当前位置: 仪器信息网 > 行业主题 > >

光片照明显微镜

仪器信息网光片照明显微镜专题为您提供2024年最新光片照明显微镜价格报价、厂家品牌的相关信息, 包括光片照明显微镜参数、型号等,不管是国产,还是进口品牌的光片照明显微镜您都可以在这里找到。 除此之外,仪器信息网还免费为您整合光片照明显微镜相关的耗材配件、试剂标物,还有光片照明显微镜相关的最新资讯、资料,以及光片照明显微镜相关的解决方案。

光片照明显微镜相关的论坛

  • 金相显微镜在落射照明与透射照明之间选择

    在使用指定的灯箱 LV-LH50PC 时,通过操作位于显微镜左侧的落射/透射选择开关可在落射照明与透射照明之间选择照明光路。每次您推动该开关,照明即切换,同时所选照明的指示器开启。金相显微镜光控制 在将指定的灯箱 LV-LH50PC 用作光源时,用落射/透射选择开关选择的照明光可通过旋转亮度控制手轮进行控制。* 在使用外部光源时,亮度通过外部光源或显微镜上的 ND 滤光片进行控制。金相显微镜开启/关闭灯具 照明可通过亮度控制手轮来开启/关闭。在使用指定灯箱 LV-LH50PC 的情况下,将亮度控制手轮旋转到远侧(逆时针方向)并设置在 OFF 位置时,用落射/透射选择开关选择的卤素灯将关闭。金相显微镜电源指示器 电源指示器的颜色随卤素灯的状态而变化。当卤素灯亮起时,它为绿色。当亮度控制手轮设置在 OFF 位置时,它则为橙色。

  • 显微镜照明装置

    显微镜镜基底座——照明装置 人工光源照明:将主开关拨到“I”。拨动调光旋钮,调节光亮强度;自然光源照明:将反光镜架转向光线射来的方向,拨动反光镜角度,使外来的光线进入光路,并充满视场;调整光源和更换灯泡:将显微镜底座翻转,松开光源门盖螺钉翻出,见光源灯泡用螺丝批松开灯脚固定螺钉即可,拔出灯泡,并更换新的灯泡,灯脚的插入深浅的程度,可调节灯泡中心的位置在通光中心。将显微镜底座翻转,取下整个灯座,拔下灯泡,更换新的灯泡,把灯座装回显微镜底座,并用螺丝批松开灯座下的灯泡中心调节螺丝,调节灯泡中心,然后固紧螺丝。 在更换灯泡或保险丝时,必须将电源插头拔下,离开供电电源。在工作中需要更换灯泡时,必须要让灯泡冷却后,才能更换操作。

  • 反光偏光显微镜的应用及原理

    反光偏光显微镜的应用及原理反光偏光显微镜也叫矿相显微镜。在一般大型显微镜光路中,只要加入两偏振片即可,即在入射光路中加入一个起偏振片,在观察镜中加入一个检偏振片,就可以实   现偏振光照明。除了起[url=http://www.gengxu.cn]偏振镜[/url]和检偏振镜外,有时还加入一个灵敏色片,用来检验椭圆偏振光,并获得色偏振 一、 起偏振镜位置的调整  起偏镜一般安装在可以转动的圆框内,借助手柄转动调节,调节的目的是为了使起偏振镜出来的偏振光动面水平,以保证垂直照明器平面玻璃反射进入物镜的偏振光强度最大,且仍为直线偏振光。  调整方法,是将经过抛光而未经腐蚀的不锈钢试样(光性均质体)放在载物台上,除去检偏振镜,只装起偏振镜,从目镜内观察聚焦后试样磨面上反射光的强度,转动起偏振镜,反射光强度发生明暗变化,当反射光最强时,就是起偏振镜振动轴的正确位置。  二、检偏振镜位置的调整  起偏振镜位置调整好后,装入检偏振镜,调节检偏振镜的位置,当在目镜中观察到最暗的消光现象时,就是检偏振镜与偏振镜正交的位置。在实际观察中,常将检偏振镜作一个小角度的偏转,以增加显微组织的衬度。其偏转的角度由刻度盘上的刻度指示出来。若将检偏振镜在正交位置转动90°,则两偏振镜振动轴平行,这时和一般光线下照明的效果相同。  许多金相显微镜在出厂时已经把起偏振镜或偏振镜的振动轴的方向固定好,只要调节另一个偏振镜的位置就可以了。  三、 物台中心位置的调整  利用偏振光鉴别物相时,经常需要将载物台作360°旋转,为使观察目标在载物台旋围时不离开视域,在使用前必须调节载物台的机械中心与显微镜的光学系统主轴重合。一般是通过载物台上的对中螺钉进行调整。  四、 偏振光照明下的色彩(色偏振)  以上都是讨论在单色偏振光照明下的情况,如果考虑到偏振光波长的影响,即用白色偏振光照明,会产生色彩。  在金相显微镜中进行正交偏振光的观察时,在光程中插入灵敏色片(目前多用λ=5760nm的全波片)后,各向异性的金属不同晶粒会出现不同的颜色。观察各向同性金属时,不加入灵敏色片,也会有不同颜色,但色彩不丰富。加入全波片后,色彩变得鲜艳。  转动载物台或灵敏色片,晶粒的颜色随之变化,这主要是由于偏振光干涉的结果。  偏光显微镜也和一般显微镜照明一样,分为明场照明和暗场照明两种照明方式。  4 应用举例  一、材料显微组织的显示  1.各向异性材料组织的显示  根据偏振光的反射原理,在各向异性的金属内部由于各晶粒的位向不同,干涉后的偏振光的振动方向的偏转角度不同,在正交的偏振光下则可以显示出不同的亮度。具有同样亮度的晶粒光轴一席话同接近,所以根据晶粒的明暗程度还可以判断晶粒的位向。对各向异性的金属磨面经抛光后不腐蚀就可以看到明暗不同的晶粒,这一点对难腐蚀出清晰组织的材料来说,是十分有利的分析途径。  例如,球墨铸铁的组织中的石墨属于六方点阵,是各向异性的物质,在同一石墨球中具有许多不同位向的石墨晶粒,这些石墨晶粒在偏振光下可显示不同的亮度,从而分辨出石墨晶粒的方位、球状和大小。如图7(a)所示。在一般光照射下只能看到黑暗的石墨球,不能分辨石墨的晶粒。

  • 【原创大赛】关于显微镜的柯勒照明

    【原创大赛】关于显微镜的柯勒照明

    柯勒(August Kohler) 是十九世纪末蔡司厂的工程师,为了纪念他在光学领域的突出贡献,后人把他发明的二次成像叫做柯勒照明柯勒照明优点:柯勒照明克服了临界照明的缺点,是研究用显微镜中的理想照明法。这种照明法不仅观察效果佳,而且是成功地进行显微照相所必须的一种照明法。1.灯丝不落在被检物平面上,照明均匀;2.照明的热焦点不在被检物,不会灼伤被检物;3.聚光镜将视场光阑成像在被检物平面处,改变大小可控制照明范围。我们在使用显微镜时。有的时候图像有眩光、明暗不均匀(有的时候视场左亮右暗。或者相反)、视场无亮光、观察dic时效果很差等等。都与柯勒照明没有调整好有关。。下面我来介绍具体怎么调整柯勒照明。。以olympus ix71为例。。http://ng1.17img.cn/bbsfiles/images/2013/09/201309041740_462245_2535415_3.jpg

  • 荧光显微镜常见的滤光片有哪些种类。

    荧光显微镜常见的滤光片有哪些种类。

    滤光片是荧光显微镜不可缺少的一个部件之一,赓旭小编给大家介绍荧光显微镜常见的滤光片有哪些种类。  1、吸热滤光片  吸热滤光片是防止光源光谱中的热辐射线损伤光具组所必需的滤光片。  2、阻挡滤光片  阻挡滤光片是选择性吸收短波谱线和红外线而通透较长波长可视线的滤光片,其功能是使观察都能看到被检物体所激发出来的荧光,同时保护观察都的角膜免遭紫外线伤害。[img=,640,428]http://ng1.17img.cn/bbsfiles/images/2018/04/201804160934486662_1236_3391505_3.jpg!w640x428.jpg[/img]  3、干涉滤光片  干涉滤光片是高性能激发[url=http://www.gxoptics.com/]滤光片[/url]的一种。它是将数张薄层金属膜叠放在抛光的两张玻璃片之间制成的滤光片。每张薄金属膜的折光系数都不相同,因此照明光源的各种不同波长的谱线在每张金属膜上反复进行反射,使得某些波长的谱线因相消干涉而抵消,另一些波长的谱线相加干涉而得以加强,并透射过去,这样得到透射波谱很窄、半波峰宽度只有6-20nm,透光度可达到60% -70%的滤光片。  4、激发光滤光片  激发光滤光片可以选择性吸收长波谱线而吸通透紫外线,紫色,蓝色和绿色光线的滤光片为激发滤色片。  5、色光分离滤光片  色光分离滤光片是将激发光反射到被检物体上,使被检物体激发出荧光,再将荧光透射到目镜的滤光反射镜。这类滤我片只能用于落射光聚光器中,而透射光荧光显微镜不需要色光分离。  所以,荧光显微镜常见的滤光片有吸热滤光片,阻挡滤光片,干涉滤光片,激发光滤光片和色光分离滤光片。那么荧光显微镜常见的滤光片种类,除了以上介绍的,欢迎大家补充共同探讨!

  • 【原创】高品质偏光显微镜-电脑型偏光显微镜-数码显微镜

    [em56] 高品质偏光显微镜-电脑型偏光显微镜-数码显微镜http://www.68610299.com/polarze.html 高品质偏光显微镜[img]http://www.chfang.com/produce/polarze/img/xp200a-1.gif[/img]电脑型偏光显微镜 XP-200E http://www.68610299.com/produce/polarze/XP-200.html XP-200双目偏光显微镜http://www.68610299.com/produce/polarze/XP-200E.html XP-200E数码偏光显微镜http://www.68610299.com/produce/polarze/XP-203.html XP-203电脑型偏光显微镜http://www.68610299.com/produce/polarze/XP-500.html XP-500高精度偏光显微镜http://www.68610299.com/produce/polarze/XP-600.html XP-600偏振光显微镜http://www.68610299.com/produce/polarze/XP-700.html XP-700电脑型显微镜http://www.68610299.com/produce/polarze/XPV-201.html XPV-201反光显微镜http://www.68610299.com/produce/polarze/XPV-203.html XPV-203透反射偏光显微镜http://www.68610299.com/produce/polarze/XPV-300.html XPV-300矿相显微镜http://www.68610299.com/produce/polarze/XPN-100.html XPN-100偏光显微镜热台http://www.68610299.com/produce/polarze/XPN-203.html XPN-203偏光熔点测定仪http://www.68610299.com/produce/polarze/XPN-300.html XPN-300偏光温度测定仪http://www.68610299.com/produce/polarze/XPSOFT.html 偏光公析软件http://www.shchfang.com/polarze/XPT7.htm XPT-7单目偏光显微镜http://www.shchfang.com/polarze/XP200.htm XP-200双目偏光显微镜http://www.shchfang.com/polarze/XP200e.htm XP-200e数码偏光显微镜http://www.shchfang.com/polarze/XP201.htm XP-201偏光显微镜上海http://www.shchfang.com/polarze/XP500.htm XP-500高精度偏光显微镜http://www.shchfang.com/polarze/XP600.htm XP-600偏振光显微镜http://www.shchfang.com/polarze/XP700.htm XP-700电脑型显微镜偏光显微镜http://www.shchfang.com/polarze/XPV201.htm 反光显微镜岩石显微镜http://www.shchfang.com/polarze/XPV203.htm XPV-203透反射偏光显微镜http://www.shchfang.com/polarze/XPN100.htm XPN-100偏光热台http://www.shchfang.com/polarze/XPN203.htm XPN-203偏光熔点测点仪http://www.shchfang.com/polarze/XPN300.htm XPN300偏光温控仪http://www.shchfang.com/polarze/XPSOFT.htm 偏光分析软件http://www.chfang.com.cn/produce/Polarze/XPT7.htm XPT-7单目偏光显微镜http://www.chfang.com.cn/produce/Polarze/XP201.htm XP-201偏光显微镜http://www.chfang.com.cn/produce/Polarze/XP202.htm XP-202双目偏光显微镜http://www.chfang.com.cn/produce/Polarze/XP203E.htm XP-203E数码偏光显微镜http://www.chfang.com.cn/produce/Polarze/XP213E.htm XP-213E矿相显微镜http://www.chfang.com.cn/produce/polarze/XP700Z.htm XP-700Z上海光学仪器厂http://www.chfang.com.cn/produce/Polarze/XPV201.htm XPV-201透反射偏光显微镜http://www.chfang.com.cn/produce/Polarze/XPV203E.htm XPV-203E透反射偏光显微镜http://www.chfang.com.cn/produce/Polarze/XPV213Z.htm XPV-213Z数码透反射偏光显微镜http://www.chfang.com.cn/produce/Polarze/XPM203E.htm XPM203E偏光显微熔点测定仪http://www.chfang.com.cn/produce/Polarze/XPN203E.htm XPN203E偏光显微熔点仪http://www.chfang.com.cn/produce/Polarze/XPsoft.htm 偏光显微镜软件XP-213系列透射矿相显微镜也叫偏光显微镜是地质、矿产、冶金等部门和相关高等院校最常用的专业实验仪器。 [img]http://www.chfang.com.cn/produce/Polarze/XP213E_2.gif[/img]矿相显微镜 XP-212 矿相显微镜 XP-213E 矿相显微镜 XP-213Z 二、仪器特点: 偏光显微镜XP-213,随着光学技术的不断进步,作为光学仪器的偏光显微镜,其应用范围也越来越广阔,许多行业,如化工的化学纤维,半导体工业以及药品检验等等,也广泛地使用偏光显微镜。XP-213透射偏光显微镜就是非常适用的产品,可供广大用户作单偏光观察,正交偏光观察,锥光观察以及显微摄影,配置有石膏λ、云母λ/4试片、石英楔子和移动尺等附件,是一组具有较完备功能和良好品质的新型产品.本仪器的具有可扩展性,可以接计算机和数码相机。对图片进行保存、编辑和打印。 三、技术参数 1、放大范围:40X-400X 2、CF高眼点目镜: 10X/18、10X/18(带十字分划) 3、CF无应力物镜:消色差4X、10X、40X(弹簧);60X(弹簧、选购) 4、机械筒长:160mm 5、物镜转换器:内定位式,四孔转换机构,转动舒适 6、粗微调机构:粗微动同轴机构,粗调范围为26.5mm,微调0.2mm/转,微动刻度 2um/1格 7、双目观察镜筒:倾斜角45°,可旋转360°,放大率1×,视力调节范围为±5mm,光瞳间距52-75mm 8、旋转载物台:钢丝导轨机构,直径 Φ158mm,圆周360°等分刻度,游标精度6ˊ 9、聚光镜支架:聚光镜上下移动范围23mm,专用偏光分体式聚光镜,数值孔径0.9,可装Φ33mm滤色镜 10、起偏镜:360°可调 11、检偏镜:180°可调,并带有锁紧装置 12、勃氏镜:旋转式切换,焦距可调 13、1×接筒:集检偏镜、补偿器、勃氏镜于一体,结构紧凑,操作方便灵活 14、照明控制:显微镜底座左侧有带调光器的开关 15、照明系统:6V20W卤素灯,预对准中心,不带视场光栏 四、系统简介 偏光显微镜系统是将精锐的光学显微镜技术、先进的光电转换技术、尖端的计算机图像处理技术完美地结合在一起而开发研制成功的一项高科技产品。可以在计算机显示器上很方便地观察偏光图像,从而对偏光图谱进行分析等对图片进行输出、打印。 五、系统组成 电脑型偏光显微镜(XP-213E): 1、偏光显微镜 2、适配镜 3、摄像器(CCD) 4、A/D(图像采集) 5、计算机数码相机型偏光显微镜(XP-213Z):: 1、偏光显微镜 2、适配镜 3、数码相机(NIKON) http://www.lvyoublog.com/user1/chfang112/archives/2007/7212.html 偏光显微镜http://www.coldtea.cn/blog/user2/10089/archives/2007/36528.html 偏光显微镜http://leopard.91health.net/user1/chfang444/archives/2007/4955.html 显微镜http://club.imageedu.com/Blog/user1/2850/archives/2007/15609.html 偏光显微镜http://www.cipchina.com/blog/more.asp?name=chfang444&id=11188 偏光显微镜[img]http://www.chfang.com/produce/polarze/img/xp500e-1.gif[/img]http://blog.newrun.cn/u/chfang112/4285.html 高精度偏光显微镜 XP-500Ehttp://www.zhukuai.com/blog.asp?id=1047 偏光显微镜 XP-600E(电脑型)http://blog.newrun.cn/u/chfang444/4286.html 偏光显微镜 XP-700Z(数码型)http://chfang333.it.com.cn/articles/270675.htm 偏光显微镜 XPV-201(普通型)http://chfang333.it.com.cn/articles/270674.htm 偏光显微镜 XPV-203E(透反型)http://jinxiangxwj.blogbus.com/logs/8373309.html 偏光显微镜XPV-300Z(数码型)http://chinachfang.blogbus.com/logs/8373326.html 偏光显微镜 XPN-100Z(双目型)http://chfag112.blogbus.com/logs/8373340.html 偏光显微镜 XPN-203E(电脑型)http://chfang444.bokee.com/viewdiary.19488770.html 偏光显微镜 XPN-300E(电脑型)http://xianweijingjx.blog.sohu.com/64676869.html 偏光分析软件金相显微镜 偏光显微镜 生物显微镜 体视显微镜 荧光显微镜

  • 【求助】有关光学显微镜的照明光源问题

    常用的光学显微镜的照明光源有什么要求?如测量显微镜、金相显微镜、体式显微镜等,分别选用什么照明,看到有LED、卤素灯、疝气灯等另外,照明光源的功率多少合适?

  • 【转帖】金相显微镜和生物显微镜的区别

    生物显微镜与金相显微镜的区别主要是在照明方式与物镜上面: 1、生物显微镜用的是透射照明,一般用来观察透时和半透明的样本,不能用来观察不透明物体,而金相显微镜主要是落射照明方式(也叫同轴照明),光源从物镜射出,主要用于观察不透明样本的表面,当然也有附带透射照明装置的较高级金相显微镜,可同时用于观察透明样本。 2、从物镜来看,生物显微镜的高倍物镜都有考虑盖玻片厚度(0.17)和载玻片、培养器皿厚度(1.2),所以其物镜是通常标有 /0.17(正置显微镜)、 /1.2(倒置显微镜),正置生物显微镜10倍以下物镜则是 /-,也就是可以不考虑,这是为了校正玻璃对于光折射的影响,而金相显微镜的物镜通常标有/0 。

  • 【原创】奥林巴斯品牌激光共聚焦显微镜你们了解多少?

    共聚焦显微系统(LSCM)诞生至今,短短二十多年里,已经成为了科学研究的重要工具。在我国生命科学研究领域,也发挥着巨大的作用。如何更好利用激光共聚焦技术,推动生命科学研究,受到了学术界的广泛关注。 激光共聚焦显微镜作为光学显微镜的重大改进,与传统场式(widefield)照明显微镜相比有许多独特的优点, 它可以控制焦深、照明强度,降低非焦平面光线噪音干扰,从一定厚度标本中获取光学切片。可以在不改变普通荧光显微镜的制片方法的前提下,观察到非常清晰的高质量图像,并且通过共聚焦显微镜可以十分方便的观察活的细胞或组织。 它的诞生,大大提高了科学研究的效率。目前共聚焦显微镜在国内的应用已经相当广泛,在越来越多的国家级科研院所与高校实验室,都能看到科研工作者忙碌在共聚焦显微镜前的身影。以下为奥林巴斯品牌类显微镜:智能激光扫描共聚焦显微镜——FV10iFV1000MPE:只关注多光子荧光成像FluoView™ FV1000共聚焦显微镜DSU转盘扫描显微镜奥林巴斯FluoView™ FV300(已停产)大家了解多少?欢迎讨论用后感想。

  • 【原创】普通生物显微镜可变成媲美共焦显微镜的高分辨率显微镜

    分子级高分辨率的激光扫描共焦显微镜和结构照明显微镜是在细胞生物学和其他相关领域强有力的研究工具,但是它们高昂的价格也使很多潜在用户望而却步。波士顿大学的科学家最近开发出一种显微新技术 (HiLo Microscopy),能够将普通的广域荧光显微镜变成可与激光扫描共焦显微镜和结构照明显微镜相媲美的高分辨率生物显微镜。这一技术包括一个简单的可以在均衡光源和结构光源之间自由转换的显微镜附件和一套功能强大的图像处理软件。该软件仅通过处理在均衡光源和结构光源条件下拍摄的两张分辨率不同的照片就可以得到全分辨率的三维图像。这一技术可用于任何现有的广域荧光显微镜,而成本大大低于激光扫描共焦显微镜和结构照明显微镜。由于成像机理简单,该技术的成像速度是常用的生物显微技术中最快的,而且操作简便,不受样本移动的影响。波士顿大学目前正在积极寻求企业合作,争取早日将这一突破性的技术推向市场。

  • 【求购】求购智能化、透反射偏光显微镜

    我广东省核工业地质局二九二大队中心实验室须采购智能化、透反射偏光显微镜,请供应商尽快和我单位联系。1.Leica DM4500P 智能化偏光显微镜 1台2.LV100POL 透反射偏光显微镜 1台 LV200POL 透反射偏光显微镜 1台3.BX41-P 透反射偏光显微镜 1台BX51-P 透反射偏光显微镜 1台注:2、3透反射偏光显微镜,除标准配置外,其他所需配置(或选购件):反射(全相)5x、10x、20x、100x 透射偏光物镜:5x、10x、20x、50x CCD摄像机,像素500~600像素 电脑适配镜,计算机(电脑成像系统) 偏光分析软件 物镜测微尺,透反射照明系统 目镜测微尺,滤光系统 物台移动尺, 石英补偿器等具体事宜,电话联系:0762-3391206联系人:王宝源(经济管理科科长)、简顺娥(经济管理科科员);联系电话:0762-3391206;传真:0762-3391168;qq:83260665通信地址:广东省河源市十八号信箱;邮编:517001;E-mall:ningxue66@126.com

  • 聚光镜-金相显微镜的必备部件

    金相显微镜中,聚光镜装在载物台的下方。小型的显微镜往往无聚光镜,在使用数值孔径0.40以上的物镜时,则必须具有聚光镜。聚光镜不仅可以弥补光量的不足和适当改变从光源射来的光的性质,而且将光线聚焦于被检物体上,在使用金相显微镜时,以得到最好的照明效果。 聚光镜的的结构有多种,同时根据物镜数值孔径的大小,相应地对聚光镜的要求也不同 。  1. 阿贝聚光镜(Abbe condenser) 这是由德国光学大学大师恩斯特.阿贝(Ernst Abbe)设计。阿贝聚光镜由两片透镜组成,有较好的聚光能力,但是在物镜数值孔径高于0.60时,则色差,球差就显示出来。因此,多用于普通显微镜上。而微分干涉显微镜中也有用到。  2. 消色差聚光镜(Achromatic aplanatic condenser ) 这种聚光镜又名"消球差聚光镜"和"齐明聚光镜",它由一系列透镜组成,它对色差球差的校正程度很高,能得到理想的图象,是明场镜检中质量最高的一种聚光镜,其NA值达1.4 。因此,在高级研究显微镜,如微分干涉显微镜,常配有此种聚光镜。它不适用于4 X以下的低倍物镜,否则照明光源不能充满整个视场。  3. 摇出式聚光镜(Swing out condenser) 在使用低倍物镜时(如4X),由于视场大,光源所形成的光锥不能充满真整个视场,造成视场边缘部分黑暗,只中央部分被照亮。要使视场充满照明,就需将聚光镜的上透镜从光路中摇出。  4. 其它聚光镜 聚光镜除上述明场使用的类型外,还有作特殊用图的聚光镜。如暗视场聚光镜,相衬聚光镜,偏光聚光镜,微分干涉聚光镜等,以上聚光镜分别适用于相应的观察方式,在视频显微镜中有所应用。

  • 【资料】显微镜基础知识和原理(三)

    第四章 显微镜的光学附件显微镜的光学部件包括物镜,目镜,聚光镜及照明装置几个部分。各光学部件都直接决定和影响光学性能的优劣,现分述如下:一.物镜物镜是显微镜最重要的光学部件,利用光线使被检物体第一次成像,因而直接关系和影响成像的质量和各项光学技术参数,是衡量一台显微镜质量的首要标准。国际物镜的检测标准是以蔡司物镜为基准的。物镜的结构复杂,制作精密,由于对像差的校正,金属的物镜筒内由相隔一定距离并被固定的透镜组组合而成。物镜有许多具体的要求,如合轴,齐焦。齐焦既是在镜检时,当用某一倍率的物镜观察图像清晰后,在转换另一倍率的物镜时,其成像亦应基本清晰,而且像的中心偏离也应该在一定的范围内,也就是合轴程度。齐焦性能的优劣和合轴程度的高低是显微镜质量的一个重要标志,它是与物镜的本身质量和物镜转换器的精度有关。传统物镜的种类很多,可从不同的角度分类,现分类介绍。根据物镜位置色差校正的程度进行分类,可分为:1.消色差物镜(Achromatic objective): 这是常见的物镜,外壳上常有“Ach”字样。这类物镜仅能校正轴上点的位置色差(红,蓝二色)和球差(黄绿光)以及消除近轴点慧差。不能校正其它色光的色差和球差,且场曲很大。最早的消色差物镜是由蔡司制造的。2.复消色差物镜(Apochromatic objective): 复消色差物镜的结构复杂,透镜采用了特种玻璃或萤石等材料制作而成,物镜的外壳上标有“Apo” 字样 ,这种物镜不仅能校正红绿蓝三色光的色差,同时能校正红,蓝二色光的球差。由于对各种像差的校正极为完善,比响应倍率的消色差物镜有更大的数值孔径,这样不仅分辨率高,像质量优而且也有更高的有效放大率。因此,复消色差物镜的性能很高,适用于高级研究镜检和显微照相. 完善的复消色差物镜由蔡司制造的. 2004年蔡司推出了研究级ICCS物镜是在传统的平场复消色差物镜的基础上进一步校正倍率色差和无应变,增强短波长的透过率,并且增强反差,明显提高分辨率。3.半复消色差物镜( Semi apochromatic objedtive): 半复消色差物镜又称氟石物镜,物镜的外壳上标有“FL”字样,在结构上透镜的数目比消色差物镜多,比复消色差物镜少,成像质量上,远较消色差物镜为好,接近于复消色差物镜。平场物镜是在物镜的透镜系统中增加一快半月形的厚透镜,以达到校正场曲的缺陷。平场物镜的视场平坦,更适用于镜检和显微照相。4.特种物镜:所谓“特种物镜”是在上述物镜的基础上,专门为达到某些特定的观察效果而设计制造的。主要有以下几种:(1) 带校正环物镜(Correction collar objective):在物镜的中部装有环装的调节环,当转动调节环时,可调节物镜内透镜组之间的距离,从而校正由盖玻片厚度不标准引起的覆盖差。调节环上的刻度可从0 .11--.023,在物镜的外壳上也标有此数字,表明可校正盖玻片从0.11—0.23mm厚度之间的误差。(2) 带虹彩光阑的物镜(Iris diaphragm objective ): 在物镜镜筒内的上部装有虹彩光阑,外方也可以旋转的调节环,转动时可调节光阑孔径的大小,这种结构的物镜是高级的油浸物镜,它的作用是在暗视场镜检时,往往由于某些原因而使照明光线进入物镜,使视场背景不够黑暗,造成镜检质量的下降。这时调节光阑的大小,使背景变黑,使被检物体更明亮,增强镜检效果。(3)相衬物镜(Phase contrast objective ):这种物镜是由于相衬镜检术的专用物镜,其特点是在物镜的后焦平面处装有相板。(4)无罩物镜(No cover objective ):有些被检物体,如涂抹制片等,上面不能加用盖玻片,这样在镜检时应使用无罩物镜,否则图像质量将明显下降,特别是在高倍镜检时更为明显。这种物镜的外壳上常标刻NC,同时在盖玻片厚度的位置上没有0.17的字样,而标刻着“0”。(5)长工作距离物镜:这种物镜的焦距大于普通物镜,它是为了满足液态材料(高温金相)、液晶、组织培养、悬浮液等材料的镜检而设计。 二. 目镜目镜的作用是把物镜放大的实像(中间像)再放大一便,并把物像映入观察者的眼中,实质上目镜就是一个放大镜。已知显微镜的分辨率能力是由物镜的数值孔径所决定的,而目镜只是起放大作用。因此,对于物镜不能分辨出的结构,目镜放的再大,也仍然不能分辨出。由于不同系列目镜光学设计不同,所以不能混用。三. 聚光镜聚光镜又名聚光器,装在载物台的下方。小型的显微镜往往无聚光镜,在使用数值孔径0.40以上的物镜时,则必须具有聚光镜。聚光镜不仅可以弥补光量的不足和适当改变从光源射来的光的性质,而且将光线聚焦于被检物体上,以得到最好的照明效果。聚光镜的的结构有多种,同时根据物镜数值孔径的大小 ,相应地对聚光镜的要求也不同 。1. 阿贝聚光镜(Abbe condenser)这是由德国光学大学大师恩斯特。阿贝.(Ernst Abbe 蔡司公司的创始人之一)设计。阿贝聚光镜由两片透镜组成,有较好的聚光能力,但是在物镜数值孔径高于0.60时,则色差,球差就显示出来。因此,多用于普通显微镜上。2. 消色差聚光镜(Achromatic aplanatic condenser ) 这种聚光镜又名“消色差消球差聚光镜”和“齐明聚光镜”它由一系列透镜组成,它对色差球差的校正程度很高,能得到理想的图像,是明场镜检中质量最高的一种聚光镜,其NA值达1.4 。因此,在高级研究显微镜常配有此种聚光镜。它不适用于4 X以下的低倍物镜,否则照明光源不能充满整个视场。 3. 摇出式聚光镜( Swing out condenser)在使用低倍物镜时(如4X),由于视场大,光源所形成的光锥不能充满真整个视场,造成视场边缘部分黑暗,只中央部分被照亮。要使视场充满照明,就需将聚光镜的上透镜从光路中摇出。4. 其它聚光镜:聚光镜除上述明场使用的类型外,还有作特殊用途的聚光镜。如暗视野聚光镜,相衬聚光镜,偏光聚光镜,微分干涉聚光镜等,以上聚光镜分别适用于相应的观察方式。四.显微镜的照明装置显微镜的照明方法按其照明光束的形成,可分为“透射式照明”,和“落射式照明”两大类。前者适用于透明或半透明的被检物体,绝大数生物显微镜属于此类照明法;后者则适用于非透明的被检物体,光源来自上方,又称“反射式或落射式照明”。主要应用与金相显微镜或荧光镜检法。1. 透射式照明透射式照明法分中心照明和斜射照明两种形式:(1) 中心照明:这是最常用的透射式照明法,其特点是照明光束的中轴与显微镜的光轴同在一条直线上。它又分为“临界照明”和“柯勒照明”两种。A. 临界照明(Critical illumination):这是普通的照明法。这种照明的特点是光源经聚光镜后成像在被检物体上,光束狭而强,这是它的优点。但是光源的灯丝像与被检物体的平面重合,这样就造成被检物体的照明呈现出不均匀性,在有灯丝的部分则明亮;无灯丝的部分则暗淡,不仅影响成像的质量,更不适合显微照相,这是临界照明的主要缺陷。其补救的方法是在光源的前方放置乳白和吸热滤色片,使照明变得较为均匀和避免光源的长时间的照射而损伤被检物体。B. 柯勒照明:柯勒是十九世纪末蔡司厂的工程师,为了纪念他在光学领域的突出贡献,后人把他发明的二次成像叫做柯勒照明. 柯勒照明克服了临界照明的缺点,是研究用显微镜中的理想照明法。这中照明法不仅观察效果佳,而且是成功地进行显微照相所必须的一种照明法。光源的灯丝经聚光镜及可变视场光阑后,灯丝像第一次落在聚光镜孔径的平面处,聚光镜又将该处的后焦点平面处形成第二次的灯丝像。这样在被检物体的平面处没有灯丝像的形成,不影响观察。此外照明变得均匀。观察时,可改变聚光镜孔径光阑的大小,使光源充满不同物镜的入射光瞳,而使聚光镜的数值孔径与物镜的数值孔径匹配。同时聚光镜又将视场光阑成像在被检物体的平面处,改变视场光阑的大小可控制照明范围。此外,这种照明的热焦点不在被检物体的平面处,即使长时间的照明,也不致损伤被检物体。2004年蔡司公司又在传统柯勒式照明基础上推出了带有反光碗的全系统复消色差照明技术,消除照明色差,增强光的还原性,进而提高分辨率,同时照明均匀而光效高。(2) 斜射照明:这种照明光束的中轴与显微镜的光轴不在一直线上,而是与光轴形成一定的角度斜照在物体上,因此成斜射照明。相衬显微术和暗视野显微术就是斜射照明。2. 反射式照明这种照明的光束来自物体的上方通过物镜后射到被检物体上,这样物镜又起着聚光镜的作用。这种照明法是适用于非透明物体,如金属,矿物等。

  • 什么是透射光荧光显微镜?

    透射光荧光显徽镜(transmited light fluorescence microscope)可以和暗视野置、干涉装置配合使用。因此目前奥林巴斯显微镜公司仍然出售这类型号的显微镜。但是透射光荧光显微镜的照明光路即激发光束必须通过载物玻片。为了减少激发光线的损失.透射光荧光微镜应该配用石英玻璃载物片。研究工作中大量使用石英载物片和盖玻片是一项昂贵的消耗。因为透射光荧光显微镜的这种缺点,目前愈来愈多的研究工作者欢迎落射光荧光显微镜。经济条件不足的基层研究单位急需使用荧光显微镜时,可以用尼康显微镜配制成简易但仍然很有效的荧光显微镜。例如电影放映机用的碳弧灯或高压汞灯当作光源.自制如所示透光鼓形瓶。瓶内装满5-10%硫酸铜水溶液。该溶液中逐滴加入氢氧化铁水。开始滴加时瓶内出现绵絮状沉淀物.随着铁水的滴加,绵絮状沉淀物愈来愈多。在继续加按水的过程中按水的量达到一定程度时,绵絮状沉淀物开始消融。这时要谨慎地滴加到最后的绵絮状沉淀物消失时停止加铁水。瓶内硫酸铜液由无色变成蓝紫色美丽的溶液.这种溶液可当作激发滤光片完全可以满足荧光显微镜观察的要求.激发光通过标本变成荧光成像光束进入目镜。在目镜上方或目镜体内放置黄色滤光片,以保护观察者的角膜。一般市售照像黄色滤光片可以使用。或者按着本书显微摄影一章中介绍的配方自制黄色滤光片。自制滤光片的方法比起该章介绍的方法还可以简化.例如取一段照像底片不经显影直接定影。通过定影剂将感光胶膜上的澳化银洗掉。胶片变成透明胶膜。将此膜浸泡于上述染液中即可制成滤光片。

  • 荧光显微镜和普通显微镜有哪些区别

    1、荧光显微镜的照明方式通常为落射照明,即光源通过物镜投射于样品上;2、荧光显微镜的光源为紫外光,波长较短,分辨力高于普通显微镜;3、荧光显微镜有两个特殊的滤光片,光源前的用以滤除可见光,目镜和物镜之间的用于滤除紫外线,用以保护人眼。 荧光显微镜用于研究细胞内物质的吸收、运输、化学物质的分布及定位等。 细胞中有些物质,如叶绿素等,受紫外线照射后可发荧光;另有一些物质本身虽不能发荧光,但如果用荧光染料或荧光抗体染色后,经紫外线照射亦可发荧光,荧光显微镜就是对这类物质进行定性和定量研究的工具之一。

  • 萤光显微镜介绍

    在萤光显微镜上,必须在标本的照明光中,选择出特定波长的激发光,以产生萤光,然后必须在激发光和萤光混合的光线中,单把萤光分离出来以供观察。因此,在选择特定波长中,滤光镜系统,成为极其重要的角色。    萤光显微镜原理:    光源:光源辐射出各种波长的光(以紫外至红外)。    (B) 激励滤光源:透过能使标本产生萤光的特定波长的光,同时阻挡对激发萤光无用的光。    (C) 萤光标本:一般用萤光色素染色。    (D) 阻挡滤光镜:阻挡掉没有被标本吸收的激发光有选择地透射萤光,在萤光中也有部分波长被选择透过。 以紫外线为光源,使被照射的物体发出荧光的显微镜。电子显微镜是在1931年在德国柏林由克诺尔和哈罗斯卡首先装配完成的。这种显微镜用高速电子束代替光束。由于电子流的波长比光波短得多,所以电子显微镜的放大倍数可达80万倍,分辨的最小极限达0.2纳米。1963年开始使用的扫描电子显微镜更可使人看到物体表面的微小结构。    显微镜被用来放大微小物体的图像。一般应用于对生物、医药、微观粒子等观测。   利用微微动载物台之移动,配全目镜之十字座标线,作长度量测。   利用旋转载物台与目镜下端之游标微分角度盘,配全合目镜之址字座标线,作角度量测,令待测角一端对准十字线与之重合,然后再让另一端也重合。   利用标准检测螺纹的节距、节径、外径、牙角及牙形等尺寸或外形。   检验金相表面的晶粒状况。   检验工件加工表面的情况。   (6)检测微小工件的尺寸或轮廓是否与标准片相符。

  • XPT-7偏光显微镜使用SOP

    关键词:XPT-7偏光显微镜使用目的:XPT-7偏光显微镜的使用和维护保养背景知识:选填项目原理:选填项目主体内容:1.使用前的检查1.1.确定起偏振镜或检偏振镜振动方向:将检偏振镜自镜中推出、只留一个起偏振镜观察工作台上黑云母切片、转动工作台,当黑云母解理与起偏振镜的振动方向平行时对黑云母吸收性最强,此时呈现深棕色,当解理与起偏振镜的振动方向垂直时,黑云母吸收性微弱,此时晶体呈现淡黄色,据此就能确定起偏振镜的振动方向。另一法是将起偏振镜自显微镜上取下,通过起偏振镜以较大倾斜角观察任一光亮的反射表面,转动起偏振镜至一最暗位置,即可确定起偏振镜振动方向与水平方向(左右不限)垂直、因光亮表面反射来的部分偏振光振动方向始终是观察者的左右方向。本仪器上的起偏振镜振动方向为观察者的左右方向。1.2.起偏振镜与检偏振镜正交:将检偏振镜推入(为观察清楚,应取下目镜、物镜及拨开聚光镜前片),转动起偏振镜,观察到最暗位置,即系正交位置,此时起偏振镜刻线应对准00(1800)。1.3.目镜分划板十字线与起偏振镜、检偏振镜振动方向平行,检查方法同1.1.在单偏光下观察黑云母切片,当黑云母解理与起偏抵镜的振动方向平行时,颜色最深,呈深棕色,此目镜分划板十字线之一应与黑云母解理方向平行。2.物镜中心调节方法如下2.1.观察旋转工作台上的切片,在切片中找一小黑点,使位于目镜十字线中心。2.2.转动工作台,若物镜光轴与工作台中心不一致,黑点即离开十字线中心绕一个圆转动。圆的中心S即为工作台的中心。2.3.将小黑点转至O1(此时距十字线中心最远)借物镜座上两个调节螺丝调节S与0重合,使得小黑点自01移回001距离一半。2.4.如此循环进行上述三步骤可使物镜光轴与旋转工作台中心重合。3.用低倍物镜时,应将拉索透镜移出光路,同时用平面反射镜引入光线。用高倍物镜及观察锥光图时,必须将拉索透镜引入光路,为增加视域亮度,可用凹面反射镜引入光线。聚光镜之间的可变光栏可调节进光量的大小。4.勃氏镜在一般情况下是不用的,只当在高倍物镜下看锥光图时才将勃氏镜加进光路,此时勃氏镜连同目镜构成一个放大镜以观察物镜后焦面上的锥光束干涉图,须注意在照明光源上加毛玻片或在引入光线的方向上应无障碍物,以免使灯丝象或窗户框子、树、天空云彩等成象引起干扰。在观察微小矿物时,应在光路中加入小孔光栏。5.当用人工照明光源时,须将反射镜拔下,换插上灯室,并在起偏振镜下加蓝色滤色片。调节灯室上的两个螺钉,以使视场照片均匀。6.当使用高倍物镜观察时,一般都先用低倍物镜来寻找目标,这时应先调节低倍物镜光轴与旋转工作台中心重合,并使欲观察的目标移向视场中心,然后更换上高倍物镜,调换时,将镜筒升高使物镜离开切片,这样可避免因物镜碰到切片而使切片走动。同时应注意不使物镜调节螺丝走动。7.在使用过程中必须注意:要先旋转微动手轮,使微动处于中间位置,再转动粗调手轮,将镜筒下降使物镜靠近切片(从侧面观察);然后在观察切片的同时再慢慢上升镜筒至看清物体的象为止,这样可避免物镜与切片相互碰撞而压坏切片和损坏镜头。8.如需进行显微摄影,应加接上所用的显微摄影系统,各种摄影系统的使用和联接刀法可能有所不同。9.仪器使用完毕,须转动粗动手轮将物镜提起,关闭灯源。10.维护和保养10.1.显微镜出厂时均经过严格检验,保证能正常连续使用,但需要注意仪器性能的维护,用户在没有熟悉仪器结构性能时,不得任意拆卸仪器。10.2.显微镜应放在阴凉干燥,无灰尘和无腐蚀性气体的地方,工作室内光线不宜太强,并有活动的窗帘,以便于摄影调焦。10.

  • 荧光显微镜的分类

    1.透射式荧光显微镜: 激发光源是通过聚光镜穿过标本材料来激发荧光的。常用暗视野集光器,也可用普通集光器,调节反光镜使激发光转射和旁射到标本上.这是比较旧式的荧光显微镜。其优点是低倍镜时荧光强,而缺点是随放大倍数增加其荧光减弱.所以对观察较大的标本材料较好。 2.落射式荧光显微镜这是近代发展起来的新式荧光显微镜,与上不同处是激发光从物镜向下落射到标本表面,即用同一物镜作为照明聚光器和收集荧光的物镜。光路中需加上一个双色束分离器,它与光铀呈45。角,激发光被反射到物镜中,并聚集在样品上,样品所产生的荧光以及由物镜透镜表面、盖玻片表面反射的激发光同时进入物镜,反回到双色束分离器,使激发光和荧光分开,残余激发光再被阻断滤片吸收。如换用不同的激发滤片/双色束分离器/阻断滤片的组合插块,可满足不同荧光反应产物的需要。此种荧光显微镜的优点是视野照明均匀,成像清晰,放大倍数愈大荧光愈强。

  • 【求助】偏光显微镜的应用领域及图片说明

    偏光显微镜是利用光的偏振特性对具有双折射性物质进行研究鉴定的必备仪器, 可供广大用户做单偏光观察,正交偏光观察,锥光观察。因前期已介绍了偏光显微镜的原理及特点,而今天则主要是向大家介绍一下有关偏光显微镜的应用领域。1、生物领域:在生物体中,不同的纤维蛋白结构显示出明显的各向异性,使用偏光显微镜可得到这些纤维中分子排列的详细情况。如胶原蛋白、细胞分裂时的纺缍丝等。[center][IMG]http://www.mshot.cn/UserData/3693/images/090311184006838.JPG[/IMG][/center][center]图1:花粉粒简易偏光效果[/center]2、各种生物和非生物材料鉴定:如淀粉性质鉴定、药品成分鉴定、纤维、液晶、DNA晶体等。[center][IMG]http://www.mshot.cn/UserData/3693/images/090311182914853.jpg[/IMG][/center][center]图2:淀粉十字偏光效果图[/center]3、地矿分析:如种矿物及结晶体的分析。[center][IMG]http://www.mshot.cn/UserData/3693/images/090311183459400.jpg[/IMG][/center][center]图3:玻璃片上的结晶效果图[/center]4、医学分析:如结石、尿酸晶体检测、关节炎等。

  • 电子显微镜和数码显微镜的区别

    ①照明源不同。电镜所用的照明源是电子枪发出的电子流,而光镜的照明源是可见光(日光或灯光),由于电子流的波长远短于光波波长,故电镜的放大及分辨率显著地高于光镜。   ②透镜不同。电镜中起放大作用的物镜是电磁透镜(能在中央部位产生磁场的环形电磁线圈),而光镜的物镜则是玻璃磨制而成的光学透镜。电镜中的电磁透镜共有三组,分别与光镜中聚光镜、物镜和目镜的功能相当。   ③成像原理不同。在电镜中,作用于被检样品的电子束经电磁透镜放大后打到荧光屏上成像或作用于感光胶片成像。其电子浓淡的差别产生的机理是,电子束作用于被检样品时,入射电子与物质的原子发生碰撞产生散射,由于样品不同部位对电子有不同散射度,故样品电子像以浓淡呈现。而光镜中样品的物像以亮度差呈现,它是由被检样品的不同结构吸收光线多少的不同所造成的。   ④所用标本制备方式不同,电镜观察所用组织细胞标本的制备程序较复杂,技术难度和费用都较高,在取材、固定、脱水和包埋等环节上需要特殊的试剂和操作,最后还需将包埋好的组织块放人超薄切片机切成50~100nm厚的超薄标本片。而光镜观察的标本则一般置于载玻片上,如普通组织切片标本、细胞涂片标本、组织压片标本和细胞滴片标本等。   电子显微镜由电子流代替可见光,由磁场代替透镜,让电子的运动代替。光子“数码显微镜”实际上就是在光学显微镜的基础上加了一个数码成像装置,可以将显微镜所成的像,在电脑屏幕上直接显示出来(Intel就推出过一款类似儿童玩具的“数码显微镜”),其基础还是光学显微镜,和电子显微镜的成像原理是有根本区别的。在这里我们要区别清楚分辨率和放大倍数的问题。细微物体在放大成像时,其最高分辨率取决于所反射的光波的波长,波长越短,分辨率就越高,电子显微镜是利用了波长比普通可见光短得多的X射线成像,当然具备很高的分辨率,而普通“数码显微镜”的放大倍数可以很大,但分辨率是无法提高的。   光学显微镜的分辨率与光波的波长有关。对于接近和小于光波波长的物体光学显微镜就无能为力了。电子运动的波长比光波波长短的多,就可以看到更细小的物体。光学显微镜是由一组光学镜头组成的放大成像系统,而电子显微镜由电子流代替可见光,由磁场代替透镜,让电子的运动代替光子,这样就可以看到比光学系统能看到的更小的物体。   所谓“数码显微镜”实际上就是在光学显微镜的基础上加了一个数码成像装置,可以将显微镜所成的像,在电脑屏幕上直接显示出来(Intel就推出过一款类似儿童玩具的“数码显微镜”),其基础还是光学显微镜,和电子显微镜的成像原理是有根本区别的。在这里我们要区别清楚分辨率和放大倍数的问题。细微物体在放大成像时,其最高分辨率取决于所反射的光波的波长,波长越短,分辨率就越高,电子显微镜是利用了波长比普通可见光短得多的X射线成像,当然具备很高的分辨率,而普通“数码显微镜”的放大倍数可以很大,但分辨率是无法提高的。

  • 金相显微镜用途及舜宇BH200正置金相显微镜介绍

    金相显微镜用途及舜宇BH200正置金相显微镜介绍

    金相显微镜的用途主要用来观察金相组织的专业仪器是专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射隔膜泵光照明。金相显微镜具有稳定性好、成像清晰、分辨率高、视场大而平坦的特点。舜宇BH200金相显微镜特点●光学系统:有限远色差校正光学系统,图像质量好●目镜及物镜: a)高眼点平场目镜PL10X,线视场数18mm,提供宽阔平坦的观察空间,可安装各类测微尺 b)长工作距离专业消色差金相物镜 c)无盖玻片设计,像质优良:●照明系统落射式柯拉照明,并设计防反射结构,有效防止反射光线的干扰,从而使成图像更清晰,视场衬度更好●采用自适应式宽电压90V一240V,6V30W卤素灯,灯丝中心可调,光强连续可调,照明更加充足,有效提高图像的质量●载物台:复合式机械移动平台,低手位同轴调节,并在机械平台上附设180mn×145mm的平板平台,便于放置较大尺寸的样品●附件: a)照明光路中可加入黄`绿、蓝、白四种滤色片,为观察各种样品提供不同色度的照明 b)照明光路中可加入起偏镜和检偏镜,实现偏光观察 c)起偏镜±25°可调,能有效调整正交态或视场衬度 物镜参数表http://img.china.alibaba.com/img/ibank/2014/426/185/1312581624_1333274521.jpg 目镜参数表http://img.china.alibaba.com/img/ibank/2014/791/881/1311188197_1333274521.jpghttp://ng1.17img.cn/bbsfiles/images/2014/08/201408201411_510943_1848148_3.jpg

  • 【转帖】光学显微镜

    光学显微镜是利用光学原理,把人眼所不能分辨的微小物体放大成像,以供人们提取微细结构信息的光学仪器。  早在公元前一世纪,人们就已发现通过球形透明物体去观察微小物体时,可以使其放大成像。后来逐渐对球形玻璃表面能使物体放大成像的规律有了认识。  1590年,荷兰和意大利的眼镜制造者已经造出类似显微镜的放大仪器。1610年前后,意大利的伽利略和德国的开普勒在研究望远镜的同时,改变物镜和目镜之间的距离,得出合理的显微镜光路结构,当时的光学工匠遂纷纷从事显微镜的制造、推广和改进。  17世纪中叶,英国的胡克和荷兰的列文胡克,都对显微镜的发展作出了卓越的贡献。1665年前后,胡克在显微镜中加入粗动和微动调焦机构、照明系统和承载标本片的工作台。这些部 件经过不断改进,成为现代显微镜的基本组成部分。  1673~1677年期间,列文胡克制成单组元放大镜式的高倍显微镜,其中九台保存至今。胡克和列文胡克利用自制的显微镜,在动、植物机体微观结构的研究方面取得了杰出的成就。  19世纪,高质量消色差浸液物镜的出现,使显微镜观察微细结构的能力大为提高。1827年阿米奇第一个采用了浸液物镜。19世纪70年代,德国人阿贝奠定了显微镜成像的古典理论基础。这些都促进了显微镜制造和显微观察技术的迅速发展,并为19世纪后半叶包括科赫、巴斯德等在内的生物学家和医学家发现细菌和微生物提供了有力的工具。  在显微镜本身结构发展的同时,显微观察技术也在不断创新:1850年出现了偏光显微术;1893年出现了干涉显微术;1935年荷兰物理学家泽尔尼克创造了相衬显微术,他为此在1953年获得了诺贝尔物理学奖。  古典的光学显微镜只是光学元件和精密机械元件的组合,它以人眼作为接收器来观察放大的像。后来在显微镜中加入了摄影装置,以感光胶片作为可以记录和存储的接收器。现代又普遍采用光电元件、电视摄象管和电荷耦合器等作为显微镜的接收器,配以微型电子计算机后构成完整的图象信息采集和处理系统。  表面为曲面的玻璃或其他透明材料制成的光学透镜可以使物体放大成像,光学显微镜就是利用这一原理把微小物体放大到人眼足以观察的尺寸。近代的光学显微镜通常采用两级放大,分别由物镜和目镜完成。被观察物体位于物镜的前方,被物镜作第一级放大后成一倒立的实象,然后此实像再被目镜作第二级放大,成一虚象,人眼看到的就是虚像。而显微镜的总放大倍率就是物镜放大倍率和目镜放大倍率的乘积。放大倍率是指直线尺寸的放大比,而不是面积比。  光学显微镜的组成结构  光学显微镜一般由载物台、聚光照明系统、物镜,目镜和调焦机构组成。载物台用于承放被观察的物体。利用调焦旋钮可以驱动调焦机构,使载物台作粗调和微调的升降运动,使被观察物体调焦清晰成象。它的上层可以在水平面内沿作精密移动和转动,一般都把被观察的部位调放到视场中心。  聚光照明系统由灯源和聚光镜构成,聚光镜的功能是使更多的光能集中到被观察的部位。照明灯的光谱特性必须与显微镜的接收器的工作波段相适应。  物镜位于被观察物体附近,是实现第一级放大的镜头。在物镜转换器上同时装着几个不同放大倍率的物镜,转动转换器就可让不同倍率的物镜进入工作光路,物镜的放大倍率通常为5~100倍。  物镜是显微镜中对成象质量优劣起决定性作用的光学元件。常用的有能对两种颜色的光线校正色差的消色差物镜;质量更高的还有能对三种色光校正色差的复消色差物镜;能保证物镜的整个像面为平面,以提高视场边缘成像质量的平像场物镜。高倍物镜中多采用浸液物镜,即在物镜的下表面和标本片的上表面之间填充折射率为1.5左右的液体,它能显著的提高显微观察的分辨率。  目镜是位于人眼附近实现第二级放大的镜头,镜放大倍率通常为5~20倍。按照所能看到的视场大小,目镜可分为视场较小的普通目镜,和视场较大的大视场目镜(或称广角目镜)两类。  载物台和物镜两者必须能沿物镜光轴方向作相对运动以实现调焦,获得清晰的图像。用高倍物镜工作时,容许的调焦范围往往小于微米,所以显微镜必须具备极为精密的微动调焦机构。  显微镜放大倍率的极限即有效放大倍率,显微镜的分辨率是指能被显微镜清晰区分的两个物点的最小间距。分辨率和放大倍率是两个不同的但又互有联系的概念。  当选用的物镜数值孔径不够大,即分辨率不够高时,显微镜不能分清物体的微细结构,此时即使过度地增大放大倍率,得到的也只能是一个轮廓虽大但细节不清的图像,称为无效放大倍率。反之如果分辨率已满足要求而放大倍率不足,则显微镜虽已具备分辨的能力,但因图像太小而仍然不能被人眼清晰视见。所以为了充分发挥显微镜的分辨能力,应使数值孔径与显微镜总放大倍率合理匹配。  聚光照明系统是对显微镜成像性能有较大影响,但又是易于被使用者忽视的环节。它的功能是提供亮度足够且均匀的物面照明。聚光镜发来的光束应能保证充满物镜孔径角,否则就不能充分利用物镜所能达到的最高分辨率。为此目的,在聚光镜中设有类似照相物镜中的,可以调节开孔大小的可变孔径光阑,用来调节照明光束孔径,以与物镜孔径角匹配。  改变照明方式,可以获得亮背景上的暗物点(称亮视场照明)或暗背景上的亮物点(称暗视场照明)等不同的观察方式,以便在不同情况下更好地发现和观察微细结构。  光学显微镜的分类  光学显微镜有多种分类方法:按使用目镜的数目可分为双目和单目显微镜;按图像是否有立体  感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光,相衬和微差干涉对比显微镜等;按光源类型可分为普通光、荧光、红外光和激光显微镜等;按接收器类型可分为目视、摄影和电视显微镜等。常用的显微镜有双目体视显微镜、金相显微镜、偏光显微镜、紫外荧光显微镜等。  双目体视显微镜是利用双通道光路,为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。双目体视显微镜在生物、医学领域广泛用于切片操作和显微外 科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。  金相显微镜是专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。这种反射照明方式也广泛用于集成电路硅片的检测工作。  紫外荧光显微镜是用紫外光激发荧光来进行观察的显微镜。某些标本在可见光中觉察不到结构细节,但经过染色处理,以紫外光照射时可因荧光作用而发射可见光,形成可见的图像。这类显微镜常用于生物学和医学中。  电视显微镜和电荷耦合器显微镜是以电视摄像靶或电荷耦合器作为接收元件的显微镜。在显微镜的实像面处装入电视摄像靶或电荷耦合器取代人眼作为接收器,通过这些光电器件把光学图像转换成电信号的图像,然后对之进行尺寸检测、颗粒计数等工作。这类显微镜的可以与计算机联用,这便于实现检测和信息处理的自动化,多应用于需要进行大量繁琐检测工作的场合。  扫描显微镜是成像光束能相对于物面作扫描运动的显微镜 。在扫描显微镜中依靠缩小视场来保证物镜达到最高的分辨率,同时用光学或机械扫描的方法,使成像光束相对于物面在较大视场范围内进行扫描,并用信息处理技术来获得合成的大面积图像信息。这类显微镜适用于需要高分辨率的大视场图像的观测。

  • 二手尼康偏光显微镜

    出一台二手尼康偏光显微镜ME600POL一口价价格:45500元有意向者站内信索取联系方式,谢谢!http://www.microimage.com.cn/bbs/attachment/photo/Mon_1208/472_5ce01343784545c2df6c93011ada6.jpg机器实物图,该机种采用新开发的高亮度卤素灯光源,其功率虽然只有50W,但照明亮度却比普通的100W卤素灯照明毫不逊色,甚至比它还要亮!特别是使用50×以上的物镜时,其亮度要比普通的100W卤素灯光源高出约20~40%。新光源的能耗低,发热也低,所以因照明装置发热而引起的热变形,也得到了有效的抑制。标本的照明亮度本身并不和光源的瓦数成正比,尼康采用独特的复眼透镜照明,可以充分发挥灯丝的亮度,从而在全视场内获得均匀、明亮的照明。高精度圆形旋转载物台台面大、旋转方便;每隔 45°有一个定位装置;采用新型正交排列钢制滚柱导轨支撑,载物台加倍稳定,承载能力更强。可调心的五孔物镜转换器采用逆装式嵌入;具有广泛用途的DIN标准插槽,连非尼康产的检板也能插入使用。中间镜筒内置可调焦、可对中的勃特兰透镜,利用它可以观察并拍摄没有畸变的图象以及锥光干涉图象;带有可旋转的检偏器;带有尼康检板插槽,插在此处的检板可做360°旋转。偏光观察用物镜采用尼康独特的CFI60光学系统设计,可以同时保证较长的工作距离和较高的数值孔径;物镜分透射照明专用型和透反射照明两用型;透反射两用型物镜使用不含铅、砷等有害物质的环保玻璃制作而成。CFI P Achromat [color=blac

  • 生物显微镜的主要构造

    生物显微镜的主要构造普通生物显微镜的构造主要分为三部分:机械部分、照明部分和光学部分。1.机械部分(1)镜座:是显微镜的底座,用以支持整个镜体。(2)镜柱:是镜座上面直立的部分,用以连接镜座和镜臂。(3)镜臂:一端连于镜柱,一端连于镜筒,是取放显微镜时手握部位。(4)镜筒:连在镜臂的前上方,镜筒上端装有目镜,下端装有物镜转换器。(5)物镜转换器(旋转器):接于棱镜壳的下方,可自由转动,盘上有3-4个圆孔,是安装物镜部位,转动转换器,可以调换不同倍数的物镜,当听到碰叩声时,方可进行观察,此时物镜光轴恰好对准通光孔中心,光路接通。(6)镜台(载物台):在镜筒下方,形状有方、圆两种,用以放置玻片标本,中央有一通光孔,我们所用的生物显微镜其镜台上装有玻片标本推进器(推片器),推进器左侧有弹簧夹,用以夹持玻片标本,镜台下有推进器调节轮,可使玻片标本作左右、前后方向的移动。(7)调节器:是装在镜柱上的大小两种螺旋,调节时使镜台作上下方向的移动。①粗调节器(粗螺旋):大螺旋称粗调节器,移动时可使镜台作快速和较大辐度的升降,所以能迅速调节物镜和标本之间的距离使物象呈现于视野中,通常在使用低倍镜时,先用粗调节器迅速找到物象。②细调节器(细螺旋):小螺旋称细调节器,移动时可使镜台缓慢地升降,多在运用高倍镜时使用,从而得到更清晰的物象,并借以观察标本的不同层次和不同深度的结构。2.照明部分装在镜台下方,包括反光镜,集光器。(1)反光镜:装在镜座上面,可向任意方向转动,它有平、凹两面,其作用是将光源光线反射到聚光器上,再经通光孔照明标本,凹面镜聚光作用强,适于光线较弱的时候使用,平面镜聚光作用弱,适于光线较强时使用。(2)集光器(聚光器)位于镜台下方的集光器架上,由聚光镜和光圈组成,其作用是把光线集中到所要观察的标本上。①聚光镜:由一片或数片透镜组成,起汇聚光线的作用,加强对标本的照明,并使光线射入物镜内,镜柱旁有一调节螺旋,转动它可升降聚光器,以调节视野中光亮度的强弱。②光圈(虹彩光圈):在聚光镜下方,由十几张金属薄片组成,其外侧伸出一柄,推动它可调节其开孔的大小,以调节光量。3.光学部分(1)目镜:装在镜筒的上端,通常备有2-3个,上面刻有5×、10×或15×符号以表示其放大倍数,一般装的是10×的目镜。(2)物镜:装在镜筒下端的旋转器上,一般有3-4个物镜,其中最短的刻有“10×”符号的为低倍镜,较长的刻有“40×”符号的为高倍镜,最长的刻有“100×”符号的为油镜,此外,在高倍镜和油镜上还常加有一圈不同颜色的线,以示区别。在物镜上,还有镜口率(N.A.)的标志,它反应该镜头分辨力的大小,其数字越大,表示分辨率越高,各物镜的镜口率如下表:物镜 镜口率(N.A.) 工作距离(mm)10× 0.25 5.4040× 0.65 0.39100× 1.30 0.11表中的工作距离是指生物显微镜处于工作状态(物象调节清楚)时物镜的下表面与盖玻片(盖玻片的厚度一般为0.17mm)上表面之间的距离,物镜的放大倍数愈大,它的工作距离愈小。显微镜的放大倍数是物镜的放大倍数与目镜的放大倍数的乘积,如物镜为10×,目镜为10×,其放大倍数就为10×10=100。

  • 【原创】真实色共聚焦显微镜对比激光共聚焦显微镜的优势!

    [center]真实色共焦显微镜与激光扫描共焦显微镜主要特点对比[/center]真实色共焦显微镜与激光扫描共焦显微镜,二者在成像原理上基本是一样的,最大不同之处是照明光源不同。1、激光扫描共焦显微镜激光扫描共焦显微镜的照明光源是激光,即单色光。其实际成像过程是根据被观察物体对该单色激光的反射光的强弱来成像的。由于是单色光照明,不能分辨颜色,对于在同一试样的同一视场内,颜色不同,但对该单色激光反射光强度相同的不同组织或成分不能分辨。容易产生同相异色,同色异相的现象,不利于对微观组织和成分的正确分辨。2、真实色共焦显微镜真实色共焦显微镜的光源是氙光源,即白光。其实际成像过程是在白光照明的条件下,对物体形貌(包括颜色)进行综合的成像。 由于是多色光照明和成像,真实色共焦显微镜能够更真实的反应物体的颜色和形貌,避免了激光扫描共焦显微镜产生的同相异色,同色异相的现象发生,观察者可以通过颜色,分辨和判断试样的成分和组织。在这方面,其分辨率远强于激光扫描共焦显微镜 综合分析:在有颜色差异的试样的观察条件下,真实色共焦显微镜避免了激光扫描共焦显微镜产生的同相异色,同色异相的现象发生,观察者可以通过颜色,分辨和判断试样的成分和组织。在这种条件下,真实色共焦显微镜的分辨率高于激光扫描共焦显微镜。在单色试样的观察条件下,分辨率才接近各自的技术指标。然而,在实际观察的试样中,绝大多数不同的组织和成分都是有颜色差异的。对应于没有颜色差异或颜色差异小的试样,可以通过人为的染色(例如腐蚀处理),提高图像的分辨能力。在这一方面,激光扫描共焦显微镜是无能为力的。 另外,分辨率是在特定条件下所能达到的一项技术指标,当在实际使用中,不满足该技术条件时(实际是常常不能满足),其分辨率是达不到所给出的数值。

  • 光片照明显微镜——细胞级分辨率3D成像

    虽然经过几个世纪的研究,人类的生长于发育过程中仍遗留有很多的未解之谜。人类胚胎发育的研究始于20世纪,一般以观察胚胎的组织图像的方式来研究如器官发生的机制等,传统的方式如切片一直使用至今。现今,对于胚胎3D图像的数字化构建也已经开始,使用核磁共振、X光摄影等方法均可获得胚胎的3D图像,但分辨率仍无法达到细胞水平。本研究使用了妊娠期6-14周的胚胎和胎儿共36个,结合免疫染色、3DISCO组织透明技术和光片照明技术,获得了人类胚胎细胞级分辨率的3D图像,清晰地显示了胚胎的外周神经、肌肉、血管、心、肺和泌尿系统。通过这种方法,我们可以建立人类生长发育的图库,研究人类胚胎发育的分子机制。[b]3D图像示例:1) 周围神经系统3D成像(使用中间纤维外周蛋白(Prph)的抗体标记Prph): [/b][align=center][img=,450,317]http://www.qd-china.com/uploads/Mandy/LaVision%20Application/2.jpg[/img] [/align][align=center](A)7周龄胚胎的表面造影图像(左);对Prph进行标记所得图像。[/align][align=center](B)8周龄胚胎的表面造影图像(灰色)和标记Prph所得图像(绿色)的叠加图像。[/align][align=center](C)8周龄胚胎的面部神经分布。表面造影图像和标记Prph所得图像的叠加(中)(右)。 [/align][align=center]感觉神经轴突和运动神经轴突在手脚的分布:分别使用胆碱乙酰转移酶(ChAT)和瞬态粘附糖蛋白-1(Tag-1)的抗体来标记。[/align][align=center](D)在外周神经,染色产生重叠现象,但在末端Tag-1(绿色)更为明显。(D-F)ChAT染色与Prph和Tag-1均无重叠。 [/align][align=center][img=,550,177]http://www.qd-china.com/uploads/Mandy/LaVision%20Application/3.jpg[/img] [/align][align=center](D)9.5周龄的拇指,标记Prph和Tag-1。染色发生重叠,但在末端区域Tag-1更显著。[/align][align=center](E)9.5周龄的左手,ChAT与Prph表达区域不同。[/align][align=center](F)9周龄的右脚,ChAT与Tag-1表达区域不同。 [/align][align=center] [img=,550,177]http://www.qd-china.com/uploads/Mandy/LaVision%20Application/4.jpg[/img][/align][align=center](G)7周龄的头部,标记Prph显示颅神经。(右)对颅神经分布使用Imaris软件进行3D虚拟解剖、区分并着色。 [/align][b]2) 手足的神经分布的3D成像:对Prph和Tag-1进行免疫染色以建立胚胎和胎儿手部的感觉神经及其分支的3D图像,并可观察感觉神经随时间推移的发育情况。 [/b] [align=center] [img=,450,362]http://www.qd-china.com/uploads/Mandy/LaVision%20Application/5-1.jpg[/img][/align][align=center](A)8周龄标记Prph的右手,感觉神经分为尺骨神经、正中神经和桡神经。[/align][align=center](B)右手从7周龄到11周龄的神经分布随时间的变化。肌皮神经(指针处)很快便延长深入手部。 [/align][align=center] 之后分别对ChAT和Tag-1标记,建立了运动和感觉神经的分布的图像,以确定两种神经在何处以何种方式分离。 [/align][align=center][img=,550,286]http://www.qd-china.com/uploads/Mandy/LaVision%20Application/5-2.jpg[/img] [/align][align=center](C)(D)9周龄的右脚和8周龄的左手的感觉神经和运动神经的3D图像。 [/align][b]3) 对肌肉生长进行3D成像分析:[/b]转录因子Pax7是有颌下门动物的肌肉干细胞标记物,是肌肉生成的关键启动因子。在肌肉的生长中,表达Pax7的细胞均匀分布于生长中的肌肉,表达肌细胞生成素(Myog)的细胞成簇分布于运动神经末端。生长中的肌肉表达了双皮质素(Dcx),可能影响神经肌肉接点的发育。 [align=center][img=,550,259]http://www.qd-china.com/uploads/Mandy/LaVision%20Application/7-1.jpg[/img] [/align][align=center](A)9.5周龄标记Pax7的右脚和右手。[/align][align=center](B)10.5周龄标记Pax7与ChAT的右脚。[/align][align=center](C)9周龄标记Myog、ChAT和Tag-1的右脚。[/align][align=center]表达Myog的细胞成簇分布于运动神经分支末端。[/align][align=center](D)9.5周龄的左脚标记Dcx与ChAT。[/align][align=center]Dcx在肌肉(*号)和感觉神经中检测到,但在运动神经轴突中未检测到。 [/align][align=center] [img=,450,334]http://www.qd-china.com/uploads/Mandy/LaVision%20Application/7-2.jpg[/img][/align][align=center](E)8周龄标记MHC与Tag-1的胚胎。[/align][align=center](中上)动眼肌肉的图像。[/align][align=center]点状线标示出了肌肉的分界线,此处照明被色素上皮所减弱。[/align][align=center](中下)肌肉与感觉神经。(右)左臂的肌肉与感觉神经。[/align][align=center](F)9.5周龄标记MHC与ChAT的左手,显示了肌肉与运动神经。[/align][align=center]使用不同颜色对肌肉进行了区分,同时能够观察到正在发育的骨骼。 [/align][b]4) 人类胚胎脉管系统的3D成像分析:[/b]质膜膜泡关联蛋白(Plvap)是一种由网状微血管内皮细胞表达的跨膜糖蛋白。对整个胚胎标记Plvap并成像,可以观察到致密的血管网络。对平滑肌表达的α肌动蛋白(SMA)进行免疫染色可以观察到生长中的动脉的3D结构。 [align=center][img=,450,414]http://www.qd-china.com/uploads/Mandy/LaVision%20Application/9.jpg[/img] [/align][align=center](A)(B)8周龄标记Plvap的胚胎。[/align][align=center]Plvap在整个胚胎中形成了致密的网络。[/align][align=center](A中、右)右臂与右手。(B左)左腿的Z轴投射图像。[/align][align=center](*号)血管网络穿过了除了骨骼的所有组织。[/align][align=center](B右)面部图像。(箭头)角膜处没有血管。[/align][align=center](C)11周龄胎儿,标记胶原IV的肋骨表面。[/align][align=center](D左)11.5周龄胎儿的右腿和右膝,标记MyoSM的动脉。[/align][align=center](D右)11.5周龄胎儿的右脚,标记SMA的动脉。[/align][align=center] 对胃肠道的淋巴细胞表达的Podoplanin进行标记以研究淋巴管形成,表达Podoplanin的细胞覆盖了肠胃,[/align][align=center]而含Podoplanin的微管数量较少,说明人类淋巴系统成熟可能晚于血管系统。[img=,550,181]http://www.qd-china.com/uploads/Mandy/LaVision%20Application/10.jpg[/img][/align][align=center](E)14周龄标记Podoplanin的消化道。表达Podoplanin的细胞位于肠胃上方。 [/align][align=center](右)表达Podoplanin的细胞尚未发育形成淋巴管。[/align][b]5) 肺的生长发育的3D分析:[/b]标记鼠的性别决定基因Sox9转录因子和Dcx,观察到Sox9在人的末端支气管芽处表达,Dcx在每个气道的近端上皮部分表达。用Plvap标记肺部的血管,发现肺间质内微血管和大血管形成了连续的网络。肺部气道的分支方式是高度保守的,包括域分支、水平分支和垂直分支,使用Sox9/Dcx标记小支气管,可以观察到3种分支方式,并发现了不对称分支现象。 [align=center][img=,550,329]http://www.qd-china.com/uploads/Mandy/LaVision%20Application/11.jpg[/img] [/align][align=center](A)9.5周龄标记Sox9、Dcx和Plvap的胎儿的肺部。Sox9在上皮小管的末端表达,Dcx在近端表达。Plvap在整个肺的血管中表达。[/align][align=center](B)肺上皮小管Z轴光学切面。[/align][align=center](C)末端的微血管网络。[/align][align=center](D)气道分支的3D图像。肺叶(蓝绿),支气管(红)。[/align][align=center](E)支气管的3D图像。(右)三种分支方式。[/align][align=center] 标记SMA和平滑肌肌凝蛋白(MyoSM),两者均于围绕支气管和气道上皮小管的平滑肌处表达。标记Sox9显示出末端没有平滑肌。[/align][align=center]对平滑肌进行染色同时可以显示动脉和微动脉。可以使用SMA和酪氨酸羟化酶(TH)标记心脏来观察血管和神经分布。 [/align][align=center][img=,550,289]http://www.qd-china.com/uploads/Mandy/LaVision%20Application/12.jpg[/img] [/align][align=center](F)9.5周龄的标记MyoSM的肌凝蛋白平滑肌的染色。(箭头)支气管及分支。[/align][align=center](G)11.5周龄的左肺标记SMA显示出气道平滑肌的分支方式。(箭头)动脉周围肌肉和(指针)近端气道周围肌肉。[/align][align=center](H)10周龄的肺的分支图像。末端芽部用Sox9标记。表达SMA的平滑肌分布于不表达Sox9的近端区域。[/align][align=center](I-K)心脏的光片显微图像。 [/align][b]6) 泌尿生殖系统发育的3D分析:[/b]人类生殖道分为两种结构:由中肾分化而来的中肾管(WD)和由中肾管诱导分化而来的副中肾管(MD)。性别决定伴随着生殖道的重构。Pax2转录因子可用于标记中肾和WD。8周龄的雄性胚胎中,MD尖端与WD紧密接触但并未完全生长。肾处于腹侧位置邻接生殖嵴。9.5周龄时MD继续沿WD延伸但并未连接。10周龄时两条MD连接,从两侧WD的中间延伸至泌尿生殖窦,同时开始降解,融合的剩余MD分化为前列腺囊。14周龄时,WD的中肾肾小管退化,附睾与输精管出现。Sox9是睾丸分化的必需因子,在睾丸索中表达,对Sox9使用免疫染色可以观察到睾丸索。[align=center][img=,350,415]http://www.qd-china.com/uploads/Mandy/LaVision%20Application/13.jpg[/img][/align][align=center](A)8周龄标记Pax2的胚胎。[/align][align=center](B)(箭头)MD/WD连接。[/align][align=center](C)(D)9.5周龄的泌尿生殖系统。(箭头)MD尾端沿WD延长但仍未融合。[/align][align=center](E)10周龄的泌尿生殖系统。MD在底端融合(指针)并开始降解(箭头)。[/align][align=center](F)降解的继续。[/align][align=center](G)14周龄的泌尿生殖系统。输精管进一步发育(指针)。[/align][align=center](H)10周龄标记Pax2和Sox9的睾丸。[/align][align=center](I)10周龄标记Pax2的睾丸。[/align][align=center](J)14周龄的睾丸。[/align][align=center][img=,350,452]http://www.qd-china.com/uploads/Mandy/LaVision%20Application/14.jpg[/img][/align][align=center](A)10.5周龄标记Pax2的泌尿生殖系统。WD连续,MD已融合。(B)11.5周龄标记Pax2的生殖系统。(箭头)WD开始降解。(C)13周龄,标记Pax2的生殖系统。(箭头)子宫大小增加,WD显著降解。(右)MD顶端发育中的输卵管纤毛。(D)8周龄标记Pax2和Plvap的睾丸。(指针)微血管覆盖了睾丸和WD。而MD却没有血管形成。(E)10周龄的雄性胎儿中,MD没有微血管形成。(F)(G)10.5和13周龄标记Pax2和Plvap的卵巢。WD和MD均有致密的血管覆盖。 [/align][align=center][/align][b]总结:[/b]将免疫标记与3D成像技术结合,能够完好地保存器官的3D结构并使分辨率达到细胞水平,简单、快速、稳定、可重复,以上这些优势适合其应用于胚胎学,可用于研究遗传疾病或畸胎。此方法的限制条件主要在材料的获得,同时使用得抗体最大数量,抗体与实验方法的兼容性和大容量数据的存储。然而其应用的广泛程度依然不可限量。以后甚至可用于建立人类生长发育的3D图库。

  • 显微镜的分类

    光学显微镜有多种分类方法:按使用目镜的数目可分为双目和单目显微镜;按图像是否有立体感可分为立体视觉和非立体视觉显微镜;按观察对像可分为生物和金相显微镜等;按光学原理可分为偏光、相衬和微差干涉对比显微镜等;按光源类型可分为普通光、荧光、紫外光、红外光和激光显微镜等;按接收器类型可分为目视、数码(摄像)显微镜等。常用的显微镜有双目体视显微镜、金相显微镜、偏光显微镜、荧光显微镜等。1.双目体视显微镜双目体视显微镜又称"实体显微镜"或"解剖镜",是一种具有正象立体感地目视仪器。在生物、医学领域广泛用于切片操作和显微外科手术;在工业中用于微小零件和集成电路的观测、装配、检查等工作。它利用双通道光路,双目镜筒中的左右两光束不是平行,而是具有一定的夹角--体视角(一般为12度--15度),为左右两眼提供一个具有立体感的图像。它实质上是两个单镜筒显微镜并列放置,两个镜筒的光轴构成相当于人们用双目观察一个物体时所形成的视角,以此形成三维空间的立体视觉图像。目前体视镜的光学结构是:由一个共用的初级物镜,对物体成象后的两光束被两组中间物镜----变焦镜分开,并成一体视角再经各自的目镜成象,它的倍率变化是由改变中间镜组之间的距离而获得的,因此又称为"连续变倍体视显微镜"(Zoom-stereomicroscope)。随着应用的要求,目前体视镜可选配丰富的选购附件,如荧光,照相,摄象,冷光源等等。2.金相显微镜金相显微镜是专门用于观察金属和矿物等不透明物体金相组织的显微镜。这些不透明物体无法在普通的透射光显微镜中观察,故金相和普通显微镜的主要差别在于前者以反射光,而后者以透射光照明。在金相显微镜中照明光束从物镜方向射到被观察物体表面,被物面反射后再返回物镜成像。这种反射照明方式也广泛用于集成电路硅片的检测工作。3.偏光显微镜(Polarizingmicroscope)偏光显微镜是用于研究所谓透明与不透明各向异性材料的一种显微镜。凡具有双折射的物质,在偏光显微镜下就能分辨的清楚,当然这些物质也可用染色法来进行观察,但有些则不可能,而必须利用偏光显微镜。将普通光改变为偏振光进行镜检的方法,以鉴别某一物质是单折射(各向同行)或双折射性(各向异性)。双折射性是晶体的基本特性。因此,偏光显微镜被广泛地应用在矿物、化学等领域,在生物学和植物学也有应用。4.荧光显微镜荧光显微镜是用短波长的光线照射用荧光素染色过的被检物体,使之受激发后而产生长波长的荧光,然后观察。荧光显微镜广泛应用于生物,医学等领域。荧光显微镜一般分为透射和落射式两种类型。透射式:激发光来自被检物体的下方,聚光镜为暗视野聚光镜,使激发光不进入物镜,而使荧光进入物镜。它在低倍情况下明亮,而高倍则暗,在油浸和调中时,较难操作,尤以低倍的照明范围难于确定,但能得到很暗的视野背景。透射式不使用于非透明的被检物体。落射式:透射式目前几乎被淘汰,新型的荧光显微镜多为落射式,光源来自被检物体的上方,在光路中具有分光镜,所以对透明和不透明的被检物体都适用。由于物镜起了聚光镜的作用,不仅便于操作,而且从低倍到高倍,可以实现整个视场的均匀照明。目前许多新兴生物研究领域应用到荧光显微镜,如基因原位杂交(FISH)等等。5.相衬显微镜(Phasecontrastmicroscope)在光学显微镜的发展过程中,相衬镜检术的发明成功,是近代显微镜技术中的重要成就。我们知道,人眼只能区分光波的波长(颜色)和振幅(亮度),对于无色通明的生物标本,当光线通过时,波长和振幅变化不大,在明场观察时很难观察到标本。 相衬显微镜利用被检物体的光程之差进行镜检,也就是有效地利用光的干涉现象,将人眼不可分辨的相位差变为可分辨的振幅差,即使是无色透明的物质也可成为清晰可见。这大大便利了活体细胞的观察,因此相衬镜检法广泛应用于倒置显微镜中。6.微分干涉对比显微镜(DifferentialinterferencecontrastDIC)微分干涉对比镜检术出现于60年代,它不仅能观察无色透明的物体,而且图象呈现出浮雕壮的立体感,并具有相衬镜检术所不能达到的某些优点,观察效果更为逼真。微分干涉对比镜检术是利用特制的渥拉斯顿棱镜来分解光束。分裂出来的光束的振动方向相互垂直且强度相等,光束分别在距离很近的两点上通过被检物体,在相位上略有差别。由于两光束的裂距极小,而不出现重影现象,使图象呈现出立体的三维感觉。7.倒置显微镜(Invertedmicroscope)倒置显微镜是为了适应生物学、医学等领域中的组织培养、细胞离体培养、浮游生物、环境保护、食品检验等显微观察。由于上述样品特点的限制,被检物体均放置在培养皿(或培养瓶)中,这样就要求倒置显微镜的物镜和聚光镜的工作距离很长,能直接对培养皿中的被检物体进行显微观察和研究。因此,物镜、聚光镜和光源的位置都颠倒过来,故称为"倒置显微镜"。由于工作距离的限制,倒置显微镜物镜的最大放大率为60X。一般研究用倒置显微镜都配置有4X、10X、20X、及40X相差物镜,因为倒置显微镜多用于无色透明的活体观察。如果用户有特殊需要,也可以选配其它附件,用来完成微分干涉、荧光及简易偏光等观察。目见倒置显微镜广泛应用于patch-clamp,transgeneICSI等领域。8.数码显微镜数码显微镜是以摄像头(即电视摄像靶或电荷耦合器)作为接收元件的显微镜。在显微镜的实像面处装入摄像头取代人眼作为接收器,通过这种光电器件把光学图像转换成电信号的图像,然后对之进行尺寸检测、颗粒计数等工作。这类显微镜可以与计算机联用,这便于实现检测和信息处理的自动化,多应用于需要进行大量繁琐检测工作的场合。目前出现一种便携式数码显微镜照相机,简称数微相机。它将显微镜和数码相机相结合,以同时达到显微镜观察(Micro preview)和显微摄影(Micro photography)的要求。最高物镜显微倍率可达150X,机身小巧,便于携带,自备光源,可运用于多种场合。可直接与计算机、打印机(不需要电脑)、电视(不需要电脑)联用。

  • 【分享】金相显微镜使用

    明暗场正置透反射金相显微镜:DMM-550D一、仪器的主要用途和特点 (1)仪器主要用途: DMM-550系列正置明暗场偏光透反射金相显微镜是一种多用途工业检验用显微镜,配有五孔转换器,明/暗场物镜,大视野目镜,50W大功率反射式及30W透射式“柯勒”照明系统,视场清晰明亮,并可配落射暗场照明装置。可用于半导体硅晶片、掩膜板,LCD基板,电路板,固体粉末及其它各种透明或不透明工业试样的检验;也可作生物试样、金相试样、矿物试样及岩相试样的检验。本产品还可选配120mm*100mm移动行程高精度大行程载物台,便于大尺寸试样的检验。另外,本产品还可配暗场、偏光、透射相衬及试样压平器进行样品深层次的检验。 DMM-550D数码型三目正置金相显微镜是将精锐的光学显微镜技术、先进的光电转换技术、尖端的数码成像技术完美地结合在一起而开发研制成功的一项高科技产品。既可人工观察金相图像,又可以在计算机显示器上很方便地适时观察金相图像,并可随时捕捉记录金相图片,从而对金相图谱进行分析,评级等,还可以保存或打印出高像素金相照片。 (2)仪器主要特点: 视场宽阔平坦:配备平常消色差物镜及视场数为Φ20mm的10X大视野目镜使视厂场宽阔平坦。 视场均匀明亮:采用12V/50W反射,6V/30W透射大功率卤钨灯(亮度可调)及透/反射式“柯勒”照明系统,使成像视场明亮均匀。 载物台可快速更换:本机设有载物台快速更换装置,可根据需要更换成120mm*100mm大行程载物台 可对式样进行偏光观察:本机的透射和反射系统均备有偏光装置,可快速方便的从明场切换到偏光。 丰富的附件供用户选择:本机有反射暗场、透射相衬、试样样压平器及各类物镜、目镜等供用户选择。二、仪器的主要技术指标1、组件及规格目镜 大视野 WF10X(Φ20mm)平场分划 10X(0.10mm/格值)物镜 平场消色差(无盖玻片) 放大倍数/数值孔径 工作距离PL10X/0.25 8.9PL20X/0.3 8.7PL40X/0.65 3.7SPL100X/1.25(油) 0.44平场暗场物镜 PL10XPL20XPL40X载物台 透反射两用载物台仪器主体 透反射显微镜机架,内状6V/30W透射光源三目头 内装检偏器偏光装置 起偏镜组,检偏镜组聚光镜组 透射光明暗场聚光镜组调焦机构 同轴粗微动调焦机构, 调焦范围15mm 微动格值2μm 透反射照明组 落射照明12V50W和透射照明6V/30W 卤素灯,亮度可调,内装落射光起偏器2、选购件: (1)16X广角目镜; (2)有盖玻片平场消色差物镜 (3) 大行程载物台(100mmX120mm) (4) 平场相衬物镜(10X,40X,100X),对中目镜,相衬聚光镜组 (5) 反射光暗场照明组三、系统的组成1、金相显微镜DMM-5502、数码适配镜3、彩色数码相机四、选购部分1.金相分析软件五 、同类仪器的比较1、DMM-550C电脑倒置金相显微镜2、DMM-550D数码倒置金相显微镜

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制