饮用水原水

仪器信息网饮用水原水专题为您整合饮用水原水相关的最新文章,在饮用水原水专题,您不仅可以免费浏览饮用水原水的资讯, 同时您还可以浏览饮用水原水的相关资料、解决方案,参与社区饮用水原水话题讨论。
当前位置: 仪器信息网 > 行业主题 > >

饮用水原水相关的耗材

  • 饮用水安全测试
    饮用水安全测试饮用水安全测试:饮用水中含有很多危害成分,是要经过严格检测之后才能工人类使用的。下面就来介绍一下当饮用水中含有余氯该怎么办?产品名称:饮用水安全测试(余氯测试盒)Visocolor HE系列 余氯测试盒高灵敏度余氯测试盒范围在0.02-0.60mg/l 方法:DPD比色法 测试盒内包括(*补充包装):可用于2*160次测试24克Cl-1* 一支用于取样的塑料烧杯100毫升Cl-2* 两个带有螺帽的玻璃试管25毫升Cl-3* 一个比色座一支85毫米长的测量勺 一张余氯比色盘危险警示:该测试盒内不含任何必须特别标记的有害物质。操作步骤:1、把比色座放置包装盒的固定位置上(请参见图示说明)。2、把比色盘插入比色座。3、打开两个圆形玻璃试管,用待测溶液清洗几次。然后,在试管中加入待测溶液至刻度处。4、加一平勺Cl-1至右侧玻璃试管。5、加12滴Cl-2至右侧玻璃试管,然后盖好瓶盖,混合均匀。6、立即读数:转动比色盘,从上面观察两支试管内的颜色,直到两支玻璃管内的颜色相同时,停止转动。从比色座的前面标记处读出测试结果,中间值可以估读。该读数即为余氯的浓度7、加入5滴Cl-3至右侧玻璃试管,盖好瓶盖,混合均匀。反应2分钟。然后依照上面的方法读数。 该读数即为总氯浓度 化合氯可以通第一次读数和第二次读数计算所得。自由氯:溶解的,单质氯,次氯酸,次氯酸盐离子。化合氯:无机氯胺和有机氯胺。
  • 气相色谱柱 饮用水EPA 方法 122-1564
    产品信息:Agilent J&W 气相色谱柱订货信息:饮用水EPA 方法应用推荐的色谱柱部件号524.2 使用毛细管 GC/MS 测定水中可清除的有机物 DB-VRX, 60 m x 0.25 mm, 1.40 μm122-1564DB-624, 60 m x 0.25 mm, 1.40 μm122-1364DB-624 Ultra Inert, 60 m x 0.25 mm, 1.40 μm122-1364UIHP-VOC, 60 m x 0.20 mm, 1.10 μm19091R-306DB-VRX, 20 m x 0.18 mm, 1.00 μm121-1524DB-624, 20 m x 0.18 mm, 1.00 μm121-1324DB-624 Ultra Inert, 60 m x 0.25 mm, 1.40 μm122-1364UIVF-624ms, 30 m x 0.25 mm, 1.40 μmCP9102VF-624ms, 60 m x 0.25 mm, 1.40 μmCP9103VF-5ms, 30 m x 0.32 mm, 1.00 μmCP8957525, 525.2使用固相萃取和毛细管色谱柱 GC/MS 测定饮用水中的 有机化合物HP-5ms, 30 m x 0.25 mm, 0.50 μm 19091S-133 526 使用固相萃取和毛细管色谱柱 GC/MS 测定饮用水中的选定半挥发性有机化合物 DB-5ms, 30 m x 0.25 mm, 0.25 μm122-5532HP-5ms, 30 m x 0.25 mm, 0.25 μm19091S-433VF-5ms, 30 m x 0.25 mm, 0.25 μmCP8944527 使用固相萃取和毛细管色谱柱 GC/MS 测定饮用水中的选定农药和阻燃剂 DB-5ms, 30 m x 0.25 mm, 0.25 μm122-5532HP-5ms, 30 m x 0.25 mm, 0.25 μm19091S-433VF-5ms, 30 m x 0.25 mm, 0.25 μmCP8944528 使用固相萃取和毛细管色谱柱 GC/MS 测定饮用水中的 酚类 DB-5ms, 30 m x 0.25 mm, 0.25 μm122-5532DB-XLB, 30 m x 0.25 mm, 0.25 μm122-1232VF-5ms, 30 m x 0.25 mm, 0.25 μmCP8944529 使用固相萃取和毛细管色谱柱 GC/MS 测定饮用水中的 炸药和相关化合物 DB-5ms Ultra Inert, 15 m x 0.25 mm, 0.25 μm122-5512UIHP-5ms Ultra Inert, 15 m x 0.25 mm, 0.25 μm19091S-431UIVF-5ms, 15 m x 0.25 mm, 0.25 μmCP8939551 使用液-液萃取和带电子捕获检测器的气相色谱测定饮用水中的加氯消毒副产物及氯化溶剂 DB-5ms, 30 m x 0.25 mm, 1.00 μm122-5533DB-1, 30 m x 0.25 mm, 1.00 μm122-1033DB-210, 30 m x 0.25 mm, 0.50 μm122-0233VF-1301ms, 30 m x 0.25 mm, 1.00 μmCP9054551.1 使用液-液萃取和带电子捕获检测器的气相色谱测定饮用水中的加氯消毒副产物,氯化溶剂和卤化农药/除草剂 DB-5ms, 30 m x 0.25 mm, 1.00 μm122-5533DB-1, 30 m x 0.25 mm, 1.00 μm122-1033DB-1301, 30 m x 0.25 mm, 1.00 μm122-1333VF-1ms, 30 m x 0.25 mm, 1.00 μmCP8913VF-1301ms, 30 m x 0.25 mm, 1.00 μmCP9054
  • 气相色谱柱 饮用水EPA 方法 123-3832UI
    产品信息:Agilent J&W 气相色谱柱订货信息:饮用水EPA 方法应用推荐的色谱柱部件号552 使用液-液萃取、衍生和带电子捕获检测器的气相色谱测 定饮用水中的卤代乙酸 DB-35ms Ultra Inert, 30 m x 0.32 mm, 0.25 μm123-3832UIDB-XLB, 30 m x 0.32 mm, 0.50 μm123-1236DB-1701, 30 m x 0.25 mm, 0.25 μm122-0732DB-5ms Ultra Inert, 30 m x 0.25 mm, 0.25 μm122-5532UIHP-5ms Ultra Inert, 30 m x 0.25 mm, 0.25 μm19091S-433UIVF-5ms, 30 m x 0.25 mm, 0.25 μmCP8944552.1 使用离子交换液-固萃取和带电子捕获检测器的气相色谱测定饮用水中的卤代乙酸和茅草枯 DB-CLP1, 30 m x 0.32 mm, 0.25 μm123-8232DB-CLP2, 30 m x 0.32 mm, 0.50 μm123-8336DB-35ms Ultra Inert, 30 m x 0.32 mm, 0.25 μm123-3832UIDB-XLB, 30 m x 0.32 mm, 0.50 μm123-1236552.2 使用液液萃取、衍生和带电子捕获检测器的气相色谱测定饮用水中的卤代乙酸和茅草枯 DB-CLP1, 30 m x 0.32 mm, 0.25 μm123-8232DB-CLP2, 30 m x 0.32 mm, 0.50 μm123-8336DB-35ms Ultra Inert, 30 m x 0.32 mm, 0.25 μm123-3832UIDB-XLB, 30 m x 0.32 mm, 0.50 μm123-1236VF-1701ms, 30 m x 0.25 mm, 0.25 μmCP9151VF-5ms, 30 m x 0.25 mm, 0.25 μmCP8944552.3 使用液液微萃取、衍生和带电子捕获检测器的气相色谱测定饮用水中的卤代乙酸和茅草枯 DB-CLP1, 30 m x 0.32 mm, 0.25 μm123-8232DB-CLP2, 30 m x 0.32 mm, 0.50 μm123-8336DB-5ms, 30 m x 0.25 mm, 0.25 μm122-5532DB-1701, 30 m x 0.25 mm, 0.25 μm122-0732VF-1701ms, 30 m x 0.25 mm, 0.25 μmCP9151VF-5ms, 30 m x 0.25 mm, 0.25 μmCP8944556 使用五氟苄基羟胺衍生和带电子捕获检测器的毛细管气相色谱测定饮用水中的羰基化合物 DB-5ms, 30 m x 0.25 mm, 0.25 μm122-5532DB-1701, 30 m x 0.25 mm, 0.25 μm122-0732VF-1701ms, 30 m x 0.25 mm, 0.25 μmCP9151VF-5ms, 30 m x 0.25 mm, 0.25 μmCP8944

饮用水原水相关的仪器

  • 仪器简介:YSI饮用水多参数安全监测仪 应用于城市自来水供应管网系统中,连续采集水质数据以确认饮用水安全送达社区。稳定、耐用的传感器饮用水供水管网有数以万公里计的管道,因此安全送达饮用水对于供水企业、地方政府和政府机构都是至关重要的。YSI饮用水多参数安全监测仪所采用传感器技术的可靠性经全球数以万次地表水和地下水应用的考验,其性能与精度倍受用户推崇。YSI最新的余氯传感器——配合测量温度、电导、酸碱度、氧化还原电位和浊度的传感器,在供水管网的任意一点均可获取读数,并为管理者提供输水安全的全面视野。YSI 饮用水安全监测多参数仪可采用以下多种方式使用:• 自动监测并记录数据在仪器的内存中(可储存150,000个读数)• 连接计算机,实时显示与记录数据• 连接YSI 6500型 过程监测器,现场实时显示并传送数据至水厂的监控系统• 与数据采集平台集成,实时采集数据技术参数:余氯:测量范围 0至3毫克/升;分辨率 0.01毫克/升;准确度 读数之±15%或0.05毫克/升,以较大者为准 电导率:测量范围 0至100毫西门子/厘米;分辨率 0.001-0.1毫西门子/厘米(视量程而定);准确度 读数之±0.5%+0.001毫西门子/厘米温度:测量范围 -5至+70℃;分辨率 0.01℃;准确度 ±0.15℃酸碱度:测量范围 0至14;分辨率 0.01;准确度 ±0.2氧化还原电位:测量范围 -999至+999毫伏;分辨率 0.1毫伏;准确度 ±20毫伏浊度:测量范围 0至1,000NTU;分辨率 0.1NTU;准确度 读数之±2%或0.3NTU,以较大者为准主要特点:监测供水管网中任意点水质,而不仅限于自来水厂监测建立水质背景值数据库系统价格经济不用试剂,运行成本低可用电池或交流电操作便于携带、使用方便余氯传感器经过美国环保局(US EPA)、美国地质调查局(USGS)和美国国防部的严格测试其它传感器通过美国环保局环保技术核实计划核实
    留言咨询
  • 产品概述PWAS-3000饮用水多参数分析系统采用7寸彩色触摸屏,全探头式检测、GPRS无线通信、标准Mdbus协议。可根据监测站点场地条件灵活选择安装位置。该产品结合自动化控制、通信网络等技术,能够有效满足饮用水水质参数在线无人值守监测和数据实时传输功能。该设备监测单元采用模块化设计,具有使用成本低、占地面积小、多种监测因子灵活组合等优点。适合自来水水质监测、管网水质监测、二次供水水质监测、农饮水水质监测等应用场景。产品特点1)光学和电化学监测技术,无需试剂,绿色环保2)检测池流路稳流设计,测量值不受外界流路变化的影响3)微型化设计、体积小、用水量小,日常运行成本低4)内部RS485通讯接口,控制器自适应,集成便捷5)支持多参数定制集成应用领域自来水、管网、二次供水、泳池、膜过滤水
    留言咨询
  • 水质(饮用水及工业废水)中的挥发性有机物检测专用气相色谱(顶空色谱法)仪器简介:水质检测专用气相色谱(饮用水及工业废水中的)挥发性有机物(顶空色谱法)摘要生活饮用水及饮水水源往往受到工业废水、农药和日用化学品等各种有机物的污染,水质污染,除了生活废水外,工厂企业排放的污水是主要原因,通过完善的水质检测技术,将是遏制水质污染,保护人类生命之源的重要手段。其中苯、甲苯、乙苯、间二甲苯、对二甲苯、邻二甲苯及有机磷农药、有机氯农药、多环芳烃、多氯联苯以及邻苯二甲酸酯类等半挥发性有机物严重危害人体健康。测定这些化合物常用的方法是将它们分类,液液萃取浓缩后,选用不同气相色谱的检测器分别测定,不仅费时费力,而且存在有机溶剂用量大、样品处理复杂等问题。为此北京北分三谱仪器有限责任公司对生活饮用水及饮水水源中挥发性有机物的分析方法进行了研究,并将顶空进样技术与气相色谱仪联用,从而缩短了分析时间。水质(饮用水及工业废水)中的挥发性有机物检测专用气相色谱(顶空色谱法)方法引用标准及适用范围GB3838-2002生活饮用水及饮水水源工业废水《饮用天然矿泉水》(GB8537-2008)《生活饮用水卫生标准》(GB 5749-2006)强制性国家标准和13项生活饮用水卫生检验国家标准,本方法适用于各行各业的各种废水,如车间有害空气工业废水、锅炉废水农药和日用化学品等各种有机物有机磷农药、有机氯农药、多环芳烃、多氯联苯以及邻苯二甲酸酯类等半挥发性有机物在印染、农药等行业作为中间体, 工厂企业排放的污水中含有硝基苯类化合物属有毒污染物是染料合成、油漆涂料、塑料、医药及农药制造等的中间体,其中硝基苯属持久毒性有机污染物。酚类化合物, 氯苯, 硝基苯类, 邻苯二甲酸酯类, 甲醛, 有机磷农药, 氯乙烯, 氯丁二烯, 三乙胺,吡啶, 2、4-滴, 六氯丁二烯,三氯乙烷, 甲草胺, ,乐果、苯、甲苯、二甲苯、乙苯、二氯甲烷、二氯甲烷, 氯仿、四氯化碳、四氯乙烯、三氯乙烯、二氯甲烷、、三氯甲烷、四氯化碳、石油类苯、甲苯、二甲苯、乐果、丙烯腈、乙腈,、环氧氯丙烷、甲胺磷等农药残留都可采用色谱法进行分离。在生产过程中往往因转化不彻底而残留, 石油化工、炼焦化工生产的排放废水都可以应用。方法原理本方法利用有机物易挥发的特性,结合顶空进样器的进样技术,采用顶空-气相色谱法,氢火焰检测器进行检测,得到了较满意的分析结果。该方法具有简便、快速、灵敏度高、重现性好、能实现半自动化的特点。顶空气相色谱法分析(饮用水及工业废水中的)挥发性有机物(顶空色谱法)北分三谱AHS-20A plus全自动顶空进样器介绍顶空进样技术是气相色谱法中一种方便快捷的样品前处理方法,其原理是将待测样品置入一密闭的容器中,通过加热升温使挥发性组分从样品基体中挥发出来,在气液(或气固)两相中达到平衡,直接抽取顶部气体进行色谱分析,从而检验样品中挥发性组分的成分和含量。使用顶空进样技术可以免除繁琐的样品前处理过程,避免有机溶剂对分析造成的干扰、减少对包谱柱及进样口的污染。该仪器可以和国内外各种型号的气相色谱仪相连接。北分三谱GC9860-5C气相色谱仪器介绍应用范围: GC-9860系列网络化气相色谱仪可广泛的应用于石油化工、环境检测、生物医药、食品加工、有机化学、卫生检疫等的微量、痕量分析。仪器特点:★ 显示窗口采用5.7寸工业彩色液晶屏设计,显示信息更全,界面操作更合理;★ 具有中、英文2套操作系统,满足不同的用户需求;★ 摒弃了易破、低档的PVC贴皮按键,采用塑料模具按键,手感好,经久耐用;★ 采用了的10/100M自适应以太网通信接口、内置IP协议栈,便于企业通过内部局域网、互联网实现远距离的数据传输;方便实验室架设、简化实验室的配置及数据的管理;★ 内部设计3个独立的连接线程,可以连接到本地处理、单位主管(如总工、技术厂长等)、以及上级主管部门(如环保局、技术监督局等),方便单位主管和上级主管单位实时监控仪器的运行以及分析数据结果;★ 配备的NETChrom® 工作站,可以支持多台色谱仪(253台)同时工作,实现数据处理以及反控,达到了业界的水平;★ NETChrom® 工作站内建的Modbus/TCP服务器,可以方便地使分析结果接入DCS(集散控制系统;★ 采用模块化的结构设计,设计明了,便于更换升级,保护了投资的有效性,可满足复杂样品分析,可选配多种高性能检测器,如FID、TCD、ECD、FPD和NPD等;★ 彻底摒弃了传统指针式压力表,并可加载EPC技术进行气路控制,自动化水平和整体性能接近国际一线品牌;★ 实现了气路故障自我保护、自动点火、熄火重点、自动开启气路,达到了一键启动;★ 设计定时自启动程序,可以轻松的完成气体、液体样品的在线分析(需配备进样部件);★ 系统设计自动进样器接口,内置多款驱动程序,可随时加装自动进样器;水质检测专用气相色谱(饮用水及工业废水中的)挥发性有机物(顶空色谱法)仪器配置产品名称主要配置(规格)数量气相色谱仪GC9860毛细管进样系统、八阶程序升温、智能后开门。FID检测器1套顶空进样器 AHS-20A plus1台毛细管色谱柱SE-54 30*0.32*0.51根色谱工作站3000(电脑自备1台)1套顶空瓶20ml100只氢氮空一体发生器或钢瓶气BF-300N1台顶空压盖机 20m' m1台 待测水中所用标准试剂分析纯各一瓶 北分三谱主营业务:销售本公司制造的色谱仪,顶空进样器,氢气发生器、空气发生器、氮气发生器、热解吸仪、电子皂膜流量计以及进口和国产的各类色谱仪、色谱仪配件、各种色谱柱、色谱标样及色谱试剂;兼营其他各种分析仪器、相关配件和试剂。顶空气相色谱法分析(饮用水及工业废水中的)挥发性有机物(顶空色谱法) 生活饮用水及饮水水源工业废水检测标准 生活饮用水及饮水水源工业废水检测标准
    留言咨询

饮用水原水相关的试剂

饮用水原水相关的方案

饮用水原水相关的论坛

  • 【转帖】中国饮用水安全困局 原水水质变差净水工艺滞后

    中国饮用水问题不容乐观。  3月22日,第十九届 “世界水日”,今年联合国定下的主题为“城市用水:应对都市化挑战”。在中国城市化的大背景下,生活饮用水无疑是城市用水的重中之重。  同时,今年也是强制性的国家标准《生活饮用水卫生标准》(GB5749-2006)5年过度期的第四年,距其规定的最迟实施期限2012年7月1日还有不到16个月的时间。  但现实情况是,一方面,全国范围内的水源地污染情况严重,另一方面,社会对生活饮用水的卫生要求愈来愈高,夹在中间的供水机构却因投入不足等原因,难以在规定时间内具有相应的检测和净水能力。  新国标在5年过渡期之后,依然是“不可能的任务”。  污染的原水,停滞的工艺  水利部副部长矫勇在2005年就曾表示,城市的饮水安全问题严峻。根据第二次全国水资源调查评价结果,按照水功能区划的标准,目前饮用水源地水功能不达标率达35.6%;全国1073个重点城市地表水饮用水水源地有25%的水质不达标;地下水水源地水质问题更为严重,115个地下水水源地中,35%的不合格。除水源地常规水质项目超标外,有毒有机物污染已在一些饮用水水源地中检出,有些地区还相当严重。  作为自来水原料的原水受到污染已成饮水安全的“头号敌人”。  根据环保部的 《2009年全国水环境质量状况》,203条河流408个地表水国控监测断面中,Ⅰ~Ⅲ类、Ⅳ~Ⅴ类和劣Ⅴ类水质的断面比例分别为57.3%、24.3%和18.4%。主要污染指标为高锰酸盐指数、五日生化需氧量和氨氮。其中,松花江、淮河为轻度污染,黄河、辽河为中度污染,海河为重度污染。  以涵盖京津等重要区域的海河为例,在64个国控监测断面中,Ⅳ类、Ⅴ类和劣Ⅴ类水质的断面比例分别为10.9%、12.5%和42.2%,已不能作为水源。  然而,在“十二五”期间,海河流域水污染的压力将继续加大。根据《海河流域水污染防治“十二五”规划编制大纲》,“按照‘十二五’经济发展和城镇化形势,在现有处理水平下,‘十二五’期间污染物排放总量将增长35%-40%,未来海河流域污染将更加严重,流域整体性污染问题将更加突出。”  大部分水厂的净水工艺已不能适应中国水质的现状。  目前集中式供水单位普遍采用的常规水处理工艺有四大步骤:混凝、沉淀、过滤、消毒。有专家表示,目前中国的大部分水厂采用的都是这种已经沿用超过百年的工艺。  “百年前的技术”已不能应对“百年后的水质”。  清华大学饮用水安全研究所所长刘文君认为,中国的原水污染严重,应该采用更严格的工艺措施来保证水质。  南开大学环境科学与工程学院的教授王启山也认为,中国的供水机构应该根据现实的情况改进净水工艺,“水厂还是老工艺,去除不了有机物和溶解态的化学物质。”该学院研究利用膜技术净水工艺的副教授郭晓燕也表示,从技术上讲,现有的净水工艺无法去除某些污染物。  北京、天津等重点大都市因种种优势,较早开始了净水工艺的改进。但即便是这些条件优越的城市,其供水系统对于水源污染的承受能力也有限。  天津自来水集团有限公司下的中法芥园水务有限公司总经理王复齐介绍,芥园水厂所用的原水来自滦河,因为上游水库中有大量水产养殖等原因,造成原水富营养化,藻类污染严重,传统工艺无法去除。为此,芥园水厂引进了弃浮工艺来解决藻类问题。天津自来水集团的生产技术部副部长张旭东表示,当前芥园水厂的出厂水指标已经达到了新国标的要求,但他同时说,“对于原水品质的下降,企业的承受能力有限。”  “不可能的任务”  面临原水水质变差,检测和工艺要求提高,成本上升,同时又要担负公用事业(2227.589,8.80,0.40%)职能,但不能自主定价,财政投入不足的困境,实力强的大型自来水公司也感困难,对于县级水厂等小型供水机构和欠发达地区的供水机构而言,在明年7月1日之前具备满足新国标难度显而易见。  刘文君坦言,在全国范围内,如期达标,实为“不可能的任务”。  而参与新国标起草的中国疾病预防控制中心水质安全方面的权威人士则表示,各个地方实际要求达到的检测和处理标准可能会少于全部要求106项,因为各地的实际情况不同,“你不用氯胺消毒,就不用检测氯胺的消毒副产物;当地不种棉花就不用检测棉花用的农药。”所以,各地实际要求的指标“只会(比106项)少,不会多。检测能力省级单位具有就够了,现在交通好了,用不着每个基层单位都具有全部检测能力”。  该人士还透露,已经进行了摸底,但各省的指标还没报上来,“估计到明年会动起来,涉及到根本利益——钱嘛。给你机会你还不去弄?至于能不能实现,看国家要求的力度了。”  实际上,新国标的9.1.1条为县级地方供水机构的检测留下了松动的余地:“供水单位的水质非常规指标选择由当地县级以上供水行政主管部门和卫生行政部门协商确定。”  而中国疾病预防控制中心环境与健康相关产品安全所水质安全监测室研究员、副主任张岚则表示,“无论难还是不难都应该达到,这是个原则。”其实,“2007年7月1日实施时就要达到新国标中的42项常规指标的要求。到2012年7月1日要全部实施。这五年是个过渡期。要考虑技术改进和设备更新等的过程。”  在定量指标之外,检测频次同样也是重要因素。王启山就认为,为保水质还应该提高检测的频次,“不同批次的水是不同的,一次检测合格就能说明都合格吗?”  按理,因为水质的形势一直在变化,国标应该五年修改一次,但2006版国标的过渡期就有5年,至今还没有完全实行,下一版国标的修订工作“还没开始”,上述权威人士透露。  在原水劣化,要求提高之外,各地的供水机构还受困于投入不足和定位不明确。  在新国标公布后,相关方面提出为了应对新挑战,应该加大投入,曾经制定了 《2009-2012年城市供水水质保障和设施改造规划》,估算的投资规模有1500亿左右,并且下发征求意见,但至今没有落定,“发改委正在沟通”,一位不便具名的人士透露。  投入不足已经影响到了饮用水的安全性。王启山就表示,“水专项”的经费主要集中在污水处理上,“分给供水的很少”。他举例说,用氯消毒,是因为“有效,便宜”,但氯是强氧化剂,会与水中的有机物反应,生成产物中还有“三致物质”(致癌、致畸、致突变),但是“没钱改”。  张旭东介绍的情况与刘文君一致,水源方面无法控制,在缺水的天津甚至存在拿钱买不到水的情况,很难再对供水方提出水质上的要求。对于其中的污染物,很多时候“不知道怎么来的”。一旦某一批次水质不好,就要采用活性炭吸附等手段,“按照每天30万吨的产量,光是投活性炭的原料成本就要几万块钱,那就是扔钱啊,疼!”张旭东说。  中国水价的结构成本并不公开透明,也不由生产方自来水公司做主,而是受到物价部门的管制。在2007年底,世界银行的报告 《中国的水价改革:经济效率、环境成本和社会承受力》就指出,中国当前的供排水价格过低,水价应该反映供水和污水处理中渐增的长期边际成本,尤其要反映生产和消费所造成的环境损害成本以及资源耗竭的机会成本。  另外,中国各水务公司“成分复杂”,例如天津的水务公司就有国企、合资、民企等各种类型。这就造成了自来水企业定位的不明确,既有“自收自支”经营压力,又要担负政府的部分公共服务职能,还得不到财政支持,压力可想而知。同时,“成分复杂”也是政府在财政投入上犹豫不决的原因之一。

  • 自来水原水受到污染,饮用水怎样才达标?

    根据环保部的 《2009年全国水环境质量状况》,203条河流408个地表水国控监测断面中,Ⅰ~Ⅲ类、Ⅳ~Ⅴ类和劣Ⅴ类水质的断面比例分别为57.3%、24.3% 和18.4%。主要污染指标为高锰酸盐指数、五日生化需氧量和氨氮。其中,松花江、淮河为轻度污染,黄河、辽河为中度污染,海河为重度污染。饮用水的卫生要求愈来愈高怎样能达标?2012年7月1日起,我国将强制实施新版的《生活饮用水卫生标准》GB/T 5749-2006,修订后的新标准,其中一项最大的变化就是检测指标从35项增加到了106项。 迪马科技作为全球领先的色谱消耗品制造和供应商,其产品覆盖了色谱分析实验室所用的绝大部分色谱消耗品:化学标准品、GC毛细柱、HPLC色谱柱、各品牌GC/HPLC仪器配件、SPE样品前处理、化学高纯溶剂等。 针对新国标GB/T 5749-2006中53项目有机物的检测,迪马科技提出了相应的色谱消耗品解决方案。

  • 【金秋计划】饮用水源地的保护措施有哪些?

    一、建立和完善生活饮用水源地保护规划。根据全市统一要求,对辖区饮用水源地进行了基础情况调研,提出初步治理方案,明确水源地保护目标、任务、责任和措施。 二、对重点水源地保护区内的污染源进行全面调查,根据各类污染源的排放状况,明确水源污染防治重点。 三、禁止在生活饮用水源保护区建设畜禽养殖场,对已在上述区域建成的畜禽养殖场限期搬迁或关闭。 四、在生活饮用水源地的建设项目,必须严格遵守有关规定,做好建设项目的报批、验收工作。 五、制定生活饮用水源污染事故处理应急预案,对威胁饮用水源安全的突发事件进行处置。 六、加强工业固废和危险废物管理,依法查处向饮用水源地倾倒工业固废、危险废物和生活垃圾的违法行为。

饮用水原水相关的资料

饮用水原水相关的资讯

  • 上海将建立饮用水水源保护生态补偿制度
    据上海市第13届人大常委会第13次会议正在审议的《上海市饮用水水源保护条例(草案)》,上海将建立饮用水水源保护生态补偿制度等,加强水源保护,保障公民身体健康和生命安全。   根据条例草案,上海市和区县人民政府应当建立饮用水水源保护生态补偿财政转移支付制度。具体办法由市发展改革行政管理部门会同市财政、环保、水务等有关行政管理部门提出方案,报市人民政府批准后执行。   上海市环境保护局局长张全说:划定饮用水水源保护区,实施严格的管理措施,必然会限制饮用水水源保护区内人们的生产、生活活动,影响水源地附近区域的经济和社会发展。目前,上海市有关部门正在抓紧研究通过财政转移支付等方式建立饮用水水源保护生态补偿制度。   根据条例草案,上海将把饮用水水源保护区分为一级保护区、二级保护区,并可视实际保护需要,在饮用水水源保护区外划定一定范围的准保护区,开展分级管理。   据悉,目前上海市饮用水原水供水格局正在发生重大调整,约占现在全市供水量16%的陈行水库已建成使用多年,青草沙原水工程一期将于2010年建成启用,成为全市第一大饮用水供水地,崇明东风西沙水源地将规划建设,黄浦江上游水源地功能仍将保留,逐步形成“两江并举,多源互补”的供水格局。全市各郊县共有小型饮用水水源60余个,约占全市供水量的18%,当前,上海市政府正在积极推进供水集约化,并计划于2015年前完成,届时这些小型水源将弃用。
  • 沈阳公布8月份水质报告 生活饮用水源99.3%达标
    p   今年8月份,沈阳市集中式生活饮用水水源监测达标率99.3%,仅丁香地下水水源监测点位不达标,超标项目为锰。 /p p   近日,沈阳市环境保护局公布今年8月份的沈阳市集中式生活饮用水水源水质状况报告。据介绍,集中式生活饮用水水源,是指进入输水管网送到用户的和具有一定取水规模(供水人口一般大于1000人)的在用、备用和规划水源。 /p p   生活饮用水包括两种水源 /p p   今年8月份,沈阳市集中式生活饮用水水源监测水量5354.25万吨,其中达标水量5316.74万吨,达标率99.3% 超标水量37.51万吨,超标率0.7%,超标项目为锰。 /p p   据介绍,沈阳市集中式生活饮用水水源包括地表水水源和地下水水源。其中,地表水水源为异地取水的抚顺大伙房水库,我市共设3个监测点位,分别为沈阳水务集团第八水厂、圣源水务东净水厂、圣源水务西净水厂 地下水水源共设13个监测点位,分别为于洪、北陵、新南塔、砂山、尹家、石佛寺、黄家、李巴彦、翟家、二〇一、河南、丁香、淞江水源。 /p p   从评价结果的总体情况来看,8月,沈阳市集中式生活饮用水水源监测水量5354.25万吨,其中达标水量5316.74万吨,达标率99.3% 超标水量为37.51万吨,超标率0.7%。16个集中式生活饮用水水源中,有15个水源达标,达标率93.8% 1个水源超标,超标率6.2%。 /p p   水源水经净化处理才作为饮用水 /p p   其中,在地表水水源中,抚顺大伙房水库、圣源水务东净水厂、圣源水务西净水厂3个集中式生活饮用水地表水源监测水量3857.55万吨,达标水量为3857.55万吨,达标率为100%。 /p p   在地下水水源中,于洪、北陵、新南塔、砂山、尹家、石佛寺、黄家、李巴彦、翟家、二〇一、河南、丁香、淞江13个集中式生活饮用水地下水源监测水量1496.70万吨,达标水量1459.19万吨,达标率97.5% 超标水量37.51万吨,超标率2.5%。13个集中式生活饮用水地下水源中,有12个水源地达标,达标率92.3% 仅丁香1个水源地超标,超标率7.7%,超标项目为锰。 /p p   环保部门表示:饮用水水源为原水,居民饮用水为末梢水,水源水经自来水厂净化处理达到《生活饮用水卫生标准》的要求后,进入居民供水系统作为饮用水。 /p
  • 环保部要求加强饮用水水源安全保障
    环境保护部近日印发《关于进一步加强饮用水水源安全保障工作的通知》,要求各级环保部门把饮用水水源环境保护工作摆上重要议事日程,进一步加强组织领导,切实落实有关措施,确保群众饮水安全。   通知指出,近年来,我国突发环境事件不断发生,对群众饮水安全造成严重威胁。2008年,环境保护部直接调度处理的突发环境事件达135起,其中威胁群众饮用水源安全的事件高达46起。今年以来,又相继发生了江苏省盐城饮用水水源酚污染、广东省韶关市水源水华暴发等事件,对饮用水安全构成了很大威胁。各地应认真汲取这些水污染事件的经验教训,进一步加强辖区饮用水水源保护,具体做好以下工作:   第一、加强辖区饮用水水源安全风险隐患排查。在全国饮用水水源基础环境调查及评估工作基础上,全面排查饮用水水源保护区、准保护区内及上游地区的污染源,加强对可能影响饮水安全的制药、化工、造纸、冶炼等重点行业、重点污染源的监督管理,建立风险源名录,从源头控制隐患。一旦发生饮用水水源污染事故,要迅速查清并切断污染来源,在当地政府统一领导下,开展污染防控工作,确保群众饮水安全。   第二、依法查处饮用水水源保护区内的违法排污行为。严格按照《水污染防治法》的要求,坚决取缔饮用水水源一级保护区内所有与供水设施和水源保护无关的建设项目,禁止网箱养殖、旅游、餐饮等可能污染饮用水源水体的活动 坚决取缔二级保护区内所有违法建设项目,采取严格措施,防止网箱养殖、旅游等活动污染饮用水源水体。严厉打击水源保护区内一切威胁水质安全的违法行为,发现一起查处一起,公开曝光查处结果。   第三、加强交通运输行业的污染防治工作。配合交通及海事部门,严格按照《危险化学品安全管理条例》及《内河交通安全管理条例》等法律法规的要求,加强饮用水源保护区、准保护区内及上游地区油类和危险化学品运载、装卸和储存设施的监管,督促其完善防溢流、防渗漏、防污染措施。各相关码头要配备足够的污染物、废弃物接收设施。   第四、进一步加强饮用水水源水质监测工作。针对存在风险隐患的水源,要加密跨界断面水质及污染特征因子监测频次,及时了解水质变化状况,及时发现问题、解决问题。要加强环境应急监测能力建设,一旦发生污染事故,要迅速准确监测分析出污染物种类、数量、来源和潜在危害,及时提出应急处理处置建议。   第五、进一步完善饮用水水源保护基础工作。按照《饮用水水源保护区划分技术规范》及《饮用水水源保护区标志技术要求》,全面开展饮用水水源保护区划分与调整工作,在各级保护区边界及穿越保护区的交通干道设立明显的标识标志。编制突发饮用水水源污染事故应急预案,加强应急演练,为处理重大突发污染事件提供管理及技术储备。   第六、完善饮用水安全保障工作报告制度。辖区内发生或可能发生的突发饮用水水源污染事件,一经核实要及时上报,坚决杜绝瞒报、漏报行为。对可能影响饮用水安全的污染事故要按程序报告相关人民政府和上级环保部门,并及时向当地城建、卫生、水利等部门和自来水处理厂通报有关信息,加大自来水厂处置力度,确保群众饮用水安全。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制