当前位置: 仪器信息网 > 行业主题 > >

激光小孔应力仪

仪器信息网激光小孔应力仪专题为您提供2024年最新激光小孔应力仪价格报价、厂家品牌的相关信息, 包括激光小孔应力仪参数、型号等,不管是国产,还是进口品牌的激光小孔应力仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合激光小孔应力仪相关的耗材配件、试剂标物,还有激光小孔应力仪相关的最新资讯、资料,以及激光小孔应力仪相关的解决方案。

激光小孔应力仪相关的资讯

  • 激光从蛋白质分子粗细的小孔穿过
    报讯据美国《每日科学》网站8月31日报道,美国加州大学伯克利分校制出世界最小半导体激光器,能使激光从一个蛋白质分子粗细的小孔中穿过。相关论文8月30日在线发表在《自然》杂志网站上。该成果在激光物理学领域具有里程碑式的意义,将有可能开创光学研究的新时代。  加州大学伯克利分校纳米科学与工程中心主任张翔(音译)说:“该研究打破了传统意义上对激光极限的认识,在生物学、通信和计算机领域有着广泛的应用前景。”  据了解,在分子生物学上,纳米级的激光可用于对DNA分子进行探测和控制;在通信领域可大幅提高基于光传导的信息传送速度和带宽;在光学计算机领域对现有技术也有极大的促进作用。  在传统观点看来,包括激光在内的电磁波最细只能聚焦到其波长的一半。经过努力,科学家们找到了一种将电子和光子相互震荡并让其沿着金属表面传播的方法,才将激光压缩到几十纳米细,这种沿着金属表面传播的电磁表面波就是表面等离子体。此后各国科学家开始竞相建造等离子体激光器,但由于金属内在电阻的干扰,表面等离子体在产生后极易衰减,研究人员不得不为此再制造磁场以汇聚光线。  张翔和他的研究小组破解了这个难题。他们用比头发丝还要细1000倍的硫化镉纳米丝在金属银的表面分隔出一个5纳米宽的缝隙。在这个结构中所产生的激光比其波长小20倍。由于光能主要集中在这个极为狭小的缝隙中,其在传播中损耗也被降到了最低。自发辐射率的增加程度是衡量该设备的一个重要指标,在这项研究中,研究人员在该设备5纳米的间隙中测量到了6倍的自发辐射率。(王小龙) 本篇文章来源于 科技网|www.stdaily.com原文链接:http://www.stdaily.com/kjrb/content/2009-09/02/content_100089.htm
  • 浅谈 | 激光共聚焦显微镜特点及应用
    激光扫描共聚焦显微镜(LSCM)是基于共轭焦点技术设计的显微镜类型,即为使激光光源、被测样品和探测器都处于彼此的共轭位置上。基本原理在一般的显微镜中通过将物镜的焦平面与探测器重合使得观测的像平面与相邻的轴平面隔离开来,而在共聚焦显微镜中通过使用衍射受限的光点照亮样品,并在该光点共轭焦点处的收集光路径中使用针孔来过滤杂散光达到产生这种隔离效果从而提高分辨率。激光共聚焦显微镜原理图成像特点—不同的焦平面上生成“z叠层”图像—上图所示结构中,只有在共轭的样品层反射回的光可以通过收集光路径中的小孔,其余无关的样品层反射被小孔阻隔。这可以得到显著的分辨率的提升。如下图所示的是同一厚样品的多维荧光显微镜和共聚焦显微镜的并排比较。当在不同的焦平面上拍摄一系列图像时,可以生成通常被称为“z叠层”的图像,这一图像显示了共聚焦显微镜提供的分辨率和对比度增益以及这些增益的根本原因。可以看到在成像平面位于组织上方的堆栈顶部检查图像可以发现荧光图像中带有大量的散射光,而共聚焦显微镜的图像则显示为黑色。这种轴向上的PSF的减少直接导致了z叠层中间光学界面上观察到的分辨率差异。同一厚样品多维荧光显微镜和共聚焦显微镜成像比较成像特点—光学切片扫描成像—激光扫描共聚焦显微镜的另一个特点是它是一种扫描成像技术,传统的宽场照明技术是将整个样品都照亮,因此可以图像可以直接被肉眼或探测器捕捉,但是LSCM采用一束或多束聚焦光束穿过样品扫描成像,这样得到的图像被称为光学切片,下所示即为传统的宽场照明方式与激光扫描共聚焦照明方式的区别。传统宽场显微镜和激光扫描共聚焦显微镜照明方式区别因此现代共聚焦显微镜的一种实际的工作方式如下图所示,激光发出的激发光通过二向色镜,通过一对振镜在样品x方向和y方向进行扫描,样品激发(或反射)的光通过针孔进入PMT检测器被记录,记录下的扫描图像通过计算机重构出实际的样品图像。一种实际的激光扫描共聚焦显微镜示意图成像特点—分辨率对比宽场照明大幅提升—在荧光显微镜中,单点发射的光强度由点扩散函数(PSF)描述,其图案就是一个艾里斑,荧光系统的分辨率可以由艾里斑的半径来描述,艾里斑的半径可以由物镜的数值孔径和激发光的波长决定:另一种荧光系统分辨率测量方式是半高宽最大值,即强度下降到峰值50%的值,此时宽场荧光照明的横向分辨率为:激光扫描共聚焦显微镜的分辨率为:这表明,共聚焦显微镜的理论最大分辨率比宽场照明提高了倍。下图表示了宽场显微镜与共聚焦显微镜的对比,左图为宽场显微镜得到的图像,右图为共聚焦显微镜得到的图像。宽场显微镜与共聚焦显微镜成像对比主要应用领域—医疗领域—Li 等人通过LSCM技术对31位虹膜粘连但角膜透明的病人进行了检查,观察到类树干状结构、树枝/灌木状结构、果实特征结构、上皮状结构等一些可能的结构变异,同时发现颜料粒子的减少可能会导致廷德尔积极现象[1]。主要应用领域—生物学领域—L. Cortes等人通过将抗钙结合蛋白(Alexa-568)和抗胶质纤维酸性蛋白(Alexa-488)对小鼠的小脑进行标记得到的图像。并且通过快速获取小鼠大脑的室管膜组织块上荧光标记的运动纤毛的概览,记录下了运动纤毛的确切位置,揭示了运动纤毛的作用机制。小鼠大脑图像小鼠大脑运动纤毛图像德国马克斯普朗克生物物理化学研究所的A. Politi、J. Jakobi以及P. Lenart等人通过Hoechst 44432对海拉细胞的DNA染色,使用微管蛋白抗体Alexa 488对微管染色以及鬼笔环肽Abberior STAR Red对F-肌动蛋白染色,使用LSCM得到了高效、超高分辨率的大视察视野的海拉细胞图像,帮助更好的了解了海拉细胞的结构以及发展变化。Dr. Gerry Apodaca等人通过用iDISCO对透明化的小鼠膀胱进行成像,获得了清晰且完整的小鼠膀胱图,有助于揭示小鼠膀胱内部运动的机理。小鼠膀胱主要应用领域—高分子化学领域—Deng等通过两种 N-硫代羧基内酸酐(MeSPG-NTA和Sar-NTA)的顺序分段投料聚合合成两亲性嵌段共聚物。通过纳米沉淀法、双乳液法等自组装方法,PMeSPG-b-PSar能分别形成纳米和微米尺度的聚类肽囊泡。在LSCM的表征下,由双乳液法获得的微米囊泡在 H2O2刺激下随时间逐渐崩解的过程被完整记录下来。将一种疏水的光敏剂四苯基卟啉(TPP)引入到 PMeSPG-b-PSar囊泡体系中,TPP可通过疏水相互作用附着在囊泡膜上,在光刺激下会引起囊泡崩解[2]。主要应用领域—表面粗糙度领域—Ibáñez等人通过LSCM对收割不同谷物在镰刀上产生的光泽进行测量,并测试了八种不同的加工材料(骨头、鹿角、木材、新鲜皮、干皮、野生谷物、驯化谷物和芦苇)产生的光泽,并通过分析软件建立预测模型数据库,首次证明了基于LSCM对使用磨损光泽的定量分析可以有效地识别用于加工不同接触材料的工具[3]。NCF950激光共聚焦显微镜配置更加灵活,售后通道更加方便,不输于进口成像的国产激光共聚焦显微系统。无级变速小孔控制单层图像景深,获取更佳图像质量。四荧光通道同时或分时成像,提高效率&消除串色。Z序列层扫,定量分析更轻松准确。20nm步进精度,还原厚样本空间结构。4096×4096图像一键生成,支持大图拼接,软件操作便捷。光强度只有汞灯1/1000,长时间实验观察不损伤样本。Nexcope 激光共聚焦成像图展示更多 Nexcope NCF950 成像图请访问:47.114.153.52:8080/novel.html
  • 激光器光束质量分析检测技术介绍
    如今,激光器已经广泛应用于通信、焊接和切割、增材制造、分析仪器、航空航天、军事国防以 及医疗等领域。激光的光束质量无论对于激光器制造客户还是激光器使用客户都是重要的核心指标之 一。许多客户依赖激光器的出厂报告,从而忽略了对于激光器光束质量测试的重要性,往往在后面激 光器使用过程中达不到理想的效果。通过下方的对比图可以看出,同样的功率情况下(100W),如果焦点产生微小的漂移,对于材 料加工处的功率密度足足变化了 72 倍!所以,激光器仅仅测试功率或能量是远远不够的。对于激光光束质量的定期检测,如激光光斑尺寸大小、能量分布、发散角、激光光束的峰值中心、几何中心、高斯拟合度、指向稳定性等等,都是非常必要的。我公司对于激光光束质量的测试有着丰富且**的经验,对于不同波长、不同功率、不同光斑大小的激光器都可以提供具有针对性的测试系统和方案。相机式光束分析仪相机式光束分析仪采用二维阵列光电传感器,直接将辐照在传感器上的光斑分布转换成图像,传输至电脑并进行分析。相机式光斑分析仪是目前使用*多的光斑分析仪,可以测试连续激光、脉冲激光、单个脉冲激光,可实时监控激光光斑的变化。完整的光束分析系统由三部分构成:(1)相机针对用户激光波长以及光斑大小不同的测量需求,SPIRICON 公司推出了如下几类面阵相机:● 硅基 CMOS 相机通常为 190nm ~ 1100nm;● InGaAs 面阵相机通常为 900 ~ 1700nm;● 热释电面阵相机则可覆盖13 ~ 355nm 及 1.06 ~ 3000μm。相机的芯片尺寸决定了能够测量的光斑的*大尺寸,而像素尺寸则决定了能够测量的*小光斑尺寸;通常需要 10 个像素体现一个光斑完整的信息。相机型号SP932ULT665SP504S波长范围190-1100nm340-1100nm芯片尺寸7.1×5.3mm12.5×10mm23×23mm像.大.3.45x3.45μm4.54×4.54μm4.5x4.5μm分.率2048x15362752×21925120×5120相机型号 XC-130 Pyrocam III HR Pyrocam IV波长范围900-1700nm13-355nm&1.06-3000µ m13-355nm&1.06-3000µ m芯片尺寸9.6*7.6mm12.8mm×12.8mm25.6mm×25.6mm像元大小30*30um75µ m×75µ m75µ m×75µ m分辨率320*256160×160320×320灵敏度64nw/pixel(CW)0.5nJ/pixel(Pulsed)64nw/pixel(CW) 0.5nJ/pixel(Pulsed)饱和度 1.3 μW/cm2 @ 1550 nm3.0W/cm2 (25Hz)4.5W/cm2(50Hz))3.0W/cm2 (25Hz)4.5W/cm2(50Hz)) (2)光束分析软件Spiricon 光斑分析软件BeamGage 界面人性化,操作便捷, 功能强大,其Ultra CAL**逐点背景扣除技术,可将测量环境中的杂散背景光完全扣除掉,使得测量结果真实,得到更精准的ISO 认证标准的光斑数据(详情见 ISO 11146-3-2004)。(3)附件针对用户的特殊要求或者激光的特殊参数设定,SPIRICON 公司推出了一系列光束分析仪的附件,如:分光器、衰减器、衰减器组、扩/缩束镜、宽光束成像仪、紫外转换模块等等。对于微米量级的光斑,传统面阵相机受到像素的制约,无法成像或者无法显示完整的光斑信息。我们有两类光束分析仪可供选择。狭缝扫描光束分析仪NanoScan 2s 系列狭缝扫描式光束分析仪,源自2010 年加入OPHIR 集团的PHOTON INC。PHOTON INC 自 1984 年开始研发生产扫描式光束分析仪,在光通讯、LD/LED 测试等领域享有盛名。扫描式与相机式光斑分析仪的互补联合使得OPHIR 可提供完备的光束分析解决方案。扫描式光束分析是一种经典的光斑测量技术,通过狭缝 / 小孔取样激光光束的一部分,将取样部分通过单点光电探测器测量强度,再通过扫描狭缝 / 小孔的位置,复原整个光斑的分布。扫描式光束分析仪的优点 :● 取样尺度可以到微米量级,远小于 CCD 像素,可获得较高的空间分辨率而无需放大;● 采用单点探测器,适应紫外 ~ 中远红外宽范围波段;● 适应弱光和强光分析;扫描式光束分析仪的缺点 :● 多次扫描重构光束分布,不适合输出不稳定的激光;● 不适合非典型分布的激光,近场光斑有热斑、有条纹等的状况。扫描式光束分析仪与相机式光束分析仪是互补关系而非替代关系;在很多应用,如小光斑测量(焦点测量)、红外高分辨率光束分析等方面,扫描式光束分析仪具备独特的优势。自研自产的焦斑分析仪系统及附件STD 型焦斑分析系统● 功率密度 / 能量密度较大,NA 小于 0.05(约 3°),且焦点之前可利用距离大于 100mm,应当考虑使用本型号。● L 型焦班分析系统的标准版,采用双楔,镜头在双楔之间。● 综合考虑了整体空间利用率、对镜头的保护等因素。● 可进一步升级成为双楔在前的型号,以应对特别大的功率密度 /● 能量密度。● 合适用户 : 科研和工业的传统激光用户,高功率高能量激光用户, 超长焦透镜用户,小 NA 客户。02 型焦班分析系统● 功率密度 / 能量密度较小,或 / 和 NA 大于 0.05(约 3°),或 / 和焦点之前可利用距离小于100mm,应当考虑使用本型号。● 比 STD 更好调节;物镜更容易打坏。● L 型焦班分析系统,采用双楔,镜头在双楔之前。如遇弱光,可定制将双楔换为双反射镜。● 02 型机架不用匹配镜头尺寸,通用,可按需选择镜头。● 非常方便对焦。● 合适用户 : 使用小于 100mm 透镜甚至显微镜头做物镜的用户(表面精密加工);LD/ LED+ 微透镜的生产线做质检附件STA-C 系列 可堆叠 C 口衰减器&bull 18mm 大通光孔径。&bull 输入端为 C-Mount 内螺纹,输出端为 C-Mount 外螺纹。&bull 镜片有 1°倾角,因而可以堆叠使用。&bull 标称使用波段 350-1100nm。VAM-C-BB VAM-C-UV1 可切换式衰减模组&bull 18mm 通光孔径。&bull 标准品提供两组四片可推拉式切换的中性密度滤光片。&bull 用于需要快速改变衰减率的测量过程。&bull BB 表示宽波段,即 400-1100nm,提供 1+2、3+4 两组四片中性密度滤光片镜组。&bull UV1 表示紫外波段,即 350-400nm,提供 0.1+0.2、0.3+0.7 两组四片中性密度滤光片镜组。LS-V1 单楔激光采样模组&bull 20mm 大通光孔径。&bull 内置单片 JGS1 熔石英楔形镜采样片,易于拆卸和更换的楔形镜架。&bull 标称使用波段 190-1100nm。其他波段可定制。&bull 633nm 处 P 光采样率 0.6701%;S 光采样率 8.1858%。&bull 355nm 处 P 光采样率 0.7433%;S 光采样率 8.6216%。&bull 前端配模组母接口;后端配模组公接口及 C-Mount 外螺纹接口。DLS-BB 双楔激光采样模组&bull 15mm 通光孔径,体积紧凑。&bull 内置两片互相垂直的 JGS1 熔石英楔形镜采样片,无需考虑偏振方向。&bull 标称使用波段 190-1100nm,其他波段可定制。&bull 633nm 处采样率 0.05485%。&bull 355nm 处采样率 0.06408%。&bull 后端可配 C-Mount 外螺纹接口。SAM-BB-V1 SAM-UV1-V1 采样衰减模组&bull 20mm 大通光孔径。&bull BB 表示宽波段,即 400-1100nm,提供四个插槽和 0.3、0.7、1、2、3、4 六组中性密度滤光片镜组。&bull UV1 表示紫外波段,即 350-400nm,提供四个插槽和 0.1、0.2、0.3、0.7、1、2 六组中性密度滤光片镜组。&bull 前端配模组母接口;后端配 C-Mount 外螺纹接口。DSAM-BB DSAM-UV1 双楔采样衰减模组&bull 15mm 通光孔径,体积紧凑。&bull 内置两片互相垂直的 JGS1 熔石英楔形镜采样片,633nm 处采样率 0.05485%;无需考虑偏振方向。&bull BB 表示宽波段,即 400——1100nm,提供四个插槽和 0.3、0.7、1、2、3、4 六组中性密度滤光片镜组。&bull UV1 表示紫外波段,即 350——400nm,提供四个插槽和 0.1、0.2、0.3、0.7、1、2 六组中性密度滤光片镜组。&bull 后端配 C-Mount 外螺纹接口对于大功率激光器客户,如增材制造应用以及光纤激光器客户,我们还有专门的光束分析仪系统BeamCheck 和 BeamPeek 集成 CCD 光束分析仪直接探测高功率激光的光斑,以及一台功率计用于实时监测测量激光的功率。特殊的分束系统使其可以直接用于高功率激光,极小部分功率被分配给光束分析仪进行光斑分析,而大部分功率由功率计直接探测激光功率。可在近场或焦点处测量。BeamCheck 可持续测量不大于600W 的增材加工激光,BeamPeek 体积更为小巧,可测量*大1000W 的增材加工激光不大于2 分钟,然后自然冷却后进行下一轮测试。 型号BeamCheck BeamPeek波长范围1060-1080nm532nm 1030-1080nm功率测试范围0.1-600W10-1000W可持续测试性持续测试2min at 1000W光斑大小37µ m-3.5mm34.5µ m-2mm焦长范围200-400mm150-800mm OPHIR 的 BeamWatch 非接触式轮廓分析仪通过测量瑞利散射,捕获和分析波长范围为 980nm - 1080nm 的高功率工业激光。该分析仪包括全穿透光束测量技术、无运动部件、轻便紧凑型设计等特征,非常适合于高功率工业激光进行分析。主要参数 BeamWatch波长范围980-1080nm最小功率密度2MW/cm2最小焦斑大小55µ m最大入射口径12.5mm束腰宽度准确度±5%束腰位置准确度±125µ m焦点漂移准确度±50µ m接口方式GigE Ethernet仪器尺寸406.4mm×76.2mm×79.4mm
  • 速普仪器取得光电版薄膜应力仪国产化突破
    近日,深圳市速普仪器有限公司在西安交通大学创新港校区顺利交付光电版薄膜应力测量仪FST2000。该项目系速普仪器今年继安徽某OLED显示屏公司和宁波大学两套已交付后的第三套FST2000,另外还有三套待交付及若干套即将执行采购。成功实现业界主流光电版薄膜应力仪的国产化替代。 薄膜应力作为半导体制程、MEMS微纳加工、光电薄膜镀膜过程中性能测试的必检项,其测试的精度、重复性、效率等因素为业界所重点关注。对应产品目前业界有两种主流技术流派:1)以美国FSM、KLA、TOHO为代表的双激光波长扫描技术(线扫模式),尽管是上世纪90年代技术,但由于其简单高效,适合常规Fab制程中进行快速QC,至今仍广泛应用于相关工厂。2)以美国kSA为代表的MOS激光点阵技术(2000年代技术,曾获业界R&D100大奖),抗环境振动干扰,精于局部区域内应力测量,这在研究局部薄膜应力均匀分布具有特定意义。做一个比喻,丘陵地貌,尽管整体平均地面是平整的,但是局部是起伏的。因此,第一种路线线扫模式主要测量晶圆薄膜整体平均应力,监控工序工艺的重复性有意义。但在监控或精细分析局部薄膜应力,第二种激光点阵技术路线具有特殊优势,比如在MEMS压电薄膜的应力和缺陷监控。作为国内同类产品的唯一供货商,速普仪器创造性的提出同时兼容测试效率和细节精度的方案,即激光点阵Mapping面扫模式(适合分析局部应力分布)和L-D线扫模式(适合快速QC质检)。并采用具有自主知识产权(CN201911338140.9)的新型光路设计(更简单可靠)。FST2000薄膜应力仪采用经典的激光曲率法,利用5×5激光点阵对样品表面进行扫描测量,自动获取样品表面曲率半径数值,并自动代入内置Stoney公式获取薄膜应力数值。FST2000薄膜应力测试范围:5MPa-5GPa;曲率半径/薄膜应力重复精度:<1%(曲率半径<20m),<3%(曲率半径<100m);扫描步长:Min. 0.1mm;扫描数据点:Max. 1万点;可视化2D/3D显示。另外,针对不平整表面样品,本仪器具有对减功能模式,即镀膜前后数据点阵根据坐标点逐点对减获得真实薄膜曲率半径和应力分布,通过数据处理校正样品原始表面不平整的影响。同时,本仪器还具有直观且简单的操作界面。本地化技术团队能够提供便捷的售后服务。 深圳市速普仪器有限公司简介:
  • 40年坚持,打通双折射双频激光器及干涉仪全技术链条
    双频激光干涉仪是先进制造业、半导体芯片制造等行业不可或缺的纳米精度的尺子,应用广泛。张书练教授团队(先清华大学精密测试技术及仪器国家重点实验室,后镭测科技有限公司),以解决双频激光干涉仪关键技术为线,经近40年坚韧攀登,研究完成了“可伐-玻璃组装式单频氦氖激光器→双折射双频激光器→双折射双频激光干涉仪”的全链条技术,并批产。该技术开国内可伐-玻璃组装式氦氖激光器之先,吹制工艺或成历史。开国内外应力激光腔镜产生双频激光之先,解大频差和高功率不可得兼之难,频率差可以在1~40 MHZ范围选择而功率大于1 mW。双折射双频激光干涉仪测量70 m长度误差小于5 μm,非线性误差小于1 nm,测量速度高于3 m。1 研究背景激光干涉仪是当今纳米时代的长度基准,也是先进制造业(机床、光刻机,航空、航天等)制造的精度保证。制造精度和生产效率越来越高,对激光干涉仪的测量精度和测量速度提出了更高的要求。激光干涉仪的“激光”是(HeNe)氦氖激光器,至今无可替代。传统HeNe双频激光干涉仪存两个难点,成为瓶颈:1)国内外,我们之前,双频激光器靠塞曼效应产生两个频率,频率之差小(在3 ~ 5 MHz之间),频差越大激光功率越小,不能满足光刻机等应用的更大频率差要求(如10、20、40 MHz),频率差大,测量速度高,效率高;2)不论是单频还是双频激光干涉仪,国产还是外购,各型号都有几纳米甚至十几纳米的非线性误差,一直没有找到解决办法。通常,在单频激光器的光增益路径上加磁场后(塞曼效应)就变成双频激光器。可是,相当长的期间,购买到的大部分单频激光器因为常出现跳模,用于单频激光干涉仪时淘汰率很高,此外,加上磁场后单频并不呈现双频,双频激光干涉仪难有好的光源。经近40年坚持,研究打通了单频氦氖激光器→双折射双频激光器→双频激光干涉仪的全技术链条,批产,获得了广泛应用和认可。2 双折射双频激光器及干涉仪的关键和全链条技术2.1 双折射双频激光器置晶体石英片(图1a中的Q双面增透)或有内应力的玻璃元件(图1b中的M2右表面镀反射膜)于激光器谐振腔内,这些元件的双折射使激光频率分裂,一个频率分裂成两个频率,两个频率的偏振方向互相垂直(正交偏振)。反复实验证明,激光器可输出频率差大于但不能小于40 MHz两个频率。如果频率差稍大于40 MHz,在改变(调谐)激光频率谐振腔长(即用压电陶瓷1纳米一步“距”的推动M2改变激光谐振腔长)过程中看到的是一个频率振荡会陡然变成两个频率振荡,而前者功率陡然下降一半,刚升起的频率则获得同样的功率。继续调谐腔长,最早振荡的频率会陡然消失,而后起振的频率功率升高到最大。如果频率差小于40 MHz,两频率则有你无我。图2示出了频率差20 MHz时o光和e光的光强度此长彼消得过程。理论和实验一致。图1 激光频率分裂原理图。(a)晶体石英片Q于激光谐振腔内,(b)激光输出镜为M2右表面,对M2加力使激光反射镜内产生应力图2 频差20 MHz时的强烈模竞争。激光强度随腔长调谐(改变)的实验曲线。理论和实验一致图3给出了两个频率的频率差多大时,在频率轴上两个频率的共存区的宽度,也即两个频率差大小对应的共存频域宽度。曲线最左侧可见,在约40 MHz时,共存宽度迅速下降趋于0 Hz,也即小于40 MHz时,两频率之一熄灭,频率差消失。图3 实验测得的两个频率共存的频域宽度和激光频率差的关系2.2 双折射-塞曼双频激光器塞曼双频激光器的频率差一般在5 MHz以下,功率随频率差增大而减小,7 MHz时的激光功率仅0.2 mW以下。作者团队研发的双折射双频激光器频率差大于40 MHz,研制成的双折射-塞曼双频激光器可以输出百KHz到几十MHz的频率差,而功率不因频率差增大而改变,可以达到1.5 mW。双折射-塞曼双频激光器包括两项关键技术,先由双折射造成激光器频率分裂,决定了激光器输出为两个偏振正交频率以及它们的间隔(频率差)的大小。再因激光器上加了横向磁场,横向塞曼效应使增益原子分成两群——π群和σ群。π群和σ群光子的偏振对应双折射互相垂直的主方向,也即正交偏振的光“各吃各粮”,它们之间的相互竞争不存在了,无论频率差大小都能振荡。频率差可以是3、5、7、10、20、40 MHz或更大。2.3 内雕应力双折射-塞曼双频激光器提出了“内雕应力”的概念和产生双频的原理,即用窄脉冲激光器对激光腔镜表面或基片内部造孔(或穴),造成激光腔镜内的应力精确改变(图4所示),“雕刻”提高了频率差的控制精度。“内雕应力”双折射双频激光器不仅用于国产双频激光干涉仪,也用于运行中的光刻机的激光器替换。同时,提供了科研单位的科学研究。该激光器替换正在服役的光刻机的原有激光器,使光刻机机台误差由24 nm下降到6 nm。图4 内雕应力双折射-塞曼双频激光器。M2内部雕刻出的孔造成激光器的双频,磁条PMF1和PMF2消除激光器强模竞争2.4 可伐-玻璃组装式(无吹制)双频激光器国内,研制生产HeNe激光器历史很长,但我国一直靠吹制工艺制造氦氖激光器,而且不能制造可伐-玻璃组装式氦氖激光器。北京镭测科技有限公司研制成可伐-玻璃组装式单频氦氖激光器,功率大于1 mW,满足单频和双频激光器的需求。同时,这一技术将使整个国产氦氖激光器告别吹制,进入一个新的技术高度(如图5所示)。图5 可伐-玻璃组装内雕应力双频激光器(镭测科技提供)2.5 研制成的双频激光干涉仪技术指标作者强调的是,我们有了可伐-玻璃组装式激光器和双折射(内应力)-塞曼双频激光器,双频激光干涉仪有了强力的“心脏”,有了自主可控的基础。团队又全面设计干涉仪的光、机、电、算。时至今日,可伐-玻璃组装式双折射(-塞曼)双频激光器(非吹制)和干涉仪已批量生产,正在满足科学研究和产业的需求。中国计量科学院对双折射-塞曼双频激光干涉仪的测试结果:频率稳定度为10-8,分辨力为1 nm,非线性误差小于1 nm(图6所示),12小时漂移35 nm(图7所示),70 m长度测量误差小于5 μm。这些数据来自中国计量科学院测试证书:CDjx 2014-2352, CDjx 2018-4810, CDjx 2020-04463等。图6 双频激光干涉仪非线性误差图7 双折射-塞曼双频激光干涉仪12小时零点漂移3 展望在实现“可伐-玻璃组装式激光器”→“内雕应力双折射-塞曼双频激光器”→“双折射-塞曼双频激光干涉仪”全链条技术基础上,进一步发展各种规格的可伐-玻璃组装式激光器,以开拓双折射-塞曼双频激光干涉仪的应用深度和应用范围。
  • 激光赛道再添新军 英诺激光A股上市
    7月6日,我国激光产业赛道再添新军,英诺激光(301021)正式登陆创业板。英诺激光本次IPO发行3800万股,发行价格9.46元/股,对应的市盈率和市净率分别为26.48倍和1.59倍;募资总额3.59亿,拟用于固体激光器及激光应用模组生产、营销及技术服务网络中心建设、激光及激光应用技术研究中心建设和企业管理信息化建设及补充流动资金。  激光器+定制模组双向驱动  英诺激光是国内领先的专注于微加工领域的激光器生产商和解决方案提供商,激光器产品包括DPSS调Q纳秒激光器(纳秒固体激光器)、超短脉冲激光器(超快激光器,包括皮秒、飞秒级)和MOPA纳秒/亚纳秒激光器(MOPA光纤激光器),覆盖从红外到深紫外的不同波段,从纳秒到飞秒的多种脉宽。  2018 至2020 年,英诺激光营业收入分别为2.91 亿、3.59 亿和3.39 亿元,除了2020年受疫情影响外,主营业务整体上呈良好增长态势,最近三年复合增长率为6.90%。2021年一季度,公司营业总收入8608.20万元、归母净利润1956.29万元,同比增速分别为100.17%和561.79%。  从营收构成来看,激光器产品和定制激光模组销售是公司主要收入来源。公司激光器产品主要面向激光智能装备集成商,2018至2020年主营业务收入占比分别为69.28%、63.32%和64.84%;定制激光模组主要面向工业制造商、科研机构等终端用户,2018至2020年主营业务收入占比分别为24.17%、30.12%和28.13%。随着新产品的研发、推广以及新客户的开发,公司定制激光模组销售收入呈整体增长态势。  盈利能力上,英诺激光的整体毛利率和净利率水平较高,超过多数国内的可比公司。2018 至2020 年,公司销售毛利率分别为56.91%、50.75%和50.63%,销售净利率分别为21.35%、19.97%和19.35%。  顶尖“高材生”团队  管理团队背景来看,英诺激光是一家“高材生”企业。公司核心技术团队是广东省“珠江人才计划”和深圳市“孔雀计划”重点引进的创新创业团队;董事长暨创始人赵晓杰毕业于华中科技大学光电子工程系,日本分子科学研究所博士后,普林斯顿大学应用研究科学家,该机构也被认为是全球顶级的电化学研究机构;MOPA纳秒/亚纳秒激光技术研发负责人林德教为清华大学博士,英国哈德斯菲尔德大学博士后,曾发表过与激光技术及应用相关的期刊论文70多篇。此外,公司的激光应用技术研发工程师陶沙、混合超快激光技术研发工程师杨昕、激光应用技术研发负责人Jie Zhang等也均拥有知名机构的博士学历背景。  截至2020年12月31日,英诺激光共有研发人员55人,占公司员工总数的16.67%,其中博士15人。2018年-2020年,公司研发投入占比分别为9.19%、10.72%、11.78%,处于行业头部水准。  得益于较强的技术背景和较高的研发投入,英诺激光已成为全球少数同时具有纳秒、亚纳秒、皮秒、飞秒级微加工激光器核心技术和生产能力的厂商之一,同时也是全球少数实现工业深紫外纳秒激光器批量供应的生产商之一,拥有专利124项,其中发明专利34项。  英诺激光的主要产品纳秒紫外激光器,2018年销售量为2633台,约占当年全国销量的21.94%,市占率水平较高。  国产激光器正当时  2018年起全球激光行业周期性下行,目前正处于加速复苏阶段。而国内激光产业自2012年以来,市场规模加速成长,年均复合增速达26.45%。2019 年,我国激光设备市场规模达到658 亿元,全球激光设备市场规模1267 亿元,超过一半以上的激光设备市场在国内。  从发展趋势上看,紫外激光器销量增长明显,现已成为激光微加工的主力机型。紫外光的波长较短,加工时的接触面相对较小,有利于减小热效应影响区,能够有效提升加工精度,应用领域广。根据《2019年中国激光产业发展报告》,国产紫外激光器的出货量从2014年的2300台增长至2018年的15000台,预计2020年出货量有望达到20,000 台,整体增速较高。18年15000台出货量中,纳秒紫外激光器约占八成,是目前激光微加工领域的主力产品。  同时,超快激光器也正蓬勃发展,2017、2018 年两年的增速远超过整体激光设备市场增速。超快激光器短脉宽、大功率,适用于精密加工,未来仍有望成为激光微加工领域新的增长点。  回到公司而言,英诺激光的主力产品便是纳秒紫外激光器,主要竞争对手包括美国光谱物理、美国相干和华日精密激光等。与国际先进企业相比,公司的产品在光束质量M2、最大单脉冲能量和平均输出功率等性能指标上已达到国际先进水平。同时,超快激光器正是英诺激光主要研发布局方向,目前公司部分产品的性能也已达到或接近国际先进水平,该领域主要竞争对手包括美国光谱物理、美国相干等。  公司表示,未来将继续专注于微加工激光器及解决方案的自主研发,在激光器方面进一步丰富产品线,朝更短波长、更窄脉宽、更高功率方向发展。在微加工解决方案方面,积极布局激光技术在生命健康、生物医疗、高效微纳制造等新兴领域的应用,成为全球激光微加工行业的技术引领者之一。
  • 中科院“LAMOST激光信标系统”通过验收
    p style="text-indent: 2em text-align: justify "近日,位于河北兴隆国家天文台的“LAMOST激光信标系统”项目通过中科院条财局组织的专家验收,该项目在中科院重大科技基础设施项目的支持下,由南京天文光学技术研究所李国平团队和福建物构所林文雄团队共同合作完成。br/ 林文雄团队研制的绿光激光器作为LAMOST的核心部件——激光信标,在12公里附近产生一颗处于望远镜中心视场的7等左右的激光星,通过对大气分子的瑞利散射光波前进行采样,获 得望远镜的面形数据并传递给促动器,实现了望远镜的主动光学校正。br/ 在激光器研制过程中,为了克服超长激光谐振腔的光学畸变问题,创新性采用时序控制及4f像传递技术,突破了一般工业用途激光器20 ns脉宽的瓶颈,研制出65 ns脉宽的激光器。为了使激光器能够适应-30℃~+40℃的环境温度,一方面采用热膨胀系数较低的材料作为激光器底板,并且通过合理的光学设计使激光谐振腔处于稳腔状态;另一方面,自主研发出自适应光学调整架,能够利用自身形变抵消环境温度变化引起的应力,保证了激光谐振腔在环境温度变化时的稳定性。这些技术为实现7等激光星以及精确测量瑞利散射光波前提供了有力的保障,相关的研究工作申请了专利3件,其中授权专利2件,发表文章1篇。br/ 激光器各项指标均优于合同指标:激光功率33 W,功率稳定性为0.7%;重复频率12 kHz;脉冲宽度65 ns;光束质量M2 = 1.3。验收总结会上,激光器稳定的性能指标得到了专家组的一致好评,由激光器产生的人工信标大大缩短了主动光学的校正时间,提高了LAMOST的巡天效率,为我国自主研制用于大气校正的激光导星系统提供了重要技术储备。/p
  • 新型三维显微激光拉曼光谱仪装置 NanofinderFLEX
    三维显微激光拉曼光谱仪装置 NanofinderFLEX  高性能 小型化 低价格 NanofinderFLEX是Nanofinder30的新型系列产品,具有Nanofinder30的基本性能, 各个器件做成小型组件,特别是拉曼光学器件的大小变成原来的1/6, 凝缩成A4尺寸。拉曼光学器件可直接安装在正立式光学显微镜上,非常节省空间,实际上只占有1台正立式光学显微镜的面积。因用光纤连接激光器,光谱仪,致冷式CCD探测器和其他器件, 不需特别配置实验场所。 更换激光光源时, 拉曼光学器件也需一起更换。拉曼光学器件的空间分辨率为300nm以下,其灵敏度高达1分钟内可测出Si的第4级拉曼光谱。操作性出类拔粹,不需任何光路调节,不管是谁都能简单使用。软件是深受用户好评的Nanofinder30的测定软件,测定内容充实,图像的可视化能力超群。特别是拉曼光学器件和压电陶瓷平台的小型化,使装置全体价格大幅下降,实现了低价格。另外, 实验室巳有的激光器,光谱仪和致冷式CCD探测器(ANDOR公司)都可使用,更能减少大量购买资金。 应用 透明材料(树脂,胶卷,有机EL)的形状观察 半导体/电子材料(异状物,应力,化学组成,物理结构) 薄膜/保护膜(DLC,涂料,粘剂)/界面层,液晶内部构造 结晶体(单壁碳纳米管,纳米晶体) 光波导回路,玻璃,光学结晶等的折射率变化 生物学(DNA, 蛋白质, 细胞 组织等) 特点 空间分辨率300nm以下的三维共焦拉曼光谱图像 高灵敏度(1分钟以内测出Si的第4级拉曼光谱),低功率激光照射(4mW) 采用共焦激光显微镜 拉曼光学器件大小凝缩成A4尺寸,实现低价格 采用压电陶瓷平台(X-Y-Z),扫描精度达到nm级 因采用光纤,使激光和光谱仪的实验配置非常自由 实验室巳有的激光,光谱仪,致冷式CCD探测器(ANDOR公司)都可使用 继续使用好评如潮的Nanofinder30的测定软件 反褶积软件的使用,使空间分辨率可达1.5倍以上 13581584194 中国联系人三维显微激光拉曼光谱仪装置 NanofinderFLEX  高性能 小型化 低价格 NanofinderFLEX是Nanofinder30的新型系列产品,具有Nanofinder30的基本性能, 各个器件做成小型组件,特别是拉曼光学器件的大小变成原来的1/6, 凝缩成A4尺寸。拉曼光学器件可直接安装在正立式光学显微镜上,非常节省空间,实际上只占有1台正立式光学显微镜的面积。因用光纤连接激光器,光谱仪,致冷式CCD探测器和其他器件, 不需特别配置实验场所。 更换激光光源时, 拉曼光学器件也需一起更换。拉曼光学器件的空间分辨率为300nm以下,其灵敏度高达1分钟内可测出Si的第4级拉曼光谱。操作性出类拔粹,不需任何光路调节,不管是谁都能简单使用。软件是深受用户好评的Nanofinder30的测定软件,测定内容充实,图像的可视化能力超群。特别是拉曼光学器件和压电陶瓷平台的小型化,使装置全体价格大幅下降,实现了低价格。另外, 实验室巳有的激光器,光谱仪和致冷式CCD探测器(ANDOR公司)都可使用,更能减少大量购买资金。 应用 透明材料(树脂,胶卷,有机EL)的形状观察 半导体/电子材料(异状物,应力,化学组成,物理结构) 薄膜/保护膜(DLC,涂料,粘剂)/界面层,液晶内部构造 结晶体(单壁碳纳米管,纳米晶体) 光波导回路,玻璃,光学结晶等的折射率变化 生物学(DNA, 蛋白质, 细胞 组织等) 特点 空间分辨率300nm以下的三维共焦拉曼光谱图像 高灵敏度(1分钟以内测出Si的第4级拉曼光谱),低功率激光照射(4mW) 采用共焦激光显微镜 拉曼光学器件大小凝缩成A4尺寸,实现低价格 采用压电陶瓷平台(X-Y-Z),扫描精度达到nm级 因采用光纤,使激光和光谱仪的实验配置非常自由 实验室巳有的激光,光谱仪,致冷式CCD探测器(ANDOR公司)都可使用 继续使用好评如潮的Nanofinder30的测定软件 反褶积软件的使用,使空间分辨率可达1.5倍以上 三维显微激光拉曼光谱仪装置 NanofinderFLEX  高性能 小型化 低价格 NanofinderFLEX是Nanofinder30的新型系列产品,具有Nanofinder30的基本性能, 各个器件做成小型组件,特别是拉曼光学器件的大小变成原来的1/6, 凝缩成A4尺寸。拉曼光学器件可直接安装在正立式光学显微镜上,非常节省空间,实际上只占有1台正立式光学显微镜的面积。因用光纤连接激光器,光谱仪,致冷式CCD探测器和其他器件, 不需特别配置实验场所。 更换激光光源时, 拉曼光学器件也需一起更换。拉曼光学器件的空间分辨率为300nm以下,其灵敏度高达1分钟内可测出Si的第4级拉曼光谱。操作性出类拔粹,不需任何光路调节,不管是谁都能简单使用。软件是深受用户好评的Nanofinder30的测定软件,测定内容充实,图像的可视化能力超群。特别是拉曼光学器件和压电陶瓷平台的小型化,使装置全体价格大幅下降,实现了低价格。另外, 实验室巳有的激光器,光谱仪和致冷式CCD探测器(ANDOR公司)都可使用,更能减少大量购买资金。 应用 透明材料(树脂,胶卷,有机EL)的形状观察 半导体/电子材料(异状物,应力,化学组成,物理结构) 薄膜/保护膜(DLC,涂料,粘剂)/界面层,液晶内部构造 结晶体(单壁碳纳米管,纳米晶体) 光波导回路,玻璃,光学结晶等的折射率变化 生物学(DNA, 蛋白质, 细胞 组织等) 特点 空间分辨率300nm以下的三维共焦拉曼光谱图像 高灵敏度(1分钟以内测出Si的第4级拉曼光谱),低功率激光照射(4mW) 采用共焦激光显微镜 拉曼光学器件大小凝缩成A4尺寸,实现低价格 采用压电陶瓷平台(X-Y-Z),扫描精度达到nm级 因采用光纤,使激光和光谱仪的实验配置非常自由 实验室巳有的激光,光谱仪,致冷式CCD探测器(ANDOR公司)都可使用 继续使用好评如潮的Nanofinder30的测定软件 反褶积软件的使用,使空间分辨率可达1.5倍以上
  • 光谷激光公司共同选择进军海外
    国内市场已近红海,布局海外正成为光谷激光企业的共同选择。  继华工系挺进美国市场后,日前,位于光谷的团结激光股份有限公司(以下简称:团结激光),已正式落子俄罗斯乌拉尔地区,加速发力当地市场。  进军海外已是大势所趋  资料显示,目前,全球激光器市场可分为三大区域,即美国、欧州和日本,市场份额分别是55%、22%和23%。据冯迅介绍,长期以来,国内激光企业的海外市场主要集中在南美、中东及亚洲地区,欧美市场正成为同行们发力的新板块。  就在不久前,同样是行业大佬,华工激光就与全球著名的自动化控制产品提供商 Honeywell公司签下采购合同,首次将旗下精密激光修调机打入美国市场。  参与全球竞争,光谷的激光企业又走出了一步。  日前,作为湖北省省激光产业三大巨头之一,团结激光最终敲定布局俄罗斯市场的方案。根据规划,在俄合资企业将逐步升级为集销售、加工和研发于一体,并在当地建成加工连锁网络和应用人才培训中心,2016年市场目标为1000万美元。“加工基地已成为激光产业中新崛起的业务板块。”团结激光副总经理冯迅如是说。  按照协议,团结激光将在加工、装备和工艺等领域,与俄罗斯开展全方位合作。作为载体,今年,该公司将在叶卡捷琳堡投资控股分公司,注册资金300万美元,主要经营激光设备组装、销售和加工业务,并谋求打造成为俄罗斯激光加工行业领军企业之一。  对此,团结激光副总经理冯迅告诉记者,随着两国战略合作关系进一步稳固,俄罗斯将会是激光技术重要的海外市场,“在这个大背景下,我们才签署了这个合作协议”。此前有消息称,未来一段时间,俄罗斯将会投资数亿元对激光产业进行现代化改造和升级。  加工连锁渐成盈利新利器  “加工基地已成为新崛起的业务板块。”据团结激光方面介绍,目前,海外的加工基地只负责组装、售后和加工等服务环节,研发和生产都在国内,“可随时满足客户个性化需求”。  资料显示,早在2007年底,作为在国内率先提出“连锁”概念的企业,团结激光就联合同行发起成立武汉光谷激光加工连锁有限公司(以下简称:光谷激光连锁),先后通过并购、控股和加盟等方式,在国内外建有近50家激光加工连锁机构。  谈及连锁,冯迅坦言,按目前市场行情,一台工业用激光器售价在百万元以上,如果购买,多数中小客户都会觉得是负担,而拥有购买能力的大企业,也存在一定程度的闲置现象。与国内企业购买为主不同,据冯迅介绍,美国和日本均已建成超过5000家激光加工站,且数量一直保持上升趋势。  对此,光谷激光连锁总经理许桂华也表示,随着国内经济转型升级,可以预见,高耗能、高污染的传统加工技术必将淘汰出局,以激光为主导的新加工技术将取而代之。  据悉,未来3年内,作为激光领域的新业务板块,连锁加工新模式给团结激光贡献的收入将不低于15亿元,“基地数量将扩大到100家”。
  • 浅谈激光干涉技术及应用现状
    激光干涉技术主要应用光波的空间相干特性。具体而言,对于两束光波或电磁波等横波,当波长相等、且相位差为2π整数倍时,合成波的振幅叠加增强至最大;当相位差为π奇数倍时,合成波的振幅抵消减小至最小。早在十九世纪下半叶,科学家们就已发明了多种原理干涉结构装置用于科学研究,其中最著名的是迈克尔逊-莫雷干涉试验,该实验采用钠光源平均谱线近似单色光进行干涉测量,从而否定了“以太”的假说。图1 迈克尔逊-莫雷干涉试验激光干涉仪的构成真正促进干涉技术巨大进步的契机是1960年激光器的发明。激光由于具有极窄的谱线,因而具有非常优秀的空间相干性。目前激光干涉仪主要的用途包括精准的尺寸和移动距离测量,测量准确度最高可以达到纳米甚至亚纳米量级。在构成上激光干涉仪最常使用的波长为632.8 nm,对于经典的迈克尔逊干涉测量原理,由激光器中出射的单色激光经过50:50半透半反的分束镜后分为2束光束,其中一束经过固定的光程后被反射镜反射,称为参考光束;另外一束光束由于存在被测对象,被反射镜反射后光程发生改变(距离或折射率变化引起),称为测量光束。当两束光被反射后在分束镜第二次合成并随后照射探测器上被接收后,将产生干涉条纹的移动。由之前的光波的叠加性可知,假设测量光路距离变化为316.4 nm,当只存在一去程一回程的情况下,此时干涉条纹相位变化2π。目前商用激光干涉仪普遍采用两去程两回程,同时采用1024倍电子细分卡,因此分辨率可达0.16 nm。图2 激光干涉仪原理构造激光干涉仪的应用现状1. 在工业领域应用随着理论研究的深入和技术的不断进步,激光干涉测量技术目前精彩纷呈,在多个领域中都得到了非常广泛的应用。 包括单频激光干涉仪、双频激光干涉仪、激光平面干涉仪、法布里-珀罗干涉仪、皮米激光干涉仪、多波长干涉测距等。 单频和双频激光干涉仪。测量具有非接触和无损检测的特点,能够在线测量长度、角度和转速等参数,因此已成为各国精密数控机床在线定位精度测量的最主要标准之一。在精密加工过程中,位置精度是机床的重要指标,激光干涉仪通过在线位置测量、实时数据处理实现机床误差修正。另外在集成电路制造中,激光干涉仪也是光刻机在线位移测量的核心部件。图3 激光干涉仪在精密机床中的应用激光平面干涉仪。激光干涉仪不仅可以用于测量长度、角度以及位移,也可以测量物体的表面形貌。测量基本原理为激光菲索(Fizeau)干涉,激光经过扩束后先后经过参考平面和待测平面,两个平面的反射光发生干涉后产生干涉条纹,通过成像系统接收。分析条纹形状即可判断是否存在缺陷。图4 激光平面干涉仪皮米激光干涉仪。现在随着微纳测量分辨率要求的进一步提高,出现了商品化的皮米激光干涉仪。皮米激光干涉仪采用包覆光纤作为激光传输介质,有效减小了空气折射率扰动对测量的影响;同时在干涉方式上干涉仪采用法布里-珀罗(F-P)干涉仪原理,是一种多倍程干涉,进一步提高了分辨率。 图5 皮米激光干涉仪多波长干涉绝对测距。采用单波长干涉测距虽然分辨率可达到纳米级,但是单波长干涉测距是相对测量,且测量时光路不能中断,而多波长干涉能很好解决这个问题。因为在干涉测距中波长就像一把量尺,但如果测量距离大于这把量尺,则需要多次拼接测量。多波长干涉能形成很长的等效波长,使量尺范围大于被测距离,实现绝对距离测量。图6 多波长干涉绝对测距光相控阵雷达。随着自动驾驶技术的高速发展,现在激光干涉技术也应用在光相控阵(OPA)激光雷达(LiDAR)中。激光雷达会产生一系列密集超短激光脉冲扫描周围物体,通过脉冲返回时长差判断距离和轮廓。光相控阵雷达利用光栅干涉原理,可以通过改变不同狭缝中入射光线的相位差来改变光栅后中央条纹(主瓣)位置,从而控制激光雷达光束的指向和转向。 图7 激光干涉技术在光相控阵雷达中的应用2. 在科学研究方面应用激光干涉引力波天文台(LIGO)。LIGO用于验证广义相对论预言的引力场扰动产生的时空扭曲。它本质上是一个超大型迈克尔逊干涉仪,由2条4千米长的互相垂直的臂构成,同时光线还会在臂内折返300次。当引力波会产生空间弯曲,干涉结果也会轻微变化。2017年美国科学家借助LIGO观测到双中子星合并引力波事件并获得了诺贝尔物理学奖。图8 激光干涉引力波天文台(LIGO)激光全息干涉测量技术。利用非共面多光束干涉可以在空间形成二维或三维周期性强度分布,从而被用来制作二维或三维光子晶体;利用全息干涉技术可用于位移及形变测量、应变与应力分析、缺陷或损伤探测、振动模式可视化及测量、晶体和蛋白质生长过程监测、流体中密度场和热对流场的观察与测量。图9 激光全息干涉测量技术作者:中国计量科学研究院副研究员 李琪
  • 2015全球激光细分市场解读 仪器相关市场将达6.62亿美元
    市场细分  通信和光存储仍然是激光产业最大的细分市场,然后是材料加工和光刻激光器市场部分。对于2014年,医疗和美容激光产品销售总额仍然大于仪器和传感部分,最后是科研和军事细分市场。  通信和光存储  光存储市场疲软继续阻挠通信和光存储整个激光产品市场上扬 然而,通信部分激光器的销售额正蓬勃向上。基于PIC的通信网络系统供应商Infinera将之称为 &ldquo T比特时代&rdquo 并报道称相比于2013年同期销售额1.42亿美元,2014年第三季度销售额增长至1.74亿美元。LightCounting称2014年第二季度光收发器的全球销售额达11亿美元,连续五个季度增长。  2014年通信和光存储激光产品市场营业收入达到35.15亿美元,预计2015年增长2.8%达到36.15亿美元。尽管2014年大多数通信激光供应商的财务状况是良好的,但是戴尔的Oro集团预测2015年通信设备投资支出将会下降,原因是高级移动设备渗入、移动数据增长缓慢、缺乏新的收入来源以及发展中和未开发市场的竞争加剧。然而考虑到光通信正推动&ldquo 物联网(IOT)&rdquo ,这种预测令人相当费解:为了远程监控和诊断实现云连接,还有一大堆没有被命名的&ldquo 智能&rdquo 应用。  &ldquo 从铁路和电网采用的联网系统到连接个人终端的网络交换机客户端设备,无线设备,Cisco公司和Intel使Predix分布于终端,甚至在一些最苛刻的条件下,&rdquo 通用软件副总裁Bill Ruh在一个新闻发布会上说,并描述了在IoT世界软件和硬件如何惬合在一起。  Cisco系统董事长兼首席执行官John Chambers在2014年国际消费者电子展览上发表主题演讲,报道&ldquo 涉及IoT的价值&rdquo 达19万亿美元,并描述IoT如何使城市智能化,例如,通过更加智能化的公共建设投资获得直接的回报。  无论你把它叫做物联网或是干脆称为&ldquo 智能工具&rdquo ,对于光电子,尤其是激光产业来说,都是信息引擎的&ldquo 燃料&rdquo 。你能想象互联网是如何快速响应Gartner公司49亿连接设备实现无缝管理的吗?这些设备将在2020年增加到250亿台。  材料加工及光刻  2014年工业激光系统占全球机床销售的14%,所以毫无疑问世界制造业的健康发展意味着整个工业激光产业的健康状况。预计2014年机床消费增长在5%~7%的范围内,工业激光系统市场有望在此范围内。  在工业激光市场方面,中国的首要任务是重塑他们的经济提供更多内需,减少对出口的依赖以及对资本密集型的国有企业的投资。处于经济衰退领域的欧洲制造业开始出现复苏的迹象,即使德国的制造业一直温和增长。在北美地区,随着经济的好转,美国市场变得&ldquo 五光十色&rdquo ,2015年住房和住宅实力增长,能源热潮至少持续至未来三年。金砖四国被预计将推动2014年工业激光市场发展,但因俄罗斯和巴西的停滞不前以及中国和印度经济放缓而表现不佳。至于2015年,国际货币基金组织(IMF)使公众注意美国、印度和英国是最有可能实现正增长的地区,同时警告全球资本投资的增加。  随着2014年的结束,用于制造业的工业激光市场的整体销售超过26亿美元,与2013年营业收入相比增加了6%(见表1)。2014年,用于材料加工应用的光纤激光器占全球激光器市场总营业收入的29%,仅次于通信应用领域的激光器市场部分(32%)。全球制造业的变幻莫测使激光在光电子领域紧随其后。  显而易见的是光纤激光器持续强劲增长的影响,在损害固态和CO2激光器市场的前提下,在整个工业激光市场的份额增长到了36%。作为最大的创收类别,光纤激光器行业是工业激光解决方案每年市场调查备受瞩目的部分。  光纤激光器作为动力源在金属切割方面的应用,尤其是在板材切割方面,系统的造价超过65万美元,2014年的营业收入超过13亿美元。加上高功率CO2激光器在同类应用的收入使整个资本设备的投资接近40亿美元,是2014年所有工业激光系统的销售的三分之一。  2014年同样值得注意的还有占整个市场份额13%的高功率二极管。这种相对新颖的市场产品主要用于在线应用,例如钎焊汽车的顶部以及其他金属部件。静静地,这一高效激光器雕刻出了一个利基市场。  高亮度高功率直接二极管激光器作为光纤激光器在金属板材加工方面的代替者,切割的质量和速度完全可以与等功率的光纤和盘形激光器媲美。虽然其销售量微乎其微,但是2014年其利润率相当可观。  随着光纤激光器继续无情的渗透到成熟市场,如打标市场,使固态激光器的销售额下降。7.5亿美元以上的打标/雕刻系统市场由低功率光纤激光器和封离式CO2激光器分别占据。后者用于非金属雕刻是相当安全的,由于波长的兼容问题。持续的固态激光器收入是快速接纳工作在兆瓦峰值功率状态、皮秒和飞秒脉冲宽度的超快(或超短脉冲)激光器,集中在微材料加工应用,例如,智能电话和平板电脑的器件加工。工作在非常短的脉冲宽度的光纤激光器在争夺这一市场份额,一些分析师推测,微加工有可能是这些激光器的下一个增长点。一些研究将近期超快脉冲激光器市场定在4.5亿美元。  然而在涉及微材料加工问题上,激光添加剂制造(AM)领域的强劲增长促进了固态激光器和光纤激光器的收入增加。沃勒斯联营公司表示,2013年AM增长超过63%,其中37%营业收入来自于3D和AM零件最终产品而不是原型。在关于AM的航空航天供应的调查显示,27%的公司已经使用,10%预计未来一年内使用,37%预计在未来五年内使用。随着公司挑战AM的&ldquo 极限&rdquo 激光加工将乘风破浪。  大型材料加工应用除了激光切割占高功率激光器营业收入的25%。领先收入增长10%的市场是用于焊接应用的光纤激光器和CO2激光器,主要集中在汽车行业。光纤激光器供应商预计焊接是未来几年一个不断扩大的市场。  总结2014年工业激光市场,打标同比增长4% 微材料加工增长14% 大型材料加工扩大8%。材料加工整体销售增长6%。  正如前面提到的,对于工业激光器的预测将遵循全球机床行业同样温和增长趋势。2014年11月澳大利亚的G20峰会以后,英国首相卡梅伦说:&ldquo 世界经济亮起了红灯&rdquo 。受采访的工业激光及系统供应商的普遍共识是2015年将继续2014年的增长势头,预计增长比例在5%左右。这与许多专家经济分析师预测降低GDP的国际经济缓慢增长、大多数先进、规模扩大和新兴工业化经济体相一致。  这一增长将再次由光纤激光器领导,但是增长率略低于2014年。光纤激光器有望继续侵蚀CO2和长脉冲固态激光器的市场份额。超快脉冲固态激光器将经历由大型加工应用包括AM在内的重要销售增长。高功率激光器在金属切割方面应用将稳定在一个比较稳定的个位数增长速度上,但是用于焊接的激光器预计在2015年增长两位数。  医疗和美容  医用激光器的重要性由以下2014年公告表明:长春新产业出品的用于光遗传学的2000MxL系列激光器(波长在405~671nm)出货量创下历史记录 相干公司推出其第2000台变色龙系列激光器用于多光子显微镜 英国Fianium公司交付了第 1000台超连续激光器,不断提高其性能用于超快光谱、近场成像和显微镜。  &ldquo 我们将完成本财年医用激光系统30%的营业收入增长,现在的生物医学系统集成商和制药公司正在寻找完整的解决方案而不局限在器件,&rdquo Modulight公司的总裁兼首席执行官Petteri Uusimaa说,&ldquo 通过提供终端到终端解决方案,我们已经签署了一些多年合同,并在2014年使我们的生命科学业务翻倍。&rdquo   2014年,外科、眼科和美容激光销售额分别增长13%、9%、8%,2014年医用和美容激光器市场销售额为7.45亿美元,预计2015年增长9%超过8.15亿美元。  虽然2014年牙科用激光器销售额只增长了1%,超快激光器改变了这一增长比率。&ldquo 现在的Er:YAG和CO2微秒和纳秒脉冲牙科激光器的能量太高,激光与组织作用时间太长,需要提供必要的热和应力限制,以防止微裂纹、术前和术后疼痛,并/或在牙科应用中电离水分子引发癌症,&rdquo 德国特劳恩施泰因山的执业牙医Anton Kasenbacher说,&ldquo 超短脉冲皮秒激光器高速扫描自动对焦反馈实现高烧蚀率,减少口内抽吸的次数,并允许使用单个系统进行治疗和诊断,控制生物安全非线性光子吸收。&rdquo   Kasenbacher说考虑到2011年美国估计有154000所牙科诊所,产生了近 1080亿美元的收入,牙科用激光器的未来销售潜力是巨大的。  在激光美容领域,Cynosure公司2014年第三季度的营业收入与去年同期相比增长18%达到7150万美元。而欧洲的收入增长只有17%,美国营业收入增长17%,最大的增幅46%来自亚太地区。销售增长主要是因为FDA和其他政府批准Cynosure公司的PicoSure产品用于良性病变、痤疮疤痕、纹身和祛皱。  Cutera公司2014年第三季度营业收入增长11%达到1870万美元 Lumenis公司2014年第三季度营业收入7420万美元,与去年同期相比增长9.4% Syneron-Candela公司2014年第三季度营业收入增长8.3%达到6030万美元。在所有的情况下,公司将增长归因于FDA授权以及全球对激光治疗的强大接受度。2014年以后,许多公司开始增加激光去除脂肪技术,这是明智之举,ABC新闻报道每年美国有1.08亿节食者大约花费200亿美元用于减肥。  仪器与传感  &ldquo 目前,超分辨率显微镜是激光仪器市场最有活力的部分,&rdquo 国际战略方向咨询服务的副总裁Mike Tice说,&ldquo 虽然激光扫描共聚焦显微镜已经存在了几十年,过去十到十五年发明的新技术正在大力商业化,诺贝尔化学奖最近又奖励了两项特殊技术&mdash &mdash 受激发射损伤STED和单分子显微镜,突破了光学显微镜的衍射极限,这些和其他超分辨率技术的首字母缩略词,如STORM、PALM和SIM,将有助于进一步生命科学研究,&rdquo Tice补充道,&ldquo 历史悠久的激光诱导击穿光谱[LIBS]技术正在经历复兴,作为下一代系统将提供更好的性能,一些LIBS的供应商将LIBS装配成手持式装置拓宽其应用范围。&rdquo   除了显微镜和能谱检测仪器,光学相干断层扫描(OCT)系统随着应用的增长在尺寸上持续缩减,在这种情况下,OCT正在超越眼科基础。2014年2月,Axsun技术公司,Volcano集团的全资子公司,从英国Michelson Diagnostics收到了扫频激光光学相干断层扫描(OCT)引擎的一笔大订单,将为Michelson的Vivosight多光束OCT系统提供动力。Michelson称Vivosight是第一个高清晰度肌肤成像OCT扫描仪,可进行非黑色素瘤皮下组织结构的皮肤癌诊断。  在传感领域,物联网应用和智能小工具将使激光制造商保持忙碌几十年。此外,激光器销售直接受益于美国石油和天然气的繁荣。2013年花在分布式光纤传感器的费用是5.85亿美元(预计2018年将达到14.6亿美元),根据2014光子传感器协会发布的消息,70%的销售额与石油和天然气市场细分相关。我们预测,分析、传感器、仪器仪表和生命科学激光市场预计在2015年增长7.5%达到6.62亿美元,轻松超过科学研究和军事细分市场的组合总销售额。  科学研究和军事  &ldquo 虽然全球经济环境疲软、汇率贬值滞缓了去年增长,我们仍然预测用于研发的DPSS和二极管激光器的销售额增长30%,包括LIBS、拉曼检测、光谱仪和粒子成像测速应用,&rdquo 长春新产业光电技术有限公司的销售经理刘天虹(音译)说,&ldquo 公司成立于1996年,生产的第一台激光器用于低端应用。现在,集成脉冲调制和客户定制光纤传输使我们可以为客户提供满足科学研究要求的激光器。&rdquo   AdValue光电子公司主要面向科技研发市场销售,计划2015年的营业收入增长达30%~50%。AdValue业务发展总监Katherine Liu说,&ldquo 虽然我们的连续波光纤激光器产品面临着市场的日益竞争,我们的2&mu m脉冲光纤激光器用于非线性光学和材料研究获得一致好评。&rdquo   激光物质相互作用研究继续推动大量研发激光器销售。2013年2月,Lasertel公司从利弗莫尔国家实验室获得500万美元合同,为极端光基础设施ELI束线设施供应兆瓦级泵浦激光器模块。  美国联邦采购数据分析显示与2012年相比,2013年国防部因扣押消费合同类经费下降16%,研发类经费下降最多为21%,2014年持续下跌。  然而,全球范围内HIS简氏防务预算年度回顾说,2014年国防支出将增长0.6%,达到15470亿美元&ldquo 推动2016年复苏&rdquo 。  Strategies Unlimited预测2015年科技研发和军事激光市场销售额达5.72亿美元,Frost & Sullivan公司航空航天和国防高级产业分析师Brad Curran预估激光瞄准指示器市场每年销售额为1.5亿美元,定向能武器市场为5000万美元,雷神、洛克希德马丁和波音公司领导这一市场。  雷神公司最近获得了1100万美元合同开发悍马车载DEW,波音的薄盘激光技术正式以30kW输出进入DEW阶段。Curran说虽然目前市场前景很平缓因大量武器平台削减,但长期来看DEWs的军事应用开销还是会上升。  娱乐和显示  2013年底,Christie公司为西雅图全景电影剧场提供并安装了世界上第一个商用数字激光投影仪。全景电影观众观看2014年11月20日放映的&ldquo 饥饿游戏:自由幻梦(上)&rdquo 是由4k、60000流明、6P双头投影照明,虽然人们观影后大多谈到了啤酒和巧克力爆米花而非图像质量,尽管如此,像&ldquo 数字电影激光战&rdquo 2014国际视听展这样的会议已经看不到什么新奇产品,但是未来高流明度、高可靠性、低消耗成本以及高能效激光娱乐产业将会蓬勃发展。  &ldquo 这是令激光照明产业兴奋的一年,&rdquo Necsel公司的销售和市场副总裁兼激光照明投影仪协会主席Greg Niven说,&ldquo 见证一个全新细分市场的诞生是不常有的事情,数以百万双眼睛将看到高功率可见光激光器进入大型场馆投影仪和低流明办公室数字投影仪市场。这不仅仅是基于激光的各种照明应用的新开始。&rdquo   所以等你体验过激光影院之后,前往南部海岸线激光标签总部华盛顿如何呢?公司为你将激光游戏从每小时每个游戏15美元降到了公司到你所处位置每英里 1.12美元。他们的金属激光枪使用红外激光器和传感器作指示,当一个玩家被标记,一些使用可见光激光器(限于室内效果的低功率连续波红或绿光可见光激光器指示器)的玩家就可以看到栩栩如生的射击效果。  随着激光影院市场的渗透和激光标识游戏的多样化,激光照明显示市场的营业收入持续固定增长。事实上,许多城市正在考虑&ldquo 消灭&rdquo 污染,即烟花汇演产生的固体垃圾也将有利于激光灯光秀的发展。随着所有激光娱乐市场的发展,我们预测2015年娱乐和显示应用的激光市场将增长近11%达到1.97亿美元。  成像  从2013年到2018年,CCS公司称打印机出货量将从1.06亿台增加到1.24亿台(同比年增长率3.1%),其中多功能喷墨打印机占总出货量的50%。增长速度最快的打印机类型是激光多功能打印机,到2018年增长到3000万台(占所有打印机出货量的25%)。  尽管出货量增加了,打印机价格持续下跌,残酷的价格竞争侵蚀了销售额增长势头。至于2015年,预计用于成像应用的激光市场将由2014年销售额6700万美元下降到6600万美元。
  • 上海光机所在提升电子束蒸发沉积激光薄膜的长期性能稳定研究中取得新进展
    近期,中国科学院上海光学精密机械研究所薄膜光学实验室在提升电子束蒸发沉积激光薄膜的长期性能稳定研究中取得新进展,实现了低应力、光谱和机械性能长期稳定的电子束激光薄膜制备。相关研究成果发表在《光学材料快报》(Optical Materials Express)。电子束蒸发沉积薄膜因其激光损伤阈值高,光谱均匀性好且易实现大口径制备而广泛应用于世界上各大型高功率激光系统中。然而,电子束蒸发沉积薄膜的多孔结构特性易与水分子相互作用,使得薄膜的各项性能极易受环境条件(尤其是湿度)的影响。即便是在可控的环境下,电子束蒸发沉积薄膜的性能也会随时间而变化。该项成果提出了等离子体辅助沉积的致密全口径包覆水汽阻隔技术,覆盖多孔电子束蒸发沉积薄膜的上表面和侧面,有效地将其与水汽隔离,制备出了低应力、光谱和机械性能长期稳定的电子束蒸发沉积薄膜。同时,该水汽阻隔技术显著提升了电子束蒸发沉积薄膜的耐划性能,且提供了一种离线获得无水吸附时薄膜应力的方法。该项成果为提升电子束沉积薄膜的光谱和面形稳定性提供了途径,有助于解决高功率激光应用中电子束沉积薄膜随时间和环境变化性能不稳定问题。相关工作得到了国家自然科学基金、中科院青促会基金、中科院先导专项(B类)等支持。(薄膜光学实验室供稿)原文链接图1 等离子体辅助沉积的致密全口径包覆水汽阻隔技术示意图图2 有、无全口径水汽阻隔膜的多层膜性能对比(a)峰值反射率处波长随时效时间变化(b)应力随时效时间变化
  • 显微拉曼光谱在测量晶圆(多晶硅薄膜)残余应力上的应用
    在半导体生产过程中,退火、切割、光刻、打线、封装等多个生产工序都会引入应力,而应力分为张应力和压应力;应力也分有益的和有害之分。应变 Si(strained Silicon 或 sSi)是指硅单晶受应力的作用,其晶格结构和晶格常数不同于未应变体硅晶体。应变的存在,使 Si 晶体结构由立方晶体特征向四方晶体结构特征转变,导致其能带结构发生变化,从而最终导致其载流子迁移率发生变化。研究表明,在 Si 单晶中分别引入张应变和压应变,可分别使其电子迁移率和空穴迁移率有显著的提升因而,从 Si CMOS IC 的 90nm 工艺开始,在 Si 器件沟道以及晶圆材料中引入应变,提高了器件沟道迁移率或材料载流子迁移率,从而提升器件和电流的高速性能。多晶硅薄膜是MEMS(micro-electro-mechanical systems)器件中重要的结构材料,通常在单晶硅基底上由沉积方法形成。由于薄膜与基底不同的热膨胀系数、沉积温度、沉积方式、环境条件等众多因素的综合作用,多晶硅薄膜一般都存在大小不一的拉应力或者压应力。作为结构材料多晶硅薄膜的材料力学性能在很大程度上决定了MEMS器件的可靠性和稳定性。而多晶硅薄膜的残余应力对其断裂强度、疲劳强度等力学性能有显著的影响。表面及亚表面损伤还会引起残余应力,残余应力的存在将影响晶圆的强度,引起晶圆的翘曲如图1所示。所以准确测量和表征多晶硅薄膜的残余应力对于生产成熟的MEMS器件具有重要的意义。图 1 翘曲的晶圆片图 2 Si N 致张应变 SOI 工艺原理示意图,随着具有压应力 SiN 淀积在 SOI 晶圆上,顶层 Si 便会因为受到 SiN 薄膜拉伸作用发生张应变应力的测试难度非常大。由于MEMS中的多晶硅薄膜具有明显的小尺度特征,准确测量多晶硅薄膜的残余应力并不是一件容易的事情。目前在对薄膜的残余应力测量中主要采用两种方法:一种是X射线衍射,通过测量薄膜晶体中晶格常数的变化来计算薄膜的残余应力,这种方法可以实现对薄膜微区残余应力的准确测量,但测量范围较小,且对试样的制备具有较高的要求,基本不能实现在线薄膜残余应力测量。另外一种就是显微拉曼谱测量法,该方法具有非接触、无损、宽频谱范围和高空间分辨率等优点。通过测量薄膜在残余应力作用下引起的材料拉曼谱峰的移动可推知薄膜的残余应力分布。该方法可以实现对薄膜试件应力状况的在线监测,是表征薄膜材料尤其是MEMS器件中薄膜材料残余应力的一种重要方法。用于力学测量的一般要具有高水平的波长稳定性的紫外或可见光激发光源,并具备高光谱分辨率(小于 1cm-1)的显微拉曼光谱系统。1. 测量原理1.1. 薄膜残余应力与拉曼谱峰移的关系拉曼谱测量薄膜残余应力的示意图如图2所示。激光器发出的单色激光(带箭头实线)经过带通滤波器和光束分离器以后经物镜汇聚照射到样品表面‚激光光子与薄膜原子相互碰撞造成激光光子的散射。其中发生非弹性碰撞的光束(带箭头虚线)经过光束分离器和反射滤波器后,汇聚到声谱仪上形成薄膜的拉曼谱峰。拉曼散射光谱的产生跟薄膜物质原子本身的振动相关,只有当薄膜物质的原子振动伴随有极化率的变化时,激光的光子才能跟薄膜物质原子发生相互作用而形成拉曼光谱。当薄膜存在拉或压的残余应力时,其原子的键长会相应地伸长或缩短,使薄膜的力常数减小或增大,因而原子的振动频率会减小或增大,拉曼谱的峰值会向低频或高频移动。此时,拉曼峰值频率的移动量与薄膜内部残余应力的大小具有线性关系,即Δδ=ασ或者σ=kΔδ,Δδ是薄膜拉曼峰值的频移量,σ是薄膜的残余应力,k和α称为应力因子。图 3 拉曼测量系统示意图图 4 拉曼光谱测试晶圆的示意图2. 多晶硅薄膜残余应力计算对于单晶硅,激光光子与其作用时存在3种光学振动模式,两种平面内的一种竖直方向上的,这与其晶体结构密切相关。当单晶硅中存在应变时,这几种模式下的光子振动频率可以通过求解特征矩阵方程ΔK- λI = 0获得。其中ΔK是应变条件下光子的力常数改变量(光子变形能)λi(i= 1 ,2,3)是与非扰动频率ω0和扰动频率ωi相关的参量(λi≈ 2ω0(ωi-ω0)),I是3×3单位矩阵。由于光子在多晶硅表面散射方向的随机性和薄膜制造过程的工艺性等许多因素的影响,使得利用拉曼谱法测量多晶硅薄膜的残余应力变得更加复杂。Anastassakis和Liarokapis应用Voigt-Reuss-Hill平均和张量不变性得出与单晶硅形式相同的多晶硅薄膜的光子振动频率特征方程式。此时采用的光子变形能常数分别是K11=-2.12ω02 K12=-1.65ω02 K33=-0.23ω02是光子的非扰动频率。与之相对应的柔度因子分别是S11= 6.20×10-12Pa-1S12=-1.39 ×10-12Pa-1S33= 15.17 ×10-12Pa-1对于桥式多晶硅薄膜残余应力的分析,假定在薄膜两端存在大小相等、方向相反(指向桥中心)的力使薄膜呈拉应力。此时,拉曼谱峰值的频移与应力的关系可以表达为Δω =σ(K11+2 K12)(S11+2 S12)/3ω0代入参量得Δω =-1.6(cm-1GPa-1)σ,即σ=-0.63(cmGPa)Δω (1)其中σ是多晶硅薄膜的残余应力,单位为GPa;Δω是多晶硅薄膜拉曼峰值的频移单位为cm-1。3. 应力的拉曼表征桥式多晶硅薄膜梁沿长度方向的拉曼光谱峰值频移情况如图3所示。无应力多晶硅拉曼谱峰的标准波数是520 cm-1,从图3可以看出,当拉曼光谱的测量点从薄膜的两端向中间靠拢时,多晶硅的峰值波数将沿图中箭头方向移动,即当测量位置接近中部时,多晶硅薄膜的峰值波数将会逐渐达到最小。图中拉曼谱曲线采用洛伦兹函数拟合获得。通过得曲线的洛伦兹峰值的横坐标位置,就可以根据式(1)得到多晶硅薄膜的残余应力分布情况,如图4所示。由于制造过程的偏差,多晶硅薄膜的实际梁长L=213μm。图 5 多晶硅薄膜的拉曼谱峰值频移,随着应力增大,谱峰向左漂移。图 6 多晶硅薄膜的拉曼谱峰频移和残余应力分布从图6可以明显看出,多晶硅薄膜的拉曼谱峰值频移在它的长度方向上大致呈对称分布,也就是说,多晶硅薄膜的残余应力在其长度方向上呈对称分布。通过计算可知,在多晶硅薄膜的中部存在很大的拉伸残余应力(拉曼谱峰值向低波数移动),达到0.84 GPa。4. 应力的拉曼扫描成像某半导体晶圆厂家,采用奥谱天成Optosky的ATR8800型共聚焦显微拉曼光谱扫描成像仪(www.optosky.com),测试晶圆的应力分布情况,经过数据处理后,测得了整个晶圆圆盘的应力分布。图 7 奥谱天成生产的ATR8800型共聚焦显微拉曼光谱扫描成像仪,焦距为760mm,分辨率达到0.5cm-1图 8 ATR8800共聚焦显微拉曼光谱仪的工作界面图 9 ATR8800共聚焦显微拉曼光谱仪的工作界面图 10 共聚焦显微拉曼光谱扫描成像仪测得晶圆应力分布,红色的应力越大,蓝色的应力较小。5. 总结与讨论拉曼光谱具有无损、非接触、快速、表征能力强等特点,能够清晰地表征出晶圆的应力与应力分布,为半导体的生产、退火、封装、测试的工序,提供一种非常好的测量工具。奥谱天成致力于开发国际领 先的光谱分析仪器,立志成为国际一 流的光谱仪器提供商,基于特有的光机电一体化、光谱分析、云计算等技术,形成以拉曼光谱为拳头产品,光纤光谱、高光谱成像仪、地物光谱、荧光光谱、LIBS等多个领域,均跻身于世界前列,已出口到全球50多个国家。◆ 承担“海洋与渔业发展专项资金项目”(总经费4576万元);◆ 2021福建省科技小巨人科技部;◆ 刘鸿飞博士入选科技部“创新人才推进计划”;◆ 国家高新技术企业;◆ 刘鸿飞博士获评福建省高层次人才B类;◆ 主持制定《近红外地物光谱仪》国家标准;◆ 国家《拉曼光谱仪标准》起草单位;◆ 福建省《便携式拉曼光谱仪标准》评审专家单位;◆ 厦门市“双百人才计划”A类重点引进项目(最 高等级);◆ 国家海洋局重大产业化专项项目承担者;◆ “重大科学仪器专项计划”承担者。
  • 亚纳米皮米激光干涉位移测量技术与仪器
    1 引 言激光干涉位移测量技术具有大量程、高分辨力、非接触式及可溯源性等优势,广泛应用于精密计量、微电子集成装备和大科学装置等领域,成为超精密位移测量领域中的重要技术之一。近年来,随着这些领域的迅猛发展,对激光干涉测量技术提出了新的测量需求。如在基于长度等量子化参量的质量基准溯源方案中,要想实现1×10−8 量级的溯源要求,需要激光干涉仪长度测量精度达0. 1 nm 量级;在集成电路制造方面,激光干涉仪承担光刻机中掩模台、工件台空间位置的高速、超精密测量任务,按照“ 摩尔定律”发展规律,近些年要想实现1 nm 节点光刻技术,需要超精密测量动态精度达0. 1 nm,达到原子尺度。为此,国际上以顶级的计量机构为代表的单位均部署了诸如NNI、Nanotrace 等工程,开展了“纳米”尺度测量仪器的研制工程,并制定了测量确定度在10 pm 以下的激光干涉测量技术的研发战略。着眼于国际形势,我国同样根据先进光刻机等高端备、先进计量的测量需求,制定了诸多纳米计量技术的研发要。可见,超精密位移测量技术的发展对推进我国众多大高端装备具有重要战略意义,是目前纳米度下测量领域逐步发展的重大研究方向。2 激光干涉测量原理根据光波的传播和叠加原理,满足相干条件的光波能够在空间中出现干涉现象。在激光干涉测量中,由于测量目标运动,将产生多普勒- 菲佐(Doppler-Fizeau效应,干涉条纹将随时间呈周期性变化,称为拍频现象。移/相移信息与测量目标的运动速度/位移关系满足fd = 2nv/ λ , (1)φd = 2nL/ λ , (2)式中:fd为多普勒频移;φd为多普勒相移;n 为空气折射率;v 和L 为运动速度和位移;λ 为激光波长。通过对干涉信号的频率/相位进行解算即可间接获得测量目标运动过程中速度/位信息。典型的干涉测量系统可按照激光光源类型分为单频(零差式)激光干涉仪和双频(外差式)激光干涉仪两大类。零差式激光干涉测量基本原理如图1 所示,其结构与Michelson 干涉仪相仿,参考光与测量光合光干涉后,经过QPD 输出一对相互正交的信号,为Icos = A cos (2πfd t + φ0 + φd ) , (3)Isin = A sin (2πfd t + φ0 + φd ) , (4)式中:(Icos, Isin)为QPD 输出的正交信号;A 为信号幅值;φ0 为初始相位。结合后续的信号处理单元即可构成完整、可辨向的测量系统。图1 零差激光干涉测量原理外差式激光干涉仪的光源是偏振态相互垂直且具有一定频差Δf 的双频激光,其典型的干涉仪结构如图2 所示。双频激光经过NPBS 后,反射光通过偏振片发生干涉,形成参考信号Ir;透射光经过PBS,光束中两个垂直偏振态相互分开,f2 光经过固定的参考镜反射,f1 光经运动的测量镜反射并附加多普勒频移fd,与反射光合光干涉后形成测量信号Im。Ir = Ar cos (2πΔft + φr ) , (5)Im = Am cos (2πΔft + φm ), (6)式中:Δf、A 和φ 分别为双频激光频差、信号幅值和初始相位差。结合式(5)和式(6),可解算出测量目标的相位信息。图2 外差激光干涉测量原理零差式激光干涉仪常用于分辨力高、速度相对低并且轴数少的应用中。外差式激光干涉仪具有更强的抗电子噪声能力,易于实现对多个目标运动位移的多轴同步测量,适用于兼容高分辨力、高速及多轴同步测量场合,是目前主流的干涉结构之一。3 激光干涉测量关键技术在超精密激光干涉仪中,波长是测量基准,尤其在米量级的大测程中,要实现亚纳米测量,波长准确度对测量精度起到决定性作用。其中,稳频技术直接影响了激光波长的准确度,决定激光干涉仪的精度上限;环境因素的变化将影响激光的真实波长,间接降低了实际的测量精度。干涉镜组结构决定光束传播过程中的偏振态、方向性等参数,影响干涉信号质量。此外,干涉信号相位细分技术决定激光干涉仪的测量分辨力,并限制了激光干涉仪的最大测量速度。3. 1 高精度稳频技术在自由运转的状态下,激光器的频率准确度通常只有±1. 5×10−6,无法满足超精密测量中10−8~10−7的频率准确度要求。利用传统的热稳频技术(单纵模激光器的兰姆凹陷稳频方法等),可以提高频率准确度,但系统中稳频控制点常偏离光功率平衡点,输出光频率准确度仅能达2×10−7量级,无法完全满足超精密测量的精度需求。目前,超精密干涉测量中采用的高精度稳频技术主要有热稳频、饱和吸收及偏频锁定3 种。由于激光管谐振腔的热膨胀特性,腔长随温度变化呈近似线性变化。因此,热稳频方法通过对谐振腔进行温度控制实现对激光频率的闭环调节。具体过程为:选定稳定的参考频标(双纵模激光器的光功率平衡点、纵向塞曼激光器频差曲线的峰/谷值点),当激光频率偏离参考频标时,产生的频差信号用于驱动加热膜等执行机构进行激光管谐振腔腔长调节。热稳频方法能够使激光器的输出频率的准确度在10−9~10−8 量级,但原子跃迁的中心频率随时间推移受腔内气体气压、放电条件及激光管老化的影响会发生温度漂移。利用稳频控制点修正方法,通过对左右旋圆偏振光进行精确偏振分光和对称功率检测来抑制稳频控制点偏移的随机扰动,同时补偿其相对稳定偏置分量。该方法显著改善了激光频率的长期漂移现象,阿伦方差频率稳定度为1. 9×10−10,漂移量可减小至(1~2)×10−8。稳频点修正后的激光波长仍存在较大的短期抖动,主要源于激光器对环境温度的敏感性,温差对频率稳定性的影响大。自然散热型激光器和强耦合水冷散热型激光器均存在散热效果不均匀和散热程度不稳定的问题。多层弱耦合水冷散热结构为激光管提供一个相对稳定的稳频环境,既能抑制外界环境温度变化对激光管产生的扰动,冷却水自身的弱耦合特性又不影响激光管性能,进而减小了温度梯度和热应力,提高了激光器对环境温度的抗干扰能力,减少了输出激光频率的短期噪声,波长的相对频率稳定度约为1×10−9 h−1。碘分子饱和吸收稳频法将激光器的振荡频率锁定在外界的参考频率上,碘分子饱和吸收室内处于低压状态下(1~10 Pa)的碘分子气体在特定频率点附近存在频率稳定的吸收峰,将其作为稳频基准后准确度可达2. 5×10−11。但由于谐振腔损耗过大,稳频激光输出功率难以超过100 μW 且存在MHz 量级的调制频率,与运动目标测量过程中产生的多普勒频移相近。因此,饱和吸收法难以适用于多轴、动态的测量场合。偏频锁定技术是另一种高精度的热稳频方法,其原理如图3 所示,通过实时测量待稳频激光器出射光与高精度碘稳频激光频差,获得反馈控制量,从而对待稳频激光器谐振腔进行不同程度加热,实现高精度稳频。在水冷系统提供的稳频环境下,偏频锁定激光器的出射光相对频率准确度优于2. 3×10−11。图3 偏频锁定热稳频原理3. 2 高精度干涉镜组周期非线性误差是激光干涉仪中特有的内在原理性误差,随位移变化呈周期性变化,每经过半波长,将会出现一次最大值。误差大小取决光束质量,而干涉镜组是决定光束质量的主导因素。传统的周期非线性误差可以归结为零差干涉仪的三差问题和外差干涉仪的双频混叠问题,产生的非线性误差机理如图4 所示,其中Ix、Iy分别表示正交信号的归一化强度。其中,GR为虚反射,MMS 为主信号,PISn 为第n 个寄生干涉信号,DFSn 为第n 阶虚反射信号。二者表现形式不完全相同,但都会对测量结果产生数纳米至数十纳米的测量误差。可见,在面向亚纳米、皮米级的干涉测量技术中,周期非线性误差难以避免。图4 零差与外差干涉仪中的周期非线性误差机理。(a)传统三差问题与多阶虚反射李萨如图;(b)多阶虚反射与双频混叠频谱分布Heydemann 椭圆拟合法是抑制零差干涉仪中非线性误差的有效方法。该方法基于最小二乘拟合,获得关于干涉直流偏置、交流幅值以及相位偏移的线性方程组,从而对信号进行修正。在此基础上,Köning等提出一种基于测量信号和拟合信号最小几何距离的椭圆拟合方法,该方法能提供未知模型参数的局部最佳线性无偏估计量,通过Monte Carlo 随机模拟后,其非线性幅值的理论值约为22 pm。在外差干涉仪中,双频混叠本质上是源于共光路结构中双频激光光源和偏振器件分光的不理想性,称为第1 类周期非线性。对于此类周期非线性误差,补偿方法主要可以从光路系统和信号处理算法两个方面入手。前者通过优化光路可以将非线性误差补偿至数纳米水平;后者通过椭圆拟合法提取椭圆特征参数,可以将外差干涉仪中周期非线性误差补偿至亚纳米量级;两种均属补偿法,方法较为复杂,误差难以抑制到0. 1 nm 以下。另一种基于空间分离式外差干涉结构的光学非线性误差抑制技术采用独立的参考光路和测量光路,非共光路使两路光在干涉前保持独立传播,从根本上避免了外差干涉仪中频率混叠的问题,系统残余的非线性误差约为数十皮米。空间分离式干涉结构能够消除频率混叠引起的第1 类周期非线性误差,但在测量结果中仍残余亚纳米量级的非线性误差,这种有别于频率混叠的残余误差即为多阶多普勒虚反射现象,也称为第2 类周期非线性误差。虚反射现象源自光学镜面的不理想分光、反射等因素,如图5所示,其中MB 为主光束,GR 为反射光束,虚反射现象普遍存在于绝大多数干涉仪结构中。虚反射效应将会使零差干涉仪中李萨如图的椭圆产生畸变,而在外差干涉仪中则出现明显高于双频混叠的高阶误差分量。图5 多阶虚反射现象使用降低反射率的方法,如镀增透膜、设计多层增透膜等,能够弱化虚反射现象,将周期非线性降低至亚纳米水平;德国联邦物理技术研究院Weichert等通过调节虚反射光束与测量光束间的失配角,利用透镜加入空间滤波的方法将周期非线性误差降低至±10 pm。上述方法在抑制单次的虚反射现象时有着良好的效果,但在面对多阶虚反射效应时作用有限。哈尔滨工业大学王越提出一种适用于多阶虚反射的周期非线性误差抑制方法,该方法利用遗传算法优化关键虚反射面空间姿态,精准规划虚反射光束轨迹,可以将周期非线性误差抑制到数皮米量级,突破了该领域10 pm 的周期非线性误差极限。3. 3 高速高分辨力相位细分技术在激光干涉仪中,相位细分技术直接决定系统的测量精度。实现亚纳米、皮米测量的关键离不开高精度的相位细分技术。相位的解算可以从时域和频域两个角度进行。最为常用的时域解算方法是基于脉冲边缘触发的相位测量方法,该方法利用高频脉冲信号对测量信号与参考信号进行周期计数,进而获取两路信号的相位差。该方法的测量速度与测量分辨力模型可表达为vm/dLm= Bm , (7)式中:vm 为测量速度;dLm 为测量分辨力;Bm 为系统带宽。在系统带宽恒定的情况下,高测速与高分辨力之间存在相互制约关系。只有提高系统带宽才能实现测量速度和测量分辨力的同时提升,也因此极度依赖硬件运行能力。在测量速度方面,外差激光干涉仪的测量速度主要受限于双频激光频差Δf,测量目标运动产生的多普勒频移需满足fd≤Δf。目前,美国的Zygo 公司和哈尔滨工业大学利用双声光移频方案所研制的结构的频差可达20 MHz,理论的测量速度优于5 m/s。该方法通过增加双频激光频差来间接提升测量速度,频差连续可调,适用于不同测量速度的应用场合,最大频差通常可达几十MHz,满足目前多数测量速度需求。从干涉结构出发,刁晓飞提出一种双向多普勒频移干涉测量方法,采用全对称的光路结构,如图6所示,获得两路多普勒频移方向相反的干涉信号,并根据目标运动方向选择性地采用不同干涉信号,保证始终采用正向多普勒频移进行相位/位移解算。该方法从原理上克服了双频激光频差对测量速度的限制,其最大测量速度主要受限于光电探测器带宽与模/数转换器的采样频率。图6 全对称光路结构在提升测量分辨力方面,Yan 等提出一种基于电光调制的相位调制方法,对频率为500 Hz 的信号进行周期计数,该方法实现的相位测量标准差约为0. 005°,具有10 pm 内的超高位移测量分辨力,适用于低速测量场合。对于高速信号,基于脉冲边缘触发的相位测量方法受限于硬件带宽,高频脉冲频率极限在500 MHz 左右,其测量分辨力极限约为1~10 nm,难以突破亚纳米水平。利用高速芯片,可以将处理带宽提升至10 GHz,从而实现亚纳米的测量分辨力,但成本较大。闫磊提出一种数字延时细分超精细相位测量技术,在硬件性能相同、采样频率不变的情况下,该方法利用8 阶数字延迟线,实现了相位的1024 电子细分,具有0. 31 nm 的位移测量分辨力,实现了亚纳米测量水平。该方法的等效脉冲频率约为5 GHz,接近硬件处理极限,但其测量速度与测量分辨力之间依旧存在式(7)的制约关系。德国联邦物理技术研究院的Köchert 等提出了一种双正交锁相放大相位测量方法,如图7所示,FPGA 内部生成的理想正交信号分别与外部测量信号、参考信号混频,获取相位差。利用该方法,可以实现10 pm 以内的静态测量偏差。双正交锁相放大法能够处理正弦模拟信号,充分利用了信号的频率与幅值信息,其测量速度与测量分辨力计算公式为vm/0. 1λ0= Bm , (8)dLm/0. 5λ0=Bs/dLc, (9)式中:Bs为采样带宽;dLc为解算分辨力。图7 双正交锁相方法测量原理可见,测量速度与测量分辨力相互独立,从原理上解决了高测速与高分辨力相互制约的矛盾,为激光干涉仪提供了一种兼顾高速和高分辨力的相位处理方法。在此基础上,为了适应现代工业中系统化和集成化的测量需求,美国Keysight 公司、Zygo 公司及哈尔滨工业大学相继研发出了光电探测与信号处理一体化板卡,能够实现高于5 m/s 的测量速度以及0. 31 nm 甚至0. 077 nm 的测量分辨力。此外,从变换域方面同样可以实现高精度的相位解算。张紫杨等提出了一种基于小波变换的相位细分方法,通过小波变换提取信号的瞬时频率,计算频率变化的细分时间,实现高精度的位移测量,该方法的理论相位细分数可达1024,等效位移精度约为0. 63 nm。Strube 等利用频谱分析法,从信号离散傅里叶变换(DFT)后的相位谱中获取测量目标的位移,实现了0. 3 nm 的位移测量分辨力。由于采用图像传感器为光电转换器,信号处理是以干涉条纹为基础的,适用于静态、准静态的低速测量场合。3. 4环境补偿与控制技术环境中温度、气压及湿度等变化会引起空气折射率变化,使得激光在空气中传播时波长变动,导致测量结果产生纳米量级的误差。环境误差补偿与控制技术是抑制空气折射率误差的两种重要手段。补偿法是修正空气折射率误差最常用的方法,具有极高的环境容忍度。采用折光仪原理、双波长法等可以实现10−7~10−8 量级的空气折射率相对测量不确定度。根据Edlen 经验公式,通过精确测定环境参数(温度、湿度和大气压等),可以计算出空气折射率的精确值,用于补偿位移测量结果,其中温度是影响补偿精度的最主要因素。采用高精度铂电阻传感器,设备可以实现1 mK 的温度测量精度,其折射率的补偿精度可达10−8量级,接近Edlen 公式的补偿极限。环境控制技术是保证干涉仪亚纳米测量精度的另一种有效方法。在现行的DUV 光刻机中,采用气浴法,建立3 mK/5 min 以内恒温、10 Pa/5 min 以内恒压、恒湿气浴场,该环境中能够实现10−9~10−8 量级空气折射率的不确定度。对于深空引力波探测、下一代质量基准溯源等应用场合,对激光干涉仪工作的环境控制要求更为严苛,测量装置需置于真空环境中,此时,空气折射率引入的测量误差将被彻底消除。4 激光干涉测量技术发展趋势近年来,超精密位移测量的精度需求逐渐从纳米量级向亚纳米甚至皮米量级过渡。国内在激光干涉仪中的激光稳频、周期非线性误差消除和信号处理等关键技术上均取得了重大的突破。在LISA 团队规划的空间引力波探测方案中,要求在500 万千米的距离上,激光干涉仪对相对位移量需要具有10 pm 以内的分辨能力。面对更严苛的测量需求,超精密位移测量依然严峻面临挑战。激光干涉测量技术的未来发展趋势可以归结如下。1)激光波长存在的长期漂移和短期抖动是限制测量精度提升的根本原因。高精度稳频技术对激光波长不确定度的提升极限约为10−9量级。继续提升激光波长稳定度仍需要依托于下一阶段的工业基础,改善激光管本身的物理特性,优化光源质量。2)纳米级原理性光学周期非线性误差是限制激光干涉仪测量精度向亚纳米、皮米精度发展的重要瓶颈。消除和抑制第1 类和第2 类周期非线性误差后,仍残余数十皮米的非线性误差。由于周期非线性误差的表现形式与耦合关系复杂,想要进一步降低周期非线性误差幅值,需要继续探索可能存在的第3 类非线性误差机理。3)测量速度与测量分辨力的矛盾关系在动态锁相放大相位测量方法中得到初步解决。但面对深空引力波探测中高速、皮米的测量要求,仍然需要进一步探索弱光探测下的高分辨力相位细分技术;同时,需要研究高速测量过程中的动态误差校准技术。高速、高分辨力特征依旧是相位细分技术今后的研究方向。全文下载:亚纳米皮米激光干涉位移测量技术与仪器_激光与光电子学进展.pdf
  • 激光集成到FIB室中 VS 独立的激光刻蚀和PFIB协同处理,哪个更好?
    通过激光刻蚀去除所需位点外围的大部分材料,再通过FIB切割和抛光得到横截面,两种技术相结合最终实现了超大尺寸样品处理所需的速度和精度。而这种组合方式的最新阶段是采用激光刻蚀和PFIB刻蚀实现协同处理,进一步提高分析通量、效率和灵活性。激光集成到FIB室中 VS 独立的激光刻蚀和PFIB协同处理 效率提高至少2,000倍 激光刻蚀提供的最大铣削速率比镓源FIB快约100,000倍,比PFIB快约2,000倍,同时仍保持针对特定位点的足够铣削精度。将激光刻蚀(初始切削材料)与PFIB(最终切割和抛光)相结合可以将制备大尺寸横截面所需的总时间减少95%,在某些情况下甚至更多。如图1显示了镓源FIB、PFIB和激光刻蚀的光斑大小与材料去除率之间的关系。相邻表格提供了这3种技术在最大铣削和最终抛光束流条件下材料去除率的数值比较。如图1:(左)所示,镓源FIB、PFIB和激光刻蚀占据不同的区域,其特点是光斑尺寸(光束直径)和材料去除率之间的制衡。一般来说,较高的束流或束流强度会更快地去除材料,但精度较低。表格(右)比较了材料在三种技术下最大束流和典型抛光条件下的束流(或激光的离子束等效电流)和材料去除率关系。此外,还显示了镓源FIB与激光刻蚀、PFIB与激光刻蚀的去除率之比。将激光集成到FIB室中后,系统一次只能使用一个功能,而其他功能处于空闲状态。TESCANT提供一种最新方式来实施集成显微镜技术,通过独立的激光刻蚀(microPrep PRO、3D-Micromac AG)和PFIB(TESCAN Solaris X)系统提供并行处理。两个系统都不会因为另一个系统的运行而空闲。激光刻蚀系统可以为多个联用工具准备样品,无论联用是多个FIB 还是各种其他故障分析仪器,最终结果都是增加了分析通量和产率,并降低了每次分析的成本。激光刻蚀系统提供约10微米的铣削精度(束斑尺寸)和约3微米的光束定位精度(以厘米为移动范围),使其快速准确地去除立方毫米的材料。基于电路设计的CAD数据或各种FA工具的2D图像叠加的相关对准技术有助于在两个系统中以高精度找到感兴趣区。● 独立系统中的协同处理优点 ●1, 超短激光脉冲最大限度地减少了激光引起热影响区,从而减少了必须通过PFIB中的最终抛光去除的材料量。2. 单独在激光刻蚀系统中切削材料可避免PFIB仓内污染的风险,其中污染物会干扰仪器本身和分析结果。3. 样品同时可以在各种气体环境中通过激光进行处理,并且可以使用解决方案来允许系统之间的转移,而不会暴露在周围环境中。4. 激光刻蚀工具上的平台提供具有六个自由度的精确自动化运动,使其能够在需要时铣削复杂的图案。5. 在激光刻蚀过程中倾斜样品的能力对于补偿由光束能量的高斯强度分布引起的锥度特别有益。尽管它可以使用FIB抛光消除,但在激光刻蚀操作期间避免它可以大大减少FIB抛光所需的时间。6. 消除锥度对于半导体样品中准确对齐堆叠重复结构的横截面(例如TSV、锡焊球等)工艺至关重要。PFIB系统针对高深度大尺寸铣削进行了优化,它提供高达3µA的束流,每秒可去除多达1,400µm3的材料。用于最终抛光的较低离子束电流(300nA)仍可去除高达141µm3/s,即使在具有挑战性的样品上也能提供原始横截面。最具挑战性的样品是那些需要不同切削速率的硬质和软质复合材料的样品。容易产生独特的垂直形貌,描述性地称为“窗帘”。从而引起的窗帘伪影可能会掩盖后续成像中的关键细节。在切削操作过程中,我们可以通过小角度反复摇摆样品减少窗帘伪影。角度的轻微变化使离子束能够更好地进入材料下方较硬的屏蔽区域,并平滑铣削过程。对于束流/铣削速率较高的FIB,窗帘效应可能是一个挑战,就像大通量工作流程中高速铣削所需的那些一样。对于该问题,PFIB系统配置的摆动台提供了一种自动摆动模式,可以予以解决在某些材料中,包括碳化硅、聚酰亚胺、玻璃等,产生的另一种伪影-呈阶梯式。阶梯一旦出现,就会自我强化,很难移除。我们用一种创新的解决方案(True x-section,用户指导程序)来消除了阶梯效应,比大面积FIB沉积速度快得多:允许操作人员在要切片的区域放置一个小的保护硬面罩。案例图2至图6显示了使用激光刻蚀和PFIB来曝光电路元件以进行成像和分析的示例。每个示例都包括每次操作所花费的时间以及相对于单独使用PFIB制备样品所节省的总时间。图2:先进芯片集成中间的图像显示了一个超大的横截面,宽几百微米,深几百微米,穿过集成电路和连接到插入器的焊锡球和触点。左边和右边的图像显示了该截面的细节,左边是IC的放大倍数更高的图像,右边是锡球和接触垫之间的空隙。横切过程在激光刻蚀仪器中耗时10分钟,在PFIB中耗时90分钟,与单独使用PFIB相比节省了70%的时间。图3:锥度校正(右)显示了在高带宽存储器(HBM)器件中硅穿孔(TSV)堆栈的数百微米深和宽的横截面,它说明了系统切割贯通每个TSV中心的精确垂直横截面的能力。在激光刻蚀过程中倾斜样品以补偿锥角对于减少最终PFIB铣削操作要去除的材料量至关重要,从而减少横截面所需的总时间。横截面在激光刻蚀仪器中耗时10分钟,在PFIB中耗时120分钟,与单独的PFIB相比,节省了80%的时间。图4:FIB层析成像的激光刻蚀准备FIB的层析成像通过FIB逐层切片的方式,从捕获的一系列图像中重建了样本体积的3D模型。准备工作首先使用激光刻蚀从一个立方体/矩形体的三面去除材料,如“俯视图”(左)所示。在此视图中,最终将与FIB连续剖切的面位于立方体形状的底部。在“正视图”(中间)中,样品已旋转90°以显示横截面。插图(右)放大了横截面的一个区域以显示其切削质量。使用激光烧蚀制备样品需要10分钟,与PFIB 相比节省了70%的时间。图5: 有机发光二极管面板手机和其他移动设备的显示器含有关键的微结构,在样品制备过程中容易被机械应力损坏。这种精致的样品需要一种特殊的处理方法:在PFIB进行最后切削和抛光之前,在边缘的一个几毫米长的区域被有意地用激光削尖。左上方的第3张图像显示了激光刻蚀切口。下图显示了经过PFIB切削和抛光后长约0.5mm截面(PFIB可以切割和抛光长达1mm的截面)。最右边的顶部图像显示了最终横截面的更高倍放大图。横切面在激光刻蚀中花费了74分钟,在PFIB中花费了165分钟,与单独PFIB相比节省了95%的时间。图6: 微机电系统MEMS设备对样品制备过程中的机械损伤特别敏感。在这个例子中,激光刻蚀被用来打开一个窗口,进入封装的 MEMS 设备进行检查和分析。 节省的时间从70%到95%以上 激光刻蚀功能嵌入FIB系统的系统本质上是低效的,因为一次只能使用一种功能。该技术的最新迭代在独立的激光刻蚀和PFIB中实现并行处理,通过允许同时在两种工具中进行处理来提高通量和产率。这些工具通过相关的图像对齐程序和CAD叠加导航进行集成。在并行配置中,单个激光刻蚀系统可以供给多个FIB和其它FA工具。这种方法具有消除污染FIB系统的风险的优势,其中污染物会干扰成像和分析或损坏系统。我们展示了几个大的、高质量的横截面示例,并计算出与单独使用PFIB制备相比节省的时间,所示示例中节省的时间从70%到95%以上。
  • 激光颗粒检测技术发展历程与趋势
    上世纪七十年代初,PLDMC公司将激光颗粒检测技术成功应用于油液监测领域。历经40多年的发展壮大,当前的激光颗粒检测技术已经成为一门新兴的实验性前沿交叉学科。激光颗粒检测技术在广泛的实际应用中显示出强大的生命力,并为航天、航空、航海、液压、传动、工程机械和各类制造业提供了有力的保障。而谈到激光颗粒检测技术,就不得不谈到被称为激光颗粒检测技术创始者和领导者的PLDMC公司。  PLDMC一直以创新的激光颗粒检测技术为导向,拥有世界激光颗粒检测技术研发领域的尖端技术,其新产品曾多次荣获技术创新大奖,各国国防部和航天事业局的指定油液监测设备。  实验室激光油液颗粒计数系统学科带头人JOHN博士谈激光颗粒检测技术发展历程与趋势  据JOHN博士介绍,油液污染的起因和对工作造成的危害,众所周知,飞行器源于早期六十年代,液压技术和元器件及系统得到有效地提升,可靠性越来越受到广泛关注,固体颗粒污染成为各系统普遍存在的污染物,油液污染一直以来困扰各国航天、航空事业,故障率高居不下,由此引起了相关技术行业的关注。新产品、新技术被人们接受、认可以及市场的拓展等需要一定时间,而PLDMC为了激光颗粒检测技术与仪器的发展,付出了大量的努力和心血 如70年代,PLDMC耗巨资推出第一代油液颗粒监测设备,并与相关机构就检测标准的开展迈出了漫长的研究之路。  PLDMC公司通过近40年时间的努力,使激光颗粒检测仪器从‘无人问津’到今天的‘家喻户晓’。截止目前,PLDMC在全球已拥有近十八万家用户,销售总额约占世界激光颗粒检测仪器市场的75%。PLDMC公司的发展历程也可以说是激光颗粒检测仪器与技术的发展历程。  颗粒检测技术“革命性”的飞跃  行业不断拓展,颗粒检测技术得到广泛应用,在90年代形成“过滤称重法”、“过滤显微镜法”和“激光颗粒检测法”,并通过美国宇航协会、国际标准化组织、英国汽车工程师协会等一批世界顶级相关组织的积极参与,形成了“NAS 1638 Cleanliness Requirements of Parts Used in Hydraulic Systems-Rev”、“ISO 4406-1999 液压传动 油液固体颗粒污染等级代号法”、“JIS B 9932-2003Hydraulic fluid power -- Calibration of automatic particle counters for liquids”、“BS ISO 11171 Hydraulic fluid power Calibration of automatic particle counters for liquids”、“ISO 11500 hydraulic fluid power-determination of particulate contamination by automatic couting using the light extinction principle”、“ISO 5884 Aerospace-Fluid systems and components - Methods for system sampling and measuring the solid particle contamination of hydraulic fluids ”等众多的相关标准。  普洛帝测控“创造性”的巨变  90年代PLDMC出售其赖以自豪的“水质检测事业部”和“密度监测事业部”,重点将激光颗粒检测技术保持发展。从第一代最基本的检测技术,发展至2009年的第六代产品,其中的困难和艰辛让业内为止震撼。JOHN博士非常感慨一路走来的艰辛,曾经经历了初创、发展、鼎盛和彷徨时期,技术和利润成为企业发展的制约难题。自99年以来普洛帝中国事业部的销量受到总部的热切关注,并为普洛帝中国大发展做出详尽的计划,2005年普洛帝东南亚大区及普洛帝测控中国公司的成立使其在总部的地位尤为重要,一系列的投资计划和发展战略开始运作,现已形成北京、西安、上海和深圳四个服务区域和六个发展单位(五个运营实体,一个非盈利基金—油液颗粒监测研发基金,截止2010年6月累计发放基金120万人民币)。  普洛帝测控“务实性”的未来  2009年普洛帝中国良好的表现得到各股东的赞誉,普洛帝中国服务中心及其6个发展单位为PLDMC在中国及东南亚的发展制订“务实性”的战略计划,计划在08年组装工厂成立的基础上将加大在中国的投资,建成以上海为研发基地、西安变更为生产基地、深圳为贸易进出口基地和北京为总部基地的新格局,将继续和中国的航天、航空、兵工、船舶各行业合作伙伴深入合作,形成创新型伙伴结盟关系,同时加大对非盈利基金的投入,并推广至多个行业,提升中国的油液颗粒监测技术的发展。  PLDMC公司介绍链接:  普洛帝 PLDMC公司在全球范围内研发、生产、销售工业测量产品,并致力于提高生产质量、加强环境保护以及安全高效经济的工业测控。  普洛帝PLDMC公司的主要客户群为世界各国的石油、化工、能源、民航、国防、铁路、机械等组织,以及各研究机构、监督商检、公用事业以及各种工业领域,其石油测量技术居于世界领先地位。  随着普洛帝在中国服务的不断提升,能更好地为客户提供各类服务,并加强本土化运作的能力,普洛帝目前在西安航天城建有研发&生产基地。为中国及东南亚广大客户提供普洛帝精湛的测控技术,解决各类客户的测控难题!  服务领域的优势能力:颗粒计数器、颗粒度计数器,油液颗粒度分析仪,石油仪器,实验室设施
  • 创新应用 | 中红外激光排放控制新应用
    可调谐激光吸收光谱(TDLAS)具有测量不受背景气体干扰、测量准确性好、可靠性高等技术优势,已被公认为工业应用的首选测量技术,特别是其具有非侵入特性,从而在原位应用方面备受关注。随着近年激光吸收谱技术的发展,尤其是量子级联激光器(QCL)、带间级联激光器(ICL)等小型激光器技术不断成熟,激光吸收光谱的输出波段从近红外到中远红外不断拓展。气体检测由传统的工业过程优化控制、废气源排放、燃烧诊断等领域扩展到环境微量气体检测。中红外光一般指波长从2.5um到25um的光谱区域,中红外基频指纹吸收谱具有吸收强、谱线宽且密集的特点。分子在中红外波段的吸收一般比近红外吸收高约2个数量级(或以上),所以在中红外光谱气体探测灵敏度比近红外光谱探测的灵敏度高很多。同时特殊气体,如有机分子、氮氧化物、烯烃类气体在中红外的吸收比近红外特征更强,下图为HITRAN数据库的空气常见气体吸收谱线;中红外基频指纹吸收强有利于痕量气体的高灵敏检测。LGT-3000激光气体分析仪LGT-3000激光气体分析仪是基于TDLAS技术开发的一款原位对穿正压防爆型仪表,可以原位测量O2、CO、CO2、NH3等气体含量。此外,LGT-3000可配置ICL激光模块,采用中红外光谱,达到更低的检测限,并且能检测在近红外没有吸收光谱的一些常见气体SO2、NO、NO2等。产品特点: ◆响应时间低至1s◆双屏显示,方便光路调节观察透过率信息◆正压防爆设计,可以在爆炸性场合1区和2区使用◆采用“单线光谱”技术,测量不受背景气体交叉干扰◆一体化结构方式,无运动部件,可靠性高,稳定性好◆原位测量,无需预处理系统,避免预处理采样吸附、堵塞和器件损坏等问题,降低运行成本应用领域:该系统广泛应用于硫磺回收、烟气脱硝、燃烧控制、合成氨等领域中。
  • 2013年激光行业前景分析
    激光是20世纪60年代发展起来的一门新兴科学。它是一种具有亮度高、方向性好、单色性好等特点的相干光。  激光应用于材料加工,使制造业发生了根本性变化,解决了许多常规方法无法解决的难题。在航天工业中,铝合金用激光焊接的成功被认为是飞机制造业的一次技术大革命。激光加工技术在汽车工业中的使用,实现了汽车从设计到制造的大变化,优化汽车结构,减轻了汽车自重,最终使汽车性能提高,耗油量降低。激光精加工和激光微加工不仅促进了微电子工业的发展,而且为微型机械制造提供了条件。另外,传统加工方法大都为力的传递,因此加工速度受到限制,而激光加工更多地是光的传递,惯性小,柔性大,而且激光能量密度高,加工速度可以很快,激光加工被誉为“未来制造系统共同的加工手段”。总之激光加工技术在世界范围内的迅猛发展正在引起一场新的工业革命,最终使材料加工业从目前的电加工时代过渡到光加工时代。  2012年在全球经济低迷不振的大环境下,激光器制造商在“经济余震”中所经历的不确定性和担忧,在经济大衰退之后的几年内将依然存在。然而从长远销售预期来看,在很多几乎不受地域或者全球性经济衰退影响的领域,激光正在作为一种成熟的、对经济增长发挥重要作用的技术,呈现出上扬态势。尽管预计全球债务危机将会限制2013年的某些资本设备支出,但是激光器有望凭借“能实现制造自动化、提高效率、降低能耗,进而使企业在经济风暴中更具竞争力”的优势脱颖而出。  半导体制造业发展迅速,“绿色”技术无疑具有光明的未来,这就要求有新的激光加工工艺与技术来获得更高的生产品质、成品率和产量。除了激光系统的不断发展,新的加工技术和应用、光束传输与光学系统的改进、激光光束与材料之间相互作用的新研究,都是保持绿色技术革新继续前进所必须的。2013年激光技术在半导体行业将会取得怎样的成绩呢?  半导体市场:黯然神伤  虽然智能电子设备组件的微加工将继续为光纤激光器制造商带来利好势头,但是主要依赖于半导体资本设备采购的激光器制造商,将在2013年遭遇坎坷。  “随着半导体行业从45nm转向20nm甚至更高的节点,需要更多的制造步骤处理更多的层和新材料,这导致资本强度增加。”半导体设备暨材料协会(SEMI)行业研究与统计高级总监DanTracy表示,“2010年和2011年,半导体行业在产能扩充方面实现了坚挺恢复,同时也转向了更加先进的工艺技术。而2012年产能扩张的减少,为半导体行业带来了更多不确定性,一些分析师预计2013年半导体行业的资本支出将出现负增长。”Tracy还补充道,半导体资本设备市场存在着周期性,最近报道的设备数据反映了2012年下半年更加低迷的行业状况。2012年10月的订单出货比为0.75,订单量约比2011年10月下跌20%。  “对于微电子行业来讲,2012年将是一分为二的年头,”相干微电子部门营销总监DavidClark表示,“预计2013年传统消费电子产品,如笔记本电脑、PC、数码相机、硬盘驱动器和电视机将非常不景气,但是平板电脑和智能手机以及相关组件将会以惊人的速度增长。这无疑是个好消息,因为这些移动设备组件很多都是使用相干的激光器制造的,相干的这部分业务将会继续强劲增长。”Clark补充说,“如果基于Windows8的超级本和平板电脑在企业市场获得真正成功,相信这必将刺激2013年IC销售额的限制增长。”  ICInsihts公司也看到了类似趋势,其预计2013年电子设备的销售额将增长5%,2012年的增长率为3%。Clark对更长远的趋势也持乐观态度,他表示,“4G-LTE无线网络建设、互联网流量的持续增长、云计算的采用一级即将向450nm晶圆的迁移,所有这些都将促使未来几年内半导体资本支出方面出现重大投资。”  相干2012年第四财季(截至2012年9月29日)的销售额,从上年同期的2.08亿美元下降到1.89亿美元 与上个季度相比,订单量下降近23%。相比之下,Newport则由于研发市场和工业市场的强劲表现而实现了创纪录的销售额 当然半导体资本支出的疲软也使其受到了一定影响,其第四财季(截至2012年9月29日)微电子业务销售额比上年同期下降了9.7%,降至1.1亿美元。  作为一家主要为半导体行业提供光刻光源的供应商,Cymer公司2012年第三季度(截至2012年9月30号)的总营收约为1.32亿美元,基本与上年同期持平,但低于2012年第二季度1.49亿美元的总营收。2012年10月,Cymer公司被荷兰ASML公司以大约26亿美元的价格收购 2012年第三季度,Cymer出货了27套紫外系统,并向ASML交付了其首款极紫外光源,曝光功率为30W。  Cymer公司和日本Gigaphoton公司是业界领先的极紫外光源制造商,依据摩尔定律,他们会继续享受业务增长。但是研究超短、超高功率激光脉冲(如用于光与物质相互作用研究的极强光设施)的激光器制造商,正在寻求超越摩尔定律。  “早在2007年,来自美国能源部基础能源科学顾问委员会的一份报告就显示,当集成电路制造达到分子级或纳米级的时候,其将远远超越摩尔定律的限制。一个基于纳米芯片的超级计算机,可以舒适地握在掌中,且耗电极低。”CalmarLaser公司营销总监TimEdwards说,“这使得激光产业令人兴奋不已——没有激光发挥举足轻重的作用,分子尺度的未来将无法实现。飞秒光纤激光器制造商始终致力于提升脉冲到脉冲之间的稳定性,以满足眼科、光谱、DNA分析、分子成像、薄膜太阳能电池加工以及计量等应用的苛刻要求,所有这些都提供了广阔的科研激光市场,但是不知为何激光市场并未快速增长。”  随着激光技术的发展,激光技术必将在未来的半导体行业发展中扮演越来越重要的角色。接下来为激光技术在半导体行业的一些应用:  1 激光技术在晶片/芯片加工领域的应用  1.1在划片方面的应用  划片工艺隶属于晶圆加工的封装部分,它不仅仅是芯片封装的关键工艺之一,而是从圆片级的加工(即加工工艺针对整片晶圆,晶圆整片被同时加工)过渡为芯片级加工(即加工工艺针对单个芯片)的地标性工序。从功能上来看,划片工艺通过切割圆片上预留的切割划道(street),将众多的芯片相互分离开,为后续正式的芯片封装做好最后一道准备。  目前业界讨论最多的激光划片技术主要有几种,其主要特征都是由激光直接作用于晶圆切割道的表面,以激光的能量使被作用表面的物质脱离,达到去除和切割的目的。但是这种工艺在工作过程中会产生巨大的能量,并导致对器件本身的热损伤,甚至会产生热崩边(Chipping),被剥离物的沉积(Deposition)等至今难以有效解决的问题。 与很多先行技术不同,传统旋转砂轮式划片机的全球领导厂商东京精密公司和日本著名的激光器生产商滨松光学联合推出了突破传统理念的全新概念的激光划片机MAHOH。其工作原理摒弃了传统的表面直接作用、直接去除的做法 而采取作用于硅基底内的硅晶体,破坏其单晶结构的技术,在硅基底内产生易分离的变形层,然后通过后续的崩片工艺使芯片间相互分离。从而达到了无应力、无崩边、无热损伤、无污染、无水化的切割效果。  1.2在晶片割圆方面的应用  割圆工艺是晶体加工过程中的一个重要组成部分。早期,该技术主要用于水平砷化镓晶片的整形,将水平砷化镓单晶片称为圆片。随着晶体加工各个工序的逐步加工,在各工序将会出现各种类型的废片,将这些废片加工成小直径的晶片,然后再经过一些晶片加工工序的加工,使其变成抛光片。  传统的割圆加工方法有立刀割圆法、掏圆法、喷砂法等。这些方法在加工过程中对晶片造成的损伤较大,出片量相对较少。随着激光加工技术的发展,一些厂家对激光加工技术引入到割圆工序,再加上较为成熟的软件控制,可以在一个晶片上加工出更多的小直径晶片。  2 激光打标技术  激光打标是一种非接触、无污染、无磨损的新标记工艺。近年来,随着激光器的可靠性和实用性的提高,加上计算机技术的迅速发展和光学器件的改进,促进了激光打标技术的发展。  激光打标是利用高能量密度的激光束对目标作用,使目标表面发生物理或化学的变化,从而获得可见图案的标记方式。高能量的激光束聚焦在材料表面上,使材料迅速汽化,形成凹坑。随着激光束在材料表面有规律地移动同时控制激光的开断,激光束也就在材料表面加工成了一个指定的图案。激光打标与传统的标记工艺相比有明显的优点:  (a)标记速度快,字迹清晰、永久   (b)非接触式加工,污染小,无磨损   (c)操作方便,防伪功能强   (d)可以做到高速自动化运行,生产成本低。  在晶片加工过程中,在晶片的特定位置制作激光标识码,可有效增强晶片的可追溯性,同时也为生产管理提供了一定的方便。目前,在晶片上制作激光标识码是成为一种潜在的行业标准,广泛地应用于硅材料、锗材料。  3 激光测试技术  3.1激光三角测量术  微凸点晶圆的出现使测量和检测技术面临着巨大的挑战,对该技术的最基本要求是任一可行的检测技术必须能达到测量微凸点特征尺寸所需的分辨率和灵敏度。在50μm节距上制作25μm凸点的芯片技术,目前正在开发中,更小凸点直径和更节距的技术也在发展中。另外,当单个芯片上凸点数量超过10000个时,晶圆检测系统必须有能力来处理凸点数迅速增加的芯片和晶圆。分析软件和计算机硬件必须拥有足够高的性能来存储和处理每个晶圆上所存在的数百万个凸点的位置和形貌数据。  在激光三角检测术中,用一精细聚焦的激光束来扫描圆片表面,光学系统将反射的激光聚焦到探测器。采用3D激光三角检测术来检测微凸点的形貌时,在精度、速度和可检测性等方面,它具有明显的优势。  3.2颗粒测试  颗料控制是晶片加工过程、器件制造过程中重要的一个环节,而颗粒的监测也就显得至关重要。颗粒测试设备的工作原理有两种,一种为光散射法 另一种为消光法。  对于悬浮于气体中的颗粒,通常采用光散射法进行测试,同时某些厂家利用这种工作原理生产了测试晶片表面颗粒的设备 而对于液体中的颗粒,这两种方法均适用。  4 激光脉冲退火(LSA)技术  该技术通过一长波激光器产生的微细激光束扫描硅片表面,在一微秒甚至更短的作用时问内产生~个小尺寸的局域热点。由于只有上表面的薄层被加热,硅片的整体依然保持低温,使得此表面层的降温速率几乎和它的升温速率一样快。从固体可溶性的角度考虑,高峰值温度能够激活更多的掺杂原子,此外正如65nm及以下工艺所求的那样,较短的作用时间可以使掺杂原子的扩散降到最低。退火处理的作用范围可以限制在硅片上的特定区域而不会影响到周围部位。  该技术已经应用于多晶硅栅极的退火,在减少多晶硅的耗尽效应方面取得了显著的效果。K.Adachi等将闪光灯退火和激光脉冲退火处理的MOS管的Ion/Ioff进行了比较,在pMOS-FET和nMOSFET中,采用激光脉冲退火处理的器件的漏极电流要大10%,器件性能的增强可以直接归因于栅电极耗尽效应的改善和寄生电阻的减小。
  • Quantum Design中国引进高性能激光浮区法单晶生长系统
    浮区法单晶生长技术在晶体生长过程中具有无需坩埚、样品腔压力可控、生长状态便于实时观察等诸多优点,目前已被公认为是获取高质量、大尺寸单晶的重要手段之一。激光浮区法单晶生长系统可广泛用于凝聚态物理、化学、半导体、光学等多种学科领域相关单晶材料制备,尤其适合高饱和蒸汽压、高熔点材料及高热导率材料等常规浮区法单晶炉难以胜任的单晶生长工作。Quantum Design中国引进的高性能激光浮区法单晶生长系统,传承了日本理化研究所(RIKEN,CEMS)的先进设计理念,具有更高功率、更加均匀的能量分布和更加稳定的性能。 图1:RIKEN(CEMS)设计的五束激光发生器原型机实物图2:RIKEN(CEMS)设计的同源五束激光发生器原型机原理图 与传统的激光浮区法单晶生长系统相比,新一代激光浮区法单晶炉系统具有四项技术优势:● 采用技术五束激光设计,确保熔区能量分布更加均匀;(号:JP2015-58640)● 更加科学的激光光斑优化方案,有助于降低晶体生长过程中的热应力;(号:JP2017-136640, JP2017-179573 )● 采用了特的实时温度集成控制系统。(号:JP2015-78683 ) 采用新一代激光浮区法单晶炉系统生长出的部分单晶体:(图片由 Dr. Y. Kaneko (RIKEN CEMS) 提供)Sr2RuO4Ba2Co2Fe12O22SmB6Y3Fe5O12 新一代激光浮区法单晶炉系统主要技术参数:加热控制激光束源5束同源设计激光功率2KW熔区可实现高温:~3000℃*测温范围900℃~3500℃温度稳定性+/-1℃晶体生长控制晶体生长大设计长度150mm*晶体生长大设计直径8mm*晶体生长大速度/转速200mm/hr 40rpm样品腔真空度/压力10-4torr to 10 bar样品腔气氛O2/Ar/混合气晶体生长监控高清摄像头晶体生长控制PC控制其它占地面积D140 xW210 x H200 (cm)除此之外,Quantum Design还推出了多款光学浮区法单晶炉以满足不同的单晶生长需求。高温光学浮区法单晶炉:采用镀金双面镜以避免四镜加热带来的多温区点、高反射曲面设计,高温度可达2100-2200摄氏度,高效冷却节能设计不需要额外冷却系统,稳定的电源输出保证了灯丝的恒定加热功率。适用于生长高温超导体、介电和磁性材料、金属间化合物、半导体/光子晶体/宝石等。德国SciDre公司的高温高压光学浮区炉:能够提供2200–3000℃以上的生长温度,晶体生长腔可大压力可达300Bar,甚以及10-5mBar的高真空。适用于生长各种超导材料单晶,介电和磁性材料单晶,氧化物及金属间化合物单晶等。Quantum Design中国期望能够给予浮区法晶体生长技术的科研学者更多的支持与帮助!
  • 最亮手持激光器在美问世 亮度为阳光八千倍
    Wicked公司研制的S3氪激光器,射程可达到85英里。  S3氪激光的亮度可达到阳光的8000倍。  北京时间9月8日消息,从CD到DVD,激光技术的触角已经延伸到地球的每一个角落。科学家研制的激光器中绝大多数能量很小,与科幻作品中可怕的太空激光武器相差十万八千里。在研制激光器的道路上,美国Wicked激光公司又向前迈出一步,他们研制的S3氪激光器射程可达到85英里(约合136公里),可以穿过房间点燃纸张,能够从地球大气层锁定地面上的物体。  S3氪激光的亮度达到阳光的8000倍,是世界上亮度最高的手持激光器。目前,吉尼斯世界纪录组织正对这一激光器进行评估。Wicked公司表示:“建议用户佩戴护目镜。”S3氪激光器的售价为299美元,涵盖一副护目镜的价格。在人类肉眼看来,绿色激光的亮度是蓝色激光的20倍,S3氪激光器便是绿色激光,拥有惊人的射程。它的能量很高,能够在远距离点燃纸张和火柴。由于内置微处理器,S3氪激光器不会出现温度过高情况。  Wicked公司为S3氪激光器采用了一系列安全举措,例如使用密码以防止滥用激光器。此外,他们还警告用户,不要将激光对准车辆、飞行员、动物、人或者卫星。这款激光器能够进入“战术休眠”模式,允许激光器立即冷启动。  由于任何非人造物体都无法从距地面85英里的高度照射到地球——除非科幻影片中入侵地球的外星人——人们不免对S3氪激光器的用途产生好奇。Wicked公司CEO史蒂夫-刘表示:“如果这款激光器安装在一个稳定的支架(我们并不卖这种支架)上并与卫星同步,宇航员能够看到微弱的绿光。这种实验需要获得政府航天机构的批准。我们的绝大多数职业消费者将这种激光器用于军队、工业界和科学研究。一些业余爱好者将其视为一个奇异的玩具,探索它的用途。作为公司的一项政策,我们并不列出激光器的具体用途,同时建议专业人员使用我们的产品并对自己的行为负责。”  WickedLasers.co.uk等网站计划将这种危险的装置进口到英国。2010年,一名青少年被自己从网上购买的绿色激光器严重灼伤眼睛,这起事故发生后,英国健康保护署发出警告,提醒公众不要购买大功率激光器。目前,英国已经有超过12个人因将大功率激光指示器对准飞行员、司机和足球运动员被送进监狱。
  • 新一代高功率激光浮区法单晶炉助力哈尔滨工业大学 极端材料晶体生长实验及相关研究
    Quantum Design公司近期推出了激光浮区法单晶生长系统,该系统传承日本理化研究所(RIKEN,CEMS)的先进设计理念,具有更高功率、更均匀的能量分布和更加稳定的性能,其优越的技术性能将助力同行学者和专家的晶体生长工作!浮区法单晶生长技术因其在晶体生长过程中具有无需坩埚、样品腔压力可控、生长状态便于实时观察等诸多优点,目前已被公认为是获取高质量、大尺寸单晶的重要手段之一。激光浮区法单晶生长系统可广泛应用于凝聚态物理、化学、半导体、光学等多种学科领域相关单晶材料制备,尤其适合端材料(诸如:高饱和蒸汽压、高熔点材料及高热导率材料等),以及常规浮区法单晶炉难以胜任的单晶生长工作!跟传统的激光浮区法单晶生长系统相比,Quantum Design公司推出的新一代激光浮区法单晶炉系统具有以下技术优势:■ 功率更高,能量密度更大,加热效率更高■ 采用技术五路激光设计,确保熔区能量分布更加均匀■ 更加科学的激光光斑优化方案,有助于降低晶体生长过程中的热应力■ 采用了特的实时温度集成控制系统新一代激光浮区法单晶炉系统主要技术参数:加热控制激光束 5束激光功率 2KW熔区高温 ~3000℃*测温范围 900℃~3500℃温度稳定性 +/-1℃晶体生长控制大位移距离 150mm*晶体生长大直径 8mm*晶体生长大速度/转速 300 mm/hour 100rpm晶体生长监控 高清摄像头晶体生长控制 PC控制其它 占地面积 D140 xW210 x H200 (cm)* 具体取决于材料及实验条件哈尔滨工业大学科学工程专项建设指挥部暨空间基础科学研究中心致力于各种高熔点、易挥发的超导、磁性、铁电、热电等材料的单晶生长实验及相关物性研究,近日,我司再次同院校哈尔滨工业大学合作,顺利完成新一代高功率激光浮区法单晶炉设备采购订单,推动单晶生长工作迈向更高的台阶,我们也将一如既往,秉承精益求精的研发、设计和加工理念,为用户提供优质的技术和服务,助力用户科研事业更上一层楼!RIKEN(CEMS)设计的五束激光发生器原型机实物图 采用新一代激光浮区法单晶炉系统生长出的部分单晶体应用案例: Sr2RuO4 SmB6 Ba2Co2Fe12O22Y3Fe5O12 * 以上单晶图片由 Dr. Y. Kaneko (RIKEN CEMS) 提供
  • 上海光机所合成孔径激光成像雷达技术研究取得突破性进展
    中科院上海光机所空间激光通信及检验技术重点实验室在重大项目的支持下,自2008年开始合成孔径激光成像雷达技术的研究,目前已经取得阶段性突破进展。已实现实验室尺度缩小合成孔径激光成像雷达装置的二维目标的同时距离向和方位向的成像,实现了合成孔径激光雷达的光学、光电子学和计算机处理的全过程贯通。这是世界上第三个成功的实验报道。合成孔径激光成像雷达(也称光学SAR)是在远距离达到厘米量级成像分辨率的唯一光学手段,在空间领域有着重大应用前景。其特点包括:1. 激光主动成像,适合全天时使用,具有接近光学可见成像的高视觉性,成像速度快;2. 雷达应用范围广泛,适合于空间对地超分辨率观察,空间远程活动目标超分辨率成像等应用。美国已于2002年取得了合成孔径激光成像雷达的核心关键技术突破,实现了实验室尺度缩小装置的合成孔径激光二维成像,并在此基础上,2006年,由雷声公司和诺格公司分别研制成功机载合成孔径激光成像雷达样机,进行了多种野外试验,目前已向应用拓展。与美国实验采用的光纤光学结构不同,上海光机所实验系统采用了空间光学结构,虽然增加了实验难度,但将更具有实用化前景。同时,由于光学合成孔径成像雷达与微波合成孔径雷达在实施方法上的根本不同,无法直接移植微波雷达的概念和原理,这也使得光学合成孔径成像雷达的研究具有很高的挑战性。上海光机所空间激光通信及检验技术重点实验室在研究过程中,创造性地提出并解决了一系列的空间域光学科学问题,时间域光学科学问题和统计光学科学问题,也相应系统性地发展了总体设计、光学天线、接收/发射光电子系统和图像处理等关键技术,为实现实验室尺度缩小合成孔径激光成像雷达,以及未来的样机装置奠定了坚实基础。本项目成果目前在国内起着引领作用,项目的基础研究成果特别是空间域光学问题上的研究具有高度创新性,填补了国际研究的空白,并迅速得到了国际同行的肯定。
  • HT8600大气甲烷激光开路分析仪,助力中国甲烷排放控制新征程
    近年来,随着全球气候变化问题的加剧,甲烷排放成为引起广泛关注的环境挑战之一。在应对这一问题的过程中,《甲烷排放控制行动方案》应运而生,为我国在甲烷排放控制方面制定了明确的战略和计划。甲烷排放形势严峻 甲烷,作为全球第二大温室气体,具有增温潜势高、寿命短的特点,对全球变暖贡献率达25%,其贡献仅次于二氧化碳,与CO2相比,甲烷吸附热量能力更强,20年内的全球增温潜势(GWP)相当于CO2的84倍,100年内的GWP100为CO2的28倍,已成为全球气候变化不可忽视的因素。 国际能源署(IEA)数据显示,2022年全球和我国甲烷排放量分别为35580.13万吨、5567.61万吨,我国甲烷排放量占全球比重为15.65%。我国虽然在甲烷资源化利用方面取得一定成效,但在统计监测基础、法规标准体系和技术管理能力等方面仍然面临一系列挑战。 甲烷排放控制不仅关系到气候效益,还涉及到能源资源化利用、环境保护和生产安全等多个方面的问题。政策解读《甲烷排放控制行动方案》的出台旨在通过全面、有序的措施,提升我国在甲烷排放统计核算、监测监管等基础能力,积极参与全球气候变化治理。亮点解读:1) 指导思想明确:以新时代中国特色社会主义思想为指导,贯彻生态文明思想,坚持减排与发展、安全的统一,引导经济社会全面绿色转型。2) 工作原则清晰:统筹协调、夯实基础、分类施策、稳妥有序、防范风险,形成了科学而灵活的工作原则,旨在多方面推动甲烷排放控制工作。3) 主要目标明确:在“十四五”和“十五五”期间,逐步建立政策、技术、标准体系,提升相关基础能力,实现甲烷资源化利用和排放控制的积极进展。4) 重点任务突出:加强监测、核算、报告和核查体系建设,推进能源、农业、垃圾和污水处理领域的甲烷排放控制,强化污染物与甲烷协同治理。5) 技术创新和监管加强:鼓励技术创新,推进关键技术的研发与应用,加强对甲烷排放控制的监管,提高数据质量。海尔欣助力中国甲烷排放控制新征程 在这一重要的甲烷排放控制行动中,宁波海尔欣光电科技有限公司旗下“昕甬智测”国产创新品牌HT8600大气甲烷激光开路分析仪,专门用于实时监测大气中甲烷气体的浓度,为环境监测和空气质量管理提供可靠数据支持。 仪器采用量子级联激光技术,应用两面暴露在大气中的高反射率镜面对中红外激光进行多次反射,有效光程达数十米,测量目标气体对特征吸收峰处中红外激光能量的微弱吸收,通过对吸收峰光谱曲线的实时积分进行痕量气体的浓度反演。开放式光腔,避免闭路仪器管道吸附问题造成的延迟,实现10Hz无损高频浓度输出,使检测更灵敏、响应更快速。 海尔欣自2004年创立以来,致力于量子级联激光技术的多领域应用,践行“光谱技术助力零碳地球”的企业使命,履行社会责任,在大气污染防治和温室气体减排方面,公司一直发挥着积极作用。我们认识到控制甲烷排放对于可持续发展的关键性,在产品研发中注重可持续性,努力通过技术手段推动企业、行业的绿色发展。HT8600的产品设计、生产和售后服务等环节都考虑到了对环境的影响,致力于为客户提供更环保、更高效的解决方案。结语总的来说,《甲烷排放控制行动方案》的制定标志着我国在应对气候变化、加强环境保护方面迈出了坚实的步伐。HT8600大气甲烷激光开路分析仪将发挥其独特的优势,帮助各行业准确获取甲烷排放数据,为实现监测、核算和报告等任务提供强有力的技术支持,为我国在全球环境治理中发挥更为积极的作用。
  • 赛成发布触摸屏偏光应力仪新品
    一、触摸屏偏光应力仪产品简介YLY-H偏光应力仪(玻璃制品应力检查仪)是应用偏振光干涉原理检查玻璃的内应力或晶体双折射效应的仪器。执行 YYB003320O2、 YBBO○ 162003标 准。由于仪器备有灵敏色片,并应用1/4波片补偿方法,因此本仪器不仅可以根据偏振场中的干涉色序,定性或半定量的测量玻璃的内应力,还可以准确定量的测量出玻璃内应力的等级。本仪器适含光学仪器厂、玻璃制晶厂、 实验室作测量光学玻璃、 玻璃制晶及其它光学材料的应力值,二、触摸屏偏光应力仪产品特点l 定性、 定量两种试验模式, 试验空间可调,适用范围广l 仪器可存储200组数据,每组数据 50个测量值l 采用高精度jue对式角度编码器进行测量,测量精度优于2.0nml 触摸屏显示,可同时显示测量角度及光程差数值,用户可直观获得所需数据,使测量直观易读。l 暗视场无需校准,采用了jue对式编码器,偏振场的暗视场总是处于零角度点,因此无需用户校对零点,避免了人为校对暗视场造成的误差。l 绿色节能,采用了更加节能环保的LED光源,相对传统光源节能80%以上。l 配备微型打印机,方便打印输出试验数据l 配备USB接口,可接PC软件控制仪器运行l 自动保存历史试验记录,本地查询,并可导出至电脑端EXCEL格式保存l 触屏端操作用户三级权限设置,完全满足GMP权限认证l 测试记录审计、追踪功能l 试验结果同步上传至云端服务器保存,在世界各地,有网络就可浏览。l 本地数据与云端数据双重备份,确保数据不会丢失三、技术指标项目特点仪器示值0.1毫微米测量精度2毫微米偏振场直径150亳米捡偏振片旋转角度-180 ~+180度数据保存200组每组数据50个测量值光场边沿亮度120cd/m2可调测量距离范围280mm外形尺寸220mm(L)×350mm(B)×580mm(H)净重12Kg电源AC 220V 50Hz使用环境温度10—40 oC创新点:YLY-H偏光应力仪(玻璃制品应力检查仪)是应用偏振光干涉原理检查玻璃的内应力或晶体双折射效应的仪器。执行 YYB003320O2、 YBBO○ 162003标 准。由于仪器备有灵敏色片,并应用1/4波片补偿方法,因此本仪器不仅可以根据偏振场中的干涉色序,定性或半定量的测量玻璃的内应力,还可以准确定量的测量出玻璃内应力的等级。本仪器适含光学仪器厂、玻璃制晶厂、 实验室作测量光学玻璃、 玻璃制晶及其它光学材料的应力值,
  • 华中科技大学290.00万元采购激光拉曼光谱
    基本信息 关键内容: 激光拉曼光谱 开标时间: 2022-02-08 14:30 采购金额: 290.00万元 采购单位: 华中科技大学 采购联系人: 李老师 采购联系方式: 立即查看 招标代理机构: 湖北国华项目管理咨询有限公司 代理联系人: 张琳林 代理联系方式: 立即查看 详细信息 华中科技大学采购高分辨显微共焦激光拉曼光谱仪项目(二次)公开招标公告 湖北省-武汉市-武昌区 状态:公告 更新时间: 2022-01-14 招标文件: 附件1 华中科技大学采购高分辨显微共焦激光拉曼光谱仪项目(二次)公开招标公告 2022年01月14日 15:31 公告信息: 采购项目名称 华中科技大学采购高分辨显微共焦激光拉曼光谱仪项目 品目 货物/通用设备/仪器仪表/光学仪器/光学测试仪器 采购单位 华中科技大学 行政区域 湖北省 公告时间 2022年01月14日 15:31 获取招标文件时间 2022年01月14日至2022年01月21日每日上午:8:30 至 12:00 下午:14:00 至 17:00(北京时间,法定节假日除外) 招标文件售价 ¥500 获取招标文件的地点 阳光招采电子招标投标交易平台(http://www.yangguangzhaocai.com/) 开标时间 2022年02月08日 14:30 开标地点 武汉市武昌区中北路109号中铁1818中心10楼湖北国华项目管理咨询有限公司3号会议室 预算金额 ¥290.000000万元(人民币) 联系人及联系方式: 项目联系人 张琳林、汪树新、王刚 项目联系电话 027-87326513 采购单位 华中科技大学 采购单位地址 湖北省武汉市洪山区珞喻路1037号 采购单位联系方式 李老师027-87540659邮箱:hustcgzx@hust.edu.cn 代理机构名称 湖北国华项目管理咨询有限公司 代理机构地址 武汉市武昌区中北路109号中铁1818中心10楼 代理机构联系方式 张琳林、汪树新、王刚027-87326513邮箱:1451502801@qq.com 附件: 附件1 项目概况 华中科技大学采购高分辨显微共焦激光拉曼光谱仪项目 招标项目的潜在投标人应在阳光招采电子招标投标交易平台(http://www.yangguangzhaocai.com/)获取招标文件,并于2022年02月08日 14点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:HW20210448、ZB0101-2111-ZCHW1357 项目名称:华中科技大学采购高分辨显微共焦激光拉曼光谱仪项目 预算金额:290.0000000 万元(人民币) 最高限价(如有):290.0000000 万元(人民币) 采购需求: 华中科技大学光学与电子信息学院拟采购1台高分辨显微共焦激光拉曼光谱仪。该设备可以通过测量半导体材料的拉曼和光致发光(PL)谱获得材料成分组成及各成分属性的重要信息,如:材料浓度分布、分子结构、物相、材料应力/张力分布、结晶度和相分布、刻蚀芯片结构成像、带隙分析等,还可以在高低温环境下实现二维半导体的二次或多次谐波及成像。采购清单如下,具体要求详见招标文件第三章项目技术、服务及商务要求。 序号 货物名称 单位 数量 简要技术要求 是否接受进口产品 1 高分辨显微共焦激光拉曼光谱仪 台 1 光谱仪焦长: 760mm;光谱仪耦合:采用自由空间耦合,非光纤耦合。光谱分辨率:可见全谱段 0.7cm-1(测量585nm氖灯线,针孔 30微米,采用 1800刻线光栅) 是 合同履行期限:交货期:自合同签订之日起计算6个月内完成供货、安装、调试并验收合格。质保期:自验收合格之日起1年。交付/建设地点:老光电国家实验室E1区。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 本项目不属于专门面向中小企业采购的项目,投标人依法享受政府采购强制、优先采购节能产品政策;政府采购优先采购环保产品政策;政府采购促进中小企业发展(监狱企业、残疾人福利性单位视同小微企业)等政策。(本项目中小企业划型标准为 工业 ) 3.本项目的特定资格要求:(1)投标人未被列入“信用中国”网站(www.creditchina.gov.cn)失信被执行人、重大税收违法案件当事人,和“中国政府采购”网站(www.ccgp.gov.cn)政府采购严重违法失信行为记录名单。(以评审现场查询结果为准)(2)单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动。(3)除单一来源采购项目外,为采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加该采购项目的其他采购活动。 三、获取招标文件 时间:2022年01月14日 至 2022年01月21日,每天上午8:30至12:00,下午14:00至17:00。(北京时间,法定节假日除外) 地点:阳光招采电子招标投标交易平台(http://www.yangguangzhaocai.com/) 方式:1.凡有意参加的投标人,请先在阳光招采电子招标投标交易平台(http://www.yangguangzhaocai.com/)快捷登录“企业控制台”处进行免费注册;2.完成注册并提交审核通过后,请于2022年1月14日至2022年1月21日17:00时止(北京时间),登录阳光招采电子招标投标交易平台“投标人”处,在“政府采购”版块付费下载招标文件。招标文件500元/份,未按规定获取招标文件的,其投标文件将被否决;3.操作指南:http://www.yangguangzhaocai.com/sv_complex.aspx?Fid=n8:8:8;4.注册及文件下载、使用投标文件编制系统客户端编制投标文件遇到的技术问题、递交投标文件遇到的问题等技术问题咨询电话010-86392341(工作日:08:30-19:30 节假日:09:30-18:00);5.注册进度查询、密码修改问题咨询电话:027-87272708;6.CA办理咨询电话:027-87272733;7.对本项目的具体业务问题,请向采购代理机构项目经理进行咨询;注:本项目无需办理CA,注册阳光招采电子招标投标交易平台时留下的联系人电话务必保持畅通,以便接收来自系统的关于本项目的相关补充或变更公告短信。若因接受短信不及时,导致投标受影响,其后果自行承担。 售价:¥500.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年02月08日 14点30分(北京时间) 开标时间:2022年02月08日 14点30分(北京时间) 地点:武汉市武昌区中北路109号中铁1818中心10楼湖北国华项目管理咨询有限公司3号会议室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.递交方式为以下2种方式,投标人可二选一 方式一:现场递交 2022年2月8日13时30分开始接收投标文件,拒收逾期送达或者未密封的投标文件。 方式二:邮寄 投标人应在投标文件截止时间前邮寄(仅限顺丰)密封的纸质版投标文件。投标文件单件不得超过20KG,且须注明 张琳林本人签收 ,递交时间以顺丰系统签收时间为准,投标人务必在显示 已签收 后,与张琳林电话确认。拒收逾期送达或者未密封的投标文件。 收件地址及信息:武汉市武昌区中北路109号中铁1818中心10楼湖北国华项目管理咨询有限公司3号会议室,张琳林收(027-87326513)。 2.发布公告的媒介。 2.1中国政府采购网() 2.2华中科技大学采购与招标中心网(http://cgzx.hust.edu.cn) 2.3湖北国华项目管理咨询有限公司网站() 3.质疑:投标人认为招标文件、招标过程和中标结果使自己的权益受到损害的,可以在知道或者应知其权益受到损害之日起7个工作日内,向湖北国华项目管理咨询有限公司提出质疑。 4.其他详见公告附件。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:华中科技大学 地址:湖北省武汉市洪山区珞喻路1037号 联系方式:李老师027-87540659邮箱:hustcgzx@hust.edu.cn 2.采购代理机构信息 名 称:湖北国华项目管理咨询有限公司 地 址:武汉市武昌区中北路109号中铁1818中心10楼 联系方式:张琳林、汪树新、王刚027-87326513邮箱:1451502801@qq.com 3.项目联系方式 项目联系人:张琳林、汪树新、王刚 电 话: 027-87326513 × 扫码打开掌上仪信通App 查看联系方式 基本信息 关键内容:激光拉曼光谱 开标时间:2022-02-08 14:30 预算金额:290.00万元 采购单位:华中科技大学 采购联系人:点击查看 采购联系方式:点击查看 招标代理机构:湖北国华项目管理咨询有限公司 代理联系人:点击查看 代理联系方式:点击查看 详细信息 华中科技大学采购高分辨显微共焦激光拉曼光谱仪项目(二次)公开招标公告 湖北省-武汉市-武昌区 状态:公告 更新时间: 2022-01-14 招标文件: 附件1 华中科技大学采购高分辨显微共焦激光拉曼光谱仪项目(二次)公开招标公告 2022年01月14日 15:31 公告信息: 采购项目名称 华中科技大学采购高分辨显微共焦激光拉曼光谱仪项目 品目 货物/通用设备/仪器仪表/光学仪器/光学测试仪器 采购单位 华中科技大学 行政区域 湖北省 公告时间 2022年01月14日 15:31 获取招标文件时间 2022年01月14日至2022年01月21日每日上午:8:30 至 12:00 下午:14:00 至 17:00(北京时间,法定节假日除外) 招标文件售价 ¥500 获取招标文件的地点 阳光招采电子招标投标交易平台(http://www.yangguangzhaocai.com/) 开标时间 2022年02月08日 14:30 开标地点 武汉市武昌区中北路109号中铁1818中心10楼湖北国华项目管理咨询有限公司3号会议室 预算金额 ¥290.000000万元(人民币) 联系人及联系方式: 项目联系人 张琳林、汪树新、王刚 项目联系电话 027-87326513 采购单位 华中科技大学 采购单位地址 湖北省武汉市洪山区珞喻路1037号 采购单位联系方式 李老师027-87540659邮箱:hustcgzx@hust.edu.cn 代理机构名称 湖北国华项目管理咨询有限公司 代理机构地址 武汉市武昌区中北路109号中铁1818中心10楼 代理机构联系方式 张琳林、汪树新、王刚027-87326513邮箱:1451502801@qq.com 附件: 附件1 项目概况 华中科技大学采购高分辨显微共焦激光拉曼光谱仪项目 招标项目的潜在投标人应在阳光招采电子招标投标交易平台(http://www.yangguangzhaocai.com/)获取招标文件,并于2022年02月08日 14点30分(北京时间)前递交投标文件。 一、项目基本情况 项目编号:HW20210448、ZB0101-2111-ZCHW1357 项目名称:华中科技大学采购高分辨显微共焦激光拉曼光谱仪项目 预算金额:290.0000000 万元(人民币) 最高限价(如有):290.0000000 万元(人民币) 采购需求: 华中科技大学光学与电子信息学院拟采购1台高分辨显微共焦激光拉曼光谱仪。该设备可以通过测量半导体材料的拉曼和光致发光(PL)谱获得材料成分组成及各成分属性的重要信息,如:材料浓度分布、分子结构、物相、材料应力/张力分布、结晶度和相分布、刻蚀芯片结构成像、带隙分析等,还可以在高低温环境下实现二维半导体的二次或多次谐波及成像。采购清单如下,具体要求详见招标文件第三章项目技术、服务及商务要求。 序号 货物名称 单位 数量 简要技术要求 是否接受进口产品 1 高分辨显微共焦激光拉曼光谱仪 台 1 光谱仪焦长: 760mm;光谱仪耦合:采用自由空间耦合,非光纤耦合。光谱分辨率:可见全谱段 0.7cm-1(测量585nm氖灯线,针孔 30微米,采用 1800刻线光栅) 是 合同履行期限:交货期:自合同签订之日起计算6个月内完成供货、安装、调试并验收合格。质保期:自验收合格之日起1年。交付/建设地点:老光电国家实验室E1区。 本项目( 不接受 )联合体投标。 二、申请人的资格要求: 1.满足《中华人民共和国政府采购法》第二十二条规定; 2.落实政府采购政策需满足的资格要求: 本项目不属于专门面向中小企业采购的项目,投标人依法享受政府采购强制、优先采购节能产品政策;政府采购优先采购环保产品政策;政府采购促进中小企业发展(监狱企业、残疾人福利性单位视同小微企业)等政策。(本项目中小企业划型标准为 工业 ) 3.本项目的特定资格要求:(1)投标人未被列入“信用中国”网站(www.creditchina.gov.cn)失信被执行人、重大税收违法案件当事人,和“中国政府采购”网站(www.ccgp.gov.cn)政府采购严重违法失信行为记录名单。(以评审现场查询结果为准)(2)单位负责人为同一人或者存在直接控股、管理关系的不同供应商,不得参加同一合同项下的政府采购活动。(3)除单一来源采购项目外,为采购项目提供整体设计、规范编制或者项目管理、监理、检测等服务的供应商,不得再参加该采购项目的其他采购活动。 三、获取招标文件 时间:2022年01月14日 至 2022年01月21日,每天上午8:30至12:00,下午14:00至17:00。(北京时间,法定节假日除外) 地点:阳光招采电子招标投标交易平台(http://www.yangguangzhaocai.com/) 方式:1.凡有意参加的投标人,请先在阳光招采电子招标投标交易平台(http://www.yangguangzhaocai.com/)快捷登录“企业控制台”处进行免费注册;2.完成注册并提交审核通过后,请于2022年1月14日至2022年1月21日17:00时止(北京时间),登录阳光招采电子招标投标交易平台“投标人”处,在“政府采购”版块付费下载招标文件。招标文件500元/份,未按规定获取招标文件的,其投标文件将被否决;3.操作指南:http://www.yangguangzhaocai.com/sv_complex.aspx?Fid=n8:8:8;4.注册及文件下载、使用投标文件编制系统客户端编制投标文件遇到的技术问题、递交投标文件遇到的问题等技术问题咨询电话010-86392341(工作日:08:30-19:30 节假日:09:30-18:00);5.注册进度查询、密码修改问题咨询电话:027-87272708;6.CA办理咨询电话:027-87272733;7.对本项目的具体业务问题,请向采购代理机构项目经理进行咨询;注:本项目无需办理CA,注册阳光招采电子招标投标交易平台时留下的联系人电话务必保持畅通,以便接收来自系统的关于本项目的相关补充或变更公告短信。若因接受短信不及时,导致投标受影响,其后果自行承担。 售价:¥500.0 元,本公告包含的招标文件售价总和 四、提交投标文件截止时间、开标时间和地点 提交投标文件截止时间:2022年02月08日 14点30分(北京时间) 开标时间:2022年02月08日 14点30分(北京时间) 地点:武汉市武昌区中北路109号中铁1818中心10楼湖北国华项目管理咨询有限公司3号会议室 五、公告期限 自本公告发布之日起5个工作日。 六、其他补充事宜 1.递交方式为以下2种方式,投标人可二选一 方式一:现场递交 2022年2月8日13时30分开始接收投标文件,拒收逾期送达或者未密封的投标文件。 方式二:邮寄 投标人应在投标文件截止时间前邮寄(仅限顺丰)密封的纸质版投标文件。投标文件单件不得超过20KG,且须注明 张琳林本人签收 ,递交时间以顺丰系统签收时间为准,投标人务必在显示 已签收 后,与张琳林电话确认。拒收逾期送达或者未密封的投标文件。 收件地址及信息:武汉市武昌区中北路109号中铁1818中心10楼湖北国华项目管理咨询有限公司3号会议室,张琳林收(027-87326513)。 2.发布公告的媒介。 2.1中国政府采购网() 2.2华中科技大学采购与招标中心网(http://cgzx.hust.edu.cn) 2.3湖北国华项目管理咨询有限公司网站() 3.质疑:投标人认为招标文件、招标过程和中标结果使自己的权益受到损害的,可以在知道或者应知其权益受到损害之日起7个工作日内,向湖北国华项目管理咨询有限公司提出质疑。 4.其他详见公告附件。 七、对本次招标提出询问,请按以下方式联系。 1.采购人信息 名 称:华中科技大学 地址:湖北省武汉市洪山区珞喻路1037号 联系方式:李老师027-87540659邮箱:hustcgzx@hust.edu.cn 2.采购代理机构信息 名 称:湖北国华项目管理咨询有限公司 地 址:武汉市武昌区中北路109号中铁1818中心10楼 联系方式:张琳林、汪树新、王刚027-87326513邮箱:1451502801@qq.com 3.项目联系方式 项目联系人:张琳林、汪树新、王刚 电 话: 027-87326513
  • “增材制造与激光制造”重点专项2022年度项目申报指南
    近日,科学技术部发布“增材制造与激光制造”重点专项2022年度项目申报指南。本重点专项总体目标是:到 2025 年,使我国增材制造与激光制造成为主流制造技术之一,总体达到世界一流,基本实现全球领先,在战略新兴产业、新基建、大国重器中发挥不可替代的重大作用。同时,基本实现增材制造与激光制造全产业链主体自主可控,形成系列长板技术和一批颠覆性技术,并汇集为行业整体优势,为一批领军企业奠基强大的国际技术竞争力,高端装备/ 产品大批进入国际市场,实现大规模产业化应用,在制造业转型升级中发挥核心作用。2022 年度指南部署坚持问题导向、分步实施、重点突出的原则,围绕“基础理论和前沿技术、核心功能部件、关键技术与装备、典型应用示范”全链条部署任务。拟启动 28 项指南任务, 拟安排国拨经费 3.58 亿元。其中,围绕难熔金属材料增材制造、 超快激光制造中光子—电子—晶格相互作用观测与调控等技术方向,拟部署 2 个青年科学家项目,拟安排国拨经费 400 万元,每个项目 200 万元。围绕个性化医疗器械制造、医疗植入物表面微功能结构制造等技术方向,拟部署 5 个科技型中小企业技术创新应用示范项目,拟安排国拨经费 1000 万元,每个项目 200 万元。 共性关键技术类项目,配套经费与国拨经费比例不低于 1.5:1。应用示范类项目鼓励产学研用紧密结合,充分发挥地方和市场作用, 配套经费与国拨经费比例不低于 2:1。项目统一按指南二级标题(如 1.1)的研究方向申报。除特殊 说明外,每个方向拟支持项目数为 1—2 项,实施周期不超过 5 年。申报项目的研究内容必须涵盖二级标题下指南所列的全部研究内容和考核指标。基础研究类项目下设课题不超过 4 个,项目参与单位总数不超过 6 家;共性关键技术类和应用示范类项目下设课题数不超过 5 个,项目参与单位总数不超过 10 家。项目设 1 名项目负责人,项目中每个课题设 1 名课题负责人。 青年科学家项目不再下设课题,项目参与单位总数不超过 3 家。项目设 1 名项目负责人,青年科学家项目负责人年龄要求, 男性应为 1984 年 1 月 1 日以后出生,女性应为 1982 年 1 月 1 日 以后出生。原则上团队其他参与人员年龄要求同上。青年科学家项目不再下设课题,项目参与单位总数不超过 3 家。项目设 1 名项目负责人,青年科学家项目负责人年龄要求, 男性应为 1984 年 1 月 1 日以后出生,女性应为 1982 年 1 月 1 日 以后出生。原则上团队其他参与人员年龄要求同上。 科技型中小企业项目要求由科研能力强的科技型中小企业 牵头申报。项目下不设课题,项目参加单位(含牵头单位)原则 上不超过 2 家,原则上不再组织预算评估,在验收时将对技术指 标完成和成果应用情况进行同步考核。科技型中小企业标准参照 科技部、财政部、国家税务总局印发的《科技型中小企业评价办法》(国科发政〔2017〕115 号)。1. 基础理论和前沿技术 1.1 跨尺度自润滑复合结构增材制造(基础研究类)研究内容:针对我国航空航天和高端装备对高度集成、精准按需润滑以及润滑异形件的设计与制造需求,开展复合润滑功能组件整体化增材制造研究,研究增材制造专用自润滑功能材料设计制备、跨尺度润滑功能结构、尺寸突变异形构件一体化精密制造关键技术,研发面向增材制造的自润滑复合材料体系,探索精准按需润滑结构增材制造新原理、新工艺,研究面向增材制造的可控自润滑表界面材料精准设计与构筑新方法,建立跨尺度增材 制造平台,发展润滑功能准确定制化系统设计与一体化制造技术。1.2 飞秒激光—电化学复合微纳增材制造(基础研究类) 研究内容:针对三维复杂金属微纳结构的飞秒激光辅助定域电化学增材制造,探索微结构无掩膜激光—电化学双耦作用定向诱导粒子原位增材制造机理,研究飞秒激光诱导下定域电化学沉积组织—结构—功能一体化微纳制造新方法,研究激光—电化学复合能场亚微米复杂构型和微米功能结构阵列制造、纳米体元与微米构型精准调控等技术。1.3 材料组分三维精确可控的粉末床熔融金属增材制造(基 础研究类) 研究内容:研发面向粉末床熔融增材制造的在线多组分材料精确添加技术,研究材料组分三维可控的非均质粉末床熔融增材制造工艺特性、材料原位冶金行为、材料梯度/界面行为和组织性能演化规律,明晰非均质材料构件成形过程中的应力—形变演化规律,建立非均质材料梯度/界面行为、组织与性能协同调控方法,研发材料成分过渡区间精确调控和后续热处理等关键技术,实现材料组分三维精确可控构件的创新设计、制造及评价。1.4 柔性光电器件的激光光场调控微纳制造(基础研究类) 研究内容:面向柔性光电器件中的关键微纳结构,研究激光时域/空域/频域光场调控方法,探索激光调控光场与柔性光子器件材料相互作用的新现象与新效应,研究激光远场与微腔等近场光学效应结合的宏微纳跨尺度无掩膜加工新技术,研制远场—近场复合光场的无掩膜高效激光微纳制造装备。1.5 异质仿生结构设计及一体化增材制造(基础研究类) 研究内容:探索仿生结构中材料/结构的多重耦合行为与机制,研究与高效减振、智能变形、损伤自修复等功能需求匹配的仿生结构模块化设计方法,揭示基于异质材料增材制造的仿生功能模块化调控规律,发展功能模块化构件的多维度、多尺度和异质材料的仿生设计技术;研究异质材料体系下模块化仿生构件的一体化增材制造关键技术,研发面向增材制造的宏微构型—异质材料仿生结构设计、仿真与工艺规划平台,发展多场复杂应用环 境下增材制造宏微构型—异质材料仿生构件的性能评价技术。1.6 功能化活性心肌组织增材制造(基础研究类) 研究内容:针对心肌组织损伤治疗,开展活性心肌组织高精度增材制造及其功能再生方法研究。研究功能化活性心肌组织复 杂微结构系统的仿生设计方法;研究具有电传导能力的活性心肌组织增材制造新原理与新工艺;研究增材制造活性心肌组织的体外三维定向排布生长与高频同步跳动方法,以及体外活性心肌组织电信号特征与其生物功能的作用关系;研究大型动物大面积心肌病变缺损修复的考核评价方法。1.7 面向前沿探索制造新原理(青年科学家项目) 研究内容:针对新能源、新材料等新兴产业领域重大需求, 重点开展难熔金属材料增材制造、超快激光制造中光子—电子— 晶格相互作用观测与调控、喷墨共形打印、复合制造等前沿制造新原理新方法研究。2. 核心功能部件 2.1 激光粉末床熔融增材制造在线监控与质量评价技术(共性关键技术类) 研究内容:研究合金成分、跨尺度微观组织/缺陷、应力/形变状态与激光粉末床熔融增材制造过程特征信息的相互关系;研究增材制造熔池动态行为、非均质宏/微观组织特征的多物理场在线监测方法和在线质量评价技术体系,研发铺粉状态快速准确识别与分类、熔池特征分析及质量预判、逐层熔凝区域组织/缺陷识别和轮廓变形分析、质量预警及多参量复合调控等关键技术;发展基于在线监测数据的多信息融合及高效率深度学习模型,明晰 工艺参数—特征信息—制造质量关联关系,研发基于过程特征的高效在线质量评价和多参量交互质量控制方法。2.2 大型复杂构件制造过程在线检测与智能调控技术(共性关键技术类) 研究内容:面向重大装备的高性能焊接与增材制造,研究大型复杂结构制造过程中的在线三维形貌及变形的跨尺度光学测量技术、制件与制造加工头的多自由度位姿测量技术;研究制造过程中熔池特征尺寸和温度场表征、制造缺陷非接触式在线检测技术;研发从微观位错演化到宏观结构件变形失效的跨尺度增材制造热力模拟预测技术和方法;揭示制造工艺与位错—晶界多级微 结构、结构变形和制造缺陷的关联关系;研究面向大型结构的表面形貌、结构变形、构件温度和制造缺陷等成形质量自适应闭环 控制系统与装备。2.3 增材制造构件长寿命服役行为表征与调控关键技术(共性关键技术类) 研究内容:研究增材制造构件在高温环境与复杂应力条件下的长寿命服役性能表征方法,典型增材制造构件/材料长寿命试验标准与疲劳数据库;研究增材制造构件微结构/缺陷与长寿命服役行为的关联机制,制造工艺—微结构/缺陷—服役性能的映射关系;研究提高服役寿命的增材制造缺陷/微结构在线调控技术,发展高服役性能构件增材制造工艺的优化方法;研究增材制造构件长寿命疲劳的评估技术。2.4 制造用高性能高功率飞秒激光器(共性关键技术类) 研究内容:探索飞秒激光产生、放大、线性和非线性调控过程的动力学机制,以及高功率大能量飞秒激光放大时由于增益导致的脉冲宽度劣化机制;攻克高单脉冲能量飞秒激光热管理、模式控制、高效率长寿命飞秒频率转换等关键技术,研究倍频产生高功率紫外飞秒激光参量的稳定控制及优化技术,开展高功率大能量飞秒激光器模块化设计和系统集成技术研究。2.5 制造用高性能高功率皮秒激光器(共性关键技术类) 研究内容:开展皮秒激光增益分布优化、模式控制机制和有效热管理等技术研究,攻克均匀泵浦、长寿命皮秒锁模及非线性抑制等关键技术,研究倍频转化效率提升、紫外皮秒激光光束质量控制及延寿等技术,研制高稳定性高功率红外、紫外皮秒激光器产品。3. 关键技术与装备 3.1 非均质材料飞秒激光制造技术与装备(共性关键技术类) 研究内容:面向复杂构件涉及的复合、多层膜、多孔等非均质材料的高性能加工共性需求,建立飞秒激光加工过程中光子能量吸收、电子状态变化、等离子体喷发、成形成性等多尺度连续观测系 统;从电子层面研究飞秒激光时/空/频域协同整形的非均质材料加 工新方法,突破损伤控制、选择性加工等关键工艺技术,研发飞秒 激光跨尺度柔性加工装备和三维复杂构件微细加工装备。3.2 陶瓷多材料连续成形光固化增材制造技术与装备(共性关键技术类) 研究内容:研究高固含量/低粘度陶瓷打印浆料流变机理与稳定性优化方法,攻克陶瓷光固化增材制造精度光散射调控技术。 研发陶瓷多材料连续成形光固化增材制造技术与装备,开展高效加工策略与成形效能评估研究,开发材料—工艺—装备全链条性能评价方法。3.3 大能量高重频脉冲激光智能清洗技术与装备(共性关键技术类)研究内容:研究纳秒脉冲能量输出能力提升的新方法,开展大能量高重频脉冲激光光束控制、模式调控、高功率关断和多级放大等技术研究;揭示大能量纳秒脉冲激光高效高质清洗机制, 攻克基于机器视觉的精确定位、智能选区、残留物快速识别、复杂曲面路径智能规划、双光束联动无缝无重叠拼接等关键技术, 研制具备复杂曲面结构高效循环作业的激光智能化清洗成套工艺与装备。3.4 薄壁弱刚性构件激光电解复合高效铣削加工技术与装备 (共性关键技术类)研究内容:针对薄壁弱刚性整体复杂构件制造瓶颈,研究气液环境下激光束流作用过程、超高电流密度电化学加工材料去除机制及成形规律;研究激光—电解复合铣削制造新方法,攻克复 合能量场形性调控、束流流域设计等关键技术;研制大型构件激 光—电解复合铣削加工装备。3.5 结构功能部件飞秒激光精密制造技术与装备(共性关键技术类)研究内容:针对航空航天等领域结构功能一体化部件精密制造的需求,揭示飞秒激光光束运动参量调控的微结构控形控性制造机制,研究制造结构的几何特征、质量对部件功能和服役性能的映射关系;发展“压敏、密封、润滑”等功能部件飞秒激光制造方法,攻克激光脉冲三维整形、内腔光束运动姿态参量控制等关键技术,研制飞秒激光制造成套工艺与装备。3.6 海洋装备水下原位高效增材修复技术与装备(共性关键技术类)研究内容:针对海洋装备在服役过程中的修复需求,研究适用于水下原位增材修复的专用材料;研发复杂水下环境空间重构、 姿态感知和损伤区域快速三维测量技术与装备;研发水下空间约束环境下的增材修复过程规划、组织性能调控、修复部位服役性 能预测等技术;研究应急响应条件下的水下结构可修复性评价和修复方案智能决策方法;研发水下现场环境修复工艺和装备。3.7 大型点阵结构无支撑高效增材制造技术与装备(共性关键技术类) 研究内容:研究面向增材制造的多功能大型点阵结构设计技术;研究点阵结构的无支撑高效增材制造、高性能连接、多层点阵夹芯结构制造、结构变形控制等关键技术;研究大型点阵夹芯结构的无损检测技术;研发规模化低成本高效增材制造装备。3.8 大幅面纤维增强热塑性复合材料增材制造技术与装备 (共性关键技术类) 研究内容:研究面向大型纤维增强热塑性复合材料构件的多丝束挤出增材制造成形机理及翘曲变形行为,发展大型纤维增强热塑性复合材料构件设计方法,攻克大型纤维增强热塑性复合材料增材制造的路径优化、多材料性能匹配、多工艺参数匹配、界面结合优化、成形精度控制等关键技术;研究增材制造复合材料构件非降级回收再制造技术和构件的性能评价方法;研制大型纤维增强热塑性复合材料构件增材制造装备。3.9 超强韧中熵合金构件增材/强化/减材复合制造(共性关键技术类)研究内容:研究适用于增材制造的超低温超高强韧中熵合金高通量设计与性能验证方法;研究中熵合金在复合制造过程中形性调控机制与方法,以及表面损伤动态演变机制及抑制理论,研发激光增材/强化/减材复合制造工艺与装备,研究复合制造中熵合金在室温、液氧和液氮超低温环境下的强韧化机制,以及疲劳断裂等性能评价方法;研究面向服役环境的复合制造中熵合金构件重复使用评估体系。3.10 大型高性能结构件增等减材复合绿色智能制造(共性关键技术类) 研究内容:研究增材/等材/减材复合制造形性协同控制机理 和增材/等材/减材一体化复合制造技术;研究复合制造工艺—组 织—缺陷—性能的一体化映射关系,研发大型结构件综合力学性 能、疲劳性能提升关键技术;发展全过程智能化在线质量监控系统,研发大型复合绿色智能化制造装备。4. 典型应用示范 4.1 无人机十米级机身承力结构整体化增材制造示范应用 (应用示范类) 研究内容:针对高性能大型无人机研制需求,研究基于增材制造的大尺寸机身关键构件一体化设计方法;突破大尺寸精密复杂构件增材制造跨尺度形性主动调控及后处理关键技术;研究增材制造大尺寸机身整体构件无损检测评价关键技术;建立基于增材制造的大尺寸机身整体构件“材料—设计—工艺—检测—评价” 全流程技术体系。4.2 多材料功能梯度结构增材制造在无人潜航器领域应用示 范(应用示范类) 研究内容:针对万米深海无人潜航器应用需求,研究面向增材制造的无人潜航器多材料轻型耐压壳体的仿生优化设计方法, 包括无人潜航器壳体仿生结构、多材料梯度耐压结构、壳体外表面防生物附着结构等设计方法;研究高分子、陶瓷、金属等多材 料增材制造工艺及形性控制方法;研发无人潜航器多材料一体化智能增材制造装备,包括金属及高分子材料增减材一体化装备, 陶瓷材料高效增材制造装备;研究高分子、陶瓷、金属等多材料一体化增材制造构件的检测技术和评价方法。4.3 大型关重结构件激光高效高稳定增材制造工程应用示范 (应用示范类) 研究内容:研究面向规模化生产的大型关重结构件高效高精度激光增材制造材料、工艺稳定性控制方法与技术体系;研究质量性能一致性控制、检测和评价方法;研究激光增材制造典型材料关键力学性能许用值和数据库;研发面向规模化生产的高效高精度成套装备。4.4 内部精细流道增材制造在空间推进领域应用示范(应用示范类)研究内容:开展基于增材制造的空间推进系统集成化、轻量化和模块化设计研究,研发基于增材制造空间推进系统的流—固 —力—热多物理场耦合一体化设计方法及增材制造技术;研究小尺寸复杂内流道成形、内表面加工及质量控制、薄壁耐压结构成形质量控制及后续加工处理等关键技术;研究增材制造空间推进系统的检测方法及评价标准。4.5 高品质激光剥离与解键合在电子制造领域应用示范(应用示范类) 研究内容:针对 Micro-LED 显示、超薄晶圆封装中的激光剥离、解键合等制造技术瓶颈,研究紫外和深紫外光束传输与空间整形、光斑形貌与能量监控以及焦点跟随等关键技术;研究可减少器件损伤的激光剥离、解键合方法与加工工艺;研发光束整形器、焦点跟随等核心功能模块;开发 Micro-LED 显示激光剥离装备、超薄晶圆紫外激光解键合装备,研究成套工艺。4.6 科技型中小企业技术创新应用示范(科技型中小企业项目) 研究内容:面向增材制造与激光制造领域不断涌现的新兴产业增长点,开展个性化医疗器械制造、医疗植入物表面微功能结构制造、光纤微纳传感器制造、光子/电子器件制造、印制电路板 (PCB)增材制造等新兴增材制造与激光制造技术的产业化应用研究,发展新兴技术商业化装备,实现创新型构件或器件的小批量或个性化定制生产;开展具有产业新增长潜力的前沿新技术产业化研究,实现颠覆性创新新技术产业化应用。
  • 危险激光“玩具”网上现身 强度超阳光1000倍
    据外媒报道,一种类似星球大战中的激光剑的玩具在互联网上销售,引起了大家的注意。  据称,这种所谓的“玩具”叫做便携式激光器,它产生的激光是所有激光类型中最危险的,强度能达到太阳光的1000倍,不仅可以融化肌肤,致人失明,还能导致癌症。同时,它还可以融化塑料,点着香烟,在45英里之外开启都可以让飞行员眩晕。  清洗视觉服务项目负责人约翰• 科尔顿称:“这种激光器太吓人了。如果使用不当,后果不堪设想。无论如何,这种东西都不应该在网上买卖。”  科尔顿还表示,这种危险性也许正刺激了买家的购买欲望。网上一位订货的买主称:“我刚预定了一个。我要把它放在我的枪盒中,因为它就跟手枪一样危险。”  虽然这种激光“玩具”威力巨大,但是贸易标准负责人克里斯丁• 赫姆斯特却无法阻止英国人从网上进行购买。他表示:“我们很关注这种产品的销售,它应该只用于工业。因为这种激光器是由国外制造,所以我们无法阻止他们在网上的交易。
  • 便携式激光拉曼光谱仪器及其应用的最新进展和有关问题
    前言  我国“十二五”、“十三五”期间,我参加了几个国家科技部重大仪器专项中有关便携式激光拉曼光谱仪器及其应用专项方面的专家组工作 通过接触这些项目,结合我本人过去从事激光拉曼光谱仪器及其应用的工作实践,有一些体会。这里想介绍一点便携式激光拉曼光谱仪器及其应用的有关问题,供有关科技工作者参考。  目前科技工作者们都在关注便携式激光拉曼光谱仪器及其应用的最新进展,世界各国正在争先恐后的研发各类便携式激光拉曼光谱仪器。在我国目前有20多家企业(含外资企业)在研发、生产各类便携式激光拉曼光谱仪器 国外也有很多仪器公司都在加强便携式激光拉曼光谱仪器及其应用的研发,所以,本文重点介绍《便携式激光拉曼仪器及其应用的最新进展和有关问题》。  一、仪器的最新进展  1)仪器的S/N(表征仪器的灵敏度)大幅度提高  目前,国内外的便携式激光拉曼光谱仪器最新进展中,最突出的体现之一是S/N的提高。因为从仪器学理论讲,激光拉曼的灵敏度与光源(激光器的稳定性、波长等)、主机(单色器的光谱带宽、杂散光、光栅和准直镜、物镜的口径等)、光接收器(CCD的灵敏度、CCD的噪声N、稳定性等)、放大器(噪声N、稳定性、放大倍数等)等密切相关。所以,光源为785nm的便携式仪器,直接测量的S/N一般在1000:1以内,不可能达到10000以上。但是,随着化学计量学的发展,仪器的软件、特别是各种算法突飞猛进。例如:北京西派特公司研发的785nm新型ExR510便携式激光拉曼光谱仪(以下简称ExR510),由于采用一种我国独具知识产权的、消除荧光背景和降噪的专利技术,使得该仪器直接测试的S/N优于2000:1以上。北京大学在他们使用西派特的ExR510时,对仪器进行了考查,发现直接测量ExR510的信噪比可以达到2400:1,为目前国际上同类仪器的领先水平。但是,随着软件、算法的发展,仪器的S/N还会进一步大大提高。  2)仪器的分辨率大大增强  国际上的便携式激光拉曼光谱仪器中,单色器的焦距一般都在75mm左右(甚至更小)。在这么小的便携式激光拉曼光谱仪器上,要得到相对高的分辨率是很难的,所以目前国际上的这类便携式激光拉曼光谱仪器的分辨率都在4-12cm-1之间!因为从仪器学理论来看,大家都知道,光栅理论中分辨率(SBW)的数学表达式为:  SBW=[1/(mf/d cos θ)] b = d ×cos θ× b /mf  法国JY公司的HR800大型台式激光拉曼光谱仪的焦距为800mm,仪器采用优质光栅、三级光谱、狭缝可调,但是,分辨率只是0.5-0.8cm-1左右。所以,有些公司给出焦距75mm的便携式激光拉曼光谱有仪器的分辨率为1.27cm-1,从理论到实践都是做不到的。  但是,仪器的分辨率大大增宽,无疑是最吸引科学家眼球的关注焦点之一。北京西派特的ExR510,采用了特殊的专利软件处理,使得75mm焦距的便携式仪器的分辨率大大增强,该仪器经北京计量测试研究院测试,分辨率为2.8cm-1,为国际同类产品的领先水平。  3)新型的激光拉曼光谱仪器不断涌现  (1)2017年,安捷伦推出了四款最新的拉曼专利技术:其中,空间位移拉曼光谱(Spatially Offest Raman Spectroscopy,简称SORS)、透射拉曼光谱(Transmission Raman Spectroscopy ,简称TRS)相当先进。SORS的用途非常广泛,TRS更加优越,做定量分析检测时,比SORS准确度更高。安捷伦最近推出的四款拉曼产品,其中,SORS和TRS是代表产品。  (2)2018年3月,必达泰克推出新型透视拉曼光谱仪STRaman,获得了2018年3月美国匹兹堡分析化学和光谱应用会议暨展览会的卓越金奖。这是应该特别值得重视的消息,该仪器突破了传统拉曼技术障碍,可以透过视觉不透明的包材和涂层,收集内部样品的拉曼信号。该仪器由先进的算法、高度智能化的分析软件、高通量光谱仪及增加采样深度和面积的专用探头组成 所有元部件都高度集成在一套便携式系统中,可以非常简便的在现场或实验室使用。据称STRman是具有快速、无损分析领域应用的、较为理想的分析检测工具 例如:在食品、制药、法医、刑侦、特殊化学品工业领域应用等等。  (3)南京简智仪器公司最近推出了首款便携式差分拉曼光谱仪。上世纪九十年代提出的差分拉曼方法,由于多种因素(例如:两个光源无法同时测量、导致受激发射光谱和散射光谱两张原始光谱产生差异、还有算法问题等),一直使之无法形成产品。南京简智公司经过努力,攻克了很多难题,终于研发成功了便携式差分拉曼光谱仪。据报道,该仪器具有抗干扰、大信噪比、滤除杂峰等优点。可以直接测量高荧光物质、深色物体等等,是一款好仪器。  (4)联用技术的大发展是当今世界上分析仪器发展的主要潮流之一。往往一种技术解决不了的问题,两种技术联用,就会迎刃而解了,就会出现一片广阔天地。由原总后牵头的,国家科技部“十二五”重大仪器专项中的《薄层扫描-便携式激光拉曼光谱联用仪器及其应用》(本人为项目技术专家组组长),已经通过国家总验收 该仪器解决了食品、中药产品中薄层色谱和拉曼光谱无法单独解决的分析难题。仪器具有体积小、重量轻、自动化程度高等特点,该仪器为国际首创.  二、应用的最新进展  1、应用领域越来越广  例如:  1)药物分析:原材料辅料分析鉴别、原研药分析、药物晶型分析、合成反应监控、假药甄别、注射液成分分析,包装材料鉴定。  2)化学危险品:具有毒害、腐蚀、爆炸、燃烧、助燃等性质,对人体、设施、环境具有危害的剧毒化学品和其他化学品鉴别。  3)地质/珠宝:珠宝鉴定,矿物分析。  4)食品分析:非法添加、农药残留等。  5)聚合物材料:分子结构、结晶结构、取向结构、成分定量分析、相结构、聚合反应动力学、形变、老化等。  6)催化材料:动力学研究,分子筛骨架结构分析,物相变化。  7)半导体材料:成分鉴别、结晶结构、晶体取向、应力和应变。  8)石墨烯、碳纳米管及其他碳材料表征。  9)复合材料:表征及微观力学研究。  10)无机材料:很多无机材料是中心对称的振动,红外光谱不敏感,而拉曼光谱具有很明显的优势。物质鉴别,结构测定,材料合成研究。  11)地质/珠宝:珠宝鉴定,矿物分析。  还有很多领域可以应用下、便携式激光拉曼仪器,在此不再赘述。  2、SERS技术的引入得以实现  众所周知,SERS效应的发现,使普通拉曼散射光谱方法无法或很难开展的研究工作出现了新的转机,再加拉曼光谱所特有的高选择性,使SERS在许多领域中得到广泛的应用。目前,与普通拉曼散射光谱相比,SERS的增强因子可达104~107。虽说SERS技术还有很多不完善之处,但仍然得到了大家重视。  3、已经实现五组分定性、定量分析  传统的激光拉曼光谱技术,一般只能对单组份或三组分样品进行定性分析检测,很难进行定量检测。而目前正在大发展的便携式激光拉曼光谱仪器,由于软件算法上的突破,已经可以进行五组分定性、五组分定量分析检测。以下以我主持鉴定会的北京西派特公司的ExR510为例,给大家分享一下拉曼光谱对五组分的样品进行定性、定量分析检测的案例。  1)ExR510对五组分醇定性分析测试结果  因为醇类物质的谱线较宽、容易重叠、分离难度大,为了说明问题,所以他们选择对5种醇混合物进行测试,五组分定性测试结果如下图:仪器条件:激光785nm 功率10级 扫描次数10次 积分时间12S。  2) 对五组分醇定量分析结果  在上述仪器条件下,准确称量并配制甲醇、乙醇、乙二醇、丙三醇和异丙醇的混合溶液,各组分醇的具体称量值、混合液标样的含量、用定量算法得到的实测含量和计算误差列表如下:样品 标样含量(%) 实测含量(%) 误差(%) 甲醇(0.4437g)17.7416.13-1.61乙醇(0.4649g)18.5819.320.74乙二醇(0.6661g)26.6329.102.47丙三醇(0.4755g)19.0114.48-4.53异丙醇(0.4514g)18.0420.972.93  上表数据是用上图结果采用“子空间向量夹角法”计算出来的,这个算法是西派特公司的专利。  4、消荧光干扰、扣背景技术有重大突破  荧光干扰是激光拉曼的天敌。所以消荧光干扰或扣背景技术具有及其重大的意义。我主持鉴定会的北京西派特公司的ExR510,对实际样品分析检测结果令人非常满意:  (1)单组分定性分析检测时消荧光和匹配度的效果:  ①滑石粉(弱荧光物质)定性检测:滑石粉 检测的匹配度:0.999  仪器条件仪器条件:ExR510 便携拉曼光谱仪 激发光源:785nm 积分时间:10s 功率等级:10级  ②对重钙定性测试时消荧光和匹配度的结果:匹配度达到0.999  仪器条件:ExR510 便携拉曼光谱仪 激发光源:785nm   积分时间: 10s 功率等级:10级  5、食品药品快检技术的进展  “十二五”国家科技部重大仪器专项,“TLC-LR联用仪器及其应用研究”,完成了药品快检专用软件工作站,完成了化药的假药与中药掺杂违禁化学药品的快速检测与远程智能判别。完成了一键式对化学药和中药掺杂的快速检测。研发成功了国际首创的TLC-SERS-LR联用仪器 建立了多种拉曼光谱快检数据库,包含:300余种基药 50种品牌药 500种上市药物活性成分 100种常见药用辅料 8种国抽药品 标准操作规程4项。建立了多种化学药品的检测方法 过期药回收再利用检测方法 仿制药冒充原研药的检测方法等等。下图是专家测评现场:  三、几个有关问题  1、科技工作者必须实事求是  科技工作者应该是最实事求是的人。但是很多科技工作者不是这样。例如:目前国产的许多便携式激光拉曼仪器(包括其它各类常规型、普及型、基础型的仪器)不但不比进口的差,相反,在主要性能指标(如S/N、分辨率等等)上、在实用性上、在性价比上都优于同类进口仪器,都能满足使用要求。但是,有些领导和科技工作者就是要说“进口仪器总比国产的好”。就是要花大价钱去买进口仪器,这样的例子举不胜举。这就是不学习、不调查、闭着眼睛说瞎话、不实事求是的表现。还有,中国分析仪器行业里,目前有不少人不懂装懂,明明自己没有受过仪器学的熏陶,明明自己不懂仪器学,但是在各种仪器专业学术会上,在仪器评审会上、特别是仪器鉴定会上,他们却高谈阔论,经常说一些外行的话 本来有国际先进水平的仪器,因为他们不了解、他们不懂,他们就不敢写出真实水平的评价。以至鉴定会得出错误或名不符实的结论。所以,科技工作者只有认真学习、懂一点仪器学、只有实事求是,才能正确的评价进口仪器和国产仪器,才有可能正确大胆使用能满足使用要求的国产仪器、才能站在民族的高度支持、保护国产仪器。  我们说,过去(80年代以前)因为我国的基础不好等多种原因,我国分析仪器的确都不行。但是现在,常规、基础、普及型仪器都不错。虽说质量上各有千秋,但是基本上都能满足使用要求。目前有些高端仪器我国与发达国家的差距还较大,但是高端仪器市场小,赚钱不多。我们要从民族高度看问题,严防上当。  从仪器学和应用的实践要求来看,我认为目前有很多产品宣传不实在。我诚恳的建议或希望大家要站在实事求是的立场上宣传产品。(特别是对国外公司产品,中国人应该站在客观立场上实事求是宣传,不能自觉或不自觉的帮助外国人忽悠中国人);我希望在外国公司工作的中国朋友们,要把国外好产品引进中国。希望从事分析检测的朋友们、使用者、买仪器者,评价仪器时,要实事求是、要特别重视仪器的可靠性(特别是要重视影响检测误差的关键指标的可靠性),这是根本性的问题。尤其是激光拉曼领域,正处在群雄争霸、鱼目混珠的时期,建议使用者实事求是、买仪器时采取盲样比对测试、全面综合权衡后,决定买哪家的仪器,绝对不能盲目迷信国外产品。这个原则适用于所有使用分析仪器的科技工作者,建议大家一定要重视,严防上当。  2、应该大胆使用能满足要求的国产光谱仪器  今天我国的常规、基础分析仪器很多都不比同类进口仪器差,已经完全可以与国外抗衡(指标优于、相当、不够)。特别是便携式激光拉曼光谱仪器,我们国家目前有很多家在生产。虽说仪器的水平、质量等各有千秋,但是,要看到“抗衡”这个问题。我们千万不要迷信进口仪器。今天,我从仪器学理论和分析工作的实践相结合的角度、从使用的适用性角度、从仪器的可靠性和性价比角度等方面,全方位的、负责任的告诉广大读者:目前我国的常规仪器已经可以与国外抗衡了。例如:国产ExR510的主要技术指标处在国际领先水平 南京简智仪器公司的便携式差分拉曼光谱仪可以直接测量高荧光物质、深色物体等等。  目前在便携式激光拉曼光谱仪器方面,外商在我国占有很大的市场,而国外产品不比国产的同类产品好,所以我们必须加倍努力,去占领市场。因此,我再次呼吁:我们要正确评价国产仪器和进口仪器。正确认识国产仪器和进口仪器。正确处理国产仪器和进口仪器的关系。既不要盲目迷信进口仪器,又不要盲目排外。国外好的仪器、我国还不能生产的高端仪器,我们要引进、要消化、要吸收、要为我所用。国外搞虚假指标欺骗我们的各种仪器,我们要大胆批评。同时我们在打破误区后,还必须要看到差距 中国常规仪器与国外的主要差距是:工艺、软件、附件。只有看到了差距,才有赶超的动力。大家应该团结起来,打破误区,努力赶超分析仪器和应用的国际先进水平。  3、建议分析仪器研发、生产和分析仪器应用工作者重视仪器学理论的学习  仪器学理论是一种综合性学科的理论,是一门涉及到多个领域的、复杂的、交叉的、边缘学科的理论,是涉及到光学、机械学、电子学、计算机、应用等各个领域的理论,特别是现代分析仪器及应用工作者,都离不开这些方面。作者通过实践,深深认识到只有掌握了一点仪器学理论知识,才能知其然知其所以然、才能研发和生产出稳定性好可靠性好的仪器、才能把仪器用到最佳水平、得到最佳的分析检测结果。为此建议大家参考:  李昌厚著,《仪器学理论与实践》(仪器学理论与光学类分析仪器整机及关键核心部件的设计、制造、测试、使用和维修),北京:科学出版社,2008。  作者在大学里学仪器,毕业后既使用仪器,又研发仪器 该书从理论到实践,总结了作者研发、使用各类分析仪器的经验和教训。对研发分析仪器、生产分析仪器、使用分析仪器、维修分析仪器的科技工作者都有参考价值。(李昌厚 中国科学院上海生物工程研究中心 200233)  李昌厚,中国科学院上海生物工程研究中心原仪器分析室主任兼生命科学仪器及其应用研究室主任、教授、博士生导师、华东理工大学兼职教授,终身享受国务院政府特殊津贴。    主要研究方向:分析仪器及其应用研究 长期从事光谱仪器(紫外吸收光谱、原子吸收光谱、旋光光谱、分子荧光光谱、原子荧光、拉曼光谱等) 色谱仪器(液相色谱、气相色谱等)及其应用研究 特别对《仪器学理论》等有精深研究。  以第一完成者身份,完成科研成果15项。由中科院组织专家鉴定 其中13项达到鉴定时国际上同类仪器的先进水平,2项填补国内空白 以第一完成者身份获得国家和省部级(中国科学院、科技部、上海市)科技成果奖5项(含国家发明奖1项) 发表论文183篇,出版专著5本 曾任中国仪器仪表学会分析仪器分会第五届、第六届副理事长;国家认监委计量认证/审查认可国家级常任评审员、国家科技部“十五”、“十一五”、“十二五”和“十三五”重大仪器及其应用专项的技术专家组成员或组长、上海市科学仪器专家组成员、《光学仪器》副主编、《生命科学仪器》副主编、《光谱仪器与分析》副主编等十多个学术团体的领导职务。曽经先后担任过:北京普析通用、北京瑞利、北京西派特、无锡高速分析仪器厂、无锡英之诚、常州玉宇光电、上海安杰科技、美国(香港)ISCO科技公司等等多个高科技公司和学术团体的技术顾问,为这些公司和有关学会联合召开的各类技术交流会、技术培训会等讲课500次以上。为全国各类学术会议做学术报告100次以上。
  • MarvelScan:全球首创不跟踪不贴点手持激光扫描系统
    在数字化时代大背景下,三维激光扫描技术作为测绘领域的一项重大科技创新成果,以高速率、高精度、非接触测量和自动处理等独特优势,不仅在工业领域应用发展迅猛,成为推动智能制造的一股新势力,同时也逐渐在文博、教育、医疗、消费品、AR/VR等其它非工业领域不断开疆辟土,成为引领各行业数字化的“新潮流”。海克斯康作为三维数字技术的领航者,致力于3D数字化测量的技术研发与产品开发,为QC质量检测、逆向设计、3D展示等应用提供高效工具。全球首创不跟踪不贴点手持激光扫描模式,MarvelScan集成Inside-Out单目定位技术,无需在物体表面粘贴定位标点,完全省去重复贴点的繁琐操作。同时减少跟踪器和球形靶标框架,携带便捷性得到极大提升,设备校准过程也随之大大简化,能够显著提高扫描工作效率。完全改变了手持式扫描仪的工作方式,是三维扫描行业的代表性产品。产品亮点1.真正的“拿来即扫”:物体表面无需粘贴定位标点,无需跟踪器和球形靶标框架,显著提高扫描工作效率2.独立摄影测量功能:摄影测量相机独立对焦,蓝色LED光源,成像清晰度高,大大提升摄影测量精度3.支持多环境使用及贴点扫描:借助稳定的参照物或便捷式支架,均可实现反向定位扫描,同时支持贴点扫描4.高精度多功能:最高精度0.01mm,纯蓝光技术保证扫描精细度和适应性,扫描速度135万次测量/秒、孔位闪测技术提升测孔适应性和便携性5.无线模块:无线模块利用WIFI5G技术,实现扫描数据的无线传输和处理,摆脱了传统数据线对设备连接稳定性、便携性的影响,让用户真正做到灵活、便捷地进行三维扫描和建模的工作应用领域海克斯康智能3D扫描仪广泛应用于汽车制造、航空航天、轨道交通、机械重工、模具/铸造、文博艺术、生物医学、工业/家居、教育科研、3D打印、VR/AR展示等领域,近年来积累3D工程项目经验2000多例。汽车制造逆向工程、质量控制与零配件测量、竞品分析汽车改装、内饰定制车辆造型与设计仿真与有限元分析(FEA)航空航天快速成型、质量控制/检测MRO与损伤评估、空气动力学应力分析、OEM和旧部件再造逆向工程、部件和装配的检测与调整模具制造质量控制与检测虚拟装配、逆向工程磨损分析与维修工装夹具设计与调整机械重工质量检测与控制、逆向设计MRO与损伤评估、机械/工装设计与调整OEM和旧部件再造原型、工具及模具调整
  • 禾赛科技登陆纳斯达克,中国“激光雷达第一股”诞生
    当地时间2月9日,中国激光雷达厂商——上海禾赛科技股份有限公司(简称“禾赛科技”)正式在美国纳斯达克上市,成为了中国激光雷达第一股。同时也是过去18个月以来,中企赴美上市的最大IPO。据招股书披露,截至目前,禾赛科技累计交付了超10万台激光雷达。图片来源:禾赛科技禾赛科技股票代码为“HSAI”,发行价为每ADS(美国存托股份)19.00美元,公开发行1000万股ADS,募资总额约为1.9亿美元。上市首日,禾赛科技股价表现亮眼,开盘大涨25%,报23.75美元,盘中股价一度达24.44美元,最终收于21.05美元,上涨10.79%,市值达到26.21亿美元。值得注意的是,禾赛科技曾于2021年向科创板递交招股书,但是两个月后主动撤回申报材料,并于2023年1月17日正式向美国证监会提交招股书。资料显示,禾赛科技成立于2014年,是一家全球化的激光雷达研发与制造企业,其最早专注于研发激光气体传感器,2016年开始探索无人驾驶激光雷达产品。目前,公司产品广泛应用于支持高级辅助驾驶系统(ADAS)的乘用车和商用车,以及自动驾驶汽车。根据招股书数据,2019年到2021年,禾赛科技的激光雷达销量分别为2900台、4200台、1.4万台,2022年,随着半固态激光雷达AT128和补盲激光雷达FT120落地应用,禾赛科技的激光雷达销量飙升至8.04万台。由此,禾赛科技也累计完成了超10万台激光雷达的交付,并成为全球首家月交付过万的车载激光雷达公司。招股书显示,禾赛科技的激光雷达,获得了理想、集度、路特斯、高合、长安、上汽等10家主流车企累计数百万台的量产定点。蔚来ET7、理想L9、小鹏P5、小鹏G9、广汽AION LX等车型搭载了禾赛科技激光雷达;自动驾驶客户则包括Aurora、Zoox、TuSimple、NVIDIA、Nuro、美团、百度、文远知行等。随着禾赛科技激光雷达出货量的爆发,其营收也呈现高速增长态势。招股书显示,禾赛科技在2019年、2020年、2021年营收分别为3.48亿元、4.16亿元、7.21亿元,营收增长率分别为162%、19%、73%。2022年前三季度的营收达到7.93亿元,同比增长73%,超过了2021年全年营收。不过,由于禾赛科技近两年产品逐步多元化,这也使得禾赛科技的毛利率出现下滑。禾赛科技2019年、2020年、2021年的产品毛利率分别为70.3%、57.5%、53.0%,2022年前三季度的毛利率又进一步下滑至44%。净利润方面,禾赛科技2019年、2020年、2021年的净亏损分别为1.2亿元、1.07亿元、2.45亿元,2022年前三季度净亏损为1.65亿元,同比收窄5%。从营收数据来看,禾赛科技目前的营收规模已经超过Velodyne、Ouster、Luminar、Innoviz(这四家企业2021年营收分别为6190万美元、3400万美元、3200万美元、984万美元)等全球主要激光雷达公司总营收营收之和。在毛利率方面,禾赛科技也远高于前述四家厂商(2022年1-9月,仅Ouster的毛利为正30%,其余厂商均为负值)。凭借此次成功登陆纳斯达克并拿到1.9亿美元融资,有望进一步提升禾赛科技在技术、产品竞争力、业务规模上的优势,并推动禾赛科技尽早实现盈利。在股权结构方面,此次IPO前,禾赛科技的创始人孙恺、李一帆、向少卿为共同控股股东、实际控制人,合计直接持股比例为30.03%,此外他们还通过员工持股平台上海乐以科技合伙企业(有限合伙)控制了禾赛科技7.13%的股份,因此,合计共同控制了禾赛科技37.16%的股份。根据招股书显示,此次IPO前,禾赛科技累计融资超过5.36亿美元。投资机构包括光速中国、高瓴、小米集团、美团、CPE源峰、光速中国、启明创投等知名机构。其中,光速中国(包括光速创投、光速中国两只基金),为禾赛科技最大的外部股东,上市前持股比例达17.5%。据悉,光速中国自2018年起连续参与了禾赛科技5轮融资,累计投资额超过1亿美元。按照禾赛科技上市首日收盘价计算,光速中国持有市值已达4.25亿美元,投资回报率高达325%。此外,禾赛科技最后一轮D轮融资发生在撤回科创板IPO申报材料后。在小米集团追加7000万美元后,禾赛科技D轮融资额度高达3.7亿美元。根据招股书披露,禾赛科技D轮融资每股价格约16.5美元,按照上市首日收盘价21.05美元计算,禾赛科技最后一轮投资者投资回报率已达28%。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制