当前位置: 仪器信息网 > 行业主题 > >

精密人工气候箱

仪器信息网精密人工气候箱专题为您提供2024年最新精密人工气候箱价格报价、厂家品牌的相关信息, 包括精密人工气候箱参数、型号等,不管是国产,还是进口品牌的精密人工气候箱您都可以在这里找到。 除此之外,仪器信息网还免费为您整合精密人工气候箱相关的耗材配件、试剂标物,还有精密人工气候箱相关的最新资讯、资料,以及精密人工气候箱相关的解决方案。

精密人工气候箱相关的资讯

  • Alit大型人工气候室/药物稳定测试室新品上市
    大型步入式植物生长箱/人工气候室FITOCLIMA WALK-IN BIO系列FitoClima箱体产品适用于植物生长、组织培养、拟南芥、种子发芽、孵化、昆虫学研究、昆虫存储以及其他生命科学中的应用,FitoClima生物学研究用培养箱可提供灵活多样的配件选择以及控制条件来满足不同研究者的需求。FITOCLIMA WALK-IN BIO HP系列FitoClima高效箱体适用于需要大量光照强度和广泛光谱条件的植物,常应用于: 小麦、玉米、水稻、棉花、咖啡、软木等各种常见的需要高光照强度的大型植物。Fitoclima Pharma应用于制药行业的药品稳定性和耐光性试验 箱体设计符合人用药物注册技术要求国际协调会(ICH)的所有要求,这些箱体被应用于医药产品的稳定性(Q1A标准)及耐光性(Q1B标准)测试,符合国际通用标准以及ICH, DIN, EN, IEC ISO, NP和UNE的要求 箱体体积从600L到无体积限制的大型步入式药品测试室,Fitoclima Pharma系列箱体为制药行业提供独特的精度控制、均匀性和稳定性的气候条件。 欢迎新老客户前来咨询合作!艾力特国际贸易有限公司网址:www.alit.com.cn邮箱:marketing@alit.com.cn 电话:021-62299622
  • 英国能源与气候变化部出台对地观测战略
    近日,英国能源与气候变化部出台该部的对地观测战略(DECC Earth Observation Strategy),希望通过对地观测,以各种方式包括在地球或海洋表面、海洋之下以及在大气层内的高度测量地球系统,形成长期的时间序列数据,&ldquo 感知&rdquo 地球的变化,确保一些措施不被延误,如保护野生动物、建设新的能源基础设施等。 具体来说,该战略的主要目的是:、确定有关能源与气候变化部实现目标的关键长期的数据库;第二、部署能源与气候变化部如何能够访问这些数据库;第三、部署能源与气候变化部如何制定新的监测方案,实现资源的可持续利用。 以上信息有HASUC整理摘录,HASUC主营:真空干燥箱、烘箱、电子防潮箱、鼓风干燥箱、培养箱、生化培养箱、霉菌培养箱、干燥柜、电炉、马弗炉、电阻炉、二氧化碳培养箱、霉菌培养箱、隔水式培养箱、低温培养箱、BOD培养箱、恒温恒湿培养箱、光照培养箱、恒温恒湿培养箱、人工气候箱、 恒温干燥箱、防潮箱、高温烤箱、低温培养箱、恒温培养箱、高低温箱、高低温试验箱、高低温交变试验箱、高低温冲击试验箱、恒温恒湿箱、高低温湿热试验箱、培养箱、氮气柜、干燥箱、恒温箱、高低温交变湿热试验箱、盐雾腐蚀试验箱、药品稳定性试验箱、两三厢冷热冲击试验箱、精密曲线编程旋转烘箱、远红外线干燥箱、防爆干燥箱、精密烘箱、真空测漏箱、人工气候箱、光照培养箱、生物安全柜、干培两用箱、超净工作台、真空脱泡箱等。
  • 南通智能感知院:高精密凸面闪耀光栅、高光谱等多项成果凸显 市场可期
    在满足目前各种应用需求的前提下,光谱分析仪器和方法也在不断的创新发展中,不论是分子光谱还是原子光谱都涌现了一系列创新的成果,特别是拉曼光谱、近红外光谱、激光诱导击穿光谱、太赫兹、超快光谱、荧光相关光谱、高光谱等相关技术彰显了极具诱惑的市场活力,引领着行业发展的方向。第十二届光谱网络会议(iCS 2023)中,近50位专家报告充分彰显了光谱创新潜力,纷纷展示了一系列的创新成果:从仪器整机到关键部件;从系统集成到方法开发;从大型科研仪器,到用于现场的便携、手持设备;从实验室检测设备,到过程分析技术……为了更好的展示这些创新成果,同时也进一步加深专家、用户、厂商之间的合作交流,会议主办方特别策划《光谱创新成果“闪耀”iCS2023》网络专题成果展,集中展示本次光谱会凸显的创新成果,包括但不限于仪器、部件、技术、方法、应用等。南通智能感知研究院(简称“感知院”)坐落于风景秀美的紫琅湖畔,依托星载高光谱团队,结合南通创新人才培养、高科技产业转型升级的需要,于2019年11月1日揭牌成立,设置有数十个专业实验室,拥有5位院士和多位国家级专家组成的人才队伍,以光机电核心元部件、规模化光电探测系统、集群化商业卫星为主要发展方向,推动南通光电及航天产业发展。感知院充分发挥专家团队多年在红外、高光谱等成像探测感知领域的技术优势和航空航天有效载荷方面雄厚的研发积累,在南通建立高光谱遥感产业发展基地。在光机电核心组部件、规模化光电仪器研发和集群化商业卫星领域,补齐南通航天全产业链中的“载荷、数据”两个重要环节,促进航天遥感产业中光谱类载荷及数据的规模化制造与获取。聚焦“智能感知”领域技术研发、人才培养及产业转化,探索科研体制机制创新,提供感知探测及其配套技术、材料、部件、应用数据、软件与设备的研发等相关服务,推动光电感知和遥感技术的产业转化,进行相关学科研究生培养、继续教育与学术交流,支撑国家航天产业和空天信息技术规模化发展。以光栅微纳部件、精密光机、数字化光电仪器制造、天空地一体化即时探测、遥感大数据处理应用等核心部件和技术的研发为主,集聚多方资源,构建核心软硬件、数据获取、信息处理、信息应用全链路光电仪器研发、数据收集中心和智能遥感云服务平台,形成面向终端客户不同层级的“共建、共享、共用”智能遥感产业体系。以智能化微光/红外感知组件、微小型制冷机、精密测角装置等核心部件的研发为基础,发挥红外探测技术优势,研制高性能可迭代的“云台+嵌入式+红外/微光仪器+自动处理提取+远程传输操控”系列高端产品。应用于边防管控、城市监控、森林火灾监控、夜间生态监测、油气泄漏监控、智能预警探测等领域,开拓智能安防市场,构建面向系统应用的智能安防产业体系。一、成果简介成果一:高精密凸面闪耀光栅成像光谱仪将成像技术和光谱技术结合在一起,可同时获取目标物体的空间信息和光谱信息,具有高分辨率、测量范围广等优点,被广泛的应用于地质观测、矿物识别、水体水质监测、土壤土质监测、农作物长势与病虫害监测、碳排放监测、植被覆盖、环境污染监测、灾害应急监测等行业领域。分光系统是成像光谱仪的关键部件,直接决定了光谱仪的结构与性能。成像光谱仪的光谱分辨率越高,对地物的分辨能力就越强;当光谱分辨率需要细分到“纳米”量级时,基于多刻槽衍射效应的凸面光栅分光的难度急剧增大,然而高性能凸面光栅的制备技术受制于国外,严重制约我国自主星载高光谱相机的发展。为解决该技术瓶颈,感知院项目团队开展了:电子束抗蚀剂涂布、槽形角度变化及低深宽比槽形控制技术、高精度光栅槽形不同介质转移技术、均匀性金属反射膜镀膜技术、高精度检测等核心技术研究攻关,填补了电子束凸面光栅国内技术空白,与同类型的进口光栅比较,性能达到了国内领先、国际先进水平,面型加工精度及部分波段衍射效率等指标优于进口光栅,实现了可见光/红外宽谱段高精密凸面光栅制备核心技术的自主掌握。目前已经制备了一系列凸面/凹面光栅,已经应用到星载、机载、手持设备上。成果二:轻小型制冷机在红外光电载荷中,核心红外探测器件及光学系统需要工作于低温环境下,需要针对整个仪器及其关键部件进行科学的热规划、热设计和热实施,提升仪器性能,保障仪器可靠工作。因此,低温制冷机、高效传热元件及以此为基础的载荷仪器热管理系统是当代先进红外仪器载荷应用的核心支撑技术。特别是随着商业航天的蓬勃发展,卫星载荷趋于小型化、模块化、标准化,要求服务于商业小卫星的红外光电系统朝着低成本、紧凑化方向发展,亟需低温制冷机向着小型化、规模化、通用化方向予以发展。同时,低温集成技术是降低红外光学系统背景噪声、提高探测灵敏度的重要保障;也是红外探测仪器核心竞争力之一。感知院在产业化需求的牵引及其技术孵化下,突破了轻小型制冷机核心关键技术,形成制冷机数字化设计仿真分析平台,实现轻小型、超低温制冷机样机及制造工艺规范。开发了轻小型线性斯特林制冷机产品,性能指标达到国际先进水平;具备全周期免维护的超高可靠性,冷指接口标准化设计、集成式耦合结构,通用性强,热流密度高、温差小、能耗极低,适应性好等优点。目前已逐步实现产品规模化生产,处于行业领先水平,能有效支撑红外光电载荷产业化发展!成果三:光电芯片模组红外探测器和光学镜头组成的红外光电探测系统可以突破人类视觉局限,能在完全黑暗、烟雾、粉尘等环境下观测物体,实现全天候、全天时工作,广泛应用在军事和民用的诸多领域。探测器模组是高端红外光电探测系统的核心部件之一,直接决定了探测系统的结构和性能。相较于非制冷型探测器模组,制冷型探测器模组在探测物体信号时具有灵敏度更高、精度更高、误差更小、检测温度范围更广的优势。近几年我国的红外产品市场发展很快,但由于核心器件(如制冷型探测器)一定程度上依靠进口,价格、质量和维护等因素严重地制约了国内红外产业的发展和市场的广泛推广,远不能适应国内日益增长的市场需求。感知院基于上海技物所成熟的红外技术,以院内的VOC气体检测、中海油等项目所需的高性能制冷型长波红外机芯为设计输入,开展长波红外探测器组件项目的研发,旨在打破国外对红外技术垄断局面,解决国外进口限制、价格高昂、供货周期无法保证等问题,突破关键核心技术,实现高性能制冷型红外机芯国产自主和批量化生产。成果四:遥感大数据处理随着遥感数据在空间、时间、光谱和辐射等维度的分辨率越来越高,数据类型越来越丰富,海量数据呈井喷式爆发增长。另一方面,虽然全球尺度的遥感大数据设施蓬勃兴起,但是面向区域发展的区域高分辨遥感大数据设施和服务体系较为缺乏,严重制约遥感信息与社会经济数据的综合利用程度,导致相关产业链不够完善,不能满足行业发展的需求。当前遥感大数据发展主要存在以下两个方面的制约,一是遥感大数据设施的缺位,二是遥感数据吞吐速度、处理能力、算法效率与精度稳定性等瓶颈问题。这两方面均为当今区域遥感大数据建设中亟需解决的技术难题。感知院遥感大数据处理系统对遥感数据进行横向光谱偏差处理,盲元判别与修复、Etalon效应测试与处理、非均匀性校正和低信噪比波段的降噪处理,利用大气校正辐射计定标及数据处理联合应用技术对日数据预处理、对地数据预处理、大气参数反演,遥感应用复查等等一系列处理流程,生产出横向光谱偏差、盲元修复率、相对辐射校正精度的数据产品。目前已研制出相对辐射校正、盲元判别和修复、光谱横向偏差校正等核心算法一套;研制出GF-5星高光谱数据从L0到L1级产品生产软件一套;成果五:高端光电探测系统现有的自主国产高端仪器无法实现行业对高精度定量化遥感的需求,目前民用高光谱设备或核心部组件绝大多数都是进口产品,全面自主可控的高端仪器研发和需求是当下行业相关单位急迫需要解决的问题。感知院研制出的高精度、高性能、轻小型机载轻型高光谱相机,可模块化组装,适用于低空/高空,轻型/大型飞机高光谱遥感作业,可选择机上定标装置、惯导、嵌入式数采终端,并具有良好的温适性;研制出的多功能地物快筛扫描仪,采用高精密凸面闪耀光栅、光谱纯度高、畸变小、信噪比高、光源稳定无杂光干扰、分辨率高、数据精准;协同启东光电遥感中心自主研发出高精准、高性能、定标、反演、照明、测距一体专业级全反射波段手持式光谱仪,内置激光测距模块,实时显示被测物体观测范围,具备快速自定标及反演、终端互联远程支撑、超长待机功能;研制出多模态、大动态微光红外监测相机,可应用于边防哨所、口岸海岸、各种重要区域。二、产业化探索经过三年多的发展,感知院已在高精密光栅、红外探测器、轻小型成像光谱仪、微小型低温制冷机、微光夜视红外系统、遥感大数据等核心组部件仪器与遥感数据处理方面,形成了系列产品。1.高精密闪耀光栅产品方面,具备球面闪耀光栅产品自主研发能力,突破国外进口元器件的“卡脖子”技术,掌握自主的核心工艺控制方法。目前承担众多国家项目及课题,包括:国家重点研发计划凸面光栅课题、静止轨道全谱段卫星凸面光栅研制、产业化凹面光栅项目、核工业研究院凸面光栅项目、环保部生态环境检测凸面光栅项目。所研制光栅涉及可见、近红外、短/中/长波红外、甚长波红外,刻线密度覆盖十几线至一千多线。在中科院上海技术物理研究所以及相关航天工程单位牵引下,持续开展高精密光栅的国产化、低成本化制备技术研究和星载凸面光栅产品研制,预计未来三年产品销售额可达到1.2亿元至1.8亿元。2.微小型制冷机方面,形成不同应用场景下微型斯特林制冷机系列产品(例如:WS50090微型斯特林制冷机、WS100080微型斯特林制冷机等产品),突破了轻小型制冷机关键研制技术,形成了微小型制冷机规模化研制能力。未来3-5年,预计市场销售可达到8000万元—1.2亿元。在已有的企事业单位合作基础上,开展相关规模化、低成本化制造技术研究,在不断扩大红外探测微型制冷机市场需求的同时,将先进仪器热管理技术逐步推广到医疗低温冷箱领域,以及大数据中心散热节能减排领域,为碳中和碳达峰、绿色低碳数字经济提供技术支撑。至2025年,完成研制轻小型斯特林制冷机产品化定型、工艺体系建立,市场销售额不少于3000万元/年;至2030年,打通制冷机上下游产业应用,实现商业化推广,形成轻小型制冷机组件、热管、散热模组等产品的规模化生产,市场销售额不少于1.5亿元/年。3.光谱仪产品方面,感知院先后与国家、省、地方等40多家单位形成了广泛的技术研发和市场合作关系,如生态环境部卫星环境应用中心、上海航天电子技术研究所、核工业北京地质研究院等。目前已达到覆盖太阳辐射波段(可见、近红外、短波)的高光谱相机及软件算法的自主研发能力。未来3-5年,结合重点示范区域高光谱探测仪系统的需求,逐步扩大应用场景,拓展和实现后期全国范围内600-1000个典型区域的实地应用,相关产品的产能提升到400-500套/年的规模化生产,年销售额达1.2-1.5亿元以上,从行业应用产品转向民用高光谱产品,实现产品的规模化、批量化生产,向年销售3-4亿元迈进。4.商业遥感卫星方面,积极推动航天遥感商业卫星的整体规划和研制工作,协同江苏高分产业联盟和相关单位,积极争取实现1-2颗遥感商业卫星的研制及发射工作,通过有效获取和分析数据,重点服务江苏省和南通遥感应用及大数据等相关领域和单位,逐渐推行航天遥感商业产业链在南通当地的宏观/微观形式集聚。未来,感知院将持续推进批量化和低成本化,持续开展相关技术创新,持续扩大光电遥感仪器产能,持续拓展核心技术服务领域,实现从政府行业部门牵引式应用扩大到民品市场普适性应用,争取实现产品销售和市场达到4亿。商业遥感卫星方面,持续推进和实现星空地一体化、遥感大数据的全面服务和应用,并以行业应用为基石,实现百余颗航天遥感商业卫星的研制和发射,满足天级重访周期的全方位遥感数据覆盖,打造遥感大数据服务云平台,凝聚国内乃至国际遥感相关领域专家和团队,有效推动和实现航天遥感产业集聚,全面实现全国各省市、核心国企(例如北大荒集团、银河航天)、政府资本、民营资本等不同领域的联盟合作和分工协作,助力和推动航天遥感大产业的落地,切实提升南通百亿级光电产业集群的影响力和社会效益,争取实现产品业务体量15-30亿元。三、未来研究计划最看好的光谱技术是高光谱成像技术。高光谱成像就是收集并识别物质光谱指纹的技术,是以精细的光谱分辨率表征物质不同光谱吸收或发射特征的重要探测手段,是人类实现从“看到”到“识别”物质的得力“探针”。这些“探针”对不同光线波长的感知程度可细微到“纳米”级,能够帮助人类从一公里外看到米粒大小物体上的300多种颜色,而人眼能看到的颜色一般只有7种。与可见光相比,高光谱技术增大了波段幅宽的同时,减小了光谱弯曲畸变、提升了探测灵敏度,已经在水体水质监测、大气排放、探物找矿等领域实现了精细化分辨和大覆盖范围的业务化实用化的应用。未来感知院重点主攻方向如下:1.微纳光栅领域,未来三年内,计划将凸面光栅应用由太阳反射波段扩展至地球辐射波段,即拓展至紫外和甚长波红外波段;同时突破人工智能AR设备的核心元件“波导光栅”的研制工艺,缩短波导光栅元件的定制周期,完成小型AR样机的研制,实现AR设备数字化生产。2.制冷机领域,未来三年内,建立制冷机设计多物理场耦合的联合仿真模型,进一步改进微型杜瓦封装技术,建设低成本、批量化制冷机中试工艺线;至2025年持续进行技术突破,完成研制轻小型斯特林制冷机产品化定型、批量生产。在上述基础上,引入3D增材制造等新型工艺技术,建立通用标准件库、在线质量监测、柔性自动化装配等批量化制造工艺规范,实现低成本轻小型制冷机研制生产线,进一步实现产业化,形成轻小型制冷机组件产品规模化生产。3.探测器领域,将成熟的星载探测器技术进一步向民用化、市场化、规模化转化,突破探测器驱动及信息获取电路模块化设计关键技术;开发高性能、低功耗、低噪声、大动态范围、轻小型探测器模组,形成特有的多功能、多系列“拳头”产品,进一步降低制造成本,形成批量化生产能力。4.遥感数据处理领域,在现有基础上,搭建由高性能服务器和高容量存储设备组成的基础设施,系统数据运算能力每秒可达到1560万亿次,数据存储能力达到PB级。开展天空地一体化遥感大数据处理算法和应用软件的研发,攻克多源数据高精度配准难题,攻克遥感大数据高效训练与算法提升关键技术。在未来5年内形成面向行业大众的遥感云服务平台,形成多个行业的业务化应用示范。5.高端光电探测系统领域,在已开发出的光电探测系统基础上,采用“销售一代,预研一代”的推广模式,专注于自主迭代升级的技术研究,开展多模态一体化技术、多模信息融合、大动态范围自适应以及模块化设计的研究,建立系统全链路数字化孪生模型,为已有的用户提供各类增值迭代服务,不断拓展潜在应用领域。四、合作需求希望与多方合作:1.光谱仪的各组部件供应商(包括元器件、机械加工件、镜头、整机组装定标调试等厂商);2.遥感数据应用团队(农业土壤有机质氮磷钾、杂草、水质检测)联合开发面向农业、水质监测、环保方向的应用示范平台;3.面向土壤应用、水质检测、环保检测等研发团队开展高光谱设备的租赁合作;4.创投类和科技创新类基金的支持。(联系人:李先生 17712225916)附:专家简介和团队介绍经过三年多的发展,形成了院士领衔指导发展。形成多位院士(业内具有崇高的威望和影响力的匡定波、童庆禧、薛永祺、沈学础、褚君浩等院士)和顶尖专家领衔的高层次、高水平专业人才团队。专业覆盖遥感技术、光电仪器、微纳光学、微电子、电子信息、机械结构、制冷工程,计算机和数据处理等与光电遥感技术及应用相关的学科领域。专家团队具有多年丰富的机载/星载多光谱、高光谱及红外相机的研制经验,在国际上率先解决了星载高光谱成像载荷难以同时兼顾宽谱、宽幅、高光谱分辨率和高探测灵敏度的技术难题,打破国外在核心关键技术上的长期封锁,性能指标国际领先,成果已广泛应用于国家相关行业部门、科研院所和骨干企业,以及国外相关知名机构。匡定波:南通智能感知研究院特别顾问。中国科学院院士,红外及遥感专家,1991年当选中国科学院学部委员(院士)。现任中国科学院上海技术物理研究所研究员,博士生导师。是我国红外与遥感技术的领路人,他的学术思想和科学成就开创了中国红外应用及遥感技术领域的新纪元。童庆禧:南通智能感知研究院特别顾问。中国科学院院士、联合国科学院院士、国际欧亚科学院院士,遥感技术与应用专家,1997年当选为中国科学院院士。我国遥感技术应用领域的最早开拓者之一。长期致力于气候学、太阳辐射和地物遥感波谱特征研究。薛永祺:南通智能感知研究院技术发展委员会主任。中国科学院院士,红外和遥感技术专家,1999年当选为中国科学院院士。现任中国科学院上海技术物理研究所研究员、博士生导师,中科院空间主动光电技术重点实验室学术委员会主任。长期致力于多光谱和成像光谱技术研究,为中国建立机载实用遥感系统提供了多种先进的遥感手段,并推动了中国遥感技术的应用。先后研制成功多光谱扫描仪、成像光谱仪、超光谱成像仪。沈学础:南通智能感知研究院学术发展委员会主任。中国科学院院士,物理学家,1995年当选为中国科学院院士。现任上海技术物理研究所研究员,博士生导师,复旦大学教授,上海大学理学院名誉院长,国际巴登奖评定委员会委员和多个国际杂志编委。主要从事固体光谱和固体光谱实验方法等方面的科学研究。褚君浩:南通智能感知研究院产业发展委员会主任。中国科学院院士,半导体物理和器件专家,2005年当选为中国科学院院士。现任中国科学院上海技术物理研究所研究员、博士生导师,SCI期刊《红外与毫米波学报》主编,复旦大学光电研究院院长和上海虹口区科协主席等职。长期从事红外光电子材料和器件的研究,开展了用于红外探测器的窄禁带半导体碲镉汞(HgCdTe)和铁电薄膜的材料物理和器件研究。刘银年:南通智能感知研究院院长/首席科学家。中国科学院上海技术物理研究所研究员,博士生导师,所学术委员会副主任;中国遥感应用协会高光谱遥感技术与应用专业委员会主任;上海市十大科技英才,全国优秀科技工作者,国家级人才计划入选者;是我国星载高光谱遥感载荷的主要开拓者,先后主持了国家级重大项目10余项,是多个国家级项目的首席科学家、首席专家。带领团队率先突破了国际上光谱成像难以同时兼顾宽谱、宽幅、高光谱分辨率和高探测灵敏度的技术瓶颈,建立了星载光谱成像载荷技术研发体系,研制出国际上首台星载宽谱宽幅高光谱相机,实现了国际上4颗高光谱卫星在轨组网观测,技术水平大幅领先国际在轨和在研的同类载荷,推动了水体土壤微克量级大范围探测、数百万平方公里以上矿物填图、复杂地物精细识别、甲烷点源排放精准监测等一系列重大应用难题的突破。相关研究成果发表于《IEEE GRSM》和《Science Advances》等国际顶级期刊。孙德新:南通智能感知研究院执行院长/首席专家。中国科学院上海技术物理研究所研究员、博士生导师,中国遥感应用协会高光谱遥感技术与应用专业委员会秘书长。长期致力于红外高光谱光电遥感技术的研究,在空间信息获取与处理技术、成像技术、光电信息处理等方面具有深厚的理论功底和丰富的实践经验。先后负责或参与完成了红外及高光谱载荷研制相关国家重大科研项目及型号任务十余项。环境减灾二号A/B卫星主任设计师,国家重点研发计划“静止轨道全谱段高光谱探测技术”项目负责人。陈效双:南通智能感知研究院学术发展委员会副主任兼秘书长/微纳光电子首席科学家。中国科学院上海技术物理研究所研究员、博士生导师,红外物理国家重点实验室主任。研究领域为红外光学,微纳光子学,人工量子结构和量子操控,光电子材料与器件。先后承担国家重点研发计划量子调控与量子信息重点专项项目,国家自然科学基金重大研究计划重点项目,国家自然科学基金重大项目和重点项目,中国科学院创新工程项目,上海市科学技术委员会基础重大和重点项目等国家和省部级科研项目10余项。吴亦农:南通智能感知研究院空间制冷技术首席专家。中国科学院上海技术物理研究所研究员、博士生导师。长期致力于空间低温制冷机研发、制造和应用,以及制冷装置可靠性和长寿命技术、空间载荷低温系统集成和热管理技术等研究。负责并完成四十余项航天预研及工程型号任务,以及国家重大专项中的制冷器研制及载荷热管理技术服务项目。陈永平:南通智能感知研究院微电子技术首席专家。中国科学院上海技术物理研究所研究员、博士生导师。长期致力于硅基光电器件的研究,在CMOS图像传感器、PN/APD光电传感器、CMOS与红外MEMS集成器件等方面具有深厚的理论功底和丰富的实践经验。先后主持完成航天遥感用系列化硅基光电传感器研制、硅基光电子前沿研究、红外MEMS关键技术研发等十余项国家级重点项目。现为国家重点研发计划“超大规模红外MEMS组件”项目负责人、首席科学家。尹忠海:南通智能感知研究院人工智能首席专家。高光谱遥感与应用技术专业委员会委员。长期致力于遥感影像、自组织网络及人工智能方面的研究工作,主持或参与项目近20项。曾任卫星地面分发系统数字指纹追踪子系统的主任设计师,建立了遥感影像数据分发的追踪机制;主持了国家重点型号项目数据链分系统的总体设计工作,形成跨代新体制下的网络架构,设计了高效分簇管控机制和传输协议并予以实现;为国家973项目课题负责人、总师组主要成员,面向事件驱动的“激励与响应”机理,提出了用于复杂事件处理的事件代数系统,相关成果应用于不同场景集群系统的智能涌现和逻辑控制建模。此外,感知院已形成高层次人才占比达80%的研发团队。其中,全职人员53人,外部专家34人。
  • 精密测量院参与完成《全球生态环境遥感监测2022年度报告》
    1月17日,科技部在北京正式发布《全球生态环境遥感监测2022年度报告》,报告包含“北极地区冰雪与植被变化”和“全球大宗粮油作物生产形势及复种与灌溉的贡献”两个专题。其中,“北极地区冰雪与植被变化”专题报告(以下简称“北极专题报告”),由中山大学牵头,联合精密测量院、武汉大学、国家卫星气象中心、南京大学等国内极地研究领域优势科技力量共同编制完成。精密测量院研究员江利明领衔的影像大地测量学团队,负责“北极专题报告”中的格陵兰冰川边缘线数据分析及相关中英文内容编写。利用多源卫星遥感数据,首次研制了2002-2021年整个格陵兰298条冰川边缘线逐季(典型冰流系统为逐月)数据产品,揭示了格陵兰冰川边缘线呈整体退缩趋势的时空变化特征及其大气、海洋驱动机制。自2018年以来,该研究团队在国家重点研发计划课题“格陵兰“冰盖-溢出冰川-海冰”系统关键过程遥感强化观测研究”等多个国家级项目资助下,围绕南北极冰盖关键要素多尺度变化特征及其驱动机制开展持续、深入研究,相关研究成果发表在《地球物理研究通讯》(《Geophysical Research Letters》)、《地球与行星科学通讯》(《Earth and Planetary Science Letters》)、《遥感》(《Remote Sensing》)、《国际数字地球学报》(《International Journal of Digital Earth》)等地学领域权威期刊上。2002—2021年格陵兰各流域平均边缘线的时空变化特征及其气候驱动机制2002—2021年格陵兰Zachariae Isstrom冰川边缘线变化(图片来源: CCTV-13新闻频道报道截图)近20年来,由于全球增温及北极“放大效应”的影响,北极冰雪与植被正在发生快速变化,是全球气候变化的风向标。“北极专题报告”显示,2002—2021年间,北极海冰覆盖范围缩减范围超过200万平方公里,占2002年最小海冰范围的近40%;格陵兰冰盖所有区域都发生过表面融化,主要集中在冰盖边缘地区,84%的格陵兰冰川出现退缩,平均退缩1.37公里;77.4%的北极陆表区域绿度增加,面积约550万平方公里,相当于整个亚马逊雨林的面积。该专题报告为开展北极环境变化对全球气候变化的响应研究和应对全球气候变化提供科学依据。报告全文和相关数据集产品均面向社会公开发布,可通过国家遥感中心网站(http://www.nrscc.most.cn/)和国家综合地球观测数据共享平台(http://www.chinageoss.cn/geoarc)下载。报告成果得到了人民日报、新华社、中央广播电视总台、科技日报等多家新闻媒体的宣传报道。17日发布会由科技部新闻发言人、办公厅吕静副主任主持,国家遥感中心赵静主任、刘志春副主任和中国科学院周成虎院士等领导和专家出席。据科技部国家遥感中心主任赵静介绍,科技部自2012年起持续组织开展《全球生态环境遥感监测年度报告》编制工作,面向国家重大战略需求和国际社会共同关切的议题,开展全球及洲际尺度的生态环境遥感监测、分析和评估,是我国深入实施创新驱动发展战略和联合国2030年可持续发展目标、推动全球生态环境保护和绿色低碳发展的一项重要举措。
  • 高端装备精密仪器产业园落户张江
    近日,在上海市经信委、浦东新区科经委等相关部门支持下,由张江集团主导产业培育和运营管理的高端装备精密仪器产业园开园。  该产业园位于浦东南北科创走廊中段,张江科学城中部核心位置,一期现有空间总建筑面积约21.3万平方米,二期规划面积1平方公里,在产业发展上将强化产业链、供应链自主可控,促进高端装备精密仪器产业集群式发展,助力构建高质量、现代化产业链体系。  高端装备精密仪器产业以高新技术为引领,处于价值链高端和产业链核心环节,决定着全产业链的综合竞争力,是现代化产业体系的重要支撑。大力培育和发展高端装备精密仪器产业是提升产业核心竞争力,抢占未来经济和科技发展制高点的战略选择。《上海市高端装备产业发展“十四五”规划》明确提出,到2025年,上海将成为具有国际影响的高端设备研发和关键技术中心。为促进高端装备产业高质量发展,浦东新区出台专项操作细则。  落户张江的高端装备精密仪器产业园在发展上将致力于服务产业既有需求、拓展未来研发领域、构建供应链关键节点,以应用场景为主阵地,驱动产业集群发展。通过引进先进技术、促进产研融合、培育高新企业、推动成果转化,集聚核心零部件研创力量,打造高端制造创新引擎。  据悉,为满足高端装备精密仪器产业园的空间需求,产业园一期现有空间21.3万平方米,兼具研发、生产、办公、展示、生活五位一体的综合功能,已配套地铁站短驳班车、园区接待中心、食堂、便利店等设施及服务。在产业园一期基础上,在周边区域已规划布局1平方公里的产业园二期,将围绕产业发展需要供给工业研发用地及定制化高标准厂房等,并适当超前预留产业所需的电力、算力等公共基础设施。  高端装备精密仪器产业园落户张江源于其雄厚的产业基础。张江自1992年建园以来已经建成以集成电路、生物医药、人工智能为主导的三大具有世界竞争力的产业集群。其中,集成电路领域已成为国内产业链最完备、综合技术水平最先进、自主创新能力最强的产业基地之一;生物医药领域构筑起全球屈指可数的创新生态,全国五分之一新药在张江;人工智能领域已集聚600多家相关企业,产业规模占全市50%。  在三大主导产业蓬勃发展的同时,交叉创新、集成创新、融合创新的趋势也愈发明显,这就对高端装备精密仪器产业提出更高的创新需求。从过去通用设备、通用零部件的制造,到如今根据前沿需求进行个性化创新,大量的张江企业都迫切需要实现供应链从端到端的自主可控。布局营建高端装备精密仪器产业园恰逢其时。  基于张江科学城多年以来的智能制造产业积累,特别是在张江实验室、国家集成电路研发中心、国家智能传感器创新中心、ABB机器人赋能中心、上海机器人产业技术研究院创新中心等功能平台的引领赋能下,结合张江完备的科创生态和优越的综合配套服务能力,高端装备精密仪器产业园将瞄准产业层次高、创新能力强的发展目标,全力建设成为国内领先、国际一流的特色产业园区。
  • 市场需求大 我国高端精密仪器还需加大投入
    我国精密仪器市场需求大  精密检测仪器与我们的日常生活息息相关,但很多人对此并不甚了解。精密检测仪器自上世纪九十年代起开始在国内被广泛使用,成为检测工业产品必备的设备。在经历了简单的投影仪、二次元影像测量仪、高端三坐标测量机这三个发展阶段之后,目前的精密检测仪器更加趋向于智能化、自动化和集成化,解决了人工肉眼和卡尺卡规检测的局限性。  精密检测仪器被广泛应用在工业产品的检测上,随着国内工业的发展,精密检测仪器的市场需求不断增加。精密检测仪器目前已成为工业发展不可或缺的一个产业,是新兴产业中高速发展的一个行业。  新时代,更多的产品需要提供三维检测,这样才能更好的为现代社会的发展提供服务,所以国内的精密检测企业就在二次元影像仪的基础上研发生产了三坐标测量机,从而实现更高端的产品的三维检测任务。  当然,对于精密检测仪器这个国内新兴的行业来说,也会有高潮和低谷的存在,因此,企业需要有一个发展的规划,这样才能带领行业不断的超越和发展,最终成为世界领域里的领头羊。  业内人士认为,我国精密检测技术和仪器的现状仍然不甚理想,主要原因在于此类研发企业在国内是稀缺资源。随着中国工业自动化和产业升级的发展趋势,定向研发的精密检测仪器在工业检测领域将有很大的市场空间,与此同时,中国要成为工业强国,也必须重视研发与创新。  专家称,精密检测仪器本身是整个行业的粮草,而软件则又是仪器的核心。所以我们要想让整个的精密检测仪器行业的发展取得长足的进步,那么我们就要保证精密测量软件的不断更新和发展,为仪器的检测提供技术的支持。  未来发展需加大技术投入  随着国际市场需求的不断扩大,与人们生活息息相关的试验机行业也得到了迅猛的发展,但由于技术及创新等方面的原因,国内试验机行业与国外仍有巨大的差距,关键核心技术匮乏,低水平重复,产品的稳定性及可靠性得不到根本的解决,在高端精密仪器上仍严重依赖进口,大量进口对产业发展造成不利影响。  第一,高端通用试验仪器设备。将集中力量,重点突破一批我国需求量大、严重依赖进口、价格昂贵的试验仪器设备,攻克若干试验仪器设备核心技术和关键部件,带动重要领域试验仪器设备整体水平提升,打破国外垄断。  第二,前沿重大试验仪器设备。将依据我国在世界新一轮科技革命中的战略部署,研发若干具有国际领先水平的重大试验仪器设备,有效支撑我国开展世界一流科学研究、有特色科学研究,带动高新技术产业发展。  第三,常规通用试验仪器设备。将强化科技部门统筹作用,从现有各类科技计划(专项、基金)或自由资金开发的试验仪器设备中择优,采取应用示范、实施后补助等方式,以使国产优质试验仪器设备得到广泛应用,市场占有率大幅提升,壮大我国试验仪器设备产业。  加强研究和创造  科学技术就是第一生产力,这是我国的发展一直都在遵守的科学道理,在科学技术的领域,国家需要的精密的仪器越来越多,所以对于精密仪器的研究一直都是我国相关科技开发人员一直都在做的事情,在不断的努力中前进,争取赶超世界的先进水平,成为发展的主题。  在科学技术中,学到的知识非常的多,尤其是在精密仪器的开发和制造中,一定会遵循更多的实践经验来进行科学技术的开发和创造。这对于我国的电气行业是一个不小的考验,从而推动了科学技术的发展,精密仪器是我国使用的重要的仪器,一定要具备先进水平的精准,这样才能够满足使用需求。  我国在精密仪器的发展上面正在不断的进步,并且在十几年来的时间里已经发展了很多的科学水平,但是仍然赶超不了国际水平,但是只要是我们的努力发展和科学的不断的研究和创造,赶超先进水平的时期指日可待,在不断的发展中探索出来的成果才更加的稳固。  所以精密仪器的使用和发明,对于我国的电气行业来说是一个非常大的挑战,从根本上促进了社会的不断的发展和进步,主要是科学技术的不断的进步,这也是科学技术发展的动力,成为世界上数一数二的精密仪器的制造国家,是我国发展的重要目标,也在朝着这个目标不断的努力奋斗。
  • 央视关注!国仪量子持续助力量子精密测量产业化发展
    近日,央视《经济半小时》栏目聚焦报道合肥“场景创新”相关经验成绩,国仪量子发展的量子精密测量技术产业化成果受到关注。在采访中,国仪量子董事长贺羽表示,国仪量子源于中国科学技术大学,承接了实验室的科技成果转化。目前,我们(国仪量子)可以在一个比头发丝还要细一百倍、肉眼看不见的这样的一根针尖上,去人工制备一个量子传感器,这个传感器它的大小大概只有原子尺度,它有更高的分辨率和更高的灵敏度,可以测到过去我们测不到的信号。比如,人在想问题时大脑产生的磁场。这么精细灵敏的传感器,可以应用于对癫痫的病灶定位、测心脏产生的磁场,可以对心肌缺血和冠心病进行早期的筛查和诊断。震撼发布!引领磁传感领域进入量子时代作为量子信息技术产业化的引领者,国仪量子在今年世界制造业大会期间,面向全球发布了一款可用于心磁、脑磁、地磁等弱磁场精密测量的“量子自旋磁力仪”。该设备利用碱金属原子外层电子自旋性质,以泵浦激光作为操控手段,使碱金属原子产生自旋极化。在外界弱磁场的作用下,碱金属原子发生拉莫尔进动,改变对检测激光的吸收,从而实现高灵敏度的磁场测量。量子自旋磁力仪具有灵敏度高、体积小、能耗低、易于携带的特点,未来将引领人类在科学研究、生物医学等磁传感领域进入量子时代。量子精密测量,赋能产业焕新!国仪量子的核心技术是以量子精密测量为代表的先进测量技术,致力于为全球范围内企业、政府、研究机构提供以增强型量子传感器为代表的核心关键器件、用于分析测试的科学仪器装备、赋能行业应用的核心技术解决方案等优质的产品和服务。  测量是科学技术的基础,以量子精密测量为代表的先进测量技术成果不断涌现,必将进一步提高人类科技发展水平,变革生产制造模式,促进社会经济发展转型升级。今年5月,国仪量子联合权威专家团队,与新能源、半导体、生命科学、医疗健康、能源勘探、航空航天、 基础科研、计量学等领域的一线行业伙伴,联合编撰并发布了《量子精密测量行业赋能白皮书》。从用户维度出发,通过大量的案例切入行业痛点,针对性提出赋能解决方案。
  • 为医疗、能源、检测等行业赋能—量子精密测量产业化发展论坛成功召开
    仪器信息网讯 2021年4月21-23日,由中国仪器仪表行业协会、中国仪器仪表学会、仪器信息网联合主办,中国仪器仪表学会分析仪器分会、南京市产品质量监督检验院、我要测网、江苏省分析测试协会、无锡量子感知研究所、城铁惠山站区管理委员会协办的2021第十五届中国科学仪器发展年会(ACCSI2021)在无锡成功举办。大会吸引科学仪器及检验检测等行业约1400位高端人士参会。近年来,“第二次量子革命”被提出,不同于“第一次量子革命”对量子现象的理解和直接利用,对微观量子世界进行被动观察和解释,“第二次量子革命”通过掌控量子效应、定制量子系统,扎根于纯粹量子效应的量子技术,以实现对量子状态进行人工制备和主动调控。量子科学很可能是21世纪促进人类文明进步的最重要基础科学。今年3月12日,在发布的《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》中首次将量子信息列到了科技前沿领域攻关的第二位,明确指出要求实现量子精密测量技术突破。面对量子科技的发展新契机,4月23日上午,第十五届中国科学仪器发展年会(ACCSI2021)召开了量子精密测量产业化发展论坛,邀请领域内的专家学者等,共同研讨量子精密测量技术及其产业化应用,以期推动量子精密测量产业化进程。(文后附视频回放链接)会议现场中国石油大学(北京)人工智能学院院长肖立志 致辞会议开始后,由中国石油大学(北京)人工智能学院院长肖立志教授致辞。致辞结束后,6位演讲嘉宾分别从不同的角度分享了自己在量子领域的相关工作,并与现场观众进行了热烈的交流讨论。现场观众提问交流报告人:国仪量子联合创始人、CEO 贺羽报告题目:国仪量子:引领量子精密测量技术产业化国仪量子秉承着“为国造仪”的理念,成立以来一直致力于量子精密测量技术赋能各行各业。报告中,贺羽介绍了量子精密测量的基本原理以及在医疗健康(例如冠心病诊断、单个癌变细胞检测、脑磁图研究)、科研检测(例如解析单分子结构、引力波探测、寻找新粒子)、能源开发(例如油气探测、探矿、电力)和工业发展(例如高精度原子钟、脑机交互、芯片电流成像)等领域的应用。国仪量子以量子精密测量技术为核心技术,为科研机构、企事业单位等提供高端装置平台、核心器件、核心技术解决方案等产品和服务。报告人:国仪量子测控事业部总经理 吴亚报告题目:量子测控系列新品在量子精密测量领域的应用量子精密测量的研究离不开测控电子学产品的支持,量子态的控制与读出都依赖高精度、高灵敏度的测控系统。针对于此,吴亚在报告介绍了一系列针对量子精密测量领域的测控解决方案,以NV色心量子精密测量应用方向为基础,介绍了量子测控产品的实际应用方法。报告人:国仪石油技术(无锡)有限公司系统工程师 孙哲报告题目:量子精密测量在地球物理探测中的应用量子精密测量是量子信息科学的重要分支之一,该种测量技术具有远超经典极限的探测精度和灵敏度。在精度方面,顺磁共振技术能够对物质中未成对的电子进行精确探测并进行定性和定量分析,具有纳米尺度的空间分辨率;在灵敏度方面,原子磁力探测技术能够探测到强度低至fT级别的弱磁场信号。报告中,孙哲表示,采用顺磁共振技术对页岩等非常规储层的岩心或岩屑进行探测时,能够精确测量其内部顺磁性离子,进而可得到其表面弛豫率等重要信息,对研究其内部孔隙结构和润湿性等方面具有重要意义。采用原子磁力计作为井下和地面通信的接收机时能够有效提升信息的传输速率、稳定性和距离,大幅度提升油气的勘探开发效率,该技术在旋转导向系统控制、生产井流量阀控制以及随钻测井信息传输等方面具有广阔的应用前景。报告人:中国科学技术大学教授 廖昭亮报告题目:新型电子信息功能材料的原子构筑和性能调控发展新材料、新结构和新原理器件已成为在后摩尔时代主要的研究方向之一,它有望突破经典半导体器件的极限,进一步推动电子信息工业的蓬勃发展。这其中一个重要的思路就是利用外延制备技术原子级构筑新型电子功能材料。通过材料的外延组合调控,人工设计制备异质结、超晶格和二维材料等人工材料,从而探索发现革命性的新材料。廖昭亮在报告中重点介绍了其团队在这一领域的一些工作,包括用于材料外延制备的激光分子束外延系统的研制,以及基于激光分子束外延系统在制备多功能耦合复杂氧化物异质结体系方面取得的一些进展。主要包括磁性材料的界面设计、电子相变的连续调控,并结合同步辐射表征方法、理论计算、高分辨微区晶体表征等先进的手段探讨界面新奇现象的物理机制。报告人:国仪量子高级应用工程师 代映秋报告题目: 基于量子精密测量的科学仪器——从系综到单自旋电子顺磁共振波谱技术是一种研究含有未成对电子物质的结构、动力学以及空间分布的谱学方法,能够提供原位和无损的电子自旋、轨道和原子核等微观尺度的信息。代映秋在报告中以顺磁共振的仪器开发和应用为主线,介绍X波段顺磁共振波谱仪的关键技术,以及基于金刚石NV色心的单自旋磁共振谱仪的实现和应用。视频回放内容嘉宾国仪量子:引领量子精密测量技术产业化国仪量子 联合创始人、CEO贺羽量子测控系列新品在量子精密测量领域的应用国仪量子 测控事业部总经理吴亚量子精密测量在地球物理探测中的应用国仪石油技术(无锡)有限公司 系统工程师孙哲新型电子信息功能材料的原子构筑和性能调控中国科学技术大学 教授廖昭亮基于量子精密测量的科学仪器——从系综到单自旋国仪量子 高级应用工程师代映秋
  • 博霆光电:力做国内精密仪器市场的“开荒牛”
    p 在中国精密仪器加工制造市场,海外引进的同技术产品能卖到上百万元,而本土却没有一家享誉世界的高端科研仪器设备公司,不禁令人唏嘘。凭借创新思维和理念,来自中新天津生态城启迪之星生态城基地的双创企业天津博霆光电技术有限公司(以下简称“博霆光电”)成立半年来,实现了迅速发展,公司也期待打破这一市场空白,力做国内精密仪器市场的“开荒牛”。/pp博霆光电的创始人名叫蔡元学,博士出身的他是国内精密仪器行业的名人,而从一名高校教师到国内精密仪器市场创业新人的转变,却出乎很多人的意料。在多年的研究中,蔡元学发现,国际上的精密仪器公司都被美、德、日、英、瑞士垄断,而中国本土尚无一家享誉世界的高端科研仪器设备公司,老外们赚得盆丰钵满。为此,他毅然投入到创新创业的大潮之中,力图改变中国精密科研仪器领域在世界上的地位。/pp凭借创新思维与过硬的技术,博霆光电前期研发进展顺利,目前已经开发出多款高品质纳米压印设备、3D打印设备、分布式光纤传感器、固体激光器、高功率二氧化碳激光器、移动CT、便携式元素监测系统、高性能便携式光谱仪、调制器、探测器、调Q开关、紫外胶等光电产品与配件,并拥有独立的产品专利。/pp在实际检测传感的一系列应用中,博霆光电更是开发出多个成型系统。以便携式LIBS系统为例,该系统在核物理、食品安全等领域弥补了传统元素检测方法的不足,具有实时、快速、无损、无需制样等优点及特点。此外,由博霆光电开发的PVC膜鱼眼视觉检测系统,打破国外仪器厂家在PVC膜鱼眼检测设备上的垄断地位,填补了我国在该领域的空白;光纤传感系统则可应用于地质、建筑等行业,它基于布里渊光时域分析技术和差分脉冲对技术,可实现高精度、长距离的应变监测。/pp“成功的企业一定是靠产品与服务的完整体系铸就的,所以被细化的不单单是产品,更多的是服务的完备。”蔡元学告诉自己,博霆光电未来还将增强自身能力,积极推出各项服务,逐步实现产品与技术咨询、人工智能、三方技术人才匹配的结合,在国内精密仪器市场站稳脚跟。/p
  • 进步零点几微米!他们研制出超精密加工全新利器
    超精密机床基础部件与应用技术的突破,能为制造业的生存和发展提供强大技术支撑。然而此前我国的超精密机床及关键基础部件主要依赖进口。轴类零件外圆圆度加工方面,国内外基本是靠超精密的外圆磨床实现。以磨削直径100毫米、长300毫米的轴芯为例,我国的外圆磨床大概能够磨到1至2微米的水平,而国外可达到0.3至0.5微米的水平。为破解机床和关键部件“卡脖子”技术难题,国防科技大学教授戴一帆科研团队历时5年,提出轴类零件外圆圆度确定性修形加工工艺技术,使轴芯加工圆度精度提升到0.1微米,并成功研制出超精密空气静压主轴,近日经中国计量科学研究院测试,该静压主轴相关参数达到国际先进水平,这将使我国超精密加工精度有效提升。像铁锹整地那样研磨超精密零件我国超精密机床及关键基础部件此前主要依赖进口,最大的技术难题在于缺少加工核心零件的“工作母机”。所谓“工作母机”,就是制造机器和机械的机器,又称工具机,包括车床、磨床、刨床、钻床等,是制器之器、工业自强之基。一般的机械加工是将机床精度“复印”到零件的过程,也就是说,没有精度高的机床就加工不出精度高的零件。没有精度高的零件,也就组装不出精度高的部件和机床。没有制造高精度零件的工作母机,就限制了整个超精密机床行业的发展。戴一帆科研团队长期从事现代光学制造技术研发,他们发现光学零件的最终制造精度远超出所使用的加工设备精度,而光学制造的基本原理是逐步将误差高点去除的一种精度进化加工原理,团队尝试将这种“精度进化”原理的加工方法用于机械零件高精度加工,最终通过加工原理的创新提出轴类零件外圆圆度确定性修形工艺技术,突破高精度“工作母机”的限制。芯轴多传感器在位测量。国防科技大学 供图确定性修形工艺是如何工作的?“好比使用铁锹平整一块地,就是将看上去凹凸不平的地方铲去适量的土,如此反复直到获得非常平整的地。”戴一帆说,这个过程依靠的是成套数字化设备,比如采用了高精度圆度仪获取圆柱形貌;发明了专用的控时磨削机床实现材料去除量的数字化精确可控;采用专用计算机程序计算获得磨削工具需要在特定空间位置停留的精确时间。机械取代有经验的工人师傅借助新工艺,戴一帆科研团队突破了基于精度进化原理的控时磨削加工技术,形成了圆柱类零件在位加工检测一体工艺方法,成功研制出超精密空气静压主轴。中国计量科学研究院测试结果显示,该空气静压主轴径向跳动小于15纳米、端面跳动小于15纳米。这个跳幅相当于头发丝直径的六千分之一。如果是地球这么大一根主轴的话,回转运动造成的振幅不会超过1米。测试结果还显示,空气静压主轴径向静刚度大于200N/μm、轴向静刚度大于200N/μm。通俗地说,就是主轴可以在20公斤的重力载荷下纹丝不动,变形量不会超过1微米,即头发丝直径的百分之一。对比代表美国超精密领域最高水平Precitech公司的产品手册,上述技术指标与其相当甚至更高。当前,国内外可将轴类零件外圆圆度加工研磨到零点几微米的水平,如果再要提升只能靠手工研磨修整。“我们的新技术可以摆脱对极其有经验人工师傅的依赖,能很容易地按照现代工业化的模式组织生产,促进超精密基础部件的大批量、高效率生产和应用。”戴一帆表示,超精密机床基础部件与应用技术的突破,将为制造业的生存和发展提供强大技术支撑,完善高端机床产业链配套,大幅增强高性能功能部件竞争力,促进高端精密与超精密机床方面实现国产化。他补充说,这些突破还将有效解决探测制导关键零部件超精密加工面临的超精密装备和核心工艺难题,进一步助力国防领域高端核心零件超精密加工批量化生产,实现科研成果向生产力和战斗力的快速转化。系列成果获得了湖南省十大技术攻关等项目的支持。相关成果先后发表于Materials、Micromachines等期刊上,戴一帆为通讯作者。为支撑超精密加工,促进精密测量技术发展和应用,助力制造业高质量发展,仪器信息网联合哈尔滨工业大学精密仪器工程研究院,将于2023年12月14-15日举办第二届精密测量技术与先进制造网络会议,邀请业内资深专家及仪器企业技术专家分享主题报告,就制造中的精密测量技术等进行深入的交流探讨。点击图片直达会议页面
  • 远不止用于量子研究的量子精密测量技术——ACCSI2021量子精密测量产业化发展论坛邀您参加
    量子力学是近代科学技术的支柱,可以追溯到1895年X射线的发现,之后普朗克于1900年提出量子论, 1905年,爱因斯坦提出光量子的概念。此后,量子力学迎来了蓬勃发展,广泛应用于诸如原子弹、晶体管、激光、核磁共振、高温超导、巨磁阻等领域的研究中,被称为“第一次量子革命”。近年来,“第二次量子革命”被提出,不同于“第一次量子革命”对量子现象的理解和直接利用,对微观量子世界进行被动观察和解释,“第二次量子革命”通过掌控量子效应、定制量子系统,扎根于纯粹量子效应的量子技术,以实现对量子状态进行人工制备和主动调控。量子科学很可能是21世纪促进人类文明进步的最重要基础科学。“第二次量子革命”的提出,引发了各国的关注,面临着激烈的国际竞争态势。2016年5月,欧盟发布《量子宣言》;同年12月,英国发布《量子时代》;2018年9月,美国公布《量子信息国家计划》;同年 11月,德国发布《量子技术-从科研到市场》。此外,中国、日本等均发布了国家支持计划,谷歌、华为、微软、IBM等也加入了量子产业竞争。2020年3月12日,在发布的《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》中更是将量子信息列到了科技前沿领域攻关的第二位,要求实现量子精密测量技术突破。而近日,德国提出了量子系统新的研究计划,德国联邦教研部随后将在该议程基础上推出2022年开始的量子系统研究计划。未来德国量子领域的研究重点主要是量子计算机、量子通信、量子测量技术、量子系统的基础技术。量子科学技术受到广泛关注主要是由于其可以突破信息和物质科学技术的经典极限。量子科学技术主要研究方向包括量子通信,量子计算和量子精密测量。量子精密测量的基本原理是利用磁、光与原子的相互作用,实现对各种物理量超高精度的测量,可大幅超越经典测量手段。目前量子精密测量已在生物与医疗、食品安全、化学与材料科学等领域显示出其独特的优势和广阔的应用前景。但我国量子精密测量在系统工程化和实用化仍有待探索,科研成果转化应用机制不成熟,产业合作和推动力量有限。为推动量子精密测量产业化进程,2021年4月23日,第十五届中国科学仪器发展年会(ACCSI2021)将召开量子精密测量产业化发展论坛,邀请领域内技术专家教授、研究院、技术公司、资本投资专家等,共同研讨如何推进并加快量子精密测量产业化。现诚邀各领域相关从业人员参加学习 ! (报名参会) ACCSI 2021“量子精密测量产业化发展论坛”邀请报告及报告嘉宾一、论坛时间:2021年4月23日 9:00-12:00  二、论坛地点:无锡融创万达文华酒店  三、参会嘉宾:领域内技术专家教授、研究院、技术公司、资本投资专家;相关仪器企业及上下游企业董事长、总经理、总工、市场总监、研发总监、销售总监等。  四、会议形式:现场会议 / 线上会议内容嘉宾国仪量子:引领量子精密测量技术产业化国仪量子 联合创始人、CEO贺羽皮秒高重频相干脉冲产生及量子光学应用复旦大学 教授吴赛骏量子测控系列新品在量子精密测量领域的应用国仪量子 测控事业部总经理吴亚量子精密测量在地球物理探测中的应用国仪石油技术(无锡)有限公司 系统工程师孙哲新型电子信息功能材料的原子构筑和性能调控中国科学技术大学 教授廖昭亮基于量子精密测量的科学仪器——从系综到单自旋国仪量子 高级应用工程师代映秋2021第十五届中国科学仪器发展年会(ACCSI2021)将于2021年4月21-23日在无锡市召开。ACCSI定位为科学仪器行业高级别产业峰会,经过14年的发展,单届参会人数已突破1000人,被业界誉为科学仪器行业的“达沃斯论坛”。ACCSI2021以“创新发展,产业共进”为主题,力求对过去一年中国科学仪器产业最新进展进行较为全面的总结,力争把最新的产业发展政策、最前沿的行业市场信息、最新的技术发展趋势、最新的科学仪器研发成果等在最短的时间内呈现给各位参会代表。会议期间将颁发 “年度优秀新品”、 “年度绿色仪器”、“年度行业领军企业”、“年度十大第三方检测机构”、“年度售后服务厂商”、“年度网络营销奖”“年度人物”等多项行业大奖,引领科学仪器产业方向。参会咨询报告及参会报名:010-51654077-8124 13671073756 杜老师 15611023645李老师 赞助及媒体合作:010-51654077-8015 13552834693魏老师微信添加accsi1或发邮件至accsi@instrument.com.cn (注明单位、姓名、手机)咨询报名。报名链接:https://insevent.instrument.com.cn/t/qK 报名二维码扫描二维码查看最新会议日程
  • 谭久彬院士:高端精密装备精度测量基础理论与方法
    高端精密装备精度测量基础理论与方法谭久彬1 蒋庄德2 雒建斌3 叶 鑫4** 邾继贵5 刘小康6 刘 巍7 李宏伟4 谈宜东8 胡鹏程1 胡春光5 杨凌5 赖一楠4 苗鸿雁4 王岐东41. 哈尔滨工业大学 仪器科学与工程学院,哈尔滨 2. 西安交通大学 机械工程学院,西安3. 清华大学 机械工程系,北京4. 国家自然科学基金委员会 工程与材料科学部,北京 5. 天津大学 精密仪器与光电子工程学院,天津 6. 重庆理工大学 机械工程学院,重庆 7. 大连理工大学 机械工程学院,大连8. 清华大学 精密仪器系,北京 摘要完整而精确的测量信息获取是装备设计优化、制造过程调控和服役状态保持的基础,是实现重大装备“上水平”“高性能”的内在要素。本文分析了我国高端精密装备精度测量基础理论发展所面临的重大需求挑战,总结了当前高端精密装备制造精度测量理论、方法与技术领域的主要进展,凝炼了该领域未来5~10年的重大关键科学问题,探讨了前沿研究方向和科学基金资助战略。关键词:精密测量;高端精密装备;可溯源;极限测量;多场耦合测量;半导体测量;大尺寸测量在以超精密光刻机、高端飞机舰船为代表的复杂战略性装备制造领域,多源、多维、多尺度的测量信息及其融合实现装备性能优化设计、部件精度检验匹配、制造过程精细调控、服役状态长期保持的核心技术,是实现重大装备“上水平”“高性能”的内在要素支撑。 高端装备性能指标逼近理论极限,结构极其复杂,尺寸更加极端,材料物化特性更加特殊,多物理场耦合效应更加显著,传统基于产品几何精度逐级分解单向传递的制造精度测量理论体系难以保证超高性能指标要求。一方面,几何制造精度对最终性能的影响非线性效应显著,在零件—部件—组件—整机高度相关的序列制造过程中,单个环节的精度失调失配都会耦合发散传递;为避免装备整体性能失控,必须具备大量程、高精度、高动态、全流程实时监控的测量能力,在整体系统层面进行精度协调优化,保障最终制造质量与性能;另一方面,为保证超高性能的稳定实现,必须最大限度消除内在应力,全面分析材料物性、几何结构、环境工况等要素变化及其相互影响,急需突破现有技术条件,通过多源、多维、多尺度测量信息获取,对制造过程进行全面控制,使整机装备运行于设计最优状态,从而保证最高性能表现[1-5]。在当前全球制造面临智能化升级,我国以超高精度光刻机、先进飞机船舶为代表的诸多核心装备普遍存在“卡脖子”现象的背景下,召集相关领域同行专家,为我国高端精密装备制造精度测量技术发展把脉选向、凝聚共识,研讨面向高端精密装备制造的高精度测量发展路线,尤为迫切重要。1 高端精密装备精度测量研究现状与挑战 当前高端装备制造已从传统机械、电子、光学等单一制造领域主导,发展为创新聚集、信息集成、智慧赋能的多领域综合复杂产业体系,涵盖从芯片等核心元件到高端飞机船舶等重大装备各个方面。高端装备最终能够实现的性能源于对每个环节精度的精细调控,源于对整体状态信息的充分获取,源于测量理论方法及技术设备的不断完善。探索建立面向复杂装备制造的测量理论、方法与技术,支撑多环节、多层次、高精度的精度匹配调控已经成为精密复杂装备制造中的重要基础问题,并聚焦于:极端条件下可直接溯源几何量超精密测量;多物理场耦合多约束精度调控;多源、多维、多尺度测量信息高性能传感;智能制造大场景精密测量方法等四个重要方面(图1)。图1 高端精密装备精度测量研究聚焦领域1.1 极端条件下可直接溯源几何量超精密测量 在高端精密装备制造领域,极端条件下的可直接溯源几何量超精密测量,贯穿了装备核心零部件制造、整机集成、在役工作、制品质量表征和工艺提升整个过程,是装备自身精度和装备线工艺质量调控不可或缺的核心技术基础。可溯源能力将超精密测量结果直接参考到国际计量基准,可为极限测量精度的稳定实现提供根本保证,最大限度提升装备性能和运行品质,是超精密测量技术的公认发展方向。 传统计量溯源体系建立在严格控制、环境稳定的实验室条件下,而高端精密装备制造及运行过程伴随高速运行、严苛环境等极端条件,对实现可直接溯源的几何量超精密测量提出严峻挑战。如在光刻机制造领域,基于干涉原理的超精密多轴测量可将测量结果溯源至光波长基准[6,7],对提高装备精度性能意义重大。下一代EUV光刻机线宽将达到1 nm,其核心部件——双工件台的运动速度超过1 m/s。为在高速运行条件下保证优于1 nm的超高定位精度,需要对工件台和曝光镜头进行高达22轴的冗余测量(图2a)。能满足ASML光刻机测量要求的高端超精密双频激光干涉仪只有美国Keysight、ZYGO等公司生产,“卡脖子”问题严重。尤其在下一代光刻机开发中,针对更高速、更多轴数的纳米精度测量问题,国内相关技术与装备尚需从光源系统、信号处理系统、光学元件和集成式干涉系统等方面展开全面深入研究[3, 9],追赶国际先进水平。 在航空航天特种装备领域,其高温、高压、高速、高真空等特殊使用环境也对超精密测量技术提出极高要求。如航空超高音速飞行器的新型复材的工作温度超过1600 ℃,准确测量复材热膨胀系数可为飞行器气动外形设计和全周期寿命评估提供重要依据(图2b)[10];对地观测用相机的地面装调和在轨工作环境条件完全不同,迫切需要适应真空、超低温且失重环境的在线原位超精密测量技术支持等[11,12]。我国在极端条件下精密测量方面的研究总体处于起步阶段,相关测量理论、技术装备和实验条件仍不完备,面对国内相关需求的急迫性和普遍性,开展可溯源的极限测量技术攻关,将具有重要战略意义和社会效益。图2 可溯源的极限测量典型应用场景1.2 多物理场耦合多约束精度调控 高端装备制造与服役环境更加恶劣,性能要求更加苛刻,智能化要求更加迫切。复杂恶劣环境下多物理场高精度感知技术、智能在线动态监测技术、测量可靠性与可溯源性已成为实现高端重大装备智能制造与高可靠服役的核心驱动技术和本领域前沿热点、难点问题。 国内外学者在多物理场智能感知方面的研究,聚焦于智能制造过程中的多物理场在位测量与重构方法[13]、多物理场动态监测与预测方法[14, 15]、典型构件制造工艺参数调控方法[16]等方向。在工业应用层面,波音、空客等航空公司已应用数字孪生技术初步实现了零构件制造中全局力位状态监测,但当前仍处于系统工程技术探索与优化阶段。我国在装备构件制造及服役过程中的多物理场感知领域亦开展了较深入研究,如在飞机机翼、发动机压缩盘等薄壁件制造中位移/应变/温度场动态监测与重构[17-19]、复材构件加工中多物理场多参量监测[20]、装备服役过程温度场、磁场全场感知与动态重构等方面[21],已形成了系列静/动态多物理场全场在线感知与重构方法,但尚未形成完备的理论与技术体系。面向高端装备制造及服役工况高温、强磁场、狭小空间等极端复杂化的发展新趋势,多参量测量及精度溯源、多物理量强耦合动态演变机制、多物理场全场状态与边界约束映射关系、工艺参数实时调控,以及航空高端装备制造及服役维护性能的高性能动态测量等方面的研究需求将更加迫切,未来需要重点关注复杂物理场耦合原位高精测试、智能制造中的多物理量测量与解耦等相关原理与技术(图3)。图3 复杂制造工况下多物理场智能感知测量需求1.3 多源、多维、多尺度测量信息高性能传感 半导体芯片产业是国民经济的关键基础,芯片制造已经上升为国家最紧急和最重要的战略任务之一。半导体芯片的制造是一项极其复杂的系统性工程,其制造质量高度依赖于高精度检测技术及设备的支持,检测技术呈现出多源、多维、多尺度、高性能感测等突出特点,研发难度大、综合要求高,相关高端仪器装备已成为我国重点“卡脖子”问题[22]。 在半导体芯片制造领域,台积电和三星已实现了5 nm制程大规模量产并正在开展3 nm制程试产,而国内目前14 nm以下制程尚未量产。同时,半导体芯片制程已经从二维向三维发展[23, 24],现有技术难以对具有高深宽比纳米结构的三维芯片进行准确测量,新型测量方法和相关设备的技术革新迫在眉睫[25-29]。从半导体芯片的发展趋势看,未来在工艺制程中,测量精度必然要求达到亚纳米量级。由于界面效应和尺度效应的影响,在加工过程中材料除了发生几何尺寸变化,还时常伴随着理化属性变化,使得在高功率、高频以及高速运行状态下,芯片热态参数的获取成为技术挑战[30,31]。半导体芯片测量技术及装备除了要求具备传统几何量测量能力,还需要具备热、磁、电等多物理场表征能力,亟需开展微观尺度下超越散粒噪声极限的多维/多物理场芯片原位测试技术及仪器研究,形成具有自主知识产权的半导体芯片核心测量方法和技术,解决三维半导体芯片中纳米结构多维多尺度测量难题(图4),推动新一代半导体芯片制造技术的发展,为我国在芯片领域实现“并跑”甚至“领跑”提供支持。图4 半导体芯片制造过程多源、多维、多尺度测量信息高性能传感需求1.4 智能制造大场景精密测量方法 航空航天大型复杂装备的超高性能必须依靠精确外形控制来实现,外形尺寸信息是控制制造过程、保证制造质量、提升产品性能的关键条件。目前,以激光跟踪仪为代表的球坐标单站测量仪器仍是该领域主流测量设备。以大飞机机身制造为例,通过一台或多台跟踪仪对大部件关键控制点坐标进行精准测量,为姿态分析、工装协同定位提供基础数据和决策依据,已成为机身数字化对接、总装等核心环节的标准工艺要求[32,33]。 作为数字化制造的发展进阶,智能制造将进一步由针对少量工艺控制点的坐标测量定位拓展为对人员、设备、物料、环境等多元实体外形、位姿及相互关系的全面、全程测量感知,测量需求表现出全局、并发、多源、动态、可重构、共融等全新特点[34,35]。大规模、多层次、实时持续的物理空间数据获取,特别是高精度空间几何量获取是实现复杂装备智能制造的前提和国内外相关研究的关注重点。虽然新型跟踪仪、激光雷达等通过绝对测距技术创新部分克服了传统跟踪仪遮挡导致断光的问题,提升了测量效率,但单站球坐标测量模式原理上只能实现单点空间坐标顺序测量,视角受限、功能单一,无法满足智能制造现场多目标、多自由度、快节拍的自动化测量需求[36,37]。以室内GPS、激光跟踪干涉仪为代表的多站整体测量设备采用空间角度、长度交会约束原理实现大尺度空间坐标测量,具有时间和空间基准统一的突出优势,但系统组成较为复杂,误差因素多,精度控制难度大,简化结构、控制成本、提升动态测量性能是其未来面临的技术挑战[38-42]。目前,上述高端仪器大部分处于欧、美、日少数厂商垄断生产状态,针对“工业4.0”等智能制造场景的预研布局也已启动。国内高校及研究机构虽已开展相关仪器研制,还需紧密把握全球智能制造升级机遇,面向下一代智能制造大场景新需求新特点,持续探索精密测量新体制、新方法、新技术,实现原理、技术、器件、装备系统性突破(图5),为我国制造业升级转型提供强有力的测量感知技术支撑。图5 智能制造大场景精密测量需求2 高端精密装备精度测量未来发展趋势预测2.1 极端条件下可直接溯源几何量超精密测量发展趋势 (1) 几何量超精密测量精度极限即将进入皮米尺度。当前主流光刻机中平面反射镜面型测量精度优于1 nm,下一代面型检测重复精度将达到10 pm,光刻机集成和长期在役工作中超精密运动部件的测量精度正从1 nm量级突破至0.1 nm量级;硅片光刻过程特征线宽测量精度也已进入原子尺度;空间引力波探测装备中镜片面型检测精度达到0.1 nm,相对位移测量精度达10 pm。面向高端装备核心零部件制造的皮米级超精密测量已成为下一阶段发展必然要求和重点攻关方向。 (2) 从静态/准静态测量向高速高效动态测量发展。超精密机床、光刻机等加工装备中,超精密运动目标的速度从0.1 m/s量级逐步提升到3 m/s以上;引力波探测中超精密位移测量对象,也将从地面的静止目标转变为4 m/s的准静态目标。随着上述动态测量技术和仪器的发展,相应的仪器计量校准装置也需从目前的完全静态计量测试升级到高速率动态计量测试。 (3) 从一维单参量离线测量转向多维复杂参量在线、在役测量。光刻机、超精密数控机床等先进装备多参量耦合、多轴运动加工的工作特性对传统机床基于单维多步测量的定期校准方式提出巨大挑战,迫切需要嵌入可直接溯源的7~22轴精密仪器进行在线在役测量。航空发动机叶片测量中,传统离线条件下测量低速转动叶片形状精度已无法满足研制需求,实际高速转动工作状态下对叶片形状进行在线在役的超精密测量成为亟待解决的问题。 (4) 从传统物理量/场精密测试到基于量子传感的超精密测试。先进制造技术与装备在制造过程中需要开展位置、姿态、压力等多维力学量的超精密感知,磁、温、电等多物理场的精确测量,即高性能高质量信息传感能力。未来亟需突破超高精度、超高分辨传感与溯源等关键技术,不仅需要通过技术和工艺创新,实现传统传感技术的微型化、精密化和智能化,更要开展基于量子信息调控的多场解耦方法与信息解算关键技术研究,研制核心传感器件与测试仪器,实现传感技术的跨越式发展。2.2 多物理场耦合测量与精度调控发展趋势 (1) 面向重大装备的复杂物理场耦合原位高精度测试。重大装备制造、服役过程伴随高温、高压、高转速、高冲击等复杂物理场强耦合作用,常规方法“测不了”“测不准”“难存活”。聚焦极端环境下感知机理与信号传输、多场环境因子耦合作用机制与抑制、多场耦合环境标定与量值溯源等科学问题,重点研究复杂物理场强耦合环境下传感测试新方法、环境因子作用模型及抑制/衰减方法、封装防护、可溯源测试与标校方法等,发展面向精密复杂测量体系的人工智能技术,通过智慧赋能解决复杂物理场耦合环境下超/跨量程、大动态范围、高精度测试难题,为原位高精测试开辟新思路。 (2) 面向高端装备制造的多物理量测量与解耦。高端装备关键部件制造过程待测参量呈多元、高动态、强耦合、表里兼顾等发展新趋势,传统测量方法难以满足。聚焦多物理场敏感机制与一体化传感解耦、多物理场全场状态与边界约束间映射、复杂多因素强耦合测量精度调控等科学问题,强调多源数据的有效集成,重点研究高端装备多参数测量多敏感功能柔性传感器、复杂环境下多物理场全场状态信息智能感知与估算、多参量关联演变下的工艺参数调控等,为保障高端装备制造性能提供理论支撑与技术基础。 (3) 微纳尺度形态性能多参数测量。微纳制造过程中材料形态、性能参数变化过程相互关联耦合,多参数同时观测是准确揭示制造过程内在规律机理的前提条件。聚焦高空间分辨力激光共焦显微成像、近场光学显微成像和原子力显微成像等原理,重点研究上述显微成像技术与散射光谱、LIBS光谱和质谱的高效、高分辨率联合测量方法,研究新型光谱/质谱信息高灵敏度探测机理与方法,实现微纳米制造中微纳尺度下力学、热学、光学等性能的多参数高分辨、高灵敏、高准确探测。2.3 多源、多维、多尺度测量信息高性能传感发展趋势 (1) 纳米/亚纳米量级高分辨率检测。随着半导体工艺结点的不断缩小,高分辨率检测技术面临空前挑战。比如:EUV掩模版检测分辨率需要达到原子级,等效检测分辨率达到10 nm以下。目前仅有德国Zeiss和日本LaserTech有商业化产品,我国在这方面尚无技术储备;前道晶圆检测方面,世界范围内10 nm以下节点的CD和缺陷在线检测技术仍未成熟。 (2) 三维复杂微纳结构精确检测。芯片制程正在从二维向三维发展。具有三维结构FinFET已经成为14 nm以下乃至5 nm工艺节点的主要结构,存储芯片也向具有大深宽比(80∶1)三维垂直结构的3D NAND发展,工艺难度随层数呈指数上升,必须对芯片三维结构进行精确测量,才能指导工艺优化并保证芯片功能。但现有检测设备仍难以对上述结构进行无损定量检测,极限特征尺度下的大深宽比芯片结构检测已经上升为世界性难题。 (3) 满足量产速度的高性能在线检测。量产速度决定生产成本。根据英特尔发布的需求数据,更大晶圆尺寸和更小工艺结点已成发展趋势,裸晶圆的量产速度需达到2~3分钟/片,这对检测设备的速度提出了更高的要求,极大地增加了研制难度。目前满足量产速度的在线检测方法在全球范围内仍处于研究探索阶段,高性能在线检测技术与设备将在半导体产业发挥至关重要的作用。2.4 智能制造大场景精密测量的现状与发展趋势 (1) 新型智能制造综合测量系统构建理论。面向智能制造过程超高精度、高动态、多模态、多尺度、多维度测量需求的全局信息测量感知是当前研究重点和难点。需要从底层理念创新入手,探索覆盖复杂智能制造大场景需求的综合测量新理论,解决统一空间、时间基准构建,多物理场耦合约束条件下的精度调控,面向生产场景的测量系统设计重构等基础原理问题,突破具备多目标绝对测距能力的新型可溯源光学定位、制造场景多模型精度分析及优化设计、制造环境因素实时监测与修正等关键技术,最终构建可服务智能制造大场景、全流程的多维、多层次、多任务可溯源高精度综合测量体系。 (2) 广域全局空间、时间基准统一测试方法。基于“测量场”概念构建全域整体测量系统可实现大场景空间基准统一,具有多任务、高精度、可扩展等独特优势,进一步完善多体、多自由度动态测量能力是相关技术能否融入智能制造的关键和重点。需要突破现有静态测量理论框架,探索融合时间—空间信息的高精度、可溯源动态测量新原理方法,研究整体网络精确时统、多观测量高速同步获取、时间—运动—空间信息联合建模表达及精度控制、溯源与补偿等系列关键技术,有效提升测量网络动态测量能力。 (3) 物理信息融合测量新原理。通过测量完成物理状态到信息数据的高质量转换,是建立物理信息融合,实现智能生产和精准服务的基础前提。还可预见,在全新物理信息融合环境下,高性能算力大为丰富、多元要素交互更为广泛、大数据记录更加完备,将为机械测试学科发展更高性能的新型感知测量理论提供前所未有的基础条件。面向未来物理信息融合制造环境的测量新原理将改变以往从“物理”到“信息”的单向传感模式,引入有限元分析模型、人工智能、大数据挖掘等先进信息手段与AR、VR新型交互模式,和现有物理传感方法形成映射联动,实现多源时空信息处理与物理实测手段相互补充,构建面向“人—机—环”共融的测量新模式,为进一步突破现有测量方法物理分辨率,拓展机械测试学科研究领域提供新的基础手段。3 未来5~10年高端精密装备精度测量发展目标及若干建议 针对以超精密光刻机、高端飞机舰船为代表的复杂战略性装备制造的“卡脖子”测量难题以及未来发展战略,通过顶层设计、集中力量、先期布局和协同攻关,在未来5~10年时间应实现以下突破: (1) 微纳特征结构(深)亚纳米级在位/动态测量方法及微环境误差传递与微环境超精密调控基础理论,多维高速高动态超精密测量方法与动态计量校准基础理论,量子精密测量与溯源方法; (2) 面向高端制造的微区形态性能多物理场多参数耦合机理、不确定度评估与量值溯源,光子—声子/自旋量子调控及其高精度传感与测量方法,以及传感器件与测试仪器; (3) 面向半导体制造的电磁波与物质相互作用的纳米量测新机理,泛薄膜体系跨尺度光学精密测量新原理,接触—非接触复合测量新模式,以及测量装备的校准与可溯源问题; (4) 面向智能制造的新型可溯源光学定位原理方法,融合惯性、时间信息的高性能全局测量网络动态测量方法,现场环境因素实时监测与修正方法,以及物理—信息融合测量新原理与方法。 建议着重围绕以下4个领域,通过关键技术攻关、前沿探索及多学科交叉深入开展原创性研究。 (1) 面向高端精密装备的核心零部件加工、集成及服役中的精密测量基础理论与复杂物理场耦合原位高精测试理论; (2) 面向高端制造与微纳精密制造的多物理量、多参数的形性测量基础理论; (3) 面向半导体制造的测量新原理,特别是超光学衍射分辨极限、高性能非破坏、智能质量检测等方面的测量基础理论; (4) 面向智能制造的测量基础理论,特别是综合测量系统构建方法,现场广域全局空间、时间基准统一测试新方法,物理信息融合测量新原理等。4 结 语 在当前国际形势深刻复杂变化的时代背景下,发展自主可控的高端精密装备精度测量技术及仪器,满足我国以超高精度光刻机、先进飞机船舶为代表的诸多核心装备制造急需,为中国制造在智能化升级中提供强有力支持,是历史赋予的重要使命。精密测量技术研究必须坚决贯彻“四个面向”的科研思想,深入高端装备一线,持续跟踪、预判高端精密装备精度测量基础理论最新动向,抽取真科学问题,深度解决挑战性问题;必须快速推进基础研究、技术突破及成果转化,与国家重点领域发展规划无缝衔接,实现对国家重大产业亟需的快速响应。同时,建议今后对高端精密装备精度测量基础理论持续高强度支持,推动重点突破,设立重大项目、重点项目群、或重大研究计划,资助“极端条件下可直接溯源几何量超精密测量方法”、“多物理场耦合测量与精度调控”、“多源、多维、多尺度测量信息高性能传感”、“智能制造大场景精密测量方法”等前沿领域,引领机械测试研究新方向,推动全国优势研究资源的协同攻关,实现“并跑”,甚至“领跑”,为全面支撑我国高端装备制造能力跨越式发展提供精密测量理论与技术保障。参 考 文 献(略)
  • 三英精密2023上半年实现营收7238.97万,同比增长50.30%
    近日,天津三英精密仪器股份有限公司(简称“三英精密”)发布2023半年度报告。2023上半年,三英精密实现营业收入7238.97万元,较去年同期增长50.30%;归属于挂牌公司股东的净利润为308.41万元,较去年同期增长102.18%;基本每股收益0.0931元。其中,产品类营业收入6766.39万元,比上年同期增长50.82%;测试服务收入378.60万元,较上年同期增长34.39%;技术服务收入5.75万元,较上年同期增长205.00%;其它业务收入88.23万元。三英精密在半年报中提到公司未来五年的经营计划:1、持续开发电子领域及动力电池等在线无损检测设备:随着电子产品的集成度及安全性能要求越来越高,电子器件之间的连接也越来越密集,非破坏性的3D工业CT在线检测或测量在生产过程质量监测中必不可少,近年来X射线3D工业CT在高端制造领域的应用成为新的增长点,而使用自动化检测设备代替人工检测是工业无损检测行业的重要发展方向。2、开发新材料检测的广泛应用:新材料是未来发展的重大趋势,将广泛运用于汽车、航天等领域,X射线三维显微镜和工业CT等专业检测设备在新材料检测领域应用广泛,三英精密将会在新材料领域不断开发新的应用。3、加快国产替代进程:由于以美国为首及其盟友的发达国家对中国大陆高端制造业的打压和制裁为国产替代进程提供了良好的发展机遇,三英精密自主研发的X射线三维显微镜和工业CT设备,最高图像分辨率可达到0.5微米,目前全球范围内仅德国蔡司可以达到同等水平,这类设备可广泛用于汽车电子、新能源电池、石油地质、航空航天、船舶、兵器等诸多领域的无损检测,逐步实现国产替代。
  • CCMT2024逛展:众多精密测量解决方案齐亮相,国产三坐标成亮点
    2024年4月8-12日,第十三届中国数控机床展览会(CCMT2024)在上海新国际博览中心举办,吸引来自28个国家和地区的近2000家机床工具企业同台竞技。随着工业制造对精度和效率要求的不断提高,精密测量仪器在工业生产中扮演着越来越重要的角色。本次展会,各大厂商纷纷带来其最新测量仪器解决方案。近日,工信部等七部门联合印发《推动工业领域设备更新实施方案》。文件强调,在钢铁、石化、化工、医药、机械、航空、船舶、电子等重点行业,围绕设计验证、测试验证、工艺验证等中试验证和检验检测环节,更新一批先进设备,提升工程化和产业化能力。在这样的政策背景下,CCMT2024展会成为了工业领域设备更新和技术改造的重要展示平台。仪器信息网特别对本次展会上展示的精密测量设备品牌及部分产品进行了梳理,以期为工业领域设备更新提供有益的参考。展会上,众多知名测量仪器品牌齐聚一堂。其中,不乏海克斯康、蔡司、雷尼绍、温泽等国际知名品牌的身影;同时,国内企业也展现出了强大的实力。一些国产厂商通过自主研发和技术创新,积极推动了三坐标测量机的国产化进程,为我国制造业发展注入了新的活力。中图仪器中图仪器展出的Mizar Silver系列全新三坐标测量机、VX8000系列闪测仪、激光干涉仪、激光跟踪仪等一系列产品,测量范围从纳米到百米,展示了从核心部件到整机检测的完整测量解决方案,覆盖零部件轮廓尺寸测量以及机床装备调校与精度检测,助力机床装备产业高质量发展。Mizar Silver系列三坐标测量机支持触发、扫描和非接触式探测系统,能够对各种零部件的尺寸、形状及相互位置关系进行检测,也可以对软材质或复杂零件进行光学扫描测量,可用于机械制造、汽车工业、电子工业、航空航天工业、国防工业以及计量检测等领域。VX8000系列闪测仪具备一键闪测、批量更快、操作简单、自动报表等特点,可应用于机械、电子、模具、印刷电路板、医疗器械、钟表、刀具等领域。中图仪器展区中图仪器产品掠影天准科技展会期间,天准科技在其展台隆重举办三坐标测量机新品发布会。据介绍,新品CM系列三坐标测量机是天准"0.3μm国家重大科学仪器专项"成果转化坐标测量机商业化量产设备,拥有CMZ/CMU/CME三大系列,集Vispec Pro软件系统、HSP测头/TR50旋转测座探测系统、驱控一体TCC电控、直线电机驱控技术四大自研技术为一体,可广泛应用于汽车、模具、机械加工、精密制造、计量院所、航空航天等领域。天准科技新品发布会思看科技作为面向全球的三维视觉数字化综合解决方案提供商,思看科技展出KSCAN-Magic系列复合式三维激光扫描仪、SIMSCAN便携式蓝光三维扫描仪、TrackScan-Sharp系列跟踪式三维扫描系统、AM-CELL标准型自动化光学3D检测系统等全系三维扫描仪。AM-CELL是专为中型零件量身定制的全新三坐标测量系统,采用灵活柔性的模块化设计,轻松部署多种测量方案;配备主动安全防护系统,无需特殊安全防护外框。在生产车间、科研实验室、教学中心等复杂的交互场景中都能游刃有余;为企业精益化、自动化、智能化的业务演变与升级,提供产品全生命周期的质量管控解决方案。思看科技展区思看科技产品掠影先临三维先临三维携丰富多样的高精度3D数字化解决方案亮相,从自动到手持,从固定到便携,看点颇丰。 现场展品包括FreeScan Trak Pro2跟踪式激光扫描系统、FreeScan Trio 三目激光手持三维扫描仪、FreeScan Combo 计量级双光源手持三维扫描仪、FreeScan UE Pro 多功能激光手持三维扫描仪等。立足工业自动化和制造业痛点,先临三维展出了搭载FreeScan Trak Pro2跟踪式激光扫描仪的RobotScan机器人智能3D检测系统,为用户展现了以“机器”代替“人工”的全自动、标准化全尺寸三维检测。先临三维展区先临三维产品掠影海克斯康本次展会,海克斯康全面展示其工业领域测量解决方案,展出超高精度三坐标测量机PMM-C、国产超高精度测量机Xpert、eTALON激光跟踪测量系统、复合式影像测量仪、工业CT等先进技术。其中,海克斯康全新推出的智能蓝光扫描系统SmartScan VR800重磅亮相,该新品是首款配备自动变焦镜头的结构光3D扫描仪。用户通过简单的软件设置,即可完成扫描分辨率和测量范围的快速调整。期间,海克斯康还发布了OCTAV HP高精度复合式影像测量机新品,该品精度高达0.4μ+,是一款为满足用户对于高精度、高性能、高稳定性测量需求而设计的高端复合式影像测量专机,兼具高精度与高效率。海克斯康展区海克斯康产品掠影基恩士基恩士携3D数码显微镜、3D轮廓测量仪、高精度三维扫描测量仪、图像尺寸测量仪等显微镜、测量仪两大产品线隆重亮相,吸引众多观众驻足。其手持式探针三坐标测量机最大测量范围达2m,也可进行在机测量,只需使用探头即可轻松进行三坐标测量,满足车间现场各种测量需求。基恩士展区基恩士产品掠影APIAPI盛装亮相国际测量板块,带来最先进的精密测量科技产品及解决方案,包括激光跟踪仪及功能拓展附件、9D激光雷达、关节臂、水平臂三坐标测量机等精密测量系列产品,激光干涉仪、角摆检查仪、球杆仪、主轴分析仪等机床校准系列产品,SFIS智能工厂、mScan扫描系统、iScan3D扫描系统、激光雷达立柱转台系统等集成&自动化测量系列产品。API展区API产品掠影此外,本次展会还展示了众多其他品牌的精密测量仪器。这些仪器不仅在精度和稳定性上有所提升,还在智能化、自动化方面取得了显著进展,为制造业向高端化、智能化、自动化转型提供了有力支撑。国际测量展区品牌一览卡尔蔡司雷尼绍温泽Bruker Alicona形创COORD3微尺视觉瑞士丹青国内测量展区品牌一览爱德华德普赛科力德测量PMT北京航锐斯维集萃华科思瑞测量徕司仪器英示新天光电雷顿上海林源玉沛精密麦科三维威尔
  • 专注精密光学检测,立仪科技获数千万A轮融资
    近日,3D工业视觉传感器供应商立仪科技获得浩澜资本独家投资的数千万人民币的A轮融资,据悉,本轮融资将主要用于市场拓展、新品研发及补充流动资金。立仪科技成立于2014年,是一家专注于精密光学检测的公司,旗下有光谱共焦传感器等产品。公司的点共焦传感器已经量产,且服务多家头部客户;线共焦产品原型机已打样,正研发商业量产版本。主流的3D工业视觉的技术路线包括线激光、光谱共焦、条纹结构光、TOF、双目等技术路线。光谱共焦传感器是目前市场精度最高且能应用于各种特性的表面和复杂形状测量场景的新型传感器,其市场主要被国外厂商占据,但国产率较低。光谱共焦传感器的原理是通过使用特殊的透镜及光学系统,拉开不同颜色光的焦点分布范围,形成特殊放大色差,使其根据不同的被测物体到透镜的距离,会对应一个精确波长的光聚焦到被测物体上。通过测量反射波的波长,就可以得到被测物体到透镜的精确距离。光谱共焦目前正处于技术迭代周期。激光技术的研发目前已逐渐见顶,而市场对测量传感器的需求越来越广,市场需求正从人工监测向自动化监测产品发展。与传统的激光相比,光谱共焦技术精度较高,且材料适应性更广,稳定性更高。立仪科技创始人兼CEO刘杰波告诉36氪:“我们之前曾做过三维激光扫描研究,过程中意识到激光扫描很难完成一些对高精度扫描有需求的测试任务,便开始向光谱共焦转向。”目前,立仪科技有点共焦位移和线共焦位移两类传感器产品,产品型号超百种。点共焦传感器上,立仪科技在拿到天使轮融资后,于2019年完成点共焦原型产品的量产。至今,公司的点共焦已经迭代到第三代,进入华为、三星、苹果供应链。除在产品设计上有着多项创新外,公司还开发了为国外禁止出口的激光干涉光谱共焦校准仪等专用仪器工装,且工艺经过量产验证,能帮助产品更好生产。在性能上,其传感器可以做到光强提高200%,线性度提高200%,反射干扰降低50%。价格上,产品售价比国外产品低。产品示意图公司2020年开始研发线共焦产品,目前已有原型机,是已能完成三维形状物体的扫描,具有精度高材料适应性好、无盲区、效率高等优点,可广泛应用于半导体、新能源、3C等领域。可应用领域据刘杰波介绍,线共焦传感器进口产品占 99%以上市场,售价昂贵,立仪科技可以做到同时解决漫反射和曲面镜面材质检测的技术,具备性能优势。本轮融资完成后,立仪科技也将集中精力,研发商业化量产版本线共焦产品。未来,公司还将继续研发高光谱+AI传感器和光纤传感器。公司的光谱共焦产品有着7、8年的积累,服务了半导体、新能源与3C、先进制造设备、精密仪器、科研院校等领域,面向京东方、天马等客户都有着数百套的出货量。经过长期打磨,立仪科技对市场需求和行业认知理解深刻。据刘杰波介绍,目前公司在国产品牌中市场占有率排名第一。在营收上,公司2022年预计完成数千万营收,较2021年有两、三倍的增长。在创始团队上,公司创始人兼CEO刘杰波有着十几年的精密光学测量研发经验,曾任数家世界500强公司高管,在光机电软件上融会贯通。公司首席科学家张巍博士曾就职于中科院物理研究院,有着丰富的光谱、激光等研究经验。目前,公司共有60多名员工,在深圳、苏州、成都、长沙都设有办事处,研发占比50%以上。
  • 浦东南北科创走廊中段再添新引擎!高端装备精密仪器产业园开园
    7月28日,在上海市经信委、浦东新区科经委等相关部门大力支持下,由张江集团主导产业培育和运营管理的高端装备精密仪器产业园(以下简称“产业园”)正式开园。该产业园位于浦东南北科创走廊中段,张江科学城中部核心位置,一期现有空间总建筑面积约21.3万平方米,二期规划面积1平方公里,在产业发展上将强化产业链、供应链自主可控,促进高端装备精密仪器产业集群式发展,助力构建高质量、现代化产业链体系。聚焦硬核产业领域,培育科技创新引擎高端装备精密仪器产业以高新技术为引领,处于价值链高端和产业链核心环节,决定着全产业链的综合竞争力,是现代化产业体系的重要支撑。大力培育和发展高端装备精密仪器产业是提升产业核心竞争力,抢占未来经济和科技发展制高点的战略选择。《上海市高端装备产业发展“十四五”规划》明确提出,到2025年,上海将成为具有国际影响的高端设备研发和关键技术中心。为促进高端装备产业高质量发展,浦东新区出台专项操作细则。落户张江的高端装备精密仪器产业园在发展上将致力于服务产业既有需求、拓展未来研发领域、构建供应链关键节点,以应用场景为主阵地,驱动产业集群发展。通过引进先进技术、促进产研融合、培育高新企业、推动成果转化,集聚核心零部件研创力量,打造高端制造创新引擎。记者了解到,为满足高端装备精密仪器产业园的空间需求,产业园一期现有空间21.3万平方米,兼具研发、生产、办公、展示、生活五位一体的综合功能,已配套地铁站短驳班车、园区接待中心、食堂、便利店等设施及服务。在产业园一期基础上,在周边区域已规划布局1平方公里的产业园二期,将围绕产业发展需要供给工业研发用地及定制化高标准厂房等,并适当超前预留产业所需的电力、算力等公共基础设施。依托张江产业优势,建设国际一流园区高端装备精密仪器产业园落户张江源于其雄厚的产业基础。张江自1992年建园以来已经建成以集成电路、生物医药、人工智能为主导的三大具有世界竞争力的产业集群。其中,集成电路领域已成为国内产业链最完备、综合技术水平最先进、自主创新能力最强的产业基地之一;生物医药领域构筑起全球屈指可数的创新生态,全国五分之一新药在张江;人工智能领域已集聚600多家相关企业,产业规模占全市50%。在三大主导产业蓬勃发展的同时,交叉创新、集成创新、融合创新的趋势也愈发明显,这就对高端装备精密仪器产业提出更高的创新需求。从过去通用设备、通用零部件的制造,到如今根据前沿需求进行个性化创新,大量的张江企业都迫切需要实现供应链从端到端的自主可控。布局营建高端装备精密仪器产业园恰逢其时。基于张江科学城多年以来的智能制造产业积累,特别是在张江实验室、国家集成电路研发中心、国家智能传感器创新中心、ABB机器人赋能中心、上海机器人产业技术研究院创新中心等功能平台的引领赋能下,结合张江完备的科创生态和优越的综合配套服务能力,高端装备精密仪器产业园将瞄准产业层次高、创新能力强的发展目标,全力建设成为国内领先、国际一流的特色产业园区。强化产业生态引领,打造特色产业集群31年来,张江坚持产业营建初心,不遗余力地引进国际先进技术、建立创新研发平台、打造开发合作机制、构建完整的产业链生态。坚持做好科学、产业与城市融合的大文章,服务国家战略科技力量,营造世界一流的创新环境和产业生态。目前,张江已汇集1800多家高新技术企业,国家大科学设施、新型研发机构、公共技术服务平台等科技创新资源鳞次栉比,为产业园的打造提供优越的产业生态。高端装备精密仪器产业园目前已入驻晶泰科技、奔曜科技等企业,并吸引众多行业标杆企业前来洽谈。在越来越多产业链优质企业集聚下,高端装备精密仪器产业园将进一步对标国际最高水平,抢占产业链、价值链高端环节,强化科技创新策源功能,打造具有国际影响力的特色产业集群。
  • 一台设备,搞定高端精密零件研发、生产的多项三维检测
    高精度三维扫描技术已经在工业制造领域发挥着重要作用,特别是在质量检测环节,高效、高精度,可以轻松实现全尺寸的三维检测。本期,我们要分享的应用是在高端精密金属零件生产领域。高端精密金属零件在产品开发阶段到量产前,都需求检测相关尺寸,包括整个型面偏差分析,位置度、面轮廓度等GD&T公差。但是目前缺少一种可以通用的高精度检测工具,导致检测工作繁琐、复杂。- 高端精密金属零件 -高端精密金属零件研发中的传统检测方式在检测过程中,每一个零件需要一项一项测量,进行检测,过程繁琐。同时,由于精度要求高,每一项检测都需要不同的专业工具,例如,轮廓测量需要轮廓度仪。而每种检测工具的功能单一,检测过程中要不断更换工具。解决途径!“检测过程繁琐,需要的工具种类太多(很多的时间精力可能是花费在寻找工具上)”,这是目前研发人员最头疼的问题。为了改变这种现状,研发人员需要寻找一种高精度且通用性强的检测工具。OKIO 5M Plus 工业级三维扫描仪满足研发过程的多项三维检测需求Part 1高精度天远 OKIO 5M Plus 具有计量级高精度(最高精度可达0.005mm),基于天远的独特算法,OKIO 5M Plus拥有稳定的重复精度,多次测量结果一致。在新品研发过程中,需要多次反复测量一个产品,稳定的重复精度至关重要。在实际应用过程中,还使用了MSA测试,测试方法:某一个工件测量两个尺寸,同一件重复测试三遍(重复性),每个测试10件,然后还需要更换三个不同的操作人员(消除认为误差)。经过MSA测试,证明了OKIO 5M Plus 具有良好的稳定重复精度。Part 2通用性强天远 OKIO 5M Plus采用非接触式测量,对于零件的形状没有限制,同时配置多组镜头,可灵活切换扫描范围。进行一次三维扫描,需要检测的项目直接在检测软件中生成结果,不用人工一项项测量,也不需要根据不同的检测项目寻找不同的检测工具。- 三维扫描以及数据 -多个不同检测项目,一次三维扫描,即可在软件中得到相应测量结果。天远 OKIO 5M Plus 工业级三维扫描仪凭借其高精度(计量级精度以及稳定的重复精度)、通用性,解决了高端精密金属零件研发过程中的检测难题,加快研发进程。同时,其也可以在产品完工后进行全尺寸三维检测,并为客户提供完整的检测报告,顺利交付。天远 OKIO 5M Plus 工业级三维扫描仪OKIO 5M Plus采用窄带蓝光光源,高分辨率工业镜头确保了精细的扫描效果,以及光顺的数据质量;设备提供三组高分辨率工业镜头,可根据型号不同而更换,精度稳定且操作简单;OKIO 5M Plus适用于精细零件的三维扫描,进行全尺寸检测以及逆向设计等。
  • 三英精密亮相奥地利ICT国际会议
    2020年2月4日,第十届Industrial Computed Tomography会议在奥地利韦尔斯隆重召开。作为国际上具有影响力的CT领域专业会议之一,本次会议吸引了来自世界各地的研究人员参会,CT行业的整机、零部件和软件厂商也纷纷亮相。 三英精密仪器作为来自中国的厂商,受到了与会专家的关注。董事长须颖博士围绕快速CT扫描技术做大会演讲报告,介绍了快速CT解决方案在制造业检测中的应用进展。须颖博士演讲会议现场技术交流技术交流 中国正在从制造大国向制造强国迈进,产品质量正受到越来越多的关注。CT技术是提升质量检测能力的重要手段,同时制造工厂也对CT检测速度提出越来越快的要求。三英精密作为国产品牌,紧贴制造工厂的需求,依靠自身强大的研发能力,为个性化的工业产品检测需求迅速提供解决方案,目前已在汽车零部件、电子产品、锂电池等行业为中国制造提供质量保障。
  • 三英精密2023年度实现营收1.80亿元,净利润增长381.75%
    近日,天津三英精密仪器股份有限公司(简称:三英精密)发布2023年度报告。报告显示,三英精密2023年度实现营业收入1.80亿元,较去年同期增长41.21%;归属于挂牌公司股东的净利润0.14亿元,较去年同期增长381.75%;毛利率为43.64%。2023年末,三英精密总资产4.46亿元,同比增长69.41%;归属于挂牌公司股东的净资产为3.02亿元,同比增长126.56%。2023年度,三英精密通过国家级专精特新“小巨人”企业认定,获批筹建天津市重点实验室,并募集资金1.35亿元,以加快主营业务发展。三英精密在报告中提到未来五年的经营计划:1、持续开发电子领域及动力电池等在线无损检测设备随着电子产品的集成度及安全性能要求越来越高,电子器件之间的连接也越来越密集,非破坏性的3D工业CT在线检测或测量在生产过程质量监测中必不可少,近年来X射线3D工业CT在高端制造 领域的应用成为新的增长点。而使用自动化检测设备代替人工检测是工业无损检测行业的重要发展方向。2、开发新材料检测的广泛应用新材料是未来发展的重大趋势,将广泛运用于汽车、航天等领域,而X射线三维显微镜和工业CT等专业检测设备在新材料检测领域应用广泛,公司将会在新材料领域不断开发新的应用。3、加快国产替代进程由于以美国为首及其盟友的发达国家对中国大陆高端制造业的打压和制裁为三英精密的国产替代进程提供了良好的发展机遇。公司自主研发的X射线三维显微镜和工业CT设备,最高图像分辨率可达到0.5微米,目前全球范围内仅德国蔡司可以达到同等水平。这类设备可广泛用于汽车电子、新能源电池、石油地质、航空航天、船舶、兵器等诸多领域的无损检测,逐步实现国产替代。
  • 清华大学精密仪器系助力“天机”登上Nature封面
    pbr//pp style="line-height: 1.5em text-indent: 2em margin-bottom: 10px "重磅!清华大学开发出全球首款异构融合类脑芯片,登上了最新一期 Nature 封面。这项研究由清华大学类脑计算研究中心施路平教授带队,历时7年,终于修成正果。/pp style="line-height: 1.5em text-indent: 2em margin-bottom: 10px "这项研究由依托精密仪器系的清华大学类脑计算研究中心施路平教授团队进行,演示了一辆由新型人工智能芯片驱动的自动驾驶自行车。/pp style="line-height: 1.5em text-indent: 2em margin-bottom: 10px "这种混合芯片被命名为“天机芯”(Tianjic),有多个高度可重构的功能性核,可以同时支持机器学习算法和现有类脑计算算法。/pp style="line-height: 1.5em text-indent: 2em margin-bottom: 10px "现阶段,发展人工通用智能的方法主要有两种:一种是以神经科学为基础,尽量模拟人类大脑;另一种是以计算机科学为导向,让计算机运行机器学习算法。二者各有优缺点,目前将两者融合被公认为最佳解决方案之一。/pp style="line-height: 1.5em text-indent: 2em margin-bottom: 10px "发展一个二者融合的计算平台将是推动融合的一个关键。新型芯片融合了两条技术路线,这种融合技术有望提升各个系统的能力,推动人工通用智能的研究和发展。/pp style="line-height: 1.5em text-indent: 2em margin-bottom: 10px "鉴于目前机器学习和神经科学的进步,施路平团队开发的“天机芯”(Tianjic芯片)就做到了这一点,可以为AGI技术提供一个混合协同的开发平台。/pp style="line-height: 1.5em text-indent: 2em margin-bottom: 10px "“我们是从2012年就开始孕育这项研究,遇到了很多的挑战,但是我们认为,最大挑战不来自于科学、也不来自技术,而是在于学科的分布不利于我们解决这样的一个问题,所以我们认为多学科深度融合是解决这个问题的关键。所以strong在这项研究当中,我们组成了一个多学科融合的团队,由七个院系组成了一个类脑计算研究中心,覆盖脑科学、计算机、微电子、电子、精仪、自动化、材料等/strong。在这里,特别感谢清华大学校各位领导对跨学科建设的大力支持,这是本项目取得成功的关键。”施路平教授说道。/pp style="line-height: 1.5em text-indent: 2em margin-bottom: 10px "近几年,机器人与智能制造技术相关研究进展快速,与日常生活及工业生产生活结合紧密。未来,智能制造技术的应用对于社会发展将产生呢个重大影响。 /p
  • 沃特世精密化学制造工厂获得海湾州第一个LEED认证
    9月26日,沃特世宣布其在马萨诸塞州陶顿新建的精密化学品制造工厂已获得LEED(能源和环境设计领域的领导者)认证,该工厂生产的产品对于很多实验室来说至关重要,这些实验室确保了全球数百万人的药品、食品和水的质量和安全。   沃特世的陶顿工厂由美国绿色建筑委员会(USGBC)指定,是马萨诸塞州第一个也是唯一一个LEED认证的化学制造工厂,也是美国少数几个LEED认证的工业制造项目之一。该工厂几乎将沃特世的制造足迹扩大了两倍,已经创造了25个新的工作岗位,并为未来几年提供了增长空间。   为了满足不断增长的客户需求,实现更高水平的运营效率,并继续其可持续发展的承诺,沃特世自2018年以来投资超过2.15亿美元,将这一先进的设施建成卓越的制造中心。   沃特世公司总裁兼首席执行官Udit Batra博士表示:“沃特世陶顿工厂生产的材料是开发和测试mRNA疫苗和疗法的科学核心,这些疫苗和疗法用于预防和治疗COVID以及检测饮用水中的PFAS等污染物。作为美国为数不多的获得LEED认证的化学制造工厂之一,我们很自豪能够带头帮助改善我们的环境、健康和社区福祉,并确保生命科学产业在马萨诸塞州继续繁荣发展。"   这座占地140,000平方英尺的化学制造厂与沃特世自1976年以来生产实验室用品和化学消耗品的工厂相邻。沃特世在该工厂生产色谱颗粒,这是其化学消耗品业务的支柱,每年的经常性收入超过3亿美元。更具体地说,它合成了全球数千家分析实验室使用的色谱介质,以支持药物、生物制药、材料、食品的研究、开发和制造,并支持临床诊断和生物医学研究。   鉴于典型的化工制造工厂消耗大量的能源和水,沃特世工厂采用了许多创新功能来减少对环境的影响,包括:   先进的现场工业废物控制和处理技术,旨在将总体建筑排放降低到沃特世传统制造设施的六倍;   废水回收技术,回收和过滤废水,用于物业灌溉、气候控制和建筑物的洗手间设施;   此外,该建筑的LEED设计针对能效和室内空气质量进行了优化,融入了促进可持续发展的建筑材料。   “沃特世通过其投资和设计表明,除了创造就业机会和支持生命科学之外,化学制造厂还可以成为环境可持续发展的典范。”美国众议员Jake Auchincloss (D-MA)说。   “获得LEED认证不仅仅是实施可持续发展的做法。它代表了让世界变得更美好并影响他人做得更好的承诺,”USGBC临时总裁兼首席执行官Peter Templeton说。“鉴于气候保护的重要性以及建筑在这一努力中发挥的核心作用,沃特世对可持续发展的承诺表明,作为马萨诸塞州第一家获得LEED认证的化学品制造厂,我们可以做到什么。"   为了庆祝这一成就,Batra博士接待了当地政府、商业和学术领袖,包括美国第四选区(MA)众议员Jake Auchincloss马克帕切科,参议院院长,州参议员标准时间普利茅斯和布里斯托尔区(马萨诸塞州);汤顿市市长肖娜奥康奈尔;伊丽莎白比尔兹利,美国绿色建筑委员会高级政策顾问;和其他尊贵的客人于9月26日在其位于迈尔斯斯坦迪什工业园区的陶顿工厂。   沃特斯公司(纽约证券交易所代码:WAT)60多年来一直是色谱、质谱和热分析创新的先驱,服务于生命、材料和食品科学。沃特世在全球拥有7,800多名员工,在超过35个国家直接运营,包括14个制造工厂,产品销往100多个国家。
  • 数字化改革“成绩单”⑦丨产业服务:生猪精密智控让畜牧业更“智慧”
    托普云农全资子公司——浙江森特信息打造的桐乡“生猪精密智管”应用内设服务、治理两个端口,于在2021年7月15日正式上线,并于9月14日在“浙政钉”上架,在操作上实现电脑端和移动端的无缝衔接。且依托生猪智能生物耳标的信息采集监测和数据自动传输功能,对生猪生长性能和生产性能指标进行精细化管理,对生猪饲养、防疫、检疫、屠宰、调运、无害化处理等环节实施精准监管,让生猪生产管理更加智能精细,让政府监管服务更加高效便捷。 一、改革需求 生猪生产是事关国计民生的基础产业,但一直以来都存在数据采集统计费时费力、个体异常难以及时发现、政策需求不能及时满足等问题。 ①生猪生产周期长,业务环节多,政府部门难以精准掌握生猪数据,统计分析不够精细,对生猪生产形势研判和生产过程监管不能做到精准及时。 ②养殖主体疫病防控中个体异常难以及时发现,疫病防控任务较重,对生产技术、政策服务等方面的需求不能及时满足,产供销信息不能及时掌握,价格波动较大,抗风险能力弱。 ③生猪养殖管理流程复杂,疫病发现难、防控任务重、用工量大、养殖效率低。 二、改革创新 从重构养殖模式、建立预警体系以及再造服务流程三个方面进行改革: ①重构养殖模式 通过智能耳标将饲养管理由群体精准到个体,精确掌控生猪个体生产全流程,及时淘汰低下产能。 ②建立预警体系 及早预警个体异常、及时统计生产数据,提升养殖主体疫病防控的实效性和政府部门稳产保供的科学性。 ③再造服务流程 重塑“先打后补”政策补助制度,打通生猪生产与金融、保险等的关联数据,实现补助、服务一网办结。 三、改革成效 桐乡依托生猪智能生物耳标的信息采集监测和数据自动传输功能,在全省第一批开展数字畜牧多跨应用场景的“先行先试”,建设应用于生猪企业的服务端和应用于部门监管的治理端,让企业生产管理更加智能精细,政府监管服务更加精准高效,金融保险等三方服务更加便捷及时。 ①重塑生猪业务流程 重构生猪养殖、屠宰、防疫、检疫、饲料兽药、无害化处理等业务闭环流程,打造保险、贷款、产销、重大风险防控等精密智控体系,有利于政府部门准确研判形势,提前谋划工作政策。 ②企业服务更加便捷 生猪数据精准统计分析,产供销信息及时发布,免疫效果和健康状况及时掌握,检测服务线上开展,服务监管更加高效。 ③数据采集更加精准 养殖主体可通过智能生物耳标自动采集传输生产数据,提高数据采集的及时性和精确度,减少人工操作的工作量,还可对采集来的生猪信息进行分类,为主体安排生产提供数据依据。 ④饲养管理更加智能 通过智能生物耳标的体温监测功能,可以及时对体温异常猪只进行预警,便于管理人员及早发现问题,及早采取措施,起到积极防控动物疫病作用。另外,对生猪生产免疫等关键节点开展提示,免疫检测结果进行提醒预警,养殖档案数字化记录查询,生产指标开展对比分析,让养殖主体精准发现生产薄弱环节,更加有针对性开展提升。 桐乡“生猪精密智管”应用为养殖企业提供了精细化、智能化、便捷化的贴心服务,也撬动了畜牧业数字化改革的再深化。接下来,浙江森特信息将以此撬动畜牧业数字化改革再深化,全力打造“互联网+”高地上的人民群众满意的“智慧菜篮子”。
  • 半导体设备商富创精密冲刺科创板IPO,已形成智能制造新模式
    12月10日,沈阳富创精密设备股份有限公司(以下简称“富创精密”)冲刺科创板IPO已获上海证券交易所受理。招股书显示,本次招股拟发行5,226.3334 万股,本次发行的募集资金扣除发行费用后,将投资于以下项目:本次发行募集资金拟投资的“集成电路装备零部件全工艺智能制造生产基地”围绕富创精密主营业务进行建设。富创精密已建立较完整的工艺研发及制造体系,掌握了精密机械制造、表面处理特种工艺、焊接、组装等半导体设备精密零部件关键制造工艺。本次募集资金投资项目通过精密机械制造、焊接、表面处理特种工艺以及精密零部件、气体管路和模组产品生产线,搭建智能信息化管理平台,扩大现有产品产能,提高产品科技含量,提升生产的信息化水平,满足下游市场需求,同时有助于拓宽产品应用领域,提升产品供货能力。集成电路装备零部件全工艺智能制造生产基地项目将新建精密机械制造、焊接、表面处理特种工艺、钣金、管路、组装生产线,并搭建智能信息化管理平台,打造具备核心技术能力的集成电路装备零部件全工艺智能制造生产基地。项目计划总投资 100,000.00 万元,项目建设期 2年,建设地点为江苏省南通市南通高新技术产业开发区,总用地面积约 171 亩(114,047 ㎡),总建设面积89,050.95 ㎡。据了解,富创精密是国家高新技术企业、国家级专精特新“小巨人”企业、国家高新区瞪羚企业、国家“02 重大专项”及国家智能制造新模式应用项目承担单位、集成电路装备零部件精密制造技术国家地方联合工程研究中心依托单位。通过多年研发和积累,富创精密具备了金属零部件精密制造技术为核心的制造能力和研发及人才储备。基于前述自主成果,富创精密于2011年、2014年相继牵头承担了国家“02 重大专项”之“IC 设备关键零部件集成制造技术与加工平台”项目、“基于焊接和表面涂覆技术的大型铝件制造技术开发”项目,并顺利通过验收。通过自研和承接专项,富创精密实现了半导体设备部分精密零部件国产化的自主可控,攻克了零部件精密制造的特种工艺,形成了国产半导体设备的保障能力。富创精密已成为全球为数不多的能够量产应用于 7 纳米工艺制程半导体设备的精密零部件制造商,已进入东京电子、HITACHI High-Tech 和 ASMI 等全球半导体设备龙头厂商和北方华创、屹唐股份、中微公司、拓荆科技、华海清科、芯源微、中科信装备、凯世通等主流国产半导体设备厂商供应链体系,保障了我国半导体产业供应链安全。富创精密是全球行业内少有的多品类产品提供商之一,作为半导体设备精密零部件供应商,其产品生产呈现出多品种、小批量、定制化的生产特点,同时对精度具有很高的要求。传统制造业的生产线由于模具制造成本高、工序繁琐、技术难度大等原因,仅适合于少品种、大批量生产,在小批量生产时成本高昂,难以满足不同类型用户高精度的定制化需求。智能制造则很好的满足了富创精密的这一生产特点。目前智能制造在传统制造业中已经实现了小批次、小批量的定制化生产模式。随着智能制造、工业物联网的推进,经过多年的探索,富创精密不断完善多品种、小批量、定制化产品的离散型智能制造管理模式,并于2017年承担了国家智能制造新模式应用项目之“集成电路装备零部件柔性数字化车间建设——多品种、小批量智能制造新模式应用”,建成了集成电路关键设备零部件柔性数字化车间,通过与智能制造的深度绑定,更好的实现了降本增效,满足了用户的定制化需求,降低了对人工经验的依赖,同时实现了柔性化生产与工艺的整合,利用数字化仿真、大数据分析、协同与集成等智能化手段,保证了产品质量的稳定与生产效率的提高,缩短产品生产研发周期和提高市场应对效率,同时生产线式的制造方式能使得生产精度更高。而在富创精密这一智能制造创举中发挥重要作用的关键人物就是富创精密副总经理倪世文和宋岩松。倪世文负责产品研发以及生产制造,并主导引进柔性生产线制造模式,实现了半导体设备精密零部件生产的智能制造模式。宋岩松主要负责富创精密的知识库管理和工艺智能化设计工作,作为主要负责人与西门子共同开发了公司的智能工艺设计系统,实现了机械制造工艺设计的智能化。主持自主开发三坐标检测程序的智能设计,表面处理工艺智能设计,焊接编程及工艺智能化设计等工业软件的自主研发。在生产方面,宋岩松负责公司的数字化智能化建设及整体的信息化工作。其负责的主要内容包括:公司的管理信息化系统建设、公司的数字化转型、生产智能化和网络化制造,以及相关基础配套技术的自主研发。
  • GTI吉泰精密仪器亮相2024零碳大会
    “2024国际零碳城市乡村与零碳建筑大会暨技术设备博览会”于5月26日在北京国家会议中心举行。本届零碳大会主题是“推动建筑零碳发展,促进城乡绿色低碳转型”,以零碳贯穿主题展览和会议活动,引领建筑节能相关产业迈向可持续的零碳未来。一、大会现场本次零碳大会,GTI吉泰精密携建筑气密性测试系统、管道漏风量测试机、风量罩、风速仪、差压类传感器等产品精彩亮相。 管道漏风量测试机吸引了众多客户驻足咨询,DALT 6910专业版用于空调风管、消防风管及密闭空间的漏风量测试,可对分段管道和整个系统安装后的总管道进行检测,保证系统的工作效率,避免能源浪费。仪器集成了欧美及国内风管行业多种现行测试标准,根据相关的鉴定标准进行检测后,可直接确定管道的密封性是否合格。通过外接打印机可实现打印功能,且整机尺寸小,重量轻,家用SUV后备箱即可装载运输,可测流量范围更大。触摸屏一体化操作,LCD彩屏显示,良好的人机交互界面可实现测试全过程操作。 GTI吉泰精密工作人员详细为来访观众介绍产品性能及使用方法,解答观众的疑问,提供优质的服务体验。同时,我们也欢迎观众亲自观摩我们的产品,感受GTI品牌产品的品质和性能。 GTI620型风量罩是集风量测试、风速测试、微差压测试于一体的智能型测试仪器,其广泛适用于空调、管道等场所的风速风量测试,并且可以进行高精度的微差压测试。 差压类传感器系列产品包括手持式微差压计GTI115、超小型微差压数显表GTI135/GTI145、微差压变送器GTI131等,欢迎您莅临现场参观交流。二、扫码有礼端午节来临之际,GTI吉泰精密特别推出现场扫码签到赠送艾草香囊及GTI文创漆扇活动!数量有限,先到先得,快来现场参与吧! 本次2024零碳大会将持续至5月28日,GTI吉泰精密展位023、025期待您的光临!
  • 中国科大在微波精密测量、海洋地震勘探和大气数值模拟方面取得新进展!
    近日,中国科学技术大学研究团队在微波精密测量、海洋地震勘探和大气数值模拟方面取得多项科技研发成果。基于里德堡原子的微波测量实现精密探测!中国科大郭光灿院士团队史保森、丁冬生课题组利用人工智能的方法,聚焦量子模拟和量子精密测量科学研究,实现了基于里德堡原子多频率微波的精密探测,相关成果日前发表于《自然-通讯》。具有较大电偶极矩的里德堡原子作为微波测量体系具有广泛应用前景,但多频率微波在原子中会引起复杂干涉模式,从而严重干扰信号接收与识别,这是基于里德堡原子的微波测量领域的诸多难题之一。因此,该成果对原子分子光物理学领域的研究具有重大意义,且该成果提出的是在不求解主方程的情况下有效探测多频率微波电场的方案,且在硬件上没有太高要求即可实现较高精度,为精密测量领域与神经网络交叉结合提供了重要参考,在通信、雷达探测等领域具有重要应用前景。高精度深水油气地震勘探数据采集装备成功应用于我国海洋地震勘探数据采集,打破了国际技术封锁和价格垄断!中国科学技术大学核探测与核电子学国家重点实验室曹平副教授团队,把在先进加速器、对撞机等大科学装置研究和建设上积累的先进的电子学测量技术和方法,应用于海洋石油勘探的重大国民经济领域,并与中海油田服务股份有限公司联合研发了高精度深水油气地震勘探数据采集装备。油气勘探是整个石油工业的基础和先导,关系着国民经济的发展和国家的战略安全。然而我国油气勘探,尤其是海洋油气勘探,所用的几乎全是进口装备,进口装备贵且在重要技术上对我国进行了限制,严重阻碍了我国勘探技术的发展。研究团队攻克了超长距离一体化精密采集传输、大覆盖范围多缆全局精确同步、可扩展的海量数据实时读出、水下电缆高可靠作业支撑等一系列关键核心技术难题,这套装备具备高密度采集、宽覆盖超长缆作业和可靠的海上作业等特点,可分辨相差1600万倍的信号,总探测覆盖面积达十几平方公里,精密采集通道规模达数万道,与国际水平相比,该装备的同步技术指标要高20倍,传输能力高1倍,下潜深度也突破了国外的沉放深度限制。新研发填补了国内外大气数值模拟的空白!中国科学技术大学科研团队基于新一代国产神威超算平台,研发了包含大气成分演变过程的全球高分辨率非静力平衡大气数值模式iAMAS,在大规模数据读写速度、并行计算效率、规模可扩展性、运行时效性等多个方面填补了国内外大气数值模拟的空白。
  • 摩方精密获全球精密制造行业重量级殊荣“日本精密工学会制造奖”
    2022年9月8日,摩方精密被日本精密工学会正式授予“日本精密工学会制造奖”,成为全球第三家获得该奖项的非日本本土企业,也是第一家来自中国的企业,而此前获得过此殊荣的国外企业,只有德国的两家公司。这也是摩方精密继获得国际光学工程学会棱镜奖、TCT2022最佳硬件及聚合物系统奖后,再次斩获国际重量级奖项。 日本精密工学会成立于1933 年,到目前为止,在全球范围内已拥有包括高等院校、研究机构以及知名企业在内的5500多个成员,在世界精密制造工业领域中,尤其是在精密设计、精密加工、精密机械、精密计量、环境工学、表面材料、医学器械等诸多领域,始终占据着领导者地位。日本精密工学会设奖目的在于,一方面奖励具有卓越的开发力和工业改善力的优秀新型产品或具有促进制造业发展作用的高新技术;另一方面奖励在精密工程领域开发出具有高社会价值产品和技术的优秀企业,以肯定他们的努力和贡献,支持他们进一步发展。因此,此次获奖,无疑对摩方精密在精密加工制造领域的技术实力和突出贡献给予了高度的肯定和莫大的鼓励。摩方精密作为全球微纳3D打印和精密加工领域先行者和领导者,今后将凭借领先于行业的卓越技术实力,为全球制造产业的发展、科学技术的进步做出更大的贡献。
  • 上海光机所在基于监督学习的超精密光学曲面自适应工艺决策方面取得进展
    近期,中国科学院上海光学精密机械研究所精密光学制造与检测中心在基于监督学习的超精密光学曲面自适应工艺决策方面取得重要进展。研究团队首次提出了一种傅里叶卷积-并联神经网络框架,攻克了光学加工领域小样本训练条件下高维度输出的瓶颈难题,综合训练正确率优于90%,实现了数字化子孔径制造多维度参数组合加工智能化决策,对光学制造的智能化发展具有重要指导意义。相关研究成果以“Fourier convolution-parallel neural network framework with library matching for multi-tool processing decision-making in optical fabrication”为题发表在Optics Letters上。现代光学系统如光刻系统、大型望远镜和高功率激光等对各类超精密光学元件数量和表面质量提出了更高的需求,而现有工艺决策很大程度上仍然依赖经验丰富的技术专家,受专业人员的稀缺性以及人工决策的不稳定性影响,决策过程智能化是光学制造精度和效率进一步提升面临的关键问题。近年来,数据驱动的机器学习网络发展为解决这一瓶颈问题提供了可能;但在光学加工领域,训练样本获取难而决策维度高,如何实现小样本条件下的有效训练来满足高特征维度输出要求,是数据驱动智能化光学加工发展面临的首要难题。图1 结合去除函数库匹配的傅里叶卷积-并联神经网络框架针对以上问题,研究团队首次提出了一种结合去除函数库匹配的傅里叶卷积-并联神经网络框架,实现了数据驱动下工具种类、尺寸、磨料类型和体去除率等关键参数的联合自主决策,决策范围涵盖了自研磨/粗抛到修形/光顺等大部分工艺流程,也是首次证明了光学制造通过数据驱动神经网络解决的可行性。实验结果表明,仅在网络模型的指导下,260mm260mm的离轴非球面镜的面形精度(PV)可由初始的15.153λ收敛至0.42λ(λ=632.8nm),RMS由初始的2.944λ收敛至0.064λ,总加工时间仅为25.34个小时,收敛率优于97%,已达到专业技术人员决策水平。该研究成果对超精密光学元件的高效制造具有重要价值,并有可能将光学制造的智能化水平推向新的高度。图2 网络模型指导下离轴非球面镜的加工结果
  • 不盲目膜拜智能穿戴 人体才是最精密“仪器”
    随着人们生活品质的不断提高,大家都开始关心自己的健康问题,于是便有越来越多的人热衷于健身及运动。为了让自己运动得更“专业”,除了高价聘用私教之外,功能各异的高科技智能服饰也逐渐获得人们青睐。无可否认,这是一个“拼技术”的年代,科技的日新月异能够令智能产品的功能变得更完善及专业。此外,高科技除了会改变人们原有的生活和运动模式之外,是否存在一定“弊端”,也是人们所顾及的方面之一。  智能服饰  让运动事半功倍  现有许多可穿戴设备都能做到在运动时收集相关数据,此外还能不断地根据你锻炼的类型和强度,调整对肌肉的刺激力度,模拟大脑给出的信号以锻炼肌肉。为了用更短的时间达到更好的健身效果,研究者们脑洞大开,纷纷依据各种不同科学原理设计出“高智商”的运动服饰。  比如最近由德国研制的“高效”智能运动服,特别之处在于内置电极,据称可以通过刺激肌肉以增强锻炼效果——只要穿上这款运动服,20分钟的锻炼效果就可媲美穿平常的运动服锻炼3小时。缩短运动时间却能达到更好的健身效果,对于懒虫而言无疑是福音。除了能够“刺激肌肉”,智能运动服还能“追踪肌肉”。由加拿大所研制的智能运动服,内置EMG运动传感器,能够感应和追踪到肌肉纤维内部的活动,并通过应用程序告诉用户各个部分肌肉的运动状态。另一方面,可提供教练般的反馈,是智能服饰存在的意义之一。近日印度研制的一款智能运动服,由压缩上衣和裤子组成。研究人员将119轴加速度计、心率传感器和温度传感器全部连接至一个动力组件,并嵌入至运动服内。贴心的是,应用程序会为用户提供专业的及时反馈,这意味着如果运动者的生物动力学、形式或姿势不正确,它会在第一时间发出通知,这点非常适合瑜伽爱好者的需求。除此之外,这款智能运动服还能在训练过程中帮助你保持最佳的心脏速率,或者在身体处于过热危险时提醒你停下来休息,十足“教练”般认真负责。  无论是可以检测各种体能数据的智能T恤衫、能够精确测算步数的智能袜子,还是能够检测到潜在危及生命情形(比如缺氧)的智能头部装备,不难发现,大多智能服饰都配置了可以捕捉身体动作的传感器——能够及时提供反馈,告诉你如何才能运动得更加专业。智能服饰设计者的目标,就是为了让你不需要进入虚拟世界,也可以像你最爱的运动员那样运动。  健康咨询:  不盲目膜拜 “适度使用”是关键  科技发展对于人类而言,好处是显而易见的,然而存在的健康隐患却不容易被发现。比如说,高科技的智能穿戴设备,大多会利用传感器技术在运动时收集相关数据,因此会涉及数据的传送和接收。科技在为人类服务的同时,是否发过来也存在一定“危害”?  中山大学孙逸仙纪念医院神经科主任医师刘军教授告诉记者,脑电图主要利用仪器检测脑部自发的生物电位,一般容易受到被检查者情绪、睡眠觉醒状态、外界磁场等干扰。如果超过一定限度的外界信号,会给人体甚至大脑产生一定影响,然而轻微的干扰(如正常使用手机等电子产品)不超过人体的承受范围,人体通过精密的自我调节应该不会受到不良影响。“自世界上第一部商业化手机于1973年面世以来,不过数十年时间,普及的时间则更短,对于人体健康的影响如何,仍需更长时间的观察、随访研究。”他认为,科技的发展是一把双刃剑,既带来福利也带来弊端。而随着科技的发展,人们会努力让福利更大化,弊端最小化。对于如今的手机、WiFi等新技术带来的便利很多,我们既不能顶礼膜拜,也不能谈虎色变、杯弓蛇影,更理智的做法是适度使用,趋利避害。  如今高科技产品日新月异,许多以前只出现在电影中的智能服装也成为现实。“人体是目前世界上最精密的‘仪器’,任何人工产品都无法与之媲美,通过传感器、智能服装自动调节人体的生物学功能,还为时尚早。”在黄翰教授看来,日常生活中已经充斥着手机、电脑、平板等电子产品,运动时如果能够返璞归真、亲近自然,才能充分感受机体的美妙,尽情享受运动的乐趣。  专家声音  技术剖析:  智能穿戴科技:  由航天领域逐步渗入民用  智能服装属于一种身体内外部信息的采集和反馈系统,同时具有感知和反应双重功能的服装。它不仅能感知身体外部环境或内部状态的变化,而且通过反馈机制,能实时地对这种变化作出反应,从而使服装变得有了智能的“感觉”。  华南理工大学软件学院智能算法与智能软件实验室主任黄翰教授告诉记者,最初,“智能服饰”主要应用在航空、航天及国防军工等特殊领域,随着传感器、无线通讯网络和微型芯片等技术的进步,智能穿戴技术渗入民用,逐步演变为目前的“智能服饰”。就黄翰教授认为,智能服饰的目的在于为人们日常生活提供便利。“这些服装可以简化我们与数字世界的联接,又不影响正常的人际交流,智能服装可以让人更多地与外界沟通,而不是盯着手机屏幕。”他说。  黄翰教授告诉记者,未来智能服饰的发展方向将由功能单一向多功能转换。随着电子技术的迅猛发展,智能服装逐渐趋于多功能化。“例如,同时具备生理数据采集、环境数据采集、卫星定位及交友娱乐等功能,并使用多样化的传感器和运行器件集成,提高精确度和稳定性,在不影响穿衣舒适度的前提下使其与服装融为一体。”他说,“其次要确保对人体无害,且具有抗辐射和防雷防电的功能。”而传感器和电子元件应的柔软性,以及面料本身的可水洗性,同样也成为智能服饰能否能够“飞入寻常百姓家”的关键。  “传感器技术”还有待提升  关于智能服饰,大家最熟悉的莫过于功能性相对比较成熟的“传感器技术”。面前市面上的可穿戴设备,大部分都不支持添置传感器。但模块化设计可穿戴设备是其发展的趋势。  “运动装备是目前可穿戴设备产品比较集中的领域,智能手环通过加速度传感器估算用户走的步数,智能跑鞋中通常采用压力传感器采集用户双脚落地的压力数据,由此分析用户的跑步数据。”黄翰表示,“相对于传统传感器的工业应用,智能服饰更需要新型符合服饰舒适美观要求的传感器。”  就目前而言,传感网络仍面临着通信能力有限、电源能量有限、计算能力有限等诸多挑战,传感器网络具有很强的动态性,因此必须具有可重构和自调整性。“因其感知数据采集环境复杂,数据实时性强、数据量大,我们需要研究稳定高效的数据流采集、管理、查询、分析和挖掘方法。”  据介绍,传感器在智能穿戴设备中仅仅担任数据采集的角色,最终设备是否能准确输出我们关心的信息,这中间还涉及复杂的信号处理过程,由于可穿戴设备有限的计算能力,限制了许多前沿的人工智能技术应用,因此其准确性还有待提升。“例如,运动手环很可能将手的摆动误认为一定是走路或者跑步。”黄翰这样说道。
  • 2973万!浙江省海洋科学院浙江省海洋灾害综合防治体系建设(浙江省海洋科学院)项目海洋生态灾害预警及应对气候变化检测能力提升采购项目
    一、项目基本情况项目编号:CTZB-2024060078项目名称:浙江省海洋科学院浙江省海洋灾害综合防治体系建设(浙江省海洋科学院)项目海洋生态灾害预警及应对气候变化检测能力提升预算金额(元):29730000最高限价(元):10439000,2021000,8740000,4700000,3830000采购需求: 标项一标项名称:海洋生态灾害监测预警检测设备能力提升检测分析设备数量:1预算金额(元):10439000简要规格描述或项目基本概况介绍、用途:电感耦合等离子体质谱仪、原子吸收分光光度计、三重四极杆气质联用仪、三重四极杆液质联用仪、同位素比质谱仪联用元素分析仪、叶绿素荧光测定仪、原子荧光光度计、气相色谱仪(ECD+FID)、气相色谱仪(ECD+FPD)、气相色谱-单四极杆质谱联用仪,具体内容详见招标文件。备注:采购依据:[2024]38291号、[2024]37548号、[2024]37545号;最高限价:10439000元;项目属性:货物项目;产地:部分接受进口产品。标项二标项名称:海洋生态灾害监测预警检测设备能力提升检测前处理及辅助设备数量:1预算金额(元):2021000简要规格描述或项目基本概况介绍、用途:微波消解仪、全自动快速溶剂萃取仪、快速溶剂萃取仪(手动)、全自动洗瓶机(大瓶)、全自动洗瓶机(精密玻器)、全自动定量浓缩仪、氮吹仪、高速离心机、旋转蒸发仪、超纯水仪、电子天平、分析天平(0.1mg/0.01mg)、分析天平(0.1mg)、除湿机、氢气发生器、沉积物打磨台,具体内容详见招标文件。备注:采购依据:[2024]37546号;最高限价:2021000元;项目属性:货物项目;产地:国产产品。标项三标项名称:海洋生态灾害监测预警检测设备能力提升调查设备数量:1预算金额(元):8740000简要规格描述或项目基本概况介绍、用途:闭合浮游生物网、绞车、自容式海流计、机载高精度激光测绘雷达系统、执照审定无人机电子设备、浮游生物泵、走航声学多普勒流速流向仪、温盐深测量仪、便携式多波束测深仪、多波束测深仪,具体内容详见招标文件。备注:采购依据:[2024]37543号、[2024]37544号、[2024]38291号;最高限价:8740000元;项目属性:货物项目;产地:部分接受进口产品。标项四标项名称:应对气候变化生态系统监测能力提升仪器设备采购数量:1预算金额(元):4700000简要规格描述或项目基本概况介绍、用途:基于水汽平衡和海气分压差法的海水和大气二氧化碳测量仪、基于涡动法的海气二氧化碳通量测量仪,具体内容详见招标文件。备注:采购依据:[2024]37989号;最高限价:4700000元;项目属性:货物项目;产地:接受进口产品。标项五标项名称:海洋生态灾害预警监测能力提升实验室环境设施升级改造数量:1预算金额(元):3830000简要规格描述或项目基本概况介绍、用途:实验室家具及空调设备系统、实验室检测能力提升配套服务,具体内容详见招标文件。备注:采购依据:[2024]37547号、[2024]37542号;最高限价:3830000元;项目属性:货物项目;产地:国产产品。合同履约期限:标项 1、2、3、4、5,按招标文件规定本项目(是)接受联合体投标。二、获取招标文件时间:/至2024年07月19日 ,每天上午00:00至12:00 ,下午12:00至23:59(北京时间,线上获取法定节假日均可,线下获取文件法定节假日除外)地点(网址):浙江政府采购网(http://zfcg.czt.zj.gov.cn/)方式:投标人通过“浙江政府采购网”在线获取(招标公告下方选取“潜在供应商”处“获取采购文件”),不提供纸制版招标文件;投标人只有在“浙江政府采购网”完成获取招标文件申请并下载了招标文件后才视作依法获取招标文件;售价(元):0三、对本次采购提出询问、质疑、投诉,请按以下方式联系1.采购人信息名 称:浙江省海洋科学院地 址:浙江省杭州市西湖区益乐路20号传 真:/项目联系人(询问):王晓宇项目联系方式(询问):0571-88000865质疑联系人:谢芳质疑联系方式:0571-880008262.采购代理机构信息名 称:浙江省成套招标代理有限公司地 址:杭州市文晖路42号现代置业大厦西楼18层1804室传 真:/项目联系人(询问):徐均项目联系方式(询问):0571-85830191质疑联系人:冯东东质疑联系方式:0571-853312933.同级政府采购监督管理部门 名 称:浙江省财政厅政府采购监管处、浙江省政府采购行政裁决服务中心(杭州) 地 址:杭州市上城区四季青街道新业路市民之家G03办公室(快递仅限ems或顺丰) 传 真:/ 联 系 人:朱女士、王女士 监督投诉电话:0571-85252453政策咨询:何一平、冯华,0571-87058424、87055741预算金额未达100万元的采购项目,由采购人处理采购争议。若对项目采购电子交易系统操作有疑问,可登录政采云(https://www.zcygov.cn/),点击右侧咨询小采,获取采小蜜智能服务管家帮助,或拨打政采云服务热线95763获取热线服务帮助。CA问题联系电话(人工):汇信CA 400-888-4636;天谷CA 400-087-8198。
  • “精密大带宽锁相放大器的研发及应用”获得立项
    近日,由赛恩科仪团队首席技术顾问中山大学王自鑫副教授作为项目负责人申报的国家重点研发计划“精密大带宽锁相放大器的研发及应用”获批立项;项目将实现超过100M带宽的精密锁相放大器,将研究复杂电磁环境下的微弱信号解耦合技术,实现高带宽高精度的锁相放大器检测技术。赛恩科仪拥有多位在集成电路设计、电磁兼容性分析、数字信号处理等领域具有丰富经验的归国留学人员,一直依托中山大学微电子系、物理系、中山大学光电材料与技术国家重点实验室从事微弱信号仪器检测相关的研究工作。赛恩科仪是一家专注微弱信号检测技术近二十年的国家高新技术企业,拥有本领域的系列核心知识产权。公司推出涵盖各个频段的系列锁相放大器产品,性能参数全面覆盖国际同行,在国内外数百家科研机构与企业得到应用,深受国内外客户的一致好评。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制