当前位置: 仪器信息网 > 行业主题 > >

宏观划痕测试仪

仪器信息网宏观划痕测试仪专题为您提供2024年最新宏观划痕测试仪价格报价、厂家品牌的相关信息, 包括宏观划痕测试仪参数、型号等,不管是国产,还是进口品牌的宏观划痕测试仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合宏观划痕测试仪相关的耗材配件、试剂标物,还有宏观划痕测试仪相关的最新资讯、资料,以及宏观划痕测试仪相关的解决方案。

宏观划痕测试仪相关的论坛

  • 奥地利安东帕(中国)有限公司刚刚发布了销售工程师(摩擦划痕测试仪)- 上海职位,坐标上海市,速来围观!

    [size=16px][color=#ff0000][b][url=https://www.instrument.com.cn/job/position-80730.html]立即投递该职位[/url][/b][/color][/size][b]职位名称:[/b]销售工程师(摩擦划痕测试仪)- 上海[b]职位描述/要求:[/b]职责描述:在所负责的区域内,有效开发摩擦划痕测试等仪器的客户;制定并完成客户拜访计划,建立和强化客户关系;完成销售计划、业绩指标;协调合同实施、回款;熟练使用CRM系统追踪潜力商机;追踪行业市场发展动态,收集和整理市场状态和竞争者信息;任职要求:具备摩擦划痕等仪器的相关知识以及实际操作经验;本科及以上学历,材料、高分子、化学、物理等相关专业;两年以上相关产品行业经验,有一定的行业客户基础;有独立开发业务的能力,积极主动地开拓市场;有出色的内外部沟通协调能力;良好的团队配合;有较强的抗压力,能适应长期出差的工作;[b]公司介绍:[/b] 安东帕(Anton Paar)是一家以研制工业及科研专用之高品质测量和分析仪器为主导的企业.我们在测量技术方面的多个领域处于世界领先地位.自企业成立以来,公司员工的创新精神及其对产品质量锲而不舍的追求就一直是我们发展的源动力与基础.我们开发新产品的构想源于直接面对用户需求和密切关注市场的发展状况.将这样的构想实现成为应用最新技术的仪器,则是靠本公司强大的研发部门以及与公司外学术机构伙伴的合...[url=https://www.instrument.com.cn/job/position-80730.html]查看全部[/url][align=center][img=,178,176]https://ng1.17img.cn/bbsfiles/images/2021/08/202108160948175602_3528_5026484_3.png!w178x176.jpg[/img][/align][align=center]扫描二维码,关注[b][color=#ff0000]“仪职派”[/color][/b]公众号[/align][align=center][b]即可获取高薪职位[/b][/align]

  • 【网络会议】:划痕技术在涂层检查和表征中的应用

    【网络会议】:划痕技术在涂层检查和表征中的应用

    【网络会议】:划痕技术在涂层检查和表征中的应用【讲座时间】:2015年09月24日 10:00【主讲人】:魏岳腾2011年博士毕业后进入中国科学院高能物理研究所工作,任助理研究员。在中科院纳米生物效应与安全性重点实验室从事纳米荧光探针的设计、制备及应用研究。2013年3月加入Bruker纳米表面仪器部担任应用科学家。【会议介绍】 划痕测试是一种快捷有效的薄膜结合力测试方法,它通过检测试验过程中各参数的突变,定量判断薄膜结合力。这种方法能最大程度模拟薄膜的常规失效方式,结果可信度较高。布鲁克CETR-UMT TriboLab机械性能测试机能实现满足ASTM标准的划痕测试,在汽车制造工业、航空航天领域、生物材料、涂层&薄膜材料、合成橡胶、润滑剂、磁盘和光盘驱动器、纸制品、半导体材料等多个领域均可用于测试相应薄膜或涂层的结合力。该试验机还能针对特殊样品提供多种高级划痕测试,结合多种传感器可有效得到结合力数据。 划痕测试还能提供材料表面的硬度信息,为预测涂层摩擦磨损性能提供参考。-------------------------------------------------------------------------------1、报名条件:只要您是仪器网注册用户均可报名,通过审核后即可参会。2、报名并参会用户有机会获得100元手机充值卡一张哦~3、报名截止时间:2015年09月24日 09:304、报名参会:http://www.instrument.com.cn/webinar/meeting/meetingInsidePage/14565、报名及参会咨询:QQ群—379196738http://ng1.17img.cn/bbsfiles/images/2017/10/2015042911235201_01_2507958_3.jpg

  • 【原创】划痕的相片..

    【原创】划痕的相片..

    划痕仪主要用于界定涂层薄膜与基底的结合强度与薄膜的抗划痕强度,主要应用在: 1. 半导体技术(钝化层、镀金属、Bond Pads); 2. 存储材料(磁盘的保护层、磁盘基底上的磁性涂层、CD的保护层); 3. 光学组件(接触镜头、光纤、光学刮擦保护层); 4. 金属蒸镀层; 5. 防磨损涂层(TiN, TiC, DLC, 切割工具); 6. 药理学(药片、植入材料、生物组织); 7. 工程学(油漆涂料、橡胶、触摸屏、MEMS); http://ng1.17img.cn/bbsfiles/images/2011/05/201105252109_296123_2224533_3.jpg

  • 耐划伤测试仪与耐刮擦试验仪对比分析

    耐划伤测试仪与耐刮擦试验仪对比分析

    耐划伤测试仪最新参数解析    测试原理:  耐划痕试验是 ( 标准规定的模拟安全试验项目。耐划痕试验仪能在标准条件下,在规定形状和尺寸 (40° 锥端 ) 的钢针轴在线施加试验压力 (10N) ,按一定的划痕速度 (20mm/s) 和一定的倾斜角度 (80° ~ 85°) 对 呈水平状态的印刷电路板试品表面单向施划若干次,以试品涂层是否松脱、刺透,并能否耐受规定的抗电强度试验来对印刷电路板的耐划痕性进行评定。耐划痕试验 仪适用于照明设备、低压电器、家用电器、机床电器、电机、电动工具、电子仪器、电工仪表、信息技术设备、音频视频设备等产品及其部件的研究、生产和质检部 门,也适用于绝缘材料、印刷电路板行业。    技术参数:  1、划痕钢针:淬硬钢针,锥端,锥顶角 40° 倒圆半径 0.25mm±0.02mm( 可更换 )  2、施划速度:20mm /s± 5mm /s  3、施划角度:划针移动平面垂直试品表面,顺向施划倾角 80 ° 或 85°( 可调换 )  4、钢针轴向力: 10N±0.5N  5、施划长度:max 200mm ( 可调节 )  6、平移距离:max 170mm ( 可调节 )  7、试品尺寸:厚 0.2mm ~ 6.0mm ,面积 max 300mm×190mm  8、外形尺寸:宽 500mm× 深 400mm× 高 500mm  9、电源功率:0.2kVA 220V 50Hz。    测试方法:  1、操作者升起刮擦重锤至其上部位置。  2、重锤固定在上部位置,如有必要,可通过释放销将重锤移除。双面胶带用于将样品粘至下部测试平面,然后降低重锤。  3、按下按钮开始试验。机器将自动运行一个周期然后停止。通过视觉检查样品。  汽车材料耐刮擦试验探究    多功能刮擦仪:  适用范围:  本仪器适用于各种汽车用内饰材料,如塑料、橡胶、皮革、织物、涂层材料、非涂层材料及其他复合材料等的耐刮擦性能检测。  多功能耐刮擦仪是适用各类汽车内饰材料刮擦性能测试仪器,仪器集成国内三个测试标准(五指刮擦法、百格法、塑料刮指刮擦法)。    刮擦原理:    本测试方法是用来测试表面材料抵抗由刮指引起伤害的能力。按照材料使用中可能接触到的指甲或其他硬质物,采用不同材料的刮指,按照规定的方向、行程、速度,以一定的压力作用于样品表面,刮擦头和样品做相对运动,产生单向的、非往复的直线刮擦轨迹,刮痕之间保持平行。最终评定材料的刮痕感官等级,刮擦区域和未刮擦区域的色差,或样品表面遭到损坏时的最小刮擦力。    仪器特征:  1. 仪器由电机驱动机构、刮擦组件、样品夹持固定装置等组成。  2. 刮擦组件包括刮擦支架、刮指、刮指定位套、加压装置(砝码及砝码支撑杆)等。  3. 仪器可自由安装、更换、拆卸不同规格的刮指,能够在不同负荷下实施匀速单向直线刮擦运动。  4. 采用嵌入式系统、人机界面操作对测试流程进行自动化控制,采用精密的伺服电机、滚珠丝杠传动,对于在相关标准下的刮擦速度控制精确度具有决定性的作用。  5. 采用碳化钨材质做刮指,增加仪器适用寿命。  6. 采用铝合金及不锈钢材质,外观简洁轻便且耐腐蚀。    技术参数:  1. 行程范围:10-200mm;  2. 速度范围:10-200mm/s;  3. 速度缓冲:10±1mm;  4. 金属刮擦头直径:0.5mm、0.75mm、1mm(Erichsen318)、3mm、5mm、7mm;  5. 金属刮擦头材质:碳化钨;  6. 加压砝码及刮擦组件总重量:2N,3N,5N,7N,8N,10N,12N,15N,20N (可任意配选)质量误差不超出1%;  7. 塑料刮指:聚甲基丙烯酸甲酯(PMMA);  i. 直径 16mm 厚度 1mm;  ii. 刮指边缘的半径为0.5mm;  iii. 硬度为shore D85。  8. 电源:AC220V±10%,50Hz。    耐刮擦测试  塑料制品表面有好几种明显损坏的方法,其中有尖锐物体的划痕;磨料摩擦产生的磨损;改变表面性能或光泽的表面损伤;或者钝化物体轻微刮擦造成的“写入效果”。  根据汽巴精化的高级研究员Ashu Sharma博士的解释,材料在压入力和滑动力或横(侧)向力的作用下发生屈服,产生延性/脆性破坏从而造成刮痕。在刮痕中,不平的表面产生不均匀的光散射和“刮痕发化”。  改善刮痕性能的解决方法包括尽可能减小聚合物底面粗糙程度和降低刮痕的胎肩,以产生尽可能少的光散射以及尽可能小的刮痕可见度。准确地测量耐刮擦性能,弄清楚表面破坏背后的材料科学知识对于形成改善方案是重要的。  检测表面损害的试验方法有好几种。一种是五指刮痕试验(five-finger scratch test),它是在不同载荷刮擦后,根据经验比较刮痕可见度,美国的汽车OEM商们常常要求使用这种方法。  而欧洲的汽车行业广泛采用的是伊利其逊十字形切口试验(Erichsen cross cut test),它检测的是刮痕应力发白发生的颜色变化。美国德克萨斯A&M 大学(TAMU)聚合物技术中心的刮痕联盟(Scratch Consortium)已经开发出刮痕试验设备和新的试验方法,最近已得到美国材料试验协会(ASTM)的批准,标准号为D7027-5。该刮痕试验的测试方法所具有的较少主观性已经得到了汽车行业的肯定。作为联盟会员的汽巴(Ciba)公司正为了能使这三个方法相互关联起来而积极努力,希望这三个方法都能在短期内得以使用。http://ng1.17img.cn/bbsfiles/images/2016/04/201604121518_590081_2964_3.png

  • 盐雾试验前对试件进行划痕处理的原因及要求

    盐雾试验箱试验方法虽有多种形式,但常见的有划痕及不划痕两种方式,划痕试验是指在漆膜上划出一条或数条刻透至底材的直线,可以是两条交叉线,也可以是平行线或垂直线。主要目的是考察漆膜经碰伤后抵抗腐蚀的能力。 划痕刀具推荐使用GB9286中单刃切割器,划线宽度为0.3~1.0mm。经规定时间的盐雾试验后,检查划痕处两侧一定范围内(按具体规定)涂层的变化情况。一般要求为划痕处任一侧漆膜起泡、脱落、生锈等宽度≤2.0mm。

  • 【原创大赛】堆焊宏观金相检验试件的制备过程~~~

    【原创大赛】堆焊宏观金相检验试件的制备过程~~~

    看了titi的帖子http://bbs.instrument.com.cn/shtml/20110929/3562616/,正好手头正在做个堆焊试件的宏观金相检验,顺便拍了制样过程,来与大家分享下吧http://simg.instrument.com.cn/bbs/images/brow/em09511.gif 先介绍下堆焊工艺,堆焊是一种应用较为广泛的焊接方法,可以获得性能优良的抗腐蚀、耐磨损的堆焊层,从而保护设备的安全及有效运行。石油化工生产中运用的这类工艺比较多。 这2天我们正在做堆焊的工艺评定,选用的基材为碳钢,用不锈钢焊条对其进行堆焊,按技术要求需做堆焊层的化学分析实验,堆焊后的金属弯曲工艺试验和堆焊截面宏观金相试验。对于宏观金相试验,主要观察堆焊结合面是否有焊接裂纹等其它缺陷。试件(见图1)。http://ng1.17img.cn/bbsfiles/images/2011/10/201110021054_320744_1622447_3.jpg 图1为送检试件,绿线为宏观检查面试件做宏观金相所需用的材料(见图2),选用的是180#、220#粗磨砂纸、300#、400#、600#金相砂纸,氧化铬抛光粉、硝酸酒精腐蚀剂和镊子、脱脂棉、无水乙醇等用品。晕,居然照片里没拍无水乙醇~~http://ng1.17img.cn/bbsfiles/images/2011/10/201110021138_320752_1622447_3.jpg 图2试验所需用品由于是宏观检验,抛光要求不高,所以采用氧化铬粉抛光就可以满足试验观察要求。各项准备工作都处理好,开始磨制试样吧~~~一、粗磨 机加工切好的试件去油清洗,擦净,将粗磨180#砂纸剪成圆状,粘贴在抛光盘,然后将试件轻轻压入,进行磨制见(图3)http://ng1.17img.cn/bbsfiles/images/2011/10/201110021630_320775_1622447_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/10/201110021630_320776_1622447_3.jpg 图3 180#砂纸磨制磨制到试件表面的机加工痕迹全部消除时,即可停止,然后进行下一道200#砂纸的磨制,在这道砂纸磨制的时候,试件应旋转90度,这样做有利于磨光程度的检查,磨去上道砂纸留下的粗磨痕。(见图4)http://ng1.17img.cn/bbsfiles/images/2011/10/201110021642_320777_1622447_3.jpg图4 试样旋转90度磨制二、精磨试样通过粗磨后,表面的粗大磨痕已经消失,进行精磨,精磨的目的是消除粗磨时留下的较深的磨痕,为下一步抛光打好基础。精磨通常是金相砂纸。金相砂纸的磨料有人造刚玉、碳化硅、氧化铁等,性均极硬,呈多边棱角,具有良好的切削性能。我们使用粒度为300、400、600三种。金相细砂纸在使用前,先要清洁处理,我们采用2张同号砂纸,相互进行轻微的摩擦,然后轻轻拍打去除表面污物,这样对除去砂纸中的粗磨粒效果很好(见图5),然后将砂纸粘贴在抛光盘上。对试样进行磨制,同样磨制完一道砂纸后,下下道砂纸的磨制中,试样也要旋转90度(见图6),以达到上道磨痕的清除。http://ng1.17img.cn/bbsfiles/images/2011/10/201110021708_320781_1622447_3.jpg图5 去除砂纸表面污物http://ng1.17img.cn/bbsfiles/images/2011/10/201110031007_320903_1622447_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/10/201110031008_320904_1622447_3.jpg 图6金相细砂纸的精磨通过600#号砂纸的精磨,试件表面粗大磨痕已经消失(见图7),光洁度增加,表面光洁平整,在光线下看只有细小的细磨痕,这时就可以进行试件的抛光。http://ng1.17img.cn/bbsfiles/images/2011/10/201110031017_320907_1622447_3.jpg图7 磨制好的试样三、抛光抛光的目的是要尽快把磨光留下的细微磨痕成为光亮无痕的镜面,并使抛光产生的变形层不影响显微组织的观察。用机械抛光,上面铺以抛光布。粗抛采用粗呢绒布。抛光液为氧化铬,在水中加入粒度为0.3-1.0微米的AL2O3悬浮液,抛光时间不宜过长,以磨痕全部消除呈镜面即可停止,清洗干燥后备用。(见图8、图9、图10)http://ng1.17img.cn/bbsfiles/images/2011/10/201110031029_320914_1622447_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/10/201110031030_320915_1622447_3.jpg 图8配制抛光液和将抛光液导入抛光盘中http://ng1.17img.cn/bbsfiles/images/2011/10/201110031031_320916_1622447_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/10/201110031031_320917_1622447_3.jpg 图9试样抛光和抛好的试样http://ng1.17img.cn/bbsfiles/images/2011/10/201110031033_320918_1622447_3.jpg图10,试样抛好后进行冲洗,并吹干四、腐蚀试样机械抛光后,将抛光好的样品磨光面在化学腐蚀剂中腐蚀一定时间,从而显示出其试样的堆焊结合面形貌。其操作方法是:将已抛光好的试样用水冲洗干净或用酒精擦掉表面残留的脏物,然后将试样磨面用镊子夹住棉花球沾取腐蚀剂在试样磨面上擦拭,抛光的磨面即逐渐失去光泽;待试样腐蚀合适后马上用水冲洗干净,用滤纸吸干或用吹风机吹干试样磨面,即可放在显微镜下观察。(见图11、图12)http://ng1.17img.cn/bbsfiles/images/2011/10/201110031736_320961_1622447_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/10/201110031736_320962_1622447_3.jpg图11将冲净的试样磨面用镊子夹住棉花球沾取腐蚀剂在试样磨面上擦拭至表面显示堆焊结合面即可。http://ng1.17img.cn/bbsfiles/images/2011/10/201110031908_320964_1622447_3.jpghttp://ng1.17img.cn/bbsfiles/images/2011/10/201110031908_320965_1622447_3.jpg 图12试件腐蚀好后用清水、无水乙醇冲洗干净,然后用吹风机吹干。哈,堆焊宏观试样制备大功告成,可以直接清晰的看到堆焊层和基层的结合面啦,可以进入宏观检验的环节中~~~(见图13)http://ng1.17img.cn/bbsfiles/images/2011/10/201110031914_320967_1622447_3.jpg图13,制备好的试样。那,这个整个制样过程就是这样啦,由于是宏观检验,要求不是很严格,所以制样也较为轻松,对于制样欢迎大家共同探讨。

  • 荧光宏观成像系统简介

    [url=http://www.f-lab.cn/microscopes-system/macroscopic-imaging.html][b]荧光宏观成像系统[/b][/url]macroscopic imaging专业为心脏成像 cardiac imaging而设计,[b]荧光宏观成像系统[/b]macroscopic imaging和光学映射,光学图谱技术厂用于整体荧光显微镜和荧光成像系统中。[b]荧光宏观成像系统[/b]macroscopic imaging集成了高科技高强度光源照明样品或反射照明样品,结合高数值孔径镜头,CCD相机和光电二极管探测器。宏观成像系统实验通常采用双波长,这样可测量细胞内钙离子和膜电位。宏观成像系统提供固定或可变的镜头系统,捕捉视场从4x4mm到50x50mm,并且可根据用户实验而增加放大成像器。[img=宏观成像系统]http://www.f-lab.cn/Upload/macroscopic-imaging.jpg[/img]荧光宏观成像系统:[url]http://www.f-lab.cn/microscopes-system/macroscopic-imaging.html[/url][b][/b]

  • 从小处做起!如何用微观手段研究环境宏观问题?

    当前,使用微观研究手段来研究揭示宏观科学问题似乎是一个潮流。原因是在知道了宏观如何变化之后,要想改变宏观效应,还是要从微观处入手。比如,有科学家想通过筛选高二氧化碳固定效率的藻类来消除温室效应。下面就习惯了宏观研究思路的老师们,在使用非损伤微测技术NMT初期遇到的一些常见问题进行分析和解答。 1. NMT在环境领域的应用,目前文献很少,能否直接告诉我,NMT可以帮我做什么? 非损伤微测技术NMT是一个通过离子分子流速检测,揭示活体生物与外界环境进行信息交换的工具。 那么NMT可以帮助环境科学工作者做如下工作:1)研究环境中有毒有害物质对生物活体状态下的各方面生理功能的影响;2)基于研究1)探索形成基于活体生物生理功能的‘环境污染生物评价方法’;3)研究环境中营养物质对生物活体状态下的各方面生理功能的影响;4)各种生物膜过滤性能的优化;5)重金属高积累植物筛选;6)藻类与微生物共生体的目标生理功能优化;7)水体富营养化的修复植物的筛选;8)环境固体污染物(比如淤泥)的物理特征(比如O2分布)研究;9)基于活体生物信号的水质监测方法研究;10) 纳米等环境修复或复合植物抗污染能力的评价和研究;11) 基于生物生理活性的生物燃料电池等性能的优化和评价研究;目前文献少,正是科学家在各自领域抢占世界科研高地的良机! 2.水安全检测项目,是基于NMT的新型检测方法,如何确定基准水源是合格的?如果无法确定基准水源是否合格,测到的“待测水源”的数据,同基准水源相比得出的结论,也就没有意义了。 旭月的水安全检测项目,是利用NMT技术进行活体生物环境污染检测的一次尝试,尚在不断的探索过程中。 旭月的基准水来自于两个方面,一个是满足国家饮用水标准的自来水,一个是自行配置的‘旭月生物水’,通过我们的实验证明两者对最后结果没有显著差别影响。 3.将细胞器分离出来,将植物根切下来的研究,还能称得上是“非损伤”吗? 非损伤微测技术根据科研人员对被测材料的不同处理,分绝对非损伤和相对非损伤。 比如,当把一个3,4天的拟南芥幼苗或几个毫米长的线虫放到NMT系统里,并为它们提供最适的外部环境,这就是一个绝对的非损伤。如果把拟南芥的根切下来,或把线虫的肌肉组织分离出来,再进行NMT检测,就是相对非损伤。 4. 放到土里培养的植物可以检测吗?重复性能保障吗? 要想利用好一种新技术,首先要对它的特点进行了解,才能充分利用好它。不会犯在医院带着戒指项链进行核磁检查的错误。 NMT的特点是,不接触被测材料,但必须在液体环境里才能够工作。因此,要想方便快速用好NMT,并获得重复性较好的数据,显然科研人员需要将他们的材料从土培方法过渡到水培,才能更好地利用NMT的优势。否则数据的重复性很难保证。 中国NMT科学家第一批先行者之一的,北京林业大学陈少良教授,就花费了半年的时间将过去的土培杨树根变成沙培和水培,为后续的NMT数据快速产出打下了基础。 5. 不行,我的植物材料必须土培,NMT能做吗?重复性能保障吗? 能做! 这里的关键是如何既保持植物的土培环境,同时又提供一个NMT可以工作的液体环境。比如,研究人员可以在欲检测的土培材料部位设计一个装置,既能够将被测部位暴露出来,又可以放入测试液进行NMT检测。 NMT的不接触被测材料的非损伤特点,给科研人员提供了非常大的,个性化的实验设计空间,自然也为科研创新提供了难得的契机。 6. 听说想获得重复性好的活体生理数据,特别不容易,NMT也是这样吗? 同任何其它技术一样,要想获得好的数据,实验设计和材料的准备是关键。简言之,无论NMT有多么简便和快速,想靠NMT来弥补基因方面工作的不足是不切实际的。 我们的经验是,先利用NMT快速定性的特点(药物处理等实验),把自己实验材料的‘脾气秉性’先摸清楚,然后再进行批量的数据定量工作。其它详细解读,请查阅笔者另一博文《飘忽不定的诺贝尔奖机遇:如何理解和用好NMT数据?》 7. 我是研究环境生态的,比较宏观,能用得上NMT吗? 应用微观数据解释和研究宏观生态现象和问题,已经成为近年的一个潮流。 袁隆平院士的杂交水稻在带来粮食高产的同时,也带来了化肥过度使用的环境污染和水质富营养化等生态问题。旭月的NMT曾帮助袁隆平院士他们回答一个问题,就是他们的杂交水稻实施多少化肥就刚好够了,从而减少环境问题。 对已有的环境问题,如何从微观了解其成因,并从微观入手寻找解决问题的办法,NMT将会大有用武之地!

  • 光栅表面有划痕是否算质量问题

    光栅表面有划痕是否算质量问题

    如题,我们单位购买了一台紫外可见分光光度计,工程师安装的时候打开外壳,我看到光栅表面有两条划痕,不知道算不算质量问题,请教大家。http://ng1.17img.cn/bbsfiles/images/2015/07/201507081521_554318_2220263_3.png

  • 自动进样器皮带上的划痕

    自动进样器皮带上的划痕

    [img]file:///C:\Users\Administrator\Documents\Tencent Files\351613026\Image\C2C\VEZW]BLTY1$4WVRV{[OD1OQ.png[/img][img=自动进样器上的划痕,504,754]https://ng1.17img.cn/bbsfiles/images/2020/05/202005182019364202_9573_2970225_3.png!w504x754.jpg[/img]如图自动进样器皮带的划痕正常吗?这是正常磨损?

  • 【第一届网络原创作品】管板焊接宏观金相检验的操作介绍

    【第一届网络原创作品】管板焊接宏观金相检验的操作介绍

    [color=#DC143C][size=4][font=黑体][center]管板焊接宏观金相检验的操作介绍[/center][/font][/size][/color][size=4][font=黑体][center]lylsg555[/center][/font][/size][color=#DC143C][size=4][font=黑体]主题词:管板、试件加工、宏观检验。[/font][/size][/color]1.概述:管板焊主要应用在换热器设备制造中的焊接,它是将换热管的端部与管板焊在一起来进行固定。换热器设备在施焊前,都要做焊接工艺评定试件来对其焊接条件、工艺、焊后焊缝质量进行评定,焊缝的宏观金相检验也作为其中的一个标准项目来进行焊接质量的验收。[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812092155_123188_1622447_3.jpg[/img] (换热器设备)[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812092200_123189_1622447_3.jpg[/img](换热管的端部与管板焊接示意图)[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812092204_123190_1622447_3.jpg[/img](管板焊接试板【部分】)2.宏观金相检验:2.1.1 试件的加工由于换热管的尺寸为Φ19×2、 Φ25×2.5、 Φ38×3等,一般禁止采用热切割加工,应采用锯床,铣床等来进行切割,切割速度不宜过快,尤其对不锈钢管板试件应更为小心,防止“打刀”现象。如果有条件能采用线割的,效果更佳。[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812092214_123192_1622447_3.jpg[/img](锯床切割试件)[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812092215_123193_1622447_3.jpg[/img](锯床切下来的试件)管板试件应按照检验的标准进行切割分块其中切割2个不相邻的2个管子,留4块,分别检验8个焊接观察面。图中的标号就是所需检验的观察面。[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812092244_123195_1622447_3.jpg[/img](试件分布图)[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812092248_123196_1622447_3.jpg[/img](切割好的试件【部分】)2.1.2 试件的磨制和抛光试件经过粗加工后,要对焊接检验的观察面进行磨制和抛光,首先用180#金相水砂纸进行磨光,要求观察面的粗磨痕必须磨掉。[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812092253_123197_1622447_3.jpg[/img](180#水砂纸磨制)接下来可以分别用280#和400#金相砂纸进行细磨,磨面仍要求出去上道磨制的磨痕。[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812092259_123198_1622447_3.jpg[/img](280#磨制)[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812092300_123199_1622447_3.jpg[/img](400#磨制)磨制好后,用水进行清洗,此时基本上可以进行宏观检验了,但为了保证最佳的观察效果,还可以稍微地下抛光,抛光材料可以用水,三氧化二铬或金刚石研磨膏进行抛光。[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812092306_123200_1622447_3.jpg[/img](加水抛光)[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812092307_123201_1622447_3.jpg[/img](加三氧化二铬抛光)[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812092307_123202_1622447_3.jpg[/img](加金刚石研磨膏抛光)[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812092308_123203_1622447_3.jpg[/img](抛光过程)由于试件主要是宏观检验,所以抛光时间不用很长,一般看见检验面光亮即可,然后用流水清洗干净,也可以用点脱脂棉进行擦洗。[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812100745_123213_1622447_3.jpg[/img](抛光好的试件【部分】)2.1.3 腐蚀抛光好的试件清洗干净后,要进行腐蚀,腐蚀主要是将焊缝部分显露出来,以此来观察焊缝中的缺陷。在管板的宏观分析中,腐蚀剂用4%---6%的硝酸酒精溶液即可,方便、简单、快捷。腐蚀时可用擦拭法和侵蚀法,一般擦拭法在腐蚀过程中看见试件表面显现出焊缝就算可以了;侵蚀法是将试件面侵入腐蚀剂中,时间约为30秒,随后取出即可。这2种方法都操作可行,容易掌握。[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812100754_123216_1622447_3.jpg[/img](管板试件的侵蚀法)[img]http://ng1.17img.cn/bbsfiles/images/2008/12/200812100824_123221_1622447_3.jpg[/img](腐蚀好的试件【部分】)2.1.4 结果评定试件腐蚀好后,进行流水冲洗,然后再用酒精清洗,晾干(或用吹风机吹干)然后进行观察焊缝表面。采用10倍放大镜进行观察,如果缺陷很明显的话,肉眼也级别可以发现。根据标准的技术要求,焊缝处应无裂纹,未焊透等缺陷,如果有此缺陷应判为不合格品,需要重新施焊。如果焊缝处发现气孔,夹渣等现象,应进行重新取样,进行检验。试件属于焊接工艺评定试件,按照规定需进行保存,检验完后,可进行处理(我们是涂薄薄一层清漆)然后写明试件名称,时间等条件后装袋保存。 [size=4][font=黑体][center] 【完】[/center][/font][/size]

  • 截取锥尖端弧形划痕

    拆下清洗时,发现截取锥尖端部分有弧形的划痕。这个形状和部位不像是人为能形成的,弧形很规则绕尖端半圈。请问各位大大有遇到这种情况吗?是怎么形成的?

  • 克隆形成实验及划痕实验、流式细胞术操作步骤

    [size=16px]克隆形成实验[/size][size=16px]及划痕实验[/size][size=16px]、[/size][size=16px]流式细胞术[/size][size=16px]操作步骤[/size]软琼脂克隆形成实验检测单细胞克隆形成能力软琼脂克隆形成实验适用于悬浮生长的细胞。1. 配胶液:用蒸馏水和琼脂糖粉配制浓度为 0.3% 的琼脂糖液,高压灭菌,置于42℃ 水浴锅中,目的是为了使其保持融化状态。2. 配制含 20% FBS 的 2×1640 培养基,用 0.22 ?m 的滤器过滤除菌。3. 铺下层胶:将 0.6% 的琼脂糖胶液与 2×1640 培养基等体积混合,以每孔 1.5mL 加至 6 孔板中,室温等其凝固。4. 细胞计数:将细胞用 PBS 洗一遍,离心,加入新的培养基混匀稀释,计数。H69-NC、H69-shMSI1-1、H69-shMSI1-2、H82-NC、H82-shMSI1-1、H82-shMSI1-2、H526-NC、H526-shMSI1-1、H526-shMSI1-2 均以 1×104/孔铺入 6 孔板。5. 铺上层胶:将 0.3% 的琼脂糖胶液与 2× 培养基 1:1 混合,加入 100 μL 细胞悬液,混匀后,每孔加入 1.5 mL 混合液。6. 放入 37℃,5%CO2 培养箱培养,约 2-3 周后终止培养。7. 比较细胞克隆形成能力的差异,利用 Graphpad prism5 作图计算两种细胞克隆形成能力的差异。平板克隆形成实验检测单细胞克隆形成能力平板克隆形成实验适用于贴壁生长的细胞。1. 细胞处理:将 SW1271-NC、SW1271-shMSI1-1、SW1271-shMSI1-2 细胞,用 PBS洗一遍,用胰酶消化并计数。2. 接种细胞: 将细胞接种于 6 孔板中, SW1271-NC 、SW1271-shMSI1-1 、SW1271-shMSI1-2 接种密度为 3×103/孔,注意一定让细胞均匀分布。于 37℃,隔离CO2 静置培养 2-3 周(终止培养时间以不小于 2 周且克隆之间不发生融合为标准)。3. 出现肉眼可见的克隆时,终止培养。弃去旧培养基, 用 PBS 清洗 2 次,用 4% 多聚甲醛固定液固定 20 min,吸除固定液,用蒸馏水清洗 2 次后加适量结晶紫染色15-20 min,用蒸馏水洗去结晶紫,自然风干,用扫描仪扫描成图片。4. 在低倍镜下计数大于 50 个细胞的克隆数。5. 计算克隆形成率。细胞划痕实验1. 用记号笔在 12 孔板底部划两条平行线做为标记。2. 将 SW1271-NC、SW1271-shMSI1-1、SW1271-shMSI1-2 细胞接种至 6 孔板。3. 待细胞汇合度为 90% 左右时,用 10μL 枪头垂直于两条平行标记线进行划痕。4. 吸除培养基,1xPBS 漂洗 2 次,并换用无血清培养基培养。5. 分别在划痕后培养 0h,12h,24h,48h,72h 观察细胞迁移情况并拍照。流式细胞术1. 收集 H69、H82、H526、SW1271 的对照组和实验组细胞(包括培养上清中的细胞),收集 1 - 10 ×105 个细胞,用预冷 PBS 离心洗涤。用双蒸水稀释 5 ×Binding Buffer为 1 × 工作液,取 500 μl 1 × Binding Buffer 重悬细胞。2. 每管加入 5 μl Annexin V-APC 和 10 μl 7-AAD。3. 轻柔涡旋混匀后,室温避光孵育 5 分钟。4. 上机进行分析。

  • 【分享】宏观量子隧道效应

    【分享】宏观量子隧道效应

    隧道效应目录 定义 概述 原理 发现者 用途 隧道二极管 隧道巨磁电阻效应 宏观量子隧道效应     隧道效应   tunnel effect编辑本段定义  由微观粒子波动性所确定的量子效应。又称势垒贯穿 。考虑粒子运动遇到一个高于粒子能量的势垒,按照经典力学,粒子是不可能越过势垒的;按照量子力学可以解出除了在势垒处的反射外,还有透过势垒的波函数,这表明在势垒的另一边,粒子具有一定的概率,粒子贯穿势垒。理论计算表明,对于能量为几电子伏的电子,方势垒的能量也是几电子伏 ,当势垒宽度为1埃时 , 粒子的透射概率达零点几 ;而当势垒宽度为10时,粒子透射概率减小到10-10 ,已微乎其微。可见隧道效应是一种微观世界的量子效应,对于宏观现象,实际上不可能发生。  在势垒一边平动的粒子,当动能小于势垒高度时,按经典力学,粒子是不可能穿过势垒的。对于微观粒子,量子力学却证明它仍有一定的概率穿过势垒,实际也正是如此,这种现象称为隧道效应。对于谐振子,按经典力学,由核间距所决定的位能决不可能超过总能量。量子力学却证明这种核间距仍有一定的概率存在,此现象也是一种隧道效应。   隧道效应是理解许多自然现象的基础。编辑本段概述  在两层金属导体之间夹一薄绝缘层,就构成一个电子的隧道结。实验发现电子可以通过隧道结,即电子可以穿过绝缘层,这便是隧道效应。使电子从金属中逸出需要逸出功,这说明金属中电子势能比空气或绝缘层中低.于是电子隧道结对电子的作用可用一个势垒来表示,为了简化运算,把势垒简化成一个一维方势垒。   所谓隧道效应,是指在两片金属间夹有极薄的绝缘层(厚度大约为1nm(10-6mm),如氧化薄膜),当两端施加势能形成势垒V时,导体中有动能E的部分微粒子在E<V的条件下,可以从绝缘层一侧通过势垒V而达到另一侧的物理现象。   产生隧道效应的原因是电子的波动性。按照量子力学原理,有能量(动能)E的电子波长=(其中,——普朗克常数;——电子质量;E——电子的动能),在势垒V前:若E>V,它进入势垒V区时,将波长改变为λ′=;若E<V时,虽不能形成有一定波长的波动,但电子仍能进入V区的一定深度。当该势垒区很窄时,即使是动能E小于势垒V,也会有一部分电子穿透V区而自身动能E不变。换言之,在E<V时,电子入射势垒就一定有反射电子波存在,但也有透射波存在。编辑本段原理  经典物理学认为,物体越过势垒,有一阈值能量;粒子能量小于此能量则不能越过,大于此能量则可以越过。例如骑自行车过小坡,先用力骑,如果坡很低,不蹬自行车也能靠惯性过去。如果坡很高,不蹬自行车,车到一半就停住,然后退回去。  量子力学则认为,即使粒子能量小于阈值能量,很多粒子冲向势垒,一部分粒子反弹,还会有一些粒子能过去,好像有一个隧道,故名隧道效应(quantum tunneling)。可见,宏观上的确定性在微观上往往就具有不确定性。虽然在通常的情况下,隧道效应并不影响经典的宏观效应,因为隧穿几率极小,但在某些特丁的条件下宏观的隧道效应也会出现。编辑本段发现者  1957年,受雇于索尼公司的江崎玲於奈(Leo Esaki,1940~)在改良高频晶体管2T7的过程中发现,当增加PN结两端的电压时电流反而减少,江崎玲於奈将这种反常的负电阻现象解释为隧道效应。此后,江崎利用这一效应制成了隧道二极管(也称江崎二极管)。 1960年,美裔挪威籍科学家加埃沃(Ivan Giaever,1929~)通过实验证明了在超导体隧道结中存在单电子隧道效应。在此之前的1956年出现的“库珀对”及BCS理论被公认为是对超导现象的完美解释,单电子隧道效应无疑是对超导理论的一个重要补充。 1962年,年仅20岁的英国剑桥大学实验物理学研究生约瑟夫森(Brian David Josephson,1940~)预言,当两个超导体之间设置一个绝缘薄层构成SIS(Superconductor-Insulator- Superconductor)时,电子可以穿过绝缘体从一个超导体到达另一个超导体。约瑟夫森的这一预言不久就为P.W.安德森和J.M.罗厄耳的实验观测所证实——电子对通过两块超导金属间的薄绝缘层(厚度约为10埃)时发生了隧道效应,于是称之为“约瑟夫森效应”。 宏观量子隧道效应确立了微电子器件进一步微型化的极限,当微电子器件进一步微型化时必须要考虑上述的量子效应。例如,在制造半导体集成电路时,当电路的尺寸接近电子波长时,电子就通过隧道效应而穿透绝缘层,使器件无法正常工作。因此,宏观量子隧道效应已成为微电子学、光电子学中的重要理论。编辑本段用途  隧道效应本质上是量子跃迁,电子迅速穿越势垒。隧道效应有很多用途。如制成分辨力为0.1nm(1A)量级的扫描隧道显微镜,可以观察到Si的(111)面上的大元胞。但它适用于半导体样品的观察,不适于绝缘体样品的观测。在扫描隧道显微镜(STM)的启发下,1986年开发了原子力显微镜(AFM),其工作原理如图5所示。利用金刚石针尖制成以SiO2膜或Si3N4膜悬臂梁(其横向截面尺寸为100μm×1μm,弹性系数为0.1~1N/m),梁上有激光镜面反射镜。当针尖金刚石的原子与样品的表面原子间距离足够小时,原子间的相互作用力使悬臂梁在垂直表面方向上产生位移偏转,使入射激光的反射光束发生偏转,被光电位移传感器灵敏地探测出来。原子力显微镜对导体和绝缘体样品都适用,且其分辨力达到0.01mm(0.1A),可以测出原子间的微作用力,实现原子级表面观测。  [img]http://ng1.17img.cn/bbsfiles/images/2017/01/201701191651_624047_1602049_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2017/10/200811517289_01_1602049_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2017/10/2008115172816_01_1602049_3.jpg[/img][img]http://ng1.17img.cn/bbsfiles/images/2017/10/2008115172825_01_1602049_3.jpg[/img]

  • 北京纳米跃升工程在宏观尺度超润滑领域取得突破

    塑料问答:近日,在北京市科委支持下,清华大学化工系魏飞教授团队与清华大学微纳米力学与多学科交叉创新研究中心、北京大学信息学院合作,在超润滑领域取得重大突破,在世界上首次检测到了大气环境下厘米以上长度碳纳米管管层间的超润滑现象。所实现的超润滑尺度比以前报道结果的最高值高出3个数量级,同时所得到的摩擦剪切强度比以前报道结果的最低值降低了4个数量级。相关成果发表在国际纳米领域权威学术期刊《自然—纳米技术》上。  摩擦现象一直是人类面临的最具挑战性的问题之一。全世界约1/3至1/2的一次性能源由摩擦过程消耗;工业发达国家因摩擦磨损造成的损失高达GDP的5%-7%。在微观尺度,由于材料比表面积增大,使得摩擦现象更加显著,界面摩擦成为制约器件性能和寿命的关键因素。解决摩擦磨损问题的根本途径是实现固体界面之间的极低摩擦甚至零摩擦,即超润滑。过去二十年中所发现的超润滑现象主要是在纳米尺度和高真空条件下实现的,实现宏观尺度上的超润滑不仅要求固体表面具有超高的模量,而且要求在宏观尺度上原子级平整,无缺陷与位错,如此苛刻的条件使得人们普遍认为大尺度下几乎不可能实现超润滑。  碳纳米管从结构上看是由石墨烯卷曲而成,理论研究表明,当碳纳米管存在哪怕只有一个原子级别的缺陷时,其管壁间摩擦力就会急剧增大。经过近十年的努力,魏飞教授团队在制备长达数厘米且无缺陷的碳纳米管的制备方面取得了一系列突破,发展了单根碳纳米管的纳米颗粒标记技术,这些工作为宏观尺度超润滑工作奠定基础。在上述基础上,魏飞团队首先在光学显微镜下通过用微弱气流吹动碳纳米管的方法观察到了碳纳米管管壁之间快速相对运动的奇妙现象,进而利用扫描电镜下的微纳米操纵平台进行双壁碳纳米管内层的可控抽出,并测量了管壁间的超低摩擦力。研究发现,双壁碳纳米管的管壁之间存在着超低的摩擦力,并且这种摩擦力与碳纳米管的长度没有关系,即无论多长的碳纳米管,其内层都可以被轻易地抽出来。  这项工作被《自然—纳米技术》杂志审稿人评价为里程碑式原创性工作,对于研究和控制摩擦力做出了重大的、创造性的贡献,为下一代全碳电子器件构筑、超润滑机械开发以及超高速微纳米机械、电子器件制备提供了基础。转自塑料问答

  • 宏观断口分析用放大镜有么?

    各位行家,不知有没有宏观断口分析用的放大镜系列呢?或者大家在观察宏观断口时都用什么设备呢?呵呵,扫描电镜是买不起滴!大家给点建议吧!

  • 断面宏观检查

    船用燃料罐取证,CCS要求做断面宏观检查,怎么做呢?http://ng1.17img.cn/bbsfiles/images/2017/01/201701191701_668403_3034556_3.jpeghttp://ng1.17img.cn/bbsfiles/images/2017/10/2016071513414385_01_3034556_3.jpeghttp://ng1.17img.cn/bbsfiles/images/2017/10/2016071513415824_01_3034556_3.jpeg

  • 一个关于宏观腐蚀的现象

    一个关于宏观腐蚀的现象

    如下图,是资料中展示的Mg材料宏观腐蚀的效果,我想咨询一下,图中目视所见不同颜色的区域是什么差异导致的?[img=,597,648]http://ng1.17img.cn/bbsfiles/images/2018/01/201801181241500996_618_3165605_3.png!w597x648.jpg[/img]

  • 堆焊宏观金相

    堆焊宏观金相

    各路大神,请帮忙看看是什么。http://ng1.17img.cn/bbsfiles/images/2015/08/201508270930_563097_3035777_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/08/201508270930_563099_3035777_3.jpghttp://ng1.17img.cn/bbsfiles/images/2015/08/201508270930_563098_3035777_3.jpg图片为堆焊试样宏观图片,白色为基材,黑色为堆焊材料,想请教各位,熔合处的缺陷是什么?反复做过几次,都有出现图片上的东西。麻烦各位帮忙看看哦!

  • 羊毛的宏观形态特征是怎样的

    羊毛的宏观形态特征是怎样的 从横截面面看。接近圆形,纤维越细则圆,从纵面看,据有天然卷曲,毛干上覆盖有一层具有方向性的鳞片,羊毛纤维由外向内由鳞片层,皮质层或髓质层组成。鳞片在羊毛表面的分布随羊毛的粗细和羊种而变。一种细羊毛比粗羊毛的排列密度打,可见高度小,该层的主要作用是保护羊毛,皮质层的正偏质细胞在羊毛中呈双侧分布,并在纤维纵轴方向具有螺旋旋转,毛纤维的髓质层中髓质细胞的共同特点是薄壁细胞,椭球型或圆角立形。

  • 大口径光学元件表面划痕缺陷检测技术研究

    [b][font=宋体][color=black]【序号】:1[/color][/font][font='微软雅黑',sans-serif][color=black][/color][/font]【作者】:[size=16px][b][b]黄梦辉[/b][/b][/size][/b]【题名】:[b][b][b][b][b][b]大口径光学元件表面划痕缺陷检测技术研究[/b][/b][/b][/b][/b][/b][font=&]【期刊】:cnki[/font][b][color=#545454]【链接]: [url=https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD202101&filename=1021001205.nh&uniplatform=NZKPT&v=xYGHSdLttNdKdrQ4eSEtVhLFx0cYpkq8yjYDo-JSapNdufFHtF5fAnmFys_fHVpk]大口径光学元件表面划痕缺陷检测技术研究 - 中国知网 (cnki.net)[/url][/color][/b]

  • 生物显微镜表征细胞划痕结果证明外泌体的生物完整性

    [font='times new roman'][size=18px][color=#000000]生物显微镜表征细胞划痕结果证明[/color][/size][/font][font='times new roman'][size=18px][color=#000000]外泌体的生物完整性[/color][/size][/font][font='times new roman'][size=16px]判断外泌体的分离方法是否为理想方法的先决条件之一是观察该方法捕获的外泌体是否保留完整的生物学活性。进一步采用细胞划痕[/size][/font][font='times new roman'][size=16px]实验[/size][/font][font='times new roman'][size=16px]评价[/size][/font][font='times new roman'][size=16px]了捕获外泌体的生物活性。在[/size][/font][font='times new roman'][size=16px]H1299[/size][/font][font='times new roman'][size=16px]细胞中添加不同数量的外泌体[/size][/font][font='times new roman'][size=16px],[/size][/font][font='times new roman'][size=16px]培养[/size][/font][font='times new roman'][size=16px]24[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]h[/size][/font][font='times new roman'][size=16px]和[/size][/font][font='times new roman'][size=16px]36[/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]h[/size][/font][font='times new roman'][size=16px]后,随着外泌体[/size][/font][font='times new roman'][size=16px]添加量[/size][/font][font='times new roman'][size=16px]的增加,[/size][/font][font='times new roman'][size=16px]H1299[/size][/font][font='times new roman'][size=16px]细胞的[/size][/font][font='times new roman'][size=16px]划痕[/size][/font][font='times new roman'][size=16px]闭合[/size][/font][font='times new roman'][size=16px]速率[/size][/font][font='times new roman'][size=16px]逐渐增加[/size][/font][font='times new roman'][size=16px]([/size][/font][font='times new roman'][size=16px]1[/size][/font][font='times new roman'][size=16px]×[/size][/font][font='times new roman'][size=16px]10[/size][/font][font='times new roman'][sup][size=16px]2[/size][/sup][/font][font='times new roman'][size=16px]和[/size][/font][font='times new roman'][size=16px]1[/size][/font][font='times new roman'][size=16px]×[/size][/font][font='times new roman'][size=16px]10[/size][/font][font='times new roman'][sup][size=16px]4[/size][/sup][/font][font='times new roman'][size=16px]颗粒无统计学意义[/size][/font][font='times new roman'][size=16px])([/size][/font][font='times new roman'][size=16px]图[/size][/font][font='times new roman'][size=16px] A[/size][/font][font='times new roman'][size=16px])[/size][/font][font='times new roman'][size=16px]。同时,[/size][/font][font='times new roman'][size=16px]划痕[/size][/font][font='times new roman'][size=16px]大小随着外泌体[/size][/font][font='times new roman'][size=16px]添加量[/size][/font][font='times new roman'][size=16px]的增加而明显减小[/size][/font][font='times new roman'][size=16px]([/size][/font][font='times new roman'][size=16px] [/size][/font][font='times new roman'][size=16px]B[/size][/font][font='times new roman'][size=16px])[/size][/font][font='times new roman'][size=16px]。图[/size][/font][font='times new roman'][size=16px]3-15 C[/size][/font][font='times new roman'][size=16px]是加入[/size][/font][font='times new roman'][size=16px]1[/size][/font][font='times new roman'][size=16px]×[/size][/font][font='times new roman'][size=16px]10[/size][/font][font='times new roman'][sup][size=16px]10[/size][/sup][/font][font='times new roman'][size=16px]颗粒[/size][/font][font='times new roman'][size=16px]/[/size][/font][font='times new roman'][size=16px]孔[/size][/font][font='times new roman'][size=16px]外泌体的[/size][/font][font='times new roman'][size=16px]H1299[/size][/font][font='times new roman'][size=16px]细胞的代表性图片,与对照组相比,[/size][/font][font='times new roman'][size=16px]划痕[/size][/font][font='times new roman'][size=16px]大小明显减小。[/size][/font][font='times new roman'][size=16px]以上结果说明[/size][/font][font='times new roman'][size=16px]通过[/size][/font][font='times new roman'][size=16px]加入[/size][/font][font='times new roman'][size=16px]外泌体可以诱导[/size][/font][font='times new roman'][size=16px]细胞[/size][/font][font='times new roman'][size=16px]的迁移。[/size][/font][table][tr][td][align=center][img]https://ng1.17img.cn/bbsfiles/images/2023/06/202306302211171874_7512_5389809_3.jpeg[/img][/align][/td][/tr][/table][align=center][font='times new roman']图[/font][font='times new roman'] [/font][font='times new roman']不同浓度外泌体对[/font][font='times new roman']H1299[/font][font='times new roman']细胞划痕愈合的影响:([/font][font='times new roman']A[/font][font='times new roman'])[/font][font='times new roman']24[/font][font='times new roman']、[/font][font='times new roman']36 h[/font][font='times new roman']后划痕愈合率;([/font][font='times new roman']B[/font][font='times new roman'])[/font][font='times new roman']24[/font][font='times new roman']、[/font][font='times new roman']36 h[/font][font='times new roman']后伤口大小;([/font][font='times new roman']C[/font][font='times new roman'])添加了[/font][font='times new roman']1[/font][font='times new roman']×[/font][font='times new roman']1010[/font][font='times new roman']个外泌体颗粒的典型伤口愈合实验图片。比例尺:[/font][font='times new roman']200 [/font][font='times new roman']μ[/font][font='times new roman']m[/font][/align]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制