当前位置: 仪器信息网 > 行业主题 > >

高压甲烷吸附仪

仪器信息网高压甲烷吸附仪专题为您提供2024年最新高压甲烷吸附仪价格报价、厂家品牌的相关信息, 包括高压甲烷吸附仪参数、型号等,不管是国产,还是进口品牌的高压甲烷吸附仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合高压甲烷吸附仪相关的耗材配件、试剂标物,还有高压甲烷吸附仪相关的最新资讯、资料,以及高压甲烷吸附仪相关的解决方案。

高压甲烷吸附仪相关的论坛

  • 【求助】求助:吸附剂与二氯甲烷好像相溶??

    自己买的Tenax TA吸附剂,买回后自己填充在玻璃管中,主要想做挥发物。昨天抽了一天,晚上用二氯甲烷解吸的时候发现Tenax TA吸附剂与二氯甲烷好像相溶了一样,变成凝胶状的物质。我用的是固相萃取装置解吸的,这样就完全没办法做了,想问一下各位高手都用什么试剂来解吸,为什么我会出现这种情况???谢谢了。。

  • 【求助】求助:吸附剂与二氯甲烷好像相溶??

    自己买的Tenax TA吸附剂,买回后自己填充在玻璃管中,主要想做挥发物。昨天抽了一天,晚上用二氯甲烷解吸的时候发现Tenax TA吸附剂与二氯甲烷好像相溶了一样,变成凝胶状的物质。我用的是固相萃取装置解吸的,这样就完全没办法做了,想问一下各位高手都用什么试剂来解吸,为什么我会出现这种情况???谢谢了。。

  • 【求助】求助:吸附剂与二氯甲烷好像相溶??

    自己买的Tenax TA吸附剂,买回后自己填充在玻璃管中,主要想做挥发物。昨天抽了一天,晚上用二氯甲烷解吸的时候发现Tenax TA吸附剂与二氯甲烷好像相溶了一样,变成凝胶状的物质。我用的是固相萃取装置解吸的,这样就完全没办法做了,想问一下各位高手都用什么试剂来解吸,为什么我会出现这种情况???谢谢了。。

  • 【原创】大昌华嘉“吸附仪在新材料上的应用”全国巡讲

    2011年3月22日大昌华嘉商业(中国)有限公司在广州中山大学举办了“吸附仪在新材料上的应用”研讨会。来自高校和科研院所的专家和技术人员100余人出席研讨会。此次研讨会主讲人是日本拜尔BEL公司Keita Tsuji博士。 在研讨会之前,王磊经理首先向大家介绍了大昌华嘉公司的历史及发展现状。大昌华嘉是一家具有200年历史的瑞士国际集团,作为BEL比表面分析仪,Kruss接触角测量仪,Microtrac激光粒度产品在中国总代理,负责其所有产品、技术的推广销售和服务。 日本BEL公司专业研究生产容量法气体吸附分析仪的专业制造厂商,推出一批又一批吸附领域的前沿技术。多站式蒸汽吸附仪系统和多站式化学吸附仪系统,将仪器测定的高效率和高精度完美结合起来。   http://bimg.instrument.com.cn/lib/editor/UploadFile/20114/20114185116423.jpg 会上Tsuji博士介绍了国际上第一双站微孔吸附仪在2006年面试,唯一一个使用0.1Torr压力传感器系统,多站式蒸汽吸附仪系统和多站式化学吸附仪系统,将仪器测定的高效率和高精度完美结合起来。固体电解质膜水分吸附和质子传导分析仪,燃料电池综合评价装置等,极大地丰富了表面吸附表征方法,同时也为拜尔公司高品质的产品和服务赢得了口碑。 物理吸附同步连接XRD、GC、磁悬浮天平 化学吸附仪链接质谱、红外、低温脉冲和TPR 高压吸附仪在储氢材料的应用   http://bimg.instrument.com.cn/lib/editor/UploadFile/20114/20114185116575.jpg

  • 【转贴】有机试剂在络合吸附波中的应用

    张军红,刘道杰(聊城大学化学系,山东聊城 252059)有机试剂在光度分析中得到了广泛的应用,而且在电化学分析中近20年来也有了较快的发展。络合吸附(包括催化)波极谱法在我国发展较快,是具有中国特色的极谱分析方法。它可以通过选择特效有机试剂提高极谱法的灵敏度及选择性,发挥极谱吸附波的特点,大大扩大了极谱分析的应用范围。张正奇、李启隆曾对1991年前的有机试剂在极谱吸附波中的应用进行过评述,本文则对近10年来的有机试剂在络合吸附波中的应用进行简要综述。以络合吸附波测定微量及痕量物质的方法是重要的电化学分析方法之一。络合吸附波不仅可测定无机化合物,也可测定有机化合物,应用非常广泛[6]。近年来,关于有机试剂在极谱催化波测定无机物和有机物中的应用论文有500多篇,国外的文献多侧重于电极反应机理等方面。本文综述了以下几类有机试剂。1 偶氮化合物偶氮染料为水溶性的染料,分子中的偶氮基团-N=N-易吸附在滴汞电极上并发生电化学反应,这类化合物用于光度法测定金属离子灵敏度不高,多用于极谱方法[7]。偶氮试剂在络合吸附波中的应用,见表1。其中7-(1-苯偶氮)-8-羟基喹啉-5-磺酸钠(BQ)多用于光度分析,在络合吸附波中的研究很少。周长利等研究报道了SnE-BQ络合吸附波,该法测定冶金样品中的痕量锡,灵敏度高,不受氧波及多种元素干扰,选择好,RSD3.64%,测定结果满意。DBC2偶氮胂也是一种新型的偶氮类显色剂,何平等[以其为配体用络合吸附波测定了铑离子,在pH3.2的甲酸-甲酸钠介质中,RhD与DBC2偶氮胂生成络合物,于-1104V出现一尖锐、灵敏的络合吸附波,峰电流与RhD浓度在215@10-8~9.2@10-7mol/L范围内呈良好的线性关系,检出限611@10-9mol/L。试验了多种离子对峰电流的影响,采用离子交换法分离干扰离子,用于标样中铑的测定,得到了满意结果。2 卟啉化合物卟啉和金属卟啉化合物在仿生学、医学、催化、太阳能利用和光谱分析等方面有着越来越重要的作用[42],由于卟啉的特殊结构,其金属络合物所发生的特殊生化反应可作为生物体某些反应的模拟模型[43]。此外,利用卟啉的/光化学烧空现象0而制成的高密度分子存贮器对信息工业的发展也起了巨大的推动作用[44]。在医药上,卟啉还可以作为动力学光疗法的光敏剂[45]。在电化学分析方面,罗登柏等[46]报道卟啉在强碱性条件下具有较强的络合能力,可以和金属离子形成络合物吸附波。王小萍等[49]研究了镉-meso(42磺基苯)卟啉络合物的极谱行为,结果表明,镉离子在3@10-7~1@10-5mol/L范围内与络合物峰电流有良好的线性关系,可用于CdC的定量分析。王莉红等[50]利用在碱性介质中铜与(42磺基苯)卟啉形成络合物,研究了其伏安特性,检出限达8@10-10mol/L,比文献[51]值提高了约2个数量级,用于工业硫酸锌盐中微量铜的测定,结果令人满意。卟啉试剂在络合吸附波中的应用,见表2。[img]http://ng1.17img.cn/bbsfiles/images/2006/05/200605221931_18809_1634962_3.gif[/img]3 铜铁试剂铜铁试剂是一种重要的分析试剂,其结构特点是:分子中羟氨上的氧和亚硝基能和金属离子键合 含有苯环,具有共轭双键结构,P电子云易于在汞电极上交叠,有吸附性 含有不饱和基团,可在电极上分三步两电子还原,最后产物为苯肼。李启隆[52]曾对其在络合吸附波中的应用在1994年做过综述,铜铁试剂不仅与金属离子络合,也氧化电极反应产物,再生电极反应物,形成催化循环,产生催化电流。这类络合物吸附波既有吸附富集,又有催化电流,灵敏度很高。Mo-铜铁试剂的灵敏度可达到1@10-9mol/L。由此可见,铜铁试剂具有络合性、吸附性和电活性,能满足络合吸附波对配位体的要求。实验证明,铜铁试剂不但是络合剂,同时又是平行催化过程中的化学氧化剂,因而,它比其他一些非变价金属离子-铜铁试剂的络合吸附波灵敏的多。马翠玲等[56]研究了CuC-铜铁试剂络合吸附波的性质和反应机理,结果表明,在011mol/L的HAc-NaAc(pH510)溶液中,CuC与铜铁试剂形成1B1络合物,后者吸附于电极表面起富集的作用,从而使络合吸附波的灵敏度提高。铜铁试剂在络合吸附波中的应用,见表3。4 三苯甲烷类试剂三苯甲烷类试剂分子的共轭度较大,在汞电极上有较强的吸附性,且试剂分子中含有配位能力很强的氨羧配位基团和多个羟基,因而适于在极谱催化波中作配体。龙晖等[64]提出了SnE-PR-VE-SDS新体系,检出限可达4@10-10mol/L。此方法灵敏度高,选择性好,线性范围宽,已成功应用于罐装食品中微量锡的测定。4,52二溴苯基荧光酮(Br22PF)是一种灵敏的无机金属离子显色剂,温轲等[66]首次采用电化学方法,对AlD与Br22PF的成络行为、络合物性质等进行研究,建立了测定微量铝的灵敏的分析方法,应用于碳酸钠、锌合金和铁矿石样品中铝的测定,结果满意。三苯甲烷类试剂在络合吸附波中的应用,见表4。[img]http://ng1.17img.cn/bbsfiles/images/2006/05/200605221932_18810_1634962_3.gif[/img]

  • 活性氧化铝作为吸附剂的应用

    活性氧化铝作为吸附剂的主要的工业应用包括气体干燥、液体干燥、水质净化、石油工业的选择吸附以及色层分离工艺等。  由于活性氧化铝对水有较强的亲和力,因此在气体干燥中得到了广泛应用。能够用活性氧化铝干燥的气体主要有:乙炔、裂解气、焦炉气、氢气、氧气、空气、乙烷、氯化氢、丙烷、氨气、乙烯、硫化氢、丙烯、氩气、甲烷、二氧化硫、二氧化碳、天然气、氦气、氮气、氯气等。由于活性氧化铝吸附水时放出大量的热,因此,应用时要综合干燥能力、干燥速度、换热及再生方式等进行设计。  活性氧化铝可以干燥的液体主要有:芳香烃类、高分子烯烃类、汽油、煤油、环己烷、丙烯、丁烯以及许多卤化烃类等。这些液体与氧化铝接触时,二者不会发生反应或聚合,同时,干燥的液体中不含有容易吸附在氧化铝表面并且再生时不易去掉的组分。  在水质净化方面,活性氧化铝除主要用于去除饮水中的氟化物外,对工业污水颜色及气味的消除也很有效果。此外,活性氧化铝在碳水化合物的回收和选择性吸附及动力系统油的养护中也有普遍应用。

  • 【分享】吸附剂中孔隙结构及比表面的表征解析

    在深的吸附势阱中,对低相对压下的分子就具有相当强的捕捉能力,表现为I型吸附等温线,这是由于微孔内相对孔壁吸附势的重叠从而引起低相对压力下促进的微孔充填(Micropore Filling)。初看起来微孔充填与毛细凝聚有些类似,但实际上微孔充填是取决于吸附分子与表面之间增强的势能作用的微观现象,而毛细凝聚则是取决于吸附液体弯液面(Meniscus)特性的宏观现象,两者应区别对待;另外对于极性分子和表面官能团作用的情形,应考虑除Lennard-Jones相互作用势以外的其它相互作用。http://www.best17.cn/admin/editor/UploadFile/2007122522298474.jpg Fig.1-8 10-4-3 Potential of nitrogen in slit-like pores (Here,the zero point of z as the center of pores) 图1-8狭缝型孔隙中氮的吸附势(零点Z看作孔隙中心) 这种吸附力场的改善已经由高的吸附等容热提供了实验证据;同时Everett和Powl通过理论计算表明,在小于两个分子直径的狭缝型孔隙内以及在小于六个分子直径的圆形孔隙内会引起吸附势的增强;Gregg和Sing等表明这种改善效应可以在比Everett和Powl所预测的孔径更大的孔隙内发生。 正是由于纳米空间内分子间相互作用的增强,不仅使固体-吸附质之间的相互作用增强,而且使吸附质-吸附质之间的相互作用改善,这就使得对于吸附在纳米空间的物质表现出一些特异的现象。用α-FeOOH改性的ACF通过铁氧化物的化学助吸附(Chemisorption-Assisted)表现为对NO较高的吸附容量(303K,300mg/g),可以形成NO的二聚体(NO)_2,而且该二聚体相当稳定。在与SO_2共存的条件下,NO会发生如下歧化反应生成N_2O:3(NO)_2=2N_2O+2NO_2,而该反应在通常条件下只有在高压下才得以进行。Kaneko假设在纳米空间吸附的分子形成的分子簇(Molecular Clusters)为液滴,这时,液滴周围的蒸气与液滴之间的压差△P由Young-Laplace方程计算,液滴的大小与表面张力γ之间存在如下关系:△P = 2γ/r_m,r_m是液滴、蒸气界面的曲率半径,代表液滴大小。当液滴为lnm时,在纳米空间中的水受到约相当于1400atm的压力,对于相似条件下的液氮则受到约相当于200atm的压力,由此吸附在纳米空间内的分子可以看成是处于高压环境之中。 不仅纳米空间内的分子簇会形成特定的结构,在吸附的同时,吸附剂的固体结构也会发生变化。当沸石(Zeolite)上发生氮吸附时,沸石晶态的对称性发生改变,而活性炭上发生氮吸附时,其结构单元微晶石墨的层间距会变小。所有这些都表明吸附质分子间的相互作用也非常强。纳米空间独特的分子场,有可能会发现一些新的分子功能。 实际上由于孔隙的微观性以及纳米尺度(分子级)的原因,要想对孔隙的起源作较为理想的阐明非常困难。Dubinin认为炭质吸附剂中含有各种不同尺寸的孔隙,最大的孔隙甚至可以用光学显微镜观察出。要想提供有关孔隙的直接证据目前较为先进的分析仪器主要有扫描隧道显微镜(STM-Scanning Tunnel Microscopy)、透射电子显微镜(TEM-Transmission Electric Micros-copy)、原子力显微镜(AFM-Atom Force Microscopy)等。Illinois大学以Economy为首的研究小组通过STM建立了一套较为完整的ACF数据库,共包含有800多张图片。由STM照片可以清晰的看到ACF表面和端面上孔隙结构的差异,以及不同尺度的孔隙,进一步由STM照片可以看出在不同位置由于刻蚀程度的差异而形成不同的孔隙;当然由此也可推断孔隙的发展历程。 图1-9所示为用于表征不同孔径的方法及其简单机理。压汞法主要用来表征大孔区域和大部分中孔区域的孔隙。该法利用液态Hg在200MPa高压下压入孔体系,所填充的容积是压力的函数。中孔的容积和分布可以由毛细凝聚的蒸气吸附来进行表征,有关蒸气凝聚的压力与孔隙的半径密切相关。这些方法都利用了吸附凝聚的密度与其液相密度相一致的假设,但实际上按照t法,所形成的吸附膜其吸附相密度与正常的凝聚相密度之间存在一定的差异。http://www.best17.cn/admin/editor/UploadFile/20071225224041766.jpg 在微孔范围的孔隙填充可以用基于Polanyi势能理论的Dubinin方程来表达:W = Woexp。此处,W是吸附量;A=RTLn(Po/P)代表Polanyi的吸附势(吸附相与平衡气体间的自由能变化);Wo为微孔容积;Eo为特征吸附能,是依赖于微孔结构的参数;β是由表面-分子间相互作用所决定的系数,被称为亲和系数(β = 1,以苯为标准);n为指数(1~3)。n = l时对应孔径分布较宽的炭质吸附剂,n = 2时对应孔径分布较窄的炭质吸附剂,n = 3时对应特别结构的CMS。从Dubinin方程解析可以获得吸附模式、细孔体积以及吸附热等有关信息。依据特征吸附能Eo可以推测细孔直径,还可进一步算出微孔范围内的孔径分布。Marsh认为通过Dubinin方程对吸附等温线进行分析可以提供一些非常有价值的信息。由于极微孔的尺度与吸附质分子大小具有几乎相同的量级,故而吸附质分子要想穿透整个孔隙比较困难,尤其在较低的温度和较低的相对压力下,表现更加明显。这是受被称之为活性扩散控制的结果,如前所述活性扩散类似于化学反应需要一活化能,随着温度的升高以及相对压力的增加,吸附速率呈指数增加。这些小的孔隙对小于其尺度的分子表现出吸附而对大于其尺度的分子表现为不与吸附,呈现出狭义的筛分效应。实际上不仅这些小的孔隙,只要吸附质分子的有效直径大于吸附剂孔口尺寸,就应表现出筛分效应。利用活性扩散可以对尺寸较小的孔隙如极微孔进行分析。 另外常用于表征微孔孔隙的方法还有比较作图法,该法将吸附等温线与标准等温线(通常是表面化学组成相类似的非孔性固体的吸附等温线)进行比较。实际上前面提及的t法也是一种比较法,但由于t法在微孔体系中的实用性受到质疑,目前α_s法正成为主流。α_s法是Sing和Gregg提议的用于细孔性固体的解析方法。α_s值定义为标准等温线上各相对压力下的吸附量除以P/Po = 0.4时标准物的吸附量(W_(P/Po=0.4))而得的比值,即α_s = W/W_(P/Po=0.4),将P/Po变换为α_s表示,这样试样的吸附等温线就可与标准等温线进行比较。特别是由Kaneko等提议的从低α_s值范围获得的高分辨α_s法是对微孔固体孔隙解析非常有效的方法,图1-10所示为具有代表性的α_s图。http://www.best17.cn/admin/editor/UploadFile/2007122522440719.jpg Fig.1-10 Various α s-plots 图1-10不同类型的α -图 平坦表面(包含大孔表面)、中孔以及微孔其α_s图各不相同。一般来讲随着大孔性、 中孔性固体向微孔性固体偏移,其吸附容量增加。中孔的毛细凝聚、微孔的容积充填(F偏离F-Swing)以及协同的微孔充填(C-偏离C-Swing)出现在图1-11的上部,由此可以对孔隙的尺度进行简单的判定。微孔型固体的α_s图可分为:F偏离的F型、C偏离的C型以及两种偏离共存的FC型。F型一般认为其孔径宽度在0.7nm以下,由于受极微孔内强的分子场的影响,在比平坦表面吸附更低的分压下就发生了单分子层吸附;C型可以看作是在单分子“涂层"(即孔壁上的单层吸附)之外的残余空间内发生的促进吸附,其孔径大于1.4nm;表现为FC型的吸附剂孔径范围在.7nm到1.4nm之间。从α_s图高压端引出的外推直线的截距给出微孔容积,其斜率给出外表面积;而从原点引出的直线的斜率可获得全表面积,与全表面积相比外表面积非常小时,高压端外推直线

  • 棉花跟滤纸的吸附性强吗?

    各位大虾,我在做水中邻苯酯的萃取,用的是二氯甲烷液液萃取,然后用无水硫酸钠干燥过夜,现在我要把硫酸钠过滤掉应该用什么才能减小吸附?滤纸,棉花还是石英棉?

  • 【原创大赛】如何测量比表面及孔径?一文带你了解气体吸附仪

    测量比表面和孔径分析的方法包括:气体吸附法、压汞法、电子显微镜法(SEM 或 TEM)、小角 X 光散射(SAXS)和小角中子散射(SANS)、电声电振法、核磁共振法、图像法大孔分析技术等。其中气体吸附法是常见的分析方法。气体吸附法孔径测量范围从 0.35nm~ 100nm 以上,涵盖了全部微孔和介孔,甚至延伸到大孔。另外,气体吸附技术相对于其它方法,容易操作,成本较低。如果气体吸附法结合压汞法,则孔径分析范围就可以覆盖从大约 0.35nm到1mm 的范围。气体吸附法也是测量所有表面的最佳方法(不规则的表面和开孔内部的面积)。使用气体吸附法进行分析的仪器常用来测定物质的比表面及孔径特征,也可以直接测量物质的吸附特性,因此也常统称为吸附仪。从实际用途来看,主要包含:比表面及孔径分析仪、多组分气体吸附仪、高压吸附仪、蒸汽吸附仪、真密度仪、化学吸附仪等。气体吸附法原理:当固体表面的原子所处的环境与体相原子不同,它受到一个不平衡的力的作用;因此,当气体与清洁固体表面接触时,将与固体表面发生相互作用;气体在固体表面上出现累积,其浓度高于[url=https://insevent.instrument.com.cn/t/Mp]气相[/url],这种现象称为吸附现象。吸附气体的固体物质成为吸附剂,被吸附的气体成为吸附质。依据吸附剂和吸附质之间的不同作用力,气体吸附分为物理吸附仪和化学吸附仪。物理吸附也称范德华吸附,它是由吸附质和吸附剂分子间作用力(范德华力)所引起,吸附于固体表面的气体分子,不与固体产生化学反应,这种吸附称为物理吸附;利用物理吸附原理测量的仪器被称为物理吸附仪。由于范德华力存在于任何两分子间,所以物理吸附可以发生在任何固体表面上。吸附剂表面的分子由于作用力没有平衡而保留有自由的力场来吸引吸附质,由于它是分子间的吸力所引起的吸附,所以结合力较弱,吸附热较小,吸附和解吸速度也都较快。被吸附物质也较容易解吸出来,所以物理吸附在一定程度上是可逆的。如:活性炭对许多气体的吸附,被吸附的气体很容易解脱出来而不发生性质上的变化。物理吸附的特点是:吸附热小,吸附速度快,无选择性,可逆,通常是发生在接近气体液化点的温度,一般是多层吸附。物理吸附仪可以测定物质的比表面积、平均孔径和孔径分布等,此外也可以直接测试物质吸附性能。化学吸附是吸附质分子与固体表面原子(或分子)发生电子的转移、交换或共有,形成吸附化学键的吸附,利用化学吸附原理进行测量的仪器被称为化学吸附仪。由于固体表面存在不均匀力场,表面上的原子往往还有剩余的成键能力,当气体分子碰撞到固体表面上时便与表面原子间发生电子的交换、转移或共有,形成吸附化学键的吸附作用。与物理吸附相比化学吸附具有吸附力强、对吸附气体有选择性、单层吸附、通常不可逆,样品不可回收再利用等特点,常用于测定催化剂酸碱活性位、活性金属表面积、金属分散度等。

  • 请教有关吸附仪的问题

    我看了一些有关吸附仪的文章,但原理都是介绍重量法的吸附仪,有没有人懂体积法测试的吸附仪,能给介绍一下吗?最好是推荐基本这方面的好书/:p /:d

  • 热解吸仪与吸附管老化仪?

    各位大侠,刚才去网上仪器展发现有吸附管老化仪卖,现实中虽没用过,但也见过几家公司的热脱附,我就想知道热解吸仪带不带老化功能呢,还是需要再单独购买吸附管老化仪呢?使用过的大侠告知一下,越详细越好。thank you ~!

  • 固体吸附法

    气体样品中欲测组分的浓度往往很低,在进研色谱分析之前往往要进行富集。在直接采集欲测组分浓度很低的气体样品时,需要在现场采集体积很大的样品,回实验室进行富集,很不方便。为此研究了很多的气体样品的浓缩采集方法,主要有固体吸附法、溶液吸收法、低温浓缩(冰冻析出)法等等,下面先来介绍固体吸附法。 固体吸附法采样可有两种方式,一是将这些吸附材料制成吸附管,使用采样泵将空气样品以一己知的流量通过此吸附管,空气样品中挥发性有机污染物就被吸附管捕集浓缩,然后将吸附管加热解吸(或者通过溶剂解吸的方式,诸如二硫化碳、二氯甲烷等溶剂解吸)出这些被浓缩的挥发性有机污染物,通过色谱中的载气将它们送入色谱的分析测定系统中。此方法通常叫做吸附一热解吸(或者叫做吸附一溶剂解吸)方法。还有一种是将吸附材料制成带状的固体吸附采样器,通过扩散和渗透的方式将空气中挥发性有机污染物吸附浓缩(不是通过采样泵的动态采集方式),然后经热解吸或者溶剂解吸将浓缩的挥发性有机污染物提取出来,再送入色谱进行分析测定。此方法叫做扩散采样法或者叫做被动采样法。 固体吸附方法的核心材料是吸附剂,通常使用的吸附剂主要有活性炭、石墨化炭黑、多孔聚合物和多孔硅球等,其中活性炭和多孔聚合物在色谱分析样品制备中使用的最多。 吸附剂的物理特性参数主要有比表面积、孔径分布、极性、使用温度范围和组成结构等。人们经常根据这些参数选择合适的吸附剂并设计吸附浓缩的操作条件。 活性炭对大多数的有机物分子具有很好的吸附捕集特性,但是气体样品中的水分对活性炭的吸附干扰比较大,样品中的水分可能使活性炭采集的有机物成为不可逆吸附,并容易引起某些物质的降解,需要较高的热解吸温度(一般需要溶剂解吸)等都是它的缺点。 特别是使用活性炭采集和浓缩痕量物质时,这些缺点就更加突出,从而导致样品回收率低,也可能会伴随一些合成物质的产生。 活性炭可以制成条形或者带状的扩散型采样器,或者使用活性炭管直接扩散的方法采集空气样品(不是通过采样泵采集样品),同样可以获得较好的采集效率。活性炭管采集的样品也可以通过加热解吸的方式回收样品,同样可以得到较好的回收率。表1给出了美国 NIOSH 标准活性炭管采集湿空气中有机物的性能评价,表2给出了二硫化碳解吸活性炭管采集有机物的性能评价。[img=,690,1853]http://ng1.17img.cn/bbsfiles/images/2018/03/201803091611018433_3388_2384346_3.jpg!w690x1853.jpg[/img][img=,690,679]http://ng1.17img.cn/bbsfiles/images/2018/03/201803091611239574_4261_2384346_3.jpg!w690x679.jpg[/img] 由于石墨化炭黑具有较大的比表面积(100m[sup]2[/sup]/g),Carbotrap可以采集到许多C[sub]4[/sub]-C[sub]8[/sub]的有机化合物。而Carbotrap C(10 m[sup]2[/sup]/g)可以采集到更大的有机化合物。 Carbopack B和 c 分别与吸附材料Carbotrap和Carbotrap C 一样,只是在粒度上以60-80目取代了20-40目。石墨化炭黑可以被用来采集C[sub]4[/sub]-C[sub]10[/sub]的化合物,包括醇,游离酸,胺,酮,酚和烃类等化合物。表3给出了活性炭、石墨化炭黑和碳分子筛的物理特性参数。[img=,690,475]http://ng1.17img.cn/bbsfiles/images/2018/03/201803091612247593_5016_2384346_3.jpg!w690x475.jpg[/img] 碳分子筛被用来吸附和浓缩永久气体和较小的碳氢化合物。例如: Carbosieve S-Ⅲ特别适合于采集像C[sub]2[/sub]的烃类气体,而Carboxen 563和 564 适合于采集C[sub]2[/sub]-C[sub]5[/sub]的挥发性有机物 (Carboxen 564的吸附能力优于 Carboxen 563 ) ;Carboxen 569 具有最大的捕集有机物的能力和较低的水干扰特性。 目前,在色谱分析中最常用的多孔聚合物有Tenax , Chromosorb,Porapak,HayeSep,Amberlitresins,GDX,TDX等系列。 多孔聚合物材料采集和浓缩有机物的解吸方法常常使用热解吸的技术,热解吸的温度常在180-230℃。碳分子筛和石墨化炭黑的热稳定性较好,可使用较高的热解吸温度,在用于采集较小的和较大的有机物分子时,为了获得较好的解吸效率,常使用较高的热解吸温度:230-350℃ 。表4给出了常用多孔聚合物吸附材料(吸附痕量挥发性有机物用)的特性参数。[img=,690,1112]http://ng1.17img.cn/bbsfiles/images/2018/03/201803091612582374_9638_2384346_3.jpg!w690x1112.jpg[/img] 已有的实验和应用表明,选择合适的吸附材料是一件很难做好的事情,因为这取决于被收集样品的组成和它们的性质。虽然吸附剂对非挥发性物质具有很强的吸附性,但是它们的回收率仍然有限。另一方面,样品中挥发性物质还会通过吸附床而没有被吸附浓缩。此外,还必须避兔不重复的结果和样品被污染等现象发生。 XAD 树脂也是一种常用的吸附材料,有分析化学家采用玻璃纤维滤膜-XAD-2-活性炭串联方式进行挥发性有机物的吸附一溶剂解吸的回收率实验研究。研究结果(表5) 表明,样品湿度、采样流速或者有机滤膜颗粒物基木上不影响所研究的有机物的吸附浓度效率,此方式可应用于空气中挥发性有机污染物的采集和浓缩。[img=,690,1293]http://ng1.17img.cn/bbsfiles/images/2018/03/201803091613216123_5363_2384346_3.jpg!w690x1293.jpg[/img] 几种吸附材料的组合或者结合可以达到优点互补,可以采集到所有的目标化合物。例如: HayeSep D , Carboxen 1000和Carbosieve S-Ⅱ结合组成吸附管,在 25 ℃ 条件下,采集5L 空气样品,在 200 ℃ 热解吸可以测定出所有的目标化合物。多种吸附材料充填的采样管具有适用性,可以采集更宽范围的挥发性有机物。有报道,适中的吸附材料可保持低挥发性物质,而挥发性较大物质穿透后被捕集在较强吸附材料上。此系统避免了低挥发性物质在后级吸附材料上的不可逆吸附。Tenax TA和Carbosphere S(石墨化炭黑)结合可以采集空气中C[sub]2[/sub]-C[sub]8[/sub]碳氢和卤代烃化合物,低挥发性物质被吸附在肠Tenax TA上,挥发性较大物质被吸附在Carbosphere S(上。当只采集C[sub]2[/sub]-C[sub]8[/sub]碳氢化合物时,可以采用Tenax TA,Carbotrap,Carbosieve S-Ⅲ三种材料结合的采样管。此系统可以捕集城区空气中汽车尾气污染物和香烟雾。采用具有不同表面积的碳吸附材料(Carbotrap C,Carbotrap和Carbosieve S-Ⅲ)可以采集空气样品中非极性C[sub]4[/sub]-C[sub]14[/sub]的烃类化合物。 美国国家环保局标准分析方法(空气中有毒有机物的测定方法TO系列)中采用的吸附采样管的尺寸和材料主要有三种:玻璃采样管,13.5mm(i.d.)×100mm,内部填充约1.5g的Tenax 吸附材料:不锈钢采样管,12.7mm(i.d.)×100mm,内部填充约1.5g的Tenax吸符材料;组合式吸附剂管,分别依次填充Carbotrap C,Carbotrap和Carbosieve S-Ⅲ等吸附材料。当然,可根据自己实验室的状况和条件,自己设计和加工吸附剂采样管。吸附剂采样管的制备通常需要如下的步骤: 第一,将玻璃管或者不锈钢管放入盛有甲醇的烧杯中并超声10min后,使用新鲜甲醇冲洗这些空心管,再使用己烷超声10min,使用新鲜已烷冲洗这些空心管。然后,在 100 ℃ 条件下于真空(约8kPa )干燥箱中干燥 5h ,贮存在干燥器中备用。 第二,仔细检查空心管,特别是玻璃管,如果在空心管的端口出现损坏或者裂纹,应当将它们舍弃。 第三,使用镊子夹取石英棉将空心采样管的一端堵住并形成约10-50的石英棉塞,再用漏斗从此空心管的另一端填充吸附材料(Tenax) ,然后,夹取石英棉将空心采样 管的另一端堵住约10-50mm。石英棉和吸附材料的充填紧度要适中,不要太紧密。 第四,填充完毕的采样管使用之前,应当进行预处理。方法是:在高纯氮气或者氦气的流动下(10-30ml/min)于常温至少吹扫10min,然后升温到 250 ℃ 并保持 2-5h 。然后,采样管在高纯氮气或者氦气的流动下降到常温时,取下采样管并将管的两端密封好置于干燥器中备用。 第五,使用采样管采集样品之前,应当做一下采样管的空白实验,然后进行标准样品的采集实验。确定了样品回收率之后,将每一个采样管做好标记,说明此采样管的充填材料种类、处理日期、编号等。 通常,填充的吸附材料需要进行洗涤纯化,特别是那些比较脏的吸附剂。以Tenax 为例,首先依次使用甲醇和己烷将吸附材料进行索氏抽提 48h ,然后分别滤掉甲醇和己烷溶剂,将Tenax 转入石英盘中并置于通风厨中于常温下自然蒸发 30-60min ,再置入真空(约8kPa )干燥器中于 100 ℃ 干燥 3h 后降至常温,经过筛后备用。

  • ,静态吸附是室温下吸附30分钟。

    有关CO-TPD的疑问对催化剂做CO-TPD,请问用脉冲吸附和静态吸附,脱附的结果一样吗?脉冲吸附条件是室温下脉冲走平或注射30次,静态吸附是室温下吸附30分钟。

  • 【求助】关于石英砂吸附实验吸附率为负数的原因~

    我用涂铁(三氯化铁)石英砂处理废水实验中,为什么测出的铅的吸附率为负数? 我配的原水的铅的浓度为8mg/l,吸附24小时后再去测铅变为10mg/l,我是用火焰[url=https://insevent.instrument.com.cn/t/Wp][color=#3333ff]原子吸收[/color][/url]测的,我同时测定了原样和处理样后的铅浓度,原样测出来为8.05mg/l 而处理样却有10mg/l 测了好几次都是一样~并且我做Cd的吸附实验也存在吸附率为负数的情况,请问这是什么原因啊?就算一点不吸附也不可能比原水多吧?还有在做吸附时间影响时,做了从1到24小时的吸附实验,为什么在吸附时间4-6小时的时候吸附率明显下降 而后又开始上升呢?我看到有文献中也出现过这种现象,但这篇文章没有给出解释,请问各位前辈这该如何解释呢?

  • Tenax吸附管最大吸附量是多少?

    请教一下各位大神,Tenax吸附管最大吸附量大概是多(800左右的管),比如说最大吸附量达到100ug就会穿透,还有采样流量对吸附的影响有多大0.1L/min,0.2L/min....0.5L/min等,有哪位大神做过相关的探讨?是不是流量越大,吸附效果就越差?特别是对便宜的管来说。

  • 重量法蒸汽吸附仪 简介

    重量法蒸汽吸附仪 产品简介重量法动态蒸汽吸附仪DVS系列在测量水和有机蒸汽在粉体表面吸附方面处于世界领先地位,它通过在一定相对湿度下气体通过样品后重量的变化来测定蒸汽吸附,比传统的干燥法测量更快,更节省时间。由于其独特的优势,DVS系列产品世界各地的实验室有广泛的应用,可用于研发部门以及质控部门确定产品结构、产品稳定性、吸湿性、包装和产品开发中固体材料存在的问题。结合了微天平、气体流动和蒸汽的测量技术的优势使用干燥的载气,通常为氮气,可以选择任何两个蒸汽源中的一个质量流量控制和独特的水和有机蒸汽浓度实时监控结合可以精确控制饱和干燥载气流量的比例整个体系的温度可以由选择,并且在闭合环条件下可以精确控制,以保证吸附质的蒸汽压恒定具有极其高的灵敏度和精确度,仅需少量的样品(通常1-30mg),因而可快速达到平衡全自动惰气吹扫装置和有机泄露检测器可在发生有机蒸气泄漏时关闭联锁装置,保证安全 DVS Advantage软件可程序控制仪器,用户界面友好,满足数据完整性和安全性的最高标准待测样品置于微量天平上,已知浓度的蒸汽通过样品,记录式微天平可以测量由蒸汽吸附或脱附引起的质量变化。这种动态流动环境易于快速研究吸附/脱附过程。如果进一步实验选择需要,样品可以首先预热,这样可以加速体相吸附或者无机氧化物干燥过程的分析循环时间。加热过程可独立进行或通过软件来控制升温速率。

  • 常用吸附剂对茶叶基质的吸附作用

    1、PSA、GCB和Al2O3对茶多酚具有较好吸附作用;2、GCB对叶绿素具有较好吸附作用;3、GCB对咖啡碱有一定的吸附作用;4、Florisil和C18对茶多酚的吸附作用不明显;5、C18对糖类物质有一定的吸附作用。

  • 吸附管老化仪怎么选择?

    现在吸附管老化仪各厂家的参数基本上都是一样的,选择有难度啊,哪位版友能给讲讲选择吸附管老化仪的时候应该以什么为标准,有哪些参数是必须要看的,各家产品有啥区别,还是没区别?坛子里讨论的很少,晕头转向中,求教!http://simg.instrument.com.cn/bbs/images/default/em09512.gif

  • 林地内空气挥发物成分测定,采用吸附-洗脱-GC/MS过程,请指导。

    目的:测定不同树种(单体)、林地(群体)释放的挥发性有机物成分及含量。现有资料显示,主要是烯萜类物质,也有少量醇、酮、酯类,烷烃,但是量很少,含量和种类上都很少。 查阅资料方法如下: 大气采样仪,将空气通过TCT采样管(采用0.12gTenax-TA吸附剂处理的),然后样品管采用热脱附(TCT过程);脱附后直接进入GC/MS中进行测定。 现有条件,没有热脱附条件。有研究生提出溶剂洗脱,具体如下: (1)TCT管较贵,可采用玻璃管(玻璃棉堵塞端口即可),填入吸附剂后,当做吸附管;吸附管需要老化,可采用正戊烷过一下,去除杂质。(2)随后进入野外进行采集。(3)采集后,用正戊烷洗脱,分析纯洗脱两次,质谱纯洗脱一次。(4)浓缩后,进入GC/MS进行分析,采用顶空或者SPME都可以。整个过程没有人具体做过,所以来此请教。 问题:此方法是否科学可行;关键几个术语:老化;洗脱;浓缩。 老化,看资料是进入GC/MS仪器中进行TCT管老化。我用正戊烷冲洗吸附剂填充的玻璃管,算是老化吗。 洗脱,采集空气后,正戊烷能把吸附管内的挥发性有机物洗脱出来吗,洗脱液之间进入顶空瓶吗,只能用橡胶垫密封,不能用硅胶垫密封。 浓缩,不知道怎样进行? 上述过程完后,采用顶空或SPME哪种方法应该更好些。 洗脱采用:正戊烷,正己烷,氯仿,二氯甲烷,可以吗?哪种比较合适。 我的问题较多,希望大家多指导。 我不知道应该放在哪个版块合适,不合适的话,烦请版主帮忙。 真诚感谢大家。

  • 【求助】(已解决)化学吸附结果反常

    [em06] 用的康塔的Autosorb-1做Pd/HZSM5的化学吸附 方法是500度下H2还原1小时,40度下H2吸附问题:测得的结果表明随着Pd担载量的增加,Pd的颗粒越来越小,分散度(有人说用表面暴露度更好)越来越大,这个结果和一般的结果是矛盾的。用同一个方法做了一系列的8个样品,结果都是这个规律很奇怪,不知道哪里出错了,因为H2吸附时候的溢流造成的吗?虽然说用CO吸附更好一点,但是也有人用H2做Pd的吸附啊会是哪里出问题了呢?求救求救

  • 请问用脉冲吸附和静态吸附,脱附的结果一样吗?

    有关CO-TPD的疑问对催化剂做CO-TPD,请问用脉冲吸附和静态吸附,脱附的结果一样吗?脉冲吸附条件是室温下脉冲走平或注射30次,静态吸附是室温下吸附30分钟。这个帖子重复了要继续讨论的到下面的链接去http://bbs.instrument.com.cn/shtml/20110803/3446623/

  • 关于动态水分吸附仪预测带包装物品保质期的应用

    动态水分吸附法是一种非常适合分析材料水分吸附性能和记录水分吸附等温线的检测方法,适用于粉末,颗粒,碎片、片剂或块状固体。吸附仪常用来进行新材料的稳定性测试,这种长时间的测试可能需要几天、几周甚至是几个月,能够为评估环境温湿度对产品保质期产生的影响提供非常有价值的数据。 更进一步来说,分析研究在某一温湿度条件下有多少水分能够透过包装渗透到内部被材料本身吸附非常重要,被吸附的水分从外界环境中迁移到包装内部是影响带包装物体保质期的主要原因。 采用动态水分吸附仪来检测带包装药品或食品的水蒸气吸附性能,对于产品防潮性的检测和保质期的预测有着重要的指导意义。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制