饮用水样品中

仪器信息网饮用水样品中专题为您整合饮用水样品中相关的最新文章,在饮用水样品中专题,您不仅可以免费浏览饮用水样品中的资讯, 同时您还可以浏览饮用水样品中的相关资料、解决方案,参与社区饮用水样品中话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

饮用水样品中相关的耗材

  • 饮用水安全测试
    饮用水安全测试饮用水安全测试:饮用水中含有很多危害成分,是要经过严格检测之后才能工人类使用的。下面就来介绍一下当饮用水中含有余氯该怎么办?产品名称:饮用水安全测试(余氯测试盒)Visocolor HE系列 余氯测试盒高灵敏度余氯测试盒范围在0.02-0.60mg/l 方法:DPD比色法 测试盒内包括(*补充包装):可用于2*160次测试24克Cl-1* 一支用于取样的塑料烧杯100毫升Cl-2* 两个带有螺帽的玻璃试管25毫升Cl-3* 一个比色座一支85毫米长的测量勺 一张余氯比色盘危险警示:该测试盒内不含任何必须特别标记的有害物质。操作步骤:1、把比色座放置包装盒的固定位置上(请参见图示说明)。2、把比色盘插入比色座。3、打开两个圆形玻璃试管,用待测溶液清洗几次。然后,在试管中加入待测溶液至刻度处。4、加一平勺Cl-1至右侧玻璃试管。5、加12滴Cl-2至右侧玻璃试管,然后盖好瓶盖,混合均匀。6、立即读数:转动比色盘,从上面观察两支试管内的颜色,直到两支玻璃管内的颜色相同时,停止转动。从比色座的前面标记处读出测试结果,中间值可以估读。该读数即为余氯的浓度7、加入5滴Cl-3至右侧玻璃试管,盖好瓶盖,混合均匀。反应2分钟。然后依照上面的方法读数。 该读数即为总氯浓度 化合氯可以通第一次读数和第二次读数计算所得。自由氯:溶解的,单质氯,次氯酸,次氯酸盐离子。化合氯:无机氯胺和有机氯胺。
  • 铬形态分析色谱柱,用于饮用水
    安捷伦生产各种优质 ICP-MS 备件、附件和耗材,包括形态分析色谱柱。安捷伦提供各种铬形态分析色谱柱、砷保护柱和高精度的形态分析色谱柱,用于测定饮用水或尿液/食品中的砷。确保样品和备件安全、准确并符合当地法规的定期检测。所有的形态分析色谱柱都符合安捷伦的严格性能指标,有助于获得重要客户所期望的市场领先的 ICP-MS 性能。为了维护系统性能,要确保根据推荐维护日程表定期更换消耗品。 请参阅“其他信息”选项卡上的套件内容。 查看气相色谱接口备件。 对于大多数常见的形态分析方法都具有出色的峰分离度和重现性 保留时间 (RT) 和浓度都具有出色的重现性 帮助用户进行可靠的定量和化学形态分析 更高的分析效率 — 使用安捷伦色谱柱可避免对样品进行重复分析 提供各式各样的固定相和色谱柱配置
  • 气相色谱柱 饮用水EPA 方法 122-1564
    产品信息:Agilent J&W 气相色谱柱订货信息:饮用水EPA 方法应用推荐的色谱柱部件号524.2 使用毛细管 GC/MS 测定水中可清除的有机物 DB-VRX, 60 m x 0.25 mm, 1.40 μm122-1564DB-624, 60 m x 0.25 mm, 1.40 μm122-1364DB-624 Ultra Inert, 60 m x 0.25 mm, 1.40 μm122-1364UIHP-VOC, 60 m x 0.20 mm, 1.10 μm19091R-306DB-VRX, 20 m x 0.18 mm, 1.00 μm121-1524DB-624, 20 m x 0.18 mm, 1.00 μm121-1324DB-624 Ultra Inert, 60 m x 0.25 mm, 1.40 μm122-1364UIVF-624ms, 30 m x 0.25 mm, 1.40 μmCP9102VF-624ms, 60 m x 0.25 mm, 1.40 μmCP9103VF-5ms, 30 m x 0.32 mm, 1.00 μmCP8957525, 525.2使用固相萃取和毛细管色谱柱 GC/MS 测定饮用水中的 有机化合物HP-5ms, 30 m x 0.25 mm, 0.50 μm 19091S-133 526 使用固相萃取和毛细管色谱柱 GC/MS 测定饮用水中的选定半挥发性有机化合物 DB-5ms, 30 m x 0.25 mm, 0.25 μm122-5532HP-5ms, 30 m x 0.25 mm, 0.25 μm19091S-433VF-5ms, 30 m x 0.25 mm, 0.25 μmCP8944527 使用固相萃取和毛细管色谱柱 GC/MS 测定饮用水中的选定农药和阻燃剂 DB-5ms, 30 m x 0.25 mm, 0.25 μm122-5532HP-5ms, 30 m x 0.25 mm, 0.25 μm19091S-433VF-5ms, 30 m x 0.25 mm, 0.25 μmCP8944528 使用固相萃取和毛细管色谱柱 GC/MS 测定饮用水中的 酚类 DB-5ms, 30 m x 0.25 mm, 0.25 μm122-5532DB-XLB, 30 m x 0.25 mm, 0.25 μm122-1232VF-5ms, 30 m x 0.25 mm, 0.25 μmCP8944529 使用固相萃取和毛细管色谱柱 GC/MS 测定饮用水中的 炸药和相关化合物 DB-5ms Ultra Inert, 15 m x 0.25 mm, 0.25 μm122-5512UIHP-5ms Ultra Inert, 15 m x 0.25 mm, 0.25 μm19091S-431UIVF-5ms, 15 m x 0.25 mm, 0.25 μmCP8939551 使用液-液萃取和带电子捕获检测器的气相色谱测定饮用水中的加氯消毒副产物及氯化溶剂 DB-5ms, 30 m x 0.25 mm, 1.00 μm122-5533DB-1, 30 m x 0.25 mm, 1.00 μm122-1033DB-210, 30 m x 0.25 mm, 0.50 μm122-0233VF-1301ms, 30 m x 0.25 mm, 1.00 μmCP9054551.1 使用液-液萃取和带电子捕获检测器的气相色谱测定饮用水中的加氯消毒副产物,氯化溶剂和卤化农药/除草剂 DB-5ms, 30 m x 0.25 mm, 1.00 μm122-5533DB-1, 30 m x 0.25 mm, 1.00 μm122-1033DB-1301, 30 m x 0.25 mm, 1.00 μm122-1333VF-1ms, 30 m x 0.25 mm, 1.00 μmCP8913VF-1301ms, 30 m x 0.25 mm, 1.00 μmCP9054

饮用水样品中相关的仪器

  • 仪器简介:YSI饮用水多参数安全监测仪 应用于城市自来水供应管网系统中,连续采集水质数据以确认饮用水安全送达社区。稳定、耐用的传感器饮用水供水管网有数以万公里计的管道,因此安全送达饮用水对于供水企业、地方政府和政府机构都是至关重要的。YSI饮用水多参数安全监测仪所采用传感器技术的可靠性经全球数以万次地表水和地下水应用的考验,其性能与精度倍受用户推崇。YSI最新的余氯传感器——配合测量温度、电导、酸碱度、氧化还原电位和浊度的传感器,在供水管网的任意一点均可获取读数,并为管理者提供输水安全的全面视野。YSI 饮用水安全监测多参数仪可采用以下多种方式使用:• 自动监测并记录数据在仪器的内存中(可储存150,000个读数)• 连接计算机,实时显示与记录数据• 连接YSI 6500型 过程监测器,现场实时显示并传送数据至水厂的监控系统• 与数据采集平台集成,实时采集数据技术参数:余氯:测量范围 0至3毫克/升;分辨率 0.01毫克/升;准确度 读数之±15%或0.05毫克/升,以较大者为准 电导率:测量范围 0至100毫西门子/厘米;分辨率 0.001-0.1毫西门子/厘米(视量程而定);准确度 读数之±0.5%+0.001毫西门子/厘米温度:测量范围 -5至+70℃;分辨率 0.01℃;准确度 ±0.15℃酸碱度:测量范围 0至14;分辨率 0.01;准确度 ±0.2氧化还原电位:测量范围 -999至+999毫伏;分辨率 0.1毫伏;准确度 ±20毫伏浊度:测量范围 0至1,000NTU;分辨率 0.1NTU;准确度 读数之±2%或0.3NTU,以较大者为准主要特点:监测供水管网中任意点水质,而不仅限于自来水厂监测建立水质背景值数据库系统价格经济不用试剂,运行成本低可用电池或交流电操作便于携带、使用方便余氯传感器经过美国环保局(US EPA)、美国地质调查局(USGS)和美国国防部的严格测试其它传感器通过美国环保局环保技术核实计划核实
    留言咨询
  • 产品概述PWAS-3000饮用水多参数分析系统采用7寸彩色触摸屏,全探头式检测、GPRS无线通信、标准Mdbus协议。可根据监测站点场地条件灵活选择安装位置。该产品结合自动化控制、通信网络等技术,能够有效满足饮用水水质参数在线无人值守监测和数据实时传输功能。该设备监测单元采用模块化设计,具有使用成本低、占地面积小、多种监测因子灵活组合等优点。适合自来水水质监测、管网水质监测、二次供水水质监测、农饮水水质监测等应用场景。产品特点1)光学和电化学监测技术,无需试剂,绿色环保2)检测池流路稳流设计,测量值不受外界流路变化的影响3)微型化设计、体积小、用水量小,日常运行成本低4)内部RS485通讯接口,控制器自适应,集成便捷5)支持多参数定制集成应用领域自来水、管网、二次供水、泳池、膜过滤水
    留言咨询
  • 饮用水在线监测设备 400-860-5168转5113
    饮用水在线监测设备主要应用于水流较为湍急或是不易采用浸入式监测设备安装的场所,监测的数据均为无流速水样数据,排除了流速对于检测结果的影响,其数值更加稳定。产品名称:饮用水在线监测设备功能描述:饮用水在线监测设备主要应用于水流较为湍急或是不易采用浸入式监测设备安装的场所,监测的数据均为无流速水样数据,排除了流速对于检测结果的影响,其数值更加稳定。设备组成:取水系统、传感器、监测分析系统、显示系统、云平台五部分组成。供电电压:采用220V市电供电,内含漏保及空开,并留有接地端子,布线全由接线端子转接,保证产品内部的美观性和简洁性。监测要素:PH、余氯、浊度,水温,可选配电导率、ORP、溶解氧、氨氮离子、钾离子、钠离子、镁离子、钙离子、铵离子、亚硝酸根、硝酸根等要素中控屏幕尺寸:10.1英寸中控屏幕类型:可编程触摸组态显示屏。中控屏幕功能:1.对当前水质各要素监测值进行实时显示。2.可在此查询到两年内水质监测各要素的监测数值,以便对水质的好坏变化进行一个把控。3.对水质监测各要素进行报警上下限的设置,当某个水质监测要素上下限超过此设定额时,显示界面数据内容变红进行报警提示。4.可选择【手动】或【自动】模式来控制各个电磁阀及水泵的工作状态,来达到水箱中水质样品的循环监测,让监测数据更稳定。5.对排水取水过程进行定时设置,测量水箱排水时间可设、管道积水排放时间可设、水样抽取时间可设、单次采样时间可设置。通信方式:支持2G、4G、RJ45方式实时上传数据水泵配置:220W冷热水自启停自吸泵工作环境:工作环境温度0~50℃,工作环境湿度0~95%(无凝露)外形尺寸:50*40*167cm传感器参数:项目测量范围测量误差分辨率配置浊度电极常数分辨率:0.1μs/cm;电极常数分辨率:1μs/cm;±5%FS(25℃)0~200NTU以及0~1000NTU分辨率为0.1NTU;0-4000NTU量程设备分辨率为1NTU√水质溶解氧0~20mg/L(0~200%饱和度)±3%FS(25℃)0.01mg/L、0.1%PH电极0~14.00pH±0.15pH0.01pH√余氯电极0-2mg/L;0-10mg/L±5%FS0.01mg/L√温度-20~60℃±0.5℃0.1℃√电导率EC电极电极常数K=1:1~2000μs/cm;电极常数K=10:10~20000μs/cm±1%FS电极常数分辨率:0.1μs/cm;电极常数分辨率:1μs/cm电导率EC电极盐度0~11476ppm电导率EC电极TDS0~13400ppmORP电极-1999~1999mV±1mV1mV氨氮电极0-100mg/l;0-10mg/l可选±3%FS0.01mg/l铵离子0-100mg/L5%FS0.01mg/L或0.1MG/L亚硝酸根硝酸根钾离子镁离子0-100mg/L、0-1000mg/l钠离子钙离子氯离子0-3500mg/LCOD0~500mg/L equiv.KHP±5%FS equiv.KHP(25℃)0.1mg/L注意事项:1.水质取水监测平台正右方预留了两个管道接口处,可根据现场环境工作人员自行接入合适的管道长度,上方的口为排水口,下方的为进水口。2.自吸泵在工作前需要添加少许引水才能使其正常运转,不加引水会造成自吸泵抽不上水来影响整套系统的使用。
    留言咨询

饮用水样品中相关的试剂

饮用水样品中相关的方案

饮用水样品中相关的论坛

  • 生活饮用水样品如何编号

    请教各位,生活饮用水样品编号怎么编?用什么字母代表生活饮用水?有什么规范讲述样品编号规则的吗?

  • 地表水和生活饮用水样品汞的预处理

    原子荧光检测汞,地表水和生活饮用水中汞的预处理。使用硫酸-高锰酸钾消解水样中的汞,可是样品的荧光值偏高很多,求具体详细的消解方法??????????

  • 生活饮用水的样品保存

    GB/T5750.2-2016中关于生活饮用水样品采集后的保存,不少项目是要求在0-4°保存,如果是需要在外地采集水样时,在运回实验室的路途上使用什么器具来满足标准里0-4°的要求?

饮用水样品中相关的资料

饮用水样品中相关的资讯

  • 现场快速检测技术在饮用水卫生监督中的应用
    饮用水卫生质量直接关系着人民的身体健康和生命安全,对饮用水的卫生监督需要可靠的检测手段。现场快速检测技术能够在卫生监督执法的现场进行快速简便的初步筛选检查,在较短时间内确认样品中是否存在安全隐患,进而提高卫生监督执法的效率和检测的准确率,在饮用水卫生质量检测中具有重要意义。 1 现场快速检测技术概况  现场快速检测技术作为快速检测技术的一个分支,能够在对样品进行简单处理后进行快速检测,虽然只能就感官性状、一般化学指标、消毒剂常规指标和毒理学指标进行检测, 但依然对现场饮用水卫生监督检查工作具有重要作用。  2 饮用水卫生监督应用现场快速检测技术的主要方法  2.1 分光光度法  分光光度法是指能够通过测定待测样品在某一特定波长处或某一定波长范围内光的吸光度或发光强度,以对该样品进行定性和定量分析的方法。  2.2 试纸法  试纸法通过利用能在试纸上快速产生显著颜色变化的化学反应来对待测物质进行定性定量检测。应用试纸法进行测定时,需要将待测饮用水样品滴在试纸上,直接观察试纸的颜色变化,将试纸上显现的颜色与其配套标准色阶进行比对,最后可以进行定性或半定量分析该饮用水卫生水平。试纸法具有操作简单、检测速度快、经济实惠以及便于携带等优点,但由于其种类较少、灵敏度较低,故只能局限于某些简单的定性分析。  2.3 滴定法  滴定法主要是寻找适合应用于水质检测的滴定剂和指示剂,通过滴定或反滴定,根据指示剂的颜色变化指示滴定终点和滴定剂的消耗体积,计算分析结果。  2.4 直接显色法  在现场检测时,通过将快检试剂粉包或药液加入待测饮用水样品中,待其充分溶解一定时间后,可通过目测或比色计检测待测饮用水样品呈现出的特殊颜色变化。比色计读数判断检测结果,常被应用于饮用水中余氯的现场快速检测中。  2.5 酶联免疫吸附测定  酶联免疫吸附测定(ELISA)是通过抗体分子与抗原分子特异性结合并能与酶通过共价键形成酶结合物的原理,检测加入待测饮用水样品后的颜色反应来确定免疫反应是否发生, 且颜色深浅与样品中抗原或抗体的含量成正比。  2.6 生物传感器  生物传感器是一种对生物物质(包括酶、抗体、抗原、微生物等)高度敏感,并能够支持将物质浓度转换为电信号进行传导和检测的仪器。因而,生物传感器技术是一种能利用生物感应元件将待测样品浓度转换为某种物理学信号来达到检测待测样品浓度目的的技术。通过使用生物传感器技术对生活饮用水卫生质量进行检测,能够准确灵敏地识别出待测饮用水中不同成分的浓度,辅助检测工作人员对卫生指标是否达标做出直观的、准确的判断,而且其便于携带的特点十分适宜现场检测。  2.7 基因芯片  基因芯片,又被称为生物芯片,通过与一组已知序列的核酸探针杂交来测定样品的核酸序列,由此快速检测出待测饮用水中的微生物种类,鉴别有害微生物,准确度极高。但由于其需要对待测饮用水中所含的所有核酸序列进行识别、筛选和归类,往往较其他快速检测手段检测效率稍低。 而且对于这种技术的使用和设备的操作往往需要专业人员的介入,但现场监督执法组的人员配备不可能做到每次都有不同专业人士的共同参与和指导。  2.8荧光印迹  利用试剂盒或理化方法,设计能够与饮用水中代表某一卫生指标的某一成分结合的发光底物。在饮用水质检测中,通过观察在紫外光下能否激发荧光,判断所测饮用水中是否存在某卫生指标超标的情况。该检测方法不仅具有较高的准确度,还十分灵敏,但若样品中同时含有其他能够与发光底物结合的物质,就会导致结果产生误差。  3 开展现场快速检测面临的问题和对策  3.1 检测人员专业问题  卫生监督机构中缺乏从事检验工作的专业技术人员,非专业快速检测人员在使用快速检测设备和分析检测结果时,有时会因缺乏相关专业知识而导致误判。人们需要开设具有强专业性的,针对现场快速检测仪器设备的培训课程,针对仪器设备的原理、操作过程和如何对结果进行分析等对卫生监督执法人员进行授课和训练,进行多次真实的演练模拟,提升快检工作人员的工作能力和应急处理突发事件的能力,帮助卫生监督执法人员树立严谨科学的工作形象。  3.2 检验方法标准不统一  部分卫生监督现场快速检测方法没有在卫生标准中明确规定。生产商往往为了追求经济效益,对于同一类仪器设备设定不同的操作流程,而且不公开仪器设备的制造原理或试剂的配制方法,使得卫生监督执法人员在检测时只能按照各大厂商各自的说明书机械地进行操作,导致快检人员不能掌握仪器的检测规律, 无法举一反三地对检测结果进行判定,大大降低了工作效率。  3.3 仪器检测结果可信度有待提高  卫生监督部门应更加注意快检仪器设备的质量,在正式投入大量使用前,一定要先经过专业部门的质量考核,避免出现因设备本身问题造成的对结果的干扰和误判。  4 结语  现场快速检测技术能够在卫生监督执法的现场进行快速简便的初步筛选检查,在较短时间内发现样品中是否存在安全隐患,在饮用水卫生监督方面应用广泛。 人们要正视现阶段在快速检测技术方面存在的经费不足、人员专业度不高和仪器设备的精确度问题,进一步完善卫生标准,建立完整可行的饮用水卫生现场快速检测的标准,建立健全质量控制体系, 将饮用水现场快速检测技术更标准化、规范化,推动快检技术在卫生监督方面应用的快速发展。
  • 整体解决方案推荐丨生活饮用水中全氟化合物检测样品前处理
    01 全氟化合物全氟化合物作为一种表面活性剂和保护剂,广泛应用于工业生产和日常用品中。同时,全氟化合物也是一种具有高毒性、持久性、生物累积性和远距离迁移性等特性的持久性有机污染物。今年6月,中国生态环境部强调:将持久性有机污染物纳入全国环境监测体系;前不久发布的《生态环境部发布生态环境监测规划纲要(2020-2035年)》,也重点强调了加强持久性有机污染物的监测能力和水平。生活污水中的全氟化合物通过污水处理厂排放到环境中,再通过水、土壤、空气等介质进入环境及生物体,由于饮用水是人群暴露全氟化合物的主要途径之一,因此对生活饮用水中多种全氟化合物,尤其是短碳链(碳数<8)和中长碳链( 8≤碳数≤10)全氟化合物同时测定,对于保障生活饮用水安全是十分必要的。全氟化合物的检测方法气相色谱质谱法毛细管电容法液相色谱质谱超高效液相色谱串联质谱法全氟化合物的主要前处理方法固相萃取方法固相萃取法具有操作简单、溶剂消耗少、减少分析步骤及分析时间和适用面广等优点。睿科提供自动化样品前处理解决方案,针对生活饮用水中全氟化合物的分析,将自动化前处理设备带入检测的全流程,协助实验员对生活饮用水中的全氟化合物的检测进行快速无污染前处理,保证检测的快速、高效、准确。02 前处理流程水样处理1L水样,加入100μg/L内标100μL,混匀加入乙酸铵调节pH为6.8-7.0活化柱子5mL 0.1%氨水-甲醇溶液7mL甲醇和10mL超纯水活化富集以8mL/min流速上水样淋洗5mL 25mmol/L乙酸铵溶液(pH4)和12mL超纯水淋洗干燥小柱干燥15分钟洗脱5mL 甲醇和7mL 0.1%氨水-甲醇溶液进行洗脱浓缩氮吹至近干(水浴温度≤40℃)定容待上机30% 甲醇溶液(3:7,V/V)进行复溶,定容至1mL,涡旋混匀后上机测定分析03 推荐仪器和耗材1.仪器 睿科Fetector Plus高通量全自动固相萃取仪 睿科Auto EVA-60全自动平行浓缩仪 2.全氟化合物耗材包
  • GB 5749-2022 生活饮用水卫生标准解读
    GB 5749-2022 生活饮用水卫生标准将于2023年4月1日正式实行,代替GB 5749-2006生活饮用水卫生标准。标准规定了生活饮用水水质要求、生活饮用水水源水质要求、集中式供水单位卫生要求、二次供水卫生要求、涉及饮用水卫生安全的产品卫生要求、水质检验方法。本标准适用于各类生活饮用水。GB5749-2022版相比2006版的变化新标准的水质指标由原来的106项调整为97项,包括常规指标43项和扩展指标54项,将高氯酸盐、乙草胺、2-二甲基异茨醇、土臭素正式作为扩展指标加入到新标准中。另外参考指标由之前的28项调整为55项,其中主要增加项目为有机磷农药及全氟化合物(全氟辛酸、全氟辛烷磺酸)、臭味化合物如二甲基二硫醚、二甲基三硫醚、硫化物等。相应的2022版《生活饮用水标准检验方法》GB/T 5750意见稿变动很大,其中有机污染物的部分尤为明显。其中的第八部分主要规定了饮用水中常见的有机污染物,如微囊藻毒素,烷基酚,环烷酸,PPCPs等的检测方法,第九部分则明确了饮用水中痕量农残的检测项目,方法及指标,此外意见稿的第十及第五部分则为主要针对饮用水中消毒副产物残留,如氯酸盐,高氯酸盐等的检测方法。 GERSTEL饮用水检测解决方案GERSTEL饮用水检测解决方案可实现的方法和技术包括:在线SPE-LC/MS/MS直接液体进样搅拌棒吸附萃取SBSE-GC/MS(/MS)在线固相微萃取SPME-GC/MS(/MS)气相色谱-嗅闻技术 GC-O-MS可以实现对以下污染物和臭味物质超痕量的监测,一网打尽GB5749-2022标准中的目标分析物:臭味化合物:2-二甲基异茨醇、土臭素、二甲基二硫醚、二甲基三硫醚、硫化物全氟化合物:如全氟辛酸、全氟辛烷磺酸消毒副产物残留:氯酸盐、高氯酸盐邻苯二甲酸盐农药残留激素、药物残留有机污染物:如微囊藻毒素、烷基酚、丙烯酰胺等应用案列01水中痕量土臭素和2-甲基异崁醇的测定GB 5749《生活饮用水卫生标准》征求意见稿和GB/T 5750《生活饮用水标准检验方法》征求意见稿均规定采用固相微萃取技术(SPME)对水体中痕量土臭素和2-甲基异崁醇进行测定,该方法具有无需有机溶剂、灵敏度高等特点,集采样、萃取、浓缩、进样于一体,能直接应用于气相色谱、气质联用、液相色谱等仪器。能够分析40mL/60mL的水质样品,标配24位样品盘,无需减少取样量,符合GB/T 5750《生活饮用水标准检验方法》标准要求(40mL水样),检出限更低、灵敏度更高。对2种目标物5ng/L,10ng/L,20ng/L,50ng/L,100ng/L进行线性研究,2-甲基异莰醇R2为0.998,土臭素R2为0.997,线性良好。2-甲基异莰醇、土臭素两种目标物具有更低的方法检出限,分别达到2.7ng/L、0.47ng/L,符合标准要求,并且结果稳定RSD 4% (n=6)。 02水中全氟化合物,草甘膦的检测GB5750.8 有机物指标增加检测项目:全氟辛酸&全氟辛烷磺酸原理:水样经混合型弱阴离子交换反相吸附剂(WAX)固相萃取小柱富集浓缩后氮吹至近干,复溶后上机测定;以超高效液相色谱串联质谱的多反应监测(MRM)模式检测,根据保留时间以及特征峰离子定性,采用同位素内标法定量分析。GERSTEL推出在线SPE-LC-MS/MS的自动化方法测定全氟碳酸和全氟磺酸。此方法在0.2– 2.0 ng/L的线性范围内最低检测质量浓度LOD远低于1 ng/L,完全符合标准中3 ng/L 和 5ng/L的要求 。通过对不同来源的加标水样进行分析,证明了该方法的准确性。相对标准偏差RSD10%,正确度在80% -110% 之间。 分析前无需过滤水样或用甲醇稀释。对不同来源的水样验证了方法的加标回收率和精密度。目标待测物英文缩写LOD (ng/L)全氟丁酸PFBA0.14全氟戊酸PFPA0.27全氟己酸PFHxA0.13全氟庚酸PFHpA0.19全氟辛酸PFOA0.22全氟壬酸PFNA0.13全氟癸酸PFDA0.20全氟丁烷磺酸PFBS0.20全氟己烷磺酸PFHxS0.18全氟庚烷磺酸PFHpS0.24全氟辛烷磺酸PFOS0.23对不同来源的水样饮用水,河水,山泉水,矿泉水验证了方法的加标回收率和精密度,以下是生活饮用水进行加标回收率测定举例,分别添加低(5 ng/L)、高(50 ng/L)2个浓度水平,按照所建立的方法进行样品处理及测定,每个浓度重复5份平行样品,计算平均加标回收率和精密度。 组分低浓度高浓度回收率%RSD%回收率%RSD%PFBA1137952PFPA748767PFHxA941923PFHpA953921PFOA1173972PFNA954932PFDA921923PFBS925814PFHxS919922PFHpS799913PFOS886973标准溶液 (50 ng/L) 水溶液的示例色谱图在线SPE-GC-MS/MS应用详情请见:根据欧盟饮用水指令和DIN38407标准使用在线SPE-LC-MS/MS测定饮用水中的PFAS同样的配置被成功应用于草甘膦及其主要代谢物氨基甲基膦酸(AMPA)的检测,对于水中草甘膦和AMPA的测定,结果达到了10 ng/L的最佳定量限(LOQ)并达到0.999的显著线性系数。使用FMOC-Cl衍生化,随后进行自动固相萃取SPE步骤。自动样品制备过程在25分钟内完成。LC-MS/MS循环时间小于20分钟。使用GERSTEL的重叠样品制备功能PrepAhead,使样品制备和分析完全同步,以最大限度地提高生产率和通量。0.1、0.5、1.0 和5.0 ng/ml草甘膦标准品色谱图031水中消毒副产物检测GB5750征求意见稿第10部分消毒副产物指标中,要求适用液液萃取衍生气相色谱法, 要求使用MTBE进行液-液萃取,然后衍生化(甲基化),然后带有电子捕获检测器的气相色谱分析测定水中的一氯乙酸 MCAA,二氯乙酸DCAA,三氯乙酸TCAA。若取水样25 mL水样测定,本方法最低检测质量浓度分别为:5.0 μg/L、2.0 μg/L、1.0 μg/L。使用离子色谱-电导检测法最低检测质量浓度分别为:一氯乙酸(MCAA)1.9 μg/L、二氯乙酸(DCAA)3.7 μg/L、三氯乙酸(TCAA)4.4 μg/L、一溴乙酸(MBAA)3.0 μg/L、二溴乙酸(DBAA)8.3 μg/L。GERSTEL解决方案自动化液液萃取和在线衍生,完全自动化标准中的手动制样过程:如调整PH值至5,使用甲基叔丁醚萃取,加入硫酸甲溶液在50 ℃加热块上衍生2小时,加入碳酸氢钠溶液中和,取上清液注入GC。使复杂繁琐的液液萃取和衍生步骤变得简单。节省人力和物力。 该系统每天可以分析32个样品,技术人员仅需1小时的时间来进行样品加载、制备和进一步处理。小型化的方案需要消耗的溶剂少得多,从而节省了成本并改善了实验室的整体工作环境。方法的测定限为1 ppb;对所有测定的卤代酸进行了验证,在0.5 -50 μg/L的线性很好R² 0.999。1μg/L 和 40 μg/L的重复性高 (RSD 4.8%)(n=3)卤代酸HAAsR² (0.5 - 50 ppb)LODμg/LRSD % (n=3)1 μg/L40 μg/L一氯乙酸0.9990.14.10.8二氯乙酸1.0000.11.51.8三氯乙酸1.0000.23.70.8一溴乙酸1.0000.14.81.4二溴乙酸0.9990.051.40.6法国威立雅环境在巴黎用于自动测定水中卤代酸(HAAs)的系统同时这套解决方案还可以实现对三氯甲烷,三溴甲烷、二氯一溴甲烷、一氯二溴甲烷、二氯甲烷、二溴甲烷、氯溴甲烷的检测,使用顶空气相色谱法。对2,4,6-三氯酚(TCP)的检测可以使用自动化顶空固相微萃取HS-SPME标准方法来实现,或者对更低浓度的痕量化合物,使用搅拌棒吸附萃取SBSE来实现。04感官气相色谱对臭味物质的测定通过化学分析与感官评价方法结合,可对水中未知嗅味物质进行鉴定。主要采用气相色谱-嗅闻技术(gas chromatography-olfactometry,GC-O) 的方法,通过GC分离混合物中的组分,部分样品分流至闻测杯后,测试人员对不同时间流出的气体样品进行嗅闻,协助从大量色谱峰中寻找相应物质。此技术也可以帮助改善饮用水处理工艺。成功案例:中国科学院生态环境研究中心:感官气相色谱对水中不同化合物嗅味特征的同步测定感官闻测耦合仪器分析: 水务部门给臭气”定罪”的黑科技去除土臭素和 2-MIB的整体饮用水处理工艺研究05水中多环芳烃和多氯联苯的检测GB5750 检测多环芳烃使用固相萃取SPE-高效液相色谱HPLC:水中多环芳烃经苯乙烯二苯乙烯聚合物柱富集后,甲醇水溶液淋洗杂质,二氯甲烷洗脱,浓缩后用乙腈水溶液复溶,经高效液相色谱分离,紫外串联荧光检测器检测,保留时间定性,峰面积外标法定量。GERSTEL提供绿色高效的检测方法,使用搅拌棒吸附萃取SBSE-气相色谱串联质谱GC-MS/MS,样品无需复杂的前处理,直接通过搅拌棒萃取,大大节省了溶剂的使用量,并且提高了检测的灵敏度。下表是标准中的16种多环芳烃化合物使用两种方法可以达到的最低检测质量浓度LOD, 只需100ml的水样,SBSE的检测下限提高了数十倍。 对加标浓度接近各自LOQ的水样品进行重复分析 (n=6),显示所有化合物的相对标准偏差RSD在1%到15%之间,平均RSD为6.9%。大多数分析物的加标回收率在90到110%之间。16种多环芳烃化合物组分GERSTELSBSE-GC-MS/MS LOD(ng/L)GB5750SPE-HPLCLOD (ng/L)SBSE加标回收率 %SBSE精密度 %100 mL水样500 mL水样 n=6萘5.020.01022.5苊烯0.108.01134.5苊1.08.09615芴0.4516.0926.5菲2.520.0935.2蒽0.06112.0816.2荧蒽0.4516.0 9211芘0.4512.0855.8苯并(a)蒽0.0764.61055.2䓛 0.0278.01163.6苯并(b)荧蒽 0.0788.0873.8苯并(k)荧蒽0.0818.0922.3 苯并(a)芘0.0334.610212二苯并(a,h)蒽0.0738.01163.6苯并(g,h,i)苝0.0497.71067.3茚并(1,2,3-cd)芘0.0445.81044.6GB5750 检测多氯联苯使用固相萃取SPE-气相色谱质谱法GC-MS:水样中多氯联苯被C18固相萃取柱吸附,用二氯甲烷和乙酸乙酯洗脱,洗脱液经浓缩,用气相色谱毛细管柱分离各组分后,以质谱作为检测器,进行测定。GERSTEL的搅拌棒吸附萃取SBSE-气相色谱串联质谱GC-MS/MS,使用共一个方法检测多氯联苯化合物。样品无需复杂的前处理,直接通过搅拌棒萃取,大大节省了溶剂的使用量,并且提高了检测的灵敏度。下表是标准中的12种多氯联苯化合物使用两种方法可以达到的最低检测质量浓度LOD, 只需100ml的水样而非1L,SBSE的检测下限提高了数十倍。 对加标浓度接近各自LOQ的水样品进行重复分析 (n=6),显示所有化合物的相对标准偏差RSD 5 %。分析物的加标回收率在96到109%之间。12种多氯联苯化合物组分GERSTELSBSE-GC-MS/MSLOD (ng/L)GB5750SPE-GC-MSLOD (ng/L)SBSE加标回收率 %SBSE精密度 %100 mL水样1000 mL水样n=6PCB810.0397 983.2PCB770.0416 994.2PCB1230.03710 983.6PCB1180.012101014.3PCB1140.03612 1084.7PCB1050.043111094.1PCB1260.05014982.8PCB1670.04412 1002.5PCB1560.04691021.6PCB1570.04712 1032.7PCB1690.05481021.2PCB1890.05417 961.5GERSTEL的搅拌棒吸附萃取SBSE-气相色谱串联质谱GC-MS/MS被成功应用于欧盟水框架指令,能够在一次分析运行中从仅仅100mL的地表水样品中测定约100种相关污染物,如塑化剂(DEHP),各种农残,包括颗粒吸附化合物,绝大多数分析物的检测限在ng/L甚至到pg/L范围内。详情请见:欧盟水框架指令使用SBSE技术轻松搞定食品中400多种农残分析
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制