当前位置: 仪器信息网 > 行业主题 > >

近红外成像系统

仪器信息网近红外成像系统专题为您提供2024年最新近红外成像系统价格报价、厂家品牌的相关信息, 包括近红外成像系统参数、型号等,不管是国产,还是进口品牌的近红外成像系统您都可以在这里找到。 除此之外,仪器信息网还免费为您整合近红外成像系统相关的耗材配件、试剂标物,还有近红外成像系统相关的最新资讯、资料,以及近红外成像系统相关的解决方案。

近红外成像系统相关的论坛

  • 近红外活体荧光成像系统介绍

    [url=http://www.f-lab.cn/vivo-imaging/fluobeam-imaging.html][b]近红外活体荧光成像系统[/b][/url]是开放式[b]活体荧光成像系统[/b]和[b]体内荧光成像系统[/b],是非侵入性[b]活体荧光成像系统品牌[/b]中具有适中的[b]活体荧光成像系统价格[/b],也可用于术中荧光成像.[b]近红外活体荧光成像系统[/b]fluobeam提供各种活体动物实时荧光图像和荧光成像视频,适合各种大小活体动物无创荧光成像,也可用于及手术或切除手术术中荧光成像.[b]近红外活体荧光成像系统[/b]fluobeam超级小巧而紧凑,适用于各种实验室研究,广泛兼容各种荧光探针,适用于不同的活体研究领域。[b]近红外活体荧光成像系统[/b]应用领域包括:• 肿瘤学淋巴结定位• 的分布和发展• 靶向探针• 心血管研究• 免疫学和传染病 [img=近红外活体荧光成像系统]http://www.f-lab.cn/Upload/fluoptics_system_imaging.jpg[/img][b]近红外活体荧光成像系统[/b]fluobeam不同波长选择:• fluobeam800• fluobeam700• fluobeam650• fluobeam600• fluobeam500[img=近红外活体荧光成像系统]http://www.f-lab.cn/Upload/fluobeam-results.png[/img]近红外活体荧光成像系统:[url]http://www.f-lab.cn/vivo-imaging/fluobeam-imaging.html[/url]

  • 【求助】红外/近红外成像系统

    最近学习中,看到有一种红外/近红外成像系统,不知道它具体有什么用,以及原理是什么?在网上搜索了没找到合适的学习资料,不知道在哪儿能找到有用的东西?

  • 近红外光谱成像系统主要由哪些部分组成?

    [font=宋体]完整的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]成像系统通常由硬件和软件两部分组成。硬件部分通常包括成像光谱仪、光源、样品移动平台、数据存储及显示设备、支架等;软件部分通常包括硬件连接通讯、相机参数设置以及采集控制模块等。[/font]

  • . 近红外光谱成像系统有哪些分类?

    [font=宋体][font=宋体]([/font][font=宋体]1)[/font][/font][font='Times New Roman'][font=宋体]按照光谱图像获取的方式,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]成像系统可以分为点扫描、线扫描(推扫式)和面扫描[/font]3[font=宋体]种方式。点扫描每次只采集一个点的完整光谱,然后沿[/font][font=Times New Roman]x[/font][font=宋体]轴和[/font][font=Times New Roman]y[/font][font=宋体]轴设定步长连续移动获取待测样本的完整高光谱图像。线扫描每次可以采集一条线上所有像素点的完整光谱,通过沿[/font][font=Times New Roman]x[/font][font=宋体]轴或[/font][font=Times New Roman]y[/font][font=宋体]轴移动即可以获取待测样本的完整高光谱图像,是目前农产品检测领域最为常用的高光谱图像获取方式。面扫描方式每次可以获取单个波长下完整的空间图像,堆叠各波长下的单色图像即可获得待测样本的完整高光谱图像[/font][/font][font=宋体]。[/font][font=宋体][font=宋体]([/font][font=宋体]2)根据光源和光谱相机之间的位置关系不同,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]成像系统大致可以分为反射式和透射式2种模式。反射模式,即光源和光谱相机位于检测对象同一侧,光谱相机采集的是样本的反射信息,反射式是目前农产品检测领域中较为常用的光谱成像系统;透射模式,即光源和光谱相机位于检测对象不同侧,光谱相机采集的是样本的透射信息,透射成像系统主要应用于穿透性较好的农产品品质检测。[/font][/font][font=宋体]除此之外,还可以基于系统分光器件、响应波长范围等进行分类。[/font]

  • 显微成像近红外技术

    [font=宋体]传统的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术测量的是平均光谱,反映样本的平均组成,而近红外显微成像技术增加了光谱的空间分布信息,可以使样品的异质性得到进一步[/font][font=宋体]确定。近红外显微成像系统是将[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]与光学显微镜联用的系统,主要由近红外主机、近红外显微镜系统和计算机组成。近红外主机多采用干涉分光原理,主要部件包括迈克尔逊干涉仪、显微镜光学系统、检测器等。显微镜把光束聚焦到测量样品的微区上,可移动镜头从而对样品进行点、线、面的分子水平的扫描,可以快速获得大量的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]图,并把测量点的坐标与对应的红外光谱同时存入计算机,得到不同化合物在微区分布的平面图或立体图。[/font][font='Times New Roman']1. [/font][font=宋体]近红外显微成像技术的特点[/font][font=宋体][font=宋体]([/font][font=Times New Roman]1[/font][font=宋体])样品不需预处理。[/font][/font][font=宋体][font=宋体]([/font][font=Times New Roman]2[/font][font=宋体])穿透能力强。[/font][/font][font=宋体][font=宋体]([/font][font=Times New Roman]3[/font][font=宋体])水的干扰小,可以对鲜活组织和溶液中的细胞样品直接测定。[/font][/font][font=宋体][font=宋体]([/font][font=Times New Roman]4[/font][font=宋体])测定的区域可达到[/font][/font][font='Times New Roman']lcm[/font][sup][font='Times New Roman']2[/font][/sup][font=宋体]以上,并且可以检测粗糙表面的样品。[/font][font=宋体][font=宋体]([/font][font=Times New Roman]5[/font][font=宋体])非接触性、非破坏性、无环境污染。[/font][/font][font=宋体][font=宋体]([/font][font=Times New Roman]6[/font][font=宋体])二维光谱可以增强分辨率,展示更多的细节。[/font][/font][font=宋体][font=宋体]([/font][font=Times New Roman]7[/font][font=宋体])可分析多种物态的样品。[/font][/font][b][font='Times New Roman']2. [/font][font=宋体]成像方式[/font][/b][font=宋体][font=宋体]([/font][font=Times New Roman]1[/font][font=宋体])总吸收图像,以每一个的数据点的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]图为基础,宏观显示图像分析区域内的近红外吸收强度。[/font][/font][font=宋体][font=宋体]([/font][font=Times New Roman]2[/font][font=宋体])单波长成像,以特定波长的近红外吸收强度为特征,显示对应化学官能团在图像分析区域内的分布信息。[/font][/font][font=宋体][font=宋体]([/font][font=Times New Roman]3[/font][font=宋体])化学成像,也叫峰面积图像,是以特定吸收峰的峰面积为特征,显示对应化学官能团在图像分析区域内的分布信息。[/font][/font][font=宋体]([/font][font='Times New Roman']4[/font][font=宋体])相关谱成像,以某一张[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]为标准,计算出整个图像上的像素点光谱与它的相关性,再以相似度为度量成像。特别适于鉴别纯物质中的零星污染物。[/font][font=宋体]([/font][font='Times New Roman']5[/font][font=宋体])峰比率成像,以[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]图不同吸收峰的峰比率为特征,显示对应化学官能团在图像分析区域内的分布信息。[/font][font=宋体]近红外显微成像技术在材料、食品、医药等行业已经发挥了较大的作用,利用其进行化学成分测定及微区分析,快速、简单、直观。与扫描电镜、透射电镜、电子探针、[/font][font='Times New Roman']X[/font][font=宋体]射线衍射等其他微区分析技术相比,近红外显微成像技术具有制样简单、操作方便、快速定量、无损分析的优点。因此,作为现代分析技术,近红外显微成像技术必将得到越来越广泛的应用。如何建立适用性、稳定性更好的数学模型,实现不同仪器之间、同一仪器不同条件下的定标模型的转移,以及与其他分析技术的联用将是近红外显微成像技术的发展趋势。[/font]

  • 手持式近红外荧光成像仪简介

    [url=http://www.f-lab.cn/vivo-imaging/imaging-head-rc2.html][b]手持式近红外荧光成像仪[/b][/url]专业是实验室[b]近红外荧光成像[/b]而设计的[b]近红外荧光成像仪[/b],非常方便[b]手持式近红外荧光成像[/b]应用。手持式近红外荧光成像仪参数Full FLARE(4)独立的视频流重量只有2磅只有10x3in大小易于抓握的人体工学设计光学定制:大的工作距离为9到15″″可变视场从2.8平方厘米到20厘米对角线完美的Full FLARE通道焦点分辨率为35 µ m所有的FLARE光子控制单元(PCUs)带锁的母榫,可快速稳定地连接到支架上。集成、防水10′光电脐带可选的VESA安装,可自己动手安装可选的sterile drapes[img=手持式近红外荧光成像仪]http://www.f-lab.cn/Upload/Flare-imaging-RC2.jpg[/img]手持式近红外荧光成像仪:[url]http://www.f-lab.cn/vivo-imaging/imaging-head-rc2.html[/url][b][/b]

  • 双波长活体荧光成像系统特点

    [url=http://www.f-lab.cn/vivo-imaging/lab-flare.html][b]双波长活体荧光成像系统[/b][/url]是最先进的开放空间[b]近红外荧光成像系统[/b],能够真正同时获得彩色视频和两种不同波长的[b]近红外荧光图像,[/b]广泛用于[b]体外近红外荧光成像分析,活体近红外荧光成像分析,荧光造影剂研发,低温荧光层析成像[/b]等应用。双波长活体荧光成像系统是实验室近红外荧光成像研究的理想仪器,它提供A/D、D/A、TTL输入和输出,使复杂的重复实验自动化完成双波长活体荧光成像系统采用2个紧凑荧光成像头通过长距离六自由度运动支架和电磁制动臂连接到可移动的小车上,方便移动使用,并具有多种无菌操作和减少反射伪影的附件也可供使用。双波长活体荧光成像系统应用体外近红外荧光成像分析活体近红外荧光成像分析新型近红外荧光造影剂的研制低温荧光层析成像[img=双波长活体荧光成像系统]http://www.f-lab.cn/Upload/flare-open-imaging-R1.JPG[/img]双波长活体荧光成像系统规格参数视场 从0.9厘米到25.3厘米不等。工作距离 从12"到18"[b]不等[/b]分辨率 从50微米到500微米光照波段 3(彩色视频,近红外通道# 1、近红外通道# 2)同时成像通道 3通道(彩色视频,近红外通道# 1、近红外通道# 2)无菌使用 通过专有的悬垂/盾牌组合。见附件标签。可移植性好 4医用个人脚轮刹车运输 可重复使用,防水,防火,防震运输箱声明 仅用于实验室研究使用。不用于人类或动物诊断。[img=双波长活体荧光成像系统]http://www.f-lab.cn/Upload/FLARE-OPEN-imagin_300x239.png[/img][img=双波长活体荧光成像系统]http://www.f-lab.cn/Upload/FLARE-OPEN-imagin_300x239.png[/img]双波长活体荧光成像系统:[url]http://www.f-lab.cn/vivo-imaging/lab-flare.html[/url]

  • 苏州纳米所等在硫化银近红外量子点活体成像研究中获进展

    随着生物医学影像技术的不断发展,近红外荧光成像技术在生物医学研究领域得到了越来越多的关注和应用。其中,近红外二区(1000 nm-1400 nm)荧光对生物组织穿透能力强,成像信噪比高,该区域荧光成像技术在生物活体成像领域已展现出巨大潜力。量子点(Quantum dots, QDs)作为一种新型的纳米荧光探针,具有亮度高、光稳定性强、光谱可调等传统荧光染料不可比拟的优势,在生物标记、成像与传感等方面得到了广泛应用,而开发具有近红外二区荧光发射、生物相容性好、量子产率高的QDs是当前其用于活体荧光成像所面临的重要挑战。 中科院苏州纳米技术与纳米仿生研究所王强斌研究员课题组在“单源前驱体制备Ag2S近红外量子点”(J. Am. Chem. Soc. 2010, 132, 1470–1471)的基础上,进一步优化制得了量子产率更高、生物相容性更好、尺寸均匀可控的Ag2S近红外QDs。通过与美国斯坦福大学戴宏杰教授课题组合作,利用Ag2S QDs进行了细胞成像与毒性研究。结果表明,在水溶性Ag2S QDs表面修饰不同的生物识别分子,可实现对不同细胞系的特异性标记,并且该Ag2S QDs几乎没有细胞毒性(ACS Nano 2012, 6, 3695–3702)。 在上述工作基础上,王强斌课题组与戴宏杰教授课题组继续合作,进一步将Ag2S QDs用于动物活体成像研究。结果表明,因肿瘤组织对大分子的高通透性和滞留效应(简称EPR效应),肿瘤对QDs具有很高的摄取(图2),该现象为肿瘤早期诊断以及手术的可视化提供了重要的技术基础。同时,他们对导入小鼠体内QDs的命运进行了追踪,发现除了富集于肿瘤部位的QDs外,其它QDs大部分在注射24小时后不断的随粪便和尿液排出;一周后,体内各个器官(肝和脾除外)的QDs均已基本排出(图3)。 该工作已在国际著名杂志Angewandte Chemie International Edition上发表。对Ag2S QDs的长期体内代谢、分布和毒理研究正在进行之中。 此项工作得到中科院“百人计划”、中科院先导专项、国家自然科学基金委和科技部等的大力支持。 原文链接http://www.cas.cn/ky/kyjz/201209/W020120921399246236683.gif 图1:(a)Ag2S QDs成像示意图,(b)和(c)分别为Ag2S QDs的实物和暗场中的荧光照片,(d)和(e)分别为吸收和荧光光谱,(f)为Ag2S QDs的TEM照片。http://www.cas.cn/ky/kyjz/201209/W020120921399246247360.gif图2:4T1肿瘤对Ag2S QDs的高效摄取http://www.cas.cn/ky/kyjz/201209/W020120921399246242640.gif图3:Ag2S QDs的活体滞留和排泄情况

  • 探秘大脑“地图”!北航汪待发,研发“世界首个”便携式近红外脑功能成像设备!

    [align=center][font=arial, helvetica, sans-serif][size=18px]近日,新华社[/size][/font][/align][align=center][font=arial, helvetica, sans-serif][size=18px]“走进中国新科技”系列专题[/size][/font][/align][align=center][font=arial, helvetica, sans-serif][size=18px]对北京航空航天大学[/size][/font][/align][align=center][font=arial, helvetica, sans-serif][size=18px]生物与医学工程学院[/size][/font][/align][align=center][font=arial, helvetica, sans-serif][size=18px][color=#4472c4]樊瑜波、李德玉、汪待发联合团队[/color][/size][/font][/align][align=center][font=arial, helvetica, sans-serif][size=18px]所研发的近红外脑功能成像技术[/size][/font][/align][align=center][font=arial, helvetica, sans-serif][size=18px]进行了深入报道[/size][/font][/align][align=center][img=,500,281]https://img1.17img.cn/17img/images/202401/uepic/55a00942-fb2d-4e6f-8ecb-68ba5ca65b17.jpg[/img][/align][align=center][font=arial, helvetica, sans-serif][size=18px]今天,带大家走近[/size][/font][/align][align=center][font=arial, helvetica, sans-serif][size=18px]联合团队中的[/size][b][size=18px][color=#4472c4]汪待发副教授[/color][/size][size=18px][color=#4472c4][/color][/size][/b][/font][/align][align=center][font=arial, helvetica, sans-serif][size=18px]踏足[/size][b][size=18px][color=#4472c4]“脑功能疾病诊疗”[/color][/size][/b][size=18px]科技前沿[/size][/font][/align][align=center][img=,500,500]https://img1.17img.cn/17img/images/202401/uepic/a8537738-d3b9-4b65-9d2c-29a9b764183f.jpg[/img][/align][align=center][font=arial, helvetica, sans-serif][color=#7f7f7f]汪 待 发[/color][/font][/align][align=center][font=arial, helvetica, sans-serif][color=#7f7f7f]北京航空航天大学生物与医学工程学院副教授、博士生导师[/color][/font][/align][font=arial, helvetica, sans-serif][size=18px]从事近红外脑功能成像、脑机接口、脑功能评价、神经调控等方面研究已有20余载,作为课题组长承担国家重大科学仪器研制项目1项、国家重点研发计划1项;主持国家自然科学基金面上、青年等基金课题。发表SCI论文40余篇,申请发明专利数十项。致力于近红外脑功能成像领域的研究、研发、产业化与临床应用,研发装备已在包括301医院、宣武医院、上海华山医院、清华大学等400余家单位示范应用;支撑在Human Behaviour、Journal of Cleaner Production、NeuroImage等杂志发表SCI论文120余篇。[/size][/font][align=center][color=#ffffff][back=#4bacc6][b][font=arial, helvetica, sans-serif]攻克世界难题[/font][/b][/back][/color][/align][align=center][color=#ffffff][back=#4bacc6][b][font=arial, helvetica, sans-serif]研发“戴在头上的功能核磁”[/font][/b][/back][/color][/align][font=arial, helvetica, sans-serif][size=18px]大脑是人类最复杂神秘的器官,思想的萌生之地,生命的承载中枢。了解大脑的功能和运行机制,可以揭示人类学习、智慧、发育的诸多奥秘,也是治疗中风、阿尔茨海默症、抑郁症、精神分裂症等重大脑疾病的基础。人类对大脑运行机制的不断探索和深刻理解,更为新一代类脑人工智能技术的飞速发展,提供了关键的生物学理论基础。[/size][/font][font=arial, helvetica, sans-serif][size=18px][color=#4472c4]自然状态下大脑活动的高分辨成像是世界难题[/color][/size][size=18px]。[/size][/font][font=arial, helvetica, sans-serif][size=18px]目前,主流的脑功能成像方法包括功能核磁共振(fMRI)、核素成像(PET)、脑电(EEG)、近红外脑功能成像(f[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S)等。然而,大型脑功能成像系统包括fMRI、PET体积庞大,并且患者不能有头动,不适合于自然情景;EEG相对轻便,然而其空间分辨率低,并且对于头动、电磁的干扰均非常敏感。[/size][/font][align=center][img=,500,284]https://img1.17img.cn/17img/images/202401/uepic/2bdf17b8-9257-4a51-9a1d-701ed7f2dce2.jpg[/img][/align][b][font=arial, helvetica, sans-serif][size=18px][color=#4472c4]近红外脑功能成像,为自然状态下的高分辨脑成像带来了新型技术平台,亦被称为“戴在头上的功能核磁”。[/color][/size][/font][/b][font=arial, helvetica, sans-serif][size=18px][color=#4472c4][/color][/size][size=18px]它和fMRI一样,探测的是大脑氧代谢的载体(血红蛋白)的浓度变化。由于采用的光学手段,它空间分辨率高(1-3cm)、适合于各种自然状态,可以一边运动一边检测、一边说话一边检测、一边治疗一边检测,[/size][b][size=18px][color=#4472c4]为中国上亿的脑功能障碍疾病患者的诊断、疗效评价、疗效预测、用药/干预/康复方案的指导等提供了创新性手段[/color][/size][/b][size=18px],这包括脑卒中神经康复、精神疾病、儿童发育障碍(孤独症谱系障碍等)及神经退行性疾病(阿尔茨海默病等)等。[/size][/font][align=center][img=,500,180]https://img1.17img.cn/17img/images/202401/uepic/ea4c99a7-c0d1-4c5c-b227-89762aaa069b.jpg[/img][/align][align=center][font=arial, helvetica, sans-serif][color=#7f7f7f]近红外脑功能成像原理[/color][/font][/align][font=arial, helvetica, sans-serif][size=18px]然而,高端脑影像设备的关键技术长期被发达国家垄断。例如近红外脑功能成像设备,长期被美日等垄断,单价在数百万,但却不能解决亚洲人有黑色头发覆盖区域(顶叶、枕叶等)成像的难题,限制了脑功能检查和研究的开展。[/size][/font][font=arial, helvetica, sans-serif][size=18px][color=#4472c4]汪待发副教授,是近红外脑功能成像技术第三代的践行者。[/color][/size][size=18px]2010年博士毕业后,他来到北京航空航天大学生物与医学工程学院任教。当时,北航生医学院刚刚建院不久,立意高远,把学院科研发展聚焦在解决国家重大需求牵引的医工科学和技术上。[/size][size=18px][color=#4472c4]汪待发扎根北航,攻坚近红外脑功能成像领域的难题。[/color][/size][size=18px]通过自己多年如一日的努力,以及与包括樊瑜波、李德玉等北航的血流动力学分析、高精密传感专家的不断研讨和思想碰撞,经历数百次的试验、挫折和迭代验证,[/size][size=18px][color=#4472c4]他终于突破了近红外超微光探测技术,攻克了亚洲人有黑色头发的脑区(顶叶、枕叶等)的快速精准成像的世界难题。[/color][/size][/font][align=center][img=,500,479]https://img1.17img.cn/17img/images/202401/uepic/4eeefeb9-a92b-4b21-ad5d-20c8bb767bcc.jpg[/img][/align][align=center][font=arial, helvetica, sans-serif][color=#7f7f7f]汪待发团队f[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S产品覆盖的行业应用[/color][/font][/align][font=arial, helvetica, sans-serif][size=18px]2016年初,[/size][b][size=18px][color=#4472c4]依托北航校地合作平台孵化[/color][/size][/b][size=18px],汪待发创立了慧创医疗,立志要克服成果转化这个陌生领域的重重困难,坚定地把科研成果落实在祖国的大地上。依托科技风险投资的资金支持,汪待发领导的慧创团队与北航联合团队开展合作,充分发挥产学研合作优势,2019年研发推出了[/size][b][size=18px][color=#c00000]世界上首个获得医疗器械注册证的、超100通道的近红外脑功能成像装置[/color][/size][/b][size=18px],突破性地实现了全脑成像,实现了中国近红外脑功能成像领域自主知识产权的开创性进展。[/size][/font][align=center][img=,500,281]https://img1.17img.cn/17img/images/202401/uepic/c116ae48-6d44-471a-bbb5-d41b688ca670.jpg[/img][/align][align=center][font=arial, helvetica, sans-serif][color=#7f7f7f]世界上首个获得医疗器械注册证的、超100通道的近红外脑功能成像装置[/color][/font][/align][font=arial, helvetica, sans-serif][size=18px]在此基础上,将超微光技术进一步数字化,汪待发带领团队研发了[/size][b][size=18px][color=#c00000]世界首台获医疗器械证的便携式近红外脑功能成像设备。[/color][/size][/b][size=18px]其平板电脑大小的身形,却具备领先于进口台式设备的成像性能,让临床和科研专家惊叹,赢得了广泛的认可。[/size][/font][align=center][img=,500,281]https://img1.17img.cn/17img/images/202401/uepic/c368315f-f914-43d8-9ef2-d7075a262e9e.jpg[/img][/align][align=center][font=arial, helvetica, sans-serif][color=#7f7f7f]世界首台获医疗器械证的便携式近红外脑功能成像设备[/color][/font][/align][font=arial, helvetica, sans-serif][size=18px]目前,汪待发团队所转化的近红外脑功能成像系列产品及技术,已在301、北京协和、上海华山、四川华西、清华大学、北京师范大学、香港理工大学等[/size][b][size=18px][color=#c00000]800余家一流临床及科研单位[/color][/size][/b][size=18px]示范应用,开展临床检查和科学研究,并已支撑专家在以Nature Human Behaviour为代表的顶级期刊上,发表了SCI论文[/size][b][size=18px][color=#c00000]180余篇[/color][/size][/b][size=18px],在国内外形成了广泛影响。在北航原始创新的加持下,慧创医疗作为唯一一家企业起草单位,与国家药监局合作,[/size][b][size=18px][color=#c00000]制定了中国首个近红外脑功能成像强制性国家标准。[/color][/size][/b][size=18px]同时,近红外脑功能成像产品[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]Scan,因其“高精尖”装备+原创+领先的综合属性,[/size][b][size=18px][color=#c00000]获评江苏省首台(套)重大装备[/color][/size][size=18px]。[/size][/b][/font][align=center][img=,500,311]https://img1.17img.cn/17img/images/202401/uepic/bae9f6f5-5fb8-4ba0-8fb0-7c36ff9c734c.jpg[/img][/align][align=center][font=arial, helvetica, sans-serif][color=#7f7f7f]近红外脑成像设备支持用户发表的高水平SCI论文[/color][/font][/align][align=center][color=#ffffff][back=#4bacc6][b][font=arial, helvetica, sans-serif]致力于科技成果[/font][/b][/back][/color][/align][align=center][color=#ffffff][back=#4bacc6][b][font=arial, helvetica, sans-serif]转化解决临床应用痛点[/font][/b][/back][/color][/align][font=arial, helvetica, sans-serif][size=18px]为推动近红外脑功能成像更好地解决临床痛点需求,作为医工专家,汪待发[/size][b][size=18px][color=#4472c4]积极把自己变成“最懂临床需求的科学家”[/color][/size][/b][size=18px]。目前,他担任了中国康复医学会脑功能检测与调控康复专业委员会常务委员、第二届中国妇幼健康研究会婴幼儿心理健康专业委员会常务委员、中国康复医学会阿尔茨海默病与认知障碍康复专业委员会青年组副组长,并担任了浙江大学医学院附属精神卫生中心(杭州市第七人民医院)特聘专家、国家药品监督管理局医疗器械技术审评中心外聘专家。作为f[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]NIR[/color][/url]S领域TOP科学家,他每年在全国各地完成约[/size][b][size=18px][color=#c00000]30余场[/color][/size][/b][size=18px]高质量的学术讲座,与临床专家深入交流,积极推动近红外脑功能成像在临床各个领域的广泛应用。同时,在樊瑜波教授的鼓励下,依托国家医学攻关产教融合平台(医工结合),汪待发所带领的团队,仅2023年就开展了多元化多层次的脑科学领域相关培训近[/size][size=18px][color=#c00000]20次[/color][/size][size=18px],合计邀请了近[/size][b][size=18px][color=#c00000]70位[/color][/size][/b][size=18px]脑科学及相关领域专家,合计线下培训人员超[/size][b][size=18px][color=#c00000]600人[/color][/size][/b][size=18px],线上培训超[/size][b][size=18px][color=#c00000]8000人[/color][/size][/b][size=18px]。[/size][/font][align=center][img=,500,251]https://img1.17img.cn/17img/images/202401/uepic/57ce9754-2d8f-49df-ad1e-15f2ac06bb72.jpg[/img][/align][font=arial, helvetica, sans-serif][size=18px]2021年,汪待发与国内顶级医院的临床专家一起,撰写了[/size][b][size=18px][color=#c00000]中国首个近红外脑功能成像专家共识[/color][/size][/b][size=18px],为该技术在临床的快速应用和发展做出了积极推动。2022年底,北航樊瑜波、李德玉、汪待发联合团队的“近红外脑功能成像系统开发及临床应用”成果获得了[/size][b][size=18px][color=#c00000]中国生物医学工程学会最高奖项——“黄家驷”生物医学工程奖[/color][/size][/b][size=18px][color=#c00000]。[/color][/size][size=18px]这一奖项的获得,体现了中国生物医学工程行业对北航近红外脑功能成像技术和系统成果的充分肯定。[/size][/font][align=center][img]https://img1.17img.cn/17img/images/202401/uepic/d5b60f20-6c2d-42ad-9734-9cfcee48e68c.jpg[/img][/align][align=center][font=arial, helvetica, sans-serif][color=#7f7f7f]近红外脑功能成像系统荣获“黄家驷”生物医学工程奖证书[/color][/font][/align][font=arial, helvetica, sans-serif][size=18px]近年来,在近红外脑功能成像技术的基础上,在国家重点研发计划的牵引下,[/size][/font][b][font=arial, helvetica, sans-serif][size=18px][color=#4472c4]汪[/color][/size][size=18px][color=#4472c4]待发团队瞄准了另一个脑科学世界级难题“阿尔茨海默症(老年痴呆症)治疗”[/color][/size][/font][/b][font=arial, helvetica, sans-serif][size=18px][color=#4472c4][/color][/size][size=18px]。团队目前在阿尔兹海默症治疗方面已取得突破性进展,其研发的[/size][b][size=18px][color=#c00000]“近红外光脑功能治疗仪”目前已获批国家药品监督管理局(NMPA)医疗器械绿色通道(创新医疗器械设置特别审批通道)[/color][/size][/b][size=18px]。这是国家药监局为具备重大创新的医疗器械开辟的一条审查极为严格的注册证快速申请通道。从2014年国家药监局正式颁布《创新医疗器械特别审批程序(试行)》的近十年来,仅批准了300余项。目前,在国家科技成果转化引导基金的支持下,团队正在和临床专家们合作,开展阿尔茨海默症治疗产品的临床试验。[/size][/font][align=center][color=#ffffff][back=#4bacc6][b][font=arial, helvetica, sans-serif]托举学子梦想[/font][/b][/back][/color][/align][align=center][color=#ffffff][back=#4bacc6][b][font=arial, helvetica, sans-serif]培育医工行业未来[/font][/b][/back][/color][/align][font=arial, helvetica, sans-serif][size=18px]作为年轻科学家,在承接前辈科学家的教诲和精神的同时,汪待发也已成长为[/size][b][size=18px][color=#4472c4]带领年轻学子的领头人[/color][/size][/b][size=18px]。汪待发一直将人才培养与国家需求紧密结合,以人民群众的生命健康为牵引,鼓励学生们[/size][b][size=18px][color=#4472c4]“能人所不能,坚持解决临床核心痛点,做世界领先的高水平研究”[/color][/size][/b][size=18px],从临床实际中挖掘科学问题,并将研究成果应用到临床实际中去,扎扎实实地把科研写在祖国的大地上。[/size][/font][align=center][img=,500,327]https://img1.17img.cn/17img/images/202401/uepic/1b872049-f273-4977-a638-b912ae894420.jpg[/img][/align][align=center][font=arial, helvetica, sans-serif][color=#7f7f7f]汪代发与课题组硕博士生合影[/color][/font][/align][b][font=arial, helvetica, sans-serif][size=18px][color=#4f81bd]“要在学生最有梦想的时候好好引导他们,他们是祖国与行业的明天,要让他们放飞思想,追逐科技创新的梦想。”[/color][/size][/font][/b][font=arial, helvetica, sans-serif][size=18px]汪待发在科研之余还担任北航冯如书院本科生导师。作为导师,他悉心指导硕士、博士研究生近20人,攻坚脑功能疾病诊疗的难题。他将科研及转化的经验融入课堂教学,近三年担任《生理信号检测与处理实验》的负责人,不断完善课程建设,引导学生主动思考、发现问题、解决问题;作为《医学成像系统》和《生物医学成像技术》的主讲老师,带领学生认识行业内的新技术新成果,培养具有前沿视野的行业接班人。[/size][/font][align=center][font=arial, helvetica, sans-serif][size=18px]将科研与国家的重大需求做贴合[/size][/font][/align][align=center][font=arial, helvetica, sans-serif][size=18px]攻坚中国脑功能疾病难题[/size][/font][/align][align=center][font=arial, helvetica, sans-serif][size=18px]做世界领先的高端脑功能疾病诊疗装备[/size][/font][/align][align=center][font=arial, helvetica, sans-serif][size=18px]和汪待发副教授一样[/size][/font][/align][align=center][font=arial, helvetica, sans-serif][size=18px]在北航奋斗的广大教师们[/size][/font][/align][align=center][font=arial, helvetica, sans-serif][size=18px]一直在脚踏实地、仰望星空[/size][/font][/align][align=center][font=arial, helvetica, sans-serif][size=18px]潜心科研、矢志创新[/size][/font][/align][align=center][font=arial, helvetica, sans-serif][size=18px]在建设科技强国[/size][/font][/align][align=center][font=arial, helvetica, sans-serif][size=18px]人才强国的新征途中[/size][/font][/align][align=center][font=arial, helvetica, sans-serif][size=18px]上下求索,砥砺前行![/size][/font][/align][来源:北京航空航天大学][align=right][/align]

  • 深度学习算法可用于近红外光谱成像分析领域的哪些方面?

    [font=宋体][font=宋体]卷积神经网络、自适应编码器等可用于特征提取、噪声消除等;此外,卷积神经网络、[/font][font=Times New Roman]LSTM[/font][font=宋体]神经网络等可直接用于模式识别或是定量分析。目前,深度学习算法在农产品近红外成像分析领域的应用尚在探索阶段,比如输入的选取、深度神经网络的拓扑结构设计等。尽管深度学习在图像、视频、音频和自然语言处理等领域展现了无可比拟的优势,但是在光谱成像分析领域,深度学习算法是否一定优于传统方法还有待具体问题具体分析。[/font][/font]

  • 【原创大赛】(代发)近红外光谱脑功能成像技术综述

    【原创大赛】(代发)近红外光谱脑功能成像技术综述

    [align=center][font='等线'][size=13px][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]脑功能成像技术综述[/size][/font][/align][align=left][font='等线'][size=13px]摘[/size][/font][font='等线'][size=13px] [/size][/font][font='等线'][size=13px]要[/size][/font][font='等线'][size=13px]:[/size][/font][font='等线'][size=13px] [/size][/font][font='等线'][size=13px][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url](NIRS)的出现为理解从静息状态向活动状态转变过程中氧化代谢的调节提供了一种独特的工具。许多实验室已经开始应用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]来询问大脑和肌肉的新陈代谢,并获得了区分健康和患病组织的生物能量学和血流动力学的见解。然而,适当地使用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术和方法论需要对物理、生物化学和生理学的原理有扎实的理解。事实上,以学术严谨但有趣的方式介绍一个复杂的生物物理学主题往往会带来挑战 本文通过简要介绍fNIRS技术并结合部分实验来进一步说明其应用。[/size][/font][/align][align=left][font='黑体'][size=13px]关键[/size][/font][font='黑体'][size=13px]词[/size][/font][font='黑体'][size=13px]:[/size][/font][font='仿宋']NIRS fNIRS[/font][/align][align=left][font='宋体'][size=18px]一、[/size][/font][font='宋体'][size=18px][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]脑功能成像技术介绍[/size][/font][/align][align=left][font='楷体'][size=16px][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]脑功能成像技术(fNIRS)是近年来新兴的一种非侵入式功能神经影像学技术。fNIRS进行脑功能成像的原理与fMRI相似,即大脑神经活动会导致局部的血液动力学变化。其主要利用脑组织中的氧合血红蛋白和脱氧血红蛋白对600-900nm不同波长的近红外光吸收率的差异特性,来实时直接检测大脑皮层的血液动力学活动,进而通过观测这种血液动力学变化,即可通过神经血管耦合规律反推大脑的神经活动情况。例如,当让受试者做右手手指运动任务时,其大脑皮层左侧运动放电,消耗氧和能量。此时,脑部血供系统的过补偿机制会向该局部大量输入含有丰富氧合血红蛋白的血液,从而导致该局部的氧合血红蛋白浓度增加,脱氧血红蛋白下降;在fNIRS实验中,实验者让被试按照一定实验范式执行任务,同时使用fNIRS观测大脑不同位置的血红蛋白度的浓度变化,如果找到了某一脑区,其血液动力学活动与该任务设计相关程度很高,即可推断该脑区被实验任务激活。[/size][/font][/align][align=left][font='楷体'][size=16px][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]领域有四种主要的实验技术,如图1所示。最简单的一种方法是连续波光谱法(CWS),将恒定强度的光注入组织,然后在距光源一段距离处测量衰减的光信号。CWS技术具有仅获得光密度变化的限制。更详细的方法有空间分辨光谱(SRS)、时间分辨光谱(TRS)和相位调制光谱(PMS)。表1显示了四种测量方法的优缺点。[/size][/font][/align][align=left][/align][align=center][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111101417010478_4454_3322588_3.png[/img][/align][align=center][font='仿宋'][size=13px][color=#3e3e3e]图1.[/color][/size][/font][font='仿宋'][size=13px][color=#3e3e3e]利用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]进行组织血氧测定的各种技术[/color][/size][/font][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111101417013539_5893_3322588_3.png[/img][/align][align=center][font='仿宋'][size=13px][color=#3e3e3e]表1.[/color][/size][/font][font='仿宋'][size=13px][color=#3e3e3e]CWS、SRS、TRS和PMS的优缺点[/color][/size][/font][font='arial'][size=12px][1][/size][/font][/align][align=left][font='等线'][size=13px]2、 [/size][/font][font='等线'][size=13px][url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术在生理科学中的应用[/size][/font][/align][align=left][font='等线'][size=13px]早期研究采用血氧饱和度的起始和恢复动力学来评估氧利用和氧输送。肌肉复氧恢复时间反映局部肌肉氧合平衡和需氧量。恢复时间的测量基于对PC[/size][/font][font='等线'][size=13px]R[/size][/font][font='等线'][size=13px]恢复时间的广泛研究[2][/size][/font][font='等线'][size=13px]。[/size][/font][font='等线'][size=13px]比较了男性优秀赛艇运动员和女性优秀赛艇运动员,并提出了改进成绩的建议。他们报告说恢复时间延长了,这表明当运动强度增加时,能量短缺会增加。他们还将次长时间和长时间工作的恢复时间与血浆乳酸进行了比较,并证明了运动后血乳酸和肌肉复氧恢复时间之间存在显著的相关性。多项研究报道,亚极量至最大强度运动后肌肉复氧恢复时间是评价肌肉氧化能力的指标之一[[/size][/font][font='等线'][size=13px]1[/size][/font][font='等线'][size=13px]]。在坡道自行车运动中的脱氧-Hb/Mb模式已经被监测,以区分训练有素的自行车运动员和体力活动的受试者[5]。一组作者提出了一种非侵入性近似肌肉毛细血管血流动力学的方法,该方法利用人体在运动过程中肺摄氧量和脱氧血红蛋白/Mb的主要成分的动力学[5]。其他研究人员比较了间歇性有氧足底屈曲开始时的脱氧率和肌肉氧化酶活性[6],并证明了脱氧率和柠檬酸合成酶活性之间有很好的相关性。因此,我们可以假设脱氧率反映了肌肉的氧化能力。有人可能会认为线粒体的速率呼吸可以通过腺嘌呤核苷酸转位的速率来决定,因此,在生理条件下,[ATP]/[ADP]比率调节呼吸频率[6]。然而,在次极量有氧运动中,ATP通过肌酸激酶平衡来保持恒定,因此我们在有氧运动中不需要考虑ADP腺嘌呤核苷酸的移位。[/size][/font][/align][align=left][img]https://ng1.17img.cn/bbsfiles/images/2021/11/202111101417018818_4726_3322588_3.png[/img][/align][align=center][font='仿宋'][size=13px][color=#3e3e3e]图2.[/color][/size][/font][font='仿宋'][size=13px][color=#3e3e3e]运动后短暂性缺血后血红蛋白/肌红蛋白脱氧率和磷酸肌酸(PCR)再合成率。运动后30s,采用瞬时动脉结扎法测定肌肉耗氧量(VO2),并与氧化ATP再合成的生化过程--PCR恢复率进行比较。[/color][/size][/font][/align][align=left][font='等线'][size=13px]在分级跑步机运动中,研究了股外侧肌(VL)和腓肠肌外侧头(GL)的氧合模式[7]。本研究发现肺VO2与肌肉氧合水平呈负相关,VL与GL的氧合模式略有不同,肌肉氧合水平与肺VO2有关。结合全身摄氧量评估肌肉氧合能力将有助于了解健康和运动个体的生理状况,并为功能改善提供更好的运动处方。活动增加和减少对肌肉功能的影响也用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url](NIRS)进行了测量。大多数研究都评估了有氧运动过程中肌肉氧合的急性变化,但也有一些研究考察了高强度运动[5]。此外,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url](NIRS)已被用于评估各种运动项目中不同类型运动员(如耐力[6]和短跑运动员[3]的运动训练对肌肉氧合和氧化代谢的影响[4][/size][/font][font='等线'][size=13px]。[/size][/font][font='等线'][size=13px]运动训练诱导的肌肉适应是否可以通过[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url](NIRS)来确定,结果发现,训练并没有改变肌肉的氧合模式,尽管有显著的运动结束时血乳酸与肌肉氧合呈正相关。[6]采用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url](NIRS)对固定的前臂肌肉进行检测,检测骨骼肌氧化功能的变化,评价耐力训练方案对骨骼肌退化的预防作用。他们发现,肌肉氧化功能是由运动后反复进行短暂动脉闭塞的mVO2恢复的时间常数决定的。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url](NIRS)测量显示制动时运动后mVO2恢复延迟。[/size][/font][font='等线'][size=13px]综上所述,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]可以为非侵入性监测骨骼肌氧化功能的去条件化和修复提供有用的信息。然而,大多数关于训练影响的研究都是采用横断面研究设计进行的。仍然需要对使用[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]测量的运动训练进行更多的纵向研究。[/size][/font][/align]3、 [font='宋体'][size=18px]总结与展望[/size][/font][align=left][font='等线'][size=13px]目前[/size][/font][font='等线'][size=13px]已经开发了几种多通道[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]系统来检测肌肉氧合的区域差异[8]。通过同时从多个肌肉区域收集数据,这些设备避免了困扰所有单一位置测量的肌肉含氧量随位置不同而引起的变异性。成像设备还可以研究骨骼肌对运动反应的区域差异。使用多通道[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]系统的另一个基本原理是,在多个位置进行测量可以在[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]信号和整个肢体的血氧饱和度之间提供更好的一致性[7]。通过同时从多个肌肉区域收集数据,这些设备避免了困扰所有单一位置测量的肌肉含氧量随位置不同而引起的变异性。在更好的时间分辨率方面,多通道NIRS还拥有比NMR和PET设备更高的优势。[/size][/font][/align][align=left][/align][size=13px]参考文献:[/size][size=13px]1. Welch HG, Bonde-Petersen F, Graham T, Klausen K, Secher N (1977) Effects of hyperoxia on leg blood flow and[/size][size=13px] [/size][size=13px]metabolism during exercise. J Appl Physiol 42:385–390[/size][size=13px]2. Gayeski TE, Honig CR (1983) Direct measurement of intracellular O2gradients role of convection and myoglobin.Adv Exp Med Biol 159:613–621[/size][size=13px]3. Bhambhani YN (2004) Muscle oxygenation trends during dynamic exercise measured by near infrared spectros-copy. Can J Appl Physiol 29:504–523[/size][size=13px]4. Boushel B, Langberg H, Olesen J, Gonzales-Alonzo J, Bulow J, Kjaer M (2001) Monitoring tissue oxygenavailability with near infrared spectroscopy (NIRS) in health and disease. Scand J Med Sci Sports 11:213–222[/size][size=13px]5. Ferrari M, Mottola L, Quaresima V (2004) Principles, techniques, and limitations of near infrared spectroscopy.[/size][size=13px] [/size][size=13px]Can J Appl Physiol 29:463–487[/size][size=13px]6. Hamaoka T, McCully K, Quaresima V, Yamamoto K, Chance B (2007) Near-infrared spectroscopy/imagingfor monitoring muscle oxygenation and oxidative metabolism in healthy and diseased humans. J Biomed Opt[/size][size=13px] [/size][size=13px]12(6):62105–62120[/size][size=13px]7. Millikan GA (1933) A simple photoelectric colorimeter. J Physiol 79:152–157[/size][size=13px]8.Chance B, Connelly CM (1957) A method for the estimation of the increase in concentration of adenosine [/size][size=13px]diphosphate in muscle sarcosomes following a contraction. Nature 179:1235–1237[/size][align=left][/align][align=left][/align][align=left][/align][align=left][/align]

  • 西安光机所发明一种中红外成像系统

    广义上讲,波长从0.9微米到1000微米电磁辐射都可称之为红外辐射。大气对于不同波段的红外辐射透过率是不同的,一般说来对于红外辐射有两个波段透过率较高,一个是3微米到5微米,称之为中红外波段:另一个是8微米到12微米,称之为热红外波段。同可见光辐射一样,红外辐射也是一种电磁波,只不过波长更长一些。红外辐射也同样遵守反射定律和折射定律,因此同样可以像可见光一样通过光学系统成像。 红外成像同可见光成像有许多明显不同之处。首先从目标特性来说,红外辐射由目标自身辐射而出,是一种被动成像系统:可见光则是由目标反射其他光源(如太阳)的辐射,属于主动成像系统:其次,红外成像系统的探测器经常需要制冷,并且探测器内置冷光阑。探器制冷可以大大降低暗电流,提高探测器灵敏度。探测器内的冷光阑的作用是栏掉视场外的杂散辐射。 由中科院西安光学精密机械研究所马小龙、杨建峰等科研人员发明的“一种中红外成像系统”是一种物距为有限远的、工作于中红外波段的、物方远心的、具有100%冷光阑效率、畸变非常小的成像光学系统。 该成像系统包括位于同光轴的镜头和探测器,探测器从靠近镜头的一侧起依次包括探测器窗口、冷光阑以及成像焦面。它的特殊之处在于:镜头由六个镜片组成,具体的从远离探测器的一侧起依次包括第一镜片、第二镜片、第三镜片、第四镜片、第五镜片及第六镜片:第一镜片是正光焦度的弯向物方的弯月镜:第二镜片是正光焦度的弯向像方的弯月镜:第三镜片是由锗磨制而成的负光焦度的弯向物方的弯月镜,第四镜片是正光焦度的弯向像方的弯月镜:第五镜片是由锗磨制而成的负光焦度的弯向像方的弯月镜:第六镜片是正光焦度的弯向像方的弯月镜。该成像系统是理想的物方远心、并且畸变小于万分之五、非常适合于将中红外光纤传像束转换为点信号的耦合器件。 该成像系统日前获得国家发明专利授权,专利号“ZL200910218528.5”。

  • 近红外荧光探针介绍

    [url=http://www.f-lab.cn/vivo-imaging/fluorescent-probes.html][b]近红外荧光探针[/b][/url]采用fluoptics公司近红外荧光探针标记,AngioStamp™ 和sentidye™ .AngioStamp是一个近红外™ 肽,可以标记肿瘤和血管。sentidye™ 是脂质分子,用于淋巴结和血管成像。[b]近红外荧光探针应用[/b]肿瘤• 血管生成• 血管网• 淋巴结和淋巴管[b][b]近红外荧光探针[/b]AngioStamp™ AngioStamp是[/b]以αvβ3整合素为靶点的近红外荧光探针,可用于标记肿瘤或研究血管生成。AngioStamp™ 是肽绑定到近红外荧光分子。AngioStamp™ 是两波长(700 nm和800 nm)之间的靶向探针。AngioStamp™ 兼容Fluobeam以及活体成像系统等,还可以用于显微镜。只供实验室使用。这些产品仅用于动物研究,不用于人类。[b][b]近红外荧光探针[/b]sentidye™ 近红外荧光探针[/b]sentidye™ 是近红外荧光脂质分子,可以用来标记淋巴系统或血管网。皮下注射时,sentidye™ 是由淋巴系统和标签最近的淋巴结。静脉注射后,sentidye™ 作为血池剂显示血流,血管灌注模式。[b][b]近红外荧光探针[/b]AngioLone™ [/b]angiolone™ 是angiostamp™ 分子没有近红外荧光。angiolone™ 是靶向肽,建议将您选择的荧光基团进行接枝。AngioStamp™ ,AngioLone™ 目标βαV 3整合素和可用于标记蛋白过度表达的肿瘤或血管生成。[img=近红外荧光探针]http://www.f-lab.cn/Upload/fluorescent-probes.JPG[/img]近红外荧光探针:[url]http://www.f-lab.cn/vivo-imaging/fluorescent-probes.html[/url]

  • 为了系统的学习近红外给点建议!

    为了系统的学习近红外,我准备投资买本书来,呵呵。。。。。但是现在有两本书,我看是大家推荐的最多的,我有点拿不定主意啊,希望看过这两本书的大哥大姐给点意见,最好是把两本书的异同告诉我啊,,主要的内容上的,主要是那方面讲的详细的地方(别说是两个不同的作者写的 啊,作者性别什么的,,,)谢谢,一本是: 陆婉珍 袁洪福 徐广通 强冬梅--------现代[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析技术 还有本是: 严衍禄------[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析基础与应用 给点意见啊,呵呵,我急啊,大家快啊,谢谢先!!!!

  • 【原创大赛】近红外明珠,我要的梦

    [align=center][b]近红外明珠,我要的梦[/b][/align][align=center]吴志生 北京中医药大学[/align] 我与近红外的故事应从2009年说起,那年夏天我毕业于北京大学化学与分子工程学院徐筱杰老师课题组,加盟了北京中医药大学乔延江老师课题组。乔老师让我做近红外过程分析方法相关研究。现在回想起来,当时根本不知道近红外过程分析是要解决现代中药哪一类科学或生产问题。但唯有一点是比较庆幸的,原来在北大徐老师组大家多在搞计算化学、玩建模,后来我自己看了文献和阅读了乔老师2003年以来的近红外相关研究论文,发现近红外同样是要搞基础建模。当时,没有拒绝乔老师,更没有排斥,欣然接受了这个研究课题。 同年,我参加了在上海召开的第二届亚洲近红外以及全国近红外学术年会,并有幸给陆院士汇报了乔老师团队在近红外中药过程分析做了一些研究和想法。陆先生说:“挺好的,你们做的挺好,你有报告吗?”。“我是刚刚考上了乔老师的博士生,导师让我做近红外在中药过程分析相关工作”,我回答了陆先生的话。陆先生说:“中药很好,是国粹,近红外用在中药上,近红外分析方面需要多做一些基础工作。”我欣喜回答了陆院士并“需要陆院士多多指导我们”。此外,会议上我也有幸与几位国际近红外大咖交流,其中当时国际近红外主席告诉我:“近红外技术一定要考虑分析化学问题”。当时,不明白这句话意思,现在确实是有点明白:近红外分析是典型多变量分析,通过她,分析科学理论与方法将会有积极推动。由于此文是讲故事,学术问题就不做详细讨论,我用近红外是分析科学的明珠“来告诉大家”,这句话告诉大家近红外分析是很好分析化学研究领域。 接下来日子,我开始了我的近红外之旅。通过无数次讨论与凝练,我开始近红外分析理论、方法与技术应用方面的相关探讨。 以多变量检测理论为切入点,研究近红外基础模型的可靠性,在这我将通过此文,感谢热电近红外仪器同仁、香港亚洲皆能的仪器同仁、济南金宏利的仪器同仁、北京凯源盛世的仪器同仁,海洋光学的仪器同仁等,他们的支持使我系统了解各类近红外谱仪的特点和优势。 在方法学方面,我当时就是想回答近红外模型是可靠的,当时采用FDA认可的分析验证方法来研究近红外模型。在药品同仁看来,方法验证是非常必要重要,最终我实现了这个目标。当然这需要感谢法国分析领域几位科学家来到北中医交流模型如何验证; 技术应用方面,当时正是国家大力实施重大新药创制项目时期,我们团队陆续接了3-4个大课题,其中,提出如何分析固体制剂中间体质量均一性。于是,在文献调研前提下,开始国内较早探讨固体制剂近红外成像的研究,当时我结识了pe的仪器同仁们,后来陆陆续续认识了中国农大韩鲁佳团队、闵顺耕团队等老师们。最终,我主办一期250人左右的近红外成像研讨会,后来很多机构开始了近红外成像研究与应用。同样,接了国家课题,我也和团队一起到药厂,把近红外真正运用到现代中药生产,包括同仁堂、亚宝、康缘和天津红日药业等。那段时间回想起来确实是辛苦,但是痛并快乐着! 2012年毕业以后,我留在北中医,接着干近红外这一趣事。我幸运获得国家自然基金、国家博士点基金和国家行业专项等近红外课题。当时对近红外有一些感觉,解决近红外模型验证、模型更新和模型传递等关键技术,回答中药分子的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]解析问题,回答中药近红外可靠性分析问题等,后来也解决了一些实际问题。一些非药品企业找上我们,我们用密度泛函理论等解析样品的光谱特征,进而实现运用。同样,我这里需要感谢foss仪器同仁,万通仪器同仁,热电仪器同仁们,他们的帮助使得我们成功建立一条在线近红外生产线。参加工作后,我每次或派学生参加咱们近红外会议并交流汇报。后来,近红外大家庭也就是慢慢熟悉了,包括袁老师、褚博、刘慧颖秘书长、韩老师等同仁。 最后,用近红外梦来结束我的故事,与同行们一起实现中国近红外梦!

  • 三维光声超声成像系统特点

    [b][url=http://www.f-lab.cn/vivo-imaging/nexus128.html]三维光声超声成像系统Nexus128[/url][/b]是全球首款成熟商用的[b]3D光声成像系统[/b]和[b]3D光声CT系统[/b]和[b]3D光声断层扫描成像系统[/b],具有更高灵敏度和各向同性分辨率,提高光声图像质量,具有更快的扫描时间和更高光声成像处理能力。三维光声超声成像系统利用内源性或外源性对比产生层析吸收的断层图像,适用于近红外吸收染料或荧光探针进行对比度增强和分子成像应用。三维光声超声成像系统应用分子探针的吸收和分布肿瘤血管-血红蛋白浓度肿瘤缺氧-二氧化硫[img=三维光声超声成像系统]http://www.f-lab.cn/Upload/photo-acoustic-CT-Nexus128.png[/img]三维光声超声成像系统Nexus128特点预定义的肿瘤生物学和探头吸收协议先进灵活的研究模式的扫描参数先进的重建算法易于使用的图形用户界面紧凑,方便的现场系统强大的查看和分析软件易于使用的图形用户界面数据可视化与分析三维光声数据从三维光声超声成像系统传输到工作站进行观察和分析。工作站上的数据具有与三维光声超声成像系统相同的结构/组织。独立的工作站允许调查员分析数据,而另一个操作员正在获取数据。前置像头具有强大的内置工具Endra 可以为特殊定量数据应用提供OsiriX 插件三维光声超声成像系统Nexus128:[url]http://www.f-lab.cn/vivo-imaging/nexus128.html[/url]

  • 【原创大赛】【我与近红外的故事】歪打正着的近红外经历

    说明:本文参与原创大赛仅为加强传播交流,让更多人发现近红外的魅力,不参与任何奖项评选!歪打正着的近红外经历华东交通大学孙旭东我初次接触近红外是在2005年5月,源于一次无心插柳的故事。我本科毕业于中国农业大学机电专业,硕士又调剂到中国农业大学机电专业。当时,我的导师韩东海教授在做食品异物低能X射线成像检测研究,需要一名工科背景的研究生,我有幸被老师带入了食品学院318实验室。老师让我和王加华配合,我主攻X射线成像检测,辅助加华做便携式苹果品质近红外检测仪。318的每周seminar所有同学轮流做,我做X射线成像文献汇报,并认真听了其他同学的近红外文献汇报,这给了我对近红外的感性认识。同时,韩老师帮我找了个兼职的工作,绘制电子称重式水果分选机图纸。我也没有想到后来会从事水果品质近红外分选机研究,借用导师的一句话,我是歪打正着。真正做近红外的工作,是从2007年进入江西农业大学刘燕德教授团队工作开始。实验室有一台ASD公司的近红外光谱仪,包括液体测样附件、手持式探头等。我主要做便携式和在线水果品质近红外检测研究方面的一些工作。期间碰到很多的问题,此时才对318期间耳闻目染的近红外故事进行了深入的思考。水果分选机公司的朋友提供了一台小型的水果机械传送装置,在这个上,我开始了漫漫的水果分选路。在光谱动态获取、分选自动控制、光源检测器布置等方面做了很多的尝试。2009随团队调入华东交通大学,与两位很擅长下位机控制、软件编程的同事,共同做出了漫反射式的水果品质在线分选机和便携式仪器,但也逐渐发现了传统称重式水果机械传输机构的局限。随后在合作公司配合下,又做出了漫透射式水果品质在线分选机。目前,已在江西、山东、河北等水果主产区应用,深受用户欢迎。现在,我继续做着水果品质在线分选机方面的研究工作。我受益于318,成长于近红外。同窗、师兄弟、师长和朋友,都在做着近红外相关的各项工作,每次参会最期待的就是:朋友围坐,一杯清茶。漫漫长路,我不独行。

  • ombroscopic成像系统简介

    [url=http://www.f-lab.cn/microarray-manufacturing/ombroscopic-imaging.html]ombroscopic成像系统[/url]是基于测雨成像原理, ombroscopic imaging,而设计的胚胎成像系统,在几平方毫米区域面积提供了高对比度流速图像,广泛用于胚胎成像和细胞生物打印。ombroscopic成像系统采用脉冲在20ns的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]的照明系统,采用高质量图像软件的列车速度运动的液滴的速度计算的方式,能够计算出微小区域的液滴流体速度。ombroscopic成像系统还包括一个微距镜头和一个与我们的EG灯同步照明的相机。ombroscopic成像系统成功用于细胞微流图像的生物打印和胚胎成像技术的细胞打印,人体生物组织使用激光辅助生物打印技术在三维微米精度的细胞位置。这项创新技术基于激光脉冲细胞微流,该过程的精度依赖于流特性的控制。ombroscopic成像系统:[url]http://www.f-lab.cn/microarray-manufacturing/ombroscopic-imaging.html[/url]

  • 近红外光谱假药识别系统的设想及可行性探讨

    近红外光谱及其仪器的特点近红外光谱的波长范围是780~2500nm,主要源于化合物中含氢基团,如C-H, O-H, N-H, S-H等振动光谱的倍频及合频吸收,由于其谱带较宽且强度较弱,限制了其应用。80年代中后期,随着计算机技术的发展和化学计量学研究的深入,加之近红外光谱(near infrared spectroscopy, NIR)仪器制造技术的日趋完善,促使了现代近红外光谱分析技术的发展。近红外光谱测定通常采用透射方式(transmittance)或漫反射方式(diffuse reflectance),通常不需对样品进行预处理即可以直接对不同物态的样品进行分析,配合光纤可满足对不同尺寸、形状样品测定的需要。作为一种间接测定方法,近红外光谱分析首先需要通过训练集得到校正模型,再来预测未知样品的性质或组成,因此训练集样品的性质或组成的适用范围、基础数据的准确性以及选择化学计量学方法的合理性,都直接影响最终的分析结果。此外,近红外光谱分析的灵敏度较低,对微量组分的测定比较困难。近红外光谱仪主要有滤光片型、扫描型和傅立叶变换近红外光谱仪三种类型。滤光片型仪器的特点是设计简单、成本低、光通量大、信号记录快、坚固耐用;但通常只能在单一或有限的波长下测定,灵活性较差;适用于制成各类专用仪器进行特定项目的分析,如土壤中水分的测定、糖及烟草中尼古丁的分析等。扫描型近红外光谱仪的分光元件可以是棱镜或光栅。该类仪器的特点是可进行全谱扫描,分辨率较高,仪器价格适中,便于维修;其最大弱点是光栅的机械轴容易磨损,影响波长的精度和重现性,一般抗振性较差,特别不适于在线检测。傅立叶变换近红外光谱仪的主要光学元件是麦克尔逊(Michelson)干涉仪。其具有扫描速度快、波长精度高、分辨率好以及信噪比和测定灵敏度较高等特点;采用立体角镜偶合等技术的麦克尔逊干涉仪,已极大地消除了传统干涉仪对振动、温度、湿度等的敏感性,减少了不同仪器的台间测定误差;发展出的便携式仪器可满足车载等野外测定的需要。从近期的国内外仪器展览会看,傅立叶变换近红外光谱仪将成为近红外光谱仪的主导产品。近红外光谱分析在假药识别中的应用近红外光谱法在药物分析领域中的应用范围相当广泛,它不仅适用于分析药物的多种不同状态如原料、完整的片剂、胶囊与液体等制剂,还可用于不同类型的药品,如蛋白质、中草药、抗生素 等。NIR更适用于对原料药纯度、包装材料等的分析与检测、以及生产工艺的监控 ;利用不同的光纤探头可实现生产工艺的在线连续分析监控。此外,近红外作为一种快速扫描技术,以它无需对样品预处理以及收集信息量大等特点,有助于假药劣药的识别与鉴定,正在成为国内外药物分析领域中的一枝奇葩。目前已有研究人员将其用于辅料间存在差异的不同生产厂家所生产的同一品种药品的鉴定,还有人对建立假药识别谱库的影响因素进行了全面的考察。在药品的鉴别过程中,常采用马氏(Mahalanobis)距离等指标,通过对样品光谱与标准光谱距离的定量描述,确定样本离校正集样本的差异,进而对其归属。虽然此方法在对光谱匹配程度的检测和模型外推方面均很准确,但应用时对波长范围的选择非常重要;波长点过少,光谱得不到合理的描述;波长点过多,计算量过大。此外,由于药品制剂特别是口服制剂中通常含有较多的辅料成分,也干扰对活性成分的鉴别。为有效的避免各类干扰作用,选择合理的波长范围进行药品的鉴别,可利用主成分分析(Principal Component Analysis;PCA)法对光谱数据进行分析,通过对活性成分光谱、辅料光谱和因子光谱的比较分析,首先对诸因子光谱的属性进行归属,进而选用合理的因子光谱进行鉴别。将PCA与马氏距离结合,既可以充分利用PCA对采集的全光谱数据进行降维处理,较好的解决马氏距离计算时波长范围的选择问题,也可克服利用PCA进行自身界限判断不易量化的问题。此外结合导数光谱等手段,还可以提高对鉴别的分辨率。近红外假药识别系统的设想根据近红外光谱分析的特点,可以看出,建立近红外假药识别系统,可以大大地提高假药识别的速度和识别能力,满足基层现场快速鉴别的需要。在国家食品药品监督管理局的支持下,中国药品生物制品检定所已经启动了近红外假药识别系统的科研项目。拟建立的假药识别系统包括有定性分析和定量分析两部分,首先确定药品与其标签标示名称是否一致,再根据需要调用适当模型对药品的质量进行快速检验或判别药品是否为特定企业的产品。近红外光谱分析是一个间接分析方法,假药鉴别系统的完善与否与模型中所包括的已知样品的数量与质量密切相关。由于药品品种的数量巨大,市场中出现的假药品种较多,且不断有新的假药出现,因此假药识别系统中所需要的鉴别模型不仅数量多,而且应能不断更新,故建模不可能在一个实验室完成;此外,由于我国地域广阔,开展假药的监督检验工作不可能由少数实验室承担,但为保证药品监督检验的严肃性,所有实验室的检验结果应具有一致性;因此,近红外假药鉴别系统应用的关键是能在不同的近红外光谱仪间实现模型的共享,并保证不同仪器测定图谱的一致性。虽然由于众多因素影响模型传输的准确性,使得光栅型及普通傅立叶变换型近红外光谱仪通过简单的模型传输不可能保证不同仪器测定结果的一致性,但在以采用立体角镜偶合等技术为基础的8台傅立叶变换型近红外光谱仪之间,传输间苯二酚水溶液定量模型,在未对模型经任何校正的情况下,对一批样品(300g/l)每台仪器每星期测定10次,连续测定60个星期,其测定结果显示,仪器间的测定误差(SD=0.22%)及不同时间的测定误差(SD?0.13%)均可以忽略。即现代近红外光谱仪已经较好的解决了模型传输的准确性,结合互联网技术,可以在全国范围内建立近红外假药识别模型网络系统(图1),由设立在全国的近红外假药鉴别模型建立基地将建好的模型输入国家假药鉴别模型数据库;各基层使用单位直接从中心数据库中调用所需的鉴别模型;国家近红外假药鉴别中心负责对进入数据库的模型的评价与更新;进而解决假药识别系统中鉴别模型的建立与模型共享问题。 http://assets.dxycdn.com/app/bbs/img/attachment.gif 近红外光谱假药识别系统的设想及可行性探讨.rar(73.35k) 在线查看

  • 最新近红外光谱技术--微光机电系统MEMS 近红外分析仪

    AXSUN的IntegraSpec?系列多功能近红外分析仪是目前美国[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]领域领袖群仑的尖端产品. IntegraSpec? 系列的核心技术之一微光机电系统MEMS是近几年在美国发展成熟的先进技术,MEMS芯片的生产工艺同半导体集成电路的生产工艺一样,都是在超净环境全自动化车间里用机械手装配而成.MEMS芯片的生产工艺决定了它同集成电路有很多共同点,它们都是对传统产品的一次革命,都具有高可靠性,高稳定性,高一致性等等特点. IntegraSpec?系列的另一项核心技术是近红外波段独特的波长可调激光器,其亮度比传统仪器用的灯泡亮度要高好几个数量级,并且激光的波长和强度的短期和长期稳定性非常高. 目前市场上传统的傅立叶[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]体积庞大,价格昂贵,对环境温度震动等非常敏感,只能是放在实验室的娇贵仪器,不能适应生产线上的各种复杂环境 另一类[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]结实并且体积小,但分辨率灵敏度等各项性能又很难满足用户要求.Axsun公司在背景强大的投资支持下经过几年反复研究开发,最终使得 IntegraSpec?系列微型[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]性能超群,适应各种复杂环境而迅速占领美国制药,石化,农业等市场.大规模的生产使得MEMS芯片的成本会变得越来越便宜,其应用前景也将越来越广阔. 建立在先进的微光机电系统(MEMS)技术之上的IntegraSpec?系列[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]性能极其优越,稳定可靠,系统集成容易,价格便宜,仪器设计寿命为25年,不需维修,无消耗品,是理想的在线过程控制和便携式近红外分析仪.其主要性能特点如下: 1. 坚固结实,分光系统为全密封芯片,电子制冷,恒温工作.因而仪器对使用环境非常不敏感,抗震动,耐冲击,不怕温度湿度变化,特别适用于在线监测和便携式使用. 2. 光源为波长可调激光器模块,波长和强度稳定性最佳,信号强度高. 3. 性能优越,各项指标不低于大型而昂贵的实验室用傅立叶[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url],而且仪器的一致性好,使用灵活,可以用于气体,液体和固体的透射/反射测量,广泛应用于制药,石化,农业等各行业的过程控制和质量监测. 4. 采用成熟可靠的半导体集成芯片技术,仪器的设计寿命为25年,无须维修. 5. 功耗低,只有11到20瓦,电池供电时间长 6. 独特的专利技术,内置式校正系统(WARM? 波长/信号强度校正模块),使这种仪器可以非常方便地同其它仪器进行模型转换. 7. 数据采集速度快,一条谱线的采集时间为毫秒级,适用于实时在线测量. 8. 操作使用简单,仪器的长期稳定性优异,使用成本低.详情请参考: http://www.sepvest.com/Products/axsun.htmwww.axsun.com

  • 2015 年近红外光谱技术培训班第二轮通知

    2015 年近红外光谱技术培训班第二轮通知近红外光谱分析技术的研究和应用在我国发展十分迅速,每年都会有大批研究生、研发技术人员和应用工程师加入到近红外光谱分析技术的队伍中。 应众多近红外光谱学者的要求, 中国仪器仪表学会近红外光谱分会拟定举办第四期近红外光谱分析技术培训班, 本次培训班邀请国内知名专家学者系统讲解近红外光谱技术总论、 化学计量学常用算法、 建模技巧及模型维护、 化学计量学算法进展、近红外工业应用实施实例剖析、以及近红外光谱成像技术等内容。 本届培训班将更加突出讲授近红外光谱技术的完整基础知识、技术最新进展、以及近红外光谱技术的工业实际应用, 将邀请严衍禄教授讲授近红外光谱分析技术的发展与几个新生长点、龚伟教授讲授国外工业实用近红外光谱技术。 具体通知如下:培训对象:( 1)从事近红外光谱分析的技术人员和管理人员( 2)在校硕士或博士研究生( 3) 近红外光谱仪器开发企业和仪器代理公司的技术人员和销售人员( 4)已购置近红外光谱仪器的用户培训时间: 2015 年 9 月 11 日~13 日培训地点: 北京总后青塔招待所(北京海淀区沙窝桥西南角)欢迎大家报名参加!北京见!

  • 基于安卓掌上设备的近红外光谱快速分析系统研制成功

    近红外光谱具有快速、无损的优点,在农产品、化工、医药等行业有广泛的应用。近年来,小型化化、微型化近红外光谱仪已成为本领域的发展方向,用于实验室外的现场快速检测。 江苏大学陈斌教授领衔的近红外工作室(NIR Workshop,NIRW)一直致力于近光谱分析的基础与应用研究。美国JDSU公司成功研发出世界上最小的近红外光谱仪(Micro NIR 1700)。NIRW集中力量,于2013年7月开发出Windows系统的【基于JDSU微型近红外光谱仪的分析与检测系统】软件。该系统软件包括两部分,一是辅助建模,能够建立、保存模型。二是光谱分析,能够实现光谱采集、模型加载、模型计算和结果的实时显示。 在此基础上,本团队开展基于安卓系统掌上设备的快速检测软件系统的开发研究,经颜辉、张索非的潜心功关,终获成功,在。能够用安卓手机、平板控制光谱仪的采谱、结合输入的模型,对光谱进行预处理(平滑、求导、正规化等),PLS等计算,从而实现检测指标的实时显示。 目前本系统已实现丰水梨糖度的实时检测。 后期将利用手机的定位、通信功能,实现云储存、云计算,最终形成高效的检测系统。视频链接:http://v.youku.com/v_show/id_XNjI5NjI0MDQ0.html

  • 基于安卓掌上设备的近红外光谱快速分析系统研制成功

    近红外光谱具有快速、无损的优点,在农产品、化工、医药等行业有广泛的应用。近年来,小型化化、微型化近红外光谱仪已成为本领域的发展方向,用于实验室外的现场快速检测。 江苏大学陈斌教授领衔的近红外工作室(NIR Workshop,NIRW)一直致力于近光谱分析的基础与应用研究。美国JDSU公司成功研发出世界上最小的近红外光谱仪(Micro NIR 1700)。NIRW集中力量,于2013年7月开发出Windows系统的【基于JDSU微型近红外光谱仪的分析与检测系统】软件。该系统软件包括两部分,一是辅助建模,能够建立、保存模型。二是光谱分析,能够实现光谱采集、模型加载、模型计算和结果的实时显示。 在此基础上,本团队开展基于安卓系统掌上设备的快速检测软件系统的开发研究,经颜辉、张索非的潜心功关,终获成功,在。能够用安卓手机、平板控制光谱仪的采谱、结合输入的模型,对光谱进行预处理(平滑、求导、正规化等),PLS等计算,从而实现检测指标的实时显示。 目前本系统已实现丰水梨糖度的实时检测。 后期将利用手机的定位、通信功能,实现云储存、云计算,最终形成高效的检测系统。视频链接:http://v.youku.com/v_show/id_XNjI5NjI0MDQ0.html

  • 近红外光谱仪器的光栅分光系统

    [font=宋体]光栅作为分光器件的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱仪[/color][/url]器所占比例很大,由于使用全息光栅,[/font][font=宋体][font=宋体]使光栅的质量大大提高,没有鬼线,杂散光很低,使光栅分光系统的光学性能有很大的提高。其中一种光栅分光系统采用精密波长编码技术的扫描技术,通过精密控制光栅的转动实现单色光的获取,如图[/font][font=Times New Roman]2-4[/font][font=宋体]所示;另一种技术路线是采用固定凹面光栅的同时配上多通道检测器,如图[/font][font=Times New Roman]2-5[/font][font=宋体]所示,检测器的不同通道单元接收不同波长的单色光,该方式改变了光谱扫描的方式,光谱读取的速度大大提高。上述两种光栅分光光谱仪器价格适中,对[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术的普及与推广起很大作用。其中采用阵列检测器的光栅光谱仪因为没有任何移动部件,一般认为仪器的稳固程度较高,非常适宜用于在线系统。[/font][/font][align=center][img=,228,183]https://ng1.17img.cn/bbsfiles/images/2024/06/202406251642251485_5277_4070220_3.png!w397x413.jpg[/img][font=宋体] [/font][img=,229,183]https://ng1.17img.cn/bbsfiles/images/2024/06/202406251642298588_3148_4070220_3.png!w491x346.jpg[/img][/align][align=center][font=宋体][font=宋体]图[/font][font=Times New Roman]2-4[/font][font=宋体]光栅扫描型分光系统示意图图[/font][font=Times New Roman]2-5[/font][font=宋体]固定光栅[/font][/font][font='Times New Roman']—[/font][font=宋体]多通道传感分光系统示意图[/font][/align]

  • 【讨论】近红外光谱分析系统设计

    [size=3] 最近导师要我做基于LabVIEW的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析系统设计,说是只做软件部分。学习了一些时间,有很多疑惑,希望有好心人提点一下,在此谢谢了。[/size] [size=3] 1、如果只做软件部分,那么光谱图怎么获取,怎样转换成数据形式?(初学,越看越迷糊了) 2、最初要做数据预处理,那么一般都有哪些处理方法?处理的数据以什么方式呈现? 3、导师说要建立一个大的框架,到现在我还不知道我的前面板都应该有哪些东西(分析结果是什么) 4、建模。。。挺模糊的,是不是选择一种方式就可以了?完全刚接触的新东西,一时还真没适应过来,希望大家能帮帮我。。[/size]

  • 【求购】近红外光谱分析系统设计

    [size=3] 最近导师要我做基于LabVIEW的[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]分析系统设计,说是只做软件部分。学习了一些时间,有很多疑惑,希望有好心人提点一下,在此谢谢了。[/size] [size=3] 1、如果只做软件部分,那么光谱图怎么获取,怎样转换成数据形式?(初学,越看越迷糊了) 2、最初要做数据预处理,那么一般都有哪些处理方法?处理的数据以什么方式呈现? 3、导师说要建立一个大的框架,到现在我还不知道我的前面板都应该有哪些东西(分析结果是什么) 4、建模。。。挺模糊的,是不是选择一种方式就可以了?完全刚接触的新东西,一时还真没适应过来,希望大家能帮帮我。。[/size]

  • 近红外光谱仪的智能化

    [font=宋体]实际[/font][font=宋体]应用需求的扩大和深入,使得近红外[/font][font=宋体]光谱仪器及技术突飞猛进,相关的新产品、新技术层出不穷,[/font][font=宋体]在各大领域发挥着越来越重要的作用,也将成为食品、药品、环境、安防等与人民生活密切相关的行业[/font][font=宋体]的有力工具[/font][font=宋体]。[/font][font=宋体]每一款仪器[/font][font=宋体]在整机、外观设计、关键部件、集成化、原位、自动化[/font][font='Times New Roman'][font=宋体]、[/font][/font][font=宋体]专用化、智能化等方面都有显著创新,[/font][font=宋体]不仅给科学研究和日常检测分析工作注入了新的活力,更是给企业带来了客观的经济效益,同时丰富人们的生活,提供了更多便捷服务。[/font][font=宋体]随着信息化、智能化技术的[/font][font=宋体]飞速发展,[/font][font=宋体]近[/font][font=宋体]红外光谱仪器已经从单一的测试光谱数据演化为大视野范围成像系统,兼具光谱和成像的同时,在样品兼容性、信噪比、空间分辨率、测量模式等方面有了质的飞跃。智能化系统具有测量快速、高灵敏度、检测用量少、支持多指标检测、数据处理自动化、仪器自动维护、无人值守等优异功能和特点。其中,纳米傅里叶光谱仪和微秒级时间分辨超灵敏光谱仪在探寻[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]测量极限上展现了独特的魅力,可以[/font][font=宋体]轻而易[/font][font=宋体]举地看穿梵高的自画像、星月夜、向日葵、夜间咖啡馆、达芬奇的蒙娜丽莎,还有张大千的[/font][font=宋体]桃源[/font][font=宋体]、[/font][font=宋体]嘉耦[/font][font=宋体]、[/font][font=宋体]爱痕[/font][font=宋体]湖、[/font][font=宋体]夏日山[/font][font=宋体]居图。拇指大小的智能化[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url][/font][font=宋体][font=宋体]仪,通过非接触式的测量模式,在不破坏样品的情况下,即可瞬间鉴别白酒的真伪,并判断存放时间的长短。智能化软件可实现对所有系统组件的控制,包括激光光源的校准、激光光镜、自动光谱采集、以及背景校正、数据分析。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url][/font][font=宋体]“智慧”仪还应用到了高分子多层膜、生命科学组织探测、司法物证分析、农业食品加工[/font][/font][font=宋体]以及[/font][font=宋体]运输过程中组成变化的动力学监控、产品分类和来源鉴别、甄别半导体器件有机污染物提升良品率、土壤的物理和化学变化等。[/font][font=宋体]在物联网蓬勃发展的时代,智能家居将成为家庭生活中的基础应用,也[/font][font='Times New Roman'][font=宋体]是未来家居的发展潮流和趋势[/font][/font][font=宋体],大到电视、冰箱、抽水马桶,小到吸尘器、音响、电灯、手环,都可以是物联网的智能终端。物联网也被称为传感网,各类传感众多纷杂,以[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]为代表的各种光谱仪正是其重要的组成部分。家电行业里首个推出的将[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术与家电相结合的智能洗衣机,能够在几秒钟之内识别面料与污渍种类,精准推荐洗涤程序,让衣物得到专业的精细洗涤。这为[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术在其他家用电器中的应用提供了可以借鉴的范本。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术与冰箱结合,可以实时判断冰箱中食物,如蔬菜、水果、鱼、肉等的新鲜度,并给出可能出现不新鲜或腐败的提示。人们就能及时发觉冰箱中的食物是否发生腐烂变质,从而对食物进行合理处理,避免不必要的食物浪费和引发严重的健康问题。[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]技术智能马桶可以实时监测尿液中的蛋白质、葡萄糖等化学成分和粪便[/font][font=Arial][font=宋体]形[/font][/font][font=宋体]态、[/font][font=宋体]隐血等指标,与视觉成像技术和深度学习技术结合,使用者可以监测自己的健康数据,形成历史的和实时的个人健康数据平台,为疾病预防、筛查、诊断和疾病监控研究提供支持,真正实现对个人健康[/font][font=宋体]的管理、控制、预防,指导个性化的健康干预,做到[/font][font='Times New Roman']“[/font][font=宋体]知未病,治未病[/font][font='Times New Roman']”[/font][font=宋体]。[/font][font=宋体]光谱技术智能手环能实时精准捕获用户的心率、脉搏、血氧饱和度、微循环、血压、血糖及更多健康数据,通过云端的大数据分析处理,显示血压趋势、呼吸频率、心率变异性、体制特征、身体状况等健康信息,再利用个体化营养系统对用户个体膳食和生活方式进行指导和干预,推荐具有个性化的量身定制食材种类、数量、能量、营养素的饮食菜谱,从而满足人们对健康饮食更高的需求;光谱技术智能化厨房电器,不仅是食材管理专家和美食烹制机,还将成为膳食营养顾问,可在更多生活场景下,与日常膳食、健康状态进行深层次的[/font][font=宋体]交流。植入了摄像头的智能烤箱,可以利用图像识别与人工智能技术,根据烹饪过程中食物的颜色变化,实时监控其成熟度,调整温度、湿度等烹饪条件。多通道数的光谱装置可以检测烤肉等烹饪过程中食物内部的参数变化和化学成分信息,如含水量、蛋白质变性情况等跟烹饪效果直接相关的信息,帮助智控程序做出响应、设定烹饪参数、调整烹饪过程,改变烹饪条件,使食物更加健康和美味;智能跑步机则可根据用户的能量摄入量,综合健康数据,定制专属运动方案,推荐在跑步机上的运动量、跑步的里程、步速。监测跑步过程中的心率、脉搏、血氧饱和度、血压、水分含量等人体信息,进行多维度大数据分析,自动调整跑速并给出补充水分的提醒,让运动真正改善健康;此外,[url=https://insevent.instrument.com.cn/t/1p][color=#3333ff]近红外光谱[/color][/url]与吸尘器结合,快速识别目标物体的材质,优化运行模式,定点扫除卫生,省电省时;与电灯集成,可依据识别的书房光线的明暗,减少灯光的反射和闪耀,调整电脑显示端距离,提醒休息,避免眼睛疲劳,将眼疾治疗模式转变为精准的预防性保养。[/font]

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制