR解决了这样的问题,使得早期即可在同一步骤中完成筛选和表征。通过将SPR的能力扩大到超过传统SPR平台的一个数量级或更多(图2),Carterra LSA可同时进行数百种不同抗体并行高分辨率和高通量的相互作用分析。使得SPR不仅仅是用于验证和表征,更可以在药物发现早期就大显身手,极大提升发现速度和效率,以往需要几个月时间的过程可缩短到三周内进行。图2 与传统SPR平台相比,Carterra LSA将SPR的能力扩大了一个数量级或更多。Carterra LSA可以同时测定384个抗原、抗体相互作用的动力学数据,而其他SPR平台则一次只能产生8个(蓝框)或32个(绿框)抗原、抗体结合相互作用的动力学数据。LSA通过先进的微流控系统还提供了极小的样品消耗和高检测灵敏度的优势,并兼容多种样品类型(血清,细胞上清,裂解液等)使得LSA更适合于早期研究和发现以及后期的表征。通常研究早期需要检测大量的克隆,而单个克隆表达的抗体量比较有限,并且可能纯化不易或成本高昂。高通量SPR技术使得研究人员在早期即可评估抗体状况,对靶标抗原和大量候选抗体之间的结合相互作用进行详细研究分析比较,得到最好结论,作出决策并快速进入到下一步的研究中。结合动力学亲和力分析与表位聚类及作图通常均需要了解一个抗体如何结合抗原靶标,哪些因素会影响其作用机制、药效和药代动力学,SPR技术则是检测抗体抗原相互作用的结合动力学和亲和力数据的金标准的生物物理方法,但传统的方法是低通量的,常被用于验证或二次筛选。Carterra LSA则是一个颠覆性的高通量SPR平台,在抗体库初步筛选时即可发挥作用,得到动力学及亲和力数据。抗体的竞争性结合测定可用于将抗体组织成表位家族或分类,以帮助发现先导抗体以及更好的理解抗体作用机制。Carterra LSA平台改变了分组模式,可以在最小样品消耗条件下,快速对大量抗体进行全方位的表位分组分析。例如可同时对384种抗体以384x 384的检测模式进行表位分析,在一次运行中,每个抗体消耗不到10ug,检测完毕可产生超过14万个成对的相互作用的数据及可视化图表便于进行聚类分析。得到的结合相关参数,如动力学、亲和力和表位特异性,则为研究人员提供了一个全面的勾画信息图,指导决定哪些抗体可以进入下一步研究,以迅速聚焦到具有最有潜力和价值的抗体上。由于目前许多制药公司均聚焦在同样的靶标上,因此越快速高效筛选得到相应的治疗抗体,越快速进入到临床,决定了商业前景和未来。多参数表位聚类分析及作用机制揭示(MOA)阐明任何新型药物(包括治疗性抗体)的作用机制(MOA)均非常重要,有以下一些原因:帮助研究者做出更明智的选择和决定,对药物的安全性和有效性都有影响;帮助预测病人对某一特定治疗具有反应的可能性;对药物组合做出更好的判断,以减少耐药性的风险、毒性/副作用的可能性和治疗失败的风险;突出重要的分子相互作用的目标,以便进一步开发其他药物识别具有潜在价值和商业潜力的新型作用机制(MOA)在LSA平台进行多参数表位聚类分析的过程中,将表位分类数据与其他正交实验(如PerkinElmer的AlphaLISA)的数据相结合,可用于构建一组测试中抗体的高信息度指纹图谱,并评估其治疗潜力。Carterra LSA平台提供了高通量、高数据质量和多参数检测能力,以便为作用机制(MOA)提供全面的表位聚类研究。专门设计的分析软件可以同时分析其他正交实验研究的结果,例如中和实验、结构数据或突变研究数据,并与表位分类的结果合并,以显示详细的指纹特征。这种方法提供了一种与功能和作用机制相关的模式来评估一组感兴趣抗体的特征,从而得到从抗体库到先导抗体的指引和选择。在同一实验步骤中结合抗体筛选和详细表征,使研究人员能够分析和筛选比过去大几个数量级的抗体库,也避免了使用ELISA等手工方式进行初步筛选的过程,有利于识别需要经过抗体工程最少设计改造的各种非常类似的抗体并找到其中最佳的同一个,从整体上加速了从抗体库到先导抗体的过程,也有更大机会和可能筛选得到具有最高商业潜力和临床成功潜力的抗体克隆的机会。目前已采用高通量SPR技术的LSA平台的药物研发公司已受益于更快速高效的抗体筛选流程,并减少失败的风险,过去一年中许多不同亚型新冠病毒中和抗体的快速发现和验证已经证实了这一点。期待下一个有机会发现新型高效抗体治疗药物的公司就是您的公司!期待能够诞生下一个抗体药王Humira的可能性!扫码获取相关资料
  • 高选择、高灵敏、高通量——色谱填料发展的方向
    p style="line-height: 1.75em text-indent: 2em "strongspan style="font-family: 宋体, SimSun "仪器信息网讯/span/strongspan style="font-family: 宋体, SimSun " 2020年7月14日,由中国化学会色谱专业委员会指导,仪器信息网、上海分析仪器产业技术创新战略联盟、北美华人色谱学会、中国科学院兰州化学物理研究所联合主办,上海分析技术产业研究院协办的“第五届色谱网络会议(iCC 2020)”,在云端盛大开幕。为让更多网友了解色谱填料技术进展,会议特设“色谱填料新技术”专场,并吸引了1200多位来自不同领域的网友参与。/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/86bdb18a-b7c1-414a-bacf-93d0ae60b651.jpg" title="1.jpg" alt="1.jpg"//pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "/span/pp style="text-align: center"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202007/uepic/90ff8f81-f372-4efd-b111-9fd2c8a6063f.jpg" title="2_副本.jpg" alt="2_副本.jpg"//pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "本场会议由中国科学院兰州化学物理研究所研究员邱洪灯主持,他介绍:“色谱已成为应用最为广泛的仪器分析方法之一,色谱分离的核心是色谱柱,而色谱分离材料则是色谱柱的灵魂。目前,我国色谱填料产业化关键技术基本来源于国外,我国高端色谱分离材料制备关键技术还有一定差距,色谱填料和色谱柱严重依赖进口,自主研制高效色谱“芯”至关重要。”/span/pp style="line-height: 1.75em text-indent: 2em "strongspan style="font-family: 宋体, SimSun "色谱分离新材料、新技术/span/strong/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "迪马科技副总裁兼全球技术总监李广庆在其报告中介绍,新型色谱分离材料主要有四大类。第一类是基质、配体与色谱柱,主要包括Type C硅胶、聚合物和金属氧化物微球材料;杂化材料和金属有机骨架材料;硅烷化试剂设计与合成;填料制备自动化和色谱柱二维设计。第二类为快速分离材料,主要有UHPLC和核壳材料、整体柱、纳米材料和方法开发自动化。第三类为高选择性分离材料,主要是分子印迹、限进介质、免疫亲和材料;极性修饰、混合模式和多功能型分离材料;过渡金属配位型分离材料;多维色谱。第四类为微分离材料,包括基质分散和吸附剂填充微萃取技术、微流控芯片技术等。/span/pp style="line-height: 1.75em text-indent: 2em "span style="color: rgb(192, 0, 0) "strongspan style="font-family: 宋体, SimSun "碳纳米材料修饰硅胶色谱固定相/span/strong/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "碳纳米材料一般用作样品前处理方面,不过色谱填料也有不少研究。邱洪灯提到,仅仅将碳纳米材料填充到柱子里做填料,由于其吸附能力很强,容易拖尾,分离效果往往不尽如人意。因此需要对其进行修饰,如氧化纳米金刚石修饰、燃烧刻蚀法多孔石墨烯等。/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "碳量子点作为碳纳米材料中的一种,与其他碳纳米材料相比,具有颗粒较小、有丰富的功能基团,容易制备、改性等优点。在报告中,邱洪灯具体介绍了各种碳点修饰硅胶新型色谱填料,他认为该新型材料具有很好的应用前景,有望进一步开发。/span/pp style="line-height: 1.75em text-indent: 2em "span style="color: rgb(192, 0, 0) "strongspan style="font-family: 宋体, SimSun "多孔骨架材料/span/strong/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "多孔骨架材料在色谱分离和样品前处理中具有良好的应用潜力,相关研究也促进了色谱领域的发展。南开大学副教授杨成雄介绍,2007年,Cooper课题组首次提出共轭微孔聚合物的概念,其种类和性能多样孔径可调、比表面积大,且稳定性和可复合型都很好。不过,共轭微孔聚合物在样品前处理和色谱分离中的应用仍处于起步阶段。其团队从多孔骨架材料合成方法入手,通过修饰、制备复合材料等手段脱产了其在色谱分离的应用。多孔骨架材料在污染物去除和样品前处理中有良好的应用潜力,其中色谱分离的应用有待进一步研究。/span/pp style="line-height: 1.75em text-indent: 2em "span style="color: rgb(192, 0, 0) "strongspan style="font-family: 宋体, SimSun "绿色溶剂及材料/span/strong/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun text-indent: 2em "毕文韬介绍,化学分析过程所产生的废弃物,易燃和腐蚀性物质约占55%,有毒物质约占42%,具有反应活性的物质占3%,这些废弃物对环境有一定的影响。因此,发展无污染或者少污染的绿色分析化学技术是必然趋势,也将逐渐成为分析化学领域的前言。在液相色谱绿色化方面,主要是流动相和固定相的绿色化。流动相可采用超临界流体、离子液体、水等代替有机试剂。而固定相方面,可通过提高分离效率,减少流动相的消耗;也可对固定相进行改性,从而摆脱流动相对有机溶剂的依赖,其中离子液体固定相的分离效果是比较好的。/span/pp style="line-height: 1.75em text-indent: 2em "span style="color: rgb(192, 0, 0) "strongspan style="font-family: 宋体, SimSun "混合模式色谱固定相/span/strong/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "混合模式色谱是在一根色谱柱上能够实现两种或者多种分离机理共同主导的分离技术,特点为分离选择性高、样品容量高、分辨率高以及一次分离中可以提供多种作用力等特点。/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "王路军在报告中介绍,混合模式色谱起源于19世纪60年代初,随着技术的进步,目前色谱工作者将一系列新材料如MOF、COF、石墨烯、碳点等用于混合模式固定相的研究。该技术可用于中药成分分析、生物催化、蛋白质成分分析、环境污染物分析等诸多领域。由于具有诸多优势,因此,混合模式色谱能够为复杂样品的分析提供一种新的解决途径,为手性分离与分析机理的研究提供新的思路。/span/pp style="line-height: 1.75em text-indent: 2em "span style="color: rgb(192, 0, 0) "strongspan style="font-family: 宋体, SimSun "新型材料富集材料/span/strong/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "生命科学需要先进的分离方法和技术,但生物分离由于生物样品种类多,包含着数万种蛋白、蛋白分布不均一性和动态变化、样本个体和病例阶段的产异性等原因,所以比较难,迫切需要开发对生物分子具有特异性识别、灵敏响应和智能捕获能力的新型材料,解决生物分离、分析领域中的问题和挑战。卿光焱首先具体介绍了基于二肽的糖肽捕获材料,糖识别既是主客体化学中的一个重大挑战,也是分析糖链结构和糖肽功能的前提,还是获取糖肽类生物标记物的关键。结果显示,基于二肽的糖肽捕获材料可从1000倍的BSA干扰中富集得到32个糖肽位点,此外这种材料还对糖链连接的同分异构体能进行精确区分。/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "他还具体介绍了基于动态共价化学的唾液糖链捕获材料、智能的糖肽捕获材料和器件。他提到,生物分离的过程中蕴含了丰富的相互作用机制、科学的认识界面上的分子机制并利用材料对分离的过程进行精确、动态调控是研究关键。/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "除了以上新型色谱分离材料外,安捷伦应该用工程师吴翠玲还具体介绍了脂肪萃取技术在脂质组学中的应用,她通过样品分析系统的阐述了SPE方法与传统LLE相比,在脂质组学分析中,可提高分析结果的重复性,节约时间,且过程环保。/span/pp style="line-height: 1.75em text-indent: 2em "strongspan style="font-family: 宋体, SimSun "新型色谱填料发展趋势:高选择性、高灵敏度、高通量/span/strong/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "分离材料性能直接关系到分离的效率以及检测结果的准确性,因此研究与开发高性能的新型材料一直是分析化学领域最重要的课题。/span/pp style="line-height: 1.75em text-indent: 2em "span style="font-family: 宋体, SimSun "随着技术的不断发展和需求的变化,色谱填料将朝着高选择性、高灵敏度和高通量的方向发展。比如,开发高强度、超微粒径液相色谱填料,以适应超高效、快速和高灵敏度的应用需求;开发小粒径核壳型填料和新型硅胶整体柱,以提供分析速度快、柱压低和简单易行的液相色谱分析方法等。相信随着色谱填料国产水平的不断提高,我们将最终摆脱严重依赖进口的现状!/span/ppbr//p
  • 大连华微推出新产品:无极通量“阵列式单细胞超高通量柔性筛选系统”
    —“HW—TORNADO龙卷风”系列大连华微生命科技有限公司(Dalian Life Huawei Technology Co., Ltd.)(以下简称大连华微),是一家拥有自主知识产权,集研发、生产、销售及服务为一体的微流控系统一站式解决方案供应商。大连华微推出“HW—TORNADO龙卷风”系列单细胞液滴制备、混匀、检测、柔性操控与分选综合控制系统,引起业内客户高度关注。“HW—TORNADO龙卷风”系列产品,全球业内具有特色的“N×”阵列式并行模块单元结构,可积木式定制扩展,针对细胞、细菌、酶、病毒、蛋白、线虫等尺寸在0.1微米至2000微米范围的活性生物颗粒,实现高通量筛选:5亿×N个液滴/日(N=1,2,4,8,16…选用阵列数,理论上速度可任意增加);对尺寸在100纳米至2毫米米范围的生物颗粒进行液滴包裹、检测、分析及筛选,可删除空液滴,实现单个液滴只包含一个细胞、菌、酶(或其它生物颗粒);多频激光(405/488/532/561/638等)可根据用户需求配置,共聚焦实时协同作业,并可实现灵活的更换和快速升级;触摸屏软件,智能识别,实现自动化的操作处理;系统可根据客户需求定制生物芯片,实现液滴检测、混匀,以及无损操控与筛选。 大连华微成立伊始,就定位于世界前沿科技的研发与生产,其自主研发的“细胞、菌、酶液滴高通量制备、检测及柔性筛选系统”秉持民族品牌,已经发展5个系列数十种型号,成为业内知名、拥有完全自主知识产权的单细胞液滴自动化控制产品。公司本次重磅推出的:阵列式100%单细胞-巨高通量柔性筛选系统“HW—TORNADO龙卷风”系列,支持全面广泛的应用及科研需求,涵盖单细胞基因测序、基因编辑、细菌分选、药物筛选、疾病诊断、酶活筛选、基因文库构建等多个重要领域。 近一两年,国内出现很多仿制的实验室DIY型“分选系统”——依靠国外成型的功能组件、电源、信号控制部件搭接而成,智能程度低、可靠性差、误差不可控,分选过程对生物颗粒活性影响不可逆,且操作繁琐。最重要的:如果采购这种DIY型“产品”,一旦其进口电源、主控功率部件出现故障或损坏,DIY供应者无法修复,只有更换,且更换成本极高(至少需要RMB十万元以上,维修周期超过两个月,如西方限制进口则无法继续使用)。华微产品源于元器件级别的自主研发,客户众多,质量经过中科院、三甲医院、985高校等高端客户应用及检验,产品可靠性、柔性控制的性能远优于上述DIY型“产品”。华微产品除保修一年外,部件还终身享受成本价格换修(最贵的单个元件更换,不高于前述DIY供应者换修价格的三分之一),维修周期一般不超过一周,自主研发产品不存在受西方限制的核心组件,可大幅节省客户后续使用成本,这是拥有自主核心技术的底气。大连华微生命科技有限公司,依靠自有专利技术,立足独立研发民族品牌,致力于国际前沿领域的微流体控制科技产品的研发与生产,历经十年的探索磨砺,为中国乃至世界的业内客户带来全新的选择。未来公司将一如既往地重视创新科研,与广大华微客户一起携手进步,共同推动着中国生命科学的发展,做世界细分领域有话语权的中国高科技民族企业。关于华微生命科技:大连华微生命科技有限公司,坐落于素有中国“浪漫之都”之称的海滨城市大连高新区火炬路,是大连市第六批“海创工程”企业;成立伊始,就定位于世界最前沿科技的研发与生产,提供生物技术、生命科学、医疗健康、环境保护等领域的专业设备、耗材、服务,以及相关完整解决方案。
  • 流式细胞仪大显身手 高通量纳米材料生物毒性检测技术取得进展
    随着纳米技术的快速发展,越来越多的新型纳米材料不断出现并迅速应用在实际生活中。因此,发展快速、高通量的生物检测手段对纳米毒性的快速安全评估极为重要。流式细胞术是毒理学检测的常用技术,具有高通量、快速、准确的特点。但由于团聚的纳米材料在尺寸上同细菌相近,严重干扰检测结果,使得流式细胞术难以运用于纳米材料对细菌的毒性评估。  近期,中国科学院合肥物质科学研究院技术生物与农业工程研究所吴李君、陈少鹏课题组建立了基于PI-GFP双荧光标记的纳米材料细菌毒性检测方法:GFP绿色荧光表征细菌的生长,碘化丙啶PI红色荧光标记区分死、活细胞,在流式细胞仪上准确区分细菌与纳米材料,通过绿色荧光和红色荧光细胞的相对比例,反应纳米材料的毒性。对比单荧光标记,双荧光标记可以更准确地检测纳米材料的毒性。运用上述建立的双荧光报告系统,他们研究了水环境中金属离子及表面活性剂对纳米银毒性的影响,揭示了不同环境因子对纳米银细菌毒性的影响和机制。结果表明,双荧光报告检测系统可以较准确地反应纳米材料的毒性,适用于环境纳米材料生物学效应的评估。该研究成果已被国际毒理学期刊Cheomsphere (DOI: 10.1016/j.chemosphere.2016.04.074)接收。  该研究受到国家重大研究计划、中科院先导专项B、国家自然科学基金以及研究院院长基金资助。  双荧光报告基因系统检测纳米银生物毒性
  • Grinder高通量组织研磨机改良QuEChERS方法,更接近真值
    Geno/Grinder高通量组织研磨机改良QuEChERS方法,更接近真值关于传统QuEChERS方法QuEChERS方法是2003年由美国农业部的化学家Anastassiades和Lehotay等研究建立的一种能有效分离水果、蔬菜中痕量农残的样品前处理技术。QuEChERS是Quick、Easy、Cheap、Effective、Rugged和Safe的缩写,顾名思义,这种前处理方法具有操作简便、溶剂使用量少、污染小等优势。▲ 化学家Anastassiades高度评价Geno/GrinderCole-Parmer(原Spex)的Geno/Grinder高通量组织研磨机专为动植物组织快速匀浆研制。使用Geno 高通量组织研磨机改良QuEChERS前处理方法,一键式操作,可调频率最高可达1750rmp,1-2分钟完成样品均质化过程,可有效简化提取步骤和提取时间。特殊的垂直振荡专利技术,在均质的同时还可研磨样品,使提取剂充分与样品中的农药残留结合,检测结果更接近真值。超高通量的Geno/Grinder高通量组织研磨机最多可同时处理16个50mL样品瓶,更高效,样品间重复性、一致性更好。Cole-Parmer(原Spex)公司的应用工程师使用Geno/Grinder高通量组织研磨机改良后的QuEChERS方法与传统方法进行了对比实验,实验结果表明,Geno/Grinder高通量组织研磨机改良后的QuEChERS方法在简化操作之余,还有效的提升了回收率,实验过程及结果如下所示。为使实验样品更具代表性,本实验选用草莓(软性)、苹果(密度和硬度大)、芹菜(富含纤维),切成6-12mm的小段混匀,称取15.1g,放入50mL离心管中(每种样品设置4个平行)。每个样品瓶中小心加入250μl的农药混标(Spex CertiPrep公司货号为CAL-CARB-13标准溶液,浓度:40μg/ml,基底:二氯甲烷),盖上盖子,用手轻轻摇晃15s,以确保整个样品的农药溶液与样品混匀,4℃冰箱静置过夜。传统QuEChERS方法将4个离心管中样品合在一个搅拌机中,均匀地破碎混合,重新称量15.1g转移至相同的离心管中。加入6g无水MgSO4、1.5g无水醋酸钠和15mL乙腈(含1%冰醋酸),盖上盖后手摇1min。草莓管中呈粉红色、苹果提取物为淡黄色、芹菜是饱和绿色。而后3500rmp离心3min,取上清液分成两等分,加入15mL离心管中(每个样品5ppm杀虫剂),加入25mgPSA和5mgGCB,盖盖后手摇30s,3200rmp离心1min后取上清液。经过浓缩净化后,上机检测。Geno/Grinder 高通量组织研磨机改良QuEChERS方法在每个样品瓶中加入3粒陶瓷研磨珠(货号2183)和5mL乙腈(含1%冰醋酸),放在Geno/Grinder高通量组织研磨机上1500rmp研磨2min,草莓样品已经呈浆状,苹果和芹菜较硬,研磨6min可以达到一致性很好的糊状。(添加少量的溶剂如5mL乙腈,可以起到润滑的作用,使研磨效果更佳。)然后,加入6g无水MgSO4、1.5g无水醋酸钠、10mL乙腈(含1%冰醋酸),重新盖好盖子,放在Geno 高通量组织研磨机上1500rmp均质1min。可以看到草莓管中的液体是粉红色的,苹果的是淡紫色的,芹菜是饱和的绿色,所有材料都是混合均匀、可流动的。而后3500rmp离心3min,取上清液分成两等分,加入15mL离心管中(每个样品5ppm杀虫剂),加入25mgPSA和5mgGCB,盖盖后Geno/Grinder组织研磨机上1500rmp均质30s,3200rmp离心1min后取上清液。经过浓缩净化后,上机检测。极简Geno/Grinder改良QuEChERS方法为了简化QuEChERS前处理步骤,Cole-Parmer(原Spex)应用工程师还做了这样的尝试,将6g无水MgSO4、1.5g无水醋酸钠、15mL乙腈(1%冰醋酸)添加到含15.1g的草莓离心管中,盖上盖子在Geno组织研磨机上1500rmp研磨4min,经过浓缩净化后,上机检测。草莓很好的与提取剂混合在仪器,但在苹果和芹菜的样品实验中并不理想,盐和部分样品结合在一起时,研磨介质对样品的研磨效果受阻,只实现了部分磨削。样品分析 两种方法浓缩净化后对样品颜色的对比:草莓样品苹果样品芹菜样品传统QuEChERS方法111Geno改良QuEChERS方法111使用HP 5890-GC,CV-5柱、5972-MSD检测器分析,35-450m/z,信噪比3:1,样本容量1ul。最终每个样本中标准农药浓度为5ppm,如上表格是三个样品中各农药的浓度检测结果。▲ 草莓样品的检测结果▲ 苹果样品的检测结果▲ 芹菜样品的检测结果可以明显看出,使用Geno/Grinder高通量组织研磨机均质化的样品,检测结果均优于传统方法。百菌清类的农药使用Geno/Grinder处理的样品也没有检测到其含量,优于本次实验中使用的方法没有针对特定类型的农药进行优化,有些农药不稳定也不足为奇。有趣的是图2苹果样品的检测结果中,Geno/Grinder处理的样品二苯胺的检测值是6.2ppm,比样品中引入的标准5ppm还要大,而传统方法只检测到了3.8ppm。二苯胺类杀虫剂在苹果种植中使用率很高,高于标准的部分,很有可能是苹果样品中自带的。充分证明Geno/Grinder高通量组织研磨机处理的样品,农药残留检测结果更接近样品的真值。结论同样的样品,同样的方法,Geno/Grinder高通量组织研磨机改良方法制备的样品,农药回收率明显高于传统QuEChERS方法。Geno/Grinder组织研磨机频率可调,在制备过程中,所有样品都以同样的方式振动,样品均一性、重复性更好,消除可变因素。Geno/Grinder组织研磨机一次可进行16个50mL离心管的研磨混匀,超高通量,可以有效的减少样品制备的时间,使实验更轻松。使用Geno/Grinder组织研磨机做均质化,还可以在均质的同时进行研磨,使提取剂与样品充分结合,提高提取效率和提取精度。说明:本应用由科尔帕默合作伙伴培安公司首次翻译。
  • 大科学装置助力材料高通量表征
    仪器信息网讯 2014年10月20日,材料基因组计划&mdash 高通量表征报告会在北京国际会议中心举行。与会的数位科学家介绍了材料基因组计划,以及散裂中子源和同步辐射光源等大科学装置在材料高通量表征中的应用及其在我国的建设情况。会议现场北京科技大学刘国权教授  材料基因组计划(又名Materials Genome Initiative),简称MGI,最早在2011年由美国政府提出。北京科技大学刘国权教授介绍说:&ldquo 今年5月,王崇愚院士、南策文院士等数十名专家组成的咨询专家组撰写了《材料基因组计划与高端制造业先进材料咨询建议报告》。另外,中国工程院撰写了《材料科学系统工程发展战略研究》,堪称中国版的材料基因组计划咨询报告。&rdquo 中国科学院高能物理研究所董宇辉研究员  中国科学院高能物理研究所董宇辉研究员介绍说:&ldquo 以往材料的研发,由于缺乏足够的参考数据,更多的是采用&ldquo 试错法&rdquo 。不断的试验各种化学配比、各种制备条件,检验制备的材料性能如何,然后考察这些材料在服役过程中的性能。之所以采取这种方式来探索新型材料,主要是因为我们对上述决定材料性能的环节了解的太少,而且没有系统的认识,只好根据经验来摸索,凭借努力和运气来发现合适的新材料,这无疑得花费很高的时间和成本。&rdquo   材料基因组的核心目标是将新材料的研发周期缩短,降低成本,因此需要高通量计算、高通量合成与快速表征以及数据信息库三部分之间的有效结合,其中高通量表征在材料基因组计划的重要部分。同步辐射光源和中子源由于其自身的特点和优势,无疑在材料的高通量表征中发挥举足轻重的作用。中国科学技术大学国家同步辐射实验室副主任高琛教授  中国科学技术大学国家同步辐射实验室副主任高琛教授介绍说:&ldquo 同步辐射光源具有高亮度,特别是高亮度的X射线能够给出精确的原子结构信息 同步辐射具有从红外到硬X射线的宽能谱,使得探测原子、电子、声子多种结构都有可能 同步辐射具有很好的准直性,可以获得纳米、微米、毫米各种尺寸的光斑,因而使得探测埃-纳米-微米,直到毫米级的多尺度成为可能。同步辐射光源的这些特点能为实现材料样品的高通量快速检测提供了条件。&rdquo   据介绍,目前,我国在北京、上海和合肥等地建有同步辐射光源装置。其中上海同步辐射光源装置首批7条光束线站已经对用户开放,其中6条线站可用于材料研究和表征。在未来线站工程规划中,微束白光劳厄衍射等光束线将能够进一步提升高通量材料芯片的表征能力。中科院能量转换材料重点实验室主任陆亚林教授  中科院能量转换材料重点实验室主任陆亚林教授介绍了合肥同步辐射光源装置的建设情况。他说:&ldquo 合肥的同步辐射光源装置始建于1984年,总投资6400万,建有5条光束线和实验站 1998-2004年,投资11800万,用于提高光源亮度和运行可靠性,并增建8条光束线和8个实验站 2012-2014年,再次投资18900万,增加安装波荡器的直线节,降低束流发射度,大幅度提高亮度,新建3台波荡器和10个光束线前端。&rdquo   此外,董宇辉介绍说,中科院还将计划在北京周边建设高能同步辐射光源,材料科学研究是该光源的首要目标之一,特别是高通量、原位实时的实验技术,将为材料基因组的高通量、多尺度分析提供重要技术支撑。中国科学院物理研究所CSNS靶站谱仪工程中心王芳卫研究员  中子不带电,穿透性强,有磁矩。因此,中子散射具有许多独一无二的特点,成为探测研究材料的微观结构与动力学的强有力工具之一,与同步辐射互为补充。中国科学院物理研究所CSNS靶站谱仪工程中心王芳卫研究员介绍说:&ldquo 散裂中子源是中子散射研究和应用的主要平台,具有脉冲中子通量高,中子波段宽,及脉冲时间结构。这些特点为高通量、高分辨率、复合体系的微观结构和动态测量(特别是在固态量子材料、生物软物质材料和工程结构材料等领域)带来新的契机。&rdquo   王芳卫介绍说,我国于2011年10月在广东省东莞市开始建设散裂中子源。中国散裂中子源(CSNS,China Spallation Neutron Source)是发展中国家拥有的第一台散裂中子源,目前关键设备设计均已完成,预计2018年3月完成实验验收并对用户开放。  CSNS一期设计的束流功率为100kW,脉冲中子通量将大于2*105/(cm2/s),进入世界四大散裂中子源行列,将来升级到500kW后中子通量将提高到~1016/(cm2/s)。  CSNS设计拥有3个中子慢化器,能产生4种不同脉冲特性的中子束流,提供20条束道用于中子散射研究。不过由于项目建设经费的限制,一期工程仅建有3台谱仪,严重制约CSNS的应用范围。CSNS科技委员会和461次香山会议的专家都呼吁加紧规划和申请剩余束道的谱仪建设。因此特申请在国家&ldquo 十三五&rdquo 计划期间,增资建设其余17台特色中子散射谱仪,使CSNS高效、全面地服务于我国科学技术前沿研究。
  • 高通量基因组测序等三项革命性技术服务于医疗领域势不可挡!
    p  随着人们探索和操控基因组技术的进步,生物医学也迎来了前所未有的发展机遇。在过去,人们形容新事物发展速度喜好用“火箭”般,而如今测序技术的推进,医疗技术也正以“基因”数据的递增速度而快速进步。/pp style="TEXT-ALIGN: center"img style="WIDTH: 450px HEIGHT: 366px" title="1.jpg" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201601/noimg/3be80e62-fc24-44d6-817e-5b970178a9cf.jpg" width="450" height="366"//pp style="TEXT-ALIGN: center"  安永预测的2020年医疗服务模式/pp  美国杰克逊实验室(The Jackson Laboratory)建立于1929年,是一个非赢利性的独立研究机构。80多年以来,杰克逊实验室的科学家们一直从事基于小鼠的生物医学研究,并在小鼠的繁育、小鼠遗传学和在研究中如何选择运用实验小鼠方面积累了大量的宝贵知识和经验。/pp  作为世界最大的遗传基因工程研究中心,杰克逊实验室认为:有三项技术正在势不可挡地服务于制药和医疗领域,依次是:高通量基因组测序,CRISPR基因编辑和单细胞基因组学。借助于上述技术,科学家们逐渐揭开了蕴藏于人体的DNA的奥秘,并试图溯源复杂疾病的本质。本文主要从它们如何出现?如何工作?以及如何改变生物医学进程三个方面来阐述这3大技术。/pp  strong高通量基因组测序/strong/pp  strong如何出现?/strong/pp  人体的基因有30亿个碱基对,由碱基对排列差异造成了人与人之间的差异。为了发现这些差异,科学家发明了仪器来读取A、G、C、T的意义。尤其是高通量测序技术是对传统测序一次革命性的改变,一次对几十万到几百万条DNA分子进行序列测定,使得对一个物种的转录组和基因组进行细致全貌的分析成为可能,所以又被称为深度测序。/pp  2005年,454公司首先推出了二代测序仪 2006年,Solexa推出了Genome Analyzer 2007年年初Illumina收购了Solexa公司,在随后的几年陆续推出了Hiseq、MiSeq、NextSeq等多种系列测序仪 ABI推出了SOLiD测序平台,随后收购了454测序仪发明者创立的Ion Torrent,转而大力推广PGM和Ion Proton平台 2014年,也就是高通量测序技术发展的第十年,Illumina公司的Hiseq X平台已经实现了1000美金一个人类基因组测序的目标。2015年,华大子公司CG推出新款“超级测序仪”Revolocity?,该系统结合了Complete Genomics新一代测序技术和操作经验,可以对人全血、唾液等各种样本进行自动化的DNA提取。/pp  strong如何工作?/strong/pp  高通量基因组测序主要包括样本准备(sample fragmentation)、文库构建(library preparation)、测序反应(sequencing reaction)、数据分析(data analysis)。由于具体操作已经是人尽皆知,在此不赘述。/pp  strong如何改变生物医学进程?/strong/pp  高通量测序(NGS)从兴起到现在已有10余年的时间,但其成本下降依旧只是这几年的事情。随着成本的不断下降,高通量DNA测序平台已经发展为基因组和各种基因文库序列检测的强大工具。大容量的抗体基因库是目前获得抗体新药的基础,高通量DNA测序技术为从海量的抗体基因库中快速发现功能抗体分子提供了可能。/pp style="TEXT-ALIGN: center"img style="WIDTH: 450px HEIGHT: 338px" title="2.jpg" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201601/noimg/e7f238c7-b10b-41ef-8f55-b78132d2e3bc.jpg" width="450" height="338"//pp style="TEXT-ALIGN: center"  NIH统计的读取DNA序列成本/pp  1000美金价格的实现比十年前的30亿美金降低了300万倍。除此以外,还有一些公司开发了第三代测序仪,比如Pacific Biosciences的PacBio RS测序仪,DNA模板无需二代测序常用的PCR扩增的方法,就可以实现长读长、实时的测序 Oxford Nanopore MinION测序仪只有USB存储器那么大等等。/pp style="TEXT-ALIGN: center"img style="WIDTH: 450px HEIGHT: 300px" title="3.jpg" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201601/noimg/27198d7b-8d57-45f9-956d-a171bed7410f.jpg" width="450" height="300"//pp style="TEXT-ALIGN: center"  NIH统计的基因组测序价格/pp  随着高通量测序的普及,全基因组测序将越来越普遍(花更少的时间和金钱),基于NGS平台展开的各类医疗服务,犹如基于ios系统的APP,在一个较小的平台上,可以按需使用相关的检测,实现大规模并行测序。/pp  strongCRISPR基因编辑/strong/pp  strong如何出现?/strong/pp  在细菌的基因末端,一段 DNA序列会紧接着一段它自己的反向序列,然后再接一段大约30bp左右的、貌似是由碱基随机排列而成的DNA序列,科学家们曾称之为“空格DNA(spacer DNA)”,由于在大约40%的细菌和90%的古细菌(archaea)中都能够观察到这种现象,于是科学家们给这种序列取了一个名字——成簇的、规律间隔的短回文重复序列(Clustered Regularly Interspaced Short Palindromic Repeats),简而言之CRISPR。如今,CRISPR热度已赶超上世纪末开始大放光彩的简称PCR的聚合酶链式反应(Polymerase Chain Reaction)。/pp  strong如何工作?/strong/pp style="TEXT-ALIGN: center"strongimg style="WIDTH: 450px HEIGHT: 429px" title="4.jpg" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201601/noimg/a38ec20e-35f3-4839-a2e8-f33de8fac2c2.jpg" width="450" height="429"//strong/pp  CRISPR/Cas9技术的产生与DNA测序技术的进步密不可分。CRISPR由两部分组成:一部分是可以切割基因的“手术刀”蛋白Cas9 另一部分是拖着“手术刀”在基因组的“茫茫大海”中精确定位的向导RNA(Guide RNA)。一些科学家用灭活版本的Cas9蛋白与向导RNA结合,改造出只有精确定位功能的CRISPR技术,可用来关闭或打开几乎任何单个基因,或者精细地调控它们的活跃程度,这被视为令人激动的一个研究方向。/pp  strong如何改变生物医学进程?/strong/pp  几千年来,人类一直在改造大自然。现在,有了被誉为“基因剪刀”的CRISPR基因组编辑技术,人类有望以前所未有的能力改造自身。CRISPR技术问世仅3年,就已被全世界生物医学实验室和制药企业广泛应用。/pp  首先,通过CRISPR方法构建一种小鼠动物病理模型仅需数周,远低于过去的近1年时间,并能以更快的速度对基因进行研究,同时可以一次对细胞内的多个基因进行遗传学改造,研究这些基因之间的相互作用 其次,通过CRISPR技术成功打造“基因驱动”系统,并被用于根除疟疾、登革热等虫媒疾病、消灭或控制入侵物种等 第三,哈佛大学研究人员利用CRISPR技术一次性敲除猪细胞中62个逆转录病毒基因,从而扫清猪器官用于人体移植的重大难关,给异种器官移植工作带来了曙光,为全世界需要器官移植的上百万病人带来希望 第四,中山大学黄军就利用CRISPR技术成功修改人类胚胎基因,或可用于治疗地中海贫血等疾病。/pp  科学家们梦想能操纵基因,CRISPR如今让它成为现实,它的能力令人极其兴奋。科研人员相信,在CRISPR的推动下,一场生物医学领域的革命正在到来。无论好坏,我们正翱翔在CRISPR的世界里。/pp  strong单细胞测序是一个新兴的领域/strong/pp  strong如何出现?/strong/pp  细胞是生物学的基本单位,人体大约由200种不同类型近40兆(trillion)个细胞组成。在这种显著的多样性中,科学家们通常都是在大批量地探索细胞,曾发现了一种对成千上万个细胞一次分析的办法,不过这反映的是人体的整个细胞,而不是单个特定细胞状况。出现这种状况的原因是从单个细胞中提取的DNA(RNA/蛋白)不足以进行基因组规模的研究。/pp style="TEXT-ALIGN: center"img title="5.gif" src="http://img1.17img.cn/17img/images/201601/noimg/39110477-e58d-476b-852a-35794be32935.jpg"//pp style="TEXT-ALIGN: center"  捕获单个细胞和泡沫分离的液体,并准备进行分析/pp  单细胞测序指DNA研究中涉及测序单细胞微生物相对简单的基因组,更大更复杂的人类细胞基因组,是在单细胞水平对全基因组进行扩增与测序的一项新技术。尽管早在1990年,Norman Iscove的课题组就通过PCR技术实现了对cDNA分子的指数级扩增,证实对单细胞进行转录组分析是可行的 但单细胞测序萌芽于2010年,2013年左右才真正发展起来 2014年,单细胞测序的应用被列为Nature Methods年度最重要的方法学进展 2015基因组学前沿研讨会将单细胞组学单独列为一个单元。/pp  strong如何工作?/strong/pp style="TEXT-ALIGN: center"strongimg style="WIDTH: 450px HEIGHT: 319px" title="6.jpg" border="0" hspace="0" src="http://img1.17img.cn/17img/images/201601/noimg/d1abc8a9-c305-47a3-8c66-3aec359bedd0.jpg" width="450" height="319"//strong/pp style="TEXT-ALIGN: center"  单细胞测序的工作流/pp  单细胞测序分为单细胞转录组测序和单细胞基因组测序。单细胞转录组测序分为:单细胞DGE、单细胞polyA测序、单细胞lncRNA测序 单细胞基因组测序分为:单细胞外显子组测序和单细胞全基因组重测序。/pp  strong /strong/pp  单细胞测序技术在临床医学上的应用主要包括癌症领域和生殖领域的应用。譬如华大基因用解析单细胞基因组研究原发性血小板增多症(一种血癌)和肾透明细胞癌(一种肾癌)的肿瘤内部遗传特征 MD安德森癌症中心的遗传学家通过单细胞分辨率乳腺癌遗传学发现单个细胞通常包含数十个罕见突变,而这些突变采用大型肿瘤测序方法通常无法检测到 Smart-Seq的基因组测序方法可以深入分析临床相关的单细胞 谢晓亮团队通过MALBAC进行单基因遗传病和染色体异常同时筛查助力孕妇诞生了试管婴儿。/pp  总之,利用单细胞基因组学,研究人员可以逆向操控发育过程,揭示出了单个的前体细胞类型是如何生成这两种不同的成熟肺泡细胞的。在个别细胞之间的遗传差异表达方面拥有无与伦比的优势,为癌症发生、发展机制及其诊断、治疗提供了新的研究思路并开辟了新的研究方向。杰克逊实验室单细胞基因组学研究室主任Paul Robson在一份声明中表示,目前单细胞基因组学技术正在快速发展,而增加专门从事研究领域的实验室或将为更多的生物学家提供最好的可用工具来进行基因组学研究 单细胞基因组学研究中心的成立或将为更多的联合研究提供更多机会。/p
  • 合肥研究院高通量紧凑型聚变体积中子源研究取得进展
    style type="text/css".TRS_Editor P{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor DIV{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TD{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor TH{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor SPAN{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor FONT{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor UL{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor LI{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }.TRS_Editor A{margin-top:0px margin-bottom:12px line-height:1.8 font-family:宋体 font-size:10.5pt }/stylep  近日,中国科学院合肥物质科学研究院核能安全技术研究所· FDS凤麟核能团队,在高通量紧凑型聚变体积中子源研究方面取得新进展,相关成果以emHigh-field neutral beam injection for improving the Q of a gas dynamic trap-based fusion neutron source/em为题,发表在emNuclear Fusion/em上。/pp  对聚变材料/部件在高能高通量聚变中子环境下的服役性能进行测试和验证,是未来商用聚变堆投入使用的必要条件;发展高通量的聚变中子源因此成为学界研究焦点。其中基于气动磁镜(Gas Dynamic Trap)的聚变中子源,因其具有物理与工程技术难度小、中子通量高、辐照体积大、结构紧凑、成本较低等优势,获得国际同行广泛关注。/pp  核能安全所近年来发展并完成了基于气动磁镜的高通量紧凑型体积聚变中子源概念设计,创新性地提出了强磁场位置注入中性束的设计方案,提高了在真空室两端聚集的快离子密度和相应的聚变功率密度。理论结果表明,此创新方案设计能够使基于气动磁镜的聚变中子源能量增益在现有设计的物理和工程基础之上提高2~3倍。Nuclear Fusion审稿人评价该研究“对气动磁镜的改进优化设计能够有效提升其作为中子源的性能”。/pp  此项研究成果为高通量紧凑型聚变体积中子源提供了有竞争力的方案,为有效解决聚变核科学与核技术问题提供了新途径。此外,在发展聚变驱动乏燃料焚烧堆等方面具有重要应用前景。研究工作得到了国际原子能机构协调合作研究项目、国家自然科学基金重大研究计划和青年科学基金项目的资助。/ppbr//pp style="text-align:center "img alt="" oldsrc="W020171211287540552692.jpg" src="http://img1.17img.cn/17img/images/201712/uepic/f569afcc-745e-442a-9d48-9938bfb642e3.jpg"//pp style="text-align: center "气动磁镜强磁场位置注入中性束示意图/p
  • 中科大“太赫兹近场高通量材料物性测试系统”项目启动
    p  4月6日上午,由国家自然科学基金委组织、中国科学技术大学教授陆亚林承担的国家重大科研仪器研制项目“太赫兹近场高通量材料物性测试系统”项目启动会在中国科大召开。启动会后,联席召开了管理工作组和监理组会议。/pp  管理工作组专家组组长由清华大学教授、中科院院士南策文担任。/pp  国家自然科学基金委工程与材料学部副主任车成卫宣布项目正式启动,并指出了设立国家重大科研仪器研制项目的重要意义。同时,他就国家重大科研仪器研制项目的定位、要求、设想、管理体制、项目管理部门、项目组织部门和项目依托单位职责等进行了说明。/pp  中国科大副校长朱长飞代表依托单位致辞,表示中国科大将大力支持该项目实施。/pp  在中科院院士南策文的主持下,管理工作组和监理组听取了项目负责人陆亚林所作的有关项目总体工作安排以及2017年度计划的项目启动工作详细报告。随后,三位分总体负责人也就各自负责的分总体工作安排作了报告。/pp  报告完成后,与会专家和负责人与项目组成员就项目工作安排、项目组织实施、可能面临的关键问题及技术难点等进行了热烈交流和讨论,对项目实施提出了建设性意见和建议。大家强调,项目实施过程中应重点关注系统集成的难度,充分运用多种方式研究各分系统间的相互干扰问题,做好风险防控 项目设计和研制过程中要注重仪器研制与重大科学问题的关联,充分考虑仪器的稳定性、可靠性和实用性 项目依托单位应进一步加强对项目组在人力、物力、基础条件等方面的支持。/pp  最后,管理工作组和监理组经过讨论和现场考察后认为,项目立项目标明确,总体设计方案合理,五年研制计划可行 2017年度工作计划具体,组织实施管理办法可靠 项目承担单位具有很好的学科支撑条件和先进的公共科研设施,为该项目的实施提供了良好的工作平台。管理工作组和监理组认为,该项目具备了启动研制工作的充分条件,一致同意尽快启动该仪器的研制工作。/pp  “太赫兹近场高通量材料物性测试系统”于2016年11月获批实施,期限自2017年1月起,至2021年12月。项目目标为研制一套全新的太赫兹近场高通量材料物性测试系统,系统将通过集成可调谐预聚束太赫兹自由电子激光与宽谱脉冲光源、探针和样品双扫描模式等核心技术,实现在可控温度、矢量磁场、电场等条件下对功能材料在宽太赫兹谱段范围的复光学常数的高空间时间分辨、高灵敏测量,并通过复光学常数与功能材料的特征物性之间的共性关联,揭示与之直接关联的功能材料特征物性,可以实施材料物性精密测量和快速材料筛选,仪器研制成功后有望在材料基因组工程、功能材料等方面的研究上获得重要应用,对进一步发现新材料将起到十分重要的作用。/ppbr//p
  • 耶拿与Illumina 达成合作 进军高通量基因分型市场
    日前,德国耶拿分析仪器公司(简称耶拿)与Illumina公司达成合作。合作之后,耶拿将进入正在增长的基因分型市场。目前该市场由Illumina提供技术,基于96样本的Infinium XT BeadChip,Illumina公司提供超高通量样品制备,进而提供解决方案。  “这种合作关系将进一步加强耶拿在基因组学市场的地位,” 耶拿首席执行官 Ulrich Krauss说。“我们期待与Illumina公司及其客户合作开展高通量基因分型解决方案相关工作。”  此次签署的协议包括联合开发和营销。耶拿的自动化技术承诺超高通量基因分型,从几十万到100万样品每年。Illumina公司Infinium家族的基因分型检测、BeadChip平台,保证高的数据质量,好的重现性,以及低的错误率。  再加上CyBioFeliX平台,容量和样品处理量增加,同时软件也允许无缝过渡。协议简化,实时数据生成、分析,按需QC报告等是这个平台的一些最新的可用功能,此外交互式用户界面还充分结合下一代Illumina LIMS。  “CyBioFeliX系统将帮助我们的客户优化基因分型结果,经济效益上更划算,具有更多可扩展性,工作效率更高,” Illumina公司Arrays高级主管Jason Johnson说。“我们对这个平台以及耶拿的承诺印象深刻,未来可以为我们的客户提供特殊的体验,继续与他们共同开展业务。”
  • 综述:高通量太赫兹成像进展与挑战
    无损评估、生物医学诊断和安全筛查等诸多令人兴奋的太赫兹(THz)成像应用,由于成像系统的光栅扫描要求导致其成像速度非常慢,因此在实际应用中一直受到限制。然而,太赫兹成像系统的最新进展极大地提高了成像通量(imaging throughput),并使实验室中的太赫兹技术更加接近现实应用。据麦姆斯咨询报道,近日,美国加州大学洛杉矶分校(University of California Los Angeles,UCLA)的科研团队在Light: Science & Applications期刊上发表了以“High-throughput terahertz imaging: progress and challenges”为主题的综述论文。该论文第一作者为Xurong Li,通讯作者为Mona Jarrahi。该论文主要从硬件和计算成像两个角度回顾了太赫兹成像技术的发展。首先,研究人员介绍并比较了使用热探测、光子探测和场探测的图像传感器阵列实现频域成像与时域成像时的各类硬件。随后,研究人员讨论了利用不同成像硬件和计算成像算法实现高通量捕获飞行时间(ToF)、光谱、相位和强度图像数据的方法。最后,研究人员简要介绍了高通量太赫兹成像系统的未来发展前景和面临的挑战。基于图像传感器阵列的太赫兹成像系统(硬件方面)然而,并非所有类型的图像传感器都能够扩展到大型阵列,但这是高通量成像的关键要求。这部分内容重点介绍了基于各类图像传感器阵列的高通量太赫兹成像系统。这些太赫兹成像系统的性能主要通过空间带宽积(SBP)、灵敏度、动态范围以及成像速度等指标在其工作频率范围内进行量化。太赫兹频域成像系统在热探测太赫兹成像仪中,微测辐射热计是最广泛使用的图像传感器之一,它将接收到的太赫兹辐射所引起的温度变化转化为热敏电阻材料的电导率变化。氧化钒(VOx)和非晶硅(α-Si)是室温微测辐射热计最常用的热敏电阻材料。使用微测辐射热计图像传感器阵列捕获太赫兹图像的示例如图2a所示。热释电探测器是另一类热成像传感器,它将接收到的太赫兹辐射所引起的温度变化转化为能以电子方式感测的热释电晶体的极化变化。图1 目前最先进的频域太赫兹图像传感器的性能对比图2 基于图像传感器阵列的太赫兹频域成像系统示例对于室温太赫兹成像,场效应晶体管(FET)图像传感器是微测辐射热计图像传感器的主要竞争对手。FET图像传感器的主要优势之一是具有出色的可扩展性。与室温微测辐射热计图像传感器相比,FET图像传感器通常工作在较低的太赫兹频率下,其灵敏度也较低。然而,由于无需热探测过程,FET图像传感器可以提供更高的成像速度。使用FET图像传感器阵列捕获太赫兹图像的示例如图2b所示。光子探测器作为可见光成像仪中最主要的图像传感器,在太赫兹成像中也发挥着至关重要的作用。除低温制冷要求外,太赫兹光子探测器还有另外两方面的限制:工作频率限制(高于1.5 THz)以及可扩展性限制(难以实现高像素的探测器阵列)。使用光子探测图像传感器阵列捕获太赫兹图像的示例如图2c所示。另外,可以利用量子点或激光激发的原子蒸汽将从成像物体接收到的太赫兹光子转换为可见光子,并且可以利用光学相机在室温下实现对大量像素的高通量成像。然而,太赫兹到可见光的光子转换过程需要复杂且笨重的装置来实现。与光子成像仪相比,超导太赫兹成像仪可以提供同等水平甚至更高的灵敏度。同时,它们具有更好的可扩展性,并且能够在较低的太赫兹频段工作。超导成像仪主要有四种类型:过渡边缘传感器(TES)、动态电感探测器(KID)、动态电感测辐射热计(KIB)和量子电容探测器(QCD)。使用超导图像传感器阵列捕获太赫兹图像的示例如图2d所示。到目前为止,所讨论的频率域太赫兹成像仪均是进行非相干成像,并且仅能解析被成像物体的强度响应。相干太赫兹成像可使用外差探测方案来解析成像物体的振幅和相位响应。通过将接收到的来自成像物体的辐射与本振(LO)波束混合,并将太赫兹频率下转换为射频(RF)中频(IF),可将高性能射频电子器件用于相干信号探测。超导体-绝缘体-超导体(SIS)、热电子测辐射热计(HEB)、肖特基二极管、FET混频器和光电混频器可用于太赫兹到射频的频率下转换。由于外差探测架构的复杂性,所展示的相干太赫兹成像仪灵敏度被限制在数十个像素。太赫兹时域成像系统基于时域光谱(TDS)的太赫兹脉冲成像仪是另一种相干成像仪,它不仅能提供被成像物体的振幅和相位信息,还能提供被成像物体的超快时间和光谱信息。THz-TDS成像系统使用光导天线或非线性光学操纵在泵浦探针成像装置中产生和探测太赫兹波(如图3)。图3 太赫兹时域成像系统示意图:(a)太赫兹光电导天线阵列成像;(b)太赫兹电光取样成像。传统的THz-TDS成像系统通常是单像素的,并且需要光栅扫描来获取图像数据;而为了解决单像素THz-TDS成像系统成像速度慢、体积庞大又复杂的问题,基于电光效应和光导效应的图像传感器阵列已被采用。图4a为使用光学相机的电光采样技术捕获太赫兹图像的示例。基于电光采样的无光栅扫描THz-TDS成像系统既可用于远场太赫兹成像,也可用于近场太赫兹成像(如图4b)。无光栅扫描THz-TDS成像的另一种方法是使用光导图像传感器阵列(如图4c)。基于光导效应和电光效应图像传感器的无光栅扫描THz-TDS成像系统能够同时采集所有像素的数据。然而,时域扫描所需的光学延迟阶段的特性对整体成像速度造成了另一个限制。图4 基于电光效应和光导效应的图像传感器阵列的太赫兹时域成像系统示例研究人员对基于图像传感器阵列的不同太赫兹成像系统的功能和局限性进行了分析,如图5所示。频域成像系统只能解析被成像物体在单一频率或宽频率范围的振幅响应,无法获得超快时间和多光谱信息;但同时,它们配置灵活,可以使用不同类型的太赫兹光源,以实现主动和被动太赫兹成像。时域成像系统则既可以解析被成像物体的振幅和相位响应,也可以解析超快时间和多光谱信息;然而,它们只能用于主动太赫兹成像,并且需要带有可变光学延迟线的泵浦探针成像装置,从而增加了成像硬件的尺寸、成本和复杂性。图5 基于图像传感器阵列的不同太赫兹成像系统的功能和局限性分析虽然太赫兹成像系统的功能通常由上述原理决定,但可以通过修改其运行架构,以实现新的和/或增强功能。太赫兹光谱各类成像方案如图6所示。图6 太赫兹光谱各类成像方案太赫兹计算成像这部分内容主要介绍了各类计算成像方法,这些方法不仅提供了更多的成像功能,而且减轻了由太赫兹成像带来的对高通量操作的限制(放宽了对高通量太赫兹成像硬件的要求)。太赫兹数字全息成像全息成像允许从与物体和参考物相互作用的两光束的干涉图中提取目标信息。太赫兹全息成像系统利用离轴或同轴干涉。与利用THz-TDS成像系统进行相位成像相比,太赫兹数字全息成像无需基于飞秒激光装置并且更具成本效益。对太赫兹辐射源和图像传感器阵列的选择也更加灵活,可以根据工作频率进行优化。然而,太赫兹数字全息成像对成像物体有着更多限制,并且在对多层次和/或高损耗对象成像时受到限制。基于空间场景编码的太赫兹单像素成像与使用太赫兹图像传感器阵列直接捕获图像相比,太赫兹单像素传感器可以通过利用已知空间模式序列来顺序测量并记录空间调制场景的太赫兹响应,从而重建物体的图像。与用于频域和时域成像系统的太赫兹图像传感器阵列相比,该成像方案得益于大多数太赫兹单像素传感器的优越性能(如信噪比、动态范围、工作带宽)。图7总结了太赫兹单像素成像系统的发展。值得一提的是,压缩感知算法不仅适用于单像素成像,也可用于提高多像素图像传感器阵列的成像通量。图7 基于空间波束编码的太赫兹单像素成像系统的发展基于衍射编码的太赫兹计算成像到目前为止,本文介绍的太赫兹成像系统遵循的范式主要依赖于基于计算机的数字处理来重建所需图像。然而,基于数字处理的重建并非没有局限性。为了解决的其中一些挑战,最佳策略可以是为特定任务的光学编码设计光学前端,并使其能够接管通常由数字后端处理的一些计算任务。近期,一种新型光学信息处理架构正兴起,它以级联的方式结合了多个可优化的衍射层;这些衍射表面一旦优化,就可以利用光与物质相互作用,在输入和输出视场之间共同执行复杂的功能,如图8所示。近年来,衍射深度神经网络技术(D²NN)在太赫兹成像方面有着非常广泛的应用,例如图像分类,抗干扰成像,以及相位成像。图8 基于衍射深度神经网络(D²NN)的太赫兹计算成像系统示意图总结与展望综上所述,高通量太赫兹成像系统将通过深耕成像硬件和计算成像算法而持续发展,目标是具有更大带宽、更高灵敏度和更大动态范围的超高通量成像系统,同时还能为特定应用定制成像功能。太赫兹计算成像技术有望与量子探测、压缩成像、深度学习等技术相结合,为太赫兹成像提供更多的功能及更广泛的应用。研究人员坚信太赫兹成像科学与技术将蓬勃发展,未来太赫兹成像系统不仅会大规模应用于科学实验室和工业环境中,而且还将在日常生活中显著增长。这项研究获得了美国能源部资金(DE-SC0016925)的资助和支持。论文链接:https://doi.org/10.1038/s41377-023-01278-0
  • 12月1日正式实施!高通量测序基因分型系统规范全文及解读
    国家标准《信息技术 生物特征识别 高通量测序基因分型系统规范》 由TC28(全国信息技术标准化技术委员会)归口,TC28SC37(全国信息技术标准化技术委员会生物特征识别分会)执行 ,主管部门为国家标准化管理委员会。该标准于今年5月23日发布,将于12月1日正式实施。主要起草单位 深圳华大法医科技有限公司 、中国电子技术标准化研究院 、山西医科大学 、西安交通大学 、华南理工大学 、深圳华大基因股份有限公司 、上海国际人类表型组研究院 、深圳华大基因科技有限公司 、深圳华大智造科技股份有限公司 、清华大学 、福州数据技术研究院有限公司 、福建省公安厅刑事技术总队 、广东省公安厅刑事技术中心 、临汾市公安局 、武汉益鼎天养生物科技有限公司 、北京中科虹霸科技有限公司 。主要起草人 高升杰 、杨建军 、严江伟 、耿力 、刘倩颖 、王文峰 、赖江华 、沈悦生 、宋继伟 、张洪波 、杜红丽 、郭云峰 、吴昊 、李泽琴 、张奕 、丁国徽 、苏立伟 、钟陈 、张蕾 、汪小我 、李博文 、王秋娟 、李海燕 、黄建春 、段晋琦 、沈鹤霄 、李星光 、魏曙光 、康恒亮 、穆豪放 、姜华艳 、郭小森 、尹烨 。《信息技术 生物特征识别 高通量测序基因分型系统规范》国家标准解读:一、 标准编号及标准名称标准编号为:GB/T 42751-2023;标准名称:信息技术 生物特征识别 高通量测序基因分型系统规范二、 标准制定背景2015年国务院办公厅印发《国家标准化体系建设发展规划 (2016-2020年) 》报告指出加强生物计量与质量控制等基础通用标准的研制。同时国家标准委联合九部门发布《战略性新兴产业标准化发展规划》,也指出需加快基因测序等技术研发应用,支撑产业高端发展。高通量基因测序逐渐被人们知晓和应用,国家对于高通量基因测序相关的扶持和投入比重也越来越大。2012年全球基因测序市场规模为35亿美元,截至2015年已上涨到59亿美元,3年增长为原来的1.69倍,复合年平均增长率19.0%,预计2020年将达到138亿美元。具有十分可观的经济效益。本文件的制定一方面会加速测序仪国产化进程,提高国产化技术水平,确立了面向基因测序世界水平的一个技术目标和门槛,提升追赶国际主流水平的速度;另一方面也可加快国产核心技术和通用技术的标准化,并能有效促进基因测序应用的全面普及,加快市场对于基因测序产品的认可和接受。三、 标准主要内容本文件规定了高通量测序基因分型系统的组成、功能要求、性能要求、信息安全要求及测试方法。本文件适用于基于高通量测序的基因分型系统的设计、研发、测试与评估。高通量测序基因分型系统是通过对遗传标记STR、SNP的自动分型实现对生物特征的识别。其流程是将高通量测试设备下机数据经过预处理、序列比对、位点覆盖深度及长度算法。该系统能有效实现生物信息分析自动化和标准化。使得高通量测序基因分型的实用性大大提高。四、 标准实施意义本文件的制定有利于对目前研究、开发、使用的高通量测序基因分型系统进行规范要求,保障各类分型系统对基因分型进行有效、准确的分型,为系统开发人员、部署人员和用户提供一套标准的测试方法,从而促进我国个体身份鉴定产业健康稳定快速发展。附标准:
  • 机器人做流变测试!安东帕全自动高通量流变测试系统带您体验人工智能
    今天要给大家介绍一款神操作——由机器人指挥并操作的流变测量系统在涂料行业中的应用。什么?机器人做流变测试?是的,你没听错。安东帕的自动化与机器人解决方案部门 (A&R)已经在一家世界500强的涂料公司部署HTR502全自动高通量流变测试系统(Rheometer automation for high sample throughput and complex sample handling),用于飞机和船舶涂料的研发和质量控制。有了安东帕流变仪机器人解决方案,客户可以在24小时内完全自动分析多达120个样品。 整套解决方案除了MCR502流变仪之外,它还包含一个多轴机器人,以及样品装载和样品清洗模块。如果装满120个样品瓶,自动机器人会首先取出第一个样品并进行扫描以进行产品监测,然后机器人将小瓶放入混合器中,确保样品均匀混合;下一步是打开样品瓶并测量pH值;最后,机器人使用一次性塑料移液管将适量样品注入流变仪中。在进行流变测量时,机器人会关闭样品容器并放回样品台,然后开始清洁pH系统。测量完成后,机器人会自动取下流变测量转子,送到清洁模块中进行清洗干燥,并准备进行下一个样品的分析。 此“高通量样品(HTX)平台”不仅适用于流变测量,也适用于其他全自动的样品制备和常规分析,例如黏度或密度测量。HTR自动化高通量流变仪 安东帕的全自动高通量流变测试系统-HTR是流变测量领域一个创新的里程碑:基本的MCR流变仪设置仍然像以前一样模块化和可定制 - 不同之处在于HTR现在可以自动执行所有测量步骤,并由机器人操作。在其标准设置中,它可以在一次运行中处理96个样品 - 每天24小时连续工作,实验室工作人员几乎可以在整个工作日内无需手动操作,只需在实验完成后收回样品。HTR可以使用同圆筒、锥板、平行板夹具进行测量 - 这是自动HTR系统的绝对新颖之处。此外,此系统还可以集成pH计,用于自动测量pH值。安东帕的高通量流变仪听起来像未来世界的事物 - 因为它确实如此。HTR设计用于承受连续运行的需求,在您的投资得到回报后的很长时间它仍然处于完美状态。紧凑型HTR自动化高通量流变仪紧凑型 HTR 102/302 基于台式仪器设计,为流变样品的持续自动化测量铺就了道路。已安装的安东帕 MCR 102 或 MCR 302 流变仪可测量旋转和振荡模式下的液体和糊状样品。每天最多可分析 250 个样品,同时,自动封口/开封设备可保护样品不受环境影响。紧凑型 HTR 102/302 可测量食品、聚合物、油漆、涂料等各种流变样品。- 托盘可存放36个样品 - 可在操作过程中添加样品瓶 - 流变仪和样品台并行独立运行-由于流变仪和自动化装置的机械分离,实现了实验室高精度测量- 使用作业列表轻松管理样品 - LIMS集成(文件传输,数据库,以太网) - 可以随时引入优先测量样品
  • PlantScreen高通量植物表型系统火热安装中”系列报道(一)
    癸卯春节 安装启动! 2023年农历春节,各地沉浸在轻松欢快的节日氛围,而在中国农科院作科所的温室里,中国农科院的研究人员、PSI公司和北京易科泰公司的工程师投身于PlantScreen高通量植物表型系统——作物高光效高效筛查与鉴定表型平台的安装工作中,现场一片火热繁忙的景象。 从正月的初三到十四,短短的两周时间里,PlantScreen高通量植物表型系统平地而起。庞大的规模、现代感十足的外观、火热的安装场面,吸引假期期间仍在温室里辛苦劳作的研究人员纷纷驻足观看,询问安装进度,热切表达了希望未来能够使用这套系统开展实验的愿望。 PlantScreen高通量植物表型系统由国际知名的表型系统制造厂商PSI研发,整合了LED植物智能培养、自动化植物传送、多种光学成像传感器(FluorCam叶绿素荧光成像、多光谱荧光成像、可见光近红外及短波红外高光谱成像、植物热成像、RGB真彩3D成像、激光雷达3D成像、根系成像等)、自动条码识别管理、自动称重与浇灌、电脑自动控制及数据处理等多项先进技术,能够以最优化的方式对大量植物样品的生理状态、生化组分、形态结构的进行自动成像分析。 系统有效解决了传统植物表型分析技术中存在的精度低、费时费力、适用性差等问题,具备高效准确的特点,并可实现全生育期的无损动态监测;被广泛用于研究不同环境因子及基因型对植物生长、产量、质量的影响,揭示可控环境下基因组与环境等因素互作进而调控作物表型的分子机理。截止2020年底,PlantScreen在全球累积销售/装机量超过50台。主要用户有荷兰瓦格宁根大学、德国莱布尼茨植物遗传和作物研究所、芬兰赫尔辛基大学、澳大利亚国立大学等全球知名的农业学府和顶级研究机构(下图中的PlantScreen系统于2020年安装在都柏林大学),也不乏杜邦先锋、孟山都、巴斯夫等农业企业巨头。 作为PSI公司的合作伙伴和大中华区技术服务中心,成立20年来北京易科泰生态技术有限公司致力于精密、高端植物和藻类实验设备和技术的引进推广及自主研发,迄今为止已为中科院植物所、中国农科院、中科院水生所、中国农业大学、西北农林科技大学等国内知名农业院校和机构提供了大量仪器设备及技术支持。此次安装的PlantScreen高通量植物表型系统通量为4000株种苗/200株成体,配备FluorCam叶绿素荧光成像、RGB真彩3D成像、激光雷达3D成像、植物热成像和高光谱成像等传感器,具备自动称重与浇灌功能,将主要用于水稻等作物高光效高效筛查与鉴定、作物高光效机理研究及新材料创制。 立春已过,农耕将始。今年春天,除了位于北京的中国农科院生物技术研究所,中国水稻研究所(杭州)和东北地理与农业生态研究所(长春)也正在或者即将紧张有序地进行PlantScreen系统的安装。高通量作物表型监测被称为育种的加速器。毫无疑问,PlantScreen高通量植物表型系统的安装运行能够帮助中国作物遗传育种学家深入剖析与产量和胁迫耐受性相关的遗传学数量性状,必将为具有国家战略意义的分子设计育种和种质资源开发应用提供强有力的技术支撑。截止发稿前,农科院生物所PlantScreen系统的安装工作已基本完成,即将进入调试和试运行环节,并将合作举办培训研讨。
  • 材料基因工程重点专项将构建高通量制备与表征等三大示范平台
    p  2月19日,科技部网站发布国家重点研发计划“材料基因工程关键技术与支撑平台”重点专项2016年度项目申报指南。/pp  本专项总体目标是:融合高通量计算(理论)/高通量实验(制备和表征)/专用数据库三大技术,变革材料研发理念和模式,实现新材料研发由“经验指导实验”的传统模式向“理论预测、实验验证”的新模式转变,显著提高新材料的研发效率,实现新材料 “研发周期缩短一半、研发成本降低一半”的目标 增强我国在新材料领域的知识和技术储备,提升应对高性能新材料需求的快速反应和生产能力 培养一批具有材料研发新思想和新理念,掌握新模式和新方法,富有创新精神和协同创新能力的高素质人才队伍 促进高端制造业和高新技术的发展,为实现“中国制造2025”的目标做出贡献。/pp  本专项的主要研究内容是,构建高通量计算、高通量制备与表征和专用数据库等三大示范平台 研发多尺度集成化高通量计算方法与计算软件、高通量材料制备技术、高通量表征与服役行为评价技术,以及面向材料基因工程的材料大数据技术等四大关键技术 在能源材料、生物医用材料、稀土功能材料、催化材料和特种合金等支撑高端制造业和高新技术发展的典型材料上开展应用示范。专项共部署40个重点研究任务,实施周期为5年。/pp  按照分步实施、重点突破的原则,2016年度在材料基因工程关键技术和验证性示范应用中启动13个研究任务。/pp  详细内容请参阅附件:img src="/admincms/ueditor/dialogs/attachment/fileTypeImages/icon_doc.gif"/a href="http://img1.17img.cn/17img/files/201602/ueattachment/5112b3d9-6c10-4f2c-b55d-d6b762a125b2.doc"重点基础材料技术提升与产业化重点专项2016年度项目申报指南.doc/abr//p
  • 高通量组织研磨仪在农科院植保所验收完成
    Thmorgan高通量组织研磨仪在农科院植保所安装调试并验收完成。Thmorgan工程师系统讲解了高通量组织研磨仪CK2000各项功能及操作流程、并进行了安装培训。 高通量组织研磨仪,作为样品前处理仪器,广泛应用于各种动植物组织;真菌、细菌;易挥发样品;塑料、聚合物;食品、药品分析;环境毒理检测;土壤成分分析等各方面。其中CK2000,以通量高,破碎力度大著称,应用于大量样品的研磨、混匀;又结合QuEChERS方法应用于农残检测,大大提高效率,减少误差,该处理方法经过多家企事业第三方检测实验室的鉴定,完全符合国家标准的要求。 研磨罐高通量组织研磨仪CK系列,是Thmorgan自主研发的产品,一经上市就受到广大科研院校与机构认可并获得多个产品专利。多年来,Thmorgan高通量组织研磨仪的用户遍布全国,涉及到多个领域: 中科院遗传所 中科院植物所 农科院加工所 北大医学部 辽宁中医药大学 河北食品药品监察所 河北粮油作物研究所 等等 Thmorgan工程师对产品有全面的了解,具备专业操作技术,确保了仪器的安装调试和售后,实时解决客户实验过程中的问题,保证用户在较短时间内掌握设备的操作要领,尽快开展工作。非常欢迎您的致电垂询,全国免费热线电话:4000-688-151。 Thmorgan市场部2015-7-15
  • 科技传统结合,高通量筛选等新技术如何打开中药创新研究突破口?
    中药是中华民族的瑰宝,几千年来,在防病治病中发挥了重要的作用,也是我国医药产业的三大支柱之一,在经济发展中发挥了重要作用。自从我国加入WTO以后,长期依赖于仿制的化学药物的发展受到了很大的冲击,而具有我国自主知识产权的中药迎来了新的发展机遇,特别是近年来西方国家对传统药物和植物药的普遍重视和注册政策的调整,给中药进入国际市场提供了一个良好的契机。 壹 从中药到新药新药的发现从样品的收集开始,可从民族、民间药物、临床名方、老药和国外天然药物中选择筛选样品,收集样品,进行基原鉴定。通过系统的构效关系分 析,进一步设计并优化活性化合物,再通过活性筛选,直至发现具有临床应用价值的化合物,从而进入新药研发阶段,*成为化学药的一类新药。 中药尽管有两千多年的临床使用历史,但临床上基本都是以复方配伍使用,各种中药的疗效包括复方的疗效如何,没有确切的数据。中药的开发仍需进行大量的筛选,而我国目前中药新药的研发极少经过发现过程,这也是我国缺少疗效独特的中药创新药物的重要原因。贰 科技与传统的结合如果有一种技术可以极大程度的缩减新药研究某个阶段的耗时,那么是否对于我国独特中药创新药物的研发颇有裨益。答案是肯定的。以高通量筛选技术为例,使用GeneVac系统,可以助力缩减新药研究阶段所用时间,无需人工值守,只需要选择相应的溶剂类型,一键开启。 GeneVac 4.0 EZ-2 GeneVac S3 HT中药创新药物发现的新方法、新技术包括“基于细胞、靶酶、亲和色谱、分子烙印技术、生物芯片等的高通量筛选技术”、“多维液相色谱-高通量筛选-LC-MS/NMR联用技术”、“LC-MS-DS/HPLC/HTS联合技术”等。叁 中药创新药物发现的新领域、新途径乔木类植物尚含有一些结构类型较新颖、生理活性较强的成分,发现活性成分的机率较高,如紫杉醇、三尖杉酯碱、喜树碱、番荔枝内酯等。海洋生物中所含化学成分结构新颖、复杂,常具有很强的生物活性,具有很好的新药开发前景。低等生物和植物共生菌具有很强的生物活性,特别是一些真菌类,很小的剂量就能够产生很强的生理作用。同时,低等生物还具有易于通过发酵生产的 优势。鲜活动物的内源性物质,其活性成分具有生理活性强、疗效确切、副作用小等特点,如蛇毒、蚯蚓纤溶酶、水蛭素、斑蝥素、蜂毒等都是活性很强的天然产物。中药复方的化学成分有别于单味中药,通过成分之间的增溶作用,使一些在单味中药研究中没有发现的成分在复方研究中被发现,如我们在补阳还五汤的化学成分研究中发现4个新的生物碱,为创新药物的发现提供新的结构化合物。中药成分的体内代谢产物,由于中药和天然药物具有比化学药更好的生物顺应性,在体内更易发生代谢,其代谢产物往往是其真正的活性成分,如黄芩苷、番泻苷等。肆 Genevac离心浓缩仪GeneVac 4.0 EZ-2系列以及S3 HT系列真空离心浓缩仪搭载独有的Dri-Pure技术,轻松解决高低沸点溶剂,不管是单一溶剂还是混合溶剂都有出色的表现。并且提供高通量的溶剂处理能力,同时处理上百个到上千个样品,缩短研发周期。上百种转子可选,可以兼容孔板、EP管、试管、离心管、烧瓶、样品瓶等。 一台好的溶剂蒸发工作站可以帮助您加速前期研发的效率,保证样品在低温、安全、可控的情况下进行高通量溶剂蒸发,克服药物合成及药物纯化中的蒸发难题,该系列还具备更多高端功能,详细可填写表单进行咨询。
  • 安捷伦《类器官模型构建与高通量筛选方案》亮相慕尼黑生化展
    2023 年 7 月 13 日,第十一届慕尼黑上海分析生化展在国家会展中心(上海)圆满落幕,作为亚洲具有影响力的分析、实验室技术、诊断和生化技术领域的专业博览会,本次大会吸引了 1200 + 参展企业,超过 5 万人参会。在此次盛会上,安捷伦细胞分析事业部携《类器官模型构建与高通量筛选方案》亮相 2.2 H 分析与质量控制展馆。并受邀参加了生物谷举办的“类器官前沿技术开发与应用创新论坛”,安捷伦细胞分析事业部产品应用专家杨菁喆女士向与会者介绍了安捷伦 BioTek Cytation 及 CBM 智能化细胞成像分析系统在类器官建模优化、以类器官为模型进行高通量筛选的解决方案,在现场引起热烈反响,吸引了众多参会者到展台参观。《类器官模型构建与高通量筛选方案》吸引了众多与会展聆听与参观生物谷类器官前沿技术开发与应用创新论坛活动上,安捷伦细胞分析产品应用专家杨菁喆女士做报告随后,仪器学习网的记者就类器官研究进展和未来展望采访了杨菁喆女士。杨菁喆表示自 2009 年小肠类器官首次建立至今,类器官研究已经延伸到多个组织系统,并成为当下生命科学领域最活跃的技术之一。我们非常荣幸安捷伦细胞分析技术和平台能够参与其中,与研究者们一起探索,为人类健康的可持续发展贡献我们的力量。近年来类器官成就与发展大记事2013 年Science:年度十大突破2018 年Nature Methods:2017 年度方法2019 年The New England Journal of Medicine:优良的人类临床前疾病模型2021 年类器官被列入中国“十四五”重点研发计划专项 2022 年我国陆续刊发多篇类器官和器官芯片相关规范、共识和标准,《中国癌症防治杂志》刊发了我国第一个基于类器官指导肿瘤精准药物治疗的专家共识——《类器官药物敏感性检测指导肿瘤精准治疗临床应用专家共识( 2022 年版)》 2022 年美国 FDA 批准新药研制不再强制动物实验,类器官和器官芯片有望引领新时代浪潮安捷伦类器官模型构建与高通量筛选解决方案优势:1Cytation 成像与分析解决方案:❖ 全自动倒置荧光显微成像/转盘共聚焦显微成像为类器官成像提供优异的图像分辨率❖ 支持明场、多色荧光、彩色明场成像,一站式为类器官建模和筛选提供多维度研究方式❖ 优异的环境控制支持任意成像模式下的类器官活细胞动力学监测,为类器官形态学变化、分化验证和免疫杀伤提供动态变化过程❖ 明场及荧光场均支持 Z-轴层切成像与叠加,满足类器官成像对光学层切的需求❖ 支持实验室常规 6-1536 孔板,培养皿等常规耗材及耗材自定义,满足类器官培养条件优化以及高通量筛选对通量的不同要求❖ 高内涵软件支持从仪器控制—类器官培养条件设置—图像捕获—图像处理—数据分析—实验数据输出全流程操作2自动化解决方案:❖ Cytation 与 BioSpa 自动化培养箱及 Multiflo FX 分液器对接,组成 CBM 智能化活细胞成像与分析系统,实现从细胞铺种、培养基更换、自动培养、动力学成像全自动流程,更将实验通量提升到 8 块孔板,大大提高实验效率,在类器官研究多个实验环节发挥作用。❖ Cytation 与其他第三方工作站或抓扳手整合,实现更加集成化的类器官自动化整合方案。安捷伦细胞分析为类器官培养及检测提供丰富应用方案Cytation 和CBM 系统结合安捷伦细胞分析事业部的多功能微孔板检测仪、流式细胞仪和细胞能量代谢分析仪为类器官培养及检测提供丰富的应用方案。如果您对我们的技术和方案感兴趣,欢迎扫描下方二维码留下您的联系方式。
  • 请查收!您的全自动高通量蛋白纯化方案已发布!
    在绿色生物制造和合成生物学等研究领域中,高质量的蛋白分离和纯化是研究目的蛋白结构和功能的重要步骤。传统的分离纯化方法通量低、耗时长、均一性差,全自动高通量蛋白纯化系统在生命科学研究和生物制药领域已开始广泛运用,从样本前处理工序,到不同类型的蛋白纯化流程,可实现多管线自动化平行实验,具有稳定的工艺流程,可极大提高实验效率,节约时间和人力成本;同时还可以进行数据交互,实现样本溯源和实验数据管理。今天小贝给大家整理了几种常见好用的蛋白纯化方案助力您的科学研究。磁珠捕获特异性标签蛋白,因其纯化步骤精简成熟被广泛应用,图1是磁珠纯化流程示意图。小贝为您量身定制蛋白纯化全流程自动化方案:使用Biomek i系列液体工作站,整合核酸/蛋白提取仪,实现高效高通量自动化蛋白纯化,极大节省实验时间和科研精力。图1 磁珠纯化流程图2 Biomek i系列液体处理工作站展示图Biomek i系列液体工作站配置96通道和灵活8通道加样器,适配各种商品化试剂盒和用户自配试剂,轻松实现试剂分装和高通量样本纯化。同时工作站支持多设备整合,可进行后期无限升级,添加离心机、酶标仪等设备助力全流程自动化实验。图3 磁珠纯化方法截图及纯化结果高通量磁珠法蛋白纯化模块可以通过结合核酸/蛋白提取仪实现极简快速蛋白纯化,也可以通过自动化液体工作站结合磁力架完成。使用该功能时仅需要通过软件的简易命令行即可完成,如图3所示,工作站机械抓手会根据纯化流程将Binding Buffer、Beads、Washing Buffer等试剂自动搬运到指定位置,使用磁套进行磁珠转运,单次可以完成96个样本纯化,浓度稳定在0.5-0.8mg/ml,96孔板纯化时间约60min,节省枪头成本,省时省力。图4 亲和层析柱蛋白纯化法实验流程RoboColumn是一种小型色谱柱,用于抗体、蛋白质、多肽等的全自动平行色谱分离,其纯化流程如图4所示。高通量的RoboColumn ALP 与Biomek i系列液体工作站相结合,配置Span8固定针,可实现多通道自动化的平行层析实验流程,显著缩短工艺开发时间;同时还可以进行数据追踪,实现样本溯源,减少重复工作。图5 RoboColumn ALP模块结构及Span8固定针示意图W1:废液槽;B1:收集板载架;C1:柱载架Biomek液体工作站可以实现台面整合RoboColumn ALP模块,通过软件流程式编辑方法,控制ALP板位自动位移,实现液体收集,轻松完成蛋白纯化,图6展示了软件控制ALP板位收集液体的方法以及RoboColumn纯化结果,实验中1.56mg蛋白上样,经0.1M Gly-HCl(pH2.7)洗脱回收得到蛋白含量1.31mg,纯化得率达到84%,8通道操作时间约为80min。图6 调用RoboColumn方法界面及纯化结果展示图7 PhyTip法自动化纯化关键流程PhyTip为枪头式分散固相亲和色谱柱,采用枪头式装置,纯化树脂被填充于枪头尖端,由自动化液体处理工作站加载PhyTip,可以实现单通道到96通道灵活样品数纯化,其纯化流程如图7所示,可对微克级到毫克级的蛋白进行纯化。图8 PhyTip实物图、PhyTip纯化方法及结果展示图Biomek液体工作站与枪头式纯化色谱柱相结合,利用工作站加载PhyTip让纯化流程变得如移液流程一样简单!如图8所示,加样器加载PhyTip,分别在平衡液、蛋白样品、洗杂液和洗脱液中混匀即可完成高通量蛋白纯化,单次可处理96个样品,收集10mL菌液使用PhyTip(40uL填料),纯化后经BCA蛋白定量测定蛋白含量稳定在400ug左右,优于手工对照实验340ug的结果,96孔板操作时间约为90min。小 结
  • Thmorgan公司高通量组织研磨仪代理商招募
    Thmorgan公司推出的CK系列高通量组织研磨仪现招募代理商。 Thmorgan高通量组织研磨仪CK系列产品包括CK1000、CK1000D、CK2000、CK2000D。 CK1000、CK1000D: 适用于各种植物组织包括根、茎、叶、花、果、种子等样品的研磨破碎;动物组织包括大脑、心脏、肺、胃、肝脏、胸腺、肾脏、肠、淋巴结、肌肉、骨骼等样品的研磨破碎;真菌、细菌等样品的研磨破碎;食品、药品成分分析检测的研磨破碎;易挥发样品包括煤炭、油页岩、蜡制品等样品的研磨破碎;塑料、聚合物包括PE、PS、纺织品、树脂等样品的研磨破碎。 CK2000、CK2000D: 适用于土壤农化分析样品的研磨准备;农药残留检测的样本前期研磨;环境毒理检测的样本前期研磨;土壤成分检测的样本前期研磨;大量样品的研磨、混匀。 目前Thmorgan旗下高通量组织研磨仪诚招合作伙伴,有意者请与我们联系。 联系电话:4000-688-151托摩根招商部 2014-03-10
  • 高通量测序的十年:从科研进入临床
    高通量测序的推出背景:  2004年全球多个国家共计预算30亿美金的人类基因组测序完成以后,发现单单完成一个人的基因组序列还远远不足以理解人类自身及疾病的机理。由于有了已经完成的人类基因组当做参考基因组,采用廉价、快速的方法对多个样本、群体、病种基因组的比对测序就能提供大量有价值的科研和临床信息。这就要求测序价格足够低、速度足够快,然而对测序结果是否易于拼接、组装基因组则没有明确需求。于是,美国国家基因组研究院(NHGRI)提出了把全基因组测序降至1000美金的研究规划,从而引领科学界、企业界大力发展测序技术。  高通量测序的十年:  2005年,454公司首先推出了二代测序仪 2006年,Solexa推出了Genome Analyzer,2007年年初Illumina收购了Solexa公司,在随后的几年陆续推出了Hiseq2000、MiSeq、Hiseq2500、MiseqDx、NextSeq 500测序仪,占据了高通量测序的大部分市场。ABI也在2007年推出的是SOLiD测序平台,随后收购了454测序仪发明者创立的Ion Torrent,转而大力推广PGM和Ion Proton平台。2014年,也就是高通量测序技术发展的第十年,illumina公司的Hiseq X平台已经实现了1000美金一个人类基因组测序的目标。虽然这个价格的实现,需要在保证未来数年充足机时的情况下才能完成,但也比十年前的30亿美金降低了300万倍。除此以外,还有好多公司开发了第三代测序仪,比如Pacific Biosciences的PacBio RS测序仪,DNA模板无需二代测序常用的PCR扩增的方法,就可以实现长读长、实时的测序 Oxford Nanopore MinION测序仪只有USB存储器那么大等等。  2013年9月,illumina公司的MiseqDx平台,首次通过了美国FDA的技术认证,作为开放平台和囊纤维化的试剂产品准许进入临床,标志着经过10年的发展,高通量测序技术已从纯科学研究的平台进入临床诊断领域。  各代测序的应用范围:  一代测序(Sanger)适合单一片段,长度小于800bp的精准测序 二代适合快速、低价测量海量数据,每次测序能产生数百、数千万条序列,但读长不超过500bp 而以PacBio为代表的三代测序更适合单分子测序,最长可以到几十K的读长,但测序质量略低。所以目前还没有哪一代测序技术可以完全取代同类技术,并不能简单的通过名字来判断技术先进性,重要的还是各个平台都有各自最适合的应用领域。  高通量测序应用范围:  无需BAC文库构建就可以进行全基因组鸟枪法冲测序 数以千万计的序列同时测序 测序结果无需通过毛细管电泳获得等等特点决定了高通量测序仪具有广阔的应用范围:基因组从头测序、基因组重测序、目标片段测序、数字化基因表达谱、小RNA测序、甲基化测序、蛋白质DNA相互作用测序等等。本文主要就高通量测序的几个应用在临床诊断领域的开展做一个简单介绍。  高通量测序的临床应用:  1.染色体疾病检测  2008年香港中文大学的卢煜明和斯坦福的Stephen Quake先后发表文章提出通过检测母体外周血中的游离DNA,可以准确的判断该孕妇胎儿的染色体非整倍体,该技术无需常规的羊膜腔穿刺、绒毛膜穿刺等创伤性染色体疾病检测技术,故常被简称为无创产前检测。  无创染色体检测的技术核心为拷贝数变异的原理。测序所得的序列通过生物信息算法,把所有序列比对到人类参考基因组。通过计数每一个染色体的唯一对应的序列条数来获取全染色体拷贝数变异情况。如果其中有一个染色体增加一条或缺少一条,则该染色体的拷贝数会显著增加或减少。  在当前常见的无创染色体非整倍体检测中,主要针对T21、T18、T13这三个染色体三体综合征。从国内外各家公司公布的数字来看,准确率、阳性预测值都可以达到99%。相对血清唐氏筛查技术,无创技术大大提高了准确率,降低了假阳性率。从而推动产前检测技术极大的发展,也帮助高通量测序真正的进入了临床转化应用阶段。在染色体非整倍体疾病中,性染色体异常(XXX、XO、XXY)等也颇为常见,由于X染色体(155mb)相对Y染色体(60mb)要大很多,血浆游离DNA中母体的DNA含量占50~90%,从而造成无创检测性染色体异常 具有一定的难度,准确率基本在90%左右。  除了染色体非整倍体以外,染色体病还有微缺失微重复,是指染色体上有局部片段缺失或出现重复片段。常见的表现为染色体上的部分三体、部分单体,比如猫叫综合征、迪格奥尔格综合征(Digeorge) 、Wolf-Hirschhorn syndrome、Prader-Willi syndrome等等。自从高通量测序技术应用于无创产前检测,业界也开始使用该技术来检测微缺失微重复。由于微缺失微重复染色体改变相对较小,需要较深的测序深度,才能较准确的判断染色体变异情况。  以上提到的都是无创的方式去检测染色体非整倍及微缺失微重复。对于诊断筛查成年人、婴幼儿、流产组织等染色体变异情况,利用高通量测序也是一种很好的选择,相对于传统的Array CGH,高通量测序技术更准确、速度更快、检测分辨率更高,需要的起始样本量更低,只要几纳克。  产前检测领域具有很大的特殊性,每一个结果都会影响一个还未出生的小生命,对于检测的准确率相对其他检测技术要求要高很多。不管是假阴性还是假阳性,都要求尽可能的低,否则会引起很多临床纠纷。而且由于要给后续的产前诊断技术正确尽可能多的时间,所以就要求检测周期尽可能短。无创染色体检测需要每一个样本有一定的测序量,但并不是简单的说测序越深结果就一定越好,需要保证每批测序的稳定性,就对实验室流程控制、试剂盒本身的质量控制、数据分析的校正都提出了很高的要求。如果没有很好的控制,哪怕一台测序仪就跑一个样本,几十倍于常规的测序通量,也不一定就能准确判断结果阴阳性。  2.基因突变检测  不同于一代测序针对单一片段的测序检测基因突变,高通量测序往往可以针对一个基因多个位点、多个基因或全外显子突变的快速检测。在这类检测中,首先通过PCR或者探针捕获的方式富集待检区域的DNA,然后通过高通量测序仪进行测序。高通量测序的准确率不如一代测序,所以为了得到准确的结果,每一个碱基位置都需要至少100条以上的序列结果。由于一个或多个基因位点组合、哪怕是全基因组外显子组合,也就70mb左右的DNA区域,实际工作中很容易实现100X以上的测序深度,往往都可以达到1000X以上。  表皮生长因子受体(EGFR)基因突变检测为当前最常用的单基因突变检测,检测结果可用于辅助临床医生筛选可受益于易瑞沙、特罗凯和凯美纳等靶向药物的非小细胞肺癌患者。目前常用的方法为荧光定量技术,需要做多个反应。根据Ensembl的数据库,EGFR最长的编码形式有28个外显子,编码区共有9821个碱基,不管是一代测序还是荧光定量都很难一次把EGFR全部位点都检测到。而针对10K的区域,对于高通量测序来说只需完成10mb测序量(1000X)就可以精确检测所有位点的信息。目前市场上主流的高通量测序仪一次测序都可以完成10G~1.8T,也就说可以一次开机至少可以完成1000个以上病人的样本。  对于单基因的检测,除非这个基因很长,或者具有大片段的缺失、重复,否则用高通量测序来做单基因检测有点大材小用,现实临床检验工作中要短时间聚齐1000个病人的样本也颇有难度,样本太少的话单个样本的平摊成本就会剧增。因此对于基因突变检测,高通量测序技术更适合多基因组合、甚至全外显子捕获等测序方式。  3.微生物、病毒、细菌鉴定  采用PCR方式来鉴定微生物、病毒、细菌非常快捷、廉价,但是需要利用已知物种的DNA序列设计PCR引物探针,对于未知物种则一筹莫展 一代测序的方法是可以鉴定未知物种,但是样本要求是经过分离培养,DNA背景单一,混合多个物种的DNA样本,一代测序会产生大量杂峰而无法正常得出测序结果。而高通量测序无需做任何培养、分离、也无需事先知晓物种,只要把待测样本的基因组DNA构建测序文库,测序产生数十万~数千万条不同的DNA序列,即可以轻易知道待测样本中有何种微生物、病毒、细菌、每一个物种的比例、碱基是否有突变、是否为新物种。  2009年H1N1病毒爆发感染时,有一名病人死于呼吸系统引起的多器官衰竭,然而并不知道具体的死因。科学家把病人的肺部穿刺组织的DNA拿来做高通量测序。最终在950万条序列中,含有0.85%的序列来自于H1N1病毒基因组,从而帮助科学家发现了该病人的真正死因。在这样高人类基因组干扰的背景下,目前其他技术都难以快速发现致病病毒序列、以及分子分型。  结核杆菌感染现在越来越严重,由于结核杆菌生长缓慢,发现结核杆菌感染及分子分型往往需要数月的时间。而结核杆菌的基因组只有4.4mb,利用高通量测序仪可以非常早期发现结核杆菌感染,同时还可轻易测得结核杆菌基因组的大部分区域,便于选择合适的敏感药物,以及确定是否为全新分子分型。  肠道微生态为目前热门的研究领域,在肠道内微生物种类众多,各菌群的种类和比例会影响人体的建库、代谢情况。高通量测序仪也是该领域的唯一选择。  4.肿瘤相关检测  除了前述的肿瘤基因突变检测以外,在血浆中寻找肿瘤组织脱落的DNA片段,对早期发现肿瘤、监控术后复发等领域被寄予厚望。血浆中大部分为正常组织的脱落细胞DNA,如果有肿瘤发生,异常增生的细胞脱落外周血循环,降解成低丰度DNA片段,由于含量低、碎片化DNA,基因芯片和PCR都不能正常检测。在无创产前检测的技术流程上做分析优化,高通量测序技术可精确检测游离DNA的每一个碱基,从而发现是否有肿瘤突变基因存在。美国霍普金斯大学也曾提出,首先对手术肿瘤组织进行全基因组深度测序,发现个体化的肿瘤基因组融合片段,随后在外周血中利用实时荧光PCR方法检测该个体化基因组融合片段的丰度,如果丰度提高则提示肿瘤有转移、复发的可能。  总结  十年来,高通量测序慢慢从实验室进入了临床检验,展现了蓬勃的生机及想象空间,未来肯定还有很多新的检测项目有待开发。10年来,高通量测序的单碱基成本已经降低了数百倍,也许在不久的将来,每一个新生儿都会有自己的基因组序列。海量数据的产生,也会反过来帮助近几年遭遇瓶颈的药物研发机构,研发更多的个体化药物。  高通量测序本身还有很多局限性,一次测序需要多个样本混合、成本还是相对昂贵、数据分析具有挑战性、操作环节多。企业界、科学界都在解决测序仪的稳定性、样本处理的便捷性、一体化数据分析等等问题。就像二代测序技术无法取代一代测序一样,高通量测序技术也无法取代PCR、FISH等其他类型的分子诊断技术。高通量测序技术会成为未来分子诊断领域的重要组成部分,大大推动技术前进。
  • 使用Ghost cytometry进行高通量细胞表型的池式CRISPR筛选
    CRISPR基因编辑池式筛选是一种使用CRISPR基因编辑技术进行高通量基因筛选的方法。该方法灵活且高效,能够在单次实验中同时对成千上万的基因进行编辑,为研究者在生物医学研究领域提供了强大的工具。 CRISPR(Clustered Regularly Interspaced Short Palindromic Repeats),是细菌或古菌的一种免疫机制,能够帮助它们抵抗病毒等外源遗传物质的入侵。在2012年,科学家发现了其在基因编辑上的潜力,他们利用CRISPR关联蛋白(Cas)能够被引导至任何DNA序列并精确剪切,实现了目标基因的定向编辑。 池式筛选,即在一个大的“池子”里,每个细胞携带一个不同的基因编辑工具-指导RNA(gRNA)。这种编辑工具可以引导Cas蛋白至特定的基因进行编辑。在CRISPR池式筛选中,研究者可以使用含有数以千计不同gRNA的质粒库对大量细胞进行转染,使每个细胞内接收到一个随机的gRNA。 传统的基因筛选方法通常会对单个基因或一小组基因进行逐个测试,这种做法比较耗时且效率较低。某些筛选方法,例如通过微生物菌落挑选或表达差异分析等,虽然可以同时处理多个样品,但是每个基因通常都需要单独处理和分析。而“池式筛选”方法则是一种高通量筛选技术。在一个“池子”中,每个细胞被赋予一个特定的基因编辑工具,比如CRISPR的gRNA,就形成了一个大规模基因编辑池。然后,通过对整个细胞池进行外部压力处理,可以一次性筛选出许多对生存或生长有影响的基因。这样就可以在单个实验中对全基因组进行筛选,大大提高了筛选效率。文章的介绍部分详述了基于CRISPR的池式筛选方法的几个优势,包括提高通量,降低成本,减少了不同筛选中出现的批次效应。在池式的表型筛选中,细胞和细胞内分子被标记为荧光染料、报告基因或荧光免疫抗体。因为需要量化明确定义的特征,所以基于荧光的标记由于其对目标分子的高特异性和高灵敏度具有明显的优势。例如,在荧光激活细胞分类(FACS)中,从时间信号中测量的代表性值,如总荧光,或从光学显微图像中评估的更详细的特性,如分子定位和形态参数。 然而,当适用的生物标志物或染色方法不可用,能否在用识别特征的图像分析评估细胞表型变得具有挑战性。为了解决这个挑战,基于机器学习的无标记高内容细胞表型分析成为一个有希望的替代方案。 在这项研究中,作者展示了一种用于大规模池化CRISPR筛选的多功能方法,包括荧光和无标记高内容细胞表型,利用基于荧光和无标签Ghost Cytometry(GC)技术的细胞分类器。 首先,细胞表达Cas9蛋白被用池化CRISPR逆转录病毒库转导以实现功能丧失基因集,并选出稳定病毒整合。随后,经化合物或试剂处理的池化敲除细胞库显示出多种表型。如有必要,可以进行额外的试验,例如免疫染色。在GC-based的细胞分选中,预训练的机器学习模型可以选择性地丰富显示目标高内容表型的细胞。最后,可以将筛选的细胞进行各种生物学试验,包括基因分析如基因组测序,蛋白质试验以及基于细胞的功能性分析。在标准CRISPR扰动筛选中,从筛选细胞中提取基因组DNA,并由PCR扩增sgRNA区域,然后利用商业上可得的下一代测序平台阅读,以确定导致目标表型的基因。当筛选活细胞时,单细胞RNA测序的转录组学分析和基于细胞的功能试验是广泛适用的。 所以,整体来看,这种方法结合了CRISPR基因编辑技术,无标签高内容筛选和机器学习,进一步提高了我们对基因功能和表型的理解,以及我们在生物医学研究中的筛选能力。
  • 计量院高通量蛋白质检测技术获重大突破
    后基因组时代蛋白质组闪亮登场中国计量院高通量蛋白质检测技术研究取得重大突破  “高通量蛋白质分离检测关键技术研究取得的突破给我们很大鼓舞,但这只是我们大规模系统集成研究的一部分,我们正在着力于系统后续的研究。相信,在不久的将来,这套集成系统将为蛋白质组的分析提供一个完整规范的平台。”谈起不久前通过项目鉴定的《高通量蛋白质分离检测关键技术研究》和取得的成果,中国计量科学研究院生物、能源与环境研究所科学仪器研究室主任刘新志显得踌躇满志。  随着全球性的国际人类基因组计划的初步完成,一个以蛋白质和基因调节为研究重点的后基因组时代已经拉开序幕。蛋白质是生理功能的执行者,是生命现象的直接体现者,对蛋白质结构和功能的研究将直接阐明生命在生理或病理条件下的变化机制。伴随人类基因组研究而发展的蛋白质组学则是研究细胞内各种蛋白质的组成及其活动规律的一门新兴学科。后基因组时代,蛋白质组将成为重点研究方向之一,并将有力推动生物产业的持续性高速发展。  “蛋白质组研究是一门极为年轻的科学,从诞生到蓬勃发展也不过七八年历史,我国的研究时间也只有六年而已。但其发展速度非常迅猛,应用范围也非常广泛。”刘新志说。  蛋白质组研究对生命科学、化学分析、食品安全、人类健康等诸多领域都有着重要意义。例如,几乎所有的药物都是通过蛋白质发挥作用,蛋白质组学在药学研究中的应用不仅可直接产生新的药物,更重要的是可减少对新药开发研制的盲目性,大大加速和简化新药研制的过程 通过对疾病不同阶段蛋白质组的研究,还可帮助诊断和防治疾病。目前,蛋白质组学已成功用于肿瘤、糖尿病、艾滋病、关节炎等多种疾病的诊断和治疗。  “蛋白质组研究的核心技术分为两个部分:蛋白质分离技术和蛋白质鉴定技术。实验数据表明,现阶段依赖质谱分析的蛋白质鉴定技术的发展水平远高于蛋白质分离技术的发展水平。但对大分子、复合物、细胞的分离纯化是进行更详尽的生物鉴定和工程化应用所必需的重要步骤,如果不能快速有效地进行蛋白质分离,后续的鉴定也无法进行。所以,蛋白质组研究的瓶颈来自于蛋白质分离技术的限制。”刘新志打了一个比喻:“蛋白质鉴定技术好比一条宽敞的高速路,但通往这条高速路的必经路——蛋白质分离技术就好比一条小胡同,这条小胡同严重影响了车辆的快速通行。”  据介绍,目前蛋白质分离技术主要有两种——双向电泳技术和高效液相色谱技术。“这两种传统技术与生俱来的缺点是很难分解出难溶性蛋白,而且不能分解出不溶性蛋白。要打通这条小胡同,就必须找到一种新的方法、研制一种新的装置,能够有效地分离出难溶性蛋白和不溶性蛋白,并且要实现高通量快速分离。”刘新志介绍。  由中国计量科学研究院完成的《高通量蛋白质检测关键技术的研究》课题在解决蛋白质的快速分离技术方面取得了重大突破。研究建立了以反向加样连续自由流电泳(FFE)分离方法为核心的高通量蛋白质分离检测技术中最为关键的高稳定度自由流电泳(HSFFE)装置。“该装置最显著的特点就是解决了两种传统的分离技术所不能解决的问题——从蛋白混合物中有效地分离出可溶性蛋白、难溶性蛋白、不溶性蛋白,实现了对这三种蛋白的完全分离 其次,装置的通量高,速度快,能够满足蛋白质快速分离鉴定的需要。”刘新志说。  专家认为,该装置是我国第一台自主研发的实用大型地基液相制备电泳装置,主要指标已经达到国际同类装置的技术水平。同时,该课题的实施具有技术上的前瞻性和集成创新性,对蛋白质组学研究提供了关键的技术支撑。具有自主知识产权的这项成果降低了我国在同类仪器设备上对国外技术的依存度,具有较高的实际应用价值。该装置不仅可以为我国的蛋白质组基础研究提供技术支撑,还可以广泛应用于生物产业的生产环节,如生物制药。同时,还能应用于医学临床,如疾病预防和临床监测。正如一位资深的生物学家所说:“其应用范围几乎可以遍及生物学、生物化学和细胞学的各个领域。”  “虽然这套装置本身已经可以作为独立的产品应用于相关领域,但这并不是我们的最终目的。我们的目标是实现以该装置为核心的高通量完整蛋白质分离、酶解消化、肽段分离和质谱鉴定接口的大规模系统集成,以保证蛋白质组的分析可以在一个连续自控的系统中规范化完成。到时候,我们的装置将发挥更大的作用。”刘新志信心十足。
  • 日测20万管!上海高通量核酸检测实验室建成
    核酸检测是判断新型冠状病毒感染的“金标准”。4月19日,上海之江生物科技股份有限公司(以下简称之江生物)医学检验所在上海市经信委、市卫健委、市临检中心和闵行区卫健委的支持下,启用了一家总面积约1000平方米的单体实验室。这家实验室在闵行区浦江智慧广场火速建成并通过验收,单日检测通量高达20万管,自动化水平高。启用首日,实验室就承接了来自筛查人群和重点保障单位的约3万管样本。  之江生物董事长邵俊斌介绍,这个项目启动至今不到两周时间,以最快速度完成了实验室的设计、装修、仪器安装调试及性能验证,同时在有关部门的支持下,完成了现场各类审核手续。疫情防控常态化后,之江生物中心核酸检测实验室既可以接收临床各类核酸检测样本,如新冠病毒、HPV(人乳头瘤病毒)、甲型流感病毒和乙型流感病毒等,也可以进行其他项目的医学检验工作。(图源:新民晚报)  传统的核酸检测对检验人员人力要求较高,之江生物利用自主研发优势,使这一单体实验室工作流程高度自动化,既减轻了人力负担,也提高了检测效率。该实验室的日检测通量最高可达20万管,如搭配10混1或20混1方案,日检测覆盖人群可达200万—400万人次。  在样本前处理环节,该实验室配备了12台96通量的全自动样品处理平台,自动进行样本管开盖和样本上样工作,每台设备的速度达到96个样本/40分钟,有效解决了核酸检测过程中人工样本开关盖这一限速项,提高了核酸检测效率。  在核酸提取环节,实验室配备40台之江生物自主研发的全自动核酸提取工作站Autra9600 Plus。该核酸提取工作站不到20分钟就能自动化完成96个样本的核酸提取、试剂分装和核酸加样,进一步减少了人工操作,提升了检测效率。  在实验室的扩增区,排列着200台96通道的PCR扩增仪。多仪器平行运转,可显著扩大核酸检测通量,全力保障超高通量的核酸检测能力。  之江生物中心核酸检测实验室启用后,公司团队将与陕西、四川的援沪核酸检测队伍并肩作战。与来自西安、宝鸡、成都、自贡、巴中、绵阳、宜宾等地的检验人员一起,助力上海实现“动态清零”目标。
  • 镁伽CCEasy全自动高通量细胞计数分析仪,为细胞分析保驾护航
    01 两种通量选择CCEasy全自动高通量细胞计数分析仪镁伽CCEasy全自动高通量细胞计数分析仪,以高通量细胞分析技术为核心,兼容台盼蓝、荧光(AO/PI)两种染色方式,能自动化完成细胞计数、活率检测及生长情况分析,实现高效率、高质量、标准化的活细胞在线检测。机型提供24位转盘和96孔板两种选择,支持进行自动化整合,充分满足多领域的细胞分析实验需求。全自动24通量细胞计数分析仪全自动96通量细胞计数分析仪 滑动查看更多 CCEasy的软件系统通过高精度视觉检测系统结合智能主动学习Al算法,能在短时间内对多细胞样本进行高精度识别和计算,为细胞分析和质量控制提供更加可靠的自动化解决方案!02 全流程自动化无需人工介入,让细胞计数分析更智能标准高效全程标准化检测,无需人工介入,兼容24位转盘或96孔板不间断连续测样;无需设置细胞参数,即可准确识别细胞状态和数量。快速灵敏解放双手,预置试剂包,无需人工混合染料与样品;检测耗时短,1min内即可完成单个样品的制备及检测。智能管理多级用户、多级权限管理,支持电子签名、电子记录存档,符合FDA21 Part11要求。降本增效内置可长期持续使用的检测池,无需一次性细胞计数板,帮助客户节省耗材成本。 细胞计数分析仪运行流程 03 数据验证符合GMP规范,细胞质量控制更可靠标准颗粒梯度测试结果通过CCEasy细胞计数分析仪测试多种稀释倍数下标准颗粒的数量,测试数据呈现良好线性趋势,R2高达0.998,表明CCEasy细胞计数仪具有良好的准确性和一致性。以下分别为镁伽CCEasy24通道细胞计数仪测试数据和96通道细胞计数仪测试数据。多细胞样本直径测定通过CCEasy细胞计数仪对多细胞样本的直径进行测试,结果显示,通过24通道和96通道的细胞计数仪测量细胞直径,两台设备测量结果偏差非常小,具有良好的重复性。
  • 3i流式重磅|清华尤政院士/斯坦福赵精晶博士等提出基于点阵光斑激发的高通量流式成像技术
    近日,清华大学精密仪器系尤政教授团队提出了基于点阵激光激发方法的高通量流式成像方法。该方法可实现低成本、高可扩展性的成像流式细胞仪,而且首次验证了全光谱成像流式技术。相关成果以“Imaging flow cytometry using linear array spot excitation”为题在期刊《Device》上发表,并被选为当期封面文章。研究背景与成果流式和显微镜是细胞检测的两个基本工具。流式技术具有高通量和丰富的分子检测信息,但缺乏细胞形态信息;相反,荧光显微镜可以提供细胞影像信息,但检测通量低,难以获取足够的样本数据进行统计分析。自流式细胞仪问世以来,其发展趋势一直在于保持高检测通量的同时增加更多信息维度,例如空间形态信息或光谱信息,以实现更准确的细胞分析或分选。成像流式技术是一种整合了流式细胞仪高检测通量和荧光显微镜空间分辨能力的仪器。然而,由于成像通量、分辨率和检测灵敏度之间的基本矛盾,现有的成像流式技术通常采用复杂的光路系统、复杂的图像重构算法,同时成像可扩展性也很有限。这使得成像流式细胞仪难以达到像传统流式细胞仪那样的高检测通道数,并且其高昂的技术成本限制了应用范围。为解决这些问题,清华大学精仪系尤政教授课题组提出了一种基于点阵激光激发的成像方法,即Linear spot array excitation(LASE)。该方法的核心思想是使用点阵结构光斑替代传统流式细胞仪中的椭圆或条状光斑,从而赋予流式细胞仪成像能力。图1:点阵激光激发成像原理示意图图1展示了该成像方法的工作原理。在检测区域中,激发光斑呈一串等间隔的点阵光斑,由衍射光学器件生成,光斑间隔大于细胞大小,并且其排列直线与细胞运动直线呈一定的小角度。当细胞依次通过照明光斑时,将产生一串荧光和散射光信号。在图像重构阶段,只需通过信号的分割和重组即可重建细胞图像。该方法具有实现简单、实时重建的优势,并且与现有流式细胞仪光路结构兼容,因此具有良好的可扩展性,能够在高检测通量的基础上,同时实现多激光、多荧光通道以及无标记成像。技术成果展示图2. 双激光五通道成像流式系统图3.细胞器进行成像与细胞周期研究本研究利用基于LASE成像方法构建了一个成像系统,具备2色激光(488nm/638nm)和5个成像通道(明场、FITC、PE、PI、APC),如图2A所示。该系统经验证在30×30μm的成像视场下,具有1.3μm的空间分辨率。当细胞样本以5m/s的流速经过探测区域后,系统能够进行无标记的明场成像和荧光成像,且不会出现运动模糊,成像通量最高可达每秒5000个细胞每秒。该系统不仅能够对细胞中的细胞器结构进行成像(见图3A),而且可以在多个荧光波段下,实现对不同细胞结构的同时成像(见图3B)。在生物学应用中,图像被广泛视为金标准,因为它能够为细胞分析提供更为丰富和准确的信息,从而更细致准确地进行细胞分型。举例来说,通过图像,可以在传统流式基础上更进一步区分细胞周期M期的细胞核形态,如图3C所示。图4. 32通道全光谱成像流式验证得益于LASE成像方法的高度可扩展性,本论文将成像荧光信号引入一个基于棱镜色散的32通道光谱仪中,初步验证了全光谱成像流式细胞仪的可行性。该系统在保持每秒5000个细胞的检测速度通量的同时,能够同时在32个光谱通道上对细胞进行成像。借助光谱分解算法,可以有效解决多染料检测实验中染料光谱混叠效应的问题,将成像流式细胞仪的理论可检测染料数扩展至30以上的量级。这将大大提高成像流式细胞仪给单细胞分析带来的信息量。成果优势该研究提出的点阵激光激发的成像方法,具有以下优势:1、系统简单:采用衍射器件在传统流式细胞仪基础上进行光斑整形,即可实现高通量成像功能,相较于已有成像流式技术,具备显著的成本优势。2、图像重建复杂度低:可实现实时重建,进一步可用于基于图像的实时细胞分选。3、可扩展性强:该技术可搭配多个激光和更多的检测通道,也可结合光谱检测实现全光谱成像,使成像流式细胞仪达到与传统流式细胞仪和光谱流式细胞仪相当的可检测标记数量。该技术提供的高通量和信息量将有效为细胞病理学、多组学、药物筛选、液体活检、单细胞测序等研究领域提供高质量的数据。该研究的第一完成单位为清华大学精密仪器系。中国工程院院士、清华大学精密仪器系教授尤政,斯坦福大学研究科学家赵精晶(原精仪系博士生)为该论文的共同通讯作者。精仪系博士毕业生韩勇、赵精晶为该文的共同第一作者。精仪系博士毕业生晁子翕、焦泽衡,精仪系博士生张驰、姜凌奇等为该论文共同作者。该研究得到了国家自然科学基金、生物医学检测技术及仪器北京实验室的资助。论文链接:https://www.cell.com/device/fulltext/S2666-9986(23)00183-7#secsectitle0070 (文:清华大学精密仪器系)
  • 睿科集团发布睿科高通量真空平行浓缩仪新品
    产品简介在环境污染分析和食品安全分析实验室中,为了得到痕量目标物的可靠性检测分析,实验人员不断追求样品快速无损浓缩技术。睿科MPE系列高通量真空平行浓缩仪结合旋蒸和高通量氮吹仪的优点,基于通用的水浴平台,采用精准的数字型的真空控制体系,保证不同样品处于相同的蒸发环境,避免样液中目标物在低真空度下与溶剂共沸而损失,进而保证实验结果的平行性。 效率高采用比热容大的水作为导热媒介,保证加热均匀,连续严格的密封性,每个孔位的温度一致,保证样品在浓缩过程的高度平行性。批量较大,可同时浓缩16位大体积土壤提取液(100-200 mL)。 同等条件下样品数浓缩方式所用时长16位常规旋蒸180min16位真空浓缩45min 溶剂回收采用低温蛇形冷凝管进行蒸汽冷凝,耐腐蚀的PTFE体系为恶劣的蒸汽环境提供耐久可靠的性能保障,乙腈回收率(冷却液0℃)高达99.2%。 可视性强三面透明的水浴环境体系,便于快速查看样液的蒸发情况。当液面接近标准方法中规定的1mL或近干状态时,可通过三面观察窗进行肉眼判断,避免了样液过度浓缩带来的损失。另可通过选装红外定容模块,进行1mL液位感应,自动判定仪器终点。 样品瓶架兼容性强可兼容多种规格的样品瓶,使其应用于不同领域进行样品浓缩,浓缩体积最大可达150mL,浓缩过程无需实验员值守。 农残测试20 mL提取液35 mL净化液 土壤有机物测试100mL<土壤提取液<150mL 杜绝交叉污染快拆式密封盖板,利于不同样品管的快速更换。盖板加热设计,避免样液在盖板上冷凝,加快样液的挥发。出色的导流设计,高效地疏导溶剂废气,防止不同位置样液的交叉污染。 防暴沸设计平稳的圆周振荡,加快样液混匀和热量传递,避免样液的暴沸。温和的水浴环境,利于低沸点溶剂的蒸发和待测目标物在挥发过程中的保留。数字型的真空控制模式,高灵敏度的陶瓷型传感器实时检测真空度,避免样液在过低压力下共沸造成目标待测物的损失。 便捷图形化控制图形化界面提供便捷的人机交互功能,内置的仪器方法便于实验新手快速使用。调用仪器方法后即可点击开始按钮快速进行浓缩实验。实验到达终点后,仪器可自动泄压和降温保护样品。另仪器真空控制的手动模式可为摸索实验条件带来极大自由度。 应用举例1.土壤和沉积物多环芳烃的测定-高效液相色谱法(HJ 784-2016)2.土壤和沉积物多氯联苯的测定-气相色谱-质谱法(HJ 743-2015)3.猪肉、牛肉、鸡肉、猪肝和水产品中硝基呋喃类代谢物残留量的测定-液相色谱串联质谱法(GBT 20752-2006)4.水果和蔬菜中500种农药及相关化学品残留量的测定-气相色谱质谱法(GB 23200.8-2016)5.粮谷中475种农药及相关化学品残留量的测定-气相色谱质谱法(GB 23200.9-2016)创新点:睿科MPE高通量真空平行浓缩仪结合旋蒸和高通量氮吹仪的优点,基于通用的水浴平台,采用精准的数字型的真空控制体系,保证不同样品处于相同的蒸发环境,避免样液中目标物在低真空度下与溶剂共沸而损失,进而保证实验结果的平行性。睿科高通量真空平行浓缩仪
  • 高通量全自动化学合成工作站,让化学合成简单又高效!
    化学合成是一个重要的工艺,在制药、材料、石油化工等诸多领域都需要用到。以制药领域为例,在药物研发阶段,合成药物分子是整个 DMTA(设计-合成-测试-分析)周期中的一个核心环节。据相关报道表明,在过去的十几年间,新药分子的结构变得日益复杂,这一趋势无疑给药物的研发工作带来了前所未有的挑战。复杂药物分子的合成过程往往依赖于经验丰富的有机化学家,他们通过深入的文献研究和大量的实验条件筛选,才能够实现这一合成目标。由此产生的大量人力资源和时间成本,不仅严重拖延了新药的开发进度,而且还导致了患者难以承受的高昂药价。近年来,自动、智能、精准的化学合成愈发成为趋势,旨在突破现有化学合成方式的局限性,使化学合成变得 “反应条件简单、反应快、产率高、后处理简单、操作标准化”,为化学家提供一个高效简便的工作环境。以药物筛选为例,化合物库的构建是药物筛选的重要基础,获取先导化合物 6 种主要途径中,化合物库筛选占比高达 80%。目前各大国际制药企业都有自己大型的高质量化合物库,可谓是制药公司 “保护最为严密的资产”,化合物库的构建涉及大量重复的人工操作,后处理费时费力、数据易出错等问题都需要“高通量、自动化”的化学合成方式解决。为满足客户多元化学合成的应用场景,晶泰科技推出全自动高通量合成筛选工作站 XmartChem&trade 智能合成工作站。该自动化合成工站专门为化学人员研发,人机协作,操作标准化,提高合成效率;同时,应用科学家与自动化技术人员组成研发团队,突破了自动固体投料、自动分离纯化技术壁垒,开发的智能手套箱工作站,适用于无水无氧操作体系的合成反应,真正实现化学合成实验流程全自动高通量运行,系统稳定高效,已落地客户场景。晶泰科技XmartChem&trade 智能合成工作站XmartChem&trade 智能合成工作站打通合成实验中投料、反应、产物稀释、过滤和液质分析全过程,软件系统直观易用,可根据研究需求配置不同反应体积、温度条件、混合方式、惰性气氛条件,突破高通量合成筛选的瓶颈,降低操作门槛,提高合成效率。● 应用场景● 产品特点提高合成效率,增加研究产出&bull 人机协作:系统高效稳定,7×24 小时不间断安全运行;&bull 降低操作门槛:减少水氧敏感化学合成反应操作难度;实验过程操作标准化,减少人为出错率;&bull 提升安全性:减少了合成工作人员暴露于有害化学物质和潜在危险反应的风险;根据客户需求搭建专属合成平台&bull 灵活模块:固/液投料、反应、稀释、过滤、SPE 固相萃取、分析及纯化;&bull 固体投料:覆盖大粒径(1.2mm)、流动性差、蓬松、静电等复杂性质粉末投料,投料范围 1mg~20g,称量分辨率 0.1mg;&bull 惰性气氛条件:智能手套箱工作站,适用于无水无氧操作体系的合成反应,实现投料反应及监测需求;&bull 开放集成:支持多种第三方设备如 LC-MS、离心机等集成到工作站;&bull 柔性拓展:根据不同应用场景,兼容不同反应容器,六轴/四轴机器人系统支持集成多种自动化模块。专门为化学人员研发的软件系统 ,直观易用&bull 可视化软件系统:触屏式操作界面,轻松访问资源、方法、任务及数据等功能信息;资源配置界面与设备内部布局完全一致,操作方式直观,充分降低学习成本,易于使用;&bull 简化工作流程:可直接创建或调用模板实验设计流程方法,如酰胺合成、还原胺化、金属催化偶联、环化反应等常用实验,轻松设定参数,节约时间;支持批量实验参数导入,简化操作;&bull 用户权限设定:划分用户权限,维护实验方法、数据安全;&bull 完整数据记录:实时自动采集反应条件、实验控制以及数据,确保完整实验流程可追溯;&bull 数字化平台:支持接入 LIMS 系统,并兼容晶泰数字化软件(ELN、数字孪生仿真系统等)。完善的本地技术支持体系&bull 多元化团队:化学家与自动化结合的研发团队,深入理解应用场景,产品更符合您的需求;&bull 高效支持和服务:产品从安装、培训、维护、维修到升级,提供全生命周期支持;&bull 售后无忧:专业完善的服务团队,当日响应。扫码留言获取产品彩页晶泰科技自动化赋能的化学合成平台AI 和自动化已经大踏步迈进合成化学的领域,并逐渐实现产业化。自 2019 年起,晶泰科技便开始探索自动化实验室的自主研发之路,已在自动化化学合成、自动化结晶等场景中应用。晶泰科技的自动化化学合成平台,采用人机协作的工作模式,通过自主研发的云端软件控制系统,可以远程操控自动化工站和起串联作用的 AGV 小车,实时记录实验过程数据和结果,有效保证了实验记录的及时性、完整性和可追溯性,确保规范性。帮助客户最大程度地实现提质增效,自动化合成在高通量反应或平行反应中,有明显的优势。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制