当前位置: 仪器信息网 > 行业主题 > >

激光多测速系统

仪器信息网激光多测速系统专题为您提供2024年最新激光多测速系统价格报价、厂家品牌的相关信息, 包括激光多测速系统参数、型号等,不管是国产,还是进口品牌的激光多测速系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光多测速系统相关的耗材配件、试剂标物,还有激光多测速系统相关的最新资讯、资料,以及激光多测速系统相关的解决方案。

激光多测速系统相关的资讯

  • 激光多普勒测速技术发展及应用漫谈(1)
    仪器信息网讯 2020年 12月1日23时11分,嫦娥五号探测器稳稳软着陆在月球,落月过程中,中国科学院上海技术物理研究所研制的激光测距测速敏感器发挥着重要作用,该多普勒激光测速精度可达0.1米/秒,将三个方向的多普勒激光测速的结果反馈给导航系统,确保航天器着陆更平稳。据悉,这也是多普勒激光测速技术首次在太空导航上得到应用。嫦娥五号激光测距测速敏感器和激光三维成像敏感器激光多普勒测速是什么?激光多普勒测速仪发展史又是怎样?本期,我们邀请北京航天光新科技有限公司 CEO 杨开健分享激光多普勒测速技术发展及应用。杨开健 北京航天光新科技有限公司 创始人兼CEO 1.激光多普勒测速仪原理激光多普勒测速仪基于光学多普勒效应利用多普勒频移实现对物体线速度的非接触测量。多普勒效应(Doppler effect)主要内容为:当声源与接收器(或观察者)之间存在相对运动时,使得接收器(或观察者)收到的声音频率,和声源发出的声音频率不同(出现频差)的现象。接收器接收的频率和声源发出的声波频率之间的差值就叫多普勒频率,其大小同声源与接收器之间的相对运动速度的大小、方向有关。多普勒效应不仅仅适用于声波,它也适用于所有类型的波,包括电磁波。当然光波也具有多普勒效应。如图所示,激光多普勒测速仪出射的激光束入射到运动物体上,部分散射光仪器接收。由于仪器相对于物体有一定的运动速度,根据多普勒效应可知,仪器接收到散射光的频率与出射激光的频率不同,分别是和,这里指仪器出射激光的频率,指多普勒频率。多普勒频率与物体的运动速度有关,通过探测多普勒频率即可计算出物体的运动速度。激光多普勒测速仪原理示意图2.激光多普勒测速仪发展史——解决不同时代用户的需求痛点1964年Yeh和Commins首次观察水流中粒子的散射光频移,并证实了可利用激光多普勒频移技术来确定流动速度,Foreman和George,Golesfecion和Kreid,Pike,Huffaker等人进一步论述了多普勒技术原理、特点及其应用,使该项技术初步得以实用化,不仅可以测量液体流速,还可以测量气体的流速。70年代是激光多普勒技术发展最为活跃的一个时期,Durst和Whitelaw提出的集成光单元有了进一步的发展,使得该系统的光路结构更为紧凑。光束扩展、偏振分离、频率分离、光学移频等近代光学技术在激光多普勒技术中得到了广泛的应用,信号处理采用了计数处理、光子相关及其它一些方法使激光多普勒技术测量范围更广泛,它的精度高、线性度好、动态响应快、测量范围大、非接触测量等优点得到了长足的发展。1975年在丹麦首都哥本哈根举行的“激光多普勒测速国际讨论会”标志着这一技术的成熟。80年代,激光多普勒技术进入了实际应用的新阶段,它在无干扰的液体和气体测量中成为一种非常有用的工具。可应用于各种复杂流动的测试,如:湍流、剪切流、管道内流、分离流、边界层流等。随着大量实际工程、机械测试的需要,目前,固态表面的激光多普勒技术也越来越受到重视:A. E. Smart,C. J. Moore等把该项技术应用到航空发动机的研究上 清华大学利用激光多普勒技术分析磁头的运行姿态溯;美、德开始激光光栅多普勒测量的研究,由光栅衍射主极大光束形成的多普勒信号,具有信噪比高、抗干扰能力强等优点,可用于各种机械的振动测量,但使用时须将光栅和测量目标相连接,限制了它的适用范围;F. Durst和M. Zare提出了PDA(相位多普勒)技术;他们研究发现,球形粒子对两束相交光束散射,会在周围光场形成明暗相间的干涉条纹。当用两个探测器接收多普勒信号时,两路信号之间存在的相位差与粒子大小成呈线性关系。这一技术被广泛应用于粒子大小的测量中,目前也被用于折射率的测量中;天津大学进行将激光多普勒技术用于固体表面面内位移远距离测量研究。3.从应用有限到技术逐渐商品化激光多普勒技术虽被证明是一种非常有用的技术,但它的仪器化产品在过去相当一段时期内受气体激光器体积庞大、信号处理技术相对落后的限制,在机械工业和大型工程领域的实际应用比较有限。近年来,许多微光学元件己经商品化,激光二极管的应用也为实现仪器小型化提供了便利条件,微小透镜取代了传统的透镜。计算机和数字信号处理技术的结合增大了振动量测量和分析的实时性和自动化程度,信号时域波形分析法、函数分析法、调和分析法等技术的成熟大大提高了测量的准确性和实用性。特别是随着传感技术和信息技术的发展,产生了一些新的测量方法,将多传感数据实时综合处理及分析变为可能,信号处理过程实现了信息化和综合化。半导体技术使得信号处理器体积减小的同时可靠性得到大大增强。这些技术的涌现,使得激光多普勒技术向着小型化、数字化、多维化、实用化、商品化等方向发展。目前,世界上许多国家已经有成熟的激光多普勒测速产品,如美国、德国、英国、丹麦、瑞典、新加坡等。应用于工业测量领域的光路结构大部分是双光束差动结构,该结构具有易对准、接收口径大等优点。该技术已经可以在钢铁、有色金属的轧机生产线的在线测量,或者用在线缆、造纸、印刷等行业的生产线的速度测量和长度累计。补充:国内激光多普勒技术研究现状据公开资料表明,国内目前从事激光多普勒技术研究的单位越来越多,清华大学、中国科学技术大学、大连理工大学、电子科技大学、国防科技大学、中国科学院上海技术物理研究所等单位都展开了激光多普勒测速技术研究。本网根据相关资料整理如下:(图源网络公开整理)欢迎广大业内人士分享更多科学技术干货内容,请投稿至liuld@instrument.com.cn
  • 多波段拉曼-荧光激光雷达系统可用于雾霾探测
    近日,兰州大学教授黄建平带领科研团队研制出我国首个多波段拉曼-荧光激光雷达系统。该系统不仅可用于大气雾霾探测的研究及预警,还可用于卫星数据校正、医疗气象观测等领域,处于国际先进水平。  &ldquo 多波段拉曼-荧光激光雷达系统用高功率激光器向天空同时发射三束激光,也就是三个波段。紫外激光与大气颗粒物作用之后,就会释放出荧光,我们利用大口径的望远镜接收被大气反射回来的信号,共有38个波段。大多国内研究中使用的少数波段,对于颗粒物的大小、形状、成分等认识还不够。&rdquo 黄建平介绍说,&ldquo 印度科学家拉曼发现了光和粒子的相互作用,在这种作用后,光的波长和频率会发生变化。对接收到的信号进行分光、提取和探测,根据其变化的多少,就可以知道这种物质的化学成分是什么,也就可以进一步分析大气污染物的重要性质,尤其是对人体有害的有机物。&rdquo   课题组成员黄忠伟解释说:&ldquo 大家现在都关心雾霾天气,但对于雾霾的成因、成分等问题的认识都还不够,多波段拉曼-荧光激光雷达系统能够连续工作并探测到不同高度的雾霾变化数据,而且精度很高。&rdquo   当前,我国在全球气候变化、空间环境监测等领域都急需大量激光雷达技术支撑,但一直依赖国外进口的高成本产品。多波段拉曼-荧光激光雷达系统的成功研制,将降低我国购置相关产品的成本。
  • 862万!广州中医药大学多光谱激光成像系统(双通道)等一批仪器采购项目
    一、项目基本情况项目编号:ZJJLCG-2023-0907项目名称:多光谱激光成像系统(双通道)等一批仪器采购采购方式:公开招标预算金额:8,620,560.00元采购需求:合同包1(荧光定量PCR仪等仪器):合同包预算金额:1,543,500.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)1-1其他试验仪器及装置荧光定量PCR仪1(台)详见采购文件--1-2其他试验仪器及装置荧光定量PCR仪1(台)详见采购文件--1-3其他试验仪器及装置电转仪1(台)详见采购文件--1-4其他试验仪器及装置荧光细胞成像仪1(台)详见采购文件--1-5其他试验仪器及装置垂直电泳三件套8(台)详见采购文件--1-6其他试验仪器及装置全能型快速蛋白转印仪1(台)详见采购文件--1-7其他试验仪器及装置水平电泳仪2(台)详见采购文件--1-8其他试验仪器及装置梯度PCR仪1(台)详见采购文件--本合同包不接受联合体投标合同履行期限:国产仪器:供货时间为签定合同后 30 天内完成。 进口仪器:供货时间为签定合同后 120 天内完成合同包2(低温冷却液循环泵等仪器):合同包预算金额:1,780,020.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)2-1其他试验仪器及装置低温冷却液循环泵1(台)详见采购文件--2-2其他试验仪器及装置防火防爆安全柜(带排风)1(台)详见采购文件--2-3其他试验仪器及装置防腐蚀柜1(台)详见采购文件--2-4其他试验仪器及装置安全防爆柜1(台)详见采购文件--2-5其他试验仪器及装置脑定位注射系统2(台)详见采购文件--2-6其他试验仪器及装置活细胞成像工作站1(台)详见采购文件--2-7其他试验仪器及装置细胞培养用高温灭菌罐8(台)详见采购文件--2-8其他试验仪器及装置细胞培养用负压仪4(台)详见采购文件--2-9其他试验仪器及装置智能精密细胞培养振荡器2(台)详见采购文件--2-10其他试验仪器及装置恒温摇床1(台)详见采购文件--2-11其他试验仪器及装置水浴摇床2(台)详见采购文件--2-12其他试验仪器及装置超低温冰箱4(台)详见采购文件--2-13其他试验仪器及装置低温冰箱4(台)详见采购文件--2-14其他试验仪器及装置手持小型匀浆机1(台)详见采购文件--2-15其他试验仪器及装置高速匀浆机2(台)详见采购文件--2-16其他试验仪器及装置超净工作台2(台)详见采购文件--2-17其他试验仪器及装置恒温水槽4(台)详见采购文件--2-18其他试验仪器及装置恒温水浴锅4(台)详见采购文件--2-19其他试验仪器及装置水浴锅2(台)详见采购文件--2-20其他试验仪器及装置涡旋仪12(台)详见采购文件--2-21其他试验仪器及装置中药打粉机2(台)详见采购文件--2-22其他试验仪器及装置自动氮吹仪1(台)详见采购文件--2-23其他试验仪器及装置电位滴定仪1(台)详见采购文件--2-24其他试验仪器及装置万分之一天平1(台)详见采购文件--2-25其他试验仪器及装置千分之一天平4(台)详见采购文件--2-26其他试验仪器及装置旋转蒸发仪2(台)详见采购文件--2-27其他试验仪器及装置制冰机1(台 )详见采购文件--2-28其他试验仪器及装置高压灭菌锅2(台)详见采购文件--2-29其他试验仪器及装置烘箱1(台)详见采购文件--2-30其他试验仪器及装置电热恒温培养箱1(台)详见采购文件--2-31其他试验仪器及装置普通生物显微镜6(台)详见采购文件--2-32其他试验仪器及装置加热磁力搅拌器2(台)详见采购文件--2-33其他试验仪器及装置磁力搅拌器2(台)详见采购文件--2-34其他试验仪器及装置金属浴4(台)详见采购文件--2-35其他试验仪器及装置PH计4(台)详见采购文件--2-36其他试验仪器及装置真空抽滤泵4(台)详见采购文件--2-37其他试验仪器及装置数显全自动馏分收集器1(台)详见采购文件--本合同包不接受联合体投标合同履行期限:国产仪器:供货时间为签定合同后 30 天内完成。 进口仪器:供货时间为签定合同后 120 天内完成合同包3(超纯水机等仪器):合同包预算金额:2,152,800.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)3-1其他试验仪器及装置超纯水机1(台)详见采购文件--3-2其他试验仪器及装置8通道4孔板移液工作站1(台)详见采购文件--3-3其他试验仪器及装置全自动蛋白印迹孵育系统2(台)详见采购文件--3-4其他试验仪器及装置石蜡包埋机(连接冰台)1(台)详见采购文件--3-5其他试验仪器及装置组织脱水机1(台)详见采购文件--3-6其他试验仪器及装置石蜡切片机1(台)详见采购文件--3-7其他试验仪器及装置多功能紫外分析仪1(台)详见采购文件--3-8其他试验仪器及装置冷冻离心机4(台)详见采购文件--3-9其他试验仪器及装置迷你离心机12(台)详见采购文件--3-10其他试验仪器及装置组织研磨仪1(台)详见采购文件--3-11其他试验仪器及装置滤光片酶标仪1(台)详见采购文件--3-12其他试验仪器及装置冰箱4(台)详见采购文件--3-13其他试验仪器及装置洗板机1(台)详见采购文件--3-14其他试验仪器及装置UPS电源2(台)详见采购文件--3-15其他试验仪器及装置双人生物安全柜8(台)详见采购文件--本合同包不接受联合体投标合同履行期限:供货时间为签定合同后 30 天内完成合同包4(多光谱激光成像系统(双通道)等仪器):合同包预算金额:2,093,400.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)4-1其他试验仪器及装置多光谱激光成像系统(双通道)1(台)详见采购文件--4-2其他试验仪器及装置紫外可见分光光度计1(台)详见采购文件--4-3其他试验仪器及装置纳米粒度电位仪1(台)详见采购文件--4-4其他试验仪器及装置二氧化碳培养箱12(台)详见采购文件--本合同包不接受联合体投标合同履行期限:国产仪器:供货时间为签定合同后 30 天内完成。 进口仪器:供货时间为签定合同后 120 天内完成合同包5(细胞自动计数仪等仪器):合同包预算金额:1,050,840.00元品目号品目名称采购标的数量(单位)技术规格、参数及要求品目预算(元)最高限价(元)5-1其他试验仪器及装置细胞自动计数仪1(台)详见采购文件--5-2其他试验仪器及装置台式大容量离心机4(台)详见采购文件--5-3其他试验仪器及装置核酸定量仪1(台)详见采购文件--5-4其他试验仪器及装置八道电动移液器4(台)详见采购文件--5-5其他试验仪器及装置八道移液枪12(台)详见采购文件--5-6其他试验仪器及装置单道移液枪60(台)详见采购文件--5-7其他试验仪器及装置十万分之一天平1(台)详见采购文件--5-8其他试验仪器及装置24孔固相萃取装置2(台)详见采购文件--5-9其他试验仪器及装置全波长酶标仪1(台)详见采购文件--5-10其他试验仪器及装置超微量分光光度计1(台)详见采购文件--本合同包不接受联合体投标合同履行期限:国产仪器:供货时间为签定合同后 30 天内完成。 进口仪器:供货时间为签定合同后 120 天内完成二、获取招标文件时间: 2023年11月02日 至 2023年11月08日 ,每天上午 00:00:00 至 12:00:00 ,下午 12:00:00 至 23:59:59 (北京时间,法定节假日除外)地点:广东省政府采购网https://gdgpo.czt.gd.gov.cn/方式:在线获取售价: 免费获取三、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:广州中医药大学地 址:广州市番禺区广州大学城外环东路232号广州中医药大学办公楼911室联系方式:393569702.采购代理机构信息名 称:广州珠江监理咨询集团有限公司地 址:广东省广州市越秀区永泰路50号101房联系方式:020-834921753.项目联系方式项目联系人:林工电 话:020-83492175
  • 一文详解激光雷达
    激光雷达是集激光、全球定位系统(GPS)、和IMU(惯性测量装置)三种技术于一身的系统,相比普通雷达,激光雷达具有分辨率高,隐蔽性好、抗干扰能力更强等优势。随着科技的不断发展,激光雷达的应用越来越广泛,在机器人、无人驾驶、无人车等领域都能看到它的身影,有需求必然会有市场,随着激光雷达需求的不断增大,激光雷达的种类也变得琳琅满目,按照使用功能、探测方式、载荷平台等激光雷达可分为不同的类型。激光雷达类型图激光雷达按功能分类激光测距雷达激光测距雷达是通过对被测物体发射激光光束,并接收该激光光束的反射波,记录该时间差,来确定被测物体与测试点的距离。传统上,激光雷达可用于工业的安全检测领域,如科幻片中看到的激光墙,当有人闯入时,系统会立马做出反应,发出预警。另外,激光测距雷达在空间测绘领域也有广泛应用。但随着人工智能行业的兴起,激光测距雷达已成为机器人体内不可或缺的核心部件,配合SLAM技术使用,可帮助机器人进行实时定位导航,实现自主行走。思岚科技研制的rplidar系列配合slamware模块使用是目前服务机器人自主定位导航的典型代表,其在25米测距半径内,可完成每秒上万次的激光测距,并实现毫米级别的解析度。激光测速雷达激光测速雷达是对物体移动速度的测量,通过对被测物体进行两次有特定时间间隔的激光测距,从而得到该被测物体的移动速度。激光雷达测速的方法主要有两大类,一类是基于激光雷达测距原理实现,即以一定时间间隔连续测量目标距离,用两次目标距离的差值除以时间间隔就可得知目标的速度值,速度的方向根据距离差值的正负就可以确定。这种方法系统结构简单,测量精度有限,只能用于反射激光较强的硬目标。另一类测速方法是利用多普勒频移。多普勒频移是指目标与激光雷达之间存在相对速度时,接收回波信号的频率与发射信号的频率之间会产生一个频率差,这个频率差就是多普勒频移。激光成像雷达激光成像雷达可用于探测和跟踪目标、获得目标方位及速度信息等。它能够完成普通雷达所不能完成的任务,如探测潜艇、水雷、隐藏的军事目标等等。在军事、航空航天、工业和医学领域被广泛应用。大气探测激光雷达大气探测激光雷达主要是用来探测大气中的分子、烟雾的密度、温度、风速、风向及大气中水蒸气的浓度的,以达到对大气环境进行监测及对暴风雨、沙尘暴等灾害性天气进行预报的目的。跟踪雷达跟踪雷达可以连续的去跟踪一个目标,并测量该目标的坐标,提供目标的运动轨迹。不仅用于火炮控制、导弹制导、外弹道测量、卫星跟踪、突防技术研究等,而且在气象、交通、科学研究等领域也在日益扩大。按工作介质分类固体激光雷达固体激光雷达峰值功率高,输出波长范围与现有的光学元件与器件,输出长范围与现有的光学元件与器件(如调制器、隔离器和探测器)以及大气传输特性相匹配等,而且很容易实现主振荡器-功率放大器(MOPA)结构,再加上效率高、体积小、重量轻、可靠性高和稳定性好等导体,固体激光雷达优先在机载和天基系统中应用。近年来,激光雷达发展的重点是二极管泵浦固体激光雷达。气体激光雷达气体激光雷达以CO2激光雷达为代表,它工作在红外波段 ,大气传输衰减小,探测距离远,已经在大气风场和环境监测方面发挥了很大作用,但体积大,使用的中红外 HgCdTe探测器必须在77K温度下工作,限制了气体激光雷达的发展。半导体激光雷达半导体激光雷达能以高重复频率方式连续工作,具有长寿命,小体积,低成本和对人眼伤害小的优点,被广泛应用于后向散射信号比较强的Mie散射测量,如探测云底高度。半导体激光雷达的潜在应用是测量能见度,获得大气边界层中的气溶胶消光廓线和识别雨雪等,易于制成机载设备。目前芬兰Vaisala公司研制的CT25K激光测云仪是半导体测云激光雷达的典型代表,其云底高度的测量范围可达7500m。按线数分类单线激光雷达单线激光雷达主要用于规避障碍物,其扫描速度快、分辨率强、可靠性高。由于单线激光雷达比多线和3D激光雷达在角频率和灵敏度反映更加快捷,所以,在测试周围障碍物的距离和精度上都更加精 确。但是,单线雷达只能平面式扫描,不能测量物体高度,有一定局限性。当前主要应用于服务机器人身上,如我们常见的扫地机器人。多线激光雷达多线激光雷达主要应用于汽车的雷达成像,相比单线激光雷达在维度提升和场景还原上有了质的改变,可以识别物体的高度信息。多线激光雷达常规是2.5D,而且可以做到3D。目前在国际市场上推出的主要有 4线、8线、16 线、32 线和 64 线。但价格高昂,大多车企不会选用。按扫描方式分类MEMS型激光雷达MEMS 型激光雷达可以动态调整自己的扫描模式,以此来聚焦特殊物体,采集更远更小物体的细节信息并对其进行识别,这是传统机械激光雷达无法实现的。MEMS整套系统只需一个很小的反射镜就能引导固定的激光束射向不同方向。由于反射镜很小,因此其惯性力矩并不大,可以快速移动,速度快到可以在不到一秒时间里跟踪到 2D 扫描模式。Flash型激光雷达Flash型激光雷达能快速记录整个场景,避免了扫描过程中目标或激光雷达移动带来的各种麻烦,它运行起来比较像摄像头。激光束会直接向各个方向漫射,因此只要一次快闪就能照亮整个场景。随后,系统会利用微型传感器阵列采集不同方向反射回来的激光束。Flash LiDAR有它的优势,当然也存在一定的缺陷。当像素越大,需要处理的信号就会越多,如果将海量像素塞进光电探测器,必然会带来各种干扰,其结果就是精度的下降。相控阵激光雷达相控阵激光雷达搭载的一排发射器可以通过调整信号的相对相位来改变激光束的发射方向。目前大多数相控阵激光雷达还在实验室里呆着,而现在仍停留在旋转式或 MEMS 激光雷达的时代,机械旋转式激光雷达机械旋转式激光雷达是发展比较早的激光雷达,目前技术比较成熟,但机械旋转式激光雷达系统结构十分复杂,且各核心组件价格也都颇为昂贵,其中主要包括激光器、扫描器、光学组件、光电探测器、接收IC以及位置和导航器件等。由于硬件成本高,导致量产困难,且稳定性也有待提升,目前固态激光雷达成为很多公司的发展方向。按探测方式分类直接探测激光雷达直接探测型激光雷达的基本结构与激光测距机颇为相近。工作时,由发射系统发送一个信号,经目标反射后被接收系统收集,通过测量激光信号往返传播的时间而确定目标的距离。至于目标的径向速度,则可以由反射光的多普勒频移来确定,也可以测量两个或多个距离,并计算其变化率而求得速度。相干探测激光雷达相干探测型激光雷达有单稳与双稳之分,在所谓单稳系统中,发送与接收信号共用一个光学孔径,并由发送-接收开关隔离。而双稳系统则包括两个光学孔径,分别供发送与接收信号使用,发送-接收开关自然不再需要,其余部分与单稳系统相同。按激光发射波形分类连续型激光雷达从激光的原理来看,连续激光就是一直有光出来,就像打开手电筒的开关,它的光会一直亮着(特殊情况除外)。连续激光是依靠持续亮光到待测高度,进行某个高度下数据采集。由于连续激光的工作特点,某时某刻只能采集到一个点的数据。因为风数据的不确定特性,用一点代表某个高度的风况,显然有些片面。因此有些厂家折中的办法是采取旋转360度,在这个圆边上面采集多点进行平均评估,显然这是一个虚拟平面中的多点统计数据的概念。脉冲型激光雷达脉冲激光输出的激光是不连续的,而是一闪一闪的。脉冲激光的原理是发射几万个的激光粒子,根据国际通用的多普勒原理,从这几万个激光粒子的反射情况来综合评价某个高度的风况,这个是一个立体的概念,因此才有探测长度的理论。从激光的特性来看,脉冲激光要比连续激光测量的点位多几十倍,更能够精确的反应出某个高度风况。按载荷平台分类机载激光雷达机载激光雷达是将激光测距设备、GNSS设备和INS等设备紧密集成,以飞行平台为载体,通过对地面进行扫描,记录目标的姿态、位置和反射强度等信息,获取地表的三维信息,并深入加工得到所需空间信息的技术。在军民用领域都有广泛的潜力和前景。机载激光雷达探测距离近,激光在大气中传输时,能量受大气影响而衰减,激光雷达的作用距离在20千米以内,尤其在恶劣气候条件下,比如浓雾、大雨和烟、尘,作用距离会大大缩短,难以有效工作。大气湍流也会不同程度上降低激光雷达的测量精度。车载激光雷达车载激光雷达又称车载三维激光扫描仪,是一种移动型三维激光扫描系统,可以通过发射和接受激光束,分析激光遇到目标对象后的折返时间,计算出目标对象与车的相对距离,并利用收集的目标对象表面大量的密集点的三维坐标、反射率等信息,快速复建出目标的三维模型及各种图件数据,建立三维点云图,绘制出环境地图,以达到环境感知的目的。车载激光雷达在自动驾驶“造车”大潮中扮演的角色正越来越重要,诸如谷歌、百度、宝马、博世、德尔福等企业,都在其自动驾驶系统中使用了激光雷达,带动车载激光雷达产业迅速扩大。地基激光雷达地基激光雷达可以获取林区的3D点云信息,利用点云信息提取单木位置和树高,它不仅节省了人力和物力,还提高了提取的精度,具有其它遥感方式所无法比拟的优势。通过对国内外该技术林业应用的分析和对该发明研究后期的结果验证,未来将会在更大的研究区域利用该技术提取各种森林参数。星载激光雷达星载雷达采用卫星平台,运行轨道高、观测视野广,可以触及世界的每一个角落。为境外地区三维控制点和数字地面模型的获取提供了新的途径,无论对于国防或是科学研究都具有十分重大意义。星载激光雷达还具有观察整个天体的能力,美国进行的月球和火星等探测计划中都包含了星载激光雷达,其所提供的数据资料可用于制作天体的综合三维地形图。此外,星载激光雷达载植被垂直分布测量、海面高度测量、云层和气溶胶垂直分布测量以及特殊气候现象监测等方面也可以发挥重要作用。通过以上对激光雷达特点、原理、应用领域等介绍,相信大家也能大致了解各类激光雷达的不同属性了,眼下,在激光雷达这个竞争越来越激烈的赛道上,打造低成本、可量产、的激光雷达是很多新创公司想要实现的梦想。但开发和量产激光雷达并不容易。丰富的行业经验和可靠的技术才能保障其在这一波大潮中占据主导地位。
  • 1175万!浙江大学医学院附属第一医院近红外多色全光谱激光共聚焦显微镜和全光谱激光成像系统采购项目
    项目编号:ZJ-2233117-02 项目名称:浙江大学医学院附属第一医院近红外多色全光谱激光共聚焦显微镜和全光谱激光成像系统预算金额(元):11750000 最高限价(元):11750000 采购需求:标项名称: 近红外多色全光谱激光共聚焦显微镜和全光谱激光成像系统 数量: 1 预算金额(元): 11750000 简要规格描述或项目基本概况介绍、用途:近红外多色全光谱激光共聚焦显微镜:用于获取清晰的高质量的以及超高分辨率的共聚焦荧光图像:全光谱激光成像系统:用来进行组织和细胞中荧光标记的分子和结构检测及信号的定量分析,深层组织和细胞成像,亚细胞结构高分辨检测,荧光漂白及恢复等。 备注:允许进口 合同履约期限:标项 1,按采购文件要求本项目(是)接受联合体投标。
  • 435万!北京生命科学研究所计划采购多光谱激光成像仪及蛋白纯化分析系统
    项目概况北京生命科学研究所多光谱激光成像仪及蛋白纯化分析系统采购项目 招标项目的潜在投标人应在北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A获取招标文件,并于2022年06月14日 13点30分(北京时间)前递交投标文件。一、项目基本情况项目编号:HCZB2022-094项目名称:北京生命科学研究所多光谱激光成像仪及蛋白纯化分析系统采购项目预算金额:435.0000000 万元(人民币)采购需求:名称、数量、简要技术需求如下:序号货物名称数量简要技术需求1▲多光谱激光成像仪1套… … 3.1检测模式:同位素磷屏成像、荧光成像和密度测定。… … (详见招标文件第六章)2▲蛋白纯化分析系统1套… … 2.1.1 精确的全自动微量柱塞泵,双泵四泵头。… … (详见招标文件第六章)注:1.标注“▲”的,允许提供进口产品;未标注允许采购进口产品的,如投标人所投货物为进口产品,其投标无效。2.本项目共1个包,投标人只可投完整包,不允许将一包中的内容拆开进行投标。合同履行期限:多光谱激光成像仪:合同签订后4个月内完成供货(免税的进口产品为签订外贸合同后);蛋白纯化分析系统:合同签订后6个月内完成供货(免税的进口产品为签订外贸合同后)。本项目( 不接受 )联合体投标。二、申请人的资格要求:1.满足《中华人民共和国政府采购法》第二十二条规定;2.落实政府采购政策需满足的资格要求:(1)投标人不为“信用中国”网站(www.creditchina.gov.cn)中列入失信被执行人和重大税收违法案件当事人名单的投标人,不为中国政府采购网(www.ccgp.gov.cn)政府采购严重违法失信行为记录名单中被财政部门禁止参加政府采购活动的投标人(以开标现场查询为准);(2)投标人单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动;(3)为采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加本次采购活动;3.本项目的特定资格要求:/。三、获取招标文件时间:2022年05月24日 至 2022年05月31日,每天上午9:30至11:30,下午14:00至17:00。(北京时间,法定节假日除外)地点:北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A方式:现场领购 获取招标文件需携带以下资料: 1.经办人员需携带法定代表人身份证明书(适用于法定代表人的,加盖投标人公章)或法定代表人授权委托书(适用于非法定代表人的,授权内容需包含其办理本项目购买招标文件等手续,加盖投标人公章、法定代表人签字或盖章),个人有效身份证明文件(居民身份证、护照、军人身份证件、驾驶证其中一项)原件及复印件或扫描件(加盖投标人公章)。 2.如自然人投标的,上述资料仅需签字或盖章即可。 3.经办人应严格遵守北京市政府及相关部门发布的现行关于新冠肺炎疫情防控的有关要求,需配合大厦物业工作人员出示北京健康宝、佩戴N95口罩、进行体温检测及人员信息登记等事宜,自觉做好个人防护。售价:¥200.0 元,本公告包含的招标文件售价总和四、提交投标文件截止时间、开标时间和地点提交投标文件截止时间:2022年06月14日 13点30分(北京时间)开标时间:2022年06月14日 13点30分(北京时间)地点:北京市昌平区中关村生命科学园路七号二楼北会议室。五、公告期限自本公告发布之日起5个工作日。六、其他补充事宜1.评标方法和标准:采用综合评分法;满分为100分:投标报价部分30分,商务部分36分,技术部分34分。 2. 需要落实的政府采购政策:《中华人民共和国政府采购法》(主席令第68号)、《关于中国环境标志产品政府采购实施的意见》(财库[2006]90号)、《关于调整优化节能产品、环境标志产品政府采购执行机制的通知》(财库[2019]9号)、《国务院办公厅关于建立政府强制采购节能产品制度的通知》(国办发[2007]51号)、《关于开展政府采购信用担保试点工作的通知》(财库[2011]124号)、《关于印发〈政府采购促进中小企业发展管理办法〉的通知》(财库[2020]46号)、《财政部、司法部关于政府采购支持监狱企业发展有关问题的通知》(财库[2014]68号)、《关于促进残疾人就业政府采购政策的通知》(财库[2017]141号)、《北京市财政局关于进一步完善市级科研仪器设备政府采购管理有关事项的通知》(京财采购[2016]2862号)、《财政部关于在政府采购活动中查询及使用信用记录有关问题的通知》(财库[2016]125号)、《关于运用政府采购政策支持脱贫攻坚的通知》(财库[2019]27号)、《北京市财政局北京市生态环境局关于政府采购推广使用低挥发性有机化合物(VOCs)有关事项的通知》(京财采购[2020]2381号)等。3.本公告在中国政府采购网发布。4.由于系统原因,其他未尽事宜及公告显示内容与附件不同的,以附件为准。七、对本次招标提出询问,请按以下方式联系。1.采购人信息名 称:北京生命科学研究所     地址:北京市昌平区中关村生命科学园路七号        联系方式:李硕 80726688-8311      2.采购代理机构信息名 称:华诚博远工程咨询有限公司            地 址:北京市西城区宣武门外大街10号庄胜广场中央办公楼北翼13A            联系方式:刘天泽 18500706692            3.项目联系方式项目联系人:刘天泽电 话:  18500706692
  • 滨松参展CIOE 2019,激光加工、激光雷达、光通信等多类应用新品展现
    2019年9月4日-7日,中国国际光博会(CIOE 2019)在深圳成功举行。本次滨松中国在展会中主要以激光加工、激光雷达、光通信、工业计测、气体分析、民用消费、光谱检测、检验医学八个方向为主,进行了产品技术的呈现。久经市场考验的经典产品,以及最新曝光的新品都同台出现,获得了众多参观者的驻足。展会现场激光加工# 激光加工联合实验室展品:激光并行加工模块2019年7月,湖北工业大学-滨松中国-金顿激光共同建立的“激光加工联合实验室”正式成立。目前主要进行着基于空间光调制器的精密激光加工方案(钻孔、切割、打标等)的研究,包括不同应用的相位图计算算法、光路系统的搭建与优化、不同材料和应用的实验工艺验证等等。激光并行加工模块是联合实验室的一个小小的首秀。内部配置了滨松空间光调制器(LCOS-SLM)。激光入射到SLM上,在软件内预先设置的多焦点全息图,随后激光通过独特设计的光路,最终在相机靶面上产生多光束。在光调制时,该模块使用了带反馈的迭代算法。相机采集的多个光束的能量分布首先经过算法优化,再迭代入GS算法迭代循环中,经过不断迭代循环,最终得到了能量分布均匀的多个光束。这在实际的加工中,是十分必要的。利用这套激光并行加工模块可以进行10*10阵列多光束打孔、多光束并行蚀刻加工、多光束字母打孔等作业。现场亦展示了多个使用该模块进行加工的样品。除了光调制技术以外,联合实验室计划逐渐拓宽研究范围,滨松的更多产品和技术也将参与其中。以行业需求为导向,更好的促进我国智能激光加工行业的发展。加工样品通过便携显微镜可看到样品上的打孔细节# 下一代激光加工模块:JIZAI此次CIOE,首次曝光了滨松下一代激光加工引擎JIZAI的信息。JIZAI是基于滨松隐形切割技术(独有技术,拥有全球专利)以及空间光调制技术开发而出的产品。灵活性极强,可以根据不同的应用选配其中的器件,进行自由定制。模块可以实现任意形状的加工光束,比如多点并行加工、像差校正、平顶光束等等。紧凑轻巧,可自由移动,在多点打标、内部打标、玻璃打孔、微通道成型等众多激光加工作业中都可应用。JIZAI概念图使用JIZAI进行的玻璃打孔作业激光雷达 # 面阵红外近距离传感器低速及特殊场景下的应用,是激光雷达目前的落地热点之一。智能工厂、智慧物流、智能仓库等场景中,都少不了它的存在。新系列的面阵红外近距离传感器,主要就是面向针对此类应用的激光雷达的。新产品增大了像素尺寸,提高了饱和上限,并在内部设置了补偿电路,增强了抗环境光干扰的能力,更加适合于强背景光环境(如:室外环境)下的近距离测距。同时该器件还具有低成本的特点。目前推出了3种不同像素数量的器件,也可根据具体需求进行定制。# VCSEL固态Flash LiDAR被普遍看做是当前LiDAR发展阶段的下一个台阶。在探测器和激光器的选择上,都将有很大的变化。激光器方面,旋转式中普遍使用的边缘发射激光器(EEL)已经不再完全适用于Flash式的雷达,高功率垂直腔面发射激光器(VCSEL)将成为最理想的选择。随着3D摄像头的热潮,VCSEL成为了近几年的热点话题,在大众熟知的人脸识别、手势识别等应用中都扮演了重要角色。但面向激光雷达的产品,对其各方面性能都有了新的要求,而此次滨松展出的940nm的VCSEL也是特别针对此应用开发的。除了本身光斑形态好的特点外,滨松新展出的VCSEL还具有光功率密度高、光电效率转换高、稳定性好的优点。带封装(金属)的滨松VCSEL产品,特定要求下,裸片产品的提供也可探讨光通信# 面向5G前传和数据通信中心光模块应用CIOE中,滨松呈现了面向中长距5G前传25G/50G光模块,以及100G/200G/400G数据中心互联光模块的全系列探测器方案。包括正照式/背照式、单点/阵列(pitch250/500/750μm)的InGaAs PIN PD,满足不同项目应用的需求。系列产品的特点在于,其采用了独特的设计结构,在保证高灵敏度、低终端电容的同时,也具备极高的可靠性。整个系列产品均可支持非气密封装。工业计测# 应用于编码器的光电探测方案展会中主要展出了目前编码器应用中比较具有代表性的产品,PD阵列、LED光源,以及集成光发射和探测的整体模块产品。实际上滨松探测器覆盖从可见光到近红外几乎全波段,可为LED光源匹配最合适高灵敏度的探测器,实现整个系统的高信噪比。滨松一贯是全线In-house设计和生产,无论是半导体设计及制造工艺,还是封装工艺都拥有丰富的技术储备,可以很好的应对针对编码器应用的各种定制化需求,打磨出最优的产品方案。民用消费# 针对广泛消费类应用的全波段产品“光”是无处不在的,不光是在生产制造、科研学术中,更是在生活的方方面面。滨松则希望通过自身的光电技术,为与我们息息相关的种种生活中的应用,带来更好的可能。让它们变得更加便捷、智能、环保。CIOE中滨松展出了多类光电半导体产品,其中包括可用于屏下,辅助屏幕亮度控制的接近传感器;可装配在便携式设备或独立体温计中,实现无探测位置限制的高精度温度测量,且低成本、环境友好的InAsSb探测器等等。滨松能为民用消费应用提供高一致性、高可靠性的产品。但最为重要的是,以60余年光电技术的沉淀,可以为具体的客户需求提供高定制化的服务,以及产品技术建议。成就更有竞争力的性能,抢占更新市场的先机。目前滨松中国除了北京总部外,在深圳和上海均设有分公司,拥有本土的销售、市场、产品团队,亦可以为中国客户提供更快速有效的服务。在CIOE中我们展现的产品技术和应用仅是冰山一角。实际上,滨松一直希望被看做是一个光子技术的提供者,以和客户更紧密的交流沟通,以及更深入的相互理解,来促成最佳的应用技术诞生。
  • 重庆科技学院300.00万元采购粒子图像测速
    详细信息 重庆科技学院工业安全与爆炸防护实验室建设(CQS22A02461)公开招标公告 重庆市-沙坪坝区 状态:公告 更新时间: 2022-12-04 招标文件: 附件1 重庆科技学院工业安全与爆炸防护实验室建设(CQS22A02461)公开招标公告 发布日期: 2022年12月4日 项目概况: “重庆科技学院工业安全与爆炸防护实验室建设”项目的潜在投标人应在“重庆市政府采购网”获取采购文件,并于 2022年12月26日 10:00(北京时间)前递交投标文件。 一、项目基本情况 项目号:CQS22A02461 采购执行编号:1708-BZ2200461555AH 项目名称:重庆科技学院工业安全与爆炸防护实验室建设 采购方式:公开招标 预算金额:3,000,000.00元 最高限价:3,000,000.00元 采购需求: 包号:1 包内容 最高限价 数量 单位 简要技术要求 粒子成像测速系统(PIV系统) 1,700,000.00元 1 套 粒子图像测速系统PIV,包括:同步控制器、PIV专用图像采集系统、PIV专用双腔激光光源及光学组件、激光片光整形器件、软件控制、分析平台,以及高性能图形工作站。 包号:2 包内容 最高限价 数量 单位 简要技术要求 爆炸性能测试及附属设备 1,300,000.00元 1 批 多物态管道式可视化火焰传播实验系统:采用分压法精密比例配气,手动配气。 最高限价总计:3,000,000.00元 合同履行期限:包1:中标人应在采购合同签订后180个日历日内交货并完成安装调试。包2:中标人应在采购合同签订后90个日历日内交货并完成安装调试。 本项目是否接受联合体:否 二、申请人的资格要求 1、满足《中华人民共和国政府采购法》第二十二条规定。 2、落实政府采购政策需满足的资格要求: 无。 3、本项目的特定资格要求: 无。 三、获取公开招标文件的地点、方式、期限及售价 获取文件期限:2022年12月4日 至 2022年12月9日。 每天上午09:00:00至12:00:00,下午13:30:00至17:00:00。(北京时间,法定节假日除外 ) 文件购买费:0.00元/包 获取文件地点:重庆市政府采购网 方式或事项: (一)投标人应通过重庆市政府采购网(www.ccgp-chongqing.gov.cn)登记加入“重庆市政府采购供应商库”。 (二)凡有意参加投标的投标人,请到采购代理机构领取或在“重庆市政府采购网”网上下载本项目招标文件以及图纸、澄清等开标前公布的所有项目资料,无论投标人领取或下载与否,均视为已知晓所有招标内容。 (三)招标文件公告期限:自采购公告发布之日起五个工作日。 (四)招标文件提供期限 1.招标文件提供期限:同招标文件公告期限。 2.报名方式:无需报名。 四、投标文件递交 投标文件递交开始时间: 2022年12月26日 09:30 投标文件递交截止时间: 2022年12月26日 10:00 投标文件递交地点:重庆市公共资源交易中心开标厅(地址:重庆市渝北区青枫北路6号渝兴广场B10栋2层) 五、开标信息 开标时间: 2022年12月26日 10:00 开标地点:重庆市公共资源交易中心开标厅(地址:重庆市渝北区青枫北路6号渝兴广场B10栋2层) 六、公告期限 自本公告发布之日起5个工作日 七、其他补充事宜 (一)按照《财政部 生态环境部关于印发环境标志产品政府采购品目清单的通知》(财库〔2019〕18号)和《财政部 发展改革委关于印发节能产品政府采购品目清单的通知》(财库〔2019〕19号)的规定,落实国家节能环保政策。 (二)按照财政部、工业和信息化部关于印发《政府采购促进中小企业发展管理办法》的通知(财库〔2020〕46号)的规定,落实促进中小企业发展政策。 (三)按照《财政部、司法部关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号)的规定,落实支持监狱企业发展政策。监狱企业视同小型、微型企业。 (四)按照《三部门联合发布关于促进残疾人就业政府采购政策的通知》(财库〔2017〕 141号)的规定,落实支持残疾人福利性单位发展政策。残疾人福利性单位视同小型、微型企业。 八、联系方式 1、采购人信息 采购人:重庆科技学院 采购经办人:汤昌晟 采购人电话:023-65023937 采购人地址:重庆市沙坪坝区大学城东路20号 2、采购代理机构信息 代理机构:重庆市政府采购中心 代理机构经办人:吴荐 彭晓玲 代理机构电话:023-67118096 代理机构地址:重庆市江北区五简路2号重庆咨询大厦B座502室 3、项目联系方式 项目联系人:吴荐 彭晓玲 项目联系人电话:13527346015 项目联系人邮箱:2337035465@qq.com 九、附件 重庆科技学院工业安全与爆炸防护实验室建设(CQS22A02461)(终审稿).doc 免责声明: 本页面提供的内容是按照政府采购有关法律法规要求由采购人或采购代理机构发布的,重庆市政府采购网对其内容概不负责,亦不承担任何法律责任。 重庆科技学院工业安全与爆炸防护实验室建设(CQS22A02461)(终审稿).doc × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:粒子图像测速 开标时间:2022-12-26 10:00 预算金额:300.00万元 采购单位:重庆科技学院 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:重庆市政府采购中心 代理联系人:点击查看 代理联系方式:点击查看 详细信息 重庆科技学院工业安全与爆炸防护实验室建设(CQS22A02461)公开招标公告 重庆市-沙坪坝区 状态:公告 更新时间: 2022-12-04 招标文件: 附件1 重庆科技学院工业安全与爆炸防护实验室建设(CQS22A02461)公开招标公告 发布日期: 2022年12月4日 项目概况: “重庆科技学院工业安全与爆炸防护实验室建设”项目的潜在投标人应在“重庆市政府采购网”获取采购文件,并于 2022年12月26日 10:00(北京时间)前递交投标文件。 一、项目基本情况 项目号:CQS22A02461 采购执行编号:1708-BZ2200461555AH 项目名称:重庆科技学院工业安全与爆炸防护实验室建设 采购方式:公开招标 预算金额:3,000,000.00元 最高限价:3,000,000.00元 采购需求: 包号:1 包内容 最高限价 数量 单位 简要技术要求 粒子成像测速系统(PIV系统) 1,700,000.00元 1 套 粒子图像测速系统PIV,包括:同步控制器、PIV专用图像采集系统、PIV专用双腔激光光源及光学组件、激光片光整形器件、软件控制、分析平台,以及高性能图形工作站。 包号:2 包内容 最高限价 数量 单位 简要技术要求 爆炸性能测试及附属设备 1,300,000.00元 1 批 多物态管道式可视化火焰传播实验系统:采用分压法精密比例配气,手动配气。 最高限价总计:3,000,000.00元 合同履行期限:包1:中标人应在采购合同签订后180个日历日内交货并完成安装调试。包2:中标人应在采购合同签订后90个日历日内交货并完成安装调试。 本项目是否接受联合体:否 二、申请人的资格要求 1、满足《中华人民共和国政府采购法》第二十二条规定。 2、落实政府采购政策需满足的资格要求: 无。 3、本项目的特定资格要求: 无。 三、获取公开招标文件的地点、方式、期限及售价 获取文件期限:2022年12月4日 至 2022年12月9日。 每天上午09:00:00至12:00:00,下午13:30:00至17:00:00。(北京时间,法定节假日除外 ) 文件购买费:0.00元/包 获取文件地点:重庆市政府采购网 方式或事项: (一)投标人应通过重庆市政府采购网(www.ccgp-chongqing.gov.cn)登记加入“重庆市政府采购供应商库”。 (二)凡有意参加投标的投标人,请到采购代理机构领取或在“重庆市政府采购网”网上下载本项目招标文件以及图纸、澄清等开标前公布的所有项目资料,无论投标人领取或下载与否,均视为已知晓所有招标内容。 (三)招标文件公告期限:自采购公告发布之日起五个工作日。 (四)招标文件提供期限 1.招标文件提供期限:同招标文件公告期限。 2.报名方式:无需报名。 四、投标文件递交 投标文件递交开始时间: 2022年12月26日 09:30 投标文件递交截止时间: 2022年12月26日 10:00 投标文件递交地点:重庆市公共资源交易中心开标厅(地址:重庆市渝北区青枫北路6号渝兴广场B10栋2层) 五、开标信息 开标时间: 2022年12月26日 10:00 开标地点:重庆市公共资源交易中心开标厅(地址:重庆市渝北区青枫北路6号渝兴广场B10栋2层) 六、公告期限 自本公告发布之日起5个工作日 七、其他补充事宜 (一)按照《财政部 生态环境部关于印发环境标志产品政府采购品目清单的通知》(财库〔2019〕18号)和《财政部 发展改革委关于印发节能产品政府采购品目清单的通知》(财库〔2019〕19号)的规定,落实国家节能环保政策。 (二)按照财政部、工业和信息化部关于印发《政府采购促进中小企业发展管理办法》的通知(财库〔2020〕46号)的规定,落实促进中小企业发展政策。 (三)按照《财政部、司法部关于政府采购支持监狱企业发展有关问题的通知》(财库〔2014〕68号)的规定,落实支持监狱企业发展政策。监狱企业视同小型、微型企业。 (四)按照《三部门联合发布关于促进残疾人就业政府采购政策的通知》(财库〔2017〕 141号)的规定,落实支持残疾人福利性单位发展政策。残疾人福利性单位视同小型、微型企业。 八、联系方式 1、采购人信息 采购人:重庆科技学院 采购经办人:汤昌晟 采购人电话:023-65023937 采购人地址:重庆市沙坪坝区大学城东路20号 2、采购代理机构信息 代理机构:重庆市政府采购中心 代理机构经办人:吴荐 彭晓玲 代理机构电话:023-67118096 代理机构地址:重庆市江北区五简路2号重庆咨询大厦B座502室 3、项目联系方式 项目联系人:吴荐 彭晓玲 项目联系人电话:13527346015 项目联系人邮箱:2337035465@qq.com 九、附件 重庆科技学院工业安全与爆炸防护实验室建设(CQS22A02461)(终审稿).doc 免责声明: 本页面提供的内容是按照政府采购有关法律法规要求由采购人或采购代理机构发布的,重庆市政府采购网对其内容概不负责,亦不承担任何法律责任。 重庆科技学院工业安全与爆炸防护实验室建设(CQS22A02461)(终审稿).doc
  • 欧普图斯便携式激光拉曼光谱仪通过鉴定
    欧普图斯光纳科技便携式激光拉曼光谱仪通过技术成果鉴定  5月20日,适逢“世界计量日”之际,中国分析测试协会组织有关专家前往苏州,对欧普图斯(苏州)光学纳米科技有限公司自主研发的RamTracer-200系列便携式激光拉曼光谱仪进行技术鉴定。  此次技术鉴定由中国分析测试协会张玉奎院士主持,委员会成员则包括中国科学院大连化学物理研究所张玉奎院士、中国分析测试协会副理事兼秘书长张渝英研究员、中国分析测试协会技术部负责人汪正范研究员、中国计量院化学所常务副所长李红梅研究员、清华大学化学系副系主任张新荣教授和原公安部科技司司长刘辛高级工程师。鉴定会现场  鉴定委员会专家在审查了公司项目工作组的研发报告、查新报告、国家分析仪器质量监督检验中心的检验报告和用户报告等材料,听取了公司项目研发、工程技术、经营管理等情况汇报,并实地考察、详细了解产品研制和使用过程中的各关键环节。鉴定委员会专家进行实地考察  通过审慎周密的考察和质疑,专家组一致同意并通过了“RamTracer-200系列便携式激光拉曼光谱仪”的仪器鉴定。鉴定结论如下:  欧普图斯光纳科技RamTracer-200系列便携式激光拉曼光谱仪,通过优化集成整合现代光学技术、半导体技术、电子技术和分析化学技术,仪器的光谱分辨率达到6cm-1、峰位准确度和精密度分别达到1cm-1,检测速度快,体积小,便于携带。其自主知识产权的纳米技术模块NanoDog,利用纳米增强技术实现了对食品中非法添加物、农兽药残留、掺假食品、危险品、毒品和毒物等的拉曼光谱信号进行有效放大,检测灵敏度可达ppb水平。自主研发的操作系统和自动辨识系统,采用便捷的一键式操作界面,缩短分析时间,方便用户对现场快速检测的使用。已针对我国的食品安全以及公共安全中的需求,建立了一套具有自主知识产权的纳米增强拉曼数据库,为自动辨识系统提供数据支持。  RamTracer-200系列便携式激光拉曼光谱仪为自主设计,关键技术具有自主知识产权,整机的主要性能指标达到国际先进水平。鉴定委员会一致同意通过该仪器的成果鉴定。并建议:加强知识产权的保护,尽快实现产业化并推广应用。  鉴定会的最后,张玉奎院士进行了总结,认为基于激光拉曼技术、纳米技术、分析化学技术、微电子技术和软件技术等研发的RamTracer-200系列便携式激光拉曼光谱仪,可广泛应用于食品安全现场快速筛检、公安刑侦检测、环保监测、医疗检测等诸多领域,发挥其保障安全的作用。  产品介绍:RamTracer-200系列便携式激光拉曼光谱仪RamTracer-200 WFP与RamTracer-200 HS  RamTracer-200系列便携式激光拉曼光谱仪,采用纳米增强激光拉曼光技术,具有重现性良好,样品前处理简单,检测时间短,检测成本低,系统小型便携,操作简便等优点。其非接触、无损检测和简单样品制备的特性,精度高、现场快速筛查的优势,非常适于高通量和应急检测。  欧普图斯光纳科技已开发出多项具国际领先水平且拥有自主知识产权的产品系列,包括现场快速高灵敏化学物检测仪 (RamTracer)、纳米技术模块 (NanoDog)、激光拉曼光谱系统,专项应用数据库,以及便于使用的自动标识软件和人性化的人机界面, 可对微痕量物质进行现场快速辨识。项目已获得授权的发明专利17项、软件著作权3项、发表学术论文和报告20余篇,已申报国家标准3项,行业标准1项(已于2012年5月通过相关行业标委会评审,并计划在2012年内发布并实施),地方标准10余项(其中1项于2011年发布并实施)。其技术在食品安全现场快速检测、刑侦安全、环保监测、重大疾病早期筛查、生物制药、工业流程在线监测等领域均有着广阔的应用前景。
  • 三维激光扫描技术,给古建筑做个“透视”
    在山西五台山南台西麓的树林中,千年古刹佛光寺静静矗立。作为国务院公布的第一批全国重点文物保护单位,佛光寺已列入世界遗产目录。其中,建于公元857年的佛光寺东大殿是我国现存最为完整、体量最大的唐代木结构建筑,也是研究唐代木结构建筑最为重要的“标准器”。  据清华大学建筑设计研究院文化遗产保护研究所等编写出版的《佛光寺东大殿勘察研究报告》描述,佛光寺东大殿背靠陡崖,50年代曾由于崖体倒塌使大殿后墙局部遭到破坏,同时存在局部基础不均匀下沉和木构建糟朽、断裂等问题。  “清华大学文化遗产保护研究所承担了佛光寺东大殿精确测绘等工作。我们希望对东大殿用三维激光扫描的精确测量方法,来确定建筑结构变形,通过对变形的量化分析,得到东大殿结构是否安全的结论。”清华大学建筑学院副院长吕舟教授说。  20世纪30年代,梁思成、林徽因根据敦煌第61窟中的“大五台山图”发现了佛光寺东大殿,作为至今国内已知的唯一唐朝木建筑,这座珍贵的建筑对我国建筑史研究具有极重要的意义。  自梁思成开展佛光寺调研的1937年至今70多年里,建筑历史界多次踏勘、测量东大殿。但测量手段基本以皮尺、钢尺的手工测量为主,数据取舍到0.5厘米。  吕舟说,前人所做的测绘已取得巨大成果,但由于以往测量工具和测绘手段的限制,难以达到更高精度,误差量也难以控制,测量结果不一。在本次勘察中,使用了三维激光扫描配合全站型电子速测仪定位,全站仪可给出控制点的空间相对坐标,为扫描结果的三维空间形象提供坐标 再加上局部的手工测量,从而得到一套精确、客观的东大殿数据。如今,在古代建筑测绘领域,三维激光扫描已是一项常用的技术。  据介绍,与传统测绘技术相比,三维激光扫描的优势在于数据全面性和准确性,可以在电脑中像做透视一样进行切片测量,从而测量无法直接测量的位置,完成实测不可能完成的工作,并尽可能测量到所有数据,再通过数理统计推断出最符合的原始设计尺寸 全站仪所获得数据精确,角度误差为秒级,测距误差为毫米级 观测速度快,采集单个点仅需几秒钟 工作距离最远可达数百米等。  吕舟说,“通过三维激光扫描获得东大殿精确测绘数据后,东大殿一些法式制度上的规律开始清楚地呈现在我们面前,使重建或复原东大殿,消除结构变形影响的标准形态成为可能。”通过对三维激光扫描点云切片与复原的东大殿标准结构剖面相比较,就可得到东大殿准确的结构变形情况,对东大殿结构安全做出判断。这也是我国第一次把三维激光扫描应用于木结构文物建筑的结构安全评估。  以文物保护为目的的测绘要求准确地反映文物建筑的现状,包括残损、构件错置、改动、变形的情况,手工测绘中难以准确、清晰地表现出文物建筑现状,或有可能在测绘过程中被忽略。“三维激光扫描为解决这一问题提供了可能性。”吕舟说。  东大殿被称为我国古代建筑遗存中最为珍稀的一座,其所蕴含的设计思想、结构尺度和加工做法在非物质遗存方面具有非凡价值。因此,吕舟表示,以精密测绘入手,通过运用精密测量工具与传统测绘相结合的方法,取长补短,力求在使用目前最先进的技术条件下,得到尽可能精确而全面的测绘结果等。在该结果基础上,绘制东大殿复原理想设计图。  “在上述工作的基础上,我们才能提出了东大殿保护工作计划以及初步的修缮建议等。”吕舟说。  据国家“指南针计划—中国古代发明创造的价值挖掘与展示”专项,在“古代著名的遗址、墓葬、古建筑和土木工程设计、建造材料技术等方面”,“进行系统的专项调查、整理挖掘、研究展示、抢救传承”。  文物建筑测绘国家文物局重点科研基地(天津大学)主任吴葱教授说,除三维激光扫描技术和全站仪外,他们还将多基线数字近景摄影测量系统、固定翼无人机、无人直升机等新技术应用于古建筑测量中,精确测绘了柬埔寨吴哥古迹、天坛、故宫、颐和园、山西应县木塔、辽宁义县奉国寺等20多处古建筑。
  • 超精密高速激光干涉位移测量技术与仪器
    超精密高速激光干涉位移测量技术与仪器 杨宏兴 1,2,付海金 1,2,胡鹏程 1,2*,杨睿韬 1,2,邢旭 1,2,于亮 1,2,常笛 1,2,谭久彬 1,2 1 哈尔滨工业大学超精密光电仪器工程研究所,黑龙江 哈尔滨 150080; 2 哈尔滨工业大学超精密仪器技术及智能化工业和信息化部重点实验室,黑龙江 哈尔滨 150080 摘要 针对微电子光刻机等高端装备中提出的超精密、高速位移测量需求,哈尔滨工业大学深入探索了传统的共 光路外差激光干涉测量方法和新一代的非共光路外差激光干涉测量方法,并在高精度激光稳频、光学非线性误差 精准抑制、高速高分辨力干涉信号处理等多项关键技术方面取得持续突破,研制了系列超精密高速激光干涉仪,激 光真空波长相对准确度最高达 9. 6×10-10,位移分辨力为 0. 077 nm,光学非线性误差最低为 13 pm,最大测量速度 为 5. 37 m/s。目前该系列仪器已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测 试领域,为我国光刻机等高端装备发展提供了关键技术支撑和重要测量手段。 关键词 光学设计与制造;激光干涉;超精密高速位移测量引 言 激光干涉位移测量(DMLI)技术是一种以激光 波长为标尺,通过干涉光斑的频率、相位变化来感知位移信息的测量技术。因具有非接触、高精度、高动 态、测量结果可直接溯源等特点,DMLI 技术和仪器被广泛应用于材料几何特性表征、精密传感器标定、 精密运动测试与高端装备集成等场合。特别是在微电子光刻机等高端装备中嵌入的超精密高速激光干涉仪,已成为支撑装备达成极限工作精度和工作效率的前提条件和重要保障。以目前的主流光刻机为例,其内部通常集成有 6 轴至 22 轴以上的超精密高速激光干涉仪,来实时测量高速运动的掩模工件台、 硅片工件台的 6 自由度位置和姿态信息。根据光刻机套刻精度、产率等不同特性要求,目前对激光干涉的位移测量精度需求从数十纳米至数纳米,并将进一步突破至原子尺度即亚纳米量级;而位移测量速度需求,则从数百毫米每秒到数米每秒。 对 DMLI 技术和仪器而言,影响其测量精度和测量速度提升的主要瓶颈包括激光干涉测量的方法原理、干涉光源/干涉镜组/干涉信号处理卡等仪器关键单元特性以及实际测量环境的稳定性。围绕光刻机等高端装备提出的超精密高速测量需求,以美国 Keysight 公司(原 Agilent 公司)和 Zygo 公司为代表的国际激光干涉仪企业和研发机构,长期在高精度激光稳频、高精度多轴干涉镜组、高速高分辨力干涉信号处理等方面持续攻关并取得不断突破, 已可满足当前主流光刻机的位移测量需求。然而, 一方面,上述超精密高速激光干涉测量技术和仪器 已被列入有关国家的出口管制清单,不能广泛地支撑我国当前的光刻机研发生产需求;另一方面,上述技术和仪器并不能完全满足国内外下一代光刻机研 发所提出的更精准、更高速的位移测量需求。 针对我国光刻机等高端装备研发的迫切需求, 哈尔滨工业大学先后探索了传统的共光路双频激光干涉测量方法和新一代的非共光路双频激光干涉测量方法,并在高精度激光稳频、光学非线性误差精 准抑制、高速高分辨力干涉信号处理等关键技术方 面取得持续突破,研制了系列超精密高速激光干涉 仪,可在数米每秒的高测速下实现亚纳米级的高分辨力高精度位移测量,已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测试领域。该技术和仪器不仅直接为我国当前微电子光刻机研发生产提供了关键技术支撑和核心 测量手段,而且还可为我国 7 nm 及以下节点光刻机研发提供重要的共性技术储备。高精度干涉镜组设计与研制 高精度干涉镜组的 3 个核心指标包括光学非线性、热稳定性和光轴平行性,本课题组围绕这 3 个核心指标(特别是光学非线性)设计并研制了前后两代镜组。 共光路多轴干涉镜组共光路多轴干涉镜组由双频激光共轴输入,具备抗环境干扰能力强的优点,是空间约束前提下用于被测目标位置/姿态同步精准测量不可或缺的技术途径,并且是光刻机定位系统精度的保证。该类干涉镜组设计难点在于,通过复杂光路中测量臂和参考臂的光路平衡设计保证干涉镜组的热稳定性,并通过无偏分光技术和自主设计的光束平行性测量系统,保证偏振正交的双频激光在入射分光及多次反射/折射后的高度平行性[19- 20]。目前本课题组研制的 5 轴干涉镜组(图 11) 可实现热稳定性小于 10 nm/K、光学非线性误差小于 1 nm 以及任意两束光的平行性小于 8″,与国 际主流商品安捷伦 Agilent、Zygo 两束光的平行性 5″~10″相当。 图 11. 自主研制的共光路多轴干涉镜组。(a)典型镜组的3D设计图;(b)实物图非共光路干涉镜组 非共光路干涉镜组在传统共光路镜组的基础上, 通过双频激光非共轴传输避免了双频激光的频率混叠,优化了纳米量级的光学非线性误差。2014 年,本课题组提出了一种非共光路干涉镜组结构[2,21],具体结构如图 12 所示,测试可得该干涉镜组的光学非 线性误差为 33 pm。并进一步发现基于多阶多普勒 虚反射的光学非线性误差源,建立了基于虚反射光迹精准规划的干涉镜组光学非线性优化算法,改进并设计了光学非线性误差小于 13 pm 的非共光路干涉镜组[2-3],并通过双层干涉光路结构对称设计保证热稳定性小于 2 nm/K[22- 25]。同时,本课题组也采用多光纤高精度平行分光,突破了共光路多轴干涉镜组棱镜组逐级多轴平行分光,致使光轴之间的平行度误差 逐级累加的固有问题,保证多光纤准直器输出光任意 两个光束之间的平行度均小于 5″。 图 12. 自主设计的非共光路多轴干涉镜组。(a)典型镜组的3D设计图;(b)实物图基于上述高精度激光稳频、光学非线性误差精准抑制、高速高分辨力干涉信号处理等多项关键技 术,本课题组研制了系列超精密高速激光干涉仪 (图 17),其激光真空波长准确度最高达 9. 6×10-10 (k=3),位移分辨力为 0. 077 nm,最低光学非线性误差为 13 pm,最大测量速度为 5. 37 m/s(表 2)。并成功应用于上海微电子装备(集团)股份有限公司 (SMEE)、中国计量科学研究院(NIM)、德国联邦物理技术研究院(PTB)等十余家单位 ,在国产光刻机、国家级计量基准装置等高端装备的研制中发挥了关键作用。 图 17. 自主研制的系列超精密高速激光干涉仪实物图。(a)20轴以上超精密高速激光干涉仪;(b)单轴亚纳米级激光干涉仪;(c)三轴亚纳米级激光干涉仪超精密激光干涉仪在精密工程中的实际测量, 不仅考验仪器的研制水平,更考验仪器的应用水 平,如复杂系统中的多轴同步测量,亚纳米乃至皮 米量级新误差源的发现与处理,高水平的温控与隔 振环境等。下面主要介绍超精密激光干涉仪的几 个典型应用。 国产光刻机研制:多轴高速超精密激光干涉仪 在国产光刻机研制方面,多轴高速超精密激光 干涉仪是嵌入光刻机并决定其光刻精度的核心单元之一。但是,一方面欧美国家在瓦森纳协定中明确规定了该类干涉仪产品对我国严格禁运;另一方面该类仪器技术复杂、难度极大,我国一直未能完整掌握,这严重制约了国产光刻机的研制和生产。 为此,本课题组研制了系列超精密高速激光干涉测量系统,已成功应用于我国 350 nm 至 28 nm 多个工艺节点的光刻机样机集成研制和性能测试领域,典型应用如图 18 所示,其各项关键指标均满足国产先进光刻机研发需求,打破了国外相关产品对我国 的禁运封锁,在国产光刻机研制中发挥了重要作用。在所应用的光刻机中,干涉仪的测量轴数可达 22 轴以上,最大测量速度可达 5. 37 m/s,激光真空 波 长/频 率 准 确 度 最 高 可 达 9. 6×10−10(k=3),位 移 分 辨 力 可 达 0. 077 nm,光 学 非 线 性 误 差 最 低 为 13 pm。 配 合 超 稳 定 的 恒 温 气 浴(3~5 mK@ 10 min)和隔振环境,可以对光刻机中双工件台的多维运动进行线位移、角位移同步测量与解耦,以满足掩模工件台、硅片工件台和投影物镜之间日益复杂的相对位置/姿态测量需求,进而保证光刻机整体套刻精度。图 18. 超精密高速激光干涉测量系统在光刻机中的应用原理及现场照片国家级计量基准装置研制:亚纳米精度激光干涉仪 在国家级计量基准装置研制方面,如何利用基本物理常数对质量单位千克进行重新定义,被国际知名学术期刊《Nature》评为近年来世界六大科学难题之一。在中国计量科学研究院张钟华院士提出的“能量天平”方案中,关键点之一便是利用超精密激光干涉仪实现高准确度的长度测量,其要求绝对测量精度达到 1 nm 以内。为此,本课题组研制了国内首套亚纳米激光干涉仪,并成功应用于我国首套量子化质量基准装置(图 19),在量子化质量基准中 国方案的实施中起到了关键作用,并推动我国成为首批成功参加千克复现国际比对的六个国家之一[30- 32]。为达到亚纳米级测量精度,除了精密的隔振与温控环境以外,该激光干涉仪必须在真空环境 下进行测量以排除空气折射率对激光波长的影响, 其测量不确定度可达 0. 54 nm @100 mm。此外,为了实现对被测对象的姿态监测,该干涉仪的测量轴 数达到了 9 轴。图 19. 国家量子化质量基准及其中集成的亚纳米激光干涉仪 结论 近年来,随着高端装备制造、精密计量和大科学装置等精密工程领域技术的迅猛发展,光刻机等高端制造装备、能量天平等量子化计量基准装置、 空间引力波探测等重大科学工程对激光干涉测量技术提出了从纳米到亚纳米甚至皮米量级精度的 重大挑战。对此,本课题组在超精密激光干涉测量方法、关键技术和仪器工程方面取得了系列突破性进展,下一步的研究重点主要包括以下 3 个方面: 1)围绕下一代极紫外光刻机的超精密高速激光干涉仪的研制与应用。在下一代极紫外光刻机中,其移动工件台运动范围、运动精度和运动速度将进一步提升,将要求在大量程、6 自由度复杂耦合、高速运动条件下实现 0. 1 nm 及以下的位移测量精度,对激光干涉仪的研发提出严峻挑战;极紫外光刻机采用真空工作环境,可减小空气气流波动和空气折射率引入的测量误差,同时也使整个测量系统结构针对空气- 真空适应性设计的复杂性大幅度增加。2)皮米激光干涉仪的研制与国际比对。2021年, 国家自然科学基金委员会(NSFC)联合德国科学基 金会(DFG)共同批准了中德合作项目“皮米级多轴 超精密激光测量方法、关键技术与比对测试”(2021 至 2023 年)。该项目由本课题组与德国联邦物理技术研究院(PTB)合作完成,预计将分别研制下一代皮米级精度激光干涉仪,并进行国际范围内的直接 比对。3)空间引力波探测。继 2017 年美国 LIGO 地面引力波探测获诺贝尔物理学奖后,各国纷纷开展了空间引力波探测计划,这些引力波探测器实质上就是巨型的超精密激光干涉仪。其中,中国的空间引力波探测计划,将借助激光干涉仪在数百万公里距离尺度上,实现皮米精度的超精密测量,本课题组在引力波国家重点研发技术项目的支持下,将陆 续开展卫星- 卫星之间和卫星- 平台质量块之间皮米级激光干涉仪的设计和研究,特别是皮米级非线性实现和皮米干涉仪测试比对的工作,预期可对空间引力波探测起到积极的支撑作用。本课题组在超精密激光干涉测量技术与仪器领域有超过 20 年的研究基础,建成了一支能够完全自主开发全部激光干涉仪核心部件、拥有完整自主知识产权的研究团队,并且在研究过程中得到了 12 项国家自然科学基金、2 项国家科技重大专项、2 项 国家重点研发计划等项目的支持,建成了超精密激光测量仪器技术研发平台和产业化平台,开发了系列超精密激光干涉测量仪,在国产先进光刻机研发、我国量子化质量基准装置等场合成功应用,推动了我国微电子光刻机等高端装备领域的发展,并将通过进一步研发,为我国下一代极紫外光刻机研 发、空间引力波探测、皮米激光干涉仪国际比对提供支撑。全文详见:超精密高速激光干涉位移测量技术与仪器.pdf
  • 亚纳米皮米激光干涉位移测量技术与仪器
    1 引 言激光干涉位移测量技术具有大量程、高分辨力、非接触式及可溯源性等优势,广泛应用于精密计量、微电子集成装备和大科学装置等领域,成为超精密位移测量领域中的重要技术之一。近年来,随着这些领域的迅猛发展,对激光干涉测量技术提出了新的测量需求。如在基于长度等量子化参量的质量基准溯源方案中,要想实现1×10−8 量级的溯源要求,需要激光干涉仪长度测量精度达0. 1 nm 量级;在集成电路制造方面,激光干涉仪承担光刻机中掩模台、工件台空间位置的高速、超精密测量任务,按照“ 摩尔定律”发展规律,近些年要想实现1 nm 节点光刻技术,需要超精密测量动态精度达0. 1 nm,达到原子尺度。为此,国际上以顶级的计量机构为代表的单位均部署了诸如NNI、Nanotrace 等工程,开展了“纳米”尺度测量仪器的研制工程,并制定了测量确定度在10 pm 以下的激光干涉测量技术的研发战略。着眼于国际形势,我国同样根据先进光刻机等高端备、先进计量的测量需求,制定了诸多纳米计量技术的研发要。可见,超精密位移测量技术的发展对推进我国众多大高端装备具有重要战略意义,是目前纳米度下测量领域逐步发展的重大研究方向。2 激光干涉测量原理根据光波的传播和叠加原理,满足相干条件的光波能够在空间中出现干涉现象。在激光干涉测量中,由于测量目标运动,将产生多普勒- 菲佐(Doppler-Fizeau效应,干涉条纹将随时间呈周期性变化,称为拍频现象。移/相移信息与测量目标的运动速度/位移关系满足fd = 2nv/ λ , (1)φd = 2nL/ λ , (2)式中:fd为多普勒频移;φd为多普勒相移;n 为空气折射率;v 和L 为运动速度和位移;λ 为激光波长。通过对干涉信号的频率/相位进行解算即可间接获得测量目标运动过程中速度/位信息。典型的干涉测量系统可按照激光光源类型分为单频(零差式)激光干涉仪和双频(外差式)激光干涉仪两大类。零差式激光干涉测量基本原理如图1 所示,其结构与Michelson 干涉仪相仿,参考光与测量光合光干涉后,经过QPD 输出一对相互正交的信号,为Icos = A cos (2πfd t + φ0 + φd ) , (3)Isin = A sin (2πfd t + φ0 + φd ) , (4)式中:(Icos, Isin)为QPD 输出的正交信号;A 为信号幅值;φ0 为初始相位。结合后续的信号处理单元即可构成完整、可辨向的测量系统。图1 零差激光干涉测量原理外差式激光干涉仪的光源是偏振态相互垂直且具有一定频差Δf 的双频激光,其典型的干涉仪结构如图2 所示。双频激光经过NPBS 后,反射光通过偏振片发生干涉,形成参考信号Ir;透射光经过PBS,光束中两个垂直偏振态相互分开,f2 光经过固定的参考镜反射,f1 光经运动的测量镜反射并附加多普勒频移fd,与反射光合光干涉后形成测量信号Im。Ir = Ar cos (2πΔft + φr ) , (5)Im = Am cos (2πΔft + φm ), (6)式中:Δf、A 和φ 分别为双频激光频差、信号幅值和初始相位差。结合式(5)和式(6),可解算出测量目标的相位信息。图2 外差激光干涉测量原理零差式激光干涉仪常用于分辨力高、速度相对低并且轴数少的应用中。外差式激光干涉仪具有更强的抗电子噪声能力,易于实现对多个目标运动位移的多轴同步测量,适用于兼容高分辨力、高速及多轴同步测量场合,是目前主流的干涉结构之一。3 激光干涉测量关键技术在超精密激光干涉仪中,波长是测量基准,尤其在米量级的大测程中,要实现亚纳米测量,波长准确度对测量精度起到决定性作用。其中,稳频技术直接影响了激光波长的准确度,决定激光干涉仪的精度上限;环境因素的变化将影响激光的真实波长,间接降低了实际的测量精度。干涉镜组结构决定光束传播过程中的偏振态、方向性等参数,影响干涉信号质量。此外,干涉信号相位细分技术决定激光干涉仪的测量分辨力,并限制了激光干涉仪的最大测量速度。3. 1 高精度稳频技术在自由运转的状态下,激光器的频率准确度通常只有±1. 5×10−6,无法满足超精密测量中10−8~10−7的频率准确度要求。利用传统的热稳频技术(单纵模激光器的兰姆凹陷稳频方法等),可以提高频率准确度,但系统中稳频控制点常偏离光功率平衡点,输出光频率准确度仅能达2×10−7量级,无法完全满足超精密测量的精度需求。目前,超精密干涉测量中采用的高精度稳频技术主要有热稳频、饱和吸收及偏频锁定3 种。由于激光管谐振腔的热膨胀特性,腔长随温度变化呈近似线性变化。因此,热稳频方法通过对谐振腔进行温度控制实现对激光频率的闭环调节。具体过程为:选定稳定的参考频标(双纵模激光器的光功率平衡点、纵向塞曼激光器频差曲线的峰/谷值点),当激光频率偏离参考频标时,产生的频差信号用于驱动加热膜等执行机构进行激光管谐振腔腔长调节。热稳频方法能够使激光器的输出频率的准确度在10−9~10−8 量级,但原子跃迁的中心频率随时间推移受腔内气体气压、放电条件及激光管老化的影响会发生温度漂移。利用稳频控制点修正方法,通过对左右旋圆偏振光进行精确偏振分光和对称功率检测来抑制稳频控制点偏移的随机扰动,同时补偿其相对稳定偏置分量。该方法显著改善了激光频率的长期漂移现象,阿伦方差频率稳定度为1. 9×10−10,漂移量可减小至(1~2)×10−8。稳频点修正后的激光波长仍存在较大的短期抖动,主要源于激光器对环境温度的敏感性,温差对频率稳定性的影响大。自然散热型激光器和强耦合水冷散热型激光器均存在散热效果不均匀和散热程度不稳定的问题。多层弱耦合水冷散热结构为激光管提供一个相对稳定的稳频环境,既能抑制外界环境温度变化对激光管产生的扰动,冷却水自身的弱耦合特性又不影响激光管性能,进而减小了温度梯度和热应力,提高了激光器对环境温度的抗干扰能力,减少了输出激光频率的短期噪声,波长的相对频率稳定度约为1×10−9 h−1。碘分子饱和吸收稳频法将激光器的振荡频率锁定在外界的参考频率上,碘分子饱和吸收室内处于低压状态下(1~10 Pa)的碘分子气体在特定频率点附近存在频率稳定的吸收峰,将其作为稳频基准后准确度可达2. 5×10−11。但由于谐振腔损耗过大,稳频激光输出功率难以超过100 μW 且存在MHz 量级的调制频率,与运动目标测量过程中产生的多普勒频移相近。因此,饱和吸收法难以适用于多轴、动态的测量场合。偏频锁定技术是另一种高精度的热稳频方法,其原理如图3 所示,通过实时测量待稳频激光器出射光与高精度碘稳频激光频差,获得反馈控制量,从而对待稳频激光器谐振腔进行不同程度加热,实现高精度稳频。在水冷系统提供的稳频环境下,偏频锁定激光器的出射光相对频率准确度优于2. 3×10−11。图3 偏频锁定热稳频原理3. 2 高精度干涉镜组周期非线性误差是激光干涉仪中特有的内在原理性误差,随位移变化呈周期性变化,每经过半波长,将会出现一次最大值。误差大小取决光束质量,而干涉镜组是决定光束质量的主导因素。传统的周期非线性误差可以归结为零差干涉仪的三差问题和外差干涉仪的双频混叠问题,产生的非线性误差机理如图4 所示,其中Ix、Iy分别表示正交信号的归一化强度。其中,GR为虚反射,MMS 为主信号,PISn 为第n 个寄生干涉信号,DFSn 为第n 阶虚反射信号。二者表现形式不完全相同,但都会对测量结果产生数纳米至数十纳米的测量误差。可见,在面向亚纳米、皮米级的干涉测量技术中,周期非线性误差难以避免。图4 零差与外差干涉仪中的周期非线性误差机理。(a)传统三差问题与多阶虚反射李萨如图;(b)多阶虚反射与双频混叠频谱分布Heydemann 椭圆拟合法是抑制零差干涉仪中非线性误差的有效方法。该方法基于最小二乘拟合,获得关于干涉直流偏置、交流幅值以及相位偏移的线性方程组,从而对信号进行修正。在此基础上,Köning等提出一种基于测量信号和拟合信号最小几何距离的椭圆拟合方法,该方法能提供未知模型参数的局部最佳线性无偏估计量,通过Monte Carlo 随机模拟后,其非线性幅值的理论值约为22 pm。在外差干涉仪中,双频混叠本质上是源于共光路结构中双频激光光源和偏振器件分光的不理想性,称为第1 类周期非线性。对于此类周期非线性误差,补偿方法主要可以从光路系统和信号处理算法两个方面入手。前者通过优化光路可以将非线性误差补偿至数纳米水平;后者通过椭圆拟合法提取椭圆特征参数,可以将外差干涉仪中周期非线性误差补偿至亚纳米量级;两种均属补偿法,方法较为复杂,误差难以抑制到0. 1 nm 以下。另一种基于空间分离式外差干涉结构的光学非线性误差抑制技术采用独立的参考光路和测量光路,非共光路使两路光在干涉前保持独立传播,从根本上避免了外差干涉仪中频率混叠的问题,系统残余的非线性误差约为数十皮米。空间分离式干涉结构能够消除频率混叠引起的第1 类周期非线性误差,但在测量结果中仍残余亚纳米量级的非线性误差,这种有别于频率混叠的残余误差即为多阶多普勒虚反射现象,也称为第2 类周期非线性误差。虚反射现象源自光学镜面的不理想分光、反射等因素,如图5所示,其中MB 为主光束,GR 为反射光束,虚反射现象普遍存在于绝大多数干涉仪结构中。虚反射效应将会使零差干涉仪中李萨如图的椭圆产生畸变,而在外差干涉仪中则出现明显高于双频混叠的高阶误差分量。图5 多阶虚反射现象使用降低反射率的方法,如镀增透膜、设计多层增透膜等,能够弱化虚反射现象,将周期非线性降低至亚纳米水平;德国联邦物理技术研究院Weichert等通过调节虚反射光束与测量光束间的失配角,利用透镜加入空间滤波的方法将周期非线性误差降低至±10 pm。上述方法在抑制单次的虚反射现象时有着良好的效果,但在面对多阶虚反射效应时作用有限。哈尔滨工业大学王越提出一种适用于多阶虚反射的周期非线性误差抑制方法,该方法利用遗传算法优化关键虚反射面空间姿态,精准规划虚反射光束轨迹,可以将周期非线性误差抑制到数皮米量级,突破了该领域10 pm 的周期非线性误差极限。3. 3 高速高分辨力相位细分技术在激光干涉仪中,相位细分技术直接决定系统的测量精度。实现亚纳米、皮米测量的关键离不开高精度的相位细分技术。相位的解算可以从时域和频域两个角度进行。最为常用的时域解算方法是基于脉冲边缘触发的相位测量方法,该方法利用高频脉冲信号对测量信号与参考信号进行周期计数,进而获取两路信号的相位差。该方法的测量速度与测量分辨力模型可表达为vm/dLm= Bm , (7)式中:vm 为测量速度;dLm 为测量分辨力;Bm 为系统带宽。在系统带宽恒定的情况下,高测速与高分辨力之间存在相互制约关系。只有提高系统带宽才能实现测量速度和测量分辨力的同时提升,也因此极度依赖硬件运行能力。在测量速度方面,外差激光干涉仪的测量速度主要受限于双频激光频差Δf,测量目标运动产生的多普勒频移需满足fd≤Δf。目前,美国的Zygo 公司和哈尔滨工业大学利用双声光移频方案所研制的结构的频差可达20 MHz,理论的测量速度优于5 m/s。该方法通过增加双频激光频差来间接提升测量速度,频差连续可调,适用于不同测量速度的应用场合,最大频差通常可达几十MHz,满足目前多数测量速度需求。从干涉结构出发,刁晓飞提出一种双向多普勒频移干涉测量方法,采用全对称的光路结构,如图6所示,获得两路多普勒频移方向相反的干涉信号,并根据目标运动方向选择性地采用不同干涉信号,保证始终采用正向多普勒频移进行相位/位移解算。该方法从原理上克服了双频激光频差对测量速度的限制,其最大测量速度主要受限于光电探测器带宽与模/数转换器的采样频率。图6 全对称光路结构在提升测量分辨力方面,Yan 等提出一种基于电光调制的相位调制方法,对频率为500 Hz 的信号进行周期计数,该方法实现的相位测量标准差约为0. 005°,具有10 pm 内的超高位移测量分辨力,适用于低速测量场合。对于高速信号,基于脉冲边缘触发的相位测量方法受限于硬件带宽,高频脉冲频率极限在500 MHz 左右,其测量分辨力极限约为1~10 nm,难以突破亚纳米水平。利用高速芯片,可以将处理带宽提升至10 GHz,从而实现亚纳米的测量分辨力,但成本较大。闫磊提出一种数字延时细分超精细相位测量技术,在硬件性能相同、采样频率不变的情况下,该方法利用8 阶数字延迟线,实现了相位的1024 电子细分,具有0. 31 nm 的位移测量分辨力,实现了亚纳米测量水平。该方法的等效脉冲频率约为5 GHz,接近硬件处理极限,但其测量速度与测量分辨力之间依旧存在式(7)的制约关系。德国联邦物理技术研究院的Köchert 等提出了一种双正交锁相放大相位测量方法,如图7所示,FPGA 内部生成的理想正交信号分别与外部测量信号、参考信号混频,获取相位差。利用该方法,可以实现10 pm 以内的静态测量偏差。双正交锁相放大法能够处理正弦模拟信号,充分利用了信号的频率与幅值信息,其测量速度与测量分辨力计算公式为vm/0. 1λ0= Bm , (8)dLm/0. 5λ0=Bs/dLc, (9)式中:Bs为采样带宽;dLc为解算分辨力。图7 双正交锁相方法测量原理可见,测量速度与测量分辨力相互独立,从原理上解决了高测速与高分辨力相互制约的矛盾,为激光干涉仪提供了一种兼顾高速和高分辨力的相位处理方法。在此基础上,为了适应现代工业中系统化和集成化的测量需求,美国Keysight 公司、Zygo 公司及哈尔滨工业大学相继研发出了光电探测与信号处理一体化板卡,能够实现高于5 m/s 的测量速度以及0. 31 nm 甚至0. 077 nm 的测量分辨力。此外,从变换域方面同样可以实现高精度的相位解算。张紫杨等提出了一种基于小波变换的相位细分方法,通过小波变换提取信号的瞬时频率,计算频率变化的细分时间,实现高精度的位移测量,该方法的理论相位细分数可达1024,等效位移精度约为0. 63 nm。Strube 等利用频谱分析法,从信号离散傅里叶变换(DFT)后的相位谱中获取测量目标的位移,实现了0. 3 nm 的位移测量分辨力。由于采用图像传感器为光电转换器,信号处理是以干涉条纹为基础的,适用于静态、准静态的低速测量场合。3. 4环境补偿与控制技术环境中温度、气压及湿度等变化会引起空气折射率变化,使得激光在空气中传播时波长变动,导致测量结果产生纳米量级的误差。环境误差补偿与控制技术是抑制空气折射率误差的两种重要手段。补偿法是修正空气折射率误差最常用的方法,具有极高的环境容忍度。采用折光仪原理、双波长法等可以实现10−7~10−8 量级的空气折射率相对测量不确定度。根据Edlen 经验公式,通过精确测定环境参数(温度、湿度和大气压等),可以计算出空气折射率的精确值,用于补偿位移测量结果,其中温度是影响补偿精度的最主要因素。采用高精度铂电阻传感器,设备可以实现1 mK 的温度测量精度,其折射率的补偿精度可达10−8量级,接近Edlen 公式的补偿极限。环境控制技术是保证干涉仪亚纳米测量精度的另一种有效方法。在现行的DUV 光刻机中,采用气浴法,建立3 mK/5 min 以内恒温、10 Pa/5 min 以内恒压、恒湿气浴场,该环境中能够实现10−9~10−8 量级空气折射率的不确定度。对于深空引力波探测、下一代质量基准溯源等应用场合,对激光干涉仪工作的环境控制要求更为严苛,测量装置需置于真空环境中,此时,空气折射率引入的测量误差将被彻底消除。4 激光干涉测量技术发展趋势近年来,超精密位移测量的精度需求逐渐从纳米量级向亚纳米甚至皮米量级过渡。国内在激光干涉仪中的激光稳频、周期非线性误差消除和信号处理等关键技术上均取得了重大的突破。在LISA 团队规划的空间引力波探测方案中,要求在500 万千米的距离上,激光干涉仪对相对位移量需要具有10 pm 以内的分辨能力。面对更严苛的测量需求,超精密位移测量依然严峻面临挑战。激光干涉测量技术的未来发展趋势可以归结如下。1)激光波长存在的长期漂移和短期抖动是限制测量精度提升的根本原因。高精度稳频技术对激光波长不确定度的提升极限约为10−9量级。继续提升激光波长稳定度仍需要依托于下一阶段的工业基础,改善激光管本身的物理特性,优化光源质量。2)纳米级原理性光学周期非线性误差是限制激光干涉仪测量精度向亚纳米、皮米精度发展的重要瓶颈。消除和抑制第1 类和第2 类周期非线性误差后,仍残余数十皮米的非线性误差。由于周期非线性误差的表现形式与耦合关系复杂,想要进一步降低周期非线性误差幅值,需要继续探索可能存在的第3 类非线性误差机理。3)测量速度与测量分辨力的矛盾关系在动态锁相放大相位测量方法中得到初步解决。但面对深空引力波探测中高速、皮米的测量要求,仍然需要进一步探索弱光探测下的高分辨力相位细分技术;同时,需要研究高速测量过程中的动态误差校准技术。高速、高分辨力特征依旧是相位细分技术今后的研究方向。全文下载:亚纳米皮米激光干涉位移测量技术与仪器_激光与光电子学进展.pdf
  • 3分钟了解激光干涉仪——最精密的尺子
    本文作者:清华大学张书练教授1. 激光干涉仪的发展史做衣量身、体检量高都由尺子完成,这些日常的尺子的刻度是毫米。机械零件加工和检验都要用尺子,在机械制造企业,卡尺、千分尺随处可见,其精确度是0.1 μm,1 μm。1887年迈克尔逊(Michelson)和莫雷(Morley)研究以太[1]是否存在,使用了光。他们以光波长作尺子刻度测量了水平面和垂直面的光速之差,第一次否定了以太的存在。他们利用的是光的干涉现象,这就是光学干涉仪的诞生。注[1]:根据古代和中世纪科学,以太被称为第五元素,是填充地球球体上方宇宙区域的物质。以太的概念在一些理论中被用来解释一些自然现象,例如光和重力的传播。19世纪末,物理学家假设以太渗透到整个空间,以太是光在真空中传播的介质,但是在迈克尔逊-莫利实验中没有发现这种介质存在的证据,这个结果被解释为没有光以太存在。1961年研究人员发明了氦氖激光器,开始用氦氖激光器作为迈克尔逊干涉仪的光源,从而诞生了激光干涉仪。图1是迈克尔逊干涉仪简图。迈克尔逊干涉仪是普通物理的基本实验之一。但今天在科学研究和工业中应用的激光干涉仪出于迈克尔逊,但性能远远胜于迈克尔逊。图1 迈克尔逊干涉仪简图基本上,激光干涉仪都使用氦氖激光器的632.8 nm波长的光,橙红灿烂的光束射向远方,发散角可以小到0.1 mrad,光束截面的光斑均匀。氦氖激光器还可输出绿光、黄光、红外光,但只有632.8 nm波长的光适合作激光干涉仪的光源。其它类型的激光器,如半导体(LD)、固体激光器等的相干等性能都远不及氦氖激光器,研究人员多有尝试,但都没有成功。激光干涉仪有很多应用,但本质都是测量中学课本讲的“位移”,诸多应用都是“位移”的延伸和转化。激光干涉仪有两个主流类型:单频激光干涉仪和双频激光干涉仪。单频干涉仪能做的双频激光干涉仪都能做,但双频干涉仪能做的单频干涉仪不见得能做。由于历史、技术和商业原因,两种干涉仪都有着广泛应用。但在光刻机上,双频激光干涉仪独占市场。单频干涉仪不需要对市场上的氦氖激光器进行改造,直接可用。但双频激光干涉仪用的激光器需要附加技术使其产生双频(两个频率)。历史上,双频激光干涉仪测量位移的速度不及单频激光干涉仪,自发明了双折射-塞曼双频激光器,双频激光干涉仪的测量速度也达到每秒几米,与单频激光器看齐了。按产生双频的方法,双频激光干涉仪分为塞曼双频激光(国外)干涉仪和双折射-塞曼双频激光(国内)干涉仪。现在干涉仪的指标:最小可感知1 nm(十亿分之1 m),可以测量百米长的零件,且测量70 m长的导轨误差仅为几微米。2. 测量位移的干涉仪和测量表面的干涉仪?有几个概念的定义比较混乱(特别是有些研究发展趋势的报告),需要注意。一是“激光测距”和“激光测位移”没有界定,资料往往鹿马不分。二是不少资料所说“激光干涉仪”实际上包含两种不同的仪器,一种是测量面型(元件表面)的激光干涉仪,一种是测量位移(长度)的激光干涉仪。如海关的统计和一些年度报告往往混在一起。激光测距机发出的激光束是一个持续时间纳秒的光脉冲,利用光脉冲达到目标和返回的时间之半乘以光速得到距离,完全和光的干涉无关。尽管激光波面干涉仪和测量位移(长度)的干涉仪都是利用光干涉现象,但仪器的设计、光路结构、探测方式、应用场合几乎没有共同之处。激光波面干涉仪能够测量光学元件表面的形貌,光束直径要覆盖被测零件,在整个零件表面形成系列干涉条纹,根据测量条纹的亮度(也即相位)算出表面的形貌,其光束口径、零件直径可达百毫米;另一种则是测量位移(长度)干涉仪,光干涉发生在直径几毫米光路上,表现为只有光电探测器(眼睛)正对着射来的光线才能“看”到光强度的波动,由波动的整次数和(不足半波长的)小数算出被测件的位移。 3. 双频激光干涉仪的原理和构成当图1的可动反射镜有位移时,光电探测器光敏面会感受到的光强度正弦变化,动镜移动半个波长,光强变化一个周期。光电探测器将光强变化转化为电信号。如探测到电信号变化了一个周期,我们就知道动镜移动了半个波长。计出总周期数测得动镜的位移。 (1)式中:λ为激光波长,N 为电脉冲总数。今天的激光干涉仪使用632.8 nm波长的激光束,半波长即316.4 nm。动镜安装在被测目标上与目标一起位移,如光刻机的机台,机床的动板上。为了提高分辨力,半波长的正弦信号被细分,变成1 nm甚至0.1 nm的电脉冲,可逆计数器计算出总脉冲数,再由计算机计算出位移量S。也常用下式表示动镜的位移, (2)其中∆f为目标运动速度为V时的多普勒频移。式(1)和(2)是等价的,可以互相推导推出来,仅是表方式的不同。图2是今天的双频激光干涉仪框图。它由7个部分构成。图2 双频激光干涉仪原理框图(1) 双频氦氖激光器氦氖激光器上有磁体。磁体为筒形,激光器上加的是纵向磁场,称为纵向塞曼双频激光器。四分之一波长(λ/4)片把激光器输出的左旋和右旋光变成偏振态互相垂直的线偏振光。前文所说的双折射-塞曼双频激光器则是在激光器内置入双折射元件(图内未画出),并加图2所示的磁条。双折射元件使激光器形成双频,横向磁场消除两个频率之间的耦合。双折射-塞曼双频激光干涉仪不需使用四分之一波长片。双频激光器是双频激光干涉仪的核心,很大程度上,它的性能决定激光干涉仪的性能,要求波长(频率)精度高,功率大,寿命长,双频间隔(频差)大且稳定,偏振状态稳定,两频率之间不偏振耦合。这一问题的解决是作者较突出的贡献之一。(2) 频率稳定单元它的作用是保证波长(频率)这把尺子的精确性,达到10-8甚至10-9,即4.74×1014的激光频率长期的变化仅1 MHz左右。(3) 扩束准直器实际上是一个倒装的望远镜,防止光束发散。要求激光出射80 m,光束光斑直径仍然在10 mm之内。(4) 测量干涉光路测量干涉光路包括:从分光镜向右直到可动反射镜(实际是个角锥棱镜),向下到光电探测器2。可动反射镜装在被测目标上(如光刻机工作台上的反射镜),目标的移动产生激光束的频移Δf,Δf和目标速度成正比,积分就是目标走过的距离(位移或长度)。积分由信号处理单元完成。(5) 参考光路参考光路由分光镜-偏振片-光电探测器1实现,参考光路中没有任何元件移动,它测得的位移是“假位移”真噪声。噪声来自环境的扰动。信号处理单元从干涉光路的位移中扣除这一噪声。(6) 温度和空气折射率补偿单元干涉仪测量的目标位移可能长达百米,空气折射率(及改变)和长度的乘积成为激光干涉仪的最主要误差来源之一。用传感器测出温度、气压、湿度,信号处理单元计算出空气折射率引入的假位移,并从结果中扣除。(7)信号处理单元光电探测器1和2,分别把信号f1-(f2±∆f)和f1-f2的光束转化为电信号,±∆f是可动反射镜位移时因多普勒效应产生的附加频率,正负号表示位移的方向。电信号经放大器、整形器后进入减法器相减,输出成为仅含有±Δf的电脉冲信号。经可逆计数器计数后,由电子计算机进行当量换算即可得出可动反射镜的位移量。环境温度,气压,湿度引入的折射率变化(假位移)送入计算机计算,扣除他们的影响。最后显示。相当多的应用要求计算机和应用系统通讯,实现对加工过程的闭环控制。4. 激光干涉仪的应用一般说来,激光干涉仪的主要用途是测量目标的运动状态,即目标的线性位移大小、旋转角度(滚转、俯仰和偏摆)、直线度、垂直度、两个目标在运动的平行性(度)、平面度等。无论光刻机的机台,还是数控机床的导轨(包括激光加工机床),不论是飞行物,还是静止物的热膨胀、变形,一旦需要高精度,都要用激光干涉仪测量,得到目标的运动状态。运动状态用由多个参数给出。以光刻机两维运动中的一个方向运动时为例,位移(走过的长度)、机台位移过程中的偏 转( 角 )、俯仰 ( 角 )和滚转(角)都需要测出。很多类型的设备需要测量,如各类机床、三坐标测量机、机器人、3D打印设备、自动化设备、线性位移平台、精密机械设备、精密检测仪器等领域的线性测量。图3(a)(b)(c)(d)(e)是几个应用的例子。美国LIGO激光干涉仪实验室宣称首次直接测量到了引力波(2016),使用的仪器是激光干涉仪,单程臂长4 km。见图4。图3 激光干涉仪几个应用的例子来源:(a)(b)(c)由北京镭测科技有限公司提供,(d)(e)来自深圳市中图仪器股份有限公司网页图4 LIGO激光干涉仪来源:https://www.ligo.caltech.edu/image/ligo20150731c 5. 双频激光干涉仪发展存在的问题(1)国内外单频和双频激光干涉仪的进展及问题多年来,国内外在单频和双频激光干涉仪方面进步不大,特例是双折射-塞曼双频激光器的发明。由于从国外购买的激光器不能产生大间隔的双频光,原有国内双频激光干涉仪的供应商基本停产。以前作为基础研究的双折射-塞曼双频激光器被推到前台。双频激光器是干涉仪的核心技术,走在了世界前端,也解决了国内无源的重大难题。北京镭测科技有限公司的开发、纠错,终于使双折射-塞曼双频激光干涉仪实现产品化,进入先进制造全行业,特别是光刻机。北京镭测科技有限公司双折射-塞曼双频激光器达到指标:频率间隔可在1 ~ 30 MHz之间选择,功率可达1 mW。 频率差与激光功率之间没有相互影响,没有塞曼效应的双频激光器高功率和大频率差不能兼得的缺点。尽管取得进展,但氦氖激光器的制造工艺等是个系统性技术问题,需要全面改善。特别是,国外双频激光干涉仪的几家企业的激光器都是自产自用,不对外销售,因此,我们必须自己解决问题。(2)业界往往忽略干涉仪的非线性误差很长时期以来,业界认为单频干涉仪没有非线性误差。德国联邦物理技术研究院(PTB) 经严格测试发现,单频干涉仪也存在几纳米的非线性误差,甚至大于10 nm。塞曼效应的双频干涉仪也有非线性误差,也是无法消除。对此干涉仪测量误差,大多使用者是不知情的。到目前,中国计量科学院的测试得出,北京镭测科技生产的双频激光干涉仪的非线性误差在1 nm以下。建议把中国计量科学院的仪器批准为国家标准,并和德国、美国计量院作比对。非线性误差发生在半个波长的位移内,即使量程很小也照样存在。图5 中国计量科学研究院:镭测LH3000双频激光干涉仪在进行测长比对6. 双频激光干涉仪的未来挑战本文作者从事研究双折射-塞曼双频激光器起步到成批生产双折射-塞曼双频激光干涉仪,历经近40年,建议加强以下研究。(1)高测速制造业的发展很快,精密数控机床运动速度已达几m/s,有特殊应用提出达到10 m/s的要求。目前单频激光的测量速度还没有超过5 m/s。双折射-塞曼双频激光干涉仪的测速也处于这一水平,但其频率差的实验已经达到几十MHz,有待信号处理技术的跟进发展,实现10 m/s以上的测量速度。(2)皮米干涉仪市场上的干涉仪基本都标称分辨力1 nm,也有0.1 nm的广告。需要发展皮米分辨力的激光干涉仪以满足对原子、病毒尺度上的观测要求。(3)溯源前文已经提到,小于半波长的位移是把正弦波动信号电子细分得到标称的1 nm,和真实的1 nm相差多少?没有人知道,所以需要建立纳米、皮米的标准。作者曾做过初步努力,达到10 nm的纯光学信号,还需做长期艰苦的研究。(4)提高氦氖激光器寿命在未来很长一段时间,氦氖激光器仍然是激光干涉仪最好的光源,但其漏气的特点导致其使用寿命有限,替换寿命终结的氦氖激光器导致光刻机停机,会带来巨大经济损失。因此,延长氦氖激光器寿命十分有必要。没有测量就没有科学技术,没有精密测量就没有当今的先进制造,为此作者最近出版了题名《不创新我何用,不应用我何为:你所没有见过的激光精密测量仪器》的书籍,书的主标题似是铭志抒怀,而实际内容是一本地道的学术专著,书籍内容为作者的课题组近40年做出的创新成果总结。作者简介张书练,清华大学教授,博导。曾任清华大学精密测试技术及仪器国家重点实验室主任,清华大学光学工程研究所所长,主要研究方向为激光技术与精密测量,致力于激光器特性的研究和把这些特性应用于精密测量,是国内外正交偏振激光精密测量领域的的主要创始人。
  • 欧普图斯光纳科技便携式激光拉曼光谱仪通过国家技术成果鉴定
    5月20日&ldquo 世界计量日&rdquo 之际,中国分析测试协会组织有关专家前往苏州,对欧普图斯(苏州)光学纳米科技有限公司自主研发的RamTracer-200系列便携式激光拉曼光谱仪进行技术鉴定。 此次技术鉴定由中国分析测试协会张玉奎院士主持,委员会成员包括:中国科学院大连化学物理研究所张玉奎院士,中国分析测试协会副理事兼秘书长张渝英研究员,中国分析测试协会技术部负责人汪正范研究员,中国计量院化学所常务副所长李红梅研究员,清华大学化学系副系主任张新荣教授和原公安部科技司司长刘辛高级工程师。鉴定会现场 鉴定委员会专家审查了公司项目工作组的研发报告、查新报告、国家分析仪器质量监督检验中心的检验报告和用户报告等材料,听取了公司项目研发、工程技术、经营管理等情况汇报,并实地考察、详细了解产品研制和使用过程中的各关键环节。 鉴定委员会专家进行实地考察 通过审慎周密的考察和质疑,专家组一致同意并通过了&ldquo RamTracer-200系列便携式激光拉曼光谱仪&rdquo 的仪器鉴定。鉴定结论如下: 欧普图斯光纳科技RamTracer-200系列便携式激光拉曼光谱仪,通过优化集成整合现代光学技术、半导体技术、电子技术和分析化学技术,仪器的光谱分辨率达到6cm-1、峰位准确度和精密度分别达到1cm-1,检测速度快,体积小,便于携带。其自主知识产权的纳米技术模块NanoDog,利用纳米增强技术实现了对食品中非法添加物、农兽药残留、掺假食品、危险品、毒品和毒物等的拉曼光谱信号进行有效放大,检测灵敏度可达ppb水平。自主研发的操作系统和自动辨识系统,采用便捷的一键式操作界面,缩短分析时间,方便用户对现场快速检测的使用。已针对我国的食品安全以及公共安全中的需求,建立了一套具有自主知识产权的纳米增强拉曼数据库,为自动辨识系统提供数据支持。 RamTracer-200系列便携式激光拉曼光谱仪为自主设计,关键技术具有自主知识产权,整机的主要性能指标达到国际先进水平。鉴定委员会一致同意通过该仪器的成果鉴定。并建议:加强知识产权的保护,尽快实现产业化并推广应用。 鉴定会的最后,张玉奎院士进行了总结,认为基于激光拉曼技术、纳米技术、分析化学技术、微电子技术和软件技术等研发的RamTracer-200系列便携式激光拉曼光谱仪,可广泛应用于食品安全现场快速筛检、公安刑侦检测、环保监测、医疗检测等诸多领域,发挥其保障安全的作用。 产品介绍:RamTracer-200系列便携式激光拉曼光谱仪 RamTracer-200系列便携式激光拉曼光谱仪,采用纳米增强激光拉曼光技术,具有重现性良好,样品前处理简单,检测时间短,检测成本低,系统小型便携,操作简便等优点。其非接触、无损检测和简单样品制备的特性,精度高、现场快速筛查的优势,非常适于高通量和应急检测。 欧普图斯光纳科技已开发出多项具国际领先水平且拥有自主知识产权的产品系列,包括现场快速高灵敏化学物检测仪 (RamTracer)、纳米技术模块 (NanoDog)、激光拉曼光谱系统,专项应用数据库,以及便于使用的自动标识软件和人性化的人机界面, 可对微痕量物质进行现场快速辨识。项目已获得授权的发明专利17项、软件著作权3项、发表学术论文和报告20余篇,已申报国家标准3项,行业标准1项(已于2012年5月通过相关行业标委会评审,并计划在2012年内发布并实施),地方标准10余项(其中1项于2011年发布并实施)。其技术在食品安全现场快速检测、刑侦安全、环保监测、重大疾病早期筛查、生物制药、工业流程在线监测等领域均有着广阔的应用前景。 本文源自:中国分析测试协会网 链接: http://www.caia.org.cn/news.asp?Newsid=2720
  • 激光外差干涉技术在光刻机中的应用
    激光外差干涉技术在光刻机中的应用 张志平*,杨晓峰 复旦大学工程与应用技术研究院上海市超精密运动控制与检测工程研究中心,上海 201203摘要 超精密位移测量系统是光刻机不可或缺的关键分系统之一,而基于激光外差干涉技术的超精密位移测量系统同时具备亚纳米级分辨率、纳米级精度、米级量程和数米每秒的测量速度等优点,是目前唯一能满足光刻机要求的位移测量系统。目前应用于光刻机的超精密位移测量系统主要有双频激光干涉仪和平面光栅测量系统两种,二者均以激光外差干涉技术为基础。本文将分别对这两种测量系统的原理、优缺点以及在光刻机中的典型应用进行阐述。关键词 光刻机;外差干涉;双频激光干涉仪;平面光栅1 引言集成电路产业是国家经济发展的战略性、基础性产业之一,而光刻机则被誉为集成电路产业皇冠上的明珠[1]。作为光刻机三大指标之一的套刻精度,是指芯片当中上下相邻两层电路图形的位置偏差。套刻精度必须小于特征图形的1/3,比如14 nm节点光刻机的套刻精度要求小于5.7 nm。影响套刻精度的重要因素是工件台的定位精度,而工件台定位精度确定的前提则是超精密位移测量反馈,因此超精密位移测量系统是光刻机不可或缺的关键分系统之一[2-4]。随着集成电路特征尺寸的不断减小,对位置测量精度的需求也不断提高;同时,为了满足光刻机产率不断提升的需要,掩模台扫描速度也在不断提高,甚至达到 3 m/s 以上;此外,为了满足大尺寸平板显示领域的需求,光刻机工件台的尺寸和行程越 来越大,最大已达到 1. 8 m×1. 5 m;最后,为了获得工件台和掩模台良好的同步性能,光刻机还要求位置测量系统具备多轴同步测量的功能,采样同步不确定性优于纳秒级别[5-8]。 综上,光刻机要求位置测量系统同时具备亚纳米级分辨率、纳米级精度、米级量程、数米每秒测量速度、闭环反馈以及多轴同步等特性。目前,在精密测量领域能同时满足上述测量要求的,只有外差干涉测量技术。 本文分别介绍外差干涉测量技术原理及其两 种具体结构——双频激光干涉仪和平面光栅测量系统,以及外差干涉技术在光刻机中的典型应用。 2 外差干涉原理 2. 1 拍频现象 外差干涉又称为双频干涉或者交流干涉,是利用“拍频”现象,在单频干涉的基础上发展而来的一 种干涉测量技术。 假设两列波的方程为 x1 = A cos ω1 t , (1) x2 = A cos ω2 t 。 (2) 叠加后可表示为(3)拍频定义为单位时间内合振动振幅强弱变化 的次数,即 v =| (ω2 - ω1)/2π |=| v 2 - v 1 | 。 (4) 波 x1、x2 以及合成后的波 x 如图 1 所示,其中包 络线的频率即为拍频,也称为外差频率。如果其中一个正弦波的相位发生变化,拍频信号的相位会发生完全相同的变化,即外差拍频信号将完整保留原始信号的相位信息。 图 1. 拍频示意图Fig. 1. Beat frequency diagram对于激光而言,因为频率很高(通常为 1014 Hz 量级),目前的光电探测器无法响应,但可以探测到两束频率相近的激光产生的拍频(几兆到几十兆赫兹)。因此拍频被应用到激光领域,发展成激光外差干涉技术。2. 2 外差干涉技术 由拍频原理可知 ,所谓外差就是将要接收的信号调制在一个已知频率信号上,在接收端再将该调制信号进行解调。由于高频率的激光信号相位变化难以精确测量,但利用外差干涉技术可以用低频拍频信号把高频信号的 相位变化解调出来,将大大降低后续精确鉴相的难度。因此,外差技术最显著的特点就是信号以交流的方式进行传输和处理。 与单频干涉技术相比,外差干涉技术的突出优点是:1)由于被测对象的相位信息是加载在稳定的差频(通常几兆到几十兆赫兹)上,因此光电探测时避过了低频噪声区,提高了光电信号的信噪比。例如在外界干扰下,测量光束光强衰减 50% 时,单频干涉仪很难正常工作,而外差干涉仪在光强衰减 90% 时仍能正常工作 ,因此更适用于工业现场 。 2)外差干涉可以根据差频信号的增减直接判别运动方向,而单频干涉技术则需要复杂的鉴相系统来 判别运动方向。单频干涉技术与外差干涉技术对比如表 1 所示。表 1. 单频干涉技术与外差干涉技术对比Table 1. Comparison between homodyne interferometry and heterodyne interferometry3双频激光干涉仪 3. 1 双频激光干涉仪原理 双频激光干涉仪是在单频激光干涉仪的基础上结合外差干涉技术发展起来的,其原理如图 2 所 示。双频激光器发出两列偏振态正交的具有不同频率的线偏振光,经过偏振分光器后光束被分离。 图 2. 双频激光干涉仪原理图Fig. 2. Schematic diagram of dual frequency laser interferometer设两束激光的波动方程为 E1 = E R1 cos ( 2πf1 t ) E2 = E R2 cos ( 2πf2 t ) , (5) 式中:ER1和 ER2为振幅;f1和 f2为频率。 偏振态平行于纸面的频率为 f1 的光束透过干涉仪后,被目标镜反射回干涉仪。当被测目标镜移动时,产生多普勒效应,返回光束的频率变为 f1 ± Δf, Δf 为多普勒偏移量,它包含被测目标镜的位移信息。经过干涉镜后,与频率为 f2 的参考光束会合,会合后光束发生拍频,其光强 IM函数为 (6) 式(6)包含一个直流量和一个交流量,经光电探测器转换为电信号,再进行放大整形后,去除直流量,将交 流量转换为一组频率为 f1 ± Δf- f2的脉冲信号。从双频激光器中输出频率为 f1 - f2 的脉冲信 号,作为后续电路处理的基准信号。测试板卡采用减法器通过对两列信号的相减,得到由于被测目标 镜的位移引起的多普勒频移 Δf。被测目标镜的位移 L 与 Δf的关系可表示为 (7) 式中:λ 为激光的波长;N 为干涉的条纹数。因此, 只要测得条纹数,就可以计算出被测物体的位移。 3. 2 系统误差分析 双频激光干涉仪的系统误差大致由三部分组成:仪器误差、几何误差以及环境误差,如表 2 所示。 三种误差中,仪器误差可控制在 2 nm 以内;几何误 差可以通过测校进行动态补偿,残差可控制在几纳米以内;环境误差的影响最大,通常可达几十纳米到几微米量级,与测量区域的环境参数(温度、压 力、湿度等)有关,与量程几乎成正比,因此大量程测量时,需要对环境参数进行控制。 表 2. 双频激光干涉仪系统误差分解Table 2. System error of dual frequency laser interferometer4 平面光栅测量系统 双频激光干涉仪在大量程测量时,精度容易受 温度、压力、湿度等环境因素影响,研究者们同样基于外差干涉原理研发了平面光栅测量系统,可克服双频激光干涉仪的这一缺点。 4. 1 基于外差干涉的光栅测量原理 众所周知 ,常规的光栅测量是基于叠栅条纹的,具有信号对比度差、精度不高的缺点。基于外差干涉的光栅测量原理如图 3 所示,双频激光器发出频率 f1 和 f2 的线偏振光,垂直入射到被测光栅表面,分别进行+1 级和−1 级衍射,衍射光经过角锥反射镜后再次入射至被测光栅表面进行二次衍射, 然后会合并沿垂直于光栅表面的方向返回。由于被测光栅与光栅干涉仪发生了相对运动,因此,返回的激光频率变成了 f1 ± Δf和 f2 ∓ Δf,其中 Δf为多 普勒频移量,它包含被测目标镜的位移信息。 图 3. 基于外差干涉的光栅测量原理Fig. 3. Principle of grating measurement based on heterodyne interference会合后的光束 f1 ± Δf 和 f2 ∓ Δf 发生拍频,其频率为 ( f1 ± Δf ) - ( f2 ∓ Δf ) = ( f1 - f2 ) ± 2Δf。(8) 式(8)的信号与双频激光器中输出频率为 f1 - f2 的 参考信号相减,得到多普勒频移 Δf。被测目标镜的位移 L 与 Δf的关系可表示为(9) 式中 :p 为光栅的栅距 ;N 为干涉的条纹数 。 因此,只要测得条纹数 ,就可以计算出被测物体的位移。 上述原理推导是基于一维光栅刻线的,只能测量一维运动。为了获得二维测量,只需将光栅的刻线由一维变成二维(即平面)即可。 4. 2 两种测量系统优缺点对比 由此可知,基于外差干涉的光栅测量原理与双频激光干涉仪几乎完全相同,主要的差别是被测对象由反射镜换成了衍射光栅。两种测量系统的优缺点如表 3 所示。表 3. 双频激光干涉仪与光栅测量系统对比Table 3. Dual frequency laser interferometer versus gratingmeasurement system5外差干涉测量在光刻机中的应用 发展至今,面向 28 nm 及以下技术节点的步进扫描投影式光刻机已成为集成电路制造的主流光刻机。作为光刻机的核心子系统之一的超精密工件台和掩模台,直接影响着光刻机的关键尺寸、套刻精度、产率等指标。而工件台和掩模台要求具有高速、高加速度、大行程、超精密、六自由度(x、y 大 行程平动,z 微小平动,θx、θy、θz微小转动)等运动特点,而实现这些运动特点的前提是超精密位移测量反馈。因此,基于外差干涉技术的超精密位移测量子系统已经成为光刻机不可或缺的组成部分。 4. 光刻机中的多轴双频激光干涉仪[10]Fig. 4. Multi-axis dual frequency laser interferometer in lithography machine[10]图 4 为典型的基于多轴双频激光干涉仪的光刻机工件台系统测量方案[10],在掩模台和硅片台的侧面布置多个多轴激光干涉仪,对应地在掩模台和硅 片台上安装长反射镜;通过多个激光干涉仪的读数解算出掩模台和硅片台的六自由度位移。 然而,随着测量精度、测量行程、测量速度等运动指标的不断提高,双频激光干涉仪由于测量精度易受环境影响、长反射镜增加运动台质量致使动态性能差等问题难以满足日益提升的测量需求。因 此,同样基于外差干涉技术的平面光栅测量系统成为了另一种选择[8]。 光刻机工件台平面光栅测量技术首先由世界光刻机制造巨头 ASML 公司取得突破。该公司于 2008 年 推 出 的 Twinscan NXT:1950i 浸 没 式 光 刻机,采用了平面光栅测量技术对 2 个工件台的六自 由度位置进行精密测量。如图 5 所示,该方案在主基板的下方布置 8 块大面积高精度平面光 栅(约 400 mm×400 mm),在两个工件台上分别布置 4 个 平面光栅读数头(光栅干涉仪),当工件台相对于平 面光栅运动时,平面光栅读数头即可测出工件台的 运动位移[2,5,9]。图 5. ASML 光刻机的平面光栅测量方案[2,5,9]Fig. 5. Plane grating measurement scheme of ASML lithography machine[2,5,9]相比多轴双频激光干涉仪测量方案,平面光栅测量方案具有以下优点:1)测量光路短(通常小于 20 mm),因此测量重复精度和稳定性对环境变化不 敏感;2)工件台上无需长反射镜,因此质量更轻、动态性能更好。 然而,平面光栅测量方案也有其缺点:1)大面积高精度光栅制造难度太大;2)由式(9)可知,位移 测量结果以栅距 p 为基准,然而受栅距均匀性限制, 测量绝对精度不高。为了获得较好的精度和线性度,往往需要利用双频激光干涉仪进行标定。 面临极端测量需求的挑战 ,Nikon 公 司 在 NSR620D 光刻机中采用了平面光栅和双频激光干涉仪混合测量的技术方案[9],如图 6 所示。该方案 将平面光栅安装在工件台上表面,而将光栅读数头安装在主基板下表面,同时增加了双频激光干涉仪,结合了平面光栅测量系统和双频激光干涉仪的 优点。在读头与读头切换时采用双频激光干涉仪进行在线校准。 图 6. Nikon光刻机混合测量方案[9]Fig. 6. Hybrid measurement scheme of Nikon lithography machine [9]6激光外差干涉系统的发展趋势 无论是双频激光干涉仪还是平面光栅测量系统,要想获得纳米级测量精度,既需要提高测量系统本身的精度,更需要从使用的角度努力,即“三分 靠做,七分靠用”。 就激光外差干涉测量系统本身而言,误差源主要来自于光学非线性误差。在外差干涉测量系统 中,由于光源及光路传输过程各光学器件性能不理想或装调有偏差,会带来两个频率的光混叠现象, 即原本作为测量信号频率 f1(或 f2)的光中混杂了频 率 f2(或 f1)的光,或原本作为参考信号频率 f2(或 f1) 的光中混杂了频率 f1(或 f2)的光。在信号处理中该混叠的频率信号会产生周期性的光学非线性误差。尽管目前主流的双频激光干涉仪厂家已经将非线性误差控制在 2 nm 以内[10- 12],但应用于 28 nm 以下光刻机时仍然需要进一步控制该误差。国内外众多学者从非线性误差来源、检测和补偿等角度出发,进行了大量研究并取得了丰硕成果[13- 17]。这些成果有望对非线性误差的动态补偿提供理论支持。 从应用角度,研究热点主要集中在应用拓展、 安装误差及其测校算法、环境参数控制及其补偿方法研究等方面。在应用拓展方面,激光外差干涉技术除了应用于测长之外,还在小角度测量、直线度、平面度、反馈测量等方面取得了应用[18- 20]。在安装误差和环境误差补偿算法方面,主要聚焦于多自由度解耦算法、大气扰动补偿等研究方向[4,21- 27]。 7 总结 阐述了光刻机对位移测量系统大量程、亚纳米 分辨率、纳米精度、高测速及多轴同步的苛刻要求。 概述了激光外差干涉技术原理,指出目前为止,激光外差干涉技术是唯一能满足光刻机上述要求的超精密位移测量技术。并综述了两种基于激光外差干涉技术的测量系统:双频激光干涉仪和平面光栅测量系统。总结了这两种位移测量系统在光刻机中的典型应用,以及激光外差干涉技术的当前研究热点和发展趋势。全文详见:激光外差干涉技术在光刻机中的应用.pdf
  • 首颗陆地生态系统碳监测卫星成功发射 携带多波束激光雷达和超光谱探测仪等设备
    今天成功发射的陆地生态系统碳监测卫星可以获取我国森林碳汇数据,提高碳汇计量的效率和精度,为我国实现“碳达峰、碳中和”目标提供重要的数据支撑。航天科技集团五院遥感卫星总体部陆地生态系统碳监测卫星总体主任设计师黄缙:碳排放的过程叫从化石燃料里面储存的碳变到二氧化碳,到大气当中叫碳排放、叫碳源。森林或者其他一些人工手段把二氧化碳从空气当中固化下来,叫碳汇。这颗星的最终目的就是通过对森林进行观测,来实现评估我们国家碳吸收的能力。多种模式综合成像 专业监测森林碳汇数据航天科技集团五院遥感卫星总体部陆地生态系统碳监测卫星总体主任设计师黄缙:这颗星最主要的一个载荷就是这上面这个叫多波束激光雷达,激光雷达可以发射几束激光到地面,我就可以知道森林的高度。我们还配置了多角度多光谱相机,总共5个角度的相机,通过这5个角度相机,从前、正、后不同的角度去观测,对森林进行成像。除此之外,卫星还携带了超光谱探测仪和多角度偏振成像仪等设备,可以探测森林的光合作用以及大气PM2.5含量等森林碳汇能力的核心数据。多种功能用途广泛 全自主任务智能规划森林碳汇监测是陆地生态系统碳监测卫星的主要任务,除此之外它还可广泛应用于环保、测绘、气象、农业、减灾等领域,因此,这颗卫星任务繁多、工作模式复杂,研制人员通过一系列智能化设计,让这颗卫星好用且易用。陆地生态系统碳监测卫星搭载的探测设备多,工作模式也多,不同组合的工作模式多达47种,研制人员在考虑让卫星可以支持更多应用的同时,在卫星的操作模式上也进行了专门的设计。此外,研制团队还为卫星设计了自主化运行方式,卫星可以自主判断海洋、陆地、光照条件等,自动规划探测任务。
  • 大族激光 — 世界知名激光设备制造商选用雷尼绍RGH24光栅反馈系统
    多年来,大族激光研发并生产了一系列激光设备,不断满足世界工业对激光应用的各种需求。为迎合中国国内市场的急速发展,大族激光一直在积极地寻求高质量零件供应商,确保随时为客户提供高精度、便利、耐用的激光设备方案。在本案例分析中,大族激光选择雷尼绍RGH24光栅作为其音圈电机的位置反馈系统。 作为在中国深圳上市的公司,大族激光是一家集技术研究、开发、生产及销售为一体的高科技企业。它在世界激光行业中处于领先地位,年出货量高达10 000台!其旗下拥有众多子公司,包括大族电机科技有限公司,大族数控科技有限公司等,为不同领域的客户(如诺基亚、大众汽车等国际企业)提供专业的激光设备和应用方案。公司产品齐全,如激光打标机、切割机、焊接机、电机配件等。大族激光通过自主研发把&ldquo 实验室装置&rdquo 变成可以连续24小时稳定工作的激光技术装备,是世界上仅有的几家拥有&ldquo 紫外激光专利&rdquo 的公司之一。 2004年至今,大族激光从雷尼绍购买了10 000多套光栅系统,广泛应用于各类产品上。 大族激光集团总部 激光打标机内的音圈电机 音圈电机的工作原理是将电信号转换成机械力,当永磁磁铁之间的线圈通电时,磁场改变,从而产生力,产生的力会驱动永磁磁铁之间的线圈组运动;通过控制电流大小,可使线圈在永磁磁铁之间来回移动,从而产生线性运动。与其他电机不同,音圈电机具有一流的线性特性,例如直接驱动、零齿槽刀、轻动子高响应和带宽、动子及定子无磨损等。&ldquo 直接&rdquo 驱动的特性使音圈电机广泛应用在一些距离短但需要较高加速度的直线运动的场合。大族激光旗下的大族电机不但把音圈电机在市场上作为零件出售,还将其广泛应用在集团生产的激光打标机上。 研发部总裁王光能先生说:&ldquo 打标机需要在材料上打出立体效果的标签,我们必须通过运动反馈系统来控制镜子,在极短的时间内引导激光定位到相应位置上,雷尼绍正好能提供这方面的产品。&rdquo RGH24读数头通过光学原理在光栅尺上读取数据,与接触式系统相比,这种非接触式设计能够使音圈电机在位置控制上高速运转,并保证了高重复定位精度。除了应用在激光上之外,音圈电机还可以用于医疗检测仪器、精细位置控制和电脑硬盘生产等等。 音圈电机工作原理 音圈电机体积轻巧 音圈电机是一个理想的线性促动器,在短距离(微米到厘米)位置控制上具有极佳的效果。雷尼绍光栅尺安装在音圈电机活动部位上,读数头则被固定。由于音圈电机需要保持其高输出/重量比例数值,因此光栅尺必须轻巧,以维持最高加速度。王总说:&ldquo 我们在选择光栅尺的时候,尺子的重量是我们考虑的首要问题。通过比较几家供应商的产品,我们发现雷尼绍RGS20光栅尺十分轻巧,满足需要的同时,又不影响电机的效率。&rdquo 雷尼绍RGS20光栅尺使用轻巧材料制成,厚度仅0.2 mm,在音圈电机上几乎是不载重量,完全不影响电机的快速运转。由于使用音圈电机的机器空间一般都比较有限,因此包括电机位置控制的部分要尽量设计得轻巧。设计师在市场上选择读数头时需要考虑体积问题,读数头必须能够固定在狭小的空间内,配合光栅尺运动,从而控制电机位置。 王总说:&ldquo 在市场上同类产品中,雷尼绍读数头设计轻巧,质量和体积都能令人满意,并且其他性能不受影响。&rdquo 王光能 大族激光打印机安装简单 一般光栅系统的安装过程主要包括三个步骤:安装和固定光栅尺、安装读数头以及校准。王总说:&ldquo 雷尼绍光栅系统的整个安装过程十分简单,看过雷尼绍工程师安装一次后,我们的第二台机器就能自己安装了,而且过程快捷便利,看了指示灯就能知道安装过程是否正确。&rdquo 雷尼绍RGS20光栅尺成卷存放,用户在使用时可根据用途自行裁剪所需要的长度。在大族激光的音圈电机设计上,行程距离只有10到20 mm,王总说在市场上找到相同尺寸的光栅尺比较困难,而按需裁剪的设计解决了这一难题,为他们带来了便利。 王总继续说:&ldquo 我们不需要打孔或其他工具辅助,只要把光栅尺背面的双面胶撕掉,贴在预先定好的位置上就可以了。这种设计使我们能够根据需要灵活应用,我们可以自己裁剪光栅尺的长度来决定电机的行程距离,完全不受供应商的限制。&rdquo 此外,雷尼绍读数头上装有专利LED指示灯,使安装和校准过程变得简单快捷。用户通过观察LED指示灯的颜色,便可知道安装是否成功。 RGH24展望 自2004年至今,大族激光与雷尼绍合作已有8年时间,展望未来,王总说:&ldquo 我们大族会在激光行业中继续开发新产品和技术,为客户提供高质量的激光设备;同时我们也会在其他领域,如LED、太阳能等新能源课题上投入资金进行研发。希望在不久的将来,大族能成功开发出与激光设备一样出色的产品,为全球用户提供可信赖、高品质的工业设备。&rdquo -完- 如需了解雷尼绍更多产品,请访问www.renishaw.com.cn 关于雷尼绍英国雷尼绍公司于1994年在北京开设了第一个办事处,并于2000年在上海设立了办事处。目前,在中国共设有三个分公司和八个办事处,员工近百人。公司产品广泛应用于机床自动化、坐标测量、快速成型制造、比对测量、拉曼光谱分析、机器校准、位置反馈、形状记忆合金、大尺寸范围测绘、立体定向神经外科和医学诊断等领域。雷尼绍集团目前在32个国家或地区设有分支机构,员工逾3000人。 -完-详情请联系: 张晶 (Grace Zhang) 市场助理Marketing Administrator 雷尼绍(上海)贸易有限公司北京分公司 电话: +86 10 510882882 *1001电邮:Grace.zhang@renishaw.com
  • 欧美克激光粒度仪应用体验的高速发展
    商用激光粒度仪从上世纪70年代面世以来,仪器的光学设计、各光电部件的规格和品质、样品适应性的干湿法进样系统性能、反演算法等方面均得到不断的进步。随着测量技术不断迭代升级,测试范围和灵敏度也在不断提高,加之激光粒度仪具有的测试范围宽、样品适应性广、测试过程便捷快速、维护需求少、重现性佳等优点,近些年其不断获得众多颗粒相关行业认可,逐步大量地取代了传统筛分、沉降、显微图像等方法成为了颗粒粒径分析和质控的主流仪器。随着技术的日臻成熟,用户对激光粒度仪的期待也逐步从复杂的科学仪器到简便的测量工具的转变。自2010年欧美克加入思百吉集团(Spectris plc.),成为马尔文帕纳科(Malvern Panalytical)的子品牌后,欧美克秉持集团公司以客户为中心的价值观,在新粒度仪开发中不仅着力于引进诸如低杂散光高动态范围光学设计、一体化多探测器工装装配工艺、双色光源全散射角覆盖、高精确度反演算法等等国际先机技术和工艺,同时针对客户测试应用和管理体验的实际需求也进行了重点的开发和改善。在一系列仪器的开发升级中除了始终保持高性能外,亦将与用户仪器应用体验息息相关的更高水平的自动化、智能化、标准化、易操作、少维护、好管理、更安全及友好的数据分析和报告输出等作为重要的发展方向和目标,使得以OMEC LS-609、Topsizer等为代表的系列激光粒度分析仪不断完善,在具有良好的测试性能同时满足用户的多种不同个性化需求,在简便了用户的日常操作维护管理的同时提供了更佳的使用体验。本文试着逐一地举例向读者简要介绍。测试与使用自动化针对越来越多企业使用激光粒度仪进行质控,许多实验室测样量大,技术人员工作负荷高的现象,欧美克在仪器硬件设计上不断增加了自动化控制功能,例如以自动对中或对中智能判断的主机搭配主流的SCF-105B全自动湿法进样循环系统、DPF-110自动化干法进样系统均可以实现一般测试全流程的软件自动化控制。通常情况下,用户仅需要按软件提示将多个干湿法样品依次加入到样品池,仪器可以对这些样品进行自动进样,自动分散,自动测量,自动输出测试报告结果的处理,同时仪器在测试结束后还可以自动进行清洗,多个样品批量测试过程已经被简化。湿法、干法进样器控制面板如上所述,针对质检人员的日常工作,软件专门设计了SOP(标准作业程序)功能,仅需两步(运行程序?加入样品)即可完成高质量粒度测试。软件同时搭配超阈值警告功能,系统根据测试结果自动进行特征粒径结果的阈值分析,直接给出样品是否符合设定的质量阈值的提示。操作者无需查看具体结果数值就可以轻松快速根据警示页面判断样品是否符合质控要求。智能化仪器智能化的目的主要是解决粒度仪测试时由于操作者忽略的仪器状态或加样错误等原因导致的结果的偏差。例如:欧美克开发了对中状态智能判断功能,开启后软件可以自动进行仪器背景状态和光学对中进行判断,根据判断结果自动采取对中或进入测试下一步的操作,为用户节省了大量的时间并延长了对中机构的寿命。在湿法测试中,加样量的智能识别和调整功能,系统会自动识别判断加样量,根据需要提醒操作者继续加样至满足要求或是在加样过量的情况下自动控制调低样品量后进行测量。在干法测试中,智能下料状态动态分析功能可以对流动性不佳样品下料的稳定性自动判断,同时将超量下料和下料中断时的光能信号和测量时间等进行自适应调整。以上的智能化功能保障了测试结果的可靠性,极大减少了测试分析人员的不熟练或疏失的影响。欧美克LS-909激光粒度分析仪同时,在粒度仪智能化设计中,多种影响测试因素的感知和自主分析功能是重要的一环。例如欧美克的干法测试系统皆含有直接定位于分散管的正压传感器及定位于窗口后方的负压传感器,相对于传统的仅对分散压输入处的压力控制,智能系统能对干法分散全过程的压力条件得到最真实的记录和控制,并使得仪器可以智能化自主判断仪器状态和测试数据的可靠性,有力保障了仪器长期使用分散测样条件的一致性和测试结果的重现性,使得原料药、制药及精细化工等行业方法的迁移,测试条件的追溯都有据可循,同时避免了欠压状态测试结果错误的影响。LS-909还带有自适应噪声抑制智能算法,能对探测器信号进行多次反演后进行原始功能自适应匹配修正再分析,有效的提高了仪器分析动态范围。此外,欧美克中高端粒度仪还具有折射率(包括实部和虚部)的自动分析计算等功能。可以通过结合多次取样测试结果的自动智能分析,给出推荐参数。标准化仪器的标准化包括仪器生产工艺和仪器测试条件的标准化,对于粒度测试结果的重现性是至关重要的。早先的激光粒度仪不同仪器之间的一致性较差,这主要是由仪器的多个光学部件在生产装配时的相对位置一致性不佳及杂散光水平不一致造成的。欧美克新的系列激光粒度仪在生产工艺上采用了一体式工装,包括主探测器、侧向、大角及后向探测器的所有探测器都由工装一次性定位,同时在所有探测器上设置仅对窗口颗粒开口的光学屏蔽罩,极大的减少了系统杂散光的干扰,保障了同型号不同仪器之间的测试结果的一致性。LS-609一体式工装定位大角探测器组同时进样器颗粒进样、分散的一致性也得到充分的考量和改进,例如:在开发湿法循环进样器SCF-105B的时候,面对传统电流控制离心泵转速精确度较低的问题,我们在进样器中加入了电机测速装置,通过数字反馈控制电机精确运转,从而保障了泵速显示真正的所见即所得,使得不同进样器之间的分散条件一致性得到提高,也保障了不同粘度介质测量的泵速数据真实可靠。又比如上章节提到的干法进样系统分散压传感器和负压传感器,使得粉体在下料后的全测量管道内状态精确可控,对于测试方法开发确定压力条件及测试中的欠压异常的甄别都有极大帮助。结合主机和进样系统的智能感知、精密控制功能,欧美克现代激光粒度仪真正实现了加样后全流程的测量方法和测试条件的标准化,当经过方法开发的这些对样品的条件被以SOP文件的方式固定下来后,只需要拥有最基本电脑操作和测试常识的操作人员均可以胜任标准化测试工作,同时测试过程条件的数字化记录可以随时用于追溯。欧美克SCF-105B、SCF-108A全自动湿法进样器欧美克DPF-110干法进样器易操作得益于高性能自动化智能化标准化的粒度仪开发,使得粒度仪可以满足用户高精确方法开发、低人工操作需求的标准化测试,逐步向高精密、傻瓜化的方向同时发展。针对粒度测试方法开发人员,欧美克粒度仪使用的集成粒度测试软件内置的大量数据分析筛选比对功能模块,例如除了拥有每个测试的独立报告外,系统还能够自动将多个测试的结果以统计数据图表呈现。且根据需要可以对这些数据按各种测试相关条件进行分类、筛选和排序。根据方法开发中大量数据统计和对比的需要,软件中同时集成了多报告的统计、比较和特征粒径趋势分析功能,通过这些功能使方法开发者可以轻松获得可视化过程结果,以用于测试条件的快速判断和决策。此外,软件还具有一键导出SOP功能,直接将方法开发中理想的测试条件,通过测试记录快速保存为标准化的SOP测量文件。现代化的欧美克集成粒度测试软件采用迭代开发模式,不断的进行优化和升级,不仅具有时代潮流风格的软件UI界面,其针对用户的文件操作、测试操作、数据分析等常见操作行为,进行分类分区图标化管理。在用户需要的大多数操作均可以以快捷按钮一键执行之外,我们通过大量用户操作行为分析,新的版本还将大量用户测量需要执行的多个连续操作进行合并,使其一样可以一键化执行,例如通过将常用SOP直接显示在操作面板上,用户仅需要双击软件测试面板上的SOP文件图标就可以执行完整的多样品测试,再比如传统手动测试需要的加介质、开启泵速循环、排气泡、对中、测背景等常规准备操作亦可以一键式点击仪器测样前准备按钮实现。欧美克Topsizer激光粒度分析仪
  • 新品发布 | 激光散斑血流成像系统RFLSI Ⅲ全新来袭
    第三代激光散斑血流成像系统RFLSI Ⅲ-新品来袭-通过不断创新迭代,瑞沃德新一代激光散斑血流成像系统新增诸多实用功能,带给你超凡使用体验!01超高2K分辨率(2048 × 2048)带你清晰观察肠系膜第五分支血管肠系膜02最高帧率可达140帧/秒快速记录每一次心脏跳动点击视频查看心脏区实验结果03超强12倍光学变倍轻松应对从颅脑到双侧下肢各类使用场景04采用万向支架随心调整仪器05同时展示实物图、散斑图、伪彩图互为参照,同步调整06离线模式无加密系统摆脱加密狗“控制”07可获取原始图片利用第三方软件分析数据08提供相关配套实验设备购买更省心09完善的售后服务体系及时响应客户需求给你全新使用体验用户评价实验数据在新品上市之前,已有多位老师试用RFLSI Ⅲ激光散斑血流成像系统,十分感谢老师们为我们提供的宝贵意见,以及反馈的诸多实验成像图:颅脑耳朵双侧下肢目前试用客户遍及北京、上海、深圳台湾、美国、欧洲等相关单位试用申请即日起扫描下方二维码,就有机会试用瑞沃德新一代的激光散斑血流成像系统。申请须知1.请填写有效联系地址和联系方式2.试用结束后,提供试用报告提交申请后7个工作日内我们的工作人员会与您联系更多产品详情,可咨询:电话:0755-86111286-8303邮箱:rwd@rwdmall.com产品地址:https://www.rwdls.com/product/imaging/case2/
  • Quantum Design中国引进高性能激光浮区法单晶生长系统
    浮区法单晶生长技术在晶体生长过程中具有无需坩埚、样品腔压力可控、生长状态便于实时观察等诸多优点,目前已被公认为是获取高质量、大尺寸单晶的重要手段之一。激光浮区法单晶生长系统可广泛用于凝聚态物理、化学、半导体、光学等多种学科领域相关单晶材料制备,尤其适合高饱和蒸汽压、高熔点材料及高热导率材料等常规浮区法单晶炉难以胜任的单晶生长工作。Quantum Design中国引进的高性能激光浮区法单晶生长系统,传承了日本理化研究所(RIKEN,CEMS)的先进设计理念,具有更高功率、更加均匀的能量分布和更加稳定的性能。 图1:RIKEN(CEMS)设计的五束激光发生器原型机实物图2:RIKEN(CEMS)设计的同源五束激光发生器原型机原理图 与传统的激光浮区法单晶生长系统相比,新一代激光浮区法单晶炉系统具有四项技术优势:● 采用技术五束激光设计,确保熔区能量分布更加均匀;(号:JP2015-58640)● 更加科学的激光光斑优化方案,有助于降低晶体生长过程中的热应力;(号:JP2017-136640, JP2017-179573 )● 采用了特的实时温度集成控制系统。(号:JP2015-78683 ) 采用新一代激光浮区法单晶炉系统生长出的部分单晶体:(图片由 Dr. Y. Kaneko (RIKEN CEMS) 提供)Sr2RuO4Ba2Co2Fe12O22SmB6Y3Fe5O12 新一代激光浮区法单晶炉系统主要技术参数:加热控制激光束源5束同源设计激光功率2KW熔区可实现高温:~3000℃*测温范围900℃~3500℃温度稳定性+/-1℃晶体生长控制晶体生长大设计长度150mm*晶体生长大设计直径8mm*晶体生长大速度/转速200mm/hr 40rpm样品腔真空度/压力10-4torr to 10 bar样品腔气氛O2/Ar/混合气晶体生长监控高清摄像头晶体生长控制PC控制其它占地面积D140 xW210 x H200 (cm)除此之外,Quantum Design还推出了多款光学浮区法单晶炉以满足不同的单晶生长需求。高温光学浮区法单晶炉:采用镀金双面镜以避免四镜加热带来的多温区点、高反射曲面设计,高温度可达2100-2200摄氏度,高效冷却节能设计不需要额外冷却系统,稳定的电源输出保证了灯丝的恒定加热功率。适用于生长高温超导体、介电和磁性材料、金属间化合物、半导体/光子晶体/宝石等。德国SciDre公司的高温高压光学浮区炉:能够提供2200–3000℃以上的生长温度,晶体生长腔可大压力可达300Bar,甚以及10-5mBar的高真空。适用于生长各种超导材料单晶,介电和磁性材料单晶,氧化物及金属间化合物单晶等。Quantum Design中国期望能够给予浮区法晶体生长技术的科研学者更多的支持与帮助!
  • 2015全球激光细分市场解读 仪器相关市场将达6.62亿美元
    市场细分  通信和光存储仍然是激光产业最大的细分市场,然后是材料加工和光刻激光器市场部分。对于2014年,医疗和美容激光产品销售总额仍然大于仪器和传感部分,最后是科研和军事细分市场。  通信和光存储  光存储市场疲软继续阻挠通信和光存储整个激光产品市场上扬 然而,通信部分激光器的销售额正蓬勃向上。基于PIC的通信网络系统供应商Infinera将之称为 &ldquo T比特时代&rdquo 并报道称相比于2013年同期销售额1.42亿美元,2014年第三季度销售额增长至1.74亿美元。LightCounting称2014年第二季度光收发器的全球销售额达11亿美元,连续五个季度增长。  2014年通信和光存储激光产品市场营业收入达到35.15亿美元,预计2015年增长2.8%达到36.15亿美元。尽管2014年大多数通信激光供应商的财务状况是良好的,但是戴尔的Oro集团预测2015年通信设备投资支出将会下降,原因是高级移动设备渗入、移动数据增长缓慢、缺乏新的收入来源以及发展中和未开发市场的竞争加剧。然而考虑到光通信正推动&ldquo 物联网(IOT)&rdquo ,这种预测令人相当费解:为了远程监控和诊断实现云连接,还有一大堆没有被命名的&ldquo 智能&rdquo 应用。  &ldquo 从铁路和电网采用的联网系统到连接个人终端的网络交换机客户端设备,无线设备,Cisco公司和Intel使Predix分布于终端,甚至在一些最苛刻的条件下,&rdquo 通用软件副总裁Bill Ruh在一个新闻发布会上说,并描述了在IoT世界软件和硬件如何惬合在一起。  Cisco系统董事长兼首席执行官John Chambers在2014年国际消费者电子展览上发表主题演讲,报道&ldquo 涉及IoT的价值&rdquo 达19万亿美元,并描述IoT如何使城市智能化,例如,通过更加智能化的公共建设投资获得直接的回报。  无论你把它叫做物联网或是干脆称为&ldquo 智能工具&rdquo ,对于光电子,尤其是激光产业来说,都是信息引擎的&ldquo 燃料&rdquo 。你能想象互联网是如何快速响应Gartner公司49亿连接设备实现无缝管理的吗?这些设备将在2020年增加到250亿台。  材料加工及光刻  2014年工业激光系统占全球机床销售的14%,所以毫无疑问世界制造业的健康发展意味着整个工业激光产业的健康状况。预计2014年机床消费增长在5%~7%的范围内,工业激光系统市场有望在此范围内。  在工业激光市场方面,中国的首要任务是重塑他们的经济提供更多内需,减少对出口的依赖以及对资本密集型的国有企业的投资。处于经济衰退领域的欧洲制造业开始出现复苏的迹象,即使德国的制造业一直温和增长。在北美地区,随着经济的好转,美国市场变得&ldquo 五光十色&rdquo ,2015年住房和住宅实力增长,能源热潮至少持续至未来三年。金砖四国被预计将推动2014年工业激光市场发展,但因俄罗斯和巴西的停滞不前以及中国和印度经济放缓而表现不佳。至于2015年,国际货币基金组织(IMF)使公众注意美国、印度和英国是最有可能实现正增长的地区,同时警告全球资本投资的增加。  随着2014年的结束,用于制造业的工业激光市场的整体销售超过26亿美元,与2013年营业收入相比增加了6%(见表1)。2014年,用于材料加工应用的光纤激光器占全球激光器市场总营业收入的29%,仅次于通信应用领域的激光器市场部分(32%)。全球制造业的变幻莫测使激光在光电子领域紧随其后。  显而易见的是光纤激光器持续强劲增长的影响,在损害固态和CO2激光器市场的前提下,在整个工业激光市场的份额增长到了36%。作为最大的创收类别,光纤激光器行业是工业激光解决方案每年市场调查备受瞩目的部分。  光纤激光器作为动力源在金属切割方面的应用,尤其是在板材切割方面,系统的造价超过65万美元,2014年的营业收入超过13亿美元。加上高功率CO2激光器在同类应用的收入使整个资本设备的投资接近40亿美元,是2014年所有工业激光系统的销售的三分之一。  2014年同样值得注意的还有占整个市场份额13%的高功率二极管。这种相对新颖的市场产品主要用于在线应用,例如钎焊汽车的顶部以及其他金属部件。静静地,这一高效激光器雕刻出了一个利基市场。  高亮度高功率直接二极管激光器作为光纤激光器在金属板材加工方面的代替者,切割的质量和速度完全可以与等功率的光纤和盘形激光器媲美。虽然其销售量微乎其微,但是2014年其利润率相当可观。  随着光纤激光器继续无情的渗透到成熟市场,如打标市场,使固态激光器的销售额下降。7.5亿美元以上的打标/雕刻系统市场由低功率光纤激光器和封离式CO2激光器分别占据。后者用于非金属雕刻是相当安全的,由于波长的兼容问题。持续的固态激光器收入是快速接纳工作在兆瓦峰值功率状态、皮秒和飞秒脉冲宽度的超快(或超短脉冲)激光器,集中在微材料加工应用,例如,智能电话和平板电脑的器件加工。工作在非常短的脉冲宽度的光纤激光器在争夺这一市场份额,一些分析师推测,微加工有可能是这些激光器的下一个增长点。一些研究将近期超快脉冲激光器市场定在4.5亿美元。  然而在涉及微材料加工问题上,激光添加剂制造(AM)领域的强劲增长促进了固态激光器和光纤激光器的收入增加。沃勒斯联营公司表示,2013年AM增长超过63%,其中37%营业收入来自于3D和AM零件最终产品而不是原型。在关于AM的航空航天供应的调查显示,27%的公司已经使用,10%预计未来一年内使用,37%预计在未来五年内使用。随着公司挑战AM的&ldquo 极限&rdquo 激光加工将乘风破浪。  大型材料加工应用除了激光切割占高功率激光器营业收入的25%。领先收入增长10%的市场是用于焊接应用的光纤激光器和CO2激光器,主要集中在汽车行业。光纤激光器供应商预计焊接是未来几年一个不断扩大的市场。  总结2014年工业激光市场,打标同比增长4% 微材料加工增长14% 大型材料加工扩大8%。材料加工整体销售增长6%。  正如前面提到的,对于工业激光器的预测将遵循全球机床行业同样温和增长趋势。2014年11月澳大利亚的G20峰会以后,英国首相卡梅伦说:&ldquo 世界经济亮起了红灯&rdquo 。受采访的工业激光及系统供应商的普遍共识是2015年将继续2014年的增长势头,预计增长比例在5%左右。这与许多专家经济分析师预测降低GDP的国际经济缓慢增长、大多数先进、规模扩大和新兴工业化经济体相一致。  这一增长将再次由光纤激光器领导,但是增长率略低于2014年。光纤激光器有望继续侵蚀CO2和长脉冲固态激光器的市场份额。超快脉冲固态激光器将经历由大型加工应用包括AM在内的重要销售增长。高功率激光器在金属切割方面应用将稳定在一个比较稳定的个位数增长速度上,但是用于焊接的激光器预计在2015年增长两位数。  医疗和美容  医用激光器的重要性由以下2014年公告表明:长春新产业出品的用于光遗传学的2000MxL系列激光器(波长在405~671nm)出货量创下历史记录 相干公司推出其第2000台变色龙系列激光器用于多光子显微镜 英国Fianium公司交付了第 1000台超连续激光器,不断提高其性能用于超快光谱、近场成像和显微镜。  &ldquo 我们将完成本财年医用激光系统30%的营业收入增长,现在的生物医学系统集成商和制药公司正在寻找完整的解决方案而不局限在器件,&rdquo Modulight公司的总裁兼首席执行官Petteri Uusimaa说,&ldquo 通过提供终端到终端解决方案,我们已经签署了一些多年合同,并在2014年使我们的生命科学业务翻倍。&rdquo   2014年,外科、眼科和美容激光销售额分别增长13%、9%、8%,2014年医用和美容激光器市场销售额为7.45亿美元,预计2015年增长9%超过8.15亿美元。  虽然2014年牙科用激光器销售额只增长了1%,超快激光器改变了这一增长比率。&ldquo 现在的Er:YAG和CO2微秒和纳秒脉冲牙科激光器的能量太高,激光与组织作用时间太长,需要提供必要的热和应力限制,以防止微裂纹、术前和术后疼痛,并/或在牙科应用中电离水分子引发癌症,&rdquo 德国特劳恩施泰因山的执业牙医Anton Kasenbacher说,&ldquo 超短脉冲皮秒激光器高速扫描自动对焦反馈实现高烧蚀率,减少口内抽吸的次数,并允许使用单个系统进行治疗和诊断,控制生物安全非线性光子吸收。&rdquo   Kasenbacher说考虑到2011年美国估计有154000所牙科诊所,产生了近 1080亿美元的收入,牙科用激光器的未来销售潜力是巨大的。  在激光美容领域,Cynosure公司2014年第三季度的营业收入与去年同期相比增长18%达到7150万美元。而欧洲的收入增长只有17%,美国营业收入增长17%,最大的增幅46%来自亚太地区。销售增长主要是因为FDA和其他政府批准Cynosure公司的PicoSure产品用于良性病变、痤疮疤痕、纹身和祛皱。  Cutera公司2014年第三季度营业收入增长11%达到1870万美元 Lumenis公司2014年第三季度营业收入7420万美元,与去年同期相比增长9.4% Syneron-Candela公司2014年第三季度营业收入增长8.3%达到6030万美元。在所有的情况下,公司将增长归因于FDA授权以及全球对激光治疗的强大接受度。2014年以后,许多公司开始增加激光去除脂肪技术,这是明智之举,ABC新闻报道每年美国有1.08亿节食者大约花费200亿美元用于减肥。  仪器与传感  &ldquo 目前,超分辨率显微镜是激光仪器市场最有活力的部分,&rdquo 国际战略方向咨询服务的副总裁Mike Tice说,&ldquo 虽然激光扫描共聚焦显微镜已经存在了几十年,过去十到十五年发明的新技术正在大力商业化,诺贝尔化学奖最近又奖励了两项特殊技术&mdash &mdash 受激发射损伤STED和单分子显微镜,突破了光学显微镜的衍射极限,这些和其他超分辨率技术的首字母缩略词,如STORM、PALM和SIM,将有助于进一步生命科学研究,&rdquo Tice补充道,&ldquo 历史悠久的激光诱导击穿光谱[LIBS]技术正在经历复兴,作为下一代系统将提供更好的性能,一些LIBS的供应商将LIBS装配成手持式装置拓宽其应用范围。&rdquo   除了显微镜和能谱检测仪器,光学相干断层扫描(OCT)系统随着应用的增长在尺寸上持续缩减,在这种情况下,OCT正在超越眼科基础。2014年2月,Axsun技术公司,Volcano集团的全资子公司,从英国Michelson Diagnostics收到了扫频激光光学相干断层扫描(OCT)引擎的一笔大订单,将为Michelson的Vivosight多光束OCT系统提供动力。Michelson称Vivosight是第一个高清晰度肌肤成像OCT扫描仪,可进行非黑色素瘤皮下组织结构的皮肤癌诊断。  在传感领域,物联网应用和智能小工具将使激光制造商保持忙碌几十年。此外,激光器销售直接受益于美国石油和天然气的繁荣。2013年花在分布式光纤传感器的费用是5.85亿美元(预计2018年将达到14.6亿美元),根据2014光子传感器协会发布的消息,70%的销售额与石油和天然气市场细分相关。我们预测,分析、传感器、仪器仪表和生命科学激光市场预计在2015年增长7.5%达到6.62亿美元,轻松超过科学研究和军事细分市场的组合总销售额。  科学研究和军事  &ldquo 虽然全球经济环境疲软、汇率贬值滞缓了去年增长,我们仍然预测用于研发的DPSS和二极管激光器的销售额增长30%,包括LIBS、拉曼检测、光谱仪和粒子成像测速应用,&rdquo 长春新产业光电技术有限公司的销售经理刘天虹(音译)说,&ldquo 公司成立于1996年,生产的第一台激光器用于低端应用。现在,集成脉冲调制和客户定制光纤传输使我们可以为客户提供满足科学研究要求的激光器。&rdquo   AdValue光电子公司主要面向科技研发市场销售,计划2015年的营业收入增长达30%~50%。AdValue业务发展总监Katherine Liu说,&ldquo 虽然我们的连续波光纤激光器产品面临着市场的日益竞争,我们的2&mu m脉冲光纤激光器用于非线性光学和材料研究获得一致好评。&rdquo   激光物质相互作用研究继续推动大量研发激光器销售。2013年2月,Lasertel公司从利弗莫尔国家实验室获得500万美元合同,为极端光基础设施ELI束线设施供应兆瓦级泵浦激光器模块。  美国联邦采购数据分析显示与2012年相比,2013年国防部因扣押消费合同类经费下降16%,研发类经费下降最多为21%,2014年持续下跌。  然而,全球范围内HIS简氏防务预算年度回顾说,2014年国防支出将增长0.6%,达到15470亿美元&ldquo 推动2016年复苏&rdquo 。  Strategies Unlimited预测2015年科技研发和军事激光市场销售额达5.72亿美元,Frost & Sullivan公司航空航天和国防高级产业分析师Brad Curran预估激光瞄准指示器市场每年销售额为1.5亿美元,定向能武器市场为5000万美元,雷神、洛克希德马丁和波音公司领导这一市场。  雷神公司最近获得了1100万美元合同开发悍马车载DEW,波音的薄盘激光技术正式以30kW输出进入DEW阶段。Curran说虽然目前市场前景很平缓因大量武器平台削减,但长期来看DEWs的军事应用开销还是会上升。  娱乐和显示  2013年底,Christie公司为西雅图全景电影剧场提供并安装了世界上第一个商用数字激光投影仪。全景电影观众观看2014年11月20日放映的&ldquo 饥饿游戏:自由幻梦(上)&rdquo 是由4k、60000流明、6P双头投影照明,虽然人们观影后大多谈到了啤酒和巧克力爆米花而非图像质量,尽管如此,像&ldquo 数字电影激光战&rdquo 2014国际视听展这样的会议已经看不到什么新奇产品,但是未来高流明度、高可靠性、低消耗成本以及高能效激光娱乐产业将会蓬勃发展。  &ldquo 这是令激光照明产业兴奋的一年,&rdquo Necsel公司的销售和市场副总裁兼激光照明投影仪协会主席Greg Niven说,&ldquo 见证一个全新细分市场的诞生是不常有的事情,数以百万双眼睛将看到高功率可见光激光器进入大型场馆投影仪和低流明办公室数字投影仪市场。这不仅仅是基于激光的各种照明应用的新开始。&rdquo   所以等你体验过激光影院之后,前往南部海岸线激光标签总部华盛顿如何呢?公司为你将激光游戏从每小时每个游戏15美元降到了公司到你所处位置每英里 1.12美元。他们的金属激光枪使用红外激光器和传感器作指示,当一个玩家被标记,一些使用可见光激光器(限于室内效果的低功率连续波红或绿光可见光激光器指示器)的玩家就可以看到栩栩如生的射击效果。  随着激光影院市场的渗透和激光标识游戏的多样化,激光照明显示市场的营业收入持续固定增长。事实上,许多城市正在考虑&ldquo 消灭&rdquo 污染,即烟花汇演产生的固体垃圾也将有利于激光灯光秀的发展。随着所有激光娱乐市场的发展,我们预测2015年娱乐和显示应用的激光市场将增长近11%达到1.97亿美元。  成像  从2013年到2018年,CCS公司称打印机出货量将从1.06亿台增加到1.24亿台(同比年增长率3.1%),其中多功能喷墨打印机占总出货量的50%。增长速度最快的打印机类型是激光多功能打印机,到2018年增长到3000万台(占所有打印机出货量的25%)。  尽管出货量增加了,打印机价格持续下跌,残酷的价格竞争侵蚀了销售额增长势头。至于2015年,预计用于成像应用的激光市场将由2014年销售额6700万美元下降到6600万美元。
  • 科技创新,镜无止境——奥林巴斯2017激光显微镜新品(武汉)发布媒体见面会举行
    pstrong仪器信息网讯/strong 十一月的长江边,金风送爽,秋景宜人。2017年11月3日,奥林巴斯(中国)有限公司在武汉万达威斯汀酒店隆重召开了激光显微镜新品发布会。上午,奥林巴斯(中国)有限公司 科学事业统括 市场营业本部 副本部长 赵新安、市场战略部 部长 佐藤巧人、营业一部 产品经理 徐圣救与十多家媒体记者分享了奥林巴斯在中国的市场战略、经营理念与新产品的技术应用等情况。/pp style="text-align: center"img src="http://img1.17img.cn/17img/images/201711/insimg/ed5f7132-8bc3-45c7-b612-dd02f78d4125.jpg" title="媒体见面会1.jpg" style="width: 600px height: 400px " width="600" vspace="0" hspace="0" height="400" border="0"//pp style="text-align: center "strong现场掠影/strong/pp  奥林巴斯于1919年诞生于日本,以医疗、映像、科学三大产业为支柱,工业领域提供四大产品:工业显微镜、工业内窥镜、无损检测仪及XRF& XRD分析仪。经历了近百年的沉淀与历练,奥林巴斯已经发展为一家卓越的光学科技企业。随着中国工业科技地不断进步,科研与生产对产品、技术呈现诸多需求。在这种情况下,奥林巴斯慢慢开拓了中国市场。/pp  这次OLS 5000 3D测量激光显微镜新产品是奥林巴斯近五年来研究的成果,也是奥林巴斯激光显微镜的第十代产品。OLS进入中国市场已有十多年,在此过程中,奥林巴斯跟材料、电子半导体、汽车等行业的中国客户都有合作,在了解到很多中国客户的需求后,把这些问题充分地反馈给日本的研发部门。因此,这次OLS新产品针对处理速度、分辨率、检测样品的尺寸等方面都有了很大的提升。/pp  在研发OLS 5000时,奥林巴斯充分考虑了分辨率提高但可能降低检测速度,或者检测速度提高但可能使分辨率下降的问题。这一次激光显微镜的扫描器采用新的硬件,另一方面在软件上采用了新的算法,在保证了分辨率的同时提高了检测效率。/pp  此外,OLS 5000有一些新的配置。标准的机架最高只可以放置100毫米的样品,而OLS 5000的机架可以放置最高210毫米的样品,比以前高出了一倍多。 /pp  同时,一部分样品需要观测的点较深,OLS 5000搭载的激光可以探测到25毫米的深度,激光反射成像,解决了深度的问题。并且,针对短波长的激光可能对一些样品产生影响,OLS 5000需要在保证设备检测需求的前提下,尽可能地把它的功率降到最低。所以现在输出的光率是0.9mW,对样品几乎没有什么损伤。/pp  作为一个三维形貌的检测仪器,OLS 5000有卓越的三维形貌反映能力,有更快速、操作更方便的优势。针对目前所面临的汽车、半导体、材料、机械、重工设备、石油、地质等各个行业的需求,都可以提供有效的服务。奥林巴斯激光显微镜十年前的主要客户是科研市场,比如大学、研究所和材料行业。随着社会发展和制造业的提升,现在的制造业与原来相比要求更精细,同时要求效率与速度。这款产品的精度、测量性能更好,测量速度也有所提升。目前这款产品的目标客户,一方面是奥林巴斯现有的科研和材料行业的客户,另外一方面会更多地向制造业延伸,比如电子半导体、汽车行业、综合制造等高端客户。/pp  在半导体行业,现在半导体行业的芯片不仅包括消费电子的小型半导体芯片,还逐渐扩展到了汽车行业的半导体芯片。行业对检测方面的要求越来越高,检查的尺寸越来越小,检查的量越来越大,同时对测量的智能化要求越来越高。近几年中国的半导体产业飞速发展,预计今后随着物联网、云科技、新能源汽车等发展的需求,这一趋势会持续下去。针对这一趋势,奥林巴斯近几年陆续推出的BX系列、STM系列、MX系列,以及这一次的激光显微镜新产品,共同构成了半导体检测行业比较完善的产品线。相信在今后的半导体行业检测领域,奥林巴斯能够提供精度更高、操作更方便、满足更多检测需求的产品和服务。/pp  在电子电路行业,从印刷线路板PCB 的发展趋势可以看到,原先的印刷线路板PCB领域研发用常规的显微镜就可以实现,但随着行业的发展,要求处理更精细化、精度要求也越来越高,同时伴随着工艺流程改进,还不断有新的检测项目需求出现。本次推出的新产品中就有因电路板用户要求而增加的粗糙度测量参数。并且提供了测试条件的保存和调用功能,非常适合于多供应商管理或合作伙伴之间的同一类样品测试比较。奥林巴斯希望与这个行业新老用户有更多合作,可以为大家提供更好的解决方案。在这种情况下,OLS这款产品对精度以及粗糙度的计量检测,特别是在品质管理方面,完全可以达到要求。同时,奥林巴斯跟包括方正、华为在内的一些PCB行业的龙头企业合作,使产品更能针对PCB行业的发展趋势。/pp  奥林巴斯的公司经营理念是“Social IN”,也就是通过诚待社会、创造价值、融于社会,致力于为人们的幸福生活做出贡献。这是奥林巴斯科学事业活动的基础,奥林巴斯通过可靠、先进的产品和技术为大众建立一个安全、安心的社会。/pp  奥林巴斯制定了“To be the greatest Business to Specialist Company“ (译为:与卓越同行)的商业战略——致力于为专业人士提供专业的产品和技术。奥林巴斯充分理解高专业性客户的要求及市场潜在的需求,并能快速提供优质的解决方案以及服务,将那些能够深刻理解公司价值的Specialist(高专业性客户)为目标客户,巩固其所在市场的业务。/p
  • 美国TSI公司激光流体测量仪器培训及技术研讨会
    LDV/PDPA 、PIV及V3V原理、系统构成与典型应用LDV/PDPA 与PIV硬件安装、调试与维护LDV/PDPA 与PIV软件参数设置与使用实验(加湿器与磁力搅拌器涡流实验)激光流体测量技术在消防与发动机喷嘴,汽车外形,飞机机翼,搅拌槽桨片,大型水坝等机械设计与制造,和湍流、边界层等复杂流动的研究中具有越来越重要的作用。TSI公司是专业的流体测量仪器生产供应商。从1984年进入中国,目前已经成为中国市场占有率最高的流体测量仪器厂家。为了提高用户的应用水平,TSI公司特举办此次研讨会,将系统的介绍LDV/PDPA、PIV及V3V原理、构成及应用,还将进行硬件及软件的实际操作培训。 相位多普勒粒子分析仪(LDV/PDPA)是单点、非接触式、高精度与高响应频率的测量工具,利用流体中运动微粒散射光的多普勒频率与相位变化来获得流体一维至三维速度与微粒粒径信息。 粒子图像测速仪(PIV) 通过对比分析一定时间间隔连续拍摄的两张示踪粒子的图像,获得流场中一平面上两维或三维的速度场。 体三维速度场仪(V3V),将激光流场测量技术带入了一个全新的层面,能在真实的流体立方体积内测量完整的体三维速度场。 会议安排2011年6月21日上午:理论培训及讨论:原理及系统构成介绍、系统各部件介绍与典型应用下午:硬件操作培训:LDV/PDPA(激光器安装及激光准直、分光器与耦合器安装、发散接收探头光斑重合度检验及校正、粒径测量探头安装);PIV(激光器操作、相机操作与系统标定) 2011年6月22日上午:软件操作培训:LDV/PDPA(Flowsizer)、PIV(Insight3G)软件参数设置及基本操作下午:实验:加湿器喷雾及磁力搅拌器会议地点北京市蟹岛绿色生态农庄(蟹岛度假村)电话:010-84324910/12地点:北京市朝阳区蟹岛路1号(首都机场辅路中段南侧)签到时间:6月20日中午后交通:北京市内用户可乘641路公交车直达蟹岛度假村东门,或乘10号线地铁于三元桥倒641路到达;乘飞机到达的用户可从首都机场乘出租车直接前往机场辅路中段南侧蟹岛路1号的蟹岛度假村。
  • 西安光机所成功推出三维光纤激光加工系统
    近日,西安光机所瞬态光学与光子技术国家重点实验室成功进行了三维光纤激光加工系统的演示试验,得到在场专家的好评。该系统所使用的500W光纤激光器是由中科院西安光机所新孵化企业西安中科梅曼激光科技有限公司研制。该企业致力于高功率光纤激光器的研发、生产和销售,并可为光纤激光加工系统提供全套的解决方案。现已具备200W~1000W光纤激光器的生产能力,所推出的光纤激光器在切割速度、切割质量等方面与国外同类产品相比具有较强的竞争优势。  三维光纤激光加工系统  500W光纤激光器
  • 卡尔蔡司发布激光层照显微系统
    卡尔蔡司激光层照显微系统(Lightsheet Z.1)  ——低光毒性的大型生物活体样本的三维荧光成像  2012年10月15日  德国,耶拿 / 美国,新奥尔良  在路易斯安那州新奥尔良的神经科学年度会议上,卡尔蔡司的显微镜事业部提出了一项新的显微技术,即激光层照显微镜(Lightsheet Z.1)。这给生物学家带来了在活体生物动态成像研究上的新方法。  生命观察  生物学家可以使用新的显微系统观察整个生物体在几天甚至更长时间内的发育。极低的光毒性和整合的培养系统可以在不损伤样本的情况下观察细胞群的分化。在大型生物活体上,特别是像果蝇或斑马鱼胚胎,相比已有的荧光显微镜观察方式来说,激光层照显微镜(Lightsheet Z.1)可以提供更多的信息。“样本越大,你可以从激光层照显微镜上获到越多的信息。” 德国Max Planck研究所的分子生物学和遗传学博士 Pavel Tomancak说。同时,激光层照显微镜(Lightsheet Z.1)也可被用于海洋,细胞生物学和植物生理学。  Multiview带来的新视觉  激光层照显微镜(Lightsheet Z.1)的光照光束(层照光束)只会照亮样本很薄的一层,因而起到保护样本其他部分的作用。并且它的成像光束与光照层成90度角。 因此,激光层照显微镜(Lightsheet Z.1) 能在最小的照明强度下获得最好的图像质量,尤其适合于活体样本的长期试验。Multiview成像从不同的观察角度获得数据,再通过数学运算进行三维重建和时间序列视频录制。  Lightsheet Z.1的激光层照系统使用了可实现柱面透镜光学与激光扫描相结合的新型光学概念。用户能从复杂的实验样本上得到均匀的光学切片信息。  蔡司激光层照显微镜产品经理Olaf Sslchow博士说:“我相信这种照明方法将会为三维荧光照明带来革命性的改变。”  更多产品信息,请访问www.zeiss.com/lightsheet
  • 中科院“LAMOST激光信标系统”通过验收
    p style="text-indent: 2em text-align: justify "近日,位于河北兴隆国家天文台的“LAMOST激光信标系统”项目通过中科院条财局组织的专家验收,该项目在中科院重大科技基础设施项目的支持下,由南京天文光学技术研究所李国平团队和福建物构所林文雄团队共同合作完成。br/ 林文雄团队研制的绿光激光器作为LAMOST的核心部件——激光信标,在12公里附近产生一颗处于望远镜中心视场的7等左右的激光星,通过对大气分子的瑞利散射光波前进行采样,获 得望远镜的面形数据并传递给促动器,实现了望远镜的主动光学校正。br/ 在激光器研制过程中,为了克服超长激光谐振腔的光学畸变问题,创新性采用时序控制及4f像传递技术,突破了一般工业用途激光器20 ns脉宽的瓶颈,研制出65 ns脉宽的激光器。为了使激光器能够适应-30℃~+40℃的环境温度,一方面采用热膨胀系数较低的材料作为激光器底板,并且通过合理的光学设计使激光谐振腔处于稳腔状态;另一方面,自主研发出自适应光学调整架,能够利用自身形变抵消环境温度变化引起的应力,保证了激光谐振腔在环境温度变化时的稳定性。这些技术为实现7等激光星以及精确测量瑞利散射光波前提供了有力的保障,相关的研究工作申请了专利3件,其中授权专利2件,发表文章1篇。br/ 激光器各项指标均优于合同指标:激光功率33 W,功率稳定性为0.7%;重复频率12 kHz;脉冲宽度65 ns;光束质量M2 = 1.3。验收总结会上,激光器稳定的性能指标得到了专家组的一致好评,由激光器产生的人工信标大大缩短了主动光学的校正时间,提高了LAMOST的巡天效率,为我国自主研制用于大气校正的激光导星系统提供了重要技术储备。/p
  • 潜心激光器纳米测量40年,冷门中做出系列“颠覆性”技术成果——访清华大学教授张书练
    没有测量就没有科学技术,没有超精密测量仪器,就不会有高端装备制造。然而多年来,中国制造业升级几乎是由国外超精密测量仪器来支撑,这是我国高端制造的短板之一。中国在超精密测量仪器领域,是否能够实现颠覆性技术突破和技术的持续跃迁,从而实现追随、并行、赶超,让“卡脖子”不再来?渐进式创新常有,颠覆性创新不常有,尤其是在历经几十年发展的激光测量技术领域。为了追求“变不能为能,使激光测量仪器具有更高精度、更小体积、更方便使用、更低造价”,清华大学教授张书练不介意是否进“冷门”坐“冷凳”,深挖激光现象不止,转化激光现象为纳米测量技术不停。从发现现象开始,到把现象推化为仪器原理,他取得了一系列颠覆性技术成果:发明了新型原理双折射(-塞曼)双频激光器,开发出十多种世界独一份的激光器纳米测量仪器。目前,多种仪器已经实现应用,部分实现规模产业化,在光刻机、机床、航空航天等领域得到广泛应用,带动了纳米测量,对科学技术做出了的重大贡献。张书练教授近日,仪器信息网有幸采访到这位非常具有创新性且多产的科学家,请他谈一谈自己这条深耕了40年的偏振正交激光器纳米测量技术的研究和应用之路。 路自创新开,果从问题来张书练生于农村,每每假期,他都下地干活,十分卖力。经历过多次旱涝,也常见春天的盐碱覆盖农田,缺苗少棵。百姓靠天吃饭,常靠政府救济。锄头的力量实在有限,既解决不好温饱更帮不了别人。他从高中课堂里,学到了蒸汽机、内燃机、电力、化肥,知道这才是“改天换地”的力量。20世纪60年代,清华大学在四川绵阳建立分校,张书练作为清华大学精仪系(原机械系)光学仪器专业学生,随校远赴绵阳,毕业后留校,被纳入分校(现在的清华电子系)激光专业任教。70年代,国家恢复研究生招考,张书练考入清华大学精仪系光学仪器专业,并回到北京。硕士论文的研究内容是激光陀螺,毕业后又在精仪系任教。激光技术的基础和精密仪器系的环境,使张书练走进了“激光”和“纳米测量”学科交叉的方向,心底的追求使他迈向“不创新我何用,不应用我何为”的道路。《不创新我何用,不应用我何为——你所没有见过的激光精密测量仪器》是张书练教授于2021年3月出版的学术书,总结了自己近40年有新意和有重要性的成果。在写作过程中,他从回顾中感悟到:失败和质疑是开辟创新之路的动力。在中国仪器界,过去长期大幅度落后于西方先进国家,这给了我国一个模仿、学习、跟进的快速成长机会。但现在或不远的未来,如何在无人引领的前沿仪器领域保持创新?张书练教授认为,“科学家应该见问题而喜,我们就是为解决问题才当教授的。有失败和质疑,就有需要解决的问题,才会有连续不断的成果并产生各种应用。”例如,张书练教授在研究环形激光器测量弱磁场和测量位移受阻,产生了双折射-塞曼双频激光器,今天显示出其突出重要性;申请“激光器纳米测尺”,被专利审查员质疑,因为形似一样实为不同,抗辩中接触了激光回馈,把他创新的正交偏振激光器引入激光回馈又开辟了一个新的方向,如今已是“枝繁叶茂”。坚韧不拔,金石可镂谈及对创新的执着,张书练教授说“坚韧不拔,金石可镂,才能攀上创新高峰,落实到应用”。他研究的双折射双频激光器,历经30余年才实现批量应用,是张书练教授攀上高峰的范例之一。近50年来,塞曼氦氖双频激光器作为光源的干涉仪——双频激光干涉仪,一直是机械制造、IT(光刻机)等行业不可替代的纳米测量仪器。而由于原理限制,这种传统塞曼双频激光器存在三大缺憾。首先,两个频率之差一般在3兆赫兹左右。这一小频率差成为双频激光干涉仪提高测量速度的瓶颈,测量速度一直不超过1米/秒,成为提高测量导轨、光刻机、机台等设备测速的障碍。第二,需要加大频率差时,激光器的功率大幅度下降,7兆赫兹频率差激光功率下降到一百多微瓦,甚至几十微瓦,测量路数受到瓶颈性限制。此外,塞曼双频激光器输出的偏振旋转的光束,需要经转化才成为偏振与光传播方向垂直的光(线偏振),这给干涉仪带来几纳米,甚至10纳米的非线性误差。中国计量院的测试表明,非线性误差不仅是塞曼双频干涉仪的缺憾,也存在于单频干涉仪和其他类型的激光干涉仪中。该如何跳出这一窠臼?从物理原理再出发!张书练教授自1985年起开始了寻找产生大频率差方法,也即偏振正交激光器的研究。通过梳理、探究激光器的原理、特性和频率稳定技术,从普通的晶体双折射现象中,他找到了解决问题的契机。基于此,通过在激光器内置晶体石英片,使激光频率分裂,一个频率分成两个偏振方向互相垂直的光频率,晶体石英片的厚度,放置角度的微小改变,即可实现频率差的大范围改变,一个全新的双频激光器产生了——双折射双频激光器,其可输出40MHz到数百MHz频率差的光。如再加上横向磁场,成为双折射-塞曼双频激光器,输出~0MHz到数百MHz频率差的光。双折射(-塞曼)双频激光器为双频激光干涉仪性能的阶跃(减小非线性误差,提高测速,增加测量路数)做好了准备。利用双折射产生双频是把石英晶体片安放于激光器内,张书练证明双折射双频激光器的可行性。进一步,找到了消除两个频率相互竞争的“死区”,解放出0~40兆赫兹频率差的方法,这其中有复杂的物理问题,又有复杂的技术问题。再进一步,就是找到能实用、最优的双折射双频激光器的结构,包括实现全内腔,真空封接方式,消除环境温度变化影响等。为此,十几位研究生(博士,硕士)和工程师长期持续攻关,难以计数的实验,否定之否定,最终发明了内应力激光腔镜,即把双折射做在激光器反射镜内。这一激光器称之为双折射-塞曼双频激光器。这一颠覆性的激光器技术站在了世界双频激光的最前列。最后的胜利要体现在双频激光干涉仪上,只有把双折射双频激光器作光源的双频激光干涉仪做出来,并在应用中纠错改进,被应用认可,推广开,才算成功。从原理设计、实验验证装置、工程样机到仪器产品的跨越,可谓“古来征战几人回”。“熬人!”张书练教授用两个字表达了自己的体会,但他的脸上却洋溢着自豪。“从提出原理,到实验验证,再到产品化,并应用到双频激光干涉仪中。一开始仪器不稳定,我们就不停做调整,做工艺改造。在这个过程中,十几年就过去了。”张书练教授说到。如今,张书练教授发明的以双折射双频激光器为核心的激光干涉仪已成功实现批量商用。该仪器可广泛应用于科学研究、光刻机、数控机床、航空航天、舰船等行业;其核心部件——双频激光器,基于双折射产生激光双频的原理,比国内外传统的塞曼双频激光器的激光功率高四倍、频率差大一倍或两三倍、最近达到13倍(40MHz),且没有两个频率之间耦合串混,分辨率达到1纳米,线性测量长度范围0到70米,非线性误差小于1纳米,测量速度超过2米/秒。这些技术指标,满足了机床检定、高端光刻机工件台定位等应用的要求。据透露,华为等经过广泛调研,选定了张书练教授的双频激光干涉仪,此外,相关机构也选定了张书练教授的双频激光器。独辟蹊径,步步生花双折射-塞曼双频激光器和干涉仪的成功是是从“冷门”里出来的,张书练教授认为,“被世界公认为那种‘红的’、‘紫的’领域,最有创新的工作往往已经完成了,再跟过去,虽然也能发表文章,也能突破,但仅仅是在人家设计好的大筐子里做。”“冷门”研究,说起来容易,做起来难。因为探索的是新原理的仪器,研究的是几乎空白的领域,张书练教授在工作展开过程中不可避免地遇到了太多的问题,他却对此保持了一个非常乐观的心态。在激光器的研究过程中,他深入揭示了其物理现象(获教育部自然科学一等奖两项),如以往不能观察的激光模分裂、模竞争、正交偏振,正交偏振回馈等,并从新发现的这些现象中思考,独辟蹊径,步步生花。在为双频激光干涉仪研究双折射(-塞曼)双频激光器的同时,张书练教授研究了双折射双频激光器的两个频率之间的耦合,也就是它们相互争夺(竞争)能量的过程,看到一个频率光强度增加伴随另一个频率的光强度减小,直至一个到最大时另一个被熄灭,周而复始。一个全过程正好是激光谐振长度变化半个光波长(316纳米),电路处理后,一个上升沿、下降沿是78纳米。这就是张书练教授发明的氦氖激光器纳米测尺等仪器,获得了国家发明二等奖(2007年)。激光的两个偏振正交的频率是因在激光器内放入了晶体石英或应力元件产生的,反过来,测出激光器的频率差就知道了激光器内的元件有多大内应力,多大内部双折射,这就发明了世界最高精度的光学波片和双折射的测量仪器,比传统仪器高一个量级。特别是测量方法可溯源到自然基准——光的波长。其至今成为唯一的国家标准的测量方法,也是世界上第一个波片相位延迟标准。客户利用这种仪器对加工过程中激光陀螺的元件进行内应力检测,找到了残余应力的成因,显著提高了精度。上海光机所用标准仪器校准了用于核聚变研究的激光玻璃内应力测量的仪器。这款仪器使他再次获国家发明二等奖(2010年)。气体HeNe激光器可以做出以上仪器,固体微片(毫米尺寸)激光器能有所作为吗?张书练教授指导博士生开始固体微片(毫米尺寸)激光双频激光干涉仪的研究,也取得了成功,研制出国内外第一台固体微片激光双频干涉仪,第一台固体微片激光回馈位移测尺。张书练教授从最基本的激光原理和光学原理出发,以解决问题为导向,一个又一个的创新思维,指导开发出这些世界独一份的纳米仪器,应用并产业化,从而创建了“偏振正交激光器纳米测量”学术体系。仪仪相连,都是“中国创”张书练教授带领团队展开的研究工作,像葡萄树一样,一直向上开花结果。行进中,来了一个又一个“中国创”的机会,横向看去,仪仪相连成片,都是颠覆性的技术。激光回馈本来是激光系统中“绝对的害群之马”,张书练教授之前看过相关的文献,却没有想到要去研究它。因“位移自传感器氦氖激光器系统及其实现方法”专利在申请的时候被专利审查员驳回,说其与美国伯克利分校的一个专利相同,张书练教授便仔细阅读了审查员提供的对比文件,发现两个专利在结构上非常雷同,核心元件一样多,摆放顺序一个样,却因一个镜片的差别,使其原理完全不同,属于两个分支。张书练教授的专利,在镜片两面都镀上了激光消反射膜,光线没有反射地通过,镜片仅仅起到密封激光器的壳内气体的作用,完全不遮挡光线,所以被称为窗口片;而伯克利的这个镜片是个高反射率镜片,激光器靠其对光束的反射形成振荡。也就是说,一个与激光振荡无关,一个是激光器振荡的必需元件,即前者是激光振荡系统,后者是激光回馈系统。张书练教授想到,如果自己的偏振正交激光原理引入回馈,又会是什么行为呢?试一试!张书练教授先安排一个研究生研究激光回馈技术,要亲自看清了激光回馈的行为,思考激光回馈技术走向何方。自然想起偏振正交激光器技术,他用偏振正交激光器改造了激光回馈,于是,观察到若干新的现象,形成了偏振正交激光器回馈纳米测量系列技术和仪器,把激光回馈技术推上了一个新的高度,也使偏振正交激光器“再添双翅”。或走入他的实验室参观,或阅读他的四部专著(《正交偏振激光原理》、《激光器和激光束》、《Orthogonal Polarization Lasers》、《不创新我何用,不应用我何为——你所没有见过的激光纳米测量仪器》)和近400篇论文,可看到,张书练教授及其团队研制出的激光回馈光学相位延迟/内应力在线测量仪、激光回馈纳米条纹干涉仪、微片激光(Nd:YAG和Nd:YVO4)共路(和准共路)移频回馈干涉仪、激光回馈远程振动和声音测量仪、激光回馈材料热膨胀系数测量仪、微片固体激光万分尺、Nd:YAG双频激光干涉仪、微片固体激光回馈共焦测量技术、微片固体激光回馈表面测量技术等十余种国内外独有的纳米测量仪器,仪仪相连,构建出了一个“正交偏振激光器回馈纳米测量仪器”体系。“步步生花”的“偏振正交激光器纳米测量仪器”和“仪仪相连”的“偏振正交激光器回馈纳米测量仪器”,构建成了一个完整的“偏振正交激光器及纳米测量”体系。“其中,激光器是核心,我们看见并解决了他人没有想到的问题,仪器的‘台阶’也就上来了。”张书练教授说他和团队的成果鲜明特征是,“激光器就是仪器,仪器就是激光器自身。”坐实创造,不让论文变“云烟”在实验室里,一个博士生来了,做完实验,毕业后离开,然后再来一个博士生,这是一种很正常的安排,却往往使经验和教训难于传承,因为论文里面记录的一般都是好的结果,不常写入失败和纠正错误的过程,传承不全面。张书练教授很早就注意到了这个问题,因此邀请了4个工程师来实验室工作,由他们和学生一起完成实验。也正是这些工程师的工作,帮助张书练教授及其团队传承了一个个技术和仪器。张书练教授很注重团队研究课题的取舍,发现论文漂亮,实际上不能应用的,或更改方案,或暂时放下;发现论文漂亮,实际应用可能性大的,就持续研究,做实验样机。一直找机会仪器化,把首创的技术和仪器推向应用。除了双折射双频激光干涉仪外,国内外首台基于激光回馈原理的纳米分辨力固体激光回馈干涉仪也已经实现产业化,在美国圣路易斯华盛顿大学、合肥工业大学(三台已应用10年)、上海理工大学、北京理工大学等处被应用,且使用情况良好。该仪器能够无接触地测量微、轻、薄、黑、烧红等目标的移动量,以及水、酒精等液面的位移和高度变化,完全不需要在被测物上加附件配合,可用于监测航天相机的支架和镜面形变等。该仪器还可用于刻划光栅的金刚车刀,光束直接射向车刀,颠覆了以往光束射向车刀支撑臂的方式,将测量误差减小到1/4。“这些仪器,我想无论如何还是要传承下去。我在这块做了几十年研究,花了国家不少钱,要回馈给社会,这是我目前所想的事儿。虽然已经有几款仪器实现了产业化,但还是希望另外几款仪器也能‘成气’,至少,有仪器公司能把它接下来,由企业来推动仪器化、产业化。”张书练教授说到。据悉,北京镭测科技有限公司正努力把仪器产业化,尤其是双频激光干涉仪已经被几个半导体企业采购,担当起半导体全产业链一个重要环节国产化替代的历史重任。此外,华为、德国Blankenhorn和福建福晶科技有限公司等国内外企业也在为张书练教授团队仪器的产业化和推广而努力。凡是新原理的东西,想要真正被社会所认可,尽管再好用,再有潜力,都是要花时间的。且由于历史和思维定式,国外多年强势,要国人接受中国自己的创造有很多事要做,要国人接受国产高档激光仪器也是一个循序渐进的过程。张书练教授对此表示:“困难怕意志,中国创、世界用的时代一定会到来!” 个人简介张书练,清华大学本科,硕士,教授,博士生导师。激光和精密测量专家,偏振正交激光器纳米测量技术的国内创建人和国际主要创建人。作为第一完成人,获国家技术发明二等奖两项,教育部自然科学一等奖两项,电子学会发明一等奖一项等十余次奖项。他在ISMTII-2017国际学术会议上被授终身贡献奖。出版专著:唯一作者3部,第一作者1部,主编国际会议专题文集2部,计测技术“教授论精密测量”一期,发表论文360余篇,发明专利权80余项。发明的双折射-双频激光器及干涉仪等纳米测量仪器已经批产。
  • 美国TSI公司网上讲座:粒子图像测速仪系统
    粒子图像测速仪系统  演讲人: 许荣川博士高级应用工程师  KHOO Yong Chuan Mike PhD  Senior Applications Engineer  网上讲座: 2011年1月12日上午10点  美国TSI公司非常荣幸的为您提供有关流体力学的网上讲座, 讲座将由来自TSI的技术专家用中文讲解。讲授涵盖广泛,包括初级,中级和高级水平的流体力学研究,有助您提高测试技术的水平,与此同时提供解决方案 寻求如何优化系统得到更可靠数据。  这次的讲座也包括更多关于TSI精准仪器在流体研究中的应用(包括所有从基础流体研究到环境和生物医学), 请踊跃参加网上讲座以得到更多相关讯息。  讲座将会进行40分钟及预留15分钟答疑环节。  这是TSI公司首次推出PIV系列中文网上讲座,以帮助您提高利用PIV系统测量流体速度的技术水平。 我们将于2011年1月12日上午10点开始第一个讲座,介绍PIV系统基本原理与利用Insight3G软件进行数据采集与分析的基本技巧。  具体内容:PIV原理及PIV实验基本原则 Insight3G中PIV系统软硬件设置、图像校准、图像优化、示踪粒子浓度调整与△T参数优化。  网上讲座是免费为您提供,如果您有兴趣参加, 请点击链接www.tsi.com/FMwebinars(英文注册)或http://www.instrument.com.cn/netshow/SH100732/guestbook.asp(中文注册)简单填写表格,并点击“发送”。我们将在一两天内发给您相关讲座的链接,以便您在方便的时间参加。  讲师简介: 许荣川博士是TSI新加坡的高级应用工程师,他为东南亚包括澳大利亚,台湾及韩国等地的流体及粒子仪器用户提供应用解决方案和技术支持。他于1997年在英国拉夫伯勒大学获得机械工程学位并获全额奖学金完成其博士学位
  • 不贴点!跟踪式激光扫描系统在大尺寸精密测量中显身手
    精准测量是支撑高质量制造的基石。先临三维的高精度工业3D扫描技术作为一种光学测量工具,凭借其高精度、高效率、非接触等优势,为高端制造的精密三维尺寸检测提供保障。当下,这项技术已经渗透至到汽车工业、航天制造、电子电器、教育科研等行业,满足了不同用户对三维尺寸检测的需求。在工业领域,激光3D扫描仪得到了广泛应用。然而,传统的激光3D扫描仪需要在被测物体上粘贴标志点,以实现高精度三维数据的拼接与获取。在大型工件的三维尺寸检测中,这种方式动辄需要粘贴和去除成百上千个标志点,耗费大量时间。先临三维的跟踪式激光扫描系统以动态跟踪、不贴点的独特优势,以及激光扫描高精度、高效率、材质适应性佳的稳定表现,为大型工件精准的三维尺寸检测提供了破题思路。通过在扫描仪的工作过程中使用跟踪仪来获取扫描仪的三维空间信息,跟踪式激光扫描系统实现了大范围的无需标志点的拼接扫描,从而为大型工件的三维尺寸检测进一步提速。行业应用案例: 汽车工业白车身是指装焊完成但未涂装的车身结构,是整车零部件的载体。这种车身具有尺寸体积大、曲面复杂、部分零件表面反光等检测难点,因此需要精度高、无需贴点、材质适应性更强的激光3D扫描设备进行数据获取。使用先临天远的FreeScan Trak Pro2 跟踪式激光扫描系统,仅需约10分钟即可获取完整的白车身三维数据。此外,扫描精度最高可达0.023mm且重复性精度稳定,结果准确可靠满足工业测量需求。*FreeScan系列产品 ISO 17025 认证:基于JJF1951-2021和 VDI/VDE 2634 第 3 部分标准。基于可追踪球体直径测量数据对探测误差性能进行评估,在工作范围内基于可追踪长度标准件从多视角方向进行测量,来评估球体间距误差。可通过集成或内置摄影测量获取体积精度进一步优化的数据。轨道交通轨道车辆的车身主体是由一次次的焊接而成型,保证焊接的准确度,是后期顺利装配的基础。因此,确保扫描结果精准、扫描过程不贴点以保证效率,是车身进行三维检测的核心诉求。FreeScan Trak Pro跟踪式激光扫描系统表现出色,高效获取车身的完整三维数据后,将扫描获取数据与原始的CAD设计数据相对比,即可完成车身的焊接质量检测。模具铸造在模具铸造过程中,模型的形状和尺寸至关重要。面对结构复杂的大型铸件模型,不贴标志点的高效扫描成为三维检测中的关键环节。FreeScan Trak Pro流畅、高质的扫描提供了助力,不仅大幅缩短三维尺寸检测时间,还为铸件的浇筑生产节省大量时间。更多应用场景先临三维的跟踪式激光扫描系统,同样为航空制造、工程机械等行业的大尺寸精密测量提供高效解决方案。我国制造业正向高端迈进,大型化装备 和复杂结构制造的兴起,对测量方式提出了精度更高、适应性更强的要求。先临三维的高精度工业3D扫描业务线,品全而精,包含踪式激光三维扫描系统、手持式激光三维扫描仪、固定式蓝光三维扫描仪等多款产品,以精准测量保证精密制造。未来,先临三维将持续对产品、功能、应用进行深度打磨,让高精度工业3D扫描技术朝着设备无线化、软件智能化、检测自动化的方向不断精进,助力先进制造业的高质量发展。
  • 英国新型激光雷达系统,使超快的低光检测成为可能
    近日,英国科学家首次展示了一种新型激光雷达系统,其使用量子探测技术在水下获取3D图像。该系统拥有极高的灵敏度,即便在水下极低的光线条件下也能捕获详细信息,可用于检查水下风电场电缆和涡轮机等设备的水下结构,也可用于监测或勘测水下考古遗址,以及用于安全和防御等领域。 在水下实时获取物体的3D图像极具挑战性,因为水中的任何粒子都会散射光并使图像失真。基于量子的单光子探测技术具有极高的穿透力,即使在弱光条件下也能工作。在最新研究中,研究人员设计了一个激光雷达系统,该系统使用绿色脉冲激光源来照亮目标场景。反射的脉冲照明由单光子探测器阵列检测,这一方法使超快的低光检测成为可能,并在光子匮乏的环境(如高度衰减的水)中大幅减少测量时间。激光雷达系统通过测量飞行时间(激光从目标物体反射并返回系统接收器所需的时间)来创建图像。通过皮秒计时分辨率测量飞行时间,研究人员可以解析目标的毫米细节。最新方法还能区分目标反射的光子和水中颗粒反射的光子,使其特别适合在高度浑浊的水中进行3D成像。他们还开发了专门用于在高散射条件下成像的算法,并将其与图形处理单元硬件结合使用。在3种不同浊度水平下的实验表明,在3 m距离的受控高散射场景中,3D成像取得了成功。量子检测技术在陆地上的应用,较多见诸报道。其实这种技术在水下的应用,同样空间广阔。例如,利用它进行海底地形勘测、水下考古、海底设备检测等等。不过,将这种技术应用于水下,绝对不意味着将其直接“照搬”。以在海洋中的应用为例,需要考虑海水的腐蚀性、洋流的运动、海底光照条件等多种特殊因素。因此需要使用特殊的耐腐蚀材料,进行特殊的设计,以更加适应水下环境的应用。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制