当前位置: 仪器信息网 > 行业主题 > >

激光干涉振动计

仪器信息网激光干涉振动计专题为您提供2024年最新激光干涉振动计价格报价、厂家品牌的相关信息, 包括激光干涉振动计参数、型号等,不管是国产,还是进口品牌的激光干涉振动计您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光干涉振动计相关的耗材配件、试剂标物,还有激光干涉振动计相关的最新资讯、资料,以及激光干涉振动计相关的解决方案。

激光干涉振动计相关的论坛

  • 激光干涉仪的特征及作用

    激光干涉仪是以激光波长为已知长度,利用迈克耳逊干涉系统测量位移的通用长度测量,具有高强度、高度方向性、空间同调性、窄带宽和高度单色性等优点。测量长度的激光干涉仪,主要是以迈克尔逊干涉仪为主,并以稳频氦氖激光为光源,构成一个具有干涉作用的测量系统。 激光干涉仪采用一个双光束激光头和一个双通道的处理器,采用飞行采样方式,在测量过程中无须停机采样检测,节约了测量时间和编程时间;利用RENISHAW动态特性测量与评估软件,可进行机床振动测试与分析,滚珠丝杠的动态特性分析,伺服驱动系统的响应特性分析。激光干涉仪的激光头和靶标反射镜二件之间只要发生相对位移就能进行测量,测量系统中无须分光镜、所以对光极其方便。 激光干涉仪可配合各种折射镜、反射镜等来作线性位置、速度、角度、真平度、真直度、平行度和垂直度等测量工作,并可作为精密工具机或测量仪器的校正工作。激光干涉仪可用来精确测量和校准机床、三座标测量机和X-Y平台的机械精度,也测量轴的定位精度、重复定位精度及反向间隙,测量轴的角偏、直线度,测量平台的平面度。

  • 激光测振仪测量引线键合劈刀超声振动信号

    激光测振仪测量引线键合劈刀超声振动信号

    [img=,690,293]https://ng1.17img.cn/bbsfiles/images/2019/05/201905271158351897_7669_3859729_3.jpg!w690x293.jpg[/img]引线键合是芯片一级封装的主要工艺之一。热超声键合技术是一种引线键合技术,这种技术是对引线和键合区在加热时施加超声振动,使得焊球和芯片之间的接触区域发生变形,同时破坏界面的氧化膜,通过接触面金属间的原子扩散形成固溶强化组织,从而完成连接,即利用超声能量、压力和热量的相互作用,实现芯片I/O端口之间的连接。在产品生产过程中,影响键合质量的一个主导因素是劈刀的超声振动模式,劈刀超声振动模式的差异将会直接导致芯片凸点获得不同的能量,产生不同的键合效果,甚至可能导致键合失效。键合失效是引起电路失效的主要原因,而劈刀振动模式是影响键合质量的关键,因此对于劈刀振动信号的测量在产品生产过程质量控制中至关重要。[img=,394,235]https://ng1.17img.cn/bbsfiles/images/2019/05/201905271158450487_1473_3859729_3.jpg!w394x235.jpg[/img]热超声键合过程具有键合点空间高度局部化及时间瞬态性等特点,键合点信号的提取相当困难,必须采用非接触测量方式测量。激光多普勒测振仪利用多普勒效应和外差干涉技术能非接触地同时测量振动位移、速度和加速度,测量精度高、信噪比高、动态范围大等优点,适用于测量劈刀的超声振动信号。[img=,327,221]https://ng1.17img.cn/bbsfiles/images/2019/05/201905271158549597_4419_3859729_3.jpg!w327x221.jpg[/img]OptoMET数字型激光多普勒测振仪是一套高精度的振动测量仪器。该仪器可非接触且精确地测量振动和声学信号,包括振动位移、速度和加速度。它具有超高的光学灵敏度,并利用自行研发的超速数字信号处理技术(UltraDSP),不仅能快速测量简单系统的振动,还能测量极具挑战的系统,包括高频振动,远距离测试,微小振幅,高线性和高振动加速度或速度。超速数字信号处理技术(UltraDSP)确保了测量的高分辨率和高精度。OptoMET激光测振仪具有超高的光学灵敏度和信号强度,这对于在生锈和灰暗又无法进行表面处理的结构上获得无噪声和无信号丢失的测试数据至关重要。如需了解更多内容请关注嘉兆科技

  • 激光测振仪在压电变压器振动测试中的应用

    激光测振仪在压电变压器振动测试中的应用

    压电变压器驱动电压低,体积小,质量轻,结构简单,无电池辐射等特点,但工作状态复杂,其振动特性影响它的特性,比如使用频率范围和转换效率等。压电变压器其实是电场和振动场耦合的谐振件,它在谐振时,器件会因多种因素(比如负载、环境、材料、输入电压)而发热、产生疲劳甚至破裂等问题。激光测振仪直接非接触地测得压电变压器在谐振状态下端点的振动位移、速度和加速度信号,便于更深入了解他的谐振状态,促进压电变压器的结构设计与优化。OptoMET数字型激光多普勒测振仪是一套高精度的振动测量仪器。该仪器可非接触且精确地测量振动和声学信号,包括振动位移、速度和加速度。OptoMET数字型激光多普勒测振仪具有超高的光学灵敏度,并利用自行研发的超速数字信号处理技术(UltraDSP),不仅能快速测量简单系统的振动,也能测量极具挑战的系统,包括高频振动,远距离测试,微小振幅,高线性和高振动加速度或速度。超速数字信号处理技术(UltraDSP)确保了测量的高分辨率和高精度。OptoMET激光测振仪具有出色的线性度,测试频带宽,最高可达10MHz。[img=,554,271]https://ng1.17img.cn/bbsfiles/images/2019/03/201903281454403195_8750_3859729_3.jpg!w554x271.jpg[/img]OptoMET单点激光测振仪有3个系列:分别是Vector、Nova、Dual Fiber系列:Vector系列氦氖激光测振仪是通用性激光测振仪,适用与大多数非接触式振动测量应用场合。该系列激光测振仪特别适用于反射性表面或水中的测试,以及需要激光光斑尽可能小的应用场合。Nova系列激光测振仪采用不可见的短波红外激光(1550nm),这种激光束的输出功率超过传统红色氦氖激光10倍,但激光安全等级仍然是人眼安全的激光等级(Class I)。短波红外激光入射功率大,Nova系列红外激光测振仪适用于粗糙表面和低反射率表面的振动测量,长距离振动测量和高频振动测量。选用不同的光学镜头,包括一款准直镜头,Nova系列红外激光测振仪的工作距离覆盖0mm到300m。Dual Fiber双光纤短波红外激光测振系统包括一套短波红外激光测振仪和一套柔性光纤镜头,物镜包括准直镜头和聚焦镜头两种。这套激光测振仪内置了稳定的短波红外激光,在任何被测物表面的测量信号都有非常高的信噪比。多个光纤镜头可通过一个光纤开关连接至测振仪,因此,可以同时传输多个通道(2,4,8,16……),光纤开关带有电气接口(以太网、USB、TTL……),可以由 PC 远程控制。文章来源嘉兆科技官网来源网址:http://www.tnm-corad.com.cn/news/Show-5612.html

  • 激光测振仪在笔记本电脑结构振动测试中的应用

    激光测振仪在笔记本电脑结构振动测试中的应用

    结构振动特性决定了结构工作的可靠性。振动测试中,常用的是传统的接触式测量方式,但对于轻质量结构,这种方式会产生附加质量和刚度问题,影响测试结果。笔记本电脑质量相对较轻,结构也复杂,其振动特性测量适合采用非接触测量方法,利用激光测振仪测量笔记本电脑结构的振动特性或开展模态测试分析。单点式激光测振仪可用于测量笔记本电脑结构的振动响应,扫描式激光测振仪可以用于笔记本电脑结构的模态测试分析或工作变形分析中。 [img=,558,311]https://ng1.17img.cn/bbsfiles/images/2019/03/201903271515449311_283_3859729_3.jpg!w558x311.jpg[/img]OptoMET数字型激光多普勒测振仪是一套高精度的振动测量仪器。该仪器可非接触且精确地测量振动和声学信号,包括振动位移、速度和加速度。它具有超高的光学灵敏度,并利用自行研发的超速数字信号处理技术(UltraDSP),不仅能快速测量简单系统的振动,也能测量极具挑战的系统,包括高频振动,远距离测试,微小振幅,高线性和高振动加速度或速度。超速数字信号处理技术(UltraDSP)确保了测量的高分辨率和高精度。OptoMET激光测振仪具有出色的线性度,测试频带宽,最高可达10MHz。 OptoMET激光测振仪有四个系列:分别是Vector、Nova、Dual Fiber、Scan系列:Vector系列氦氖激光测振仪是通用性激光测振仪,适用与大多数非接触式振动测量应用场合。该系列激光测振仪特别适用于反射性表面或水中的测试,以及需要激光光斑尽可能小的应用场合。Nova系列激光测振仪采用不可见的短波红外激光(1550nm),这种激光束的输出功率超过传统红色氦氖激光10倍,但激光安全等级仍然是人眼安全的激光等级(Class I)。短波红外激光入射功率大,Nova系列红外激光测振仪适用于粗糙表面和低反射率表面的振动测量,长距离振动测量和高频振动测量。选用不同的光学镜头,包括一款准直镜头,Nova系列红外激光测振仪的工作距离覆盖0mm到300m。Dual Fiber双光纤短波红外激光测振系统包括一套短波红外激光测振仪和一套柔性光纤镜头,物镜包括准直镜头和聚焦镜头两种。这套激光测振仪内置了稳定的短波红外激光,在任何被测物表面的测量信号都有非常高的信噪比。多个光纤镜头可通过一个光纤开关连接至测振仪,因此,可以同时传输多个通道(2,4,8,16……),光纤开关带有电气接口(以太网、USB、TTL……),可以由 PC 远程控制。Scan系列扫描式激光测振仪和Nova系列一样采用短波红外激光进行测量。这套激光测振仪用于非接触式的振动测量,可对结构的振动进行可视化的测试和分析。采用这套仪器进行工作变形分析(ODS)或模态分析,过程就如同拍摄视频一样简单。通过预设定的测量点,激光测振仪可对整个被测面进行扫描式的测量。这种强大的扫描测振系统采用了当前最为先进的数字处理技术,同时集成了强大的数据采集、3D可视化以及数据分析软件。来源:嘉兆科技官网 来源链接:http://www.tnm-corad.com.cn/news/Show-5611.html

  • 激光干涉仪测量五轴机床平移轴直线度误差的应用原理

    激光干涉仪测量五轴机床平移轴直线度误差的应用原理

    激光干涉仪具有测量精度高、测量范围大、测量速度快、最高测速下分辨率高等优点,结合不同的光学镜组,可实现线性测长、角度、直线度、垂直度、平行度、平面度等几何参量的高精度测量。在SJ6000激光干涉仪动态测量软件配合下,可实现线性位移、角度和直线度的动态测量与性能检测,以及进行位移、速度、加速度、振幅与频率的动态分析,如振动分析、丝杆导轨的动态特性分析、驱动系统的响应特性分析等。[align=center][img=,578,450]https://ng1.17img.cn/bbsfiles/images/2019/11/201911201754505855_5264_3712_3.jpg!w578x450.jpg[/img][/align]  激光干涉仪最典型的应用就是测量机床精度,本文讲解如何使用激光干涉仪测量五轴机床平移轴直线度误差。  对于平移轴而言,每根轴均有两个直线度误差,因此三根轴有六个直线度误差,均可采用激光干涉仪分别测得。  原理:带有圆孔的是直线度干涉镜,其与待测轴相连一同运动;长条镜是直线度反射镜静止安装,其是对称结构,上下左右均对称。当一束激光从源头发出射入干涉镜,干涉镜将光束分成两束,形成一个很小的角度分别去往反射镜,由于反射镜上下对称,因此两束光被反射后又回到干涉镜,汇合成一股光束,去往激光头的探测器。当运动轴产生直线度误差时,会使得干涉镜相对于反射镜在水平横向方向发生相对运动,而反射镜是左右对称的(左右的镜片不在同一平面,有一定的角度),因此会使得两束分开的光束光程具有差别,根据此差别,即可测得运动轴产生的直线度误差。[align=center][img=,678,333]https://ng1.17img.cn/bbsfiles/images/2019/11/201911201755021895_7221_3712_3.jpg!w678x333.jpg[/img][/align][align=center]▲ 直线度测量的光路原理构建图[/align][align=center][img=,678,367]https://ng1.17img.cn/bbsfiles/images/2019/11/201911201755111914_6482_3712_3.jpg!w678x367.jpg[/img][/align][align=center]▲ 运动轴的横向直线度测量示意图[/align][align=center][img=,678,367]https://ng1.17img.cn/bbsfiles/images/2019/11/201911201755345695_9383_3712_3.jpg!w678x367.jpg[/img][/align][align=center]▲ 运动轴的纵向直线度测量示意图[/align]  根据直线度误差测量原理可知,测量过程中不可避免的会引入斜率误差。该误差是由于测量直线度反射镜的光学轴线最初与待测轴不平行,为调整平行而引起的。如图 所示,A 为干涉镜和反射镜的距离,B 为激光头到干涉镜的距离(其中干涉镜是固定在运动轴上的)。在一开始,反射镜的光学轴线处于旋转前的位置,而由于机床运动轴与其之间存在的夹角θ,[img]http://www.chotest.com/Upload/2019/10/201910173125514.jpg[/img][align=center][img]http://www.chotest.com/Upload/2019/10/201910177031118.png[/img][/align]  因为斜率误差是稳定误差,因此可以采取上述的公式将其从直线度测量结果中分离出来,亦可以采用两端法拟合或者最小二乘法拟合将其分离出去。  两端法拟合:即是将所有采集来的数据第一点和最后一点相连决定一直线,再将所有采集来的数据去除掉拟合的直线信息,由此得出的残值即为直线度误差。[align=center][img]http://www.chotest.com/Upload/2019/10/201910170000002.png[/img][/align]最小二乘法拟合:将采集回来的所有数据通过最小化误差的平方和方式来寻找数据的最佳函数匹配,而后将采集值与匹配函数对应值相比较,剩余的残值即为直线度误差。[align=center][img]http://www.chotest.com/Upload/2019/10/201910171562522.png[/img][/align]附:SJ6000激光干涉仪直线度测量精度。[table][tr][td][align=center]轴向量程[/align][/td][td][align=center]测量范围[/align][/td][td][align=center]测量精度[/align][/td][td][align=center]分辨力[/align][/td][/tr][tr][td][align=center]短距离[/align][/td][td][align=center](0.1~4.0)m[/align][/td][td][align=center]±3mm[/align][/td][td][align=center]±(0.5+0.25%R+0.15M[size=12px]2[/size]) μm[/align][/td][td][align=center]0.01μm[/align][/td][/tr][tr][td][align=center]长距离[/align][/td][td][align=center](1.0~20.0)m[/align][/td][td][align=center]±3mm[/align][/td][td][align=center]±(5.0+2.5%R+0.015M[size=12px]2[/size]) μm[/align][/td][td][align=center]0.1μm[/align][/td][/tr][tr][td=5,1]注:R为显示值,单位:μm;M为测量距离,单位:m[/td][/tr][/table]

  • 激光干涉仪怎样测量五轴机床平移轴直线度误差?

    SJ6000激光干涉仪具有测量精度高、测量范围大、测量速度快、最高测速下分辨率高等优点,结合不同的光学镜组,可实现线性测长、角度、直线度、垂直度、平行度、平面度等几何参量的高精度测量。在[b]SJ6000[color=#333333]激光干涉仪[/color][/b]动态测量软件配合下,可实现线性位移、角度和直线度的动态测量与性能检测,以及进行位移、速度、加速度、振幅与频率的动态分析,如振动分析、丝杆导轨的动态特性分析、驱动系统的响应特性分析等。[align=center][img]http://www.chotest.com/Upload/2019/9/201909243125960.png[/img][/align]  激光干涉仪最典型的应用就是测量机床精度,本文讲解如何使用激光干涉仪测量五轴机床平移轴直线度误差。  对于平移轴而言,每根轴均有两个直线度误差,因此三根轴有六个直线度误差,均可采用激光干涉仪分别测得。  原理:带有圆孔的是直线度干涉镜,其与待测轴相连一同运动;长条镜是直线度反射镜静止安装,其是对称结构,上下左右均对称。当一束激光从源头发出射入干涉镜,干涉镜将光束分成两束,形成一个很小的角度分别去往反射镜,由于反射镜上下对称,因此两束光被反射后又回到干涉镜,汇合成一股光束,去往激光头的探测器。当运动轴产生直线度误差时,会使得干涉镜相对于反射镜在水平横向方向发生相对运动,而反射镜是左右对称的(左右的镜片不在同一平面,有一定的角度),因此会使得两束分开的光束光程具有差别,根据此差别,即可测得运动轴产生的直线度误差。[align=center][img]http://www.chotest.com/Upload/2019/10/201910178906394.jpg[/img][/align][align=center]▲ 直线度测量的光路原理构建图[/align][align=center][img]http://www.chotest.com/Upload/2019/10/201910170468304.png[/img][/align][align=center]▲ 运动轴的横向直线度测量示意图[/align][align=center][img]http://www.chotest.com/Upload/2019/10/201910173593913.png[/img][/align][align=center]▲ 运动轴的纵向直线度测量示意图[/align]  根据直线度误差测量原理可知,测量过程中不可避免的会引入斜率误差。该误差是由于测量直线度反射镜的光学轴线最初与待测轴不平行,为调整平行而引起的。如图 所示,A 为干涉镜和反射镜的距离,B 为激光头到干涉镜的距离(其中干涉镜是固定在运动轴上的)。在一开始,反射镜的光学轴线处于旋转前的位置,而由于机床运动轴与其之间存在的夹角θ,[img]http://www.chotest.com/Upload/2019/10/201910173125514.jpg[/img][align=center][img]http://www.chotest.com/Upload/2019/10/201910177031118.png[/img][/align]  因为斜率误差是稳定误差,因此可以采取上述的公式将其从直线度测量结果中分离出来,亦可以采用两端法拟合或者最小二乘法拟合将其分离出去。  两端法拟合:即是将所有采集来的数据第一点和最后一点相连决定一直线,再将所有采集来的数据去除掉拟合的直线信息,由此得出的残值即为直线度误差。[align=center][img]http://www.chotest.com/Upload/2019/10/201910170000002.png[/img][/align]最小二乘法拟合:将采集回来的所有数据通过最小化误差的平方和方式来寻找数据的最佳函数匹配,而后将采集值与匹配函数对应值相比较,剩余的残值即为直线度误差。[align=center][img]http://www.chotest.com/Upload/2019/10/201910171562522.png[/img][/align]附:SJ6000激光干涉仪直线度测量精度。[table][tr][td][align=center]轴向量程[/align][/td][td][align=center]测量范围[/align][/td][td][align=center]测量精度[/align][/td][td][align=center]分辨力[/align][/td][/tr][tr][td][align=center]短距离[/align][/td][td][align=center](0.1~4.0)m[/align][/td][td][align=center]±3mm[/align][/td][td][align=center]±(0.5+0.25%R+0.15M[size=12px]2[/size]) μm[/align][/td][td][align=center]0.01μm[/align][/td][/tr][tr][td][align=center]长距离[/align][/td][td][align=center](1.0~20.0)m[/align][/td][td][align=center]±3mm[/align][/td][td][align=center]±(5.0+2.5%R+0.015M[size=12px]2[/size]) μm[/align][/td][td][align=center]0.1μm[/align][/td][/tr][tr][td=5,1]注:R为显示值,单位:μm;M为测量距离,单位:m[/td][/tr][/table]

  • 激光测振仪在超声变幅杆振动测试中的应用

    激光测振仪在超声变幅杆振动测试中的应用

    超声加工系统主要由超声电源、换能器、变幅杆、加工工具及磨料供给系统组成。超声变幅杆是超声加工系统中的核心部件,主要作用是把机械振动的质点位移或速度放大,或者将超声能量集中于较小面积处,即聚能作用。一般超声换能器辐射的振动幅度在20kHz范围内只有几微米,但在高声强超声应用中,比如超声加工、超声焊接、超声金属成型或其他超声疲劳试验等应用中,辐射面的振动幅度范围一般在几十微米到几百微米,因此必须在换能器的端面连接超声变幅杆,将机械振动放大。除此之外,超声变幅杆可以作为阻抗变换器,在换能器和声负载之间进行阻抗匹配,使超声能量更加有效向负载传输。在超声变幅杆的设计研究中,需要测量其振动频率、振型等参数。变幅杆的尺寸较小,利用传统加速度传感器会面临附加质量影响及如何固定传感器的问题。激光测振仪非接触的测量方式适用于测量变幅杆的振动频率,并获得位移,速度或加速度振幅。利用扫描式激光测振仪可以直接获取变幅杆的振型参数。[img=,334,195]https://ng1.17img.cn/bbsfiles/images/2019/04/201904221426182913_5511_3859729_3.jpg!w334x195.jpg[/img]超声变幅杆[img=,431,181]https://ng1.17img.cn/bbsfiles/images/2019/04/201904221426281325_9396_3859729_3.jpg!w431x181.jpg[/img]OptoMET数字型激光多普勒测振仪是一套高精度的振动测量仪器。该仪器可非接触且精确地测量振动和声学信号,包括振动位移、速度和加速度。它具有超高的光学灵敏度,并利用自行研发的超速数字信号处理技术(UltraDSP),不仅能快速测量简单系统的振动,还能测量极具挑战的系统,包括高频振动,远距离测试,微小振幅,高线性和高振动加速度或速度。超速数字信号处理技术(UltraDSP)确保了测量的高分辨率和高精度。OptoMET Scan系列扫描式激光测振仪采用短波红外激光进行测量。这套激光测振仪用于非接触式的振动测量,可对结构的振动进行可视化的测试和分析。采用这套仪器进行工作变形分析(ODS)或模态分析,过程就如同拍摄视频一样简单。通过预设定的测量点,激光测振仪可对整个被测面进行扫描式的测量。这种强大的扫描测振系统采用了当前最为先进的数字处理技术,同时集成了强大的数据采集、3D可视化以及数据分析软件。文章来源嘉兆科技http://www.tnm-corad.com.cn/news/Show-5665.html

  • 非接触测量物体振动的速度,加速度,位移,运动轨迹,频率-激光测振仪

    激光测振仪(进口)位移分辨率高达0.008纳米。非接触测量物体振动的速度,加速度,位移,运动轨迹,频率.全场激光测振实现整面物体的XY轴的振动测量可以彩色动画输出。三维激光测振可以实现三轴振动测量。多点激光测振可以同时实现16个振动点振动并可以测量物体瞬间振动和实时的振动模拟.激光测振可以实现对振动幅值、频率测量。使用激光进行非接触式测量,记录被测体在振动过程中的运动轨迹,并用最大值减去最小值得到振幅。当振幅超过界定值时,可通过软件设置输出报警信号。采样频率高,能精确还原被测体运动轨迹并通过图像显示出来。传统振动测量仪都会对机械振动带来的影响,而激光测振动测量系统使用各种滤波器,使测量结果更加稳定准确。还可以测量高频振动加速度峰值和平均值,测量低频振动速度有效值。应用于如磁盘振动,压电陶瓷振动,汽车玻璃振动,桥梁振动,油罐车振动,机床精密加工振动等等微小振动的测量。非接触高精密测量精密机械加工微小振动 如压电陶瓷,硬盘振动,山体滑坡,桥梁振动,汽车发动机输油管振动,汽车玻璃振动,高压器振动,水面振动激光多普勒测振仪最大测量速度可达20m/s,最大频率范围可达2.5MHZ,可以检测到纳米级别的振动.激光多普勒测振仪采用非接触式的测量方式,可以应用在许多其他测振方式无法测量的任务中。频率和相位响应都十分出色,足以满足高精度、高速测量的应用。使用非接触测量方式,无需耗时安装调节传感器、无质量负载,且不受被测物体的尺寸、温度、位置、振动频率等的限制。还可以检测液体表面或者非常小物体的振动,同时,还可以弥补接触式测量方式无法测量大幅度振动的缺陷。 应用:如磁盘振动,压电陶瓷振动,汽车玻璃振动,桥梁振动,油罐车振动,机床精密加工振动等等微小振动的测量。 非接触高精密测量 精密机械加工微小振动如压电陶瓷,硬盘振动,山体滑坡,桥梁振动,汽车发动机输油管振动,汽车玻璃振动,高压器振动,水面振动 整片不规则金属大型结构、高温、柔软物体等接触式测量无法满足的振动测量领域的振动情况

  • 激光干涉法低热膨胀系数测试

    现有客户委托对一种材料进行热膨胀系数进行测量,说是微晶玻璃,据说热膨胀系数非常小,想用这种材料做长度计量中的量块材料。用顶杆法测量后,测试数据在零附近无规则波动,甚至出现负值,顶杆法测不出随温度变化的热膨胀系数 查过资料后,发现微晶玻璃是一种低膨胀系数材料,对这种低膨胀材料需要采用激光干涉法才能进行测量,国内哪家机构有这激光干涉法热膨胀仪呢?迫切需要进行测试,温度范围25~100℃。急需。。。谢谢!!!

  • 【资料】求助--激光干涉仪

    [em10] 用于机床定位精度检测和重复定位精度检测的激光干涉仪什么牌子的好呀?在Renishaw和API之间徘徊,那位前辈能给指点一二?

  • Zygo 发布全新 Qualifire 激光干涉仪

    [color=#000000]阿美特克(纽约证券交易所代码:AME)旗下Zygo公司宣布发布其最新的激光干涉仪Qualifire?。Qualifier加入了一系列高端干涉仪解决方案,该仪器旨在支持半导体、光刻、星载成像系统、尖端消费电子产品、国防等行业中最苛刻的计量应用。Qualifire将于1月30日在加州旧金山的SPIE Photonics West首次亮相。这款干涉仪在不牺牲性能的情况下,将显著的增强功能集成到一个更轻的小型封装中。[/color][color=#000000]Zygo 激光干涉仪产品经理 Erin McDonnell 表示:“我们很高兴将 Qualifire 推向市场,其改进的人体工程学设计使其易于使用,并且比 Zygo 的许多其他激光干涉仪更便携。使用激光干涉仪进行的测量往往对噪声、污染物和其他伪影敏感,因为该仪器能够提供纳米级精度;Qualifire上的可选模块飞点可主动减少甚至消除这些伪影,从而提高测量的可靠性和可重复性。飞点结合了Zygo最好的两种伪影减少技术:环纹和相干伪影减少。飞点在需要高精度的应用中尤其有价值,包括科学研究和先进的制造工艺。[/color][color=#000000]Qualifire为Zygo的激光干涉仪产品线带来这些功能和改进:[/color][color=#000000]Qualire激光干涉仪提供了许多新颖的新功能。[/color][b][color=#000000]智能附件接口[/color][/b][color=#000000]——干涉仪可以识别任何安装的“智能附件”,并自动应用系统错误文件并执行横向校准。[/color][b][color=#000000]体积小、重量轻[/color][/b][color=#000000]——最小的 Qualifire 型号重约 45 磅(20.4 千克)。 它是真正的便携式,特别是对于干涉仪必须经常移动或调整的复杂和精密应用。[/color][b][color=#000000]移相器[/color][color=#000000](PMR)[/color][/b][color=#000000]——PMR 是调制测试部件和参考光学器件之间干涉条纹所必需的,最终可创建定量表面图。其整体设计提供:[/color][color=#000000]整体机械稳定性和对准[/color][color=#000000]降低损坏或错位的风险[/color][color=#000000]确保性能一致,减少重新校准的需要[/color][b][color=#000000]改进的用户体验[/color][/b][color=#000000]——方便使用的电源按钮和运动安装支脚使设置更易于使用。大型控制旋钮可实现更精确的调整,这对校准和校准都至关重要。 集成手柄确保安全可靠的操作。[/color][b][color=#000000]更易于维护[/color][/b][color=#000000]—— 密封的光学系统和整合的电子元件使更换各种组件变得简单,而不会使光学元件暴露在污染物中。[/color][b][color=#000000]飞点[/color][/b][color=#000000]——用于减少伪影的可选模块,包括自动对焦功能。[/color][b][color=#000000]稳定变焦[/color][/b][color=#000000]——提供新变焦方法的选项,可在所有放大倍率下实现完美的图像配准和衍射限制图像采样。[/color][color=#000000]计量集团副总裁Kurt Redlitz 表示:“Qualifire 保持了 Zygo 在计量方面的高标准,同时提供了最高水平的精度并优化了用户体验。通过改进的人体工程学设计,它可以在不牺牲性能的情况下提高操作效率和部署灵活性。Qualifire 是一款更强大、更可靠、用户友好的仪器,可随时应付最苛刻的应用和环境——精度不容置疑。[/color][来源:仪器信息网译] 未经授权不得转载

  • 迈克尔逊激光干涉仪微位移和倾角测量中的真空度精密控制技术

    迈克尔逊激光干涉仪微位移和倾角测量中的真空度精密控制技术

    [color=#990000]摘要:在迈克尔逊激光干涉仪微位移和倾角的精密测量中,需要对真空度进行准确控制,否则会因变形、折射率和温度等因素的影响带来巨大波动,甚至会造成测量无法进行。本文介绍了真空度的自动化控制技术,详细介绍了具体实施方案。[/color][size=18px][color=#990000]一、问题的提示[/color][/size] 作为一种高精密光学仪器,迈克尔逊激光干涉仪得到了非常广阔应用,它可用于测量波长、气体或液体折射率、厚度、位移和倾角,具备对长度、速度、角度、平面度、直线度和垂直度等的高精密测量。但在高精密测量中,迈克尔逊干涉仪会受到气氛环境的严重影响,为此一般将被测物放置在低压真空环境中,如图1所示,并对真空度进行精密控制,否则会带来以下问题:[align=center][color=#990000][img=激光干涉仪真空度控制,500,315]https://ng1.17img.cn/bbsfiles/images/2022/01/202201270813137507_5730_3384_3.jpg!w690x435.jpg[/img][/color][/align][color=#990000][/color][align=center]图1 迈克尔逊激光干涉仪典型测试系统结构[/align] (1)测试环境的气体折射率波动,会对高精密测量带来严重影响。如果采用专门的气体折射率修正装置,测量精度也只能达到微米或亚微米量级,而无法实现更高精度的测量。 (2)如果真空腔室内有温度变化,腔室内的气压也会剧烈变化,相应折射率也会发生剧烈波动而严重影响干涉仪测量。 (3)在抽真空过程中,内外压差会造成真空腔室的微小变形,同时也会造成光学窗口产生位移和倾斜,从而改变测量光路的光程。 (4)在有些变温要求的测试领域,要求被测物能尽快的被加热和温度均匀,这就要求将真空度控制在一定水平,如100Pa左右,由此来保留对流和热导热传递能力。 总之,在迈克尔逊激光干涉仪微位移和倾角的精密测量中,需要对真空度进行准确控制。本文将介绍真空度的自动化控制技术以及具体实施方案。[size=18px][color=#990000]二、实施方案[/color][/size] 迈克尔逊激光干涉仪测试过程中,真空度一般恒定控制在100kPa左右,并不随温度发生改变。为此,拟采用如图2所示的真空度控制系统进行实施,具体内容如下:[align=center][color=#990000][img=激光干涉仪真空度控制,690,411]https://ng1.17img.cn/bbsfiles/images/2022/01/202201270813484950_7314_3384_3.jpg!w690x411.jpg[/img][/color][/align][align=center][color=#990000]图2 迈克尔逊激光干涉仪测试真空度控制系统结构[/color][/align] (1)采用1torr量程的电容真空计进行真空度测量,其精度可达±0.2%。 (2)采用24位A/D采集的高精度PID真空压力控制器,以匹配高精度真空压力传感器的测量精度,并保证控制精度。 (3)在真空腔室的进气口安装步进电机比例阀以精密调节进气流量。 (4)控制过程中,真空泵开启后全速抽取并保持抽速不变。然后对控制器进行PID参数自整定,使控制器自动调节比例阀的微小开度变化实现腔室真空度的精确控制。[align=center]~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~[/align]

  • 科学家首次发现微共振腔内的光能纵向振动

    科技日报讯 据物理学家组织网5月28日(北京时间)报道,课本里的知识告诉我们,平面光波的振动(即偏振)方向一直是横向的,也就是说,与其传播方向垂直。但奥地利维也纳技术大学的科学家们在最新的原子—物理实验中发现,在瓶子那样的微共振腔内的光拥有一种独特属性,其振动方向是纵向的。最新研究成果有助于科学家们开发新的超敏传感器和量子力学路由器等新式设备。 在一个瓶子微共振腔内,当激光不沿光纤行进而是围绕光纤呈螺旋状行进时,能被耦合成一种光学玻璃纤维。光在瓶子微共振腔内可被存储约10纳秒,相当于围绕光纤旋转3万圈所耗费的时间,这足以让光和被带到光纤表面附近的单个原子之间相互作用。但维也纳技术大学科学家在最新实验中发现,这种情况下,光和物质的耦合程度比以前认为的要强。他们对这一令人吃惊的答案的解释是,在这样的微共振腔内,光拥有一种独特的属性:纵向振动。 科学家们解释说,光波的振动方向对光波的行为至关重要。在瓶子微共振腔内,光波能在光纤周围顺时针行进,也能逆时针行进。如果这两种逆向行进的光波的偏振方向是横向的,它们将在某个地点互相增强,而在其他地方互相抵消。维也纳技术大学量子科学中心、原子和亚原子物理研究所的阿诺·劳斯彻布特勒教授说:“正是这种破坏性的干涉限制了光波和玻璃纤维周围的原子之间的耦合强度。” 但如果这两束光波纵向振动,那么它们的振动状态必然会不同。其结果是,通过破坏性的干涉来让逆向传播的光束完全相互抵消不再可能,因而光—物质之间的耦合强度更强。劳斯彻布特勒说:“起初我们真的很震惊,以前我们都知道光能纵向振动,但直到现在,还没有人描述这种振动在微共振腔内的光—物质相互作用中的重要性。” 研究人员表示,最新研究让他们可以据此研制出超灵敏的传感器,这种传感器能用光探测单个原子。而且瓶子微共振腔也摇身一变,成为研究光—物质相互作用基本属性的理想工具。科学家们下一步计划制造出一种由单个原子控制的光路由器,其能打开和关闭两个输出端之间的光。未来这样的一种量子力学路由器有望让光纤网络中的量子计算机之间实现互联。(记者刘霞) 总编辑圈点 富兰克林用莱顿瓶把闪电装在瓶子里。装一束光在瓶子里行不行?奥地利科学家做到了。他们发现,围绕头发一样细的玻璃丝,光可以旋转而不逃逸。从玻璃纤维的截面来看,光在大尺度上走圆圈,在小尺度上回绕。奔驰不羁的光,变成了绕指柔。不要说瓶子,吸管里也盛得下。搭建未来的光量子机器,离不开这类“驯光”的基础技巧。 《科技日报》(2013-05-29 一版)

  • 傅里叶红外 干涉与光谱图关系 求助

    傅里叶红外 干涉与光谱图关系 求助

    请问各路高手,傅里叶变换红外光谱仪的原理:1.是不是用红外光源先产生干涉光,通过样品后,得到干涉图。关键:干涉图是如何变成光谱图的?基于什么原理?我个人的理解是,得到的总的连续的干涉图,可以分解为一系列不同强度的连续正弦干涉图,而这一系列不同强度的正弦干涉图,就是一系列不同波数的光谱。对不对?(傅里叶变换:任何连续周期信号可以由一组适当的正弦曲线组合而成)2.光源里面为什么要有激光发生器?有何用途?3.好像还有一个白光源,用来校准??4.动镜的移动速度有什么要求么?鄙人干仪表维修,看化学专业的东西真心头疼,看了一晚上,没看出个所以然。百度了一下傅里叶变换,看到高数公式,直接崩溃。。。再次先谢过!能提供有用回答,再额外加分!http://ng1.17img.cn/bbsfiles/images/2013/01/201301192226_421457_1620528_3.jpghttp://ng1.17img.cn/bbsfiles/images/2013/01/201301192224_421454_1620528_3.jpg

  • 【分享】激光雷达/激光探测及测距系统

    【分享】激光雷达/激光探测及测距系统

    激光雷达可以按照所用激光器、探测技术及雷达功能等来分类。目前激光雷达中使用的激光器有二氧化碳激光器,Er:YAG激光器,Nd:YAG激光器,喇曼频移Nd:YAG激光器、GaAiAs半导体激光器、氦-氖激光器和倍频Nd:YAG激光器等。其中掺铒YAG激光波长为2微米左右,而GaAiAs激光波长则在0.8-0.904微米之间。根据探测技术的不同,激光雷达可以分为直接探测型和相干探测型两种。其中直接探测型激光雷达采用脉冲振幅调制技术(AM),且不需要干涉仪。相干探测型激光雷达可用外差干涉,零拍干涉或失调零拍干涉,相应的调谐技术分别为脉冲振幅调制,脉冲频率调制(FM)或混合调制。按照不同功能,激光雷达可分为跟踪雷达,运动目标指示雷达,流速测量雷达,风剪切探测雷达,目标识别雷达,成像雷达及振动传感雷达。激光雷达最基本的工作原理与无线电雷达没有区别,即由雷达发射系统发送一个信号,经目标反射后被接收系统收集,通过测量反射光的运行时间而确定目标的距离。至于目标的径向速度,可以由反射光的多普勒频移来确定,也可以测量两个或多个距离,并计算其变化率而求得速度,这是、也是直接探测型雷达的基本工作原理。由此可以看出,直接探测型激光雷达的基本结构与激光测距机颇为相近。相干探测型激光雷达又有单稳与双稳之分,在所谓单稳系统中,发送与接收信号共同在所谓单稳态系统中,发送与接收信号共用一个光学孔径。并由发射/接收(T/R)开头隔离。T/R开关将发射信号送往输出望远镜和发射扫描系统进行发射,信号经目标反射后进入光学扫描系统和望远镜,这时,它们起光学接收的作用。T/R开关将接收到的辐射送入光学混频器,所得拍频信号由成像系统聚焦到光敏探测器,后者将光信号变成电信号,并由高通滤波器将来自背景源的低频成分及本机振荡器所诱导的直流信号统统滤除。最后高频成分中所包含的测量信息由信号和数据处理系统检出。双稳系统的区别在于包含两套望远镜和光学扫描部件,T/R开关自然不再需要,其余部分与单稳系统的相同。美国国防部最初对激光雷达的兴趣与对微波雷达的相似,即侧重于对目标的监视、捕获、跟踪、毁伤评(SATKA)和导航。然而,由于微波雷达足以完成大部分毁伤评估和导航任务,因而导致军用激光雷达计划集中于前者不能很好完成的少量任务上,例如高精度毁伤评估,极精确的导航修正及高分辨率成像。较早出现的一种激光雷达称为“火池”,它是由美国麻省理工学院的林肯实验室投资,于60年代末研制的。70年代初,林肯实验室演示了火池雷达精确跟踪卫星,获得多普勒影像的能力。80年代进行的实验证明,这种CO2激光雷达可以穿透某些烟雾,识破伪装,远距离捕获空中目标和探测化学战剂。发展到80年代末的火池激光雷达,采用一台高稳定CO2激光振荡器作为信号源,经一台窄带CO2激光放大器放大,其频率则由单边带调制器调制。另有工作于蓝-绿波段的中功率氩离子激光与上述雷达波束复合,用于对目标进行角度跟踪,而雷达波束的功能则是收集距离――多普勒影像,实时处理并加以显示。两束波均由一个孔径为1.2M的望远镜发射并接收。据报道,美国战略防御局和麻省理工学院的研究人员于1990年3月用上述装置对一枚从弗吉尼亚大西洋海岸发射的探空火箭进行了跟踪实验。在二级点火后6分钟,火箭进入亚轨道,即爬升阶段,并抛出其有效负载,即一个形状和大小均类似于弹道导弹再入飞行器的可充气气球。该气球有气体推进器以提供与再入飞行器和诱饵的物理结构相一致的动力学特性。目标最初由L波段跟踪雷达和X波段成像雷达进行跟踪。并将这些雷达传感器取得的数据交给火池激光雷达,后者成功地获得了距离约800千米处目标的像。[~116966~][~116967~][~116968~][img]http://ng1.17img.cn/bbsfiles/images/2017/01/201701191651_624049_1602049_3.jpg[/img]

  • 【转帖】用微计算机做分子简正振动分析 Ⅰ.GF矩阵法

    《化学通报》 1984年08期 用微计算机做分子简正振动分析 Ⅰ.GF矩阵法杨小震 【摘要】:正 红外光谱和拉曼光谱广泛应用于物质的结构研究及材料的性能研究,而振动谱带的归属工作是这些研究工作之首,进行分子振动的简正坐标分析是十分必要的。由于该分析过程计算复杂,不借助于电子计算机难以胜任,没有一个通用的程序也难以实施。我国从事振动光谱研究工作者多年来苦于缺乏得力的分子振动简正坐标分析工具之烦,已由1980年以来移植与输入日本与加拿大的分子简正振动计算程序而基本消除。然而,大型计算机昂贵的机时费用,使许多人望而生畏或浅尝辄止。为了推动国内简正振动分析工作的普及,本工作把自己编写的一套分子简正振动分【作者单位】: 中国科学院化学研究所 【关键词】: 振动分析 微计算机 分子振动 简正振动 力常数 简正坐标分析 拉曼光谱 振动光谱 红外光谱 基本消除

  • 【求助】红外光谱仪无干涉图

    各位大侠 你们好!,我的尼高力380红外光谱仪出现了问题,刚开机时,有干涉图,随后干涉图不稳定,直到逐渐消失.我用bench diagonoist查看了激光,光源等各参数的电压,都正常.但就是没干涉图,急呀.请各位大侠赐教.谢谢!

  • 【资料】微分干涉相衬法及其应用

    [size=3][font=宋体][/font][size=2][font=宋体][/font][/size][/size][size=2][font=宋体]微分干涉相衬法(DIC)作为一种极具前途的分析检验方法,具有对金相样品的制备要求较低,所观察到的样品各组成相间的相对层次关系突出,呈明显的浮雕状,对颗粒、裂纹、孔洞以及凸起等能作出正确的判断,能够容易判断许多明场下所看不到的或难于判别的一些结构细节或缺陷,可进行彩色金相摄影等优点。但在目前的金相检验工作中,DIC法还利用得很少。[/font][/size][size=2][font=宋体]在金相显微镜检验方法中,微分干涉相衬法(DIC)是金相检验的一种强有力的工具,其特点主要为:[/font][/size][size=2][font=宋体]对金相样品的制备要求降低,对于某些样品,甚至只需抛光而不必腐蚀处理即可进行观察。优点是可以观察到样品表面的真实状态,如将试样抛光后在真空下发生马氏体相变,不用腐蚀就可以观察到马氏体的相变浮凸。 [/font][/size][size=2][font=宋体]所观察到的表面具有明显的凹凸感,呈浮雕状,样品各组成相间的相对层次关系都能显示出来,对颗粒、裂纹、孔洞以及凸起等都能作出正确的判断,提高了金相检验准确性,同时也增加了各相间的反差。 [/font][/size][size=2][font=宋体]用微分干涉相衬法观察样品,会看到明场下所看不到的许多细节,明场下难于判别的一些结构细节或缺陷,可通过微分干涉进行反差增强而容易判断。 [/font][/size][size=2][font=宋体]微分干涉相衬法基于传统的正交偏光法,又巧妙地利用了在渥拉斯顿棱镜基础上改良的DIC 棱镜和补色器([/font][/size][size=2][font=Arial]λ-[/font][/size][size=2][font=宋体]片)等,使所观察的样品以光学干涉的方法染上丰富的色彩,从而可利用彩色胶卷或者数码产品(CCD 摄像头以及数码相机)进行彩色金相显微摄影。由于微分干涉相衬得效果与样品细节的浮雕像以及色彩都是可以调节的,因而比正交偏光更为优越。 [/font][/size][size=2][font=宋体]微分干涉相衬法在生物医学领域得到了广泛的重视,然而,到目前为止从发表的有关材料金相研究的论文中,国内外基于微分干涉相衬法进行材料金相研究的工作开展得很少。其原因主要有两个方面:一方面是由于配备微分干涉相衬部件的金相显微镜不是很多;另一方面,许多材料科学工作者还没有意识到微分干涉相衬法在材料研究中的优势。[/font][/size][size=2][font=宋体]一、微分干涉相衬法的基本原理:[/font][/size][size=2][font=宋体]微分干涉相衬法所需部件:起偏器、检偏器、微分干涉相衬组件插板(DIK组件插板),以及补色器([/font][/size][size=2][font=Arial]λ- [/font][/size][size=2][font=宋体]片)。起偏器和检偏器是在对金相样品进行正交偏振光观察中必不可少的基本配套部件,组装在明/暗场照明组件中,也是微分干涉相衬法必不可少的部件。起偏器是把光源变为按东- 西方向振动的线偏振光;检偏器可以使满足干涉条件的相干光进行干涉。DIK组件插板是微分干涉相衬法的核心部件,其上装配有以渥拉斯顿棱镜为基础改良后的DIC棱镜。DIK组件插板上有两个调节旋钮,其中较大的一个用来调节组成DIC棱镜的两个棱镜间的相对位置,使其厚度产生微小的改变从而引起光程或光程差的微小变化,产生明显的干涉相衬效果;较小的一个用来调节DIC棱镜的高低位置,以配合不同倍数物镜后焦平面位置上的差异,从而确保DIC观察视场中能获得均匀的照明。补色器([/font][/size][size=2][font=Arial]λ- [/font][/size][size=2][font=宋体]片)由石膏制成,插在线偏振光的照光路中用以增加一个光波波长约550nm的光程差,使干涉级序升高一级,保证视野中样品的不同组织细节获得丰富的色彩,从而利于金相组织的观察和分析。 [/font][/size][size=2][font=宋体]微分干涉相衬的基本原理:微分干涉相衬法的基本原理如图1所示。由光源出射的照明光经起偏器后变为东-西方向振动的线偏振光,第一次进入DIC棱镜内部时分为寻常光(o光)和非寻常光(e光),这两束光微微分开,而其振动方向相互垂直。当o光和e光穿出棱镜时,两者具有一定的光程差T1,这两束光通过物镜照射到样品上时,就有可能照射于不同的表面状态上。也就是说,这两束光的波前接触到了样品上的不平整表面、裂纹、微孔、凹陷、晶界等,都会产生不同情况的反射,再加上不同物相上光的折射率差异产生的光波相位变化,从而产生了新的附加光程差T0。当这两束光由样品表面反射后,穿过物镜第二次进入DIC棱镜,波前又产生了新的光程差T2 并进行合并。但这两束光仍然是相互垂直的线偏振光,并未产生干涉。在进入检偏器之前,总的光程差T总=T1±T0±T2只有符合光程差条件T总=(2k + 1)[/font][/size][size=2][font=Arial]λ/2[/font][/size][size=2][font=宋体],其中(k= 0,1,2等) 的光波波前,才可能通过检偏器。也就是说,线偏振光两次通过DIC棱镜后,只有那些经样品反射而其总光程差等于所用光源光波半波长奇数倍的波前,才能满足干涉条件而通过检偏器而进行干涉。当将DIC棱镜的两半部分进行适当的移动(即调节DIK 插板上较大的旋钮),则T1和T2 的比率就会发生变化:调节旋钮使DIC 棱镜在显微镜的光轴上为对称时(即棱镜上下两半部分没有相对位移),有T1=T2,视场中光强分布只与光程差T0有关,而T0是由样品上的不平整度以及物相造成的光波相位变化而引起的光程差。除了在样品表面上由于物相间折射率的差异导致的光波相位变化而引起的光程差之外,这种干涉方法所引起的样品光程差与o光和e光的分开距离x值(低于显微镜的分辨率极限,约012[/font][/size][size=2][font=Arial]μm[/font][/size][size=2][font=宋体])有关,还与样品表面上物相表面高度变化(凸起或凹下)梯度tg[/font][/size][size=2][font=Arial]α[/font][/size][size=2][font=宋体]([/font][/size][size=2][font=Arial]α[/font][/size][size=2][font=宋体]为o光或e光入射于样品表面的入射角)有关。即样品成像的反差取决于o光和e光波前在样品表面物相凸起或凹下的高度变化梯度所引起的光程差。当调节旋钮使DIC 棱镜上下两半部分产生相对位移时,物相表面凸起或凹下两个相反梯度所引起的光强差异就在显微镜的成像中产生了浮雕效果如图2所示,与单一方向斜射照明光所产生的近似立体效果相同。此时干涉效果是零级干涉级序下的微分干涉效果,灰度最大者为零级灰,在零级干涉级序下干涉相衬的效果最佳,同时也是最大的,但仅能以不同灰度层次显示。把补色器(或[/font][/size][size=2][font=Arial]λ-[/font][/size][size=2][font=宋体]片)加在线偏振光的照明或检偏器之前的成像光路中,可以将线偏振光在样品不同物相或表面上引起的光程差扩大约550nm ,也就是扩大一个光波波长的长度,使干涉级序提高一级,把原先干涉出来仅以不同灰度显示出来的层次转为色彩鲜艳且富有立体感的彩色,零级灰转为红色(一级红),而其它的灰度阶也依次变为橙、黄、绿、紫、粉紫以至于金黄色等对应的颜色如图3 (见彩图页) 所示。虽然加入补色器后干涉出来的色彩非常丰富,但干涉相衬的效果(即浮雕效果) 要相应减弱一些。 [/font][/size]

  • 激光测振仪在钢轨无损检测中的应用

    激光测振仪在钢轨无损检测中的应用

    钢轨在生产、铺设及行车过程中会产生各种损伤,这些损伤不但影响行车的平稳和舒适,而且会危及行车安全。钢轨的损伤包括疲劳、磨耗、锈蚀、弯曲变形和裂纹等。通常,我们可以利用机器视觉方法检测钢轨表面的损伤。但对于钢轨内部损伤,常规的图像法无法检测。钢轨内部早期损伤难以发现,随着工作时间推移会突然出现裂纹,容易造成严重的行车事故。钢轨内部缺陷已成为铁路运输安全的主要损伤类型。目前,铁路系统检测钢轨内部缺陷采用的是超声波法,该方法中利用高频的超声波作为信号源,基于此方法的钢轨探伤车无法实时在线监测钢轨内部缺陷。但在钢轨中激励低频、高能的超声波时,超声波会在钢轨边界不断发生反射、折射以及纵横波的转换,从而会产生一种新的超声波信号---超声导波。超声导波适合检测横截面一致、长距离的波导介质材料,如管道、钢轨等。钢轨具有声导管性质,超声导波在其内部传播距离很远。一般利用超声导波换能器接受导波,但换能器的黏贴位置、粘贴胶质和轨道温度等因素会影响这种非接触式测量方法的效果,降低测量准确率。然而利用激光测振仪这种非接触测量工具,既可以实现实时在线监测钢轨,发现钢轨早期的内部缺陷,同时也能提高检测精度。这种方法利用激光测振仪测量钢轨振动速度曲线,经信号处理后利用脉冲回波法,检测超声导波在钢轨内部缺陷处产生的回波信号来实现在线监测钢轨。[img=,599,333]https://ng1.17img.cn/bbsfiles/images/2019/04/201904101153380291_7519_3859729_3.jpg!w599x333.jpg[/img]OptoMET数字型激光多普勒测振仪是一套高精度的振动测量仪器。该仪器可非接触且精确地测量振动和声学信号,包括振动位移、速度和加速度。它具有超高的光学灵敏度,并利用自行研发的超速数字信号处理技术(UltraDSP),不仅能快速测量简单系统的振动,还能测量极具挑战的系统,包括高频振动,远距离测试,微小振幅,高线性和高振动加速度或速度。超速数字信号处理技术(UltraDSP)确保了测量的高分辨率和高精度。OptoMET激光测振仪具有超高的光学灵敏度和信号强度,这对于在生锈和灰暗又无法进行表面处理的结构上获得无噪声和无信号丢失的测试数据至关重要。应用参考:邢博,余祖俊,许西宁,朱力强.基于激光多普勒频移的钢轨缺陷监测.中国光学,2018,11(06):991-1000.文章来源:嘉兆科技http://www.tnm-corad.com.cn/news/Show-5639.html

  • 美国波音公司激光干涉法大尺寸构件超低热膨胀系数测试技术综述

    美国波音公司激光干涉法大尺寸构件超低热膨胀系数测试技术综述

    摘要:航天器用各种大尺寸构件都普遍要求超低膨胀系数以保证构件尺寸的稳定性,传统热膨胀系数测试只针对长度100mm以下的小试样,已无法满足长度1m以上大尺寸构件的超低热膨胀系数测量,多数航天器用大尺寸构件需要精确测量整个构件的超低热膨胀系数。本文对美国波音公司在太空望远镜大尺寸桁架超低热膨胀系数整体测量方面的研究工作进行了综述,以了解国外技术发展状况,给今后开展此方面工作提供参考和借鉴。1. 前言 在太空运行的各种航天器,由于没有大气层的保护,其环境温度变化很大,受阳面温度可高达上百摄氏度,而被阳面温度却在零下几十摄氏度。因此,航天器在空间环境中,由于材料的热膨胀,会引起航天器结构的尺寸变化。但是从航天器的某些部件和仪器的技术要求考虑,希望航天器的某些结构的稳定性要好,这一点对通讯卫星天线结构及敏感元件、太空望远镜的镜筒支架等的使用和安装尤为重要。尤其是卫星和望远镜桁架结构更要求其在一定的环境温度变化范围内不因热应力产生变形或者变形极小,即所谓零膨胀。 传统热膨胀系数测试只针对长度100mm以下的小试样,已无法满足大尺寸构件的超低热膨胀系数测量。为适应航天器制造的要求,特别是对于以1m以上长度的E-08/K量级材料热膨胀系数需要更加准确的测试。因此,研究航天器用复合材料工程构件的超低膨胀测试方法和相应的测试设备,具有重要的科学意义和实用价值。 本文将介绍美国波音公司在太空望远镜桁架超低热膨胀系数测试方法和测试设备方面所开展的工作。2. 波音公司激光干涉法第一代热膨胀系数测试技术 早在1971年波音公司的Bond等人就开始研究一种用于监测大直径天线在空间模拟腔体内动态行为的多通道激光干涉法测试技术【1】,其中采用了可反转条纹计数技术来测量安装在试验箱体外测量装置与安装在腔体内天线上7个光学反射镜之间的距离。 试验腔外测试仪器距离腔体内部天线的距离将近5m,干涉仪采用了Twyman-Green干涉仪,其中参考光束的相位在13.5kHz频率处进行调节以便对每个通道进行可反转条纹计数,每根条纹计数对应的距离变化增量为7.9nm(0.125倍激光波长),整个光学系统结构如图 2-1所示。 http://ng1.17img.cn/bbsfiles/images/2016/10/201610252327_615105_3384_3.png图 2-1 多通道激光干涉仪光学系统结构示意图 基于上述技术,波音航空公司在1974年至1975年期间针对大型空间望远镜(LST)项目中的石墨环氧测量支架进行了热膨胀系数测试考核【2】。具体测试考核包括了两方面的内容,一方面是测试管状支架和H型支架的热膨胀系数,另一方面是对管状支架热膨胀系数进行了热循环效应考核。 热膨胀系数测试试件为91.44厘米长的截面分别为圆形和H型的管材,被测试件放置在真空腔内并稳定24小时后再进行测试,图 2-2所示为测试装置的结构示意图。如图所示,被测试件悬浮在含有加热套的真空腔内,激光干涉仪的光学部件放置在真空腔外的底部位置,形成立式结构热膨胀系数测量装置,用来测量试件长度变化的聚焦光束垂直进入真空腔底部的光学窗口,整个测量装置实物如图 2-3所示,激光干涉仪测量装置实物如图 2-4所示。 http://ng1.17img.cn/bbsfiles/images/2016/10/201610252327_615106_3384_3.png图 2-2 热膨胀系数测试系统结构示意图http://ng1.17img.cn/bbsfiles/images/2016/10/201610252327_615107_3384_3.png图 2-3 热膨胀系数测试系统整体照片http://ng1.17img.cn/bbsfiles/images/2016/10/201610252328_615108_3384_3.png图 2-4 热膨胀系数测试系统激光干涉仪测量装置 每个被测试件上安装了三只测温热电偶和四个角反射镜,如图 2-5所示。激光干涉仪测量得到四个角反射镜的位移变化,由此得到热变形量和监视试件的倾斜。在被测试件的顶部安置一个参考反射镜用来抵消被测试件和干涉仪之间相对运动所带来的影响。 测试中真空腔内部气压低于1Torr以下并使真空度稳定16个小时,然后使试件温度升到37.8℃(100℉)后在冷却下来,整个加热冷却过程中,每隔2.8℃(5℉)测试一次热变形量,每隔14℃(25℉)进行一次30分钟的恒温。整个温度变化过程直到试件冷却到-73.3℃(-100℉)停止。 http://ng1.17img.cn/bbsfiles/images/2016/10/201610252328_615109_3384_3.png图 2-5 热膨胀系数测试系统测温传感器和光学器件安装位置示意图 铺层方向为(02±50)s 的管状试件热变形量测试结果如图 2-6所示,整个过程的平均线膨胀系数为 7.2E-08/℃(4E-08/℉)。图 2-7所示为管状构件热膨胀系数测试与计算之间的比较结果,从比较结果可以看出板层方向的有效性,这种特性可以用来设计特殊性能的复合材料。 在进行管件热膨胀系数热循环考核试验中,先沿着试件长度方向上安装两只1英寸宽的电阻加热器以建立起与热真空试验相同的试件状态,在热真空试验中,电阻加热器是用来控制管件的温度,而在管件热膨胀系数热循环试验中,加热电阻器只是实现相同的结构状态,热循环试验的温度控制则是采用真空腔内的加热套来实现。 http://ng1.17img.cn/bbsfiles/images/2016/10/201610252328_615110_3384_3.png图 2-6 试件热变形量随温度变化的测试结果http://ng1.17img.cn/bbsfiles/images/2016/10/201610252329_615111_3384_3.png图 2-7 测试与设计结果的比较 在热膨胀系数热循环考核试验中,反射镜和温度传感器的安装与热膨胀系数测试时完全相同。热循环测试时也是先抽真空使得试件进行一两天的除湿,然后进行+38℃~-78℃(+100℉~-100℉)温度范围内的208次的冷热循环,大约间隔50次循环进行一次测量,在最后一次循环时,测试将电阻加热器取出后的试件热膨胀系数。热循环过程中试件的热膨胀系数随温度变化测量结果如图 2-8所示。 http://ng1.17img.cn/bbsfiles/images/2016/10/201610252329_615112_3384_3.png图 2-8 热循环过程中试件热膨胀系数随温度变化的测量值[/

  • 【讨论】傅立叶光谱仪中激光器的作用讨论及疑问

    一是采样,如果使用632.8nm的He-Ne激光器,因为激光本身被调制成余弦曲线,x轴为光程差,一个余弦周期应该是632.8nm。采样时,用这个余弦干涉图监测扫描测量全过程,当余弦波过零点,通过触发器对样品干涉图采样,获得数字化干涉图。我的问题在这里,余弦波过零点的时候,光程差是316.4nm,也就是说干涉图是316.4nm采样一次?感觉非常之宽啊。还是我的理解有误?第二个作用是监控动镜移动。这个作用很明显。不多说了。

  • 振动光谱与深度学习

    深度学习是一种先进的机器学习方法,具有很好的学习复杂关系的能力,可以直接从大规模原始数据集构建预测模型。随着人工智能的快速发展,以卷积神经网络(CNN)为代表的深度学习在皮肤癌的分类,变异发现和基因分型,人类血细胞计数等方面取得了巨大的成功。对于振动光谱数据,Acquarelli等人使用CNN来识别重要的光谱区域。Chen等应用CNN建立近红外(NIR)光谱定量分析模型。Lu等人开发了基于CNN的模型来识别混合物拉曼光谱的成分。

  • 【资料】干涉滤光片

    干涉滤光片interference film利用干涉原理只使特定光谱范围的光通过的光学薄膜。通常由多层薄膜构成。干涉滤光片种类繁多,用途不一,常见干涉滤光片分截止滤光片和带通滤光片两类。截止滤光片能把光谱范围分成两个区,一个区中的光不能通过(截止区),而另一区中的光能充分通过(通带区)。典型的截止滤光片有低通滤光片(只允许长波光通过)和高通滤光片(只允许短波光通过),它们均为多层介质膜,具有由高折射率层和低折射率层交替构成的周期性结构。例如,最简单的高通滤光片的结构为g(L/2)(HL)mH(L/2)a,其中g代表玻璃(光学元件材料),a代表膜外空气,L和H分别代表厚度为1/4波长的低折射率层和高折射率层,L/2则代表厚度为1/8波长的低折射率层 ,m 为周期数 。类似地,低通滤光片的结为g(H/2)L(HL)(H/2)a。一种具有对称型周期膜系的高通和低通滤光片的结构分别为g(0.5LH0.5L)ma和g(0.5HL0.5H))ma 。带通滤光片只允许较窄波长范围的光通过,常见的是法布里-珀罗型滤光片,它实质上是一个法布里-珀罗标准具(见法布里-珀罗干涉仪)。具体结构为:玻璃衬底上涂一层半透明金属层,接着涂一层氟化镁隔层,再涂一层半透明金属层,两金属层构成了法布里-珀罗标准具的两块平行板。当两极的间隔与波长同数量级时,透射光中不同波长的干涉高峰分得很开,利用别的吸收型滤光片可把不允许透过的光滤掉,从而得到窄通带的带通滤光片,其通频带宽度远比普通吸收型滤光片要窄。另外还有全电介质的法布里-珀罗型滤光片,两种典型结构为gHLHLLHLH a,g HLHL HH LHLH a1。根据需要,带通滤光片的通频带可从红外到紫外。在可见光区,彩色电视摄像机中可利用这种滤光片把像分离成不同颜色;在红外区,常用于二氧化碳激光器、导弹制导系统及卫星传感器等。

  • 【分享】参考干涉 采集

    里叶变换红外光谱仪中,干涉数据要实现等光程差采样,一般是通过氦氖激光器作为参考光源,如果只采用一个探测器,请问如何将测量光源与参考光源产生的干涉信号分离?提取出参考光源的干射信号?

  • 【分享】------激光相关国标

    激光相关国标序号Sequence No. 标准号Standard No. 中文标准名称Standard Title in Chinese 英文标准名称Standard Title in English 状态State 备注Remark1 GB/T 20485.11-2006振动与冲击传感器校准方法 第11部分:激光干涉法振动绝对校准 Methods for the calibration of vibration and shock transducers - Part 11: Primary vibration calibration by laser interferometry 现行 2007-02-01实施,代替GB/T 13823.2-19922 GB 10320-1995激光设备和设施的电气安全 Electrical safety of laser equipment and installations 现行 1996-01-01实施,代替GB 10320-19883 GB 10435-1989作业场所激光辐射卫生标准 Hygienic standard for laser radiation in the work environment 现行 1989-10-01实施4 GB/T 11153-1989激光小功率计性能检测方法 Parameters testing method of laser power meter in low range 现行 1990-04-01实施5 GB/T 11293-1989固体激光材料名词术语 Terms and definitions of solid-state laser materials 现行 1990-01-01实施6 GB/T 11295-1989激光晶体棒型号命名方法 Designation for laser crystal rods 现行 1990-01-01实施7 GB/T 11297.1-2002激光棒波前畸变的测量方法 Test method for wavefront distortion of laserrods 现行 2003-05-01实施,代替GB/T 11297.1-19898 GB/T 11297.2-1989激光棒侧向散射系数的测量方法 Test method for side direction scatteringcoefficient of laser rods 现行 1990-01-01实施9 GB/T 11297.3-2002掺钕钇铝石榴石激光棒消光比的测量方法 Test method for extinction ratio of Nd∶YAG laser rods 现行 2003-05-01实施,代替GB/T 11297.3-198910 GB/T 11297.4-1989掺钕钇铝石榴石激光棒长脉冲激光阈值及斜率效率的测量方法 Test method fornormal pulse lasing threshold and slope efficiency of Nd:YAG laser rods 现行 1990-01-01实施11 GB/T 11297.5-1989掺钕钇铝石榴石激光棒连续激光阈值、斜率效率和输出功率的测量方法 Test method for continuous lasing threshold, slope efficiency and output power of Nd∶YAG laser rods 现行 1990-01-01实施12 GB 11748-2005二氧化碳激光治疗机 Carbon dioxde Laser Treating Intrument 现行 2005-07-01实施,代替GB 11748-199913 GB/T 12082-1989气体激光器文字符号 Letter symbols for gas lasers 现行 1990-07-01实施14 GB/T 12083-1989气体激光器电源系列 Power supply series for gas lasers 现行 1990-07-01实施15 GB 12257-2000氦氖激光治疗机通用技术条件 General specification of He-Ne laser medical equipment 现行 2000-12-01实施,代替GB 12257-199016 GB/T 12377-1990空气中微量铀的分析方法 激光荧光法 Analytical method of microquantity uranium in air by laser-fluoremetry 现行 1990-12-01实施17 GB/T 13739-1992激光辐射横模鉴别方法 Testing method of transverse mode of laser radiation 现行 1993-08-01实施18 GB/T 13740-1992激光辐射发散角测试方法 Testing method of divergence angle of laser radiation 现行 1993-08-01实施19 GB/T 13741-1992激光辐射光束直径测试方法 Testing method of beam diameter of laser radiation 现行 1993-08-01实施20 GB/T 13823.2-1992振动与冲击传感器的校准方法 激光干涉法振动绝对校准 (一次校准) Methods for the calibration of vibration and shock pick-ups--Primary vibration calibration by laser interferometry 现行 1993-10-01实施21 GB/T 13842-1992掺钕钇铝石榴石激光棒 Neodymium-doped yttrium aluminium garnet laser rods 现行 1993-08-01实施22 GB/T 13863-1992激光辐射功率测试方法 Testing method for laser radiant power 现行 1993-05-01实施23 GB/T 13864-1992激光辐射功率稳定度测试方法 Testing method for laser radiant power stability 现行 1993-05-01实施24 GB/T 14078-1993氦氖激光器技术条件 He-Ne laser specification 现行 1993-08-01实施25 GB/T 14128-1993掺铷钇铝石榴石激光棒尺寸系列 Dimension series for neodymium-doped yttrium aluminium garnet laser rods 现行 1993-08-01实施26 GB/T 15175-1994固体激光器主要参数测试方法 Measurement methods for main parameter of solid-state lasers 现行 1995-04-01实施27 GB/T 15301-1994气体激光器总规范 General specification for gas lasers 现行 1995-07-01实施28 GB/T 15313-1994激光术语 Terminology for laser 现行 1995-10-01实施29 GB/T 15490-1995固体激光器总规范 General specification for solid state lasers 现行 1995-09-01实施30 GB/T 15649-1995半导体激光二极管空白详细规范 Blank detail specification for semiconductor laser diodes 现行 1996-04-01实施31 GB/T 15860-1995激光唱机通用技术条件 General specification for compact disc players 现行 1996-08-01实施32 GB/T 16601-1996光学表面激光损伤阈值测试方法 第1部分:1对1测试 Test methods for laser induced damage threshold of optical surfaces--Part 1: 1 on 1 test 现行 1997-04-01实施33 GB/T 17540-1998台式激光打印机通用规范 General specification for desktop laser printer 现行 1999-06-01实施34 GB/T 17736-1999激光防护镜主要参数测试方法 Testing method of main parameters for laserprotective eyewear 现行 1999-12-01实施35 GB 18151-2000激光防护屏 Laser guards 现行 2000-12-01实施36 GB 18217-2000激光安全标志 Laser safety signs 现行 2001-06-01实施37 GB/Z 18461-2001激光产品的安全 生产者关于激光辐射安全的检查清单 Safety of laser products--Manufacturer’s checklist for radiation safety of laser products 现行 2002-05-01实施38 GB/Z 18462-2001激光加工机械 金属切割的性能规范与标准检查程序 Laser processing machines--Performance specifications and benchmarks for cutting of metals 现行 2002-05-01实施39 GB 18490-2001激光加工机械 安全要求 Laser processing machines--Safety requirements 现行 2002-06-01实施40 GB/T 18683-2002钢铁件激光表面淬火 Laser surface hardening of iron and steel parts 现行 2002-08-01实施41 GB/T 18904.2-2002半导体器件 第12-2部分:光电子器件 纤维光学系统或子系统用带尾纤的激光二极管模块空白详细规范 Semiconductor devices--Part 12-2:Optoelectronic devices--Blank detail specification for laser diodes modules with pigtail for fiber optic systems or sub-systems 现行 2003-05-01实施42 GB/T 19077.1-2003粒度分析 激光衍射法 Particle size analysis--Laser diffraction method 现行 2003-09-01实施43 GB/T 4799-2001激光器型号命名方法 The type designation for laseres 现行 2002-05-01实施,代替GB/T 4799-198444 GB/T 6360-1995激光功率能量测试仪器规范 Specification for laser radiation power and energy measuring equipment 现行 1996-01-01实施,代替GB 6360-198645 GB/T 6598-1986小角激光光散射法测定聚苯乙烯标准样品的重均分子量 Determination of weight-average molecular weight of polystyrene standards by low angle laser light scattering method 现行 1987-07-01实施46 GB 7247.1-2001激光产品的安全 第1部分:设备分类、要求和用户指南 Safety of laser products--Part 1:Equipment classification,requirements and user’s guide 现行 2002-05-01实施,代替GB 7247-199547 GB/T 7257-1987氦氖激光器参数测试方法 Measurement methods of parameter for helium neon laser 现行 1987-12-01实施48 GB 9706.20-2000医用电气设备 第2部分:诊断和治疗激光设备安全专用要求 Medical electrical equipment--Part 2articular requirements for the safety of diagnostic andtherapeutic laser equipment 现行 2001-05-01实施

  • 【原创大赛】《仪器故事-我们中奖了》新装的红外光谱无干涉图了

    【原创大赛】《仪器故事-我们中奖了》新装的红外光谱无干涉图了

    iS5红外光谱刚安装调试好2个月,准备扫描一个样品时,开机发现扫描没干涉图了,难道我们中奖了吗?[img=,553,380]https://ng1.17img.cn/bbsfiles/images/2018/09/201809230916278844_557_1608025_3.jpg!w553x380.jpg[/img]校准失败,杯具了,真的中奖了。[img=,553,311]https://ng1.17img.cn/bbsfiles/images/2018/09/201809230917071793_4347_1608025_3.jpg!w553x311.jpg[/img]马上call工程师,和工程师交流了下,说保修吧,还在保修期内。打400保修,又重复了故障描述,再有工程师再确认仪器问题,再按照工程师的方法检查了下仪器,最后工程师说得等备件,然后还要等几天,刚好工程师要培训,人员不够调配了。那也没办法。[img=,553,292]https://ng1.17img.cn/bbsfiles/images/2018/09/201809230917380154_1797_1608025_3.gif!w553x292.jpg[/img][img=,553,311]https://ng1.17img.cn/bbsfiles/images/2018/09/201809230917384054_6384_1608025_3.gif!w553x311.jpg[/img]终于等到工程师来了,看看参数,肯定要更换配件了。首先从最简单的、容易的更换开始,先更换线路板,因为更换线路板最简单,这红外仪的螺丝太多,拆开仪器内部还是很麻烦。[img=,551,412]https://ng1.17img.cn/bbsfiles/images/2018/09/201809230918349080_3480_1608025_3.jpg!w551x412.jpg[/img]使用专用工具,如上图一个圆形塑料帽子,这个一定得放好,没有了就拆不开机器了。这个是拆溴化钾窗片的,再拆开挡板,如下图露出了电路板。[img=,551,412]https://ng1.17img.cn/bbsfiles/images/2018/09/201809230918531948_4107_1608025_3.jpg!w551x412.jpg[/img]更换新的电路板后,有干涉图了,但激光信号不是很高。红外对环境的温湿度要求很高,电路板没盖盖子,仪器自身就会报错,见下图。[img=,554,385]https://ng1.17img.cn/bbsfiles/images/2018/09/201809230919104955_3436_1608025_3.gif!w554x385.jpg[/img]调解激光频率,如下图,这个频率是有问题的,[img=,554,149]https://ng1.17img.cn/bbsfiles/images/2018/09/201809230919237669_2059_1608025_3.gif!w554x149.jpg[/img]激光频率修改后,但校正没变化,有点奇怪,但干涉图是有了, 电压值不是很高。测试报告没通过,难堪。[img=,553,311]https://ng1.17img.cn/bbsfiles/images/2018/09/201809230919529449_1230_1608025_3.jpg!w553x311.jpg[/img]还是更换下激光吧,拆开吧,露出了机器的真面目。[img=,551,412]https://ng1.17img.cn/bbsfiles/images/2018/09/201809230920147620_6070_1608025_3.jpg!w551x412.jpg[/img]更换的激光见上图红圈位置。连接旧的电路板,调试下。[img=,553,311]https://ng1.17img.cn/bbsfiles/images/2018/09/201809230920367733_6411_1608025_3.jpg!w553x311.jpg[/img]测试结果良好,激光信号也可以。[img=,551,330]https://ng1.17img.cn/bbsfiles/images/2018/09/201809230920494325_2157_1608025_3.jpg!w551x330.jpg[/img]激光频率确认的值有变化了,这次正常了。再诊断结果正常。[img=,553,311]https://ng1.17img.cn/bbsfiles/images/2018/09/201809230921051351_5227_1608025_3.gif!w553x311.jpg[/img]最后测试报告通过,一切ok。仪器终于修好了,总结下心得,红外仪器每次样品采集信号前都需要校准,也是检验仪器性能,能及时发现仪器问题,该故障无干涉图,维修从易到难,有人给我出主意,抱着仪器晃动下,有可能会好,我真的抱着摇晃了,轻轻的,万一本来没坏,被我摇坏了怎么办呢,结果没被我摇好,故障依旧,工程师也是先易后难,先更换电路板开始,有干涉图,性能确认不能通过,还是有问题,调解激光其频率没变化,说明激光还是有问题,在更换激光后,主板不更换,信号良好,运行性能确认,全部pass。在维修中,发现尼高力(应该叫赛默飞)的红外对温湿度要求严格,在温湿度达不到要求时,仪器自身不给你做测试,这也是因为仪器内用到好多溴化钾部件,容易吸潮,一旦吸潮,其危害是不可逆的。平时在养护仪器时需要特别注意,需要在良好的环境中,比我们人娇贵,不控制好温室度,他可是要生病的,这iS5红外仪器自身配了一个干燥器的,有颜色指示。仪器也说如果因为这受潮,是不在保修范围内的。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制