当前位置: 仪器信息网 > 行业主题 > >

高温高湿测试机

仪器信息网高温高湿测试机专题为您提供2024年最新高温高湿测试机价格报价、厂家品牌的相关信息, 包括高温高湿测试机参数、型号等,不管是国产,还是进口品牌的高温高湿测试机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高温高湿测试机相关的耗材配件、试剂标物,还有高温高湿测试机相关的最新资讯、资料,以及高温高湿测试机相关的解决方案。

高温高湿测试机相关的论坛

  • 测试LED的高低温骤变,高温高湿交替,高温低湿有哪些好处

    [font='calibri'][size=21px][color=#333333]测试LED的高低温骤变,高温高湿交替,高温低湿有哪些好处[/color][/size][/font][align=left][font='calibri'][size=13px] 当我们谈论测试LED的高低温骤变、高温高湿交替以及高温低湿环境时,我们实际上是在探索LED在各种极端条件下的性能和稳定性。这样的测试对于确保LED在各种环境中都能可靠地工作至关重要。以下是进行这些测试的一些好处:[/size][/font][/align][align=left][font='calibri'][size=13px]1.确保产品质量[/size][/font][font='calibri'][size=13px]:通过在高低温骤变、高温高湿交替以及高温低湿等极-端条件下测试LED,制造商可以筛选出那些不能承受这些条件的产品。这样一来,只有稳定和可靠的LED才会被投放到市场,从而保证了产品的整体质量。[/size][/font][/align][align=left][font='calibri'][size=13px]2. 优化产品设计[/size][/font][font='calibri'][size=13px]:这些测试不仅可以帮助我们识别出产品的弱点和故障点,还可以为产品设计提供重要的反馈。通过分析LED在这些极-端条件下的表现,工程师可以找出改进产品设计的方法,使LED更加适应各种环境。[/size][/font][/align][align=left][font='calibri'][size=13px]3.延长产品寿命[/size][/font][font='calibri'][size=13px]:通过了解LED在不同环境下的性能,我们可以采取措施来延长其使用寿命。例如,在高温高湿环境中,我们可能会发现LED的某些部分容易受到腐蚀或损坏。通过改进这些部分的设计或材料,我们可以显著提高LED的耐用性和寿命。[/size][/font][/align][align=left][font='calibri'][size=13px]4. 扩展应用范围:[/size][/font][font='calibri'][size=13px]对于那些需要在极-端条件下工作的应用来说,了解LED在这些条件下的性能至关重要。通过进行这些测试,我们可以确定LED的适用范围,从而为其在各种环境中的应用提供有力的支持。[/size][/font][/align][align=left][img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/04/202404020902465014_1667_6279606_3.jpg!w690x690.jpg[/img][/align][align=left][font='calibri'][size=13px]综上所述,测试LED的高低温骤变、高温高湿交替以及高温低湿环境对于确保产品质量、优化产品设计、延长产品寿命以及扩展应用范围都具有重要意义。因此,制造商和工程师应该重视这些测试,并将它们作为确保LED性能稳定和可靠的重要手段。[/size][/font][/align][img=,690,690]https://ng1.17img.cn/bbsfiles/images/2024/04/202404020903088856_3247_6279606_3.jpg!w690x690.jpg[/img]

  • 高温高湿试验箱简单介绍

    一台高温高湿试验箱,其内箱主体内设置有由微电脑控制系统智控制的加热器、加湿器、温度传感器、湿度传感器、压力传感器、给排水口和自动补水系统,给排水口和所述自动补水系统连接,内箱主体还连接有补气装置;通过微电脑控制系统智能迅速的产生水蒸汽,将内箱主体内的环境(湿度、温度和压力)变得非常苛刻,从而对产品进行高温、高湿、高压寿命试验环境,从而大大缩短对产品的测试时间,使用本项目产品测试1小时相当于使用普通测试环境的150小时测试结果,性能良好可靠,对加速产品老化寿命的测试及对产品品质的监控均能起到很好的作用。采用本项目试验箱对样品进行测试,可以使产品成熟地进入市场,以提高顾客的满意度、降低保固与服务成本、提高竞争优势。信息来源:东莞市瑞凯环境检测仪器有限公司

  • 关于高温高湿试验箱的材料应用及使用标准介绍

    高温高湿试验箱主要用于测试材料结构或复合材料,在经高温及极低温的连续环境下所能忍受的程度,在试验其热胀冷缩所引起的化学变化或物理伤害。适用于航空航天产品、信息电子仪器仪表、材料、电工、电子产品、各种电子元气件在高低温或湿热环境下、检验其各性能项指标。可作为其产品改进的依据或参考。高温高湿试验箱的设计特点:1.原装进口LCD触摸屏控制器(韩国TEMI880),界面友好,操作简单易学;2.造型设计完关,圆弧造型及表面喷涂处理,高质感外观,并采用平面无所作用把手,操作容易,完全可靠;3.大型观察窗视野宽广明亮:高温高湿试验箱采用三层真空镀膜视窗和飞利浦节能荧光灯,无须雨刷除雾,保持清晰的观测效果,可随时观察试品的状况;4.冷冻及控制系统先进可靠:原装进口法国泰康压缩机,环保冷媒;5.内胆采用进品高级不锈钢(SUS304)镜面板或304B氩弧焊制作而成,箱体外采用A3钢板喷塑。高温高湿试验箱的使用注意事项: 1.在操作高温高湿试验箱当中,除非有绝对必要,请不要打开箱门,否则可能导致下列不良的后果。 (1)高温气流冲出箱外,十分危险。 (2)箱门内侧仍然保持高温,造成烫伤。 (3)高温空气可能触发火灾报警,产生误动作。 2.注意高温高湿试验箱必须安全确实接地,以免产生静电感应。 3.照明灯除必要时打开外,其余时间应关闭。 4.在垂直于主导风向的任何截面上,试验负载截面面积之和应不大于该处工作截面的三分之一。 5.电路断路器、超温保护,提供高温高湿试验箱测试品以及操作者的安全保护,故请定期检查。 6.如果高温高湿试验箱箱内放置发热试品时,试品电源控制请使用外加电源,不要直接使用本机电源。放入高温试料作试验时应注意:开启箱门的时间要尽可能的短。 7.绝对禁止试验爆炸性,可燃性及高腐蚀性物质。

  • 高低温冲击测试机与高低温湿热试验箱的不同

    有些对高低温冲击测试机与高低温湿热试验箱的差异缺乏了解的人会以为高低温冲击测试机完全可以替代高低温湿热试验箱。其实从名字中就可以看出两种在用途上的差异,下面分别先来看看两者的概念。  高低温冲击测试机分为两箱式和三箱式的箱体,测试其材料对高、低温的反复抵拉力及产品于热胀冷缩产出的化学变化或物理伤害,可确认产品的品质,从精密的IC到重机械的组件,无一不需要它的理想测试工具。高低温冲击测试机用来测试材料结构或复合材料,在瞬间下经极高温及极低温的连续环境下所能忍受的程度,藉以在最短时间内 试验其因热胀冷缩所引起的化学变化或物理伤害。  高低温湿热试验箱该设备主要为电子零件、工业材料、成品研发、生产、检验各环节的试验提供恒定温热,复杂高低温交变等试验环境和试验条件。  从上可以看出,高低温冲击测试机用于温度变化测试,而高低温湿热试验箱除了用于温度测试,还多包括湿度测试,前者的用途是后者用途的一部分,不能混为一谈。

  • 您是否正在寻找这样一台高温高湿试验箱?

    您是否正在寻找这样一台高温高湿试验箱?

    [align=center][b]您是否正在寻找这样一台高温高湿试验箱?[/b][/align][align=center][b]拥有更优越的性能[/b][/align][align=center][b]产品质量可靠[/b][/align][align=center][b]更安全 [/b][/align][align=center][b][img=,690,460]https://ng1.17img.cn/bbsfiles/images/2020/07/202007130933228978_607_4232635_3.jpg!w690x460.jpg[/img][/b][/align][align=center][b]一、[b]拥有更优越的性能01 控制系统优势[/b][size=14px][color=#2f5597]中英文菜单式人机对话操作方式,有开机自检功能、温度湿度线性校正、自动停机、系统预约定时启动功能;[/color][color=#2f5597]备物联网功能模式,控设备时时运行状态,可以通过任何移动终端监控。[/color][/size][b]02 制冷系统设计优势[/b][color=#2f5597]制冷系统采用逆卡若循环设计,制冷效率得到大幅度提高;升温、降温、系统完全独立可提高效率,降低测试成本,增长寿命,减低故障率。[/color][b]03 湿热系统控制技术优势[/b]湿热系统设计采用集成锅炉加湿系统,满足GB2423任意试验曲线,在国内同行业中处于领先地位,拥有超宽的湿度控制范围。[b]二、产品质量可靠01 设计的可靠性[/b]主要设计人员均具有本行业15年以上的设计开发经验,并运用先进的三维设计软件及ERP系统对设备的各个部分进行模拟组合,达到可视化的设计配合。[b]02 生产的可靠性[/b]设备的装配使用工序化流水作业模式,每个工序对应完整的工艺文件及流程,确保其装配精度以及效率;出厂前均会经过严格的检验测试程序,进行无故障试验,保证每台产品到达用户现场零故障。[b]03 环境的适应性优势[/b]针对客户某些特定环境下对设备的系统采取特殊设计和制造工艺,风冷设备能在35℃的高温环境下无故障运行;水冷设备在5-35℃的水温条件下无故障运行,宽范围的环境适应温度保障了高温高湿试验箱在各个地区和各种实验室环境下的适应能力。三、[b]更智能的保护01 保护装置[/b]具备压缩机超压保护、风机过热保护、漏电保护、水箱缺水保护等等,各种保护装置和功能齐全,充分保障设备的安全性和使用人员的安全性。[/b][/align]

  • 高低温试验箱系列和高温高湿试验箱系列

    高低温试验箱系列和高温高湿试验箱系列 高低温试验箱有一个系列,分别是:  高低温试验箱:只做高温和低温的单次试验,没有湿度要求  高低温交变试验箱:只做高温和低温的试验,并且需要进行循环的  高低温湿热试验箱:要做高温和低温,同时要可做湿度  高低温交变湿热试验箱:要做高温和低温,同时要可做湿度,并且需要进行循环的  高温高湿试验箱分为台式和立式,最大的区别是前者实验温度范围不能低于室温,湿度大于85%并不可设定,后者可以做低温恒温恒湿试验。其实,高温高湿箱与高低温湿热试验箱区别不大,在某种程度上来讲所起的作用是一样的  一般的高温高湿箱都能做“交变湿热试验”,但取决于你所做的交变试验条件,通常就是叫法不一样,带循环功能的我们把它叫做“可程式高温高湿试验箱”与交变湿热试验功能一样  高温高湿试验箱:普遍是指在温度15度~85度,可以做湿度30%~98%R.H,也可以根据用户需求不同特殊定做,当然,这要提前与厂家前,重新出方案,价格也会有变化  高低温交变湿热试验箱,一般温度会到-20℃ 、-40℃ 、-60℃ 甚至更低。湿度可以做到30—-98%(25-80℃之间)交变湿热实验主要理解为:在某个时间段,温度保持不变湿度按照你设定的变化速率进行试验,或反之。也有的试验要求温度和湿度按照设定的速率同时变化。一般的恒温恒湿试验是温度先到达后才控制湿度,(一句话:交变是指同时控制温度和湿度而且可以从上一段自动切换到下一段,无需人为的守候操作)  其实,上述那么多,归根结底也就是一个系列,只不过字面理解意思不同,还有各个地区的叫法不同,根据实验方法加一个实验条件,少一个试验方法,也会导致选购的设备不同,高低温箱系列中还包含高温试验箱,低温试验箱等,多种试验箱也间接说明了大自然中环境的万千变化高天仪器搜索关键词:恒温恒湿试验箱,高温高湿试验箱,冷热冲击试验箱,振动试验台,跌落试验机,淋十试验箱

  • 恒温恒湿测试机的操作禁区

    恒温恒湿测试机是一款温湿度试验仪器设备,主要适用于电子电器、航空航天等高新技术领域。所以说我们在操作恒温恒湿测试机的过程中,我们应该充分认识到操作不当带来的危害。以下16点注意事项,应引起用户警惕。  1、为了保证设备以及试验操作人员的安全,请安装外部保护地线,并按照技术规格要求供给电源;  2、试验箱严禁用于检测易燃易爆、有毒、强腐蚀性的物品;  3、不是专业的设备维修人员禁止对设备进行拆卸和维修;  4、试验箱应该具有可靠接地;  5、在试验过程中如果没有必要尽量不要打开箱门,不然可能会引起人身伤害以及设备误动作;  6、试验箱门门锁只可以从外部打开,进入箱内必须有人监护;  7、如果测试发热样品,一定要使用外接电源,不可以直接使用设备本身的电源;  8、设备自身设有多重保护设施,请定期维护检查;  9、当箱体内温度≥55℃时,请不要打开制冷压缩机,使压缩机正常运行以延长压缩机寿命;  10、设备在搬运的时候倾斜角不能大于45°,放置到位以后,应静置1-2天再开机运行;  11、开启箱门的时候一定不要用重力,以免造成箱门损坏甚至脱落的情况,产生伤害事故;  12、设备如果长时间放置不使用,一定要定期做祛除潮气的工作,避免设备的零部件被损坏;  13、设备在移动的时候,一定要小心以防损坏面板上的仪表等易损件;  14、操作设备之前一定要阅读说明书;  15、设备没有防爆装置,不可以放入易燃易爆物品;  16、在操作恒温恒湿测试机的时候,除非必要,请不要轻易打开箱门,高温气体冲出箱外十分危险,避免被箱门内侧的高温烫伤。

  • 【恒温恒湿试验箱】汽车音响做高温高湿试验的方法

    当讨论产品寿命时,一般采用10℃规则的表达方式。具体应用时可以表示为当温度上升10℃时,产品寿命就会减少一半;当周围环境温度上升20℃时,产品寿命就会减少到四分之一。这种规则可以说明温度是如何影响产品寿命的。【恒温恒湿试验箱】汽车音响做高温高湿试验的方法如下: 高温高湿试验:汽车音响产品主要是以凝露或通过呼吸作用加强了湿度对产品的影响的,一般采用循环湿热试验,需要注意的是,高温高湿试验箱用水的电阻率会影响试验结果的再现性,规定试验用水的电阻率为500Ωm,因此一般采用电阻率为100~1000Ωm的蒸馏水。 注:环境试验和可靠性试验中环境条件的确定以及故障的分析等密切相关,将产品置于容许的最严酷的边缘环境下,在相对较短的时间内,暴露出一些在较长时间的可靠性验证试验中不易暴露出来的故障机理,对提高产品的可靠性有重要作用和意义。

  • 【恒温恒湿试验箱】汽车音响做高温高湿试验的方法

    当讨论产品寿命时,一般采用10℃规则的表达方式。具体应用时可以表示为当温度上升10℃时,产品寿命就会减少一半;当周围环境温度上升20℃时,产品寿命就会减少到四分之一。这种规则可以说明温度是如何影响产品寿命的。【恒温恒湿试验箱】汽车音响做高温高湿试验的方法如下: 高温高湿试验:汽车音响产品主要是以凝露或通过呼吸作用加强了湿度对产品的影响的,一般采用循环湿热试验,需要注意的是,高温高湿试验箱用水的电阻率会影响试验结果的再现性,规定试验用水的电阻率为500Ωm,因此一般采用电阻率为100~1000Ωm的蒸馏水。 注:环境试验和可靠性试验中环境条件的确定以及故障的分析等密切相关,将产品置于容许的最严酷的边缘环境下,在相对较短的时间内,暴露出一些在较长时间的可靠性验证试验中不易暴露出来的故障机理,对提高产品的可靠性有重要作用和意义。

  • 超高温3000℃热物理性能测试中的红外测温计在线校准

    超高温3000℃热物理性能测试中的红外测温计在线校准

    [color=#990000]摘要:本文将针对超高温3000℃热物性测试中红外测温仪的在线校准,提出了采用高温固定点的在线校准方法,介绍了用于超高温条件下的几种固定点,并针对典型超高温测试设备描述了具体固定点单元形式和校准实施方法。[/color][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [size=18px][color=#990000]一、在线校准的必要性[/color][/size] 在超高温1500~3000℃范围内的材料热物理性能测试中,普遍使用非接触式红外测温仪进行样品温度测量。温度测量精度决定了热物性参数的测量准确性,所以红外测温仪要定期进行校准。但在实际使用中,校准过的红外测温仪还存在以下几方面因素对温度测量精度带来影响: (1)如在激光闪光法热扩散系数和热膨胀系数等测试设备中,测温仪一般直接测量样品表面温度,但往往测温仪的焦点位置并未与样品测温面重合,或测温仪的对准没有完全集中在样品上,而是部分聚焦在靠近样品周围的部分样品支架上,这些测温仪的轻微错位都会导致温度测量出现重大误差。 (2)如在超高温下落式量热计比热容测试设备中,很多时候测温仪是对装有被测物的样品盒表面温度进行测量,样品盒的表面温度与内部被测样品的实际温度还有一定差别,测温仪获得的并不是样品的真实温度。 (3)红外测温仪普遍对被测物表面的发射率比较敏感,如果没有进行特殊的黑体空腔处理,对于未知发射率表面的温度测量则很难测准。 (4)超高温下的温度测量,红外测温仪一般需要透过加热炉光学观察窗和内部保护气体监测温度,光学窗口和气体的透射率通常是未知的,并且可能会随着加热炉使用过程中蒸发材料的沉积而演变。 由此可见,在实际应用中,为了保证温度测量的准确性,需要对红外测温仪进行现场校准,而不仅仅是将它们从实验装置中取出进行定期校准。 本文将针对超高温3000℃热物性测试中红外测温仪的在线校准,提出采用高温固定点的在线校准方法,还将介绍用于超高温条件下的几种固定点,并针对典型超高温测试设备说明具体固定点单元形式和校准实施方法。[size=18px][color=#990000]二、高温固定点在线校准方法[/color][/size] 高温固定点在线校准方法是一种典型的对比法,原理是基于准确已知被测样品温度来校准接触和非接触式测温仪。具体方法是按照被测样品的外形测试和外表材质制作固定点单元,然后将固定点单元作为被测样品进行升温和升降试验,通过对已知的固定点标准温度与测温仪的测量值进行对比,达到对红外测温仪进行校准的目的。 固定点是国际温标中规定的可复现的平衡温度,是纯物质的三相点、沸点和凝固点,固定点都是根据物质的相变过程实现的,所选用的固定点绝大部分都是纯物质的变相点。 ITS-90温标在-189.3442℃~961.78℃温度范围共有九个定义固定点,分别为:纯银、纯铝、纯锌、纯锡、纯铟五个固定点,水、汞、氩三个三相固定点 以及镓熔点。 高温固定点是一系列金属的碳共晶与碳包晶固定点,主要有Pd-C(1492℃)、Rh-C(1657℃)、Pt-C(1738℃)、Ru-C(1954℃)、Ir-C(2292℃)、Re-C(2474℃)、WC-C(2749℃)和HfC-C(3185℃),由此可覆盖1500℃ 至3200℃范围内的红外测温仪在线校准。[size=18px][color=#990000]三、高温固定点单元[/color][/size] 固定点单元是一种样品尺寸大小的坩埚,坩埚内通过熔融灌装或直接镶入的方法植入了固定点材料。高温固定点单元要求满足以下几方面条件: (1)耐高温,且高强度避免损坏; (2)只有纯度最高的材料金属和石墨,不能有其他杂质; (3)外形尺寸与被测样品一致,且密封严紧避免熔液泄露; (4)集成有黑体空腔,降低发射率影响; (5)整体结构设计和布局要保证温度的均匀分布。 针对超高温热物性测试中的红外测温仪在线校准,需要根据相应的样品摆放形式和尺寸采用不同结构的固定点单元,如在各种超高温3000℃热物理性能测试设备中,样品的摆放主要有立式和卧式两种结构,那么就需要采用相应不同结构的高温固定点单元。 在很多超高温3000℃激光闪光法热扩散系数和下落式量热计比热容测试设备中,样品是立式摆放形式,红外测温仪一般从下至上或从上至下对样品的底部或顶部进行测温,相应的固定点单元结构如图1所示。固定点主体和端帽为高纯石墨,图中的多个长孔内浇灌固定点材料,或直接插入固定点材料细棒,图1(a)中左侧的黑体空腔朝向红外测温仪。[align=center][img=红外测温仪在线校准,690,170]https://ng1.17img.cn/bbsfiles/images/2022/01/202201060915316401_7706_3384_3.jpg!w690x170.jpg[/img][/align][align=center][color=#990000]图1 立式结构高温固定点单元:(a)主体剖面图;(b)主体顶视图;(c)端帽剖面图;(d)端帽顶视图[/color][/align][align=left][/align][align=left] 对于一些样品是卧式摆放形式的超高温3000℃热物性测试设备,如热辐射性能以及顶杆式和光学热膨胀仪,红外测温仪或高温热电偶一般在样品的水平方向上进行测温,相应的固定点单元结构如图2所示,固定点材料一般是直接熔灌入石墨坩埚内。图中的黑体孔对准红外测温仪,也可以插入被校热电偶。[/align][align=left][/align][align=center][color=#990000][img=红外测温仪在线校准,500,327]https://ng1.17img.cn/bbsfiles/images/2022/01/202201060916391456_3774_3384_3.jpg!w690x452.jpg[/img][/color][/align][align=center][color=#990000]图2 卧式结构高温固定点单元[/color][/align][size=18px][color=#990000]四、采用固定点在线校准过程[/color][/size] 在超高温热物性测试设备中采用固定点进行红外测温仪或热电偶在线校准的过程,首先是确定需要校准的温度测量范围,并选择不同的标准温度固定点单元尽可能的覆盖此温度范围,然后分别采用相应的固定点单元单独进行校准。 在每个固定点单元校准时,首先是用固定点单元代替被测样品,然后以低速率加热至固定点温度10℃以上并恒温,恒温一段时间后再以低速进行降温。在整个升降温过程中被校温度计连续测量温度,并将测量值随时间的变化曲线识别固定点单元的相变温度。图3示出了温度计测量纯铜固定点熔化和凝固过程的原始温度变化曲线。[align=center][color=#990000][img=红外测温仪在线校准,600,353]https://ng1.17img.cn/bbsfiles/images/2022/01/202201060917182923_7753_3384_3.jpg!w690x407.jpg[/img][/color][/align][align=center][color=#990000]图3 采用纯铜固定点单元在线校准升降温过程[/color][/align] 得到随时间变化的原始温度变化曲线后,对原始曲线进行一阶微分和二阶微分处理得到相应的微分曲线。根据一阶微分曲线中的极大值点可确定第一起始点和第一终止点,根据二阶微分曲线可确定第二起始点和第二终止点。基于得到的四个温度位置点,可最终确定原始温度变化曲线中在此加热速率下固定点单元熔化温度的测量值,此测量值与固定点标准值相差就是校准值。 为了减小升降温速率对校准精度的影响,可采用不同升降温速度进行更精确的校准,即采用不同的加热冷却速率进行加热冷却,得到不同速率下的校准值(测温仪误差),将此温度误差外推至加热或冷却速率为零的情况。[size=18px][color=#990000]五、总结[/color][/size] 综上所述,高温固定点技术可为各种超高温3000℃热物理性能测试设备中的温度测量提供全温区范围内的准确校准,而且高温固定点技术具有良好的重复性、再现性和长期稳定性,并可溯源到国际温标,由此彻底解决了超高温热物性测试中一直困扰着的温度测量准确性评估难题,为材料高温热物理性能准确测量提供了可靠的技术保障。[align=center]=======================================================================[/align]

  • 【第5季仪器心得】+高温高湿试验箱使用心得体会

    [font=宋体]本实验室使用的可程式高温高湿试验箱品牌为[/font][font=宋体][font=Calibri]RIUKAI[/font][font=宋体](瑞凯)[/font][/font][font=宋体],产自广东一带。一般有风冷式和水冷式两种,实验室所购产品为水冷式。以可控温湿度范围广的优点而广泛用于食品、化学、建材、电器、金属、车辆等各个行业,该设备是模拟产品在高温高湿等温度环境下,测试材料材质的变化及强力的衰减程度;也可模拟货柜环境,以检测橡胶、塑料在高温高湿下的褪色、收缩等倾向,该设备专门用作试验各种材料的耐热、耐寒、耐湿新能。下面就对该设备的特点做一个详细的介绍。[/font][align=center][font=宋体][img=,364,665]https://ng1.17img.cn/bbsfiles/images/2024/05/202405161422002754_4855_1954597_3.jpg!w364x665.jpg[/img] [/font][/align][align=center][font=宋体]图[/font][font=Calibri]1[/font][font=宋体]—现用R-TH-150BKF型RIUKAI高温高湿试验箱[/font][/align][font=宋体]产品特点[/font][font=宋体]该设备自带宽屏彩色可编程控制系统,具有制冷控制和高速处理能力。可进行恒定值的运转设定,针对温度特征的试验用温湿度组合交变等的编程设定功能。同时该改设备可通过区域网监控设备的运行状态,更改程序设置,启动[/font][font=宋体][font=Calibri]/[/font][font=宋体]停止操作等。该设备最大的一个优点就是具有高性能,极限试验范围可达到[/font][font=Calibri]95[/font][font=宋体]℃,湿度达到[/font][font=Calibri]98%[/font][font=宋体]。[/font][/font][font=宋体]日常维护注意事项[/font][font=宋体]该设备在实验室中算是比较昂贵的一类设备了,所以最好是专人专用,且经过专业学习或通过设备说明书详细阅读理解后方可操作该设备。同时使用时还应注意以下几点:[/font][font=宋体]1. [/font][font=宋体]使用前的注意事项[/font][font=Calibri]1.1 [/font][font=宋体]设备使用或移动后,需重新调整水平,对于湿热性要注意加湿相的水位。[/font][font=Calibri]1.2 [/font][font=宋体]可靠接地,切不可使用闸刀式的开关及电源插座。[/font][font=Calibri]1.3 [/font][font=宋体]当试样需要电源时,可使用外加电源,切不可使用该设备的电源。[/font][font=Calibri]1.4 [/font][font=宋体]对于湿热型设备,在进行湿热试验前一定注意湿球纱布安装是否正确,如有变黄、变脏等情况必须更换。[/font][font=Calibri]1.5 [/font][font=宋体][font=宋体]在设定超温保护器时,应设定为本实验室的最高温度加[/font][font=Calibri]10[/font][font=宋体]℃,以防止温度过高而损坏样品。[/font][/font][font=Calibri]1.6 [/font][font=宋体][font=宋体]注意加湿所供水,必须使用纯净水或者蒸馏水及水质之电气电导率在[/font][font=Calibri]10us/cm[/font][font=宋体]以下,以保持给水的畅顺。[/font][/font][font=Calibri]1.7 [/font][font=宋体][font=宋体]为了保证设备的正常运行,实验室环境应维持在[/font][font=Calibri]25[/font][font=宋体]℃±[/font][font=Calibri]5[/font][font=宋体]℃的常温状态下,且通风良好。[/font][/font][font=宋体]2. [/font][font=宋体]使用中的注意事项[/font][font=Calibri]2.1 [/font][font=宋体]使用过程中禁止产生易燃、易爆、腐蚀及挥发物质的物品。[/font][font=Calibri]2.2 [/font][font=宋体]避免在三分钟内开关在开启冷冻组,以影响压缩机寿命。[/font][font=Calibri]2.3 [/font][font=宋体]对于容易被气流吹动的试样样品,可用网罩罩好。[/font][font=Calibri]2.4 [/font][font=宋体]设备运行中禁止打开箱门,以免蒸发器结霜而导致回流,而损坏压缩机以及高温湿气冲出箱外而伤人。[/font][font=Calibri]2.5 [/font][font=宋体]对于湿热型要经常检查水管有误而堵塞、折损及泄漏等情况。[/font][font=Calibri]2.6 [/font][font=宋体][font=宋体]设备使用一定时间(如[/font][font=Calibri]100[/font][font=宋体]小时)后需清洁冷凝器是否有堵塞等情况。[/font][/font][font=宋体]3. [/font][font=宋体]使用后的注意事项[/font][font=Calibri]3.1 [/font][font=宋体][font=宋体]实验室做过高温(一般[/font][font=宋体]≥[/font][font=Calibri]80[/font][font=宋体]℃)试验后,需把箱内温度降到常温后再挺急,以免对样品及人员造成伤害,同时风道内的高温度会烤坏设备配件。[/font][/font][font=Calibri]3.2 [/font][font=宋体][font=宋体]同样对于做过低温(一般[/font][font=宋体]≤[/font][font=Calibri]0[/font][font=宋体]℃)试验后,可用温度烘至[/font][font=Calibri]60[/font][font=宋体]℃烘箱再停机,以免样品冻坏,同时避免开箱表面凝露、箱内结霜,冻住风机轴等配件。[/font][/font][font=Calibri]3.3 [/font][font=宋体]对于湿热型一定要扫尽加湿箱内和水回路中的水残留。[/font][font=宋体]总之[/font][font=宋体]设备的使用不但靠质量还要有正确的维护和使用方法,尤其是对于能够在高温或低温下工作的设备,维护方法就显得更加重要。该设备不但能解决一些较高要求的测试,还能解决部分急需检测的小面块产品的前处理。这样以来就更加增加了消费者的适用范围。不论与使用者而言还是与销售者而言都是一件好事。但是,因为测试环境的特殊性,设备的耗材相对普通设备较高一些,实验室在日常的维护和使用过程中只要多多注意,一定能降低损耗,延长设备的使用寿命。[/font][font=宋体] [/font][font=宋体] [/font]

  • 手机在高温试验箱裸机工作试验的测试案例

    手机在高温试验箱裸机工作试验的测试案例

    手机属于随身携带的产品,必须要能够适应各种不同的场合正常工作运行,对于高温地区的赤道沙漠附件温度会特别高,正午直晒时的温度可能会达到50度甚至更高。[align=center][img=,600,600]https://ng1.17img.cn/bbsfiles/images/2022/06/202206101619500470_2661_1385_3.jpg!w600x600.jpg[/img][/align]  下面是某手机厂商的工作试验条件:  温度:55℃ 工作时间:24小时  持续工作条件通常选择此产品的主要功能满负载运行,对于手机通常是持续进行通话或者进行数据传输,如果是智能手机则可以两者并行工作,当然了也可以根据实际使用情况选择一个组合使用模式来模拟终用户的使用模式。此处的温度主要是考虑可能会使用的地区的较高温度而定,而持续工作时间由于手机是被动散热产品,所以不能够太短,通常试验时间是24小时左右,来确保手机可以在高温(55℃)条件下,判断手机在[b][url=http://www.instrument.com.cn/netshow/C35571.htm]高温试验箱[/url][/b]环境下长时间工作的可靠性。

  • 烧蚀防热材料高温热物理性能新型测试方法的初步研究

    烧蚀防热材料高温热物理性能新型测试方法的初步研究

    [color=#ff0000]摘要:文本针对高温下存在热化学反应的烧蚀防热材料,提出一种新型测试方法——恒定加热速率法,以期准确测试烧蚀防热材料的高温热物理性能,由此得到烧蚀防热材料在热化学反应过程中的热导率、热扩散率和比热容随温度的变化曲线。[/color][align=center][img=烧蚀防热材料导热系数测试,600,390]https://ng1.17img.cn/bbsfiles/images/2022/07/202207011700416434_107_3384_3.png!w690x449.jpg[/img][/align][size=18px][color=#ff0000]一、问题的提出[/color][/size]烧蚀防热材料的高温热物理性能是高温下的传热管理和热化学烧蚀建模的必要参数,但因为烧蚀材料具有特殊性:它们具有相当低的热导率,加热过程中会产生气体,热性能非单调变化,甚至材料的热性能还取决于加热速率。这种特殊性造成目前的各种稳态法和瞬态法都不适合烧蚀防热材料的热物理性能测试,主要是因为在测试之前的温度稳定期间就已经发生了热化学反应。因此,烧蚀防热材料的高温热物理性能测试一直是个技术难题,需要开发一种新型测试方法,对整个使用温度范围内含有热化学反应过程的烧蚀防热材料热物理性能进行准确测量,甚至测试出不同加热速率下烧蚀防热材料的热物理性能。文本将针对高温下存在热化学反应的烧蚀防热材料,提出一种新型测试方法——恒定加热速率法,以期测试烧蚀防热材料的高温热物理性能,由此得到热化学反应过程中的热导率、热扩散率和比热容随温度的变化曲线。[size=18px][color=#ff0000]二、测试方法[/color][/size]测试方法基于热物理性能测试中一般都需要测量热流和温度的基本理念,由此建立了如图1所示的传热学第二类正规热工工况测试模型,即对被测样品表面进行恒定速率加热,样品表面温度呈线性变化,样品背面为绝热条件。[align=center][img=烧蚀防热材料导热系数测试,350,369]https://ng1.17img.cn/bbsfiles/images/2022/07/202207011702158319_7823_3384_3.png!w625x659.jpg[/img][/align][align=center]图1 恒定加热速率法测量原理[/align]在图1所示的测试模型中,假设其中的热传递为一维热流,根据傅里叶传热定律,样品厚度方向上的传热方程为:[align=center][img=烧蚀防热材料导热系数测试,500,140]https://ng1.17img.cn/bbsfiles/images/2022/07/202207011702541092_2146_3384_3.png!w690x194.jpg[/img][/align]式中: ρ为样品密度, C为样品比热容, λ为样品热导率,T为温度,t 为时间 ,T0 是 t=0 时的样品初始温度, b是加热速率。当加热速率b为一常数时,通过测试样品前后两个表面温度,并求解上述传热方程,可得到被测样品的等效热扩散率随平均温度的变化曲线。在这种恒定加热速率测试方法中,金属板起到热流传感器的作用,即在线性升温过程中测量金属板前后两表面的温度,并结合金属板的已知热物理性能参数,可计算得到流经金属板的热流密度,由此间接测量得到流经被测样品的热流密度。通过测量得到的热流密度,结合测量得到的被测样品两个表面温度,求解上述传热方程,可得到被测样品的等效热导率随平均温度的变化曲线。根据上述测量获得热扩散率和热导率,并依据比热容、密度、热扩散率和热导率之间的关系式λ=ρ×C×α,可计算得到被测样品的质量热容随温度的变化曲线。如果采用热膨胀仪和热重分析仪精确测量被测材料在不同温度下的密度变化,通过关系式就可获得被测样品的比热容随温度变化曲线。对于上述恒定加热速率法测试模型,我们采用有限元进行了热仿真模拟和计算,证明了此方法对于低导热隔热材料热物性测试的有效性。[size=18px][color=#ff0000]三、今后的工作[/color][/size]尽管进行了详细的测试公式推导和有限元仿真计算,但对于这种新型的恒定加热速率热物性测试方法,还需进一步开展以下研究工作:(1)采用无热化学反应的高温隔热材料进行测试,以考核测试方法的重复性和进行测量不确定度评估。(2)采用无热化学反应的高温隔热材料与其他高温热物性测试方法进行对比,如稳态热流计法、热线法和闪光法等。(3)采用烧蚀防热材料进行高温测试,以考核测试方法的重复性,并结合其他热分析方法、热模拟考核试验(石英灯、氧乙炔、小发动机火焰和风洞)和建模分析,验证新型测试方法的有效性。[align=center][/align][align=center]~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 冷热冲击测试仪低温储存室和高温储存室的作用

    大家都知道冷热冲击测试仪分为三箱式结构,分别为低温储存室.高温储存室和测试区。测试区我们一把较好理解,但是对于低温储存室和高温储存室的工作原理,概念较为模糊,以下是总结的工作原理,供大家分享。  A.高温储存室:中央控制器从感温元件检测即时信号,与设定温度信号进行比较,得到比较信号,由仪錶PID逻辑电路输出信号控制固态继电器的导通或关断的时间比例调节加热器输出功率大小,从而达到自动控温的目的。  B.低温储存室:箱内温度状态由风道中的加热器.蒸发器以及风机的工作状态决定。经过膨胀阀节流流出的製冷剂进入工作室内蒸发器后,吸收工作室内热量并气化,使工作室温度降低;气化后的工质被压缩机吸入并压缩成高温.高压气体进入冷凝器中被冷凝成液体,再经筛检程式,最后通过膨胀阀节流后,重新又进入工作室内蒸发器中吸热并气化然后再被压缩机吸入压缩。如此往復迴圈工作,使工作室温度降到设置的温度要求  C.衝击温度测试室:由仪錶自动控制高低温气阀,在低温或高温储存室之间切换,分别与高温箱或低温箱形成闭路空气循环系统,迅速达到试验的目标温度。  试验箱内温度状态由风道中的加热器.蒸发器.及风机的工作状态决定。  通过以上的系列讲述,艾思荔相信大家已经非常了解了冷热冲击测试仪的低温储存室和高温储存室的工作原理,希望能对大家今后的工作有所帮助。

  • 夏季高温高湿天气对二氧化硫自动监测的影响

    夏季高温高湿天气对二氧化硫自动监测的影响【摘要】:洛阳市环境监测站环境空气自动监测系统,在夏季高温高湿天气时,各子站曾先后出现SO2测值偏低现象,经分析,仪器工作状态良好,内部运行参数正常;同步用美国热电子大气自动监测车载系统监测,则两者差异较大。本文据此提出了分析意见及可行性处理措施。【作者单位】: 洛阳市环境监测站 洛阳市环境监测站 洛阳市环境监测站 【关键词】: 高温 高湿 二氧化硫 自动监测 【分类号】:X831http://www.cnki.com.cn/Article/CJFDTotal-HLJO200604018.htm哪位有资源的朋友能够帮忙下载一下?谢谢

  • 高温测试

    点击链接查看更多:[url]https://www.woyaoce.cn/service/info-5110.html[/url]立讯检测环境实验室根据国内外标准提供环境和可靠性试验,涵盖了气候环境试验及综合环境试验的绝大部分项目,可为客户快速查找产品缺陷,并分析产生缺陷的原因,帮助客户提高产品质量。服务范围 ●气候环境类:高温测试、低温测试、快速温变测试、冷热冲击测试、温度循环测试、湿热测试、低气压测试、盐雾 测试、复合盐雾测试、氙灯老化测试、紫外线老化测试、太阳辐射测试、防水测试、防尘测试、外壳 防护等级测试、臭氧测试、霉菌测试、气体腐蚀测试、高压蒸煮测试、结露测试等。●机械环境类:a.正弦振动试验;随机振动试验;冲击试验; 碰撞试验;离心恒加速度试验;摇摆试验;倾跌与翻倒试验;弹跳试验; 撞击试验; 自由跌落试验等。b.与力学环境因素组合在一起的多因素综合试验有:温度、振动综合试验;温度、湿度、振动综合试验;温度、湿度、低气压、振动综合试验运输包装 件六角滚筒试验; 垂直冲击跌落试验;水平冲击试验; 堆码试验; 压力试验;材料动态特性试验等。

  • 高温试验箱的优势主要体现在哪里?

    高温试验箱的优势主要体现在哪里?

    [b][url=https://www.instrument.com.cn/netshow/SH101036/]高温试验箱[/url][/b]可在各种高温环境中工作,通过再现高温的气候环境,测试受试产品材料在这种气候环境下产生的性能变化。如今测试箱在航天航空、汽车船舶、仪器仪表、科研以及家电等各个行业中有不可忽视的作用,其是一款测试设备,用来测试和确定电工,以此来判断相关产品的使用情况。[align=center][img=,690,690]https://ng1.17img.cn/bbsfiles/images/2023/02/202302081723374871_4599_5295056_3.jpg!w690x690.jpg[/img][/align]  如今,不少行业在进行高温作业时,基于其温度实验范围较广,加上其他节能、安全系数高、控温等优势,高温测试试验设备逐渐成为很多用户的选择。那么,这种试验设备凭借着什么独特的优势才能获得行业的选择呢?下面小编将给大家说一说。  一来,高温试验箱温度控制灵敏度高,单独设计的循环风道能很好的控制箱内温度。独特的循环风道设计,让设备作业中产生的热空气在出风口和回风口循环流转,好将热气都散发出去,从而达到保证测试箱内温度均匀度的目的。  二来,测试设备采用优质温度控制器,数据更精准,温度适应性与承受力更强。相比较老式只能承受150℃-200℃的测试设备来说,能在300℃,甚至更高温下正常运作的高温测试试验设备使用范围更广泛。且设备还具有漏电保护、超温报警以及超温保护等功能,安全性更有保障,用户操作起来也更方便。  此外,相比较其他设备来说,这种款式的测试箱造型更为美观新颖,外部箱体选择不锈钢镜面板氩弧焊进行制造,外胆部分则选择更为精良的钢板喷塑来进行处理,不仅实用,而且美观。  以上是高温试验箱所具备的优势,希望对您有帮助。如需了解更多相关知识,可关注本站。

  • 热流计法测试低密度刚性隔热瓦高温有效导热系数

    热流计法测试低密度刚性隔热瓦高温有效导热系数

    摘要:为了准确测试低密度刚性隔热瓦的高温导热系数,首先采用瞬态平面热源法进行了常温常压下的导热系数测量,同时瞬态平面热源法也采用美国NIST标准参考试样SRM 1453进行了测量准确性的考核和验证。然后采用高温热流计法导热系数测试系统对低密度刚性隔热瓦进行了试样热面温度200℃1000℃的导热系数测量,得到了一条完整的导热系数随温度变化结果曲线。 1. 低密度刚性隔热瓦试样送样单位送来的低密度刚性隔热瓦试样拆封前后图片如图1-1和图1-2所示。 http://ng1.17img.cn/bbsfiles/images/2017/01/201701191700_667351_3384_3.jpg图1-1 包装试样 http://ng1.17img.cn/bbsfiles/images/2017/10/2016022200232139_01_3384_3.jpg图1-2 拆封试样分别对两块试样进行编号和尺寸及密度测量。图1-3所示为1号试样,长宽厚分别为300×300×19.71mm,重量435g,密度0.25g/cm^3。图1-4所示为2号试样,长宽厚分别为300×300×16.82mm,重量445g,密度0.25g/cm^3。http://ng1.17img.cn/bbsfiles/images/2017/10/2016022200240265_01_3384_3.jpg图1-3 低密度刚性隔热瓦1号试样http://ng1.17img.cn/bbsfiles/images/2017/10/2016022200242200_01_3384_3.jpg图1-4 低密度刚性隔热瓦2号试样其中1号试样是经过热面1000℃高温试验后的尺寸和密度测量数据,与2号未经高温试验的密度相比,高温试验前后的密度基本未发生改变。 2. 瞬态平面热源法测试 为了验证和考核低密度刚性隔热瓦导热系数测试的准确性,首先在常温常压下采用ISO 22007-2-2008 塑料-热传导率和热扩散率的测定.第2部分瞬时平面热源法,对导热系数与低密度刚性隔热瓦相同量级的美国NIST标准参考材料SRM 1453(发泡聚苯乙烯板)进行测试,以期实现以下目的:(1)评测和验证瞬态平面热源法导热系数测试系统的测量准确性,重点验证低导热材料(导热系数0.03W/mK左右)测量的准确性,以保证低密度刚性隔热瓦常温常压下导热系数测量的准确性。(2)NIST标准参考材料SRM 1453是一种典型的泡沫聚苯乙烯板,由于低密度和具有一定气孔率,所以这种材料的导热系数会随真空度增高而减小。因此希望通过在不同真空度下测试SRM 1453的导热系数,评估瞬态平面热源法导热系数测试系统测量极低导热系数(小于0.03W/mK)的能力。(3)通过真空控制和真空腔提供变真空测试环境,在1E-04~1E+03Torr覆盖七个数量级的真空度变化范围内,测试NIST标准参考材料SRM 1453在不同真空度下的导热系数,得到一条导热系数随真空度变化的完整曲线,以期获得导热系数随真空度变化的规律。 2.1. 测试美国NIST标准参考材料SRM 14532.1.1. 美国NIST标准参考材料SRM 1453将购置的NIST标准材料材料SRM 1453切割成100mm见方的正方形,如图2-1所示。 http://ng1.17img.cn/bbsfiles/images/2017/10/2016022200250876_01_3384_3.jpg图2-1 NIST标准材料材料SRM 14532.1.2. 美国NIST标准参考材料SRM 1453导热系数标准数据美国NIST标准参考材料SRM 1453(发泡聚苯乙烯板)导热系数数据不仅与温度有关,而且会随材料的密度发生变化,这里仅给出导热系数与温度和密度的关系式: http://ng1.17img.cn/bbsfiles/images/2017/10/2016022200254217_01_3384_3.png式中: ρ 表示体积密度,单位kg/m^3;Tm 表示整个体积密度和温度范围内的测试平均温度,密度范围为37~46kg/m^3 ,温度范围为281~313K 。2.1.3. 瞬态平面热源法测试SRM 1453导热系数测试试样和测试卡具整体放置在如图2-2所示的真空腔内,如图2-3所示将被测的NIST标准材料材料SRM 1453放入测试卡具内,如图2-4所示试样和探测器压紧后关闭真空腔,然后进行真空度控制和导热系数测试。 http://ng1.17img.cn/bbsfiles/images/2017/10/2016022200305978_01_3384_3.jpg图2-2 高真空试验腔体 http://ng1.17img.cn/bbsfiles/images/2017/10/2016022200312723_01_3384_3.jpg图2-3 测试试样和测试卡具 http://ng1.17img.cn/bbsfiles/images/2017/10/2016022200312844_01_3384_3.jpg图2-4 试样安装完毕后的待测状态在NIST标准参考材料SRM 1453不同真空度下导热系数测试过程中,首先在常温常压下进行测试,然后再逐渐提高真空度并进行真空度控制,真空度控制精度达到5‰,稳定性优于1%。每个真空度至少恒定半小时后再开始导热系数测量,每个真空度下进行2次重复性测量,任何2次测量间隔至少30分钟以上。由于NIST标准参考材料SRM 1453比较薄,厚度为14mm,由此在测试中采用了小尺寸的探头,编号C5501。整个测试过程中,试样温度保持在室温范围内,温度范围为22℃23℃。为了便于测量控制及描述,真空度单位采用Torr,测试结果如下表所示。表中的试验参数表示测试过程中的探头加热功率(豪瓦)和测试时间(秒)。http://ng1.17img.cn/bbsfiles/images/2017/10/2016022200331630_01_3384_3.png将以上测试结果绘制成横坐标为真空度、纵坐标为导热系数的对数坐标曲线,如图2-5所示。[ali

  • 高温介电 测试

    大家测高温介电都怎么把银线粘到电极上?测试温度区间在室温到300°C。之前已经用中温银浆做好电极,如果用银浆粘的话比较困难,不知道大家都有什么好办法,具体是怎么做的。希望做过高温介电的指点一二啊。

  • 100L、150L高低温试验箱-高温高湿箱现货-尺寸大小、温度范围可定制

    【[b]100L、150L高低温试验箱-高温高湿箱现货-尺寸大小、温度范围可定制[/b]】[url=http://www.chfkjchina.com]东莞长丰仪器[/url]专业生产恒温恒湿箱、高低温试验箱、冷热冲击试验箱、烘烤箱等环境试验设备。全国供应,品质保证,温度范围和尺寸大小按客户要求定制,可提供OEM生产。广泛适用于橡胶、汽配、轮胎、家电、金属、电线电缆、纺织、染整、航空等产业及科研单位、质检机构、大专院校做各种模拟环境条件性能测试。[b]恒温恒湿试验箱技术参数:[/b]温度范围:-70~150℃;湿度范围:20%~98%RH温度稳定度:±0.3℃;湿度稳定度:±2.5%RH温度分布均度:±0.5℃;湿度分布均度:±2%RH升温时间:常温~150℃约20min;降温时间:20~0℃约20min内箱尺寸CM:50*60*50等(可定制)[url=http://www.chfkjchina.com/]东莞长丰仪器[/url] 何S:150-1680-4303

  • 酚醛树脂防热材料烧蚀碳化过程中的高温导热系数测试解决方案

    酚醛树脂防热材料烧蚀碳化过程中的高温导热系数测试解决方案

    [b]摘要:针对酚醛树脂这类烧蚀型防热材料导热系数测试中多年来存在的稳态法测试温度不高、闪光法测量误差大和无法测量烧蚀过程中的导热系数,本文提出了一种新型测试方法——恒定加热速率法,以期测试树脂类防热材料的高温导热系数,由此得到整个烧蚀过程中导热系数随表面温度线性变化的测试结果,以对烧蚀型防热材料的隔热性能做出更准确的测试评价。[/b][align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align] [b][size=18px]一、问题的提出[/size][/b]酚醛树脂复合材料做为一种轻质强韧化防热材料,由于其具有防隔热一体化、抗剪切能力强、线烧蚀率和导热系数小及成炭率高等优点,被广泛地应用于飞行器的热防护系统(TPS)。而热防护系统占飞行器较大的比重,是飞行器安全性和可靠性的重要保证。因此,对酚醛树脂防热复合材料导热系数的准确测量,是合理设计和优化热防护系统的前提条件,也是解决过度冗余或防热设计可靠性不足等问题的有效途径。酚醛树脂防热材料的防热机理是主动式防热。如图1所示,一方面,树脂基高分子材料在高温下发生吸热的碳化反应,从而吸收外界热量。另一方面,碳化反应分解释放的气体可以被用来实现阻隔散热,同时形成的多孔结构的碳化层也具有较为优良的隔热性能。在三者协同作用下,飞行器在高热流环境下的使用和运行变得安全可靠。[align=center][img=01.酚醛树脂防热材料烧蚀过程中的复杂物理和化学变化,550,330]https://ng1.17img.cn/bbsfiles/images/2022/10/202210200945412753_9630_3221506_3.png!w690x414.jpg[/img][/align][align=center]图1 酚醛树脂防热材料烧蚀过程中的复杂物理和化学变化[/align]由此可见,如此复杂的防热过程,使得准确测量防热材料的导热系数变得十分困难,用传统方法进行导热系数测试会出现巨大偏差。针对酚醛树脂这类烧蚀型防热材料,传统测试方法存在以下几方面的问题:(1)无法测量烧蚀材料物理和化学变化过程中的导热系数,只能测试烧蚀前(原材料)和烧蚀碳化后(多孔炭层)的取样样品。(2)烧蚀前样品的导热系数测试普遍采用稳态法,此方法目前多用于防热材料质量控制中的导热系数监控,但测试温度不超过300℃。(3)烧蚀后的多孔碳层导热系数,目前国内外普遍还都采用激光闪光法进行测试,主要原因是这种方法可以达到2000℃以上的高温。但由于多孔碳层导热系数较低,取样必须很薄(厚度一般小于1mm),由此容易造成加热激光脉冲透过被测样品带来严重误差。如果对样品前后表面进行遮光处理(如喷涂石墨或镀金),而高温下表面涂层会脱落而无法实现高温测试。另外,闪光法只能测试热扩散系数,还需采用其他高温设备测试相应的比热容和密度随温度变化数据。针对上述树脂基防热材料导热系数测试中多年来存在的问题,本文将提出一种新型测试方法——恒定加热速率法,以期测试树脂类防热材料的高温导热系数,由此得到烧蚀型防热材料在整个烧蚀过程中导热系数随表面温度线性变化的测试结果,以对烧蚀型防热材料的隔热性能做出更准确的测试评价。[size=18px][b]二、恒定加热速率测试方法[/b][/size]测试方法基于热物理性能测试中一般都需要测量热流和温度的基本理念,由此提出了如图2所示的测试模型,即对被测样品表面进行恒定速率加热,样品表面温度呈线性变化,样品背面布置一用来测量流经样品厚度方向上热流的金属板,样品四周和金属板背面为绝热边界条件,使得整个测试过程保持一维热流形态。[align=center][img=02.恒定加热速率法测试模型,300,320]https://ng1.17img.cn/bbsfiles/images/2022/10/202210200946219228_6669_3221506_3.png!w615x658.jpg[/img][/align][align=center]图2 恒定加热速率测试模型[/align]在图2所示的一维热流测试模型中,根据傅里叶传热定律,样品厚度方向上的传热方程为:[align=center][img=,400,168]https://ng1.17img.cn/bbsfiles/images/2022/10/202210200947004183_313_3221506_3.png!w503x212.jpg[/img][/align]式中: ρ为样品密度, C为样品比热容, λ为样品热导率,T为温度,t 为时间 ,T0 是 t=0 时的样品初始温度, b是加热速率。当加热速率b为一常数时,通过测试样品前后两个表面温度,并求解上述传热方程,可得到被测样品的等效导热系数随温度的变化曲线。在这种恒定加热速率测试方法中,金属板起到量热计的作用,即在线性升温过程中测量金属板温度(即样品背面温度),并结合金属板的已知热物理性能参数,可计算得到金属板所吸收的热量,由此间接获得流经被测样品的热流密度。通过测量得到的热流密度,结合测量得到的被测样品两个表面温度,求解上述传热方程,可得到被测样品的等效导热系数随温度的实时变化曲线。对于上述恒定加热速率法测试模型,我们采用有限元进行了热仿真模拟和计算,证明了此方法对于低导热材料导热系数测量的有效性。[b][size=18px]三、结论[/size][/b]这种恒定加热速率测试方法,是一种动态测试方法,准确的说是一种准稳态测试方法,即在样品热面温度线性升温过程中,样品中的各个位置处的温度在经历初期的非线性升温后,也会逐渐演变为相同速率的线性变化。恒定加热速率导热系数测试方法的最大特点是可以测量样品相变和热解过程中的导热系数,由此可见,采用此方法,完全可以测量酚醛树脂防热材料在整个烧蚀过程中的导热系数变化。当然,此方法也非常适合单独测量高温下碳化层导热系数随温度的变化。对于烧蚀型低密度的酚醛树脂防热材料,其特征之一是烧蚀后表面层会发生烧蚀退后现象,即样品厚度会发生变小现象。对于这种样品边界发生移动的条件,会对恒定加热速率测试方法的准确性带来影响,在测试方法中还需进一步的深入研究。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 高温老化烧机室

    详细说明:产品名称:恒温老化房/老化房/烧机房/高温老化房/老化试验室/高温老化烧机室,烧机试验室,烧机室Chamber隔离式测试系统型Chamber隔离式老化房房间尺寸均根据客户要求设计,测试区采用推拉门及大视角玻璃视窗,如产品需要电源提供,则采用国内名牌插座固定在产品架线槽上或固定在测试区方便操作的位置。特点:可使操作人员在不用进入老化房测试区内就可以上下测试产品并可测试过程中一目了然的看到产品的B/I状况;免去操作人员进入老化房室内经受房体过热之苦、更能节约能源。详细资料1.主要技术参数:1.1 温度范围:常温+5℃--60℃(常温+5℃---80℃)1.2 温度波动:±0.5℃;1.3 温度偏差:最大精度±3℃(可根据客户要求设计精度)1.4 房内尺寸:按要求;1.5 运行方式:温度可调,恒定运行或程序运行(可选触摸屏式程序运行)1.6 安装电源:AC~380V;50 Hz;1.7 噪音大小:≦75分贝2:室体结构及用料说明:2.1 墙体材料:库体采用双面彩钢保温库板(EPS板、聚氨酯板或岩棉板)拼装而成,板材厚度由老化房本身的需求和客户的要求双向进行选择,库板板材厚度有50mm、60mm、70mm、100mm等规格,彩钢板的厚度有0.326mm、0.5mm等规格,整个库体采用钢架结构,铝型材等固定支撑,库体内外采用铝型材或不锈钢板包边;(地面处理部分根据客户要求),接合处打密封玻璃胶,有效保证房间的密封性与美观性。(房体材料的燃烧性能符合《建筑材料燃烧性能分级》B2级的规定。2.2 门洞与视窗设计:根据实际要求;3:风力恒温系统;风力管道系统符合《通风与空调工程施工质量验收规范》GB50243-2002标准,通常采用循环系统、加热系统和超温排风系统组成。循环系统、超温排风系统、加热系统及配套的风道系统安装于老化房顶部,不占用其它空间,,循环系统采用循环风机和配套风管进行循环,可保证测试区内温度均匀,加热系统采用电热器加热,加热器放置于老化房顶上循环风道中,四周加防火隔热材料。采用PID温度模块控制,温度到达产品所需要温度后,根据室内温度波动自动调节加热器功率大小配合保温库板的保温性,使室内温度精确稳定在所设定温度数值可在指定的时间内内将室温加至设定温度,当温度升至设定值时加热器停止加热.加热器具有过热保护装置(EGO),如客户自身产品发热则采用过热排风系统,发热量小采用电动百叶自动负压排风,发热量大则采用低噪音风机排风,用变频器控制其转速。循环控温过程:当开机时加热器开始加热 温度到达设定值时加热器停止加热 随着时间的推移产品区温度会逐渐上升当温度超过设定上限时 排风系统开始动作将产品区过热气体排室外。变频器会控制室外排风机进行运转,当温度下降至设定值下限时风机停止排风,排风系统同时关闭。循环系统在老化产品的过程中始终保持循环状态,以保证温度均衡。整套系统动作具有性能稳定,控制精确、温度波动小,均衡度高、噪音小等特点。噪音处理:采用低分贝的高品质循环风机,风管采用3mm厚石棉包裹,既保温又降低噪音,根据声学原理,所有动态部位采用帆布、弹簧进行软接处理,力求把噪音降到最低标准。4:老化房控制系统;采用两级PID调节加热量,实现对测试区(产品区)温度的精确控制,同时温度控制器可以对测试区任意温度进行滚动实时显示,有独立负载的还可以对负载区的温度进行监控,防止负载区温度过高,方便客户准确掌握测试区温度情况。控制系统还设定了各种保护功能,有超温报警保护、风机故障报警保护、无风报警保护、室内烟气感应报警保护等,完善的保护功能确保了老化房能长期稳定无故障运行。(可选PLC来控制)5:产品测试架:(可选)产品测试架通常根据客户产品和要求进行设计制。如需负载,则做相对应的负载框架配套生产,一般测试架的设计要求结构稳固合理,操作方便,外形美观、满足功能等特点,最大限度的满足客户的要求。 6:控制系统设计以及安全保护措施:6.1电控设计参照《低压配电设计规范》GB50054-95,《供配电设计规范》GB5002S2-95,《电气装置安装工程接地装置施工及验收规范》GB50169-92,使电控设计标准化。6.2控制系统集成老化功能设计。设计功能控制电柜,老化所需时间、温度、各类操作开关可在一个控制电柜上操作;电柜面板设计美观、操作简单。6.3老化过程可全自动控制,具有部分异常自处理功能,让操作自动化、简单化。6.4具有多重保护功能,安全可靠。a.电热防干烧,风机故障或风管内温度过高时自动切断循环系统电源,同时警报器报警。b.电加热与风机联动设计,风机未能启动时加热器无法单独启动,在关闭时电热与循环风机同时关闭,防止电热因干烧而损坏。c.加热器连接采用耐高温线材,300OC不燃烧。d.室内安装防爆型照明灯,提高灯泡寿命,防止灯泡爆破。e.库体采用难燃保温材料,保温性能好,安全系数高。f.超温声光报警功能:老化过程中出现超温状况,则亮红灯,蜂鸣器响起。g.烟雾报警功能:室内装有烟感报警器,预防在老化产品的过程中某种原因使产品燃烧而报警,在报警时自动关闭老化房电源。工作容积从8m3到1000 m3,温度范围从常温 ~ +60℃/80℃。控制器从微芯片LED到PLC可编程逻辑控制仪触摸屏显示器,及远程集中控制系统。都可按客户要求专门设计与制造。

  • 【求购】在高温能进行循环伏安测试吗?

    在高温可以测试循环伏安曲线吗?我想在乙二醇(bp=198摄氏度)溶剂里测FeCl3和AgCl的循环伏安曲线,不知道可不可以。若可以的话,对支持电解质和电极的选择有什么原则或要求吗?谢谢!

  • 高温老化烧机室

    产品名称:恒温老化房/老化房/烧机房/高温老化房/老化试验室/高温老化烧机室,烧机试验室,烧机室Chamber隔离式测试系统型 Chamber隔离式老化房房间尺寸均根据客户要求设计,测试区采用推拉门及大视角玻璃视窗,如产品需要电源提供,则采用国内名牌插座固定在产品架线槽上或固定在测试区方便操作的位置。 特点:可使操作人员在不用进入老化房测试区内就可以上下测试产品并可测试过程中一目了然的看到产品的B/I状况;免去操作人员进入老化房室内经受房体过热之苦、更能节约能源。详细资料1.主要技术参数:1.1 温度范围:常温+5℃--60℃(常温+5℃---80℃)1.2 温度波动:±0.5℃;1.3 温度偏差:最大精度±3℃(可根据客户要求设计精度)1.4 房内尺寸:按要求;1.5 运行方式:温度可调,恒定运行或程序运行(可选触摸屏式程序运行)1.6 安装电源:AC~380V;50 Hz;1.7 噪音大小:≦75分贝2:室体结构及用料说明:2.1 墙体材料:库体采用双面彩钢保温库板(EPS板、聚氨酯板或岩棉板)拼装而成,板材厚度由老化房本身的需求和客户的要求双向进行选择,库板板材厚度有50mm、60mm、70mm、100mm等规格,彩钢板的厚度有0.326mm、0.5mm等规格,整个库体采用钢架结构,铝型材等固定支撑,库体内外采用铝型材或不锈钢板包边;(地面处理部分根据客户要求),接合处打密封玻璃胶,有效保证房间的密封性与美观性。(房体材料的燃烧性能符合《建筑材料燃烧性能分级》B2级的规定。2.2 门洞与视窗设计:根据实际要求;3:风力恒温系统; 风力管道系统符合《通风与空调工程施工质量验收规范》GB50243-2002标准,通常采用循环系统、加热系统和超温排风系统组成。循环系统、超温排风系统、加热系统及配套的风道系统安装于szlongan17.com老化房顶部,不占用其它空间,循环系统采用循环风机和配套风管进行循环,可保证测试区内温度均匀,加热系统采用电热器加热,加热器放置于老化房顶上循环风道中,四周加防火隔热材料。采用PID温度模块控制,温度到达产品所需要温度后,根据室内温度波动自动调节加热器功率大小配合保温库板的保温性,使室内温度精确稳定在所设定温度数值可在指定的时间内内将室温加至设定温度,当温度升至设定值时加热器停止加热.加热器具有过热保护装置(EGO),如客户自身产品发热则采用过热排风系统,发热量小采用电动百叶自动负压排风,发热量大则采用低噪音风机排风,用变频器控制其转速。 循环控温过程:当开机时加热器开始加热,温度到达设定值时加热器停止加热,随着时间的推移产品区温度会逐渐上升当温度超过设定上限时,排风系统开始动作将产品区过热气体排室外。变频器会控制室外排风机进行运转,当温度下降至设定值下限时风机停止排风,排风系统同时关闭。循环系统在老化产品的过程中始终保持循环状态,以保证温度均衡。整套系统动作具有性能稳定,控制精确、温度波动小,均衡度高、噪音小等特点。 噪音处理:采用低分贝的高品质循环风机,风管采用3mm厚石棉包裹,既保温又降低噪音,根据声学原理,所有动态部位采用帆布、弹簧进行软接处理,力求把噪音降到最低标准。4:老化房控制系统; 采用两级PID调节加热量,实现对测试区(产品区)温度的精确控制,同时温度控制器可以对测试区任意温度进行滚动实时显示,有独立负载的还可以对负载区的温度进行监控,防止负载区温度过高,方便客户准确掌握测试区温度情况。控制系统还设定了各种保护功能,有超温报警保护、风机故障报警保护、无风报警保护、室内烟气感应报警保护等,完善的保护功能确保了szlongan17.com老化房能长期稳定无故障运行。(可选PLC来控制)5:产品测试架:(可选) 产品测试架通常根据客户产品和要求进行设计制。如需负载,则做相对应的负载框架配套生产,一般测试架的设计要求结构稳固合理,操作方便,外形美观、满足功能等特点,最大限度的满足客户的要求。6:控制系统设计以及安全保护措施:6.1 电控设计参照《低压配电设计规范》GB50054-95,《供配电设计规范》GB5002S2-95,《电气装置安装工程接地装置施工及验收规范》GB50169-92,使电控设计标准化。6.2 控制系统集成老化功能设计。设计功能控制电柜,老化所需时间、温度、各类操作开关可在一个控制电柜上操作;电柜面板设计美观、操作简单。6.3 老化过程可全自动控制,具有部分异常自处理功能,让操作自动化、简单化。6.4 具有多重保护功能,安全可靠。a. 电热防干烧,风机故障或风管内温度过高时自动切断循环系统电源,同时警报器报警。b. 电加热与风机联动设计,风机未能启动时加热器无法单独启动,在关闭时电热与循环风机同时关闭,防止电热因干烧而损坏。c. 加热器连接采用耐高温线材,300OC不燃烧。d. 室内安装防爆型照明灯,提高灯泡寿命,防止灯泡爆破。e. 库体采用难燃保温材料,保温性能好,安全系数高。f. 超温声光报警功能:老化过程中出现超温状况,则亮红灯,蜂鸣器响起。g. 烟雾报警功能:室内装有烟感报警器,预防在老化产品的过程中某种原因使产品燃烧而报警,在报警时自动关闭老化房电源。 工作容积从8m3到1000 m3,温度范围从常温 ~ +60℃/80℃。控制器从微芯片LED到PLC可编程逻辑控制仪触摸屏显示器,及远程集中控制系统。都可按客户要求专门设计与制造。

  • 不同真空度下石墨硬毡热流计法高温导热系数测量

    不同真空度下石墨硬毡热流计法高温导热系数测量

    摘要:石墨硬毡具有优异的高温隔热效果和稳定性,被广泛应用于高温热处理炉、烧结炉和硅单晶炉等领域。本文主要介绍了石墨硬毡的隔热性能测试,首先采用瞬态平面热源法进行了常温常压下的导热系数测量,然后再采用稳态热流计法在高温常压氮气环境下测试了石墨硬毡的高温导热系数,最后在氮气气氛中,同样采用稳态热流计法测试了不同温度和不同真空度下的导热系数。通过测试揭示了在氮气气氛下石墨硬毡隔热材料导热系数随温度和真空度的变化规律。采用稳态热流计法进行测试使得整个测试过程更接近于石墨毡隔热材料真实的大温差隔热工况,测试结果更具有代表性和指导意义。1. 石墨硬毡简介 石墨硬毡是在石墨软毡的基础上,使用少量连接剂制成各种任意形状后,经高温石墨化处理而形成的成形隔热材料。由于其重量轻,可独立,又可进行复杂加工,从而大大改善了原有的作业环境和可操作性。同时它还能进行各种表面处理,与软毡相比它的发尘量大大降低,而使用寿命大大延长,且具有优异的隔热效果和高温稳定性,石墨硬毡以其优异的性能,广泛应用于绝大部分高端市场,包括太阳能行业,半导体单晶硅行业,人工晶体行业,光纤行业,高端真空烧结炉、热处理炉等行业。 石墨硬毡主要性能特点: (1)石墨硬毡热处理温度高(处理温度约2250℃以上),具有低收缩率,低挥发物释放量等优点; (2)灰份低,纯度高,经纯化后的高纯硬毡灰份小于20ppm,保证了热场的纯净度; (3)低导热系数、隔热效果好、节能,产品质量的一致性好; (4)纤维基体,保证绝热性能均匀,同时温场稳定性能好。http://ng1.17img.cn/bbsfiles/images/2016/06/201606121639_596542_3384_3.jpg 图 1-1 各种工艺形式的石墨硬毡 如图 1-1所示,石墨硬毡可以根据所需的隔热性能和使用要求,采用不同的工艺手段和表面处理方式,形成多种产品形式和任意形状设计,结合使用条件,以达到自由的隔热效果设计。2. 石墨毡高温导热系数测试国内外文献综述 石墨硬毡最主要的物理性能参数之一是导热系数,特别是高温下的导热系数。由于石墨硬毡的抗氧化能力差而只能用于真空和各种惰性气体环境下,所以对于石墨硬毡还需要了解在不同气体和不同真空度下的导热系数。 另外,石墨硬毡做为隔热材料使用,一定是石墨硬毡的一面承受高温,而另一面温度很低基本在常温附近,也就是说实际隔热工况一定是石墨硬毡厚度方向上形成一个较大温差或温度梯度,温差或温度梯度会随着隔热温度的提高而逐渐增大。 为了准确测试评价石墨硬毡的隔热性能,测试中试样的边界条件必须要与石墨硬毡实际环境条件尽可能相同,必须要保证的边界条件包括温度、温度梯度、环境气氛真空度和环境气体成分。由此可见,对于石墨硬毡这类高温易氧化的隔热材料导热系数测量,必须在真空密闭环境中进行,以便于抽真空或充不同种类的惰性保护气体,同时还需配备相应的真空度控制系统。在具体的测试过程中同时还要求,被测试样的受热面温度尽可能高,被测试样的冷却面则始终处于室温附近。 由于石墨毡类材料所具有的低密度、耐高温、易氧化的特殊性,这类材料的导热系数测试只能在高温真空环境下进行测试,对测试设备的要求非常高,相应的研究文献并不多,很少有文献对石墨毡的导热性能测试进行过详尽的报道,也很少有不同测试条件下的测试结果详尽报道,就连石墨硬毡生产厂商也没有报道出相应数据的测试方法描述。这里只简单介绍Chahine等人的工作,其它报道罗列在本文的参考文献内。 Chahine等人采用热线法对WDF级的石墨毡导热系数进行了全方位的测试研究,其中石墨毡的密度为80kg/m^3,石墨纤维直径在7.0~12.5μm范围内,平均直径为10.5±3.2μm。石墨毡导热系数的测试分别在真空和氩气条件进行,测试结果如图 2-1所示。http://ng1.17img.cn/bbsfiles/images/2016/06/201606121644_596543_3384_3.png图 2-1 石墨毡在真空和氩气环境下的高温导热系数测试结果 为了进一步研究低密度石墨毡的传热性能,将石墨毡内的热传递分解为沿纤维的固体导热、气体导热、气体辐射和纤维之间的辐射热交换几个部分。综合考虑了石墨毡内的复合传热机理,分别对50kg/m^3和80kg/m^3两种密度的石墨毡的表观导热系数进行了计算,计算结果如图 2-2所示。http://ng1.17img.cn/bbsfiles/images/2016/06/201606121644_596544_3384_3.png图 2-2 两种不同密度石墨毡的表观热导率计算值以及不同传热机理 从计算结果可以看出,在小于500K的较低温度区间,石墨毡内的传热主要是固体和气体导热起主要作用,而在高温区间,辐射和一定程度的气体导热(基于环境气体成分)起主要作用,而且辐射传热机理对石墨毡的密度变化非常敏感,而其它传热形式则对密度变化并不灵敏。 作者在文献中所得出的结论是石墨毡高温导热系数的确定是个非常复杂的过程,需要结合理论计算和试验测试结果。当气体导热传热机理非常简洁以及气体导热系数可以很容易得到时,由于石墨毡的复杂几何结构,石墨毡的导热和辐射传热机理就被证明非常复杂并具有不确定性。大多数传热模型还是以纯经验为基础,还无法在不求助试验结果的前提下准确预测材料的传热性能。同样,所有辐射传热机理模型中的几何结构因数也都是通过试验手段获得。由此,WDF石墨毡的表观导热系数不能仅通过纯理论计算获得。 由以上研究文献可以明显的看出作者的无奈,作者在石墨毡测试过程中无法准确的模拟材料实际使用环境,特别是石墨毡实际使用中的大温差环境,采用热线法测试导热系数只能在被测试样等温条件下进行,无法测试得到实际大温差对导热、辐射和对流的影响和传热机理,只能通过建立经验模型和理论计算得到预测值。3. 瞬态平面热源法石墨硬毡常温常压导热系数测试 针对石墨硬毡材料,首先在常温常压下采用瞬态平面热源法(ISO 22007-2-2008 塑料-热传导率和热扩散率的测定.第2部分瞬时平面热源法)进行了测试。对石墨硬毡采用瞬态平面热源法进行测试,以期实现以下目的: (1)采用瞬态平面热源法测试石墨硬毡导热系数,以期后续与其它测试方法进行对比。 (2)石墨硬毡是一种典型材料,由于低密度和具有大量孔隙,这种材料的导热系数会随真空度增高而减小。通过真空控制和真空腔提供变真空测试环境,在1E-04~1E+03Torr覆盖七个数量级的真空度变化范围内,测试石墨硬毡在不同真空度下的导热系数,得到一条导热系数随真空度变化的完整曲线,以期获得导热系数随真空度变化的规律。同时由此可以用来研究石墨硬毡的传热机理和各种传热形式的影响。 (3)研究环境气体成分对石墨硬毡导热系数的影响,即在真空腔内充实不同的惰性气体,测试不同气体成分中石墨硬毡导热系数随真空度的变化。 本文所描述内容仅包括常温常压下的石墨硬毡导热系数测试结果,不同真空度和不同惰性气体气氛下的石墨毡导热系数测试将在后续报道中介绍。3.1. 瞬态平面热源法被测试样 瞬态平面热源法石墨硬毡被测试样如图 3-1所示,尺寸为50mm×50mm×40mm。http://ng1.17img.cn/bbsfiles/images/2016/06/201606121644_596545_3384_3.jpg图 3-1 石墨硬毡瞬态平面热源法被测试样3.2. 瞬态平面热源法测试结果 用两块石墨硬毡被测试样夹持瞬态平面热源法薄膜测试探头,如图 3-2所示。http://ng1.17img

  • 总半球发射率测试方法ASTM C835在1000℃以上应用中的高温局限性分析

    总半球发射率测试方法ASTM C835在1000℃以上应用中的高温局限性分析

    [color=#990000]摘要:本文对目前国内外采用ASTM C835高温总半球发射率测试方法进行的研究报道进行了文献分析,分析目前造成在1000℃以上高温区间无法或很少进行总半球发射率测试的原因,并尝试找出解决方法或替代方案以实现高温范围内的准确测量,为今后高温总半球发射率测试方法的选择和测试设备设计提供参考。[/color][hr/][size=18px][color=#990000]1. 引言[/color][/size]  总半球发射率是材料的重要热物理性能参数之一,代表着材料表面的热辐射能力,是研究热辐射测量、辐射传热以及热效率分析的重要基础物理性能数据。  总半球发射率的测试方法很多,但在高温条件下,经典的方式是直接通电量热法,相应的标准测试方法是ASTM C835“材料表面在1400℃高温范围内的总半球发射率标准测试方法”。  按照ASTM C835标准测试方法的设计,对于可直接通电加热的电导体材料,总半球发射率的最高测试温度可以达到1400℃。但从目前国内外研究报道来看,采用这种方法进行的测试极少能达到如此高的温度,绝大多数报道的总半球发射率测试温度范围都在1000℃以下,这说明这种方法在高温范围内的应用具有一定的局限性。  本文将对目前国内外采用ASTM C835测试方法进行的研究报道进行文献分析,分析造成无法或很少在1000℃以上高温范围进行总半球发射率测试的原因,并尝试找出解决方法或替代方案,以实现高温范围内的准确测量,为高温总半球发射率测试方法的选择和测试设备设计提供参考。[size=18px][color=#990000]2. 文献综述和分析[/color][/size]  对于总半球发射率的测量,做为经典的测试方法,ASTM C835的应用十分普遍,使用这种测试方法可以准确测量和评价服役中材料的高温热辐射性能。但我们在文献研究中发现,在ASTM C835的实际应用中很少有文献报道超过1000℃的测试数据。  首先我们分析了ASTM C835标准测试方法文本[1]的参考文献,其中引用了Richmond等人1960年对几种金属合金总半球发射率的测试研究报道[2]。在Richmond等人的报道中,总半球发射率的测试温度最高就达到1000℃,如图2-1所示。  从图2-1所示的NBS测试结果中可以隐约看出总半球发射率值在800~1000℃区间内有个峰值。这种在1000℃附近发射率发生突变的原因,一直没看到有相关文献进行过分析报道,直到2000年Greene等人[3]针对发现的这种现象进行了专门的研究。[align=center][color=#990000][img=发射率(Emissivity),623,756]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201551458107_282_3384_3.png!w623x756.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图2-1 在美国国家标准局(NBS)和通用电气公司(GE)接收管部门对通用电气公司提供的金属板样品测量的结果[2][/color][/align]  为了测试Inconel 718在不同表面状态下的高温总半球发射率,Greene等人[3]采用了S型热电偶,但当样品表面温度超过1000℃时测量发射率遇到了困难。在高于1000℃后,S型热电偶开始给出未知原因的异常读数,得到的发射率测量结果如图2-2所示。通过单独实验Greene等人研究了这种异常现象,在该实验中,将热电偶焊接到一小块Inconel 718上,然后缠绕在标准热电偶管上。将热电偶置于大气压下的熔炉中,并对两个测量温度进行比较,结果显示在图2-3中。第一次温度上升到1000℃时,温度异常首先出现在1000℃;当温度升高到1200℃时,与标准校准热电偶的偏差恢复。偏差趋势随着重复的热循环而重复,如图2-3所示,由此显示了作为测量标准温度的函数的两个测量温度之间的差异,可以清楚地看到点焊热电偶的塞贝克系数异常,它在大约1000℃时具有最大影响。[align=center][color=#990000][img=发射率(Emissivity),690,542]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201552577851_2873_3384_3.png!w690x542.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图2-2 Inconel 718的发射率测试结果[3][/color][/align][align=center][img=发射率(Emissivity),690,538]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201553092817_3983_3384_3.png!w690x538.jpg[/img][/align][align=center][color=#990000]图2-3 样品热电偶和参考热电偶之间的温差[/color][/align]  由于真空条件下的这种异常总是出现在1000℃以上的温度,Greene等人因此决定只报告测量的发射率高达1000℃。另外Greene等人还认为对于其他热电偶类型、不同基材(如其他Inconel和不锈钢)、各种热电偶连接方法(即单独点焊线、相互点焊然后点焊到表面的导线),需要在氧化和惰性气氛中进行热循环,以帮助解释这种异常行为并提高对1000℃以上条件下热电偶行为的深入理解。  从Greene等人[3]的研究结果可以看出,在1000℃左右的温度测量中,通过点焊在被测样品上的热电偶获得的测温数据要比实际温度值高,如将此温度测量值代入测量公式,势必会得到比实际值偏小的总半球发射率,这就解释了在1000℃左右总半球发射率开始变小的现象。  尽管Greene等人[3]通过试验手段并解释了ASTM C835标准方法中采用样品上焊接热电偶进行测温过程中会在1000℃左右区间出现发射率测量结果异常现象,但并没有相应合理的解决办法,所以只能进行1000℃以下温度范围的发射率测量和报道。  近二十多年来,在采用ASTM C835标准方法进行的测试研究报道中,基本没有看到温度要超过1000℃以上进行测试的尝试。最典型的是加拿大核试验室的Fong等人[4]采用最新电子自动化技术在2015年完成搭建了直接通电法总半球发射率测试装置,如图2-4所示。从文献报道可以推测,这是目前国际上最新搭建的测量装置,此装置的测试过程完全自动化并控制测量准确,整个测试过程非常漂亮,如图2-5所示,但最高温度也只能达到1000℃的测试能力,如图2-6所示。[align=center][color=#990000][img=发射率(Emissivity),690,477]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201553219609_7110_3384_3.jpg!w690x477.jpg[/img][/color][/align][align=center][color=#990000]图2-4 (a)压力管发射率测试样品的配置,(b)钟罩型发射率仪器底部照片[/color][/align][align=center][color=#990000][img=发射率(Emissivity),690,224]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201553350253_8997_3384_3.jpg!w690x224.jpg[/img][/color][/align][align=center][color=#990000]图2-5 1000℃下的压力管发射率测试过程;(a)预氧化表面和(b)未氧化表面[/color][/align][align=center][color=#990000][img=发射率(Emissivity),690,495]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201553456415_846_3384_3.jpg!w690x495.jpg[/img][/color][/align][align=center][color=#990000]图2-6 在600℃至1000℃范围内测量的预氧化和未氧化压力管样品的总半球发射率值[/color][/align]  通过报道文献分析,近十几年来,采用ASTM C835标准方法进行各种材料发射率测试和研究比较活跃的机构,主要是中国清华大学的符泰然团队和美国密苏里大学的汤普森团队。清华大学符泰然团队在2010年就开始对ASTM C835方法进行研究和研制了相应的测试设备,并发布了很多文献报道[5][6],但所报道的发射率测试温度最高也只能达到1000℃,对温度高于1000℃的测试只字未提。  密苏里大学汤普森团队2010年前就进行了ASTM C835方法研究,同样也研制了相应的测试设备,如图2-7和图2-8所示。[align=center][color=#990000][img=发射率(Emissivity),690,704]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201554053335_146_3384_3.jpg!w690x704.jpg[/img][/color][/align][align=center][color=#990000]图2-7 密苏里大学量热法总半球发射率测试系统钟罩内部结构图[/color][/align][align=center][color=#990000][img=发射率(Emissivity),690,516]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201554162712_5436_3384_3.jpg!w690x516.jpg[/img][/color][/align][align=center][color=#990000]图2-8 密苏里大学量热法总半球发射率测试系统[/color][/align]  从密苏里大学近十多年来发表的文献中,可以看到他们经常会发布一些超过1000℃的发射率测试结果或其他文献数据,而且在测试过程中全部都采用了K型热电偶进行样品表面温度测量,本身也没想采用S型热电偶进行更高温度的发射率测量。如在2010年的文献中[7],介绍了超高温反应堆系统潜在结构材料总半球形发射率的测试结果,如图2-9所示。从图中可以看出,密苏里大学的测试并未超过1000℃,但用来对比的文献数据则最高温度达到了近1200℃,并且温度在1000℃附近时发射率有明显的异常波动。[align=center][color=#990000][img=发射率(Emissivity),690,433]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201554280088_6996_3384_3.jpg!w690x433.jpg[/img][/color][/align][align=center][color=#990000]图2-9 氧化镍发射率测试数据(三角形和空心圆)与其他文献数据的比较[/color][/align]  在密苏里大学2012年的文献中[8],介绍了Hastelloy总半球形发射率的测试结果,如图2-10所示。从图中可以看出,测试结果在1000℃附近波动明显。[align=center][color=#990000][img=发射率(Emissivity),690,431]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201554387619_847_3384_3.jpg!w690x431.jpg[/img][/color][/align][align=center][color=#990000]图2-10 纯镍、Hastelloy N和Hastelloy X样品在1153K空气中氧化15分钟后的发射率测试结果比较[/color][/align]  在密苏里大学2012年的文献中[9],介绍了Haynes 230总半球形发射率的测试结果,如图2-11所示。从图中可以看出,测试结果同样在1000℃附近有明显的下降。[align=center][color=#990000][img=发射率(Emissivity),690,426]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201554493500_2148_3384_3.jpg!w690x426.jpg[/img][/color][/align][color=#990000][/color][align=center][color=#990000]图2-11 原始状态Haynes 230发射率测试结果和相似实验条件下两个不同测试数据[/color][/align]  同样,在2015年的文献中,介绍了lnconel 718在不同热处理后的发射率测试结果,如图2-12所示。从图中可以看出,测试结果同样在1000℃附近有明显波动,但这其中的波动部分原因也可能是氧化层在1000℃附近的变化所引起。[align=center][color=#990000][img=发射率(Emissivity),690,439]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201554589029_7043_3384_3.jpg!w690x439.jpg[/img][/color][/align][align=center][color=#990000]图2-12 不同热处理状态的lnconel 718发射率测试结果[/color][/align]  有关1000℃后的高温区域测试过程中发射率的异常现象,密苏里大学在之前的文献报道中从未提起,发射率测试温度范围大多也没有超过1000℃。但在2016年发布的文献中[11],介绍了91级A387合金发射率测量结果在827℃左右达到峰值,并随着温度进一步升高而逐步减小,如图2-13所示,而且这种随温度逐步减小的现象,也发生在进行过喷砂和氧化处理后的91级A387合金测试过程中。这种在827℃左右就开始出现异常的现象确实少见,所以文章作者也声明造成这种下降的原因尚不清楚,需进一步调查。[align=center][color=#990000][img=发射率(Emissivity),690,439]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201555075221_3087_3384_3.jpg!w690x439.jpg[/img][/color][/align][align=center][color=#990000]图2-13 轻度打磨的91级A387合金的总半球发射率[/color][/align]  在随后两年发表的文献[12]和博士论文[13]中,密苏里大学还是采用了K型热电偶对几种典型合金材料进行了全半球发射率测试,在文献综述中提到了1000K后发射率有明显的降低现象,测试结果也再现了这种现象,但都没再提及这种反常现象和原因。但在对高温反应堆系统结构材料发射率的长期预测中[14],首先报道了对合金718进行的额外测量和短期氧化研究结果,以确定氧化合金718中发射率下降的原因。图2-14显示了合金718在空气中氧化10分钟处理后的四种不同样品的发射率,每次测试都在1200K峰值发射率附近的不同温度下终止。使用SEM-EDS检查样品没有发现表面形态和成分的任何变化来解释氧化合金718的行为,由此在随后的长期氧化研究结果中就没再出现1200K以后的结果。[align=center][color=#990000][img=发射率(Emissivity),690,423]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201555160390_4720_3384_3.png!w690x423.jpg[/img][/color][/align][align=center][color=#990000]图2-14 合金718在空气中氧化长达10分钟的总半球发射率[/color][/align]  在密苏里大学随后几年发表的新材料发射率测试研究报道中[15][16],再也没有出现超过1000℃的实验数据。  从上述文献分析可知,目前国内外绝大多数研究机构对1000℃以上高温发射率中存在的异常现象都没有很好的解决办法,测试结果自然也不能做为准确数据得到应用,但在实际工程应用中还是迫切需要这些高温数据。  美国桑迪亚国家实验室的辐射热测试组(RHTC)多年来一直从事对各种材料在高温热环境下的热辐射性能进行研究,主要测试和研究的材料包括Inconel600、SS304、17-4PH SS、碳化硅和铝合金。在总半球发射率的温度依赖性研究方面,他们外协了美国历史悠久的热物性研究实验室(TPRL),委托TPRL采用他们特有的高温多参数热物性测试设备对典型材料进行了高温总半球向发射率的测试[17][18]。  TPRL的高温多参数热物性测试设备可用于测量材料的多个热物理性能,包括热导率、热扩散率、比热、热膨胀、电阻率、发射率、焓、半球总发射率、Wieddemann-Franz-Lorenz比、汤姆逊系数、塞贝克系数、珀尔帖系数和理查森系数。设备中使用的样品要求是棒状电导体材料,金属、合金和石墨材料已使用该设备进行了广泛的测量。使用热电偶进行温度测量,可以在室温至约1000℃范围内测量大多数这些特性。然而,该装置主要是一种高温(1000℃)设备,使用光学高温计进行温度测定,该设备结构如图2-15所示。[align=center][color=#990000][img=发射率(Emissivity),690,359]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201555258790_8446_3384_3.jpg!w690x359.jpg[/img][/color][/align][align=center][color=#990000]图2-15 TPRL高温多参数热物性测量设备结构示意图[/color][/align]  TPRL的高温多参数热物性测试设备对总半球发射率的测试,采用是ASTM C835方法,但高温温度测量采用的则是非接触式光学高温计。在对Inconel 600热电偶护套材料的发射率测试中,进行了各种预先热处理,样品A在稀薄火焰中在1400℃下加热4小时,样品B在1050℃的浓火焰中加热4小时。样品C和D在空气中分别在1100℃下电加热4小时和5分钟。样品E做为参考样品,由原始的Inconel 600热电偶护套材料组成,没有氧化,也就是说,由于测量是在高真空下进行的,所以参考样品在测量过程中表面没有氧化。整个测试过程的温度至少达到了1071℃,最高达到了1181℃,测试结果数据和图形描述如图2-16和图2-17所示。[align=center][color=#990000][img=发射率(Emissivity),690,429]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201555364019_3535_3384_3.jpg!w690x429.jpg[/img][/color][/align][align=center][color=#990000]图2-16 作为不同温度和表面处理状态下的Inconel 600总半球发射率测试结果[17][18][/color][/align][align=center][color=#990000][img=发射率(Emissivity),690,358]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201555454741_5446_3384_3.png!w690x358.jpg[/img][/color][/align][align=center][color=#990000]图2-17 不同表面状态和温度下的Inconel 600总半球发射率[/color][/align]  从上述TPRL公布的测试结果可以看出,无论在任何表面状态下,发射率随温度的变化基本都是一个接近线性的单调上升变化趋势,并未出现其他实验室采用热电偶测温所出现的1000℃附近的发射率异常波动现象。[size=18px][color=#990000]3. 总结[/color][/size]  通过上述ASTM C835标准测试方法应用的研究报道分析,可以得出以下结论:  (1)在测试过程中,如果在通电加热样品上直接焊接热电偶进行温度测量,由于在高温区间样品材料会出现塞贝克系数异常而导致发射率测量结果反而会随着温度上升而下降。如果采用非接触测温方式,则没有这种现象。这说明接触式热电偶测温会对高温发射率测量结果带来了很大影响,很多时候往往会得到相反的结果。  (2)热电偶测温方式往往适用低于1000℃温度区间的发射率,但在通电样品上焊接多只热电偶往往又会在温度测量准确性上带来较大误差,这是因为多只热电偶通过导电样品形成了短路。  (3)采用非接触式光学高温计进行温度测量,尽管测量温度区间可以实现很宽泛的范围,但光学高温计自身也涉及到一个发射率参数问题,样品发射率在不同温度下的改变也会影响测温精度,除非使用温度测量与发射率无关的多光谱红外测温仪器,而这种多光谱测温仪器的测量准确性还需要进一步考核和研究。  (4)由以上结论可以看出,无论采用热电偶还是采用光学高温计,都会带来不可知的测量误差,区别是热电偶带来的发射率误差是方向性的,而光学高温计的误差则是幅值大小方面的。目前最大的问题是还没有很好的技术手段来解决这些误差影响因素,而这些问题在很大程度上限制了ASTM C835标准测试方法在高温发射率测试方面的应用。  (5)鉴于ASTM C835标准测试方法在高温总半球发射率测试方面所面临的无解问题,但还要进行各种材料高温发射率的准确测量,因此我们建议采用另一种间接通电加热的量热法测量高温半球向发射率。这种测试方法与ASTM C835方法的主要却别是样品加热方式,在这种测试方法中,两片薄被测样品将薄发热体夹持在中间,发热体通电加热来间接加热被测样品,而温度测量则采用独立的铠装热电偶,由此避免样品高温段塞贝克系数异常和焊接质量对温度测量的影响,又可以规避样品上直接焊接热电偶经常带来高温易脱落造成试验失败的现象。[size=18px][color=#990000]4. 参考文献[/color][/size][1] ASTM C835-06(2020), Standard Test Method for Total Hemispherical Emittance of Surfaces up to 1400℃, ASTM International, West Conshohocken, PA, 2020, www.astm.org.[2] Richmond, J. C., and Harrison,W. N., “Equipment and Procedures for Evaluation of Total Hemispherical Emittance,” American Ceramic Society Bulletin, Vol 39, No. 11, Nov. 5, 1960.[3] Greene G A, Finfrock C C, Irvine Jr T F. Total hemispherical emissivity of oxidizedInconel 718in the temperature range 300~1000 C[J]. Experimental Thermal and Fluid Science, 2000, 22(3-4): 145-153.[4] Fong R W L, Paine M, Nitheanandan T. Total hemispherical emissivity of pre-oxidized and un-oxidized Zr-2.5 Nb pressure-tube materials at 600 C to 1000 C under vacuum[J]. CNL Nuclear Review, 2016, 5(1): 85-93.[5] T. R. Fu, P. Tan and C. H. Pang, "A steady-state measurement system for total hemispherical emissivity," Measurement Science and Technology, vol. 23, no. 2, p. 10, 2012.[6] T. R. Fu, et al., "Total hermispherical radiation properties of oxidized nickel at high temperatures," Corrosion Science, vol. 83, pp. 272-280, 2014.[7] Maynard R K, Ghosh T K, Tompson R V, et al. Total hemispherical emissivity of potential structural materials for very high temperature reactor systems: Hastelloy X[J]. Nuclear technology, 2010, 172(1): 88-100.[8] A. J. Gordon, et al., "Hermispherical total emissivity of Hastelloy N with different surface conditions,"Journal of Nuclear Materials, vol. 426, no. 1, pp. 85-95, 2012.[9] R. K. Maynard, et al., "Hemispherical Total Emissivity of Potential Structural Materials for Very High Temperature Reactor Systems: Haynes 230," Nuclear Technology, vol. 179, no. 3, pp. 429-438, 2012.[10] B. P. Keller, et al., "Total hemispherical emissivity of lnconel 718," Nuclear Engineering and Design, vol. 287, pp. 11-18, 2015.[11] C. B. Azmeh, et al., "Total Hemispherical Emissivity of Grade 91 Ferritic Alloy with Various Surface Conditions," Nuclear Technology, vol. 195, no. 1, pp. 87-97, 2016.[12] T. S. Hunnewell, et al., "total Hemispherical Emissivity of SS 316L with Simulated Very High Temperature Reactor Surface Conditions," Nuclear Technology, vol. 198, no. 3, pp. 293-305, 2017.[13] Al Zubaidi F. Total Hemispherical Emissivity of Reactor Pressure Vessel Candidate Materials: SS 316 L, SA 508, and A 387 Grade 91[D]. University of Missouri-Columbia, 2018.[14] Tompson Jr R V, Ghosh T K, Loyalka S K, et al. Long-term Prediction of Emissivity of Structural materials for High Temperature Reactor Systems[R]. Univ. of Missouri, Columbia, MO (United States), 2018.[15] Walton K L, Maynard R K, Ghosh T K, et al. Total Hemispherical Emissivity of Potential Structural Materials for Very High Temperature Reactor Systems: Alloy 617[J]. Nuclear Technology, 2019, 205(5): 684-693.[16] Al Zubaidi F N, Walton K L, Tompson R V, et al. Emissivity of Grade 91 ferritic steel: additional measurements on role of surface conditions and oxidation[J]. Nuclear Technology, 2021, 207(8): 1257-1269.[17] J. Gembarovic, "Total Hemispherical Emissivity of Thermocouple Sheaths, in A Report~Sandia National Laboratories," Thermophysical Properties Research Laboratory, Inc:, West Lafayette, IN, 2005.[18] A. L. Brundage, et al., "Thermocouple Response in Fires, Part 1: Considerations in Flame Temperature Measurements by a Thermocouple," Journal of Fire Sciences, vol. 29, no. 3, pp. 195-211, 2011.[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align][align=center][/align][align=center][img=发射率(Emissivity),690,316]https://ng1.17img.cn/bbsfiles/images/2021/09/202109201556153448_487_3384_3.jpg!w690x316.jpg[/img][/align][align=center][/align]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制