当前位置: 仪器信息网 > 行业主题 > >

精细颅脑损伤器

仪器信息网精细颅脑损伤器专题为您提供2024年最新精细颅脑损伤器价格报价、厂家品牌的相关信息, 包括精细颅脑损伤器参数、型号等,不管是国产,还是进口品牌的精细颅脑损伤器您都可以在这里找到。 除此之外,仪器信息网还免费为您整合精细颅脑损伤器相关的耗材配件、试剂标物,还有精细颅脑损伤器相关的最新资讯、资料,以及精细颅脑损伤器相关的解决方案。

精细颅脑损伤器相关的耗材

  • 非损伤微测系统专用流速传感器
    一、产品介绍1、非损伤微测系统专用流速传感器(组织样品专用传感器8-10um) 型号:XY-CGQ01 价格:68元/支,10支起订 本传感器适用于测定组织样品的所有离子传感器,特别针对Cl-、NO3-、NH4+测试时信号采集不稳定而开发出的新型传感器,使得测定上述三种离子时,信号的稳定性大大提高。 技术参数:材料:硼硅酸盐玻璃微管长度:50毫米尖端直径:8-10微米末端直径:外径1.5毫米/内径1.05毫米管壁厚度:0.225微米响应时间:300毫秒空间分辨率:5微米2、非损伤微测系统专用流速传感器(组织样品专用传感器4-5um) 型号:XY-CGQ-01 价格:68元/支,10支起订 用于非损伤测量组织样品专用的流速传感器 技术参数:材料:硼硅酸盐玻璃微管长度:50毫米尖端直径:4-5微米末端直径:外径1.5毫米/内径1.05毫米管壁厚度:0.225微米响应时间:300毫秒空间分辨率:5微米3、非损伤微测系统专用流速传感器(细胞样品专用传感器1-2um) 型号:XY-CGQ-02 价格:79元/支,10支起订 用于非损伤测量细胞样品专用的流速传感器 技术参数:材料:硼硅酸盐玻璃微管长度:50毫米尖端直径:1-2微米末端直径:外径1.5毫米/内径1.05毫米管壁厚度:0.225微米响应时间:300毫秒空间分辨率:5微米4、膜电位专用流速传感器 型号:XY-CGQ-03 价格: 51元/支,10支起订 专门用于测量膜电位的流速传感器 技术参数:材料:硼硅酸盐玻璃微管导液丝:有长度:50毫米尖端直径:1-2微米末端直径:外径1.5毫米/内径0.84毫米管壁厚度:0.33微米响应时间:300毫秒空间分辨率:5微米5、离子交换剂微容器(LIX Holder 载体) 型号:XY-LIX-01 价格: 34元/支,10支起订 装载离子交换剂的微量容器 技术参数:材料:硼硅酸盐玻璃微管长度:50毫米尖端直径:35-45微米末端直径:外径1.5毫米/内径1.05毫米管壁厚度:0.225微米6、膜电位专用流速传感器 型号:XY-CGQ-04 价格: 34元/支,10支起订 用于传感器动态校正 技术参数:材料:硼硅酸盐玻璃微管长度:50毫米尖端直径:10微米末端直径:外径1.5毫米/内径1.05毫米管壁厚度:0.225微米
  • 大型无损伤蓝光凝胶观察仪
    蓝色LED光源, 广泛用于核酸或蛋白质凝胶染色的观察。与传统的紫外透射仪相比:-蓝光光源,使实验人员的易暴露部位,如:眼睛、脸、手等部位免受紫外线伤害-对核酸片段无损伤,不会因照射导致片段断裂、交联、替换等损害-环保节能长效冷光源,无需经常更换灯管,省钱免维护产品优势:紧凑– 节省实验室空间小巧 - 方便移动安全 - 对人和样品无损伤精确 - 灵敏度高均一 - 可以观察胶的任何位置人性化 - 方便观察和切胶通用技术参数1. 蓝色LED激发光源:470nm,无需蓝色滤光片2. 光强比普通的透射光强3倍3. 光强从100%到50%可以调节4. 黄色滤光屏:可以屏蔽蓝光,让发射光透过,滤光屏可以自由翻转,在任意位置固定,方便切胶5. 检 测的灵敏度0.1ng6. 变异系数:7. 观察面积:16×20cm8. LED光源的寿命:5万个小时9. 体积:28×34×8cm(D×W×H),占用空间少10. 重量:3kg11.用途:用于EB替代荧光染料的激发,如SYBR? Safe, SYBR Gold, SYBR? Green I & II, SYPRO? Ruby, SYPRO? Orange, Coomassie Fluor? Orange stains, GelGreen, GelRed 和 Lumitein? Protein Gel Stain等,凝胶观察和切胶操作
  • 颅脑微注射手术器械包-小鼠
    基本介绍:有 关动物颅脑的实验中,微注射(比如药物、病毒、细胞、蛋白的注射)是常见的实验。颅脑微注射手术器械包供备皮、皮肤切口和缝合、皮肤和软组织夹持提取、扩 展手术视野、实时止血等手术用。另外,用于颅脑核团三维定位的脑立体定位仪、钻孔用微型手持式颅钻、注射泵、注射器需另行购买。此套手术器械包也可用于动 物颅脑长期、反复给药实验的手术。 规格 品名 数量 SP1002-M 颅脑微注射手术器械包-小鼠 14381-43 Bonn 精细剪-直/225px 1 14381-42 Bonn 精细剪-弯/225px 1 10059-13 硬脑膜剔除刀-325px 1 10007-12 手术刀柄-#7/300px 1 10011-00 一次性手术刀片-11# 1 10002-00 手术刀片拆卸器-162.5px 1 11050-10 Graefe 细齿镊-直/250px 1 11051-10 Graefe 细齿镊-弯/250px 1 12002-12 Olsen-Hegar 持针钳(可剪切)-直/300px 1 12050-02 缝针#2-O.D.0.35mm 1 18020-20 缝线#2/0-0.32/22.5m 1 12030-00 皮肤缝合系统 1 17005-03 滑行2x2钝齿牵开器-50px 1 18010-00 凝血器套件 1
  • 颅脑微透析手术器械包-小鼠
    基本介绍:微 透析是以透析原理作为基础,通过对插入生物体内中的微透析探针在非平衡条件下进行灌流,物质沿浓度梯度逆向扩散,使被分析物质(如多巴胺、五羟色胺等神经 递质)穿过透析膜扩散进入透析管内,并被透析管内连续流动的灌流液不断带出,从而达到活体组织取样的目的。颅脑微透析手术器械包供备皮、皮肤切口和缝合、 皮肤和软组织夹持提取、扩展手术视野、实时止血等手术用。另外,用于颅脑核团三维定位的脑立体定位仪、钻孔用微型手持式颅钻、微透析系统(微透析泵、探 针、样品收集器、清醒活动装置、连接管路、接头等)需另行购买。 规格 品名 数量 SP1003-M 颅脑微透析手术器械包-小鼠 14381-43 Bonn 精细剪-直/225px 1 14381-42 Bonn 精细剪-弯/225px 1 10059-13 硬脑膜剔除刀-325px 1 10007-12 手术刀柄-#7/300px 1 10011-00 一次性手术刀片-11# 1 10002-00 手术刀片拆卸器-162.5px 1 11050-10 Graefe 细齿镊-直/250px 1 11051-10 Graefe 细齿镊-弯/250px 1 12002-12 Olsen-Hegar 持针钳(可剪切)-直/300px 1 12031-07 伤口缝合适配器-7mm/287.5px 1 12032-07 伤口缝合夹-7mm 1 12033-00 伤口缝合拆针器-300px 1 12050-02 缝针#2-O.D.0.35mm 1 18020-20 缝线#2/0-0.32/22.5m 1 17005-03 滑行2x2钝齿牵开器-50px 1 30051-10 4合1螺丝刀-262.5px 1 18010-00 凝血器套件 1
  • 颅脑微量注射器配件IMS-3
    颅脑微量注射器配件IMS-3是Narishige公司专业为颅脑注射实验应用而设计的微量注射器。颅脑微量注射器配件IMS-3特点颅脑微量注射器与立体显微操作器(如SM-15)联合适合使用可精确注射试剂或液体到样品颅脑中。采用不同规格的注射筒(?5mm- ?10mm),可随意调整注射体积和容量。颅脑微量注射器配件IMS-3规格可适用注射器?5 - ?10mm移动范围细 40mm全方位旋转旋钮: 500μm尺寸/大小W50 × D30 × H120mm, 110g
  • 颅脑微注射手术器械包-大鼠
    基本介绍:有 关动物颅脑的实验中,微注射(比如药物、病毒、细胞、蛋白的注射)是常见的实验。颅脑微注射手术器械包供备皮、皮肤切口和缝合、皮肤和软组织夹持提取、扩 展手术视野、实时止血等手术用。另外,用于颅脑核团三维定位的脑立体定位仪、钻孔用微型手持式颅钻、注射泵、注射器需另行购买。此套手术器械包也可用于动 物颅脑长期、反复给药实验的手术。 规格 品名 数量 SP1002-R 颅脑微注射手术器械包-大鼠 14002-13 手术剪-直/325px 1 14005-13 手术剪-弯/325px 1 10059-13 硬脑膜剔除刀-325px 1 10003-12 手术刀柄-#3/300px 1 10011-00 一次性手术刀片-11# 1 10002-00 手术刀片拆卸器-162.5px 1 11002-12 窄型组织齿镊-直/300px 1 11003-12 窄型组织齿镊-弯/300px 1 12002-14 Olsen-Hegar 持针钳(可剪切)-直/350px 1 12050-01 缝针#1-O.D.0.35mm 1 18020-20 缝线#2/0-0.32/22.5m 1 12030-00 皮肤缝合系统 1 17003-03 Goldstein 3x3尖齿牵开器-75px 1 18010-00 凝血器套件 1
  • 小型无损伤蓝光凝胶观察仪
    适合不同应用的便携尺寸轻薄机身铝合金外壳设计桌面占用空间小高发光效率,低散热照明均匀度 80 %470nm 无害蓝光用于野广泛DNA 安全染料染色先进的 Transblue ST 将其 580nm 琥珀色滤光板与机身分开,使观测仪更薄更轻。 与上一代 Transblue ST 一样,它配备了安全的 470nm 蓝光 LED 灯。 成像尺寸为 153x153 毫米,您可以在观测仪上放置任何中小型凝胶。Transblue ST 还与我们的成像系统兼容,例如 Glite 600 BW。Transblue ST 适用于以下应用:EtBr、GelRed、GelGreen、SYBR Gold、GelSafe、ECO Safe 和大多数 DNA 安全染色染料。规格Trans-Blue ST材料铝合金蓝光波长470nm可见范围6"x6" (153x153mm)滤光板琥珀色滤光板尺寸 (WxHxD)7.9"x7.9"x0.6" (200x200x13.9mm)重量1.68lb (760g)电源DC 12V, 2A
  • 颅脑微透析手术器械包-大鼠
    基本介绍:微 透析是以透析原理作为基础,通过对插入生物体内中的微透析探针在非平衡条件下进行灌流,物质沿浓度梯度逆向扩散,使被分析物质(如多巴胺、五羟色胺等神经 递质)穿过透析膜扩散进入透析管内,并被透析管内连续流动的灌流液不断带出,从而达到活体组织取样的目的。颅脑微透析手术器械包供备皮、皮肤切口和缝合、 皮肤和软组织夹持提取、扩展手术视野、实时止血等手术用。另外,用于颅脑核团三维定位的脑立体定位仪、钻孔用微型手持式颅钻、微透析系统(微透析泵、探 针、样品收集器、清醒活动装置、连接管路、接头等)需另行购买。 规格 品名 数量 SP1003-R 颅脑微透析手术器械包-大鼠 14002-13 手术剪-直/325px 1 14005-13 手术剪-弯/325px 1 10059-13 硬脑膜剔除刀-325px 1 10003-12 手术刀柄-#3/300px 1 10011-00 一次性手术刀片-11# 1 10002-00 手术刀片拆卸器-162.5px 1 11002-12 窄型组织齿镊-直/300px 1 11003-12 窄型组织齿镊-弯/300px 1 12031-07 伤口缝合适配器-7mm/287.5px 1 12032-07 伤口缝合夹-7mm 1 12033-00 伤口缝合拆针器-300px 1 17003-03 Goldstein 3x3尖齿牵开器-75px 1 12002-14 Olsen-Hegar 持针钳(可剪切)-直/350px 1 12050-01 缝针#1-O.D.0.35mm 1 18020-20 缝线#2/0-0.32/22.5m 1 30051-10 4合1螺丝刀-262.5px 1 18010-00 凝血器套件 1
  • 低插入损耗单模光纤跳线
    低插入损耗单模光纤跳线特性低插入损耗(典型值):0.3 分贝 (600 - 800 nm)0.5 - 0.6 分贝(405 - 532 nm和488 - 633 nm)0.9 分贝(320 - 430 nm)有效波段范围:320 - 430 nm,405 - 532 nm,488 - 633 nm或是633 -780 nm可选的接头有(皆为2.0 毫米的窄口接头):FC/PCFC/APCFC/PC转FC/APC具有每根跳线单独测试的数据附带两个CAPF防尘帽Thorlabs公司提供两头带有FC/PC或FC/APC接头的低插入损耗单模跳线。此外,我们还提供FC/PC转FC/APC跳线。这些小纤芯跳线由我们自己的工厂中用zui先进的设备进行制造,每一根都经过人工挑选,保证光纤具有很小的公差以及匹配的插芯。它们都经过测试,保证了其低损耗特性。这里提供的跳线设计用于320 - 430 nm,400 - 532 nm,488 -633 nm,或者633 - 780nm光波范围的信号传输,在低插入损耗跳线之间分别具有典型0.9 dB,0.5-0.6 dB或者0.3 dB插入损耗。我们的FC/PC跳线具有较高的50分贝(典型值)回波损耗,FC/APC跳线具有60分贝(典型值)回波损耗。每根光纤跳线的测量性能参数都在其附带的规格表中有详细介绍。在标准跳线中,光纤参数(如纤芯-包层偏心度或纤芯与跳线中心的不对准程度)都会有微小的差异。在使用标准匹配套管对准单模跳线的纤芯时,其小纤芯会使这些差异更加严重,或是导致更高的插入损耗。通过广泛地挑选和测试过程,我们的低插入损耗跳线具有高同心度、对心良好的纤芯,可以极大地减小跳线的插入损耗(请参看对比标签了解更多细节)。生产低插入损耗跳线的流程的di一步是人工挑选纤芯-包层同心度高于典型值、小公差光纤外径的光纤,从而与插芯进行匹配。每个插芯也是通过人工进行挑选,从而使插芯内径与光纤尺寸相匹配,并匹配插芯的纤芯-外径同心度。这样就可以保证光纤能够zui紧凑地被包裹,并具有zui佳同心度,保证低插入损耗性能。插芯经过机器抛光,光纤纤芯与接头插销之间的对准公差为±5度。zui后,跳线的插入损耗通过测试,直到符合you秀跳线的标准。通过人工挑选光纤和插芯,Thorlabs公司的低插入损耗跳线能够具有出色的性能和质量。我们还提供匹配套管用于连接FC转FC、SMA转SMA和FC转SMA接头。这些匹配套管可以将背向反射zui小化,保证每个连接光纤末端的纤芯能够很好地对准。我们特别推荐使用我们更小公差的ADAFCPM2精密PM匹配套管,被用于达到下面说明书提到的插入损耗。每根跳线有两个防尘帽,能够防止插芯末端受到尘土和其它污染物的污染。我们也单独销售保护FC/PC终端CAPF塑料光纤帽和CAPFM金属螺纹光纤帽。Stock Single Mode Patch Cables Selection GuideStandard CablesFC/PC to FC/PCFC/APC to FC/APCHybridAR-Coated Patch CablesHR-Coated Patch CablesBeamsplitter-Coated Patch CablesLow-Insertion-Loss Patch CablesMIR Fluoride Fiber Patch CablesAR-Coated Patch Cables如果您在我们的库存中找不到适合您应用的跳线,Thorlabs公司还提供定制低插入损耗跳线服务。请联系技术支持了解报价。此外,点击下面表格中连接有标准跳线定制且当天发货服务。用我们的Centroc测试设备所测得的结果,显示了标准跳线(左)和低插入损耗跳线(右)的典型纤芯角度对准和同心度。规格:Item # PrefixP1-305P-FCP3-305P-FCP5-305P-FCAPCP1-405P-FCP3-405P-FCP5-405P-FCAPCConnector TypeFC/PCFC/APCFC/PC to FC/APCFC/PCFC/APCFC/PC to FC/APCFiber TypeSM300SM400Operating Wavelength320 - 430 nm405 - 532 nmCutoff Wavelength≤310 nm305 - 400 nmInsertion Loss (Max/Typ.)a1.5 dB / 0.9 dB1.0 dB / 0.5 dB (1 m and 2 m Long Cables)1.0 dB / 0.6 dB (5 m Long Cables)Mode Field Diameter2.0 - 2.4 μm @ 350 nm2.5 - 3.4 μm @ 480 nmKey Width2.0 mm (Narrow)Cable Length Tolerance+0.075/-0.0 mJacket Type?3 mm FT030-YCladding Diameter125 ± 1.0 μmCoating Diameter245 ± 15 μmNumerical Aperture0.12 - 0.14Max Attenuationb≤70 dB/km @ 350 nm≤50 dB/km @ 430 nm≤30 dB/km @ 532 nmOperating Temperature0 to 70 °CStorage Temperature-45 to 85 °C与另一根低插入损耗的光纤跳线配接时的插入损耗值。在405 nm波段下使用低插入损耗的跳线和一个ADAFCPM2匹配套管进行测试。zui大衰减度数据针对无端接头的光纤。Item # PrefixP1-460P-FCP3-460P-FCP5-460P-FCAPCP1-630P-FCP3-630P-FCP5-630P-PCAPCConnector TypeFC/PCFC/APCFC/PC to FC/APCFC/PCFC/APCFC/PC to FC/APCFiber TypeSM450SM600Operating Wavelength488 - 633 nma633 - 780 nmCutoff Wavelength350 - 470 nma500 - 600 nmInsertion Loss (Max/Typ.)b1.0 dB / 0.5 dB (1 m and 2 m Long Cables)1.0 dB / 0.6 dB (5 m Long Cables)0.8 dB / 0.3 dBMode Field Diameter2.8 - 4.1 μm @ 488 nm3.6 - 5.3 μm @ 633 nmKey Width2.0 mm (Narrow)Cable Length Tolerance+0.075/-0.0 mJacket Type?3 mm FT030-YCladding Diameter125 ± 1.0 μmCoating Diameter245 ± 15 μmNumerical Aperture0.10 - 0.14Max Attenuationc≤50 dB/km @ 488 nm≤15 dB/km @ 630 nmdOperating Temperature0 to 70 °CStorage Temperature-45 to 85 °C光纤经过手工挑选,以确保更高的截止波长。在截止波长附近的单模操作需要考虑发射条件。与另一根低插入损耗的光纤跳线配接时的插入损耗值。在488 nm(SM450跳线)或是630 nm(SM600跳线)波段,配合一个ADAFCPM2匹配套管利用另一根低插入损耗的跳线进行测试。zui大衰减度数据针对无端接头的光纤。衰减度是zui差值,针对zui短波长的情况。对比405 纳米跳线对比T上图包含了Thorlabs公司长1米、2米的低插入损耗(LIL)跳线和标准跳线之间的示例对比数据。上述数据下长1米的LIL跳线具有-0.37分贝的平均插入损耗,长2米的LIL跳线具有-0.39分贝的插入损耗,长5米的LIL跳线具有-0.59分贝的插入损耗,而长1米的标准跳线具有-2.48分贝的插入损耗,长2米的标准跳线具有-2.44分贝的插入损耗,长5米的标准跳线具有-2.42分贝的插入损耗。5米跳线所测得的插入损耗稍高,这是因为我们没有对光纤的损耗进行校准。我们的LIL跳线的平均插入损耗与标准跳线相比平均高~7倍。T在测试我们跳线的插入损耗时,我们将波长为405乃的光纤耦合激光光源耦合到精选的跳线中;跳线输出功率经过测试和调节,保证不同跳线的数值基本相同。每根待测光纤经过检查、清洁并连接到匹配套管上,然后记录下跳线的输出功率。这样一来,就可以进行光纤插入损耗的均匀性测量,并与其它跳线的插入损耗进行对比。测试过程如右图所示。损伤阀值激光诱导的光纤损伤以下教程详述了无终端(裸露的)、有终端光纤以及其他基于激光光源的光纤元件的损伤机制,包括空气-玻璃界面(自由空间耦合或使用接头时)的损伤机制和光纤玻璃内的损伤机制。诸如裸纤、光纤跳线或熔接耦合器等光纤元件可能受到多种潜在的损伤(比如,接头、光纤端面和装置本身)。光纤适用的zui大功率始终受到这些损伤机制的zui小值的限制。虽然可以使用比例关系和一般规则估算损伤阈值,但是,光纤的jue对损伤阈值在很大程度上取决于应用和特定用户。用户可以以此教程为指南,估算zui大程度降低损伤风险的安全功率水平。如果遵守了所有恰当的制备和适用性指导,用户应该能够在指定的zui大功率水平以下操作光纤元件;如果有元件并未指定zui大功率,用户应该遵守下面描述的"实际安全水平"该,以安全操作相关元件。可能降低功率适用能力并给光纤元件造成损伤的因素包括,但不限于,光纤耦合时未对准、光纤端面受到污染或光纤本身有瑕疵。关于特定应用中光纤功率适用能力的深入讨论,请联系技术支持。Quick LinksDamage at the Air / Glass InterfaceIntrinsic Damage ThresholdPreparation and Handling of Optical Fibers空气-玻璃界面的损伤空气/玻璃界面有几种潜在的损伤机制。自由空间耦合或使用光学接头匹配两根光纤时,光会入射到这个界面。如果光的强度很高,就会降低功率的适用性,并给光纤造成yong久性损伤。而对于使用环氧树脂将接头与光纤固定的终端光纤而言,高强度的光产生的热量会使环氧树脂熔化,进而在光路中的光纤表面留下残留物。损伤的光纤端面未损伤的光纤端面插芯/接头终端相关的损伤机制有终端接头的光纤要考虑更多的功率适用条件。光纤一般通过环氧树脂粘合到陶瓷或不锈钢插芯中。光通过接头耦合到光纤时,没有进入纤芯并在光纤中传播的光会散射到光纤的外层,再进入插芯中,而环氧树脂用来将光纤固定在插芯中。如果光足够强,就可以熔化环氧树脂,使其气化,并在接头表面留下残渣。这样,光纤端面就出现了局部吸收点,造成耦合效率降低,散射增加,进而出现损伤。与环氧树脂相关的损伤取决于波长,出于以下几个原因。一般而言,短波长的光比长波长的光散射更强。由于短波长单模光纤的MFD较小,且产生更多的散射光,则耦合时的偏移也更大。为了zui大程度地减小熔化环氧树脂的风险,可以在光纤端面附近的光纤与插芯之间构建无环氧树脂的气隙光纤接头。我们的高功率多模光纤跳线就使用了这种设计特点的接头。曲线图展现了带终端的单模石英光纤的大概功率适用水平。每条线展示了考虑具体损伤机制估算的功率水平。zui大功率适用性受到所有相关损伤机制的zui低功率水平限制(由实线表示)。制备和处理光纤通用清洁和操作指南建议将这些通用清洁和操作指南用于所有的光纤产品。而对于具体的产品,用户还是应该根据辅助文献或手册中给出的具体指南操作。只有遵守了所有恰当的清洁和操作步骤,损伤阈值的计算才会适用。安装或集成光纤(有终端的光纤或裸纤)前应该关掉所有光源,以避免聚焦的光束入射在接头或光纤的脆弱部分而造成损伤。光纤适用的功率直接与光纤/接头端面的质量相关。将光纤连接到光学系统前,一定要检查光纤的末端。端面应该是干净的,没有污垢和其它可能导致耦合光散射的污染物。另外,如果是裸纤,使用前应该剪切,用户应该检查光纤末端,确保切面质量良好。如果将光纤熔接到光学系统,用户首先应该在低功率下验证熔接的质量良好,然后在高功率下使用。熔接质量差,会增加光在熔接界面的散射,从而成为光纤损伤的来源。对准系统和优化耦合时,用户应该使用低功率;这样可以zui大程度地减少光纤其他部分(非纤芯)的曝光。如果高功率光束聚焦在包层、涂覆层或接头,有可能产生散射光造成的损伤。高功率下使用光纤的注意事项一般而言,光纤和光纤元件应该要在安全功率水平限制之内工作,但在理想的条件下(ji佳的光学对准和非常干净的光纤端面),光纤元件适用的功率可能会增大。用户首先必须在他们的系统内验证光纤的性能和稳定性,然后再提高输入或输出功率,遵守所有所需的安全和操作指导。以下事项是一些有用的建议,有助于考虑在光纤或组件中增大光学功率。要防止光纤损伤光耦合进光纤的对准步骤也是重要的。在对准过程中,在取得zui佳耦合前,光很容易就聚焦到光纤某部位而不是纤芯。如果高功率光束聚焦在包层或光纤其它部位时,会发生散射引起损伤使用光纤熔接机将光纤组件熔接到系统中,可以增大适用的功率,因为它可以zui大程度地减少空气/光纤界面损伤的可能性。用户应该遵守所有恰当的指导来制备,并进行高质量的光纤熔接。熔接质量差可能导致散射,或在熔接界面局部形成高热区域,从而损伤光纤。连接光纤或组件之后,应该在低功率下使用光源测试并对准系统。然后将系统功率缓慢增加到所希望的输出功率,同时周期性地验证所有组件对准良好,耦合效率相对光学耦合功率没有变化。由于剧烈弯曲光纤造成的弯曲损耗可能使光从受到应力的区域漏出。在高功率下工作时,大量的光从很小的区域(受到应力的区域)逃出,从而在局部形成产生高热量,进而损伤光纤。请在操作过程中不要破坏或突然弯曲光纤,以尽可能地减少弯曲损耗。用户应该针对给定的应用选择合适的光纤。例如,大模场光纤可以良好地代替标准的单模光纤在高功率应用中使用,因为前者可以提供更佳的光束质量,更大的MFD,且可以降低空气/光纤界面的功率密度。阶跃折射率石英单模光纤一般不用于紫外光或高峰值功率脉冲应用,因为这些应用与高空间功率密度相关。320 - 430 nm低插入损耗单模光纤跳线Item #ConnectorsFiberTypeInsertion Loss(Max/Typ.)aOperatingWavelengthCutoffWavelengthMode FieldDiameterMaxAttenuationbNAJacketLengthP1-305P-FC-1FC/PCSM3001.5 dB/0.9 dB320 - 430 nm≤310 nm2.0 - 2.4 μm @ 350 nm≤70 dB/km @ 350 nm0.12 -0.14FT030-Y1mP1-305P-FC-22mP3-305P-FC-1FC/APC1mP3-305P-FC-22mP5-305P-PCAPC-1FC/PC to FC/APC1ma. 与另一低插入损耗光纤跳线配接时的插入损耗值。将低插入损耗单模跳线在405 nm波长下,搭配ADAFCPM2匹配套管进行测试。b. zui大衰减度数据针对的是无端接头的光纤。产品型号公英制通用P1-305P-FC-1低插入损耗单模光纤跳线,1米长,320 - 430 nm, FC/PC接头P1-305P-FC-2低插入损耗单模光纤跳线,2米长,320 - 430 nm,FC/PC接头P3-305P-FC-1低插入损耗单模光纤跳线,1米长,320 - 430 nm,FC/APC接头P3-305P-FC-2低插入损耗单模光纤跳线,2米长,320 - 430 nm,FC/APC接头P5-305P-PCAPC-1低插入损耗单模光纤跳线,1米长,320 - 430 nm,FC/PC转FC/APC接头405 - 532 nm低插入损耗单模光纤跳线Item #ConnectorsFiberTypeInsertion Loss(Max/Typ.)aOperatingWavelengthCutoffWavelengthMode FieldDiameterMaxAttenuationb,cNAJacketLengthP1-405P-FC-1FC/PCSM4001.0 dB/0.5 dB405 - 532 nm305 - 400 nm2.5 - 3.4 μm @ 480 nm≤50 dB/km @ 430 nm≤30 dB/km @ 532 nm0.12 -0.14FT030-Y1mP1-405P-FC-22mP1-405P-FC-51.0 dB/0.6dB5mP3-405P-FC-1FC/APC1.0 dB/0.5 dB1mP3-405P-FC-22mP3-405P-FC-51.0 dB/0.6dB5mP5-405P-FC-1FC/PC to FC/APC1.0 dB/0.5 dB1ma. 与另一低插入损耗光纤跳线配接时的插入损耗值。将低插入损耗单模跳线在405 nm波长下,搭配ADAFCPM2匹配套管进行测试。b. zui大衰减度数据针对的是无端接头的光纤。c. 所述的衰减度是zui差情况的值,针对的是zui短设计波长。产品型号公英制通用P1-405P-FC-1低插入损耗单模光纤跳线,长1米,405 - 532纳米,FC/PCP1-405P-FC-2低插入损耗单模光纤跳线,长2米,405 - 532 nm,FC/PC接头P1-405P-FC-5低插入损耗单模光纤跳线,长5米,405 - 532 nm,FC/PC接头P3-405P-FC-1低插入损耗单模光纤跳线,长1米,405 - 532纳米,FC/APCP3-405P-FC-2低插入损耗单模光纤跳线,长2米,405 - 532纳米,FC/APCP3-405P-FC-5低插入损耗单模光纤跳线,长5米,405 - 532纳米,FC/APCP5-405P-PCAPC-1低插入损耗单模光纤跳线,长1米,405 - 532纳米,FC/PC转FC/APC接头488 - 633 nm低插入损耗单模光纤跳线Item #ConnectorsFiberTypeInsertion Loss(Max/Typ.)aOperatingWavelengthCutoffWavelengthMode FieldDiameterMaxAttenuationb,cNAJacketLengthP1-460P-FC-1FC/PCSM4501.0 dB/0.5 dB488 - 633 nm350 - 470 nm2.8 - 4.1μm @ 488nm≤50 dB/km @ 488 nm0.10 -0.10 -0.14FT030-Y1mP1-460P-FC-22mP1-460P-FC-51.0 dB/0.6dB5mP3-460P-FC-1FC/APC1.0 dB/0.5 dB1mP3-460P-FC-22mP3-460P-FC-51.0 dB/0.6dB5mP5-460P-FC-1FC/PC to FC/APC1.0 dB/0.5 dB1ma. 与另一根低插入损耗的光纤跳线配接时的插入损耗值。在488 nm波长下使用低插入损耗单模跳线和一个ADAFCPM2匹配套管进行测试。b. 手选光纤来保证更高的截止波长。对于截止波长附近的单模操作,需考虑发射条件。c. zui大衰减数据针对无端接头的光纤。产品型号公英制通用P1-460P-FC-1低插入损耗单模光纤跳线,长1米,488 - 633纳米,FC/PCP1-460P-FC-2低插入损耗单模光纤跳线,长2米,488 - 633 nm,FC/PC接头P1-460P-FC-5低插入损耗单模光纤跳线,长5米,488 - 633 nm,FC/PC接头P3-460P-FC-1低插入损耗单模光纤跳线,长1米,488 - 633纳米,FC/APCP3-460P-FC-2低插入损耗单模光纤跳线,长2米,488 - 633纳米,FC/APCP3-460P-FC-5低插入损耗单模光纤跳线,长5米,488 - 633纳米,FC/APCP5-460P-PCAPC-1低插入损耗单模光纤跳线,长1米,488 - 633纳米,FC/PC转FC/APC接头633 - 780 nm低插入损耗单模光纤跳线Item #ConnectorsFiberTypeInsertion Loss(Max/Typ.)aOperatingWavelengthCutoffWavelengthMode FieldDiameterMaxAttenuationb,cNAJacketLengthP1-630P-FC-1FC/PCSM6000.8 dB/0.3 dB633 - 780 nm500 - 600 nm3.6 - 5.3 μm @ 633 nm≤15 dB/km @ 630 nm0.10 -0.10 -0.14FT030-Y1mP1-630P-FC-22mP1-630P-FC-55mP3-630P-FC-1FC/APC1mP3-630P-FC-22mP3-630P-FC-55mP5-630P-FC-1FC/PC to FC/APC1ma. 与另一低插入损耗的光纤配接时的插入损耗。在630 nm波长下将低插入损耗单模跳线搭配ADAFCPM2匹配套管进行测试。b. 波长范围是截止波长和光纤不再传输的边缘波长之间的光谱区域,它表示光纤以低衰减度传输TEM00模的区域。对于这种光纤,边缘波长通常比截止波长长200nm。c. 衰减度是zui差情况的值,针对的是zui短波长。zui大衰减度数据针对的是无端接头的光纤。d. 衰减度是zui差情况的值,针对的是zui短波长。产品型号公英制通用P1-630P-FC-1低插入损耗单模光纤跳线,长1米,633- 780纳米,FC/PCP1-630P-FC-2低插入损耗单模光纤跳线,长2米,633 - 780 nm,FC/PC接头P1-630P-FC-5低插入损耗单模光纤跳线,长5米,633 -780 nm,FC/PC接头P3-630P-FC-1低插入损耗单模光纤跳线,长1米,633 - 780纳米,FC/APCP3-630P-FC-2低插入损耗单模光纤跳线,长2米,633 - 780纳米,FC/APCP3-630P-FC-5低插入损耗单模光纤跳线,长5米,633 - 780纳米,FC/APCP5-630P-PCAPC-1低插入损耗单模光纤跳线,长1米,633 - 780纳米,FC/PC转FC/APC接头
  • 小动物脊髓夹微操作立体定向器STS-7
    小动物脊髓夹微操作立体定向仪STS-7用于夹紧基因敲除小鼠或新生大鼠的脊髓,并具有显微操作器和立体定向仪器的功能。在以前这是很难做到的。其脊髓夹紧装置可以让用户使用指尖感觉到夹紧触感,从而防止对脊髓造成损伤。结合了主要用于显微操作器的精细调节技术,可以对一个目标点准确定位。小动物脊髓夹微操作立体定向仪STS-7的头部夹紧单元(口夹和鼻甲),将小鼠或大鼠的小脑袋固定在正确的位置,还提供了有精细调节功能的辅助耳固定杆。辅助耳固定杆的点可用于各种尺寸,并且根据用途替换,替代容易(例如,用来避免鼓膜的破裂或牢固地固定耳朵)。自从Narishige的立体定位操作器根据此标准制造后,小动物脊髓夹微操作立体定向仪STS-7配备了一根AP框架杆(18.7mm方形),用来安装如SM-15Narishige立体定位显微操作器这样的配件。需要不带显微操作器的版本请访问STS-7-HT。 *用于有发育完全的耳道的小鼠或新生大鼠。小动物脊髓夹微操作立体定向仪STS-7规格配件SM-15立体定位显微操作器专用辅助耳固定杆连接环螺丝六角扳手尺寸大小(基板):宽400 x 深300 x 高110mm, 9.6kg
  • 22G/23G/24G/26G微量给药双套管 双导管
    产品介绍 微量给药套管由导管、导管帽、注射内管、锁紧螺帽和导管配套使用。采用不锈钢作为流体给药管道将其直接埋在组织内保证生物相容,动物实验长期留置观察时通过导管帽钢线保证组织不渗进基座孔内;需给药时拔出套管帽即可给药或下电极,如需更小流量通过注射内管给药。为降低植入套管对动物的损伤,我们根据不同体重制定相应基座主管尺寸:鼠 400um-650um、狗猴650um-800um。 为满足用户两种药液同时注射需求而研发微量给药双套管,可以用于颅脑内双侧植入适用于两种不同或相同的药物在两个不同的位置注射。订购信息序号型号名称名称间距P值:mmD1尺寸:OD×ID123M8110/M8111/M8112基座/注射内管/导管帽芯0.8-3.00.64*0.45224M8120/M8121/M8122基座/注射内管/导管帽芯0.7-3.10.55-0.38326M8130/M8131/M8132基座/注射内管/导管帽芯0.6-3.20.48*0.34427M8140/M8141/M8142基座/注射内管/导管帽芯0.5-3.30.41*0.255M5M8003锁紧螺母——5.5*76M5M8004导管帽——5.5*77定制:0731-818550133.5-6——
  • 27G微量给药双套管 双导管
    产品介绍 微量给药套管由导管、导管帽、注射内管、锁紧螺帽和导管配套使用。采用不锈钢作为流体给药管道将其直接埋在组织内保证生物相容,动物实验长期留置观察时通过导管帽钢线保证组织不渗进基座孔内;需给药时拔出套管帽即可给药或下电极,如需更小流量通过注射内管给药。为降低植入套管对动物的损伤,我们根据不同体重制定相应基座主管尺寸:鼠 400um-650um、狗猴650um-800um。 为满足用户两种药液同时注射需求而研发微量给药双套管,可以用于颅脑内双侧植入适用于两种不同或相同的药物在两个不同的位置注射。 订购信息序号型号名称名称间距P值:mmD1尺寸:OD×ID123M8110/M8111/M8112基座/注射内管/导管帽芯0.8-3.00.64*0.45224M8120/M8121/M8122基座/注射内管/导管帽芯0.7-3.10.55-0.38326M8130/M8131/M8132基座/注射内管/导管帽芯0.6-3.20.48*0.34427M8140/M8141/M8142基座/注射内管/导管帽芯0.5-3.30.41*0.255M5M8003锁紧螺母——5.5*76M5M8004导管帽——5.5*77定制:0731-818550133.5-6——
  • 小动物脊髓夹立体定向器STS-7-HT
    小动物脊髓夹立体定向仪STS-7-HT用于夹紧基因敲除小鼠或新生大鼠的脊髓,并具有立体定向仪器的功能。小动物脊髓夹立体定向仪STS-7-HT特色其脊髓夹紧装置可以让用户使用指尖感觉到夹紧触感,从而防止对脊髓造成损伤,结合了主要用于显微操作器的精细调节技术,可以对一个目标点准确定位,配置小动物头部夹紧单元(口夹和鼻甲),将小鼠或大鼠的小脑袋固定在正确的位置,提供了有精细调节功能的辅助耳固定杆,辅助耳固定杆的点可用于各种尺寸,并且根据用途替换,替代容易(例如,用来避免鼓膜的破裂或牢固地固定耳朵),自从Narishige的立体定位操作器根据此标准制造后,STS-7-HT配备了一根AP框架杆(18.7mm方形),用来安装如SM-15Narishige立体定位显微操作器这样的配件,需要带显微操作器的版本请访问STS-7 *用于有发育完全的耳道的小鼠或新生大鼠,小动物脊髓夹立体定向仪STS-7规格配件专用辅助耳固定杆连接环螺丝六角扳手尺寸大小(基板):宽400 x 深300 x 高110mm, 9.6kg
  • 超细纤维抹布
    超细纤维抹布能擦拭精细表面而又不损伤精细表面。独特的纤维直径和纤维形状可使其既能干用也能湿用,从高技术精密表面到电子显微镜棱镜都可使用。干用时,能吸收污垢粒子,湿用时,可沾水或有机溶剂,例如IPA(异丙醇),并且干燥后,擦拭表面没有条纹。
  • 磁性低温样品管
    磁性低温样品管Magnetic CryoVials磁性低温样品管,主要用来保存在测角仪样品座上的样品,按照样品座的大小设计,具有精细的尺寸和可靠的低温稳定性。磁性使得蛋白晶体样品座可牢固置于其上,管子与样品座goniometer bases大小匹配,低温样品管不仅可以确保样品转移时保持低温,同时也保护样品免受损失或者损伤。货号产品名称规格CV-1-50磁性低温样品管Magnetic CryoVials50个CV-1-100磁性低温样品管Magnetic CryoVials100个
  • 中镜科仪 国产经济型高精细直头/弯头镊子 电镜耗材
    产 品 详 情 本公司提供各种高级专用镊子及其操作工具,按镊子的应用专业、材质、精度、形式、品牌不同进行分类,用户可根据需要进行选用。凡在本公司选购的镊子产品,均实行终身保修。中镜科仪 品牌的镊子终身免费维修(人为损坏或使用不当除外);各类进口镊子收取成本费。选购指南:中镜科仪国产镊子分3种:夹铜网专用镊子(编号EZ5888A/EZ5889A),采用拉丝工艺。其特点是,镊尖为扁平状(0.3×0.06mm),特别适合夹取载网,方便安全。且性价比高,适合所有学生的常规使用,也是电镜室的必备工具之一;经济型高精细镊子(编号EZ5888/EZ5889),采用表面抛光工艺,外观更加光亮,且手感更加舒适,硬度也更高。其特点是镊尖相对比较精细(0.17×0.1mm),适合夹取较为精密的微器件,较高的性价比使其成为热销产品;生物级超高精细镊子(编号EZ5888/EZ5889B),采用表面喷砂工艺,外观美观纤细,尽现低调的奢华。其特点是镊尖相当精细(0.08×0.03mm),可用于光镜下的生物解剖。效果等同进口的生物级镊子,但价格只有其一半,是国内众多科研工作者的福音。三种镊子的材质都是无磁不锈钢,主要不同点在于手感舒适度,镊尖精细度,以及材质的硬度及耐用度稍有不同。凡是购买的中镜科仪自产镊子,都可以享受免费的售后磨修(除人为损坏会适当收取加工费)。
  • Altechna 低损耗HR镜
    低损耗HR镜直径公差+0/-0.1 mm厚度公差±0.1 mm通光孔径90%表面质量20-10 S-D表面厚度保护性倒角涂层附着力和耐用性Per MIL-C-675A激光损伤阈值的报告www.altechna.com/lidt由于离子束涂覆技术,低损耗HR镜也被称为IBS镜。 反射镜在特定的波长范围和一定的入射角(AOI)下提供zui大的反射率。IBS技术与其他涂层技术相比具有多重优势。 由于沉积过程涂层的全自动控制区分高重复性,更清晰的特点,更严格的公差。 IBS薄膜具有更高的密度,耐用性,高损伤阈值,不透水蒸汽,使其能抵抗诸如热,湿度和压力等环境条件。IBS涂料几乎所有的规格都与其他涂料技术所提供的规格相区别。 它允许zui小化作为限制因素的电介质层中的散射,然后以高于99.9%的反射率为目标。 我们选择的离子束溅射镀膜覆盖波长范围343 - 1550 nm。1 在特定波长范围和一定入射角(AOI)下提供zui大反射率2 离子束溅射(IBS)技术提供涂层3 耐受环境条件4 各种尺寸可根据要求提供5 批量生产能力:每月1000件6 高重复利用率7 反射率高于99.9%Altechna在标准,定制或客户提供的光学器件上提供各种高性能光学镀膜。我们的涂料覆盖从深紫外(193纳米)到远红外(25微米)的波长范围,涂层的zui大部分是在波长范围内最常见的266纳米到2微米的激光和照明光源。我们根据个人要求提供一套标准和定制涂料:?防反射涂层?高反射涂层?分束器涂层?部分反射涂层?偏光片涂层?过滤涂料?超快GDD补偿涂层?Gires-Tournois干涉镜(GTI)?可变反射镜?金属涂层在Altechna,我们的目标是以zui高的标准为不断增长的光子市场提供高损伤阈值,高质量涂层。每个涂层都是特殊的,多年来在光电领域,我们了解到灵活性是满足客户高要求的关键,因此我们的涂层采用不同的技术,分别选择不同的涂层。这里是我们在Altechna提供的涂层技术列表:?电子束蒸发?离子辅助沉积?离子束溅射?磁控溅射每种技术都是不同的,并根据光谱灵敏度,损伤阈值,硬度,表面质量等的要求使用。电子束蒸发离子辅助沉积离子束溅射磁控管溅射沉积速率10 ?/sec~10 ?/sec~3 ?/sec1-6 ?/sec每次涂布面积3000 cm23000 cm2500 cm22000 cm2导热系数LowMediumHighHigh涂层温度范围200 - 300°C20 - 100°C20 - 150°C20-100°C层数1-50~50200Up to 200密度和孔隙度PorousDenseNear bulkNear bulk粘连/耐久性LowGoodExcellentExcellent湿度敏感性YesYes, smallNoNo老化影响YesYes, smallNoNo内在应力~ 100MPaFew 100MPaFew 100 MPa尺寸,毫米基材材料AOI, deg反射率,%波长,nm产品编号?25.4 x 5UVFS099.9343 - 3551-OS-2-0254-5-[1B00-IBS]?25.4 x 5UVFS099.94001-OS-2-0254-5-[1C00-IBS]?25.4 x 6BK7099.9515501-OS-2-0254-6-[1V00-IBS]?25.4 x 5UVFS45Rs99.95, Rp99.84001-OS-2-0254-5-[1C45-IBS]?25.4 x 6BK745Rs99.98, Rp99.9315501-OS-2-0254-6-[1V45-IBS]?25.4 x 5UVFS45Rs99.97, Rp99.93515 - 5321-OS-2-0254-5-[1F45-IBS]?25.4 x 5UVFS099.94515 - 5321-OS-2-0254-5-[1F00-IBS]?25.4 x 5UVFS099.951030 - 10641-OS-2-0254-5-[1PR00-IBS]?25.4 x 5UVFS45Rs99.98, Rp99.931030 - 10641-OS-2-0254-5-[1PR45-IBS]?25.4 x 5UVFS45Rs99.9, Rp99.7343 - 3551-OS-2-0254-5-[1B45-IBS]?25.4 x 5UVFS45Rs99.98, Rp99.938001-OS-2-0254-5-[1K45-IBS]?25.4 x 5UVFS099.958001-OS-2-0254-5-[1K00-IBS]定制你可以根据您的需求定制这个产品。如果您没有找到适合您的应用,请与我们联系,以便定制解决方案。
  • 德国VITLAB PMP 镊子 POM 68099
    德国VITLAB PMP 镊子 POM 68099德国VITLAB PMP镊子POM 68099是由聚甲醛(POM)材质制成的镊子,具有以下特点:颜色为黄色,钝头设计,以避免损伤敏感的物体。良好的弹性和回弹性。外部带有凹槽,便于持握和使用。材质:由聚甲醛(POM)制成,这种材料以其高强度、高硬度和良好的弹性而闻名484950。颜色与设计:镊子呈现黄色,钝头设计,可以避免在精细操作中损伤敏感的物体484950。尺寸:长度为115mm,适合进行常规的实验室操作484950。特性:具有良好的弹性和回弹性,这意味着它们在使用过程中能够保持良好的工作状态,并且能够快速恢复原状484950。持握设计:镊子外部带有凹槽,这使得它们更易于持握,提供了更好的操作控制和精确度484950。适用性:适用于多种实验室应用,包括化学、生物、制药、食品和化妆品行业49。德国VITLAB PMP 镊子 POM 68099长度mm 个/pk 货号115 5680991455681991805 68299250 568399
  • ETALON 透射式L波段标准具 (热稳定滤波器1510-1590nm 100GHz 精细度7)
    筱晓光子的热稳定滤波器基于先进的 ETALON 技术, 同时运用独特的光学及机械设计,采用先进的封装技术,保证该款滤波器的波长在极端环境条件下的稳定性,包括温度和湿度。我们拥有独特的Zhuan利技术,用以保证该滤波器在所有环境下波长的目标精度在 ITU + / -1.25GHz 以内可供选择。这款对准 ITU 过滤器可用于波分复用(WDM)系统信道监测和波长锁定。我们还有特殊的技术可供顾客选择特定波长对应精度。该款滤波器根据使用方式的不同分为透射式和反射式,独特的设计可以保证标准具精细度、通道间距和工作波长拥有较宽的选择范围。面向客户设计的热稳定滤波器可以很好的兼容于多种光谱应用,包括电信、波长参考和校准及光纤传感系统,测试计量、激光波长稳定控制。工作波长1510-1590nm光纤接头FC/APC技术参数产品特点● 优良的热稳定性● 低插入损耗● 封装牢固● 光纤一端出纤易于盘纤产品应用● FBG 传感系统● 监控系统● 测试测量设备● 仪器仪表项目单位参数工作波长nm1510 ~ 1590插入损耗dB Typ1.0, Max2.5偏振相关损耗dB0.1精确度GHz +/- 0.1通道间隔(FSR)GHz100热稳定性GHz≤ +/- 0.8精细度73dB带宽GHz≤ 16对比度dB≥ 13通道虑峰Nm无(或可选则某一ITU波长)回波损耗dB≥ 20最大功率mW500工作温度oC-5 ~ 70储存温度 oC-40 ~ 85光纤类型N/ASMF-28e+尺寸mm35× 15× 11(L×W×H)*.有所指标皆为未不含接头指标,切仅在以上波长,偏振态和温度下确保有效**.指标若有更改,恕不另行通知。规格尺寸图 (mm)*.反射型产品可依要求制作。
  • 显微外科手术器械包-大鼠
    基本介绍:通常借助于显微镜的作用放大手术视野,使用精细的显微手术器械及缝合材料,对细小的组织(如血管、神经)进行精细手术。显微外科手术器械包供切开、分离、提持、牵开组织,结扎和实时止血等手术用,损伤性很小、精确定位、并可减少感染。 规格 品名 数量 SP1001-R 显微外科手术器械包-大鼠 10003-12 手术刀柄-#3/300px 1 10015-00 一次性手术刀片-#15 1 12002-12 Olsen-Hegar 持针钳(可剪切)-直/300px 1 12051-09 显微外科缝合线#9/0-4mm/375px 1 14090-11 Iris 精细剪-直/275px 1 11295-51 Dumont 精细镊#55-直/275px 1 18025-12 缝合打结专用镊-直/312.5px 1 11050-10 Graefe 细齿镊-直/250px 1 15003-08 Vannas-Tubingen 弹簧剪-直/212.5px 1 17001-07 Bowman 牵开器(双叶)-200px 1 18067-11 双分叉组织夹-275px 1 18057-14 微型血管夹适配器-镊式/350px 1 18055-02 微型血管夹-直/8mm/2mm/16mm/85g 2 18010-00 凝血器套件 1
  • 显微外科手术器械包-小鼠
    基本介绍:通常借助于显微镜的作用放大手术视野,使用精细的显微手术器械及缝合材料,对细小的组织(如血管、神经)进行精细手术。显微外科手术器械包供切开、分离、提持、牵开组织,结扎和实时止血等手术用,损伤性很小、精确定位、并可减少感染。 规格 品名 数量 SP1001-M 显微外科手术器械包-小鼠 10007-12 手术刀柄-#7/300px 1 10015-00 一次性手术刀片-#15 1 12002-12 Olsen-Hegar 持针钳(可剪切)-直/300px 1 12051-09 显微外科缝合线#9/0-4mm/375px 1 14090-09 Iris 精细剪-直/212.5px 1 11200-14 Dumont 迷你精细镊M5S-直/204.99999999999997px 1 18025-10 缝合打结专用镊-直/250px 1 11083-07 Bonn 微型光滑镊-直/175px 1 15000-02 Cohan-Vannas 弹簧剪-直/142.5px 1 17000-03 Colibri 牵开器-75px 1 18067-11 双分叉组织夹-275px 1 00072-14 S&T血管夹专用镊-350px 1 00396-01 S&T 微型血管夹#B-1 2 18010-00 凝血器套件 1
  • 美国QMAXIS碳化硅金相砂纸
    美国QMAXIS碳化硅金相砂纸美国QMAXIS碳化硅金相砂纸——CarbiPaper,规格齐全, 可满足金相制样的各种研磨要求。研磨介质颗粒分布均匀致密,纸基韧性强,耐水性好。特殊的植砂工艺,确保砂纸表面磨粒锋利,去除率高,减少后续的处理量,缩短试样制备时间。混合磨料涂覆工艺,则大幅度提升了砂纸表面的精细度,使试样表面的划痕和损伤更小,较快地进入抛光阶段。订货信息如下:带背胶/不带背胶碳化硅金相砂纸 包装规格:100片/包
  • DUMONT 瑞士进口高精细自锁电子显微镜EM专用镊子 电镜耗材
    产 品 详 情 进口高精细自锁镊子,用力时镊尖张开夹取样品,松开后镊尖自动闭合, 避免由于手动夹取样品时力度掌握不匀造成样品的损坏与脱落。无磁不锈 钢材质,镊尖精细,强韧,镊子 弹性好,操作简单方便。
  • 90° 偏振旋转器
    90°偏振旋转器波片通过双折射来改变光的偏振态,包括标准波片和偏振旋转器。应用于需要优化,控制或分析偏振的应用中旋转极化,在线性和圆偏振之间转换,调整椭圆率或分离波长。我们提供一系列高性能,高损伤阈值石英波片,包括零级,多级和双波长波片以及90°偏振旋转器,选择主要由工作波长和温度范围定。它们具有广泛的尺寸,波长,可根据具体需求提供定制。每个石英板已经精确地被切割和抛光以实现低透射波前误差,高表面质量优异的平行度,从而在全孔径上实现高性能和精确的延迟控制。偏振旋转器的最高激光损伤阈值和性能达到同样高的标准,并可以以±0.5°的精度旋光。可以与用于光学隔离的偏振分光镜立方体一起使用或作为连续可变的分束器使用。90°偏振旋转器能够将线偏振光的偏振方向旋转90°,直接放在光路中,不需要角度调整。90°偏振旋转器适用单波长入射光,具有高损伤阈值。支持偏振旋转角度、尺寸和波长的定制RT型号波长:1064nm,表面质量10-5,镀增透膜,镜面反射率小于0.25%。损伤阈值10 J/cm2, 20 nsec, 20 Hz 1 MW/cm2 cw @ 1064 nm。
  • President 高分辨率SEM复型包埋套装
    PresidentSEM包埋套装是一种双组分硅脂成型材料,具有出色的低粘度成型性能,可用于高清晰度高分辨率的精细结构的复型。固化时间仅为5-7分钟,可以在固化后直接从样品中分离以获得样品的阴模。应用范围包括:获得生物样品稳定的表面结构及大样品损伤、磨损、应变的观察等。分离成功的硅树脂阴模可以用Spurr树脂填充以获得原始样品表面的阳模,并且使用镀膜仪镀上一层Au或Au / Pd,建议使用低粘度的Spurr树脂。对于长10-30μm(纵横比1-20)的微观结构可以得到优异的观察结果,甚至可分辨小至20nm的细微结构。产品编号描述单位44870President高分辨率SEM复型包埋套装(2管53ml)套本套装包含基质、催化剂,6个30ml塑料杯及6支木制搅拌条。
  • President 高分辨率SEM复型包埋套装
    PresidentSEM包埋套装是一种双组分硅脂成型材料,具有出色的低粘度成型性能,可用于高清晰度高分辨率的精细结构的复型。固化时间仅为5-7分钟,可以在固化后直接从样品中分离以获得样品的阴模。应用范围包括:获得生物样品稳定的表面结构及大样品损伤、磨损、应变的观察等。分离成功的硅树脂阴模可以用Spurr树脂填充以获得原始样品表面的阳模,并且使用镀膜仪镀上一层Au或Au / Pd,建议使用低粘度的Spurr树脂。对于长10-30μm(纵横比1-20)的微观结构可以得到优异的观察结果,甚至可分辨小至20nm的细微结构。产品编号描述单位44870President高分辨率SEM复型包埋套装(2管53ml)套本套装包含基质、催化剂,6个30ml塑料杯及6支木制搅拌条。
  • 自由空间光隔离器
    自由空间光隔离器1)高隔离度,稳定性极佳2)最大功率下损耗很小3)大孔径,拥有优异的光束质量自由空间光隔离器采用特殊的设计和制造工艺,提供卓越的性能,具有高隔离度,透射和功率密度。它可以有效减少二极管激光系统的外部空腔反馈,并截止自由空间光纤耦合的反射。自由空间光隔离器增加了光学系统的功率稳定性,能够消除反馈,避免对敏感光学元件的造成损伤。这款光隔离器拥有先进的保护功能,可用于稳定激光,适用于各类苛刻的激光应用。Common Specifications类型:Optical Isolator设计波长 DWL (nm)波长范围 (nm)透射率 (%)Typical Isolation at Design Wavelength (dB)产品号405395 - 42592 (typical)43#35-969780750 - 81092 (typical)43#35-973660640 - 68090 (typical)67#35-980780760 - 80590 (typical)67#35-983820800 - 86590 (typical)67#35-984订购信息:405nm Single Stage Free-Space Optical Isolator库存 #35-969设计波长DWL(nm):405波长范围(nm):395 - 425传输(%):92(典型)设计波长典型隔离度(dB):43透孔CA(mm):4.7损伤阈值,CW:40W,4kW / cm2 @ DWL设计波长的最小隔离度(dB):38最小传输(%):85工作温度(°C):+15至40样式:法拉第类型:光隔离器RoHS指令:符合标准780nm Single Stage Free-Space Optical Isolator库存 #35-973设计波长DWL(nm):780波长范围(nm):750 - 810传输(%):92(典型)设计波长典型隔离度(dB):43透孔CA(mm):4.7损伤阈值,CW:40W,4kW / cm2 @ DWL设计波长的最小隔离度(dB):38最小传输(%):85工作温度(°C):+15至40样式:法拉第类型:光隔离器RoHS指令:符合标准660nm Dual Stage Free-Space Optical Isolator库存 #35-980设计波长DWL(nm):660波长范围(nm):640 - 680传输(%):90(典型)设计波长典型隔离度(dB):67透孔CA(mm):4.7损伤阈值,CW:40W,4kW / cm2 @ DWL设计波长的最小隔离度(dB):60最小传输(%):80工作温度(°C):+15至40样式:法拉第类型:光隔离器RoHS指令:符合标准780nm Dual Stage Free-Space Optical Isolator库存 #35-983设计波长DWL(nm):780波长范围(nm):760-805传输(%):90(典型)设计波长典型隔离度(dB):67透孔CA(mm):4.7损伤阈值,CW:40W,4kW / cm2 @ DWL设计波长的最小隔离度(dB):60最小传输(%):80工作温度(°C):+15至40样式:法拉第类型:光隔离器RoHS指令:符合标准820nm Dual Stage Free-Space Optical Isolator库存 #35-984设计波长DWL(nm):820波长范围(nm):800-865传输(%):90(典型)设计波长典型隔离度(dB):67透孔CA(mm):4.7损伤阈值,CW:40W,4kW / cm2 @ DWL设计波长的最小隔离度(dB):60最小传输(%):80工作温度(°C):+15至40样式:法拉第类型:光隔离器RoHS指令:符合标准1070nm Dual Stage Free-Space Optical Isolator库存 #35-988设计波长DWL(nm):1070波长范围(nm):1050-1100传输(%):90(典型)设计波长典型隔离度(dB):67透孔CA(mm):4.7损伤阈值,CW:40W,4kW / cm2 @ DWL设计波长的最小隔离度(dB):60最小传输(%):80工作温度(°C):+15至40样式:法拉第类型:光隔离器RoHS指令:符合标准
  • GaSe 硒化镓 NIR-IR近红外非线性光学晶体
    GaSe(硒化镓)晶体的太赫兹振荡能达到有非常宽的频域,至41THz。GaSe是负单轴层状半导体晶体,拥有六边形结构的62m空间点群,300K时禁带宽度为2.2eV。GaSe晶体抗损伤阈值高,非线性系数大(54pm/V),非常合适的透明范围,以及超低的吸收系数,这使其成为中红外宽带电磁波振荡的非常重要的解决方案。因宽带太赫兹振荡和探测使用的是低于20飞秒的激光光源,GaSe发射-探测系统能获得与ZnTe可比的甚至更好的结果。通过对GaSe晶体厚度的选取,我们可以实现对THz波的频率可选择性控制。注:GaSe晶体的解理面为(001),因此对该晶体使用的一个很大限制在于质软,易碎。技术参数主要特性复合物GaSe透光率, μm0.62 – 20非线性系数, pm/Vd22 = 54 @10.6 μm对称度六方晶系, 6m2 point group晶胞参数, ?a=3.74, c=15.89典型反射系数10.6 μm 5.3 μmno=2.6975, ne=2.3745 no=2.7233, ne=2.3966光学损伤阈值, MW/cm21064 nm (t=10 ns)30离散角, °5.3 μm4.1应用10.6 μm激光辐射二次谐波的产生中红外区域高达17μm的光学参量振荡器、光学参量放大器、DFG等 对于所有晶体,我们能够为特定应用提供合适的防反射/保护涂层,以及反射率曲线。
  • 适用于高功率激光加工的Iris变形镜
    产品信息Iris自适应光学系统Iris分段式可变形镜Alpao自适应光学系统适用于高功率激光加工的Iris变形镜所属类别: ? 调制器 ? 可变形反射镜/自适应光学系统所属品牌:美国Iris AO公司产品简介Iris AO公司针对激光加工应用专门设计的分立镜面MEMS变形镜具有专业的水冷系统与镀膜技术,大幅提高了损伤阈值,适用于高功率激光加工系统,可对光学元件带来的像差予以校正,并有效提高激光的光束质量!关键词:变形镜,DM,deformable mirror,MEMS,分立镜面变形镜,分立式变形镜,分立式MEMS变形镜 ,分离镜面变形镜,Discrete MEMS deformable mirror,Iris变形镜,微变形镜,MEMS变形镜,静电变形镜,像差校正、场镜像差校正、F-Theta Lens像差校正适用于高功率激光加工的Iris变形镜在高功率激光精细加工领域,光束质量对于加工精度与质量至关重要。通常光束质量的影响主要来自激光器本身的光束质量的波动与激光加工系统中光学元器件引入的光学像差。在该领域,所使用的激光器的腔镜会受到激光的直接辐照而产生对激光能量的吸收,特别是随着功率的提高,腔镜吸收的能量也随之增加,腔镜温度升高而产生热变形。腔镜热变形将引起腔内光束的光程发生变化,使得谐振腔的工作参数偏离设计值,从而引起腔内模式发生改变,致使波前相位高频成分及Zernike高阶像差增大,波前畸变程度也将变大,输出光束质量退化,输出功率下降,从而影响激光微加工的精度和质量。而激光加工系统中的光学元器件所引入的光学像差则不可避免地会导致激光光束质量下降。Iris分立镜面MEMS变形镜,采用全球领先的分立镜面混合表面微加工工艺技术,是美国Iris AO公司专门为高功率激光精细加工过程中腔镜热变形和光学器件像差造成的波前畸变进行校正补偿而开发的新型封装变形镜器件,是改善高功率激光精细加工应用中光束质量,提供加工精度与加工质量的有效工具。Iris使用独创MEMS专利技术制造的变形镜采用111个内切孔径3.5或7.0mm的驱动器,37片PTT镜片单元组成蜂窝状阵列。每一个镜面单元可以在三个自由度方向上,伸缩,翻倒,倾斜独立控制。产品特点和优势: 专业介质镀膜可承受高功率激光 配有水冷散热系统,更利于散热并提高产品寿命 配有清除有机物的清洗口,避免水冷系统阻塞 体积紧凑,方便集成 高性价比权威测试结果:1. 全球领先的激光微加工系统制造商使用紫外脉冲激光器(355nm,15W平均功率,ps脉冲)对Iris AO的新型封装并镀膜的PTT111变形镜进行测试显示: Iris变形镜在5W激光功率下测试60小时,10W激光功率下测试70小时,15W激光功率下测试80小时,均没有显示影响光束质量的损坏迹象。在激光功率15W测试时入射到变形镜上的是一束光斑直径大约1mm的激光。测试显示即使在更高的功率强度上,变形镜也没有出现永久损坏的迹象。2. 另一位业内领先的激光加工系统制造商Raydiance Inc.( http://www.raydiance.com/)公司利用平均功率10W的1550nm飞秒脉冲激光器成功对镀金薄膜的PTT111DM和采用新型封装PTT111DM进行测试对比。测试显示这种专为激光应用开发与优化的最新封装,进一步增大镀金薄膜变形镜所能承受的平均功率。3. 测试显示Iris分立镜面MEMS变形镜无需热沉就可以承受300W/cm2平均功率密度,在进行热沉和改善镀膜后,变形镜可以承受3KW/cm2的平均功率密度。对于脉冲激光,变形镜可以承受峰值功率密度1.7GW/cm2。在使用新型封装后,变形镜所能承受的功率密度进一步增大,并且无损连续工作时间显著延长。以上测试均表明专业表面介质薄膜以及为适应恶劣环境进行的新型封装对提高变形镜的损伤阈值与高功率激光下的工作性能非常有效。Iris AO公司下一步将进行1000小时的超长时间测试,来进一步验证和改善这种新型封装镀膜变形镜的承受高功率激光的性能。目前Iris AO由于出色的研发实力,已赢得了美国国家航空航天局的Phase II SBIR项目资金,用来支持其进一步发展变形镜在高功率激光器方面的应用。Iris AO将进一步开发适用更宽波长范围的镀膜技术,适用从288nm到1600nm激光器,(深紫外准分子激光器到ND:YAG激光器),为激光微加工、激光精细加工和激光整形行业应用提供优秀的波前校正与光斑整形方案。分享到 : 人人网 腾讯微博新浪微博 搜狐微博 网易微博
  • 低损耗反射镜 和连续/纳秒激光镜片
    低损耗反射镜 和 cw/ns-Laser [1030–1064 nm] 连续/纳秒激光镜片反射率和透光率的主要曲线低损耗反射镜的反射特性曲线和中心波长的定义(CWL) 和带宽 (__)低损耗反射镜的透射特性曲线和中心波长的定义(CWL) 和带宽 (__) CWLRCWL[%]TCWL[ppm]λR[%]T[ppm]SubstrateDimensionsNo.ImperfectionsItem #350(±7) nm 99.973035 nm99.9650? 12.7 I t 6.35 I CC 1000? 25.0 I t 6.35 I CC 1000R13S13?e85/ 2 x 0.016?e205/ 2 x 0.04 I ?e10 5/ 2 x 0.016140970140949520(±10) nm 99.992065 nm99.99100? 12.7 I t 6.35 I CC 1000? 25.0 I t 6.35 I CC 1000R13S13?e85/ 2 x 0.016?e205/ 2 x 0.04 I ?e10 5/ 2 x 0.016140969140964640(±15) nm 99.9920100 nm99.99100? 12.7 I t 6.35 I CC 1000? 25.0 I t 6.35 I CC 1000R13S13?e85/ 2 x 0.016?e205/ 2 x 0.04 I ?e10 5/ 2 x 0.016140968140965760(±15) nm 99.99515110 nm99.99100? 12.7 I t 6.35 I CC 1000? 25.0 I t 6.35 I CC 1000R13S13?e85/ 2 x 0.016?e205/ 2 x 0.04 I ?e10 5/ 2 x 0.016140967140966960(±20) nm 99.99520110 nm99.99100? 12.7 I t 6.35 I CC 1000? 25.0 I t 6.35 I CC 1000R13S13?e85/ 2 x 0.016?e205/ 2 x 0.04 I ?e10 5/ 2 x 0.0161409921409741 045(±20) nm 99.99520120 nm99.99100? 12.7 I t 6.35 I CC 1000? 25.0 I t 6.35 I CC 1000R13S13?e85/ 2 x 0.016?e205/ 2 x 0.04 I ?e10 5/ 2 x 0.0161409731409711 260(±20) nm 99.99515190 nm99.99100? 12.7 I t 6.35 I CC 1000? 25.0 I t 6.35 I CC 1000R13S13?e85/ 2 x 0.016?e205/ 2 x 0.04 I ?e10 5/ 2 x 0.0161409911409751 392(±20) nm 99.99515200 nm99.99100? 12.7 I t 6.35 I CC 1000? 25.0 I t 6.35 I CC 1000R13S13?e85/ 2 x 0.016?e205/ 2 x 0.04 I ?e10 5/ 2 x 0.0161409891409761 550(±20) nm 99.9950130 nm99.99100? 12.7 I t 6.35 I CC 1000? 25.0 I t 6.35 I CC 1000R13S13?e85/ 2 x 0.016?e205/ 2 x 0.04 I ?e10 5/ 2 x 0.0161409871409771 670(±20) nm 99.9925180 nm99.99100? 12.7 I t 6.35 I CC 1000? 25.0 I t 6.35 I CC 1000R13S13?e85/ 2 x 0.016?e205/ 2 x 0.04 I ?e10 5/ 2 x 0.0161409861409801 980(±20) nm 99.9940180 nm99.99100? 12.7 I t 6.35 I CC 1000? 25.0 I t 6.35 I CC 1000R13S13?e85/ 2 x 0.016?e205/ 2 x 0.04 I ?e10 5/ 2 x 0.0161409841409812 300(±30) nm 99.9940220 nm99.99100? 12.7 I t 6.35 I CC 1000? 25.0 I t 6.35 I CC 1000R13S13?e85/ 2 x 0.016?e205/ 2 x 0.04 I ?e10 5/ 2 x 0.016140983140982cw/ns-Laser [1030–1064 nm]连续/纳秒激光镜片a Laser Mirror 0° 激光反射镜b Pump Mirror 0° 泵浦镜c1 Turning Mirror 22.5 – 45°, 1030 – 1064 nm 调谐镜c2 Turning Mirror 22.5 – 45°, 515 – 532 nm 调谐镜d1 Turning Mirror 45°, 1030 – 1064 nm 调谐镜d2 Turning Mirror 45°, 515 – 532 nm 调谐镜l1 Non-Polarizing Beamsplitter 45°, 1030 nm 非偏振分束器l2 Non-Polarizing Beamsplitter 45°, 1064 nm 非偏振分束器l3 Non-Polarizing Beamsplitter 45°, 515 nm 非偏振分束器l4 Non-Polarizing Beamsplitter 45°, 532 nm 非偏振分束器n Separator 45° 分离器o1 Thin Film Polarizer 56°, 1030 nm 薄膜偏振片o2 Thin Film Polarizer 56°, 1064 nm 薄膜偏振片o3 Thin Film Polarizer 56°, 515 nm 薄膜偏振片o4 Thin Film Polarizer 56°, 532 nm 薄膜偏振片p Window 0° 窗片a Laser Mirror 0° Layertec激光反射镜Coating 141321HR s,p (0 – 10°, 1030 – 1064 nm) 99.95 %LIDT6/ 50 J/cm2 1064 nm 7 ns ? 270 μm YERTECSubstrate DimensionsNo.ImperfectionsItem #? 12.7 mm | t 6.35 mmA45/ 1 x 0.04141864? 25.0 mm | t 6.35 mmB45/ 3 x 0.04141868? 50.0 mm | t 9.5 mmC35/ 4 x 0.063141866b Pump Mirror 0° Layertec泵浦镜S2: Coating 141325HR s,p (0–10°, 1030–1064 nm) 99.95 %R s,p (0–10°, 808 nm) S1: Coating 141355AR s,p (0–10°, 808 nm) LIDT6/ 30 J/cm2 1064 nm 7 ns ? 270 μmLAYERTECSubstrate DimensionsNo.ImperfectionsItem #? 12.7 mm | t 6.35 mmA45/ 1 x 0.04141877? 25.0 mm | t 6.35 mmB45/ 3 x 0.04141881c1 Turning Mirror 22.5–45°, 1030–1064 nm Layertec调谐镜Coating 141496Ag + multilayerHR s,p (22.5–45°, 1030–1064 nm) 99.7 %for application outside the resonatorno transmission @ VIS / NIRSubstrate DimensionsNo.ImperfectionsItem #? 25.0 mm | t 6.35 mmB45/ 3 x 0.04141942? 50.0 mm | t 9.5 mmC35/ 4 x 0.06314194525 × 25 mm | t 6.35 mmD25/ 3 x 0.0414195425 × 36 mm | t 6.35 mmE25/ 4 x 0.0414195850 × 50 mm | t 9.5 mmF35/ 4 x 0.063141960c2 Turning Mirror 22.5-45°, 515-532 nm Layertec调谐镜Coating 141497Ag + multilayerHRs,p (22.5-45°, 515-532nm) 99.7 %for application outside the resonatorno transmission @ VIS / NIRSubstrate DimensionsNo.ImperfectionsItem #? 25.0 mm | t 6.35 mmB45/ 3 x 0.0414194925 x 25 mm | t 6.35 mmD25/ 3 x 0.04141956d1 Turning Mirror 45°, 1030-1064 nm Layertec调谐镜Coating 141327HRs,p (45°, 1030 -1064 nm) 99.95 %LIDT6/ 50 J/cm2 1064 nm 7 ns ? 270μmSubstrate DimensionsNo.ImperfectionsItem #? 12.7 mm | t 6.35 mmA45/ 1 x 0.04141896? 25.0 mm | t 6.35 mmB45/ 3 x 0.04141500? 50.0 mm | t 9.5 mmC35/ 4 x 0.06314190425 x 25 mm | t 6.35 mmD25/ 3 x 0.0414195325 x 36 mm | t 6.35 mmE25/ 4 x 0.0414195750 x 50 mm | t 9.5 mmF35/ 4 x 0.063141959d2 Turning Mirror 45°, 515 - 532 nm Layertec调谐镜Coating 141329HRs,p (45°, 515-532 nm) 99.9%LIDT6/ 10 J/cm2 532 nm 7 ns 10Hz ?270μmSubstrate DimensionsNo.ImperfectionsItem #? 25.0 mm | t 6.35 mmB45/ 3 x 0.0414194625 x 25 mm | t 6.35 mmD25/ 3 x 0.04141955l1 Non-Polarizing Beamsplitter 45°, 1030 nm Layertec非偏振分束器S2: Coating 141335PRs,p (45°, 1030 nm) = 50 (±3) %I Rs - Rp I S1: Coating 141331ARs,p (45°,1030 - 1064 nm) I Rs - Rp I Substrate DimensionsNo.ImperfectionsItem #? 25.0 mm | t 3.05 mmB35/ 3 x 0.04141604L2 Non-Polarizing Beamsplitter 45°, 1064 nm Layertec非偏振分束器S2: Coating 141338PRs,p (45°, 1064 nm) = 50 (±3) %I Rs – Rp I S1: Coating 141331ARs,p (45°, 1030-1064 nm) I Rs – Rp I Substrate DimensionsNo.ImperfectionsItem #? 25.0 mm | t 3.05 mmB35/ 3 x 0.04141607L3 Non-Polarizing Beamsplitter 45°, 515 nm Layertec非偏振分束器S2: Coating 141344PRs,p (45°,515 nm) = 50 (±3) %I Rs – Rp I S1: Coating 141341ARs,p (45°,515-532 nm) I Rs –Rp I Substrate DimensionsNo.ImperfectionsItem #? 25.0 mm | t 3.05 mmB35/ 3 x 0.04141608L4 Non-Polarizing Beamsplitter 45°, 532 nm Layertec非偏振分束器S2: Coating 141346PRs,p (45°, 532 nm) = 50 (±3) %I Rs - Rp I S1: Coating 141341ARs,p (45°, 515 - 532 nm) I Rs - Rp I Substrate DimensionsNo.ImperfectionsItem #? 25.0 mm | t 3.05 mmB35/ 3 x 0.04141609N Separator 45° Layertec分离器S2: Coating 141359HRs,p (45°,515- 532nm) 99.8 %Rs (45°, 1030 - 1064nm) Rp (45°, 1030- 1064nm) S1: Coating 141377ARs,p (45°, 1030-1064 nm) Substrate DimensionsNo.ImperfectionsItem #? 25.0 mm | t 3.05 mmB35/ 3 x 0.04141892? 25.0 mm | t 6.35 mmB45/ 3 x 0.04141895O1 Thin Film Polarizer 56°, 1030 nm Layertec薄膜偏振片S2: Coating 141352TFP (56° *, 1030 nm) Rs 99.9 % Rp *specifications will be achieved by ±2° angle adjustmentS1: Uncoated Brewster angle ? Rp (56°) ~ 0 %O2 Thin Film Polarizer 56°, 1064 nm Layertec薄膜偏振片S2: Coating 141353TFP (56° *, 1064 nm) Rs 99.9 % Rp *specifications will be achieved by ±2° angle adjustmentS1: Uncoated Brewster angle ? Rp (56°) ~ 0 %Substrate DimensionsNo.ImperfectionsItem #? 25.0 mm | t 3.05 mmB35/ 3 x 0.04141536O3 Thin Film Polarizer 56°, 515 nm Layertec薄膜偏振片S2: Coating141350TFP (56° *, 515 nm) Rs 99.9% Rp *specifications will be achieved by ±2° angle adjustmentS1: Uncoated Brewster angle ? Rp (56°) ~ 0 %Substrate DimensionsNo.ImperfectionsItem #? 25.0 mm | t 3.05 mmB35/ 3 x 0.04141537O4 Thin Film Polarizer 56°, 532 nm Layertec薄膜偏振片S2: Coating 141351TFP (56°*, 532 nm) Rs 99.9 % Rp *specifications will be achieved by ±2° angle adjustmentS1: Uncoated Brewster angle ? Rp (56°) ~ 0%Substrate DimensionsNo.ImperfectionsItem #? 25.0 mm | t 3.05 mmB35/ 3 x 0.04141539P Window 0° Layertec窗片S2+S1: Coating 141348AR (0°, 515-532 nm) AR (0°, 1030-1064 nm) Substrate DimensionsNo.ImperfectionsItem #? 12.7 mm | t 1 mmA25/ 1 x 0.04141890? 25.0 mm | t 3.05 mmB35/ 3 x 0.04141885德国Layertec公司创建于 1990年. 凭借多年在光学镜片的设计开发和生产经验,已成为全球知名的光学镜片厂商,LAYERTEC的镜片品质非常出众,广泛赢得客户的赞誉。光学镜片应用波长范围从157-2940nm,包括了科研以及工业上主流的激光器的应用,材质有YAG, Sapphire,CaF2,IR-fused silica,Fused Silica,BK7,尺寸大部份为0.5inch-2inch。Layertec专注于提供激光光学元件的镀膜,波长范围从 VUV(157nm及以下) 到 NIR波段(~4um)。最常见的光学镀膜类型是高反射镜(从正入射或者AOI=45°的转向镜),用于输出耦合的部分反射镜,以及分束器和用于窗口和透镜的抗反射膜。对于更复杂的激光器镀膜,包括3个以上波长的高反射率(例如激光器波长和倍频波长),以及3个以上波长的高透射率(例如泵浦波长,倍频或者抑制其他激光波长)。宽带反射镜,针对平滑群延迟和群延迟色散光谱优化的反射镜,这些在宽带激光输出应用中会用到,例如染料激光器,钛宝石激光器,光参量震荡器(OPO)和飞秒激光器。除了反射率和透射率,激光应用的镀膜必须满足低光学损耗和高激光损伤阈值。在VIS和NIR波段的溅射光学镀膜具有低杂散光和低吸收损耗(数量级都在10–5)。磁控溅射镀膜的HR镜反射率或者部分反射镜的反射透射率之和都超过99.9%。最近测量了在溅射和蒸发镀膜中的NIR波长吸收损耗都在3-30ppm。在VIS-NIR波长范围,蒸发镀膜会产生杂散光损失大约10-3级,在UV和VUV波长可以达到10-2。尽管如此,蒸发镀膜在UV波长的吸收损耗比较低。在CW和纳秒激光器光学元件的损伤主要跟热效应有关,例如增大的吸收,镀膜材料的固有吸收或者缺陷造成的吸收, 或者 镀膜较差的热导率 以及较低的熔化温度。 高能量的镀膜要求控制镀膜材料的固有特性以及减少膜层的缺陷。皮秒和飞秒激光元件的激光损伤主要是场强效应造成的。针对这类激光器的高功率镀膜要求非常特殊的设计。根据ISO 11254-1 (cw- LIDT and 1 on 1–LIDT, 例如单脉冲 LIDT), ISO 11254-2 (S on 1, 例如多脉冲 LIDT) 以及 ISO 11254-3 (一定数量的脉冲LIDT )标准中对激光损伤阈值LIDT的定义要求激光系统工作在单频模式下,精确的光束诊断和在线/离线损伤探测系统。因为这个原因,数量有限的配有少数几种激光器的测量系统可以使用(例如Laserzentrum Hannover 公司的1064nm)。对于比较特殊的激光器波长例如氩离子激光器(488nm或者514nm),没有测量系统可以用来验证LIDT数据。
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制