盐酸特拉唑嗪二水合物杂质

仪器信息网盐酸特拉唑嗪二水合物杂质专题为您提供2024年最新盐酸特拉唑嗪二水合物杂质价格报价、厂家品牌的相关信息, 包括盐酸特拉唑嗪二水合物杂质参数、型号等,不管是国产,还是进口品牌的盐酸特拉唑嗪二水合物杂质您都可以在这里找到。 除此之外,仪器信息网还免费为您整合盐酸特拉唑嗪二水合物杂质相关的耗材配件、试剂标物,还有盐酸特拉唑嗪二水合物杂质相关的最新资讯、资料,以及盐酸特拉唑嗪二水合物杂质相关的解决方案。
当前位置: 仪器信息网 > 行业主题 > >

盐酸特拉唑嗪二水合物杂质相关的资料

盐酸特拉唑嗪二水合物杂质相关的论坛

  • 哪些因素会影响酒石酸钠二水合物的溶解平衡

    哪些因素会影响酒石酸钠二水合物的溶解平衡 一、温度方面 1.温度高低 温度就像一个调皮的小助手,对溶解平衡影响可大了。如果温度升高,就像给酒石酸钠二水合物的溶解加了把劲儿。因为温度高了,分子运动就变得更活跃了,溶剂分子就更容易把溶质分子(酒石酸钠二水合物)包围起来,让它溶解。就好比天气热的时候,糖在水里溶解得更快更多一样。反过来,如果温度降低,分子运动就慢下来了,酒石酸钠二水合物的溶解能力也会跟着下降,可能本来溶解了不少,温度一低就有一部分析出来了。 二、溶剂的性质 1.溶剂种类 不同的溶剂就像不同的小房子,对酒石酸钠二水合物的容纳能力不一样。如果是一种和酒石酸钠二水合物 “合得来” 的溶剂,那它就容易溶解。比如说,在水里酒石酸钠二水合物能溶解得挺好,但是如果换一种有机溶剂,像乙醇之类的,可能溶解的量就少多了,甚至几乎不溶解。这是因为酒石酸钠二水合物分子和水分子之间的相互作用力比较强,能让它很好地分散在水中,而和乙醇分子的相互作用力就弱很多。 2.溶剂的量 溶剂的量也很关键。如果溶剂很多,就像有很大的空间来容纳酒石酸钠二水合物,那它就能溶解更多的溶质。就像你有一个大杯子装水,能放很多糖溶解在里面;如果杯子很小,水少,能溶解的糖也就少了。不过呢,这里有个极限,就是达到饱和状态后,再增加溶剂也不能再溶解更多的酒石酸钠二水合物了。 三、溶质的状态 1.溶质的颗粒大小 酒石酸钠二水合物本身颗粒的大小也会影响溶解平衡。如果颗粒很大,就像一个大石块,溶剂分子要把它慢慢 “啃碎” 才能溶解,溶解的速度就慢。要是颗粒很细小,就像沙子一样,溶剂分子就能很快把它们包围起来溶解掉。不过这主要影响的是溶解的速度,当时间足够长的时候,最终达到的溶解平衡状态是一样的,只是颗粒小的时候会更快达到平衡。 2.溶质的纯度 纯度高的酒石酸钠二水合物溶解起来比较单纯。如果里面混有杂质,这些杂质就像捣乱的小坏蛋。比如说,杂质可能会占据溶剂分子和酒石酸钠二水合物分子结合的位置,或者改变溶液的性质,从而影响酒石酸钠二水合物的溶解平衡。可能会使它溶解得少一些,或者达到平衡的速度变慢。 四、搅拌情况 1.搅拌与否 搅拌就像给溶液做按摩一样。如果搅拌溶液,就能让酒石酸钠二水合物周围的溶剂不断更新,这样溶剂分子就能更快地接触到溶质分子,加快溶解的速度。不搅拌的话,溶质周围的溶剂很快就饱和了,新的溶剂分子过不来,溶解就慢。不过搅拌不会改变最终的溶解平衡状态,只是影响达到平衡的快慢。

  • 如何使用卡尔?费休试剂对酒石酸钠二水合物进行标定

    如何使用卡尔?费休试剂对酒石酸钠二水合物进行标定 一、准备工作 1.仪器准备 首先要准备好滴定装置,这就像准备好做饭的锅碗瓢盆一样重要。卡尔?费休滴定仪得检查好,确保它能正常工作。比如滴定管要畅通无阻,而且刻度要清晰准确,这样才能精确量取卡尔?费休试剂。还有搅拌装置也要正常运转,因为在滴定过程中,良好的搅拌能让反应更充分。 2.试剂准备 卡尔?费休试剂得是新鲜配制或者妥善保存且未过期的。酒石酸钠二水合物要确保是干燥、纯净的。称取酒石酸钠二水合物的天平也要精准,就像我们称东西的时候得用个准秤一样。天平要提前校准好,精确到小数点后几位,这可关系到标定结果的准确性呢。 3.环境控制 标定的环境很关键。要在一个相对湿度较低的环境中进行,因为卡尔?费休试剂很容易吸收空气中的水分,如果环境湿度大,就会干扰标定结果。就好比在潮湿的天气里晒东西,东西很难晒干是一个道理。理想的相对湿度最好在 40% - 60% 之间。 二、具体标定步骤 1.称取酒石酸钠二水合物 用经过校准的天平准确称取一定量的酒石酸钠二水合物。这个量要合适,不能太多也不能太少。比如说可以称取 0.2 - 0.3 克左右(具体量可以根据实际情况和仪器的精度调整)。把称好的酒石酸钠二水合物小心地放入滴定容器中,就像把宝贝小心翼翼地放进盒子里一样。 2.开始滴定 然后往滴定容器中加入适量的溶剂,这个溶剂要能溶解酒石酸钠二水合物,并且不会和卡尔?费休试剂发生反应。开启搅拌装置,让酒石酸钠二水合物充分溶解。 接下来就可以开始用卡尔?费休试剂进行滴定了。慢慢打开滴定管的阀门,让卡尔?费休试剂一滴一滴地滴入滴定容器中。一边滴一边观察滴定仪上的读数或者颜色变化(如果是用有颜色指示的卡尔?费休试剂的话)。这个过程要特别仔细,就像给花浇水一样,一滴一滴地浇,不能一下子倒很多。 3.确定滴定终点 当达到滴定终点时,就要停止滴定。如果是用电位滴定仪,会有电位的突变来指示终点;如果是用目视法,可能会看到颜色的明显变化。这个终点的判断要准确,一旦判断失误,整个标定结果就错了。就像跑步比赛,冲线的那一刻判断错了,比赛结果就不对了。 4.计算卡尔?费休试剂的浓度 根据酒石酸钠二水合物的质量、它里面结晶水的含量(酒石酸钠二水合物中结晶水的摩尔质量是固定的,可以查出来)以及滴定所消耗的卡尔?费休试剂的体积,就可以计算出卡尔?费休试剂的浓度了。计算的时候要仔细,可不能算错数哦。

  • 【原创大赛】火焰原子吸收光谱法测定埃索美拉唑镁二水合物样中Mg的含量

    埃索美拉唑镁(esomeprazole magnesium),化学名(S)-(-)5-甲氧基-2--1H-苯并咪唑镁盐,由瑞典AstraZeneca公司研发,2004年在我国上市。临床主要用于治疗胃酸分泌过多引起的胃溃疡、十二指肠溃疡及反流性食管炎等消化系统疾病。 本文拟采用湿法敞开消解法进行样品前处理,利用火焰原子吸收光谱法测定埃索美拉唑镁二水合物的Mg含量。1 仪器与试剂1.1 仪器与条件美国Perkin Elmer原子吸收光谱仪(型号:AAnalyst 800);镁空心阴极灯(北京有色金属研究总院);石墨炉原子吸收光谱仪测试条件见表1;MS105DU型Mettler Toledo电子天平;Advantage A10 Milli-Q纯水器。表1 原子吸收光谱仪主要测试条件 测定参数 设定值 测定波长 285.2 nm 狭缝宽度 0.7 nm 工作灯电流 6 mA 空气流量 17 L×min-1 乙炔流量 2 L×min-1 1.2 试剂盐酸(MOS级,天津市风船化学试剂科技有限公司);GSB G 62005-90镁标准储备溶液(1000 mg×mL-1,国家钢铁材料测试中心钢铁研究总院,中国);Milli Q超纯水(18.2 MW×cm);50 mg×mL-1的La溶液由光谱纯La2O3(99.99 %,上海试剂厂,上海)配制而成。2 方法与结果2.1 标准工作溶液的配制及测定从镁标准储备溶液(1000 mg×mL-1)移取一定的量,利用2 %盐酸溶液逐级稀释分别配制成浓度为0、0.1、0.3和0.5 mg×mL-1的标准工作溶液(都含有2 mL的La溶液)。按照浓度从稀到浓的顺序,利用火焰原子吸收光谱仪分别测定其吸光度值。仪器自动绘制工作曲线,获得的标准曲线的线性方程为:Y=0.00618+0.01563*X,R=0.99901上式中:Y:代表吸光度; X:代表待测溶液的浓度; R:代表工作曲线的线性系数。2.2 消解法称取0.0500 g左右的样品到玻璃烧杯中,加入3 mL的MOS级HCl,加盖置于电热板上加热消解。样品很快溶解完全,取下、冷却,定容到100 mL容量瓶中,再50倍稀释,同时加入2 mL的La溶液(50mg×mL-1),定容到50 mL容量瓶中待测,同时做样品空白。2.3 测试结果样品前处理完成之后,仪器先预热稳定半小时,再按照仪器的操作规程进行样品的分析。样品分析结果见表4。表4 样品中镁的分析结果及样品加标回收率 样 品 样品中镁的含量(%) 回收率(%) 1 3.44 102.5 2 3.42 101.0 3 3.43 98.9 结论:通过上面的实验结果可以看出:采用直接敞开湿法消解法和火焰原子吸收光谱法测定埃索美拉唑镁中镁的含量,方法简单、准确、灵敏,可用于埃索美拉唑镁原料药有关物质及含量的测定以及质量控制。

盐酸特拉唑嗪二水合物杂质相关的方案

盐酸特拉唑嗪二水合物杂质相关的资讯

  • 广州能源所用原位拉曼测量技术揭示气体水合物中气体分子特性 | 前沿用户报道
    供稿:周雪冰成果简介中国科学院广州能源研究所天然气水合物重点实验室近期发布最新研究成果,利用高压原位拉曼测量技术成功获得了多种水合物形成/分解过程的原位拉曼图,揭示了气体水合物中气体分子的吸附和扩散特性。相关成果已在Energy Fuels, J. Phys. Chem. C, Chemical Engineering Journal, scientific reports等期刊上发表。背景介绍气体水合物是在一定压力和温度条件下在气-水混合物中自然形成的冰状固体化合物。在气体水合物晶体中,水分子依靠氢键相互结合在一起形成笼状晶格,而气体分子作为客体分子分布在晶格中并对水其稳定作用。例如,天然气水合物是人们在自然环境中发现的一类常见的笼状水合物,在科学和工业领域有着广泛的创新应用,有研究者就利用在海洋下形成的气体水合物来封存烟气中的二氧化碳。图1 气体水合物的三种主要的晶体结构。结构I(sI),通常由较小的客体分子(0.4–0.55nm)形成,是地球上最丰富的天然气水合物结构;结构II(sII),通常由较大的客体分子(0.6–0.7nm)和结构H(sH)形成,通常需要小分子和大客体分子形成。气体水合物的水合物热力学和动力学特性会直接受两种因素的影响:水合物中的气体种类、气体对水合物笼型结构的占有率。这也是气体水合物表征的重点。然而,由于晶体生长的环境条件比较苛刻,常规测量手段难以对上述表征重点直接观测。拉曼光谱能够根据气体水合物中客体分子的拉曼光谱特征峰和特征峰的峰面积来确定气体水合物的晶体结构,以及定量计算不同笼型结构中气体的孔穴占有率。近年来,耐低温高压的拉曼辅助测量装置的研发成功,水合物原位测量技术得以应用,这为研究气体水合物的形成/分解/置换等晶体结构的动力学行为提供了重要的研究途径。图文导读广州能源所天然气水合物重点实验室采用共聚焦拉曼光谱仪和原位拉曼光谱测量装置对甲烷、二氧化碳及其混合气体水合物的形成、分解和置换过程进行了测量和分析。实验中使用HORIBA LabRAM HR拉曼光谱仪,配备有开放式显微镜系统和高精度三维自动平台及Linkam BSC型冷热台,冷热台采用液氮冷却。图2 原位拉曼光谱测量装置1. 纯CO2、烟气和沼气中水合物的形成过程在271.6K温度下,以2800~3800cm-1的水分子拉曼特征峰为参考,对水合物相中气体的拉曼峰进行了表征和归一化。结果表明,水合物的形成过程首先是不饱和水合物核的形成,然后是气体持续吸附。在三种水合物形成过程中均发现,水合物核中的CO2浓度仅为对应饱和状态时的23-33%。在烟气合成水合物过程中,N2水合物相中的浓度在晶核形成时就达到饱和状态。在沼气合成水合物过程中,CH4和CO2分子会发生竞争吸附,而N2分子在水合物形成过程中几乎不发生演化。研究认为N2和CO2等小分子在水合物晶核形成过程中更为活跃,而CO2分子则在随后的气体吸附过程中发生优先吸附。[1]图3 271.6K下通过原位拉曼测量方法观察到的CO2、N2和CH4的特征峰图4 纯CO2水合物生长过程中的原位拉曼光谱。(a)CO2分子在水合物和气相中的拉曼特征峰 (b)水分子的拉曼特征峰2. CO2-CH4置换过程在273.2~281.2 K温度范围内对气态CO2置换CH4的过程进行了多尺度研究,并根据测量结果对基于气体扩散理论的水合物置换动力学模型进行了修正。原位拉曼测量发现,水合物大笼和小笼中的CH4连续下降,没有显著波动,这表明CH4的置换反应并非先分解再生成的过程。800小时的测量结果表明,置换过程首先是快速表面反应,随后是缓慢的气体扩散。温度的升高能有效提高水合物相的气体交换速率,增强水合物相的气体扩散。修正后的水合物置换反应动力学模型揭示了水分子的迁移率是限制了置换反应速率的主要因素。[2]图5 置换过程中CH4在水合物大笼和小笼中的比例变化图6 CO2置换水合物中CH4的原位拉曼光谱图7 水合物CO2-CH4置换反应机理示意图3. CH4-CO2混合气体水合物的分解过程对CH4-CO2混合气体水合物的分解过程进行了原位拉曼光谱测量并与纯CH4和纯CO2水合物的熔融过程进行了对比分析。研究结果发现,混合CH4-CO2水合物的晶体结构为Ⅰ型结构,且不随气体浓度的改变而发生变化。分解过程中,气体在水合物大笼和小笼中的特征峰强均会下降,同时峰面积之比始终保持稳定,表明水合物晶体以晶胞为单位解离。水合物晶体的分解时间具有随机性,与水合物粒子的多晶性质一致。有趣的是,在含有CH4的水合物中,水合物相中CH4和CO2的拉曼特征峰在水合物分解过程中出现了短暂的连续上升,表明位于样品颗粒内部的水合物发生了气体迁移扩散,这种现象的产生可以归因于水合物在样品颗粒内部的部分分解和“自保护”效应。[3]图8 CH4-CO2混合气体水合物在253K常压环境下分解过程的原位拉曼光谱图9 CH4(大笼: 2906cm-1)和CO2的在水合物中的特征峰(1383cm-1)随水合物分解的变化曲线。根据时间零点拉曼峰的强度,峰被归一化。总结展望拉曼光谱与表面增强拉曼光谱都是是非常强大的分析手段,凭借快速获取样品表面光谱信息的能力,拉曼测量技术在天然气水合物等矿物学领域颇受青睐。据了解,在接下来的研究中,天然气水合物重点实验室将应用原位拉曼测量技术对天然气水合物在多孔介质和添加剂等复杂环境中的反应动力学过程展开研究,以进一步揭示它的形成/分解/置换过程的动力学机理。中国科学院天然气水合物重点实验室简介中国科学院天然气水合物重点实验室是国内天然气水合物研究的重要基地。重点研究天然气水合物的物理化学性质、生长动力学、生成/分解过程等相关基础问题以及水合物开采、天然气固态储运、天然气水合物管道抑制、二氧化碳捕集与封存。联系作者周雪冰 Phone: 15002016003仪器推荐工欲善其事,必先利其器。本实验中全程使用了HORIBA LabRAM HR拉曼光谱仪进行原位拉曼光谱测量。作为升级版,LabRAM HR Evolution 高分辨拉曼光谱仪在保留了LabRAM HR所有性能的同时,实现了高度自动化。配备科研级正置/ 倒置显微镜,可实现UV-VIS-NIR 全光谱范围拉曼检测。焦长达到800mm,具有超高的光谱分辨率和空间分辨率。LabRAM HR Evolution 高分辨拉曼光谱仪如果您对上述产品感兴趣,欢迎扫描二维码留言,我们的工程师将会及时为您答疑解惑。文献信息[1] Zhou, X., Zang, X., Long, Z. et al. Multiscale analysis of the hydrate based carbon capture from gas mixtures containing carbon dioxide. Sci Rep 11, 9197 (2021). 文章链接:https://doi.org/10.1038/s41598-021-88531-x[2] Xuebing Zhou, Fuhua Lin, and Deqing Liang. Multiscale Analysis on CH4–CO2 Swapping Phenomenon Occurred in Hydrates. The Journal of Physical Chemistry C 2016 120 (45), 25668-25677. 文章链接:https://pubs.acs.org/doi/10.1021/acs.jpcc.6b07444[3] Xuebing Zhou, Zhen Long, Shuai Liang et al. 1. In Situ Raman Analysis on the Dissociation Behavior of Mixed CH4–CO2 Hydrates. Energy & Fuels 2016 30 (2), 1279-1286. 文章链接:https://pubs.acs.org/doi/abs/10.1021/acs.energyfuels.5b02119[4] Xuebing Zhou, Deqing Liang, Enhanced performance on CO2 adsorption and release induced by structural transition that occurred in TBAB26H2O hydrates, Chemical Engineering Journal, Volume 378, 2019, 122128, ISSN 1385-8947,文章链接:https://www.sciencedirect.com/science/article/pii/S1385894719315220?via%3Dihub
  • 中科院水合物中心与美国家实验室合作研究
    中科院网站报道:应美国Lawrence Berkeley国家实验室的邀请,中科院可再生能源与天然气水合物重点实验室博士李刚和苏正于8月2日起程到美国Lawrence Berkeley国家实验室地球科学部开展为期三个月的合作研究,并于11月1日顺利返回广州。   在美期间,李刚和苏正与该实验室George Moridis教授和Keni Zhang博士合作开展了南海北部陆坡天然气水合物开采潜力数值模拟研究,同时进行了深入的学术交流活动。此次合作研究是前期双方达成共识的基础上开展合作研究和交流的第一步。李刚和苏正采用美国Lawrence Berkeley国家实验室开发的TOUGH+Hydrate数值模拟软件分别对2007年成功取样的南海北部神狐海域SH2站位和SH7站位海底天然气水合物藏进行了开采潜力的数值模拟研究。数值模拟过程中主要采用降压法和注热法相结合的开采方法,对垂直井和水平井开采海底天然气水合物的异同进行了比较,根据现有的海底水合物实地数据对井口产气产水速率进行了评价,并对海底沉积物的渗透率、水合物饱和度、海底温压条件以及盖层情况进行了参数敏感性分析,比较全面地评价了神狐海域天然气水合物藏的开采前景。合作研究期间,两人分别完成了题为Evaluation of Gas Production Potential from Marine Gas Hydrate Deposits in the Shenhu Area of the South China Sea: Depressurization and Thermal Stimulation Methods和Numerical Investigation of Gas Production Strategy for the Hydrate Deposits in the Shenhu area的学术论文。   合作结束后,重点实验室副主任吴能友和George Moridis教授就未来双方进一步合作的方式、方向和内容进行深入讨论。
  • 又是杂质?岛津药物杂质综合分析方案来了!
    导读NDMA杂质超标下架雷尼替丁?因叠氮杂质召回厄贝沙坦?包材有溶剂残留导致生产企业被监管部门处罚数万元?药用辅料不当导致患者死亡?近几年连续发生多起因药物含有不合规杂质,而被要求市场召回的案例。因药物杂质超标而导致不合格问题,时刻触碰着分析行业老师们的神经:又是杂质?不同杂质参照哪种法规进行检测?杂质如何控制限度?使用哪种仪器进行检测?有没有成熟的方案可参考?药物杂质种类多:包括有机杂质、无机杂质、残留溶剂,涉及到仪器种类广、分析方法和前处理技术复杂多样。今天,我们带来了岛津药物杂质综合分析方案《药物杂质分析综合应用文集》,涵盖色谱、质谱、光谱产品仪器方面的杂质分析案例,快来一起随小编看看吧。药物杂质分析法规指南药物杂质一直是药品研发生产中风险控制的重要内容,药物杂质影响到药物的质量和临床疗效。人用药品注册技术要求国际协调会(ICH)按照杂质理化性质将其分为三大类:有机杂质、无机杂质及残留溶剂。不同杂质参考法规不同,具体如下表所示。杂质类型及法规参考依据《药物杂质分析综合应用文集》密切关注相关药典、法规、标准的更新和发布,聚焦时事热点,如沙坦类物质中亚硝胺类基因毒性杂质事件、溶剂残留检测要求、元素杂质分析国际标准等。针对药物杂质不同理化性质,开发契合标准和法规的药物杂质分析应用报告。形成一份包含多种类型杂质分析的综合应用文集,为相关科研和分析工作人员提供一定的参考。更多应用详情,请关注岛津官网,下载《药物杂质分析综合应用文集 》。典型案例分享案例分享1在线体积排阻反相液相色谱-飞行时间质谱鉴定注射用头孢哌酮钠舒巴坦钠中聚合物杂质建立在线体积排阻-反相液相色谱-飞行时间质谱法(SEC-RPLC-QTOFMS)用于注射用头孢哌酮钠舒巴坦钠中的聚合物杂质的鉴定。一维采用SEC分离条件,将头孢哌酮和聚合物杂质进行分离,分离所得聚合物杂质通过中心切割技术收集到二维RPLC中脱盐和进一步分离,采用Q-TOF为检测器,采集分离所得杂质一级和二级质谱信息后对其进行结构鉴定。推测出9个杂质的结构,其中有4个为闭环二聚物。二维SEC-RPLC-QTOFMS杂质鉴定系统流路图头孢哌酮聚合物峰液相色谱图及空白溶剂二维色谱图案例分享2超临界流体色谱系统在原料药杂质分析中的应用二乙酰鸟嘌呤是重要的医药中间体,杂质检测是其质量控制的关键。该化合物在常用溶剂中溶解性差,并且遇水分解,使得常规的RP-HPLC分析不能实现。使用的岛津Nexera UC SFC-UV系统,对药物中间体二乙酰鸟嘌呤中的杂质进行分析,有效避免使用反相色谱分析中该药物不稳定遇水分解的可能,并且SFC系统分析速度快、重现性好、灵敏度高。甲醇和乙醇作为改性剂时分离效果对比(检测波长:264 nm)1.OD-H-甲醇,2.OD-H-乙醇,3.SFC-A-甲醇,4.SFC-A-乙醇案例分享3电感耦合等离子体质谱法测定喷雾剂中的元素杂质含量参考美国药典USP对元素杂质的限量要求及USP对元素杂质的测定方法,利用电感耦合等离子体质谱法(ICP-MS)测定了吸附给药样品中的重金属元素和其它元素杂质的含量。结果全符合USP规定每种目标元素的线性、加标回收率的要求,该方法操作简便、快速,样品前处理简单,可以满足美国药典对口服药中杂质元素限量值的测定要求。样品分析结果及加标回收率《药物杂质分析综合应用文集》目录有机杂质分析1、工艺及降解杂质高效液相色谱法分析盐酸多西环素中的有关物质高效液相色谱法结合Co-injection功能测定双氯芬酸钠肠溶片有关物质采用加校正因子主成分自身对照法测定马来酸依那普利片有关物质二维液相色谱法用于碘帕醇对映异构体杂质的定量分析液相色谱-四极杆飞行时间质谱联用分析头孢替唑钠及其杂质在线体积排阻反相液相色谱-飞行时间质谱鉴定注射用头孢哌酮钠舒巴坦钠中2、聚合物杂质在线二维液相色谱-四极杆飞行时间质谱法鉴定盐酸氟西汀的杂质超临界流体色谱系统在原料药杂质分析中的应用3、遗传毒性杂质三重四极杆气质联用法同时测定药品中八种磺酸酯类基因毒性杂质三重四极杆气质联用法测定沙坦类药物中六种N-亚硝胺含量高效液相色谱应用于沙坦类原料药中NDMA和NDEA的检测三重四极杆液质联用法检测缬沙坦原料药中六种亚硝胺类杂质厄贝沙坦原料中叠氮类遗传毒性杂质AZBC的分析厄贝沙坦原料中叠氮基遗传毒性杂质MB-X的分析三重四极杆气质联用法测定丁酸氯维地平中基因毒性杂质丁酸氯甲酯和2,3-二氯苯甲醛含量三重四极杆液质联用系统测定甲磺酸伊马替尼中芳香胺类遗传毒性杂质含量药品中无机(元素)杂质分析ICH Q3D X-射线荧光光谱法分析原料药的元素杂质电感耦合等离子体光谱法测定原料药样品中的元素杂质含量利用电感耦合等离子体质谱测定药物中间体中Pd催化剂残留量电感耦合等离子体质谱法测定喷雾剂中的元素杂质含量利用电感耦合等离子体质谱测定葡萄糖注射液中重金属元素含量残留溶剂检测气相色谱结合顶空进样器测定药品中微量环氧氯丙烷残留顶空-气相色谱法测定化学药品中三种溶剂残留气相色谱法测定药用辅料聚山梨酯80中六种杂质含量气质联用仪结合顶空进样器测定药品中溶剂残留顶空-气质联用法测定药物中水合肼含量了解更多应用,敬请下载《药物杂质分析综合应用文集》撰稿人:孟海涛本文内容非商业广告,仅供专业人士参考。

盐酸特拉唑嗪二水合物杂质相关的仪器

  • 中文名称:7-[(3-氯-6-甲基-5,5-二氧代二苯并[1,2]硫氮杂卓-11-基)氨基]庚酸半硫酸盐一水合物中文别名:噻奈普汀半硫酸盐一水合物;噻唑平-11-基氨基庚酸半硫酸盐一水合物英文名称:7-[(3-chloro-6-methyl-5,5-dioxo-diphenzo[1,2]thiazepine- 11-)amino]heptanoic acid hemisulfate monohydrate;Tianeptine Semisulfate Monohydrate;(Thiazepin-11-ylAmino)Heptanoic Acid Semisulfate MonohydrateCAS号:1224690-84-9分子式:C42H56Cl2N4O14S3分子量:1008.01344含量:99.5%外观:白色结晶粉末包装: 1公斤每袋
    留言咨询
  • 水合物反应釜 400-860-5168转0811
    应用: 水合物形成过程观察 水合物抑制剂研究 水合物阻聚剂分析 热力学、动力学水合物抑制剂研究   水合物反应器(Gas Hydrate Autoclave),又可以叫水合物反应釜,或者叫天然气水合物反应釜。是最新一代研究可燃冰水合合成过程的设备。主要测量水合物抑制剂,动力学、热力学水合物抑制剂,水合物阻聚剂等。水合物反应器系统小巧紧凑,软件可以使8个水合单元同时工作,系统内置搅拌以及冷却装置,通过管道照相机,我们可以通过蓝宝石窗口获取水合过程中的图片以及视频。系统安全性能好,有自动重新启动的选择可确保我们能安全的长时间测试。另外,天然气水合反应釜GHA200还有锁定装置,只有操作者才能打开此系统,系统连接线十分简洁,操作起来非常安全。 技术参数: 1.压力范围:200bar(2900Psi),700bar(10000Psi) 2.压力测量:DMS,0.5% FS 3.液体体积:最大450ml,推荐200ml 4.温度范围:-5℃-50℃ 5.温度测量:PT100,精度0.1℃ 6.搅拌桨速度:关闭;100-2000RPM 7.相机分辨率:440,000 pixels 8.光学部分:大角度管道镜,卤素灯,光纤光学电缆 9.计算机控制:Hydrate 2.0软件,可同时控制8台系统 10.电源:240V,50/60Hz,2.2KW
    留言咨询
  • 天然气水合物开采模拟装置研究天然气水合物的常规开采方法如开采机理、注热、降压过程的物理模拟,探索经济有效的开采方法:通过评价注热开采、降压开采、注抑制剂开采等不同水合物开采方法的综合效益,确定多方法共同开发时,不同开采方法之间的接替时机。解决水合物开采过程气、液在沉淀物中传递规律、温度场的空间分布、水合物分解前沿的推进速度、水合物的分解机理等重大的学术问题。实验装置包括以下7个主要功能:(1)稳压供液装置;(2)稳压供气装置;(3)环境模拟装置;(4)回压控制装置;(5)测量装置;(6)数据采集装置等;
    留言咨询

盐酸特拉唑嗪二水合物杂质相关的耗材

  • 柠檬酸/碳酸氢钠提取管(4g硫酸镁,1g氯化钠,0.5g柠檬酸钠二元1.5水合物,1g柠檬酸钠三元二水合物)
    柠檬酸/碳酸氢钠提取管(4g硫酸镁,1g氯化钠,0.5g柠檬酸钠二元1.5水合物,1g柠檬酸钠三元二水合物) 12ml离心管,50根/包 适用于萃取 ~10g 食品/农产品样品。使用柠檬酸盐将提取液缓冲到 pH 5.0 - 5.5。在该 pH 值下,大部分酸和碱不稳定性农药均能保持稳定。使用碳酸氢钠进一步稳定酸不稳定性农药。 分散固相萃取(DSPE),通常被称为&ldquo QuEChERS&rdquo ,方法快速,简便,廉价,有效,耐用,安全,是一个新兴的样品制备技术,该方法使用散装固相萃取吸附剂提取和净化食品、农产品等样品用于农药残留分析,由于其操作简便正日趋普及。 使用QuEChERS方法,首先将食品和农产品样品加入到提取管中,提取管中装有 预先精确称量的高含量盐(如氯化钠和硫酸镁)和缓冲试剂(如柠檬酸盐),盐和缓冲试剂可以促进两相分离和稳定住遇酸碱容易变化的农药,然后在提取管中加入水溶性溶剂(如乙腈)进行提取。将提取管进行震荡和离心后取出部分有机相层加到分散SPE(dSPE)净化管中做进一步处理。分散SPE(dSPE)净化管不同于传统的SPE小柱,它是将精确称量好的SPE填料如Supelclean PSA,ENVI-Carb,Discovery DSC-18和Supel&trade QuE Z-Sep混合在一起的离心管,在净化管中加入提取液,样品在提取液和散装SPE填料之间进行分配或吸附,从而实现对基质样品的净化。这种方法简便快速。净化后的样品经过震荡离心后,上清液可直接或经过简单处理后进入到下一步分析中。 Supelco除了提供一系列预装好填料的分散SPE提取管和净化管用于欧盟EN 15662和美国AOCO2007.01方法,还可以根据用户定制不同规格的分散SPE产品
  • 柠檬酸提取管 (4g硫酸镁,1g氯化钠,0.5g柠檬酸钠二元1.5水合物,1g柠檬酸钠三元二水合物)
    柠檬酸提取管 (4g硫酸镁,1g氯化钠,0.5g柠檬酸钠二元1.5水合物,1g柠檬酸钠三元二水合物) 12ml离心管,50根/包 适用于萃取 ~10g 食品/农产品样品。使用柠檬酸盐将提取液缓冲到 pH 5.0 - 5.5。在该 pH 值下,大部分酸和碱不稳定性农药均能保持稳定。 分散固相萃取(DSPE),通常被称为&ldquo QuEChERS&rdquo ,方法快速,简便,廉价,有效,耐用,安全,是一个新兴的样品制备技术,该方法使用散装固相萃取吸附剂提取和净化食品、农产品等样品用于农药残留分析,由于其操作简便正日趋普及。 使用QuEChERS方法,首先将食品和农产品样品加入到提取管中,提取管中装有 预先精确称量的高含量盐(如氯化钠和硫酸镁)和缓冲试剂(如柠檬酸盐),盐和缓冲试剂可以促进两相分离和稳定住遇酸碱容易变化的农药,然后在提取管中加入水溶性溶剂(如乙腈)进行提取。将提取管进行震荡和离心后取出部分有机相层加到分散SPE(dSPE)净化管中做进一步处理。分散SPE(dSPE)净化管不同于传统的SPE小柱,它是将精确称量好的SPE填料如Supelclean PSA,ENVI-Carb,Discovery DSC-18和Supel&trade QuE Z-Sep混合在一起的离心管,在净化管中加入提取液,样品在提取液和散装SPE填料之间进行分配或吸附,从而实现对基质样品的净化。这种方法简便快速。净化后的样品经过震荡离心后,上清液可直接或经过简单处理后进入到下一步分析中。 Supelco除了提供一系列预装好填料的分散SPE提取管和净化管用于欧盟EN 15662和美国AOCO2007.01方法,还可以根据用户定制不同规格的分散SPE产品
  • 欧洲药典奥沙利铂杂质对照品
    EPY0000271 奥沙利铂 Oxaliplatin 250 mg EPY0000272 奥沙利铂杂质B Oxaliplatin impurity B 20 mg EPY0000273 奥沙利铂杂质C Oxaliplatin impurity C 15 mg EPY0000274 奥沙利铂杂质D Oxaliplatin impurity D 5 mg EPY0000275 二氯二氨基环己基铂 Dichlorodiaminocyclohexaneplatinum 10 mg EPY0000276 异丙托溴铵杂质A Ipratropium bromide impurity A 5 mg EPY0000277 硫酸粘杆菌素 Colistin sulphate 25 mg EPY0000279 三丁基磷 Tri-n-butyl phosphate 300 µ L EPY0000280 硫酸软骨素钠 Chondroitin sulphate sodium 250 mg EPY0000281 帕罗西汀盐酸盐水合物 Paroxetine hydrochloride hemihydrate 200 mg EPY0000282 噻康唑系统适用性 Tioconazole for system suitability 50 mg EPY0000283 尼麦角林杂质A Nicergoline impurity A 10 mg EPY0000284 丙酸氟替卡松 Fluticasone propionate 100 mg EPY0000288 吡拉西坦 Piracetam 120 mg EPY0000297 美沙拉嗪 Mesalazine 125 mg EPY0000298 辛酸氟奋乃静 Fluphenazine octanoate 10 mg EPY0000299 氟奋乃静亚砜 Fluphenazine sulphoxide 10 mg EPY0000304 天冬氨酸精氨酸 Arginine aspartate 20 mg EPY0000305 天门冬胺酸 Asparagine monohydrate 60 mg EPY0000306 阿奇霉素 Azithromycin 200 mg EPY0000307 阿奇霉素杂质A Azithromycin impurity A 10 mg EPY0000309 布美他尼杂质A Bumetanide impurity A 5 mg EPY0000310 布美他尼杂质B Bumetanide impurity B 5 mg EPY0000311 盐酸塞利洛尔 Celiprolol hydrochloirde 10 mg EPY0000312 塞利洛尔杂质I Celiprolol impurity I 0,02 mg EPY0000313 氯法齐明 Clofazimine 150 mg

盐酸特拉唑嗪二水合物杂质相关的试剂

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制