当前位置: 仪器信息网 > 行业主题 > >

静态真空质谱仪

仪器信息网静态真空质谱仪专题为您提供2024年最新静态真空质谱仪价格报价、厂家品牌的相关信息, 包括静态真空质谱仪参数、型号等,不管是国产,还是进口品牌的静态真空质谱仪您都可以在这里找到。 除此之外,仪器信息网还免费为您整合静态真空质谱仪相关的耗材配件、试剂标物,还有静态真空质谱仪相关的最新资讯、资料,以及静态真空质谱仪相关的解决方案。

静态真空质谱仪相关的论坛

  • 实验室分析仪器--质谱仪器真空系统结构分析

    真空系统能够使离子源、质量分析器和检测器在低气压状态下工作,待测离子不会因与残存气体分子发生碰撞而散射,有利于分辨率和灵敏度的提高。常用旋片式机械泵、涡轮分子泵和钛离子泵串联组成真空系统,使离子源区气压约为10-3~10-5Pa,分析器区气压约为10-4~10-Pa,检测器区气压为10-10-2Pa以上。为防止残存有机物和反油污染离子源和分析室,在前级机械泵与涡轮分子泵接口处、离子源与分析室接口处设置液氮冷阱。亦可用旋片式机械泵和油扩散泵(加去除烃分子的捕集器)串联组成抽真空系统,并在油扩散泵与质谱仪之间加可自动控制的隔板,一旦停电隔板将自动关闭,既可防止反油污染质谱仪,又可维持质谱仪的真空在一定时间内变化不大。[b]1)油扩散泵[/b]优点:价格便宜、使用寿命长。缺点:抽速慢、耗时长,往往需要一小时以上才能达到所需要的真空要求。[b]2)涡轮分子泵[/b]优点:仅需十几分钟就可以达到所需的真空度,既无反油危险,噪声本底也小。缺点:价格昂贵、使用寿命短。[img=f90a81ec3d9887cd55167161ab7ac95.jpg]https://i2.antpedia.com/attachments/att/image/20220126/1643179791717997.jpg[/img]涡轮分子泵结构图[b]3)离子泵[/b]在排气量较小时,离子泵是最佳选择,它不但无污染,而且使用寿命长,极限真空比涡轮泵还高。要求超高真空的静态真空质谱仪都选用涡轮泵和离子泵。真空系统是影响质滤器及检测器功能的重要因素。质谱仪根据离子不同质荷比进行分离,需将离子引入某种电场和/或磁场中,利用电场和/或磁场分离离子,要求离子具有较大的平均自由程,与其他离子、背景气体分子等的碰撞概率最低。研究表明,压力为10-6Torr时可确保质滤器中扰动碰撞次数少于1

  • 四极杆质谱仪的真空系统

    质谱仪的真空系统通常分为两级。  初级真空系统为二级真空系统提供基本真空支持。二级真空系统通常直接与质谱仪腔体相连,使质谱仪达到真空状态。值得注意的是,四级杆质谱仪的真空并非高真空(0.001 Pa)[3]。离子在极杆中运动,大量的能量由电场中获得。为形成稳定的离子云,四级杆质谱中需要存在极为微量的气体用来吸收过量的动能。四级杆质谱仪的真空通常为飞行时间质谱(1e-5 Pa)[4]的百分之一,为轨道离子阱质谱(1e-14 Pa)[5]的百亿分之一。  初级真空  初级真空通常采用机械泵(Roughing Pump)或卷泵(Scroll Pump)。真空程度大约为1 mTorr (0.13 Pa)。  机械泵相对卷泵价格低廉,然而需要润滑油才能操作。在进行对气体敏感的分析时,尤其是大气科学领域,通常选择使用卷泵而不是机械泵。  二级真空  二级真空通常采用涡轮分子泵(Turbomolecular Pump)或分散泵(Diffusion Pump)。  分子泵体积小,效率相对分散泵要高。通常的分子泵都可以支持350 L/min的气流速度,较为高端的分子泵可以实现1e-14 Pa的超高真空。  分散泵体积庞大,可达到1-2米。在现代仪器中,基本已经被涡轮分子泵取代。  对于四级杆质谱仪所需的真空条件,通常涡轮分子泵在30分钟内即可达到。分散泵则需要20-80小时。

  • 质谱仪器的真空要求

    质谱仪器的真空要求质谱仪器必须在良好的真空条件下才能正常操作,一般要求质量分析器的真空优于10-4pa。质谱仪器所检测的离子必须要有较大的自由程才可以到达检测器,其他气体成分也可能与离子发生反应影响检测,在质谱仪中工作的部件(如离子源灯丝、较密排布的高压极板)需要在高真空下才能稳定工作。因此,质谱仪中的部件需要一个真空环境进行工作。但不同类型的质谱仪器对真空的要求不同,既与仪器的类型有关,又与仪器的大小有关;质谱仪器的不同部分对真空的极限要求也不同,质量分析器是所有部分中对真空要求最高的,离子源对氧的分压要求比较苛刻,但对总压的要求则比质量分析器低几个数量级。所以真空系统的配置要视实际情况而定

  • 质谱仪真空系统

    真空系统无论是成熟的GCMS,还是大有作为的LCMS,亦或者是ICPMS,这些分析仪器的精贵之处毋庸置疑就是质谱仪MS。质谱仪,最基本的系统就是真空系统,也是最重要的系统之一。真空系统的作用就是提供足够的真空度来满足质谱仪的功能,主要提供足够高的平均自由程,减少背景噪声获得高灵敏度。还可以防止灯丝被氧化(GCMS),避免高压放电(TOF-MS),等。真空基础:平均自由程:每次发生碰撞之间移动的平均距离被称为 平均自由程 (l)http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif真空vacuum 可以简单分为粗真空(1 x 105 - 1.33 x 10-1 Pa)-高真空(1.33 x10-1 - 1.33 x 10-6 Pa)-超高真空(1.33 x 10-6 Pa)。真空技术:真空技术包括真空获得、真空测量技术、泄露和检漏技术。一、真空获得真空获得技术:主要通过各种真空泵或者真空泵组来获得所需的真空度。真空泵的技术指标主要有:抽气量、抽气速度、极限压力、压缩比。1、 抽气量 Q (mbar L/S or torr L/S),被真空泵从一点传送到另外一点的气体数量,它取决于压力;2、 抽气速度 S(L/S),单位时间内的抽气量;3、 极限压力 (mba),真空泵所能达到的最低压力;4、 压缩比 K=Po/Pi,排气口的压力与进气口压力的比值。1.粗真空获得,可以通过各种机械泵来获得。如油封式旋片泵http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif(通常我们所说的油泵);还有涡卷式干泵http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif;隔膜泵http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif;罗茨泵等。主要作用就是从真空室中取出大部分空气,为高真空泵保持适合的排气口压力和提供合适的进气口启动压力。各种粗抽真空泵性能对比:http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif2.高真空获得,主要有油扩散泵、涡轮分子泵、冷泵。油扩散泵:http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif涡轮分子泵:http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gifhttp://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif各种高真空泵性能对比:http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif3.超高真空获得,主要通过超高真空泵,如离子泵、钛升华泵。二、真空测量技术主要是通过不同的真空规(vacuum gauge)来测量真空度。三、泄露和检漏技术检漏技术是用来保证元器件或系统的密闭性可以满足某种标准的一种方法。通常的检漏方法有冒泡法、压降法、卤素吸收法以及氦质谱检漏仪,以下是各种方法的比较。http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif1 x 10-1 atmcc/sec. = 6.00 cc/分钟. (0.1 *60)http://bbs.instrument.com.cn/xheditor/xheditor_skin/blank.gif瓦里安Varian 氦质检漏仪

  • 实验室分析仪器--质谱仪器真空系统主要组件

    质谱仪器真空系统主要包含如下一些部件:真空泵、真空计和真空阀。[b]1.真空泵[/b]真空泵是获得真空的设备。市场上真空泵种类很多简单地可将其划分为低真空泵和高真空泵两大类。低真空泵又称前级真空泵,既可用于真空腔室的预抽真空,又可作为高真空泵的前级泵提供高真空泵正常工作所需要的前级真空;高真空泵包括扩散泵、涡轮分子泵、钛升华泵、溅射离子泵、吸气剂泵、低温泵等,负责真空系统里高真空的抽取。高真空泵启动的一个共同点是不在常压下启动,需要在一定的真空条件下启动。因此在一个真空系统中,低真空泵和高真空泵常常配合使用,共同完成抽取和保持系统真空的任务171现在一些真空仪器厂商根据市场,也已推出了将低真空泵和高真空泵功能组合在一起的真空机组,用来满足各类分析仪器对真空的需求。[b]2.真空计[/b]真空计是测量真空的设备。真空计又可分为绝对真空计和相对真空计,前者直接测量空间内气体的压强,后者通过与压强有关的物理量间接地测量空间内气体的压强。按照真空计的不同原理与结构可细分为静态变形真空计、压缩式真空计、热传导真空计、电离真空计、气体放电真空计、辐射真空计等。真空阀是使真空隔离和保持的常用组件。下面简单介绍部分常用的真空组件。[b](1)扩散泵[/b]扩散泵是通过加热使高闪点的泵油蒸发,形成高速气流从喷口喷出。由于油气喷口设计在靠近泵的进气口,且使油气向侧下喷出,因此进入泵内的气体分子会往高速油气流中扩散被带走,当气流到达由冷却水冷却的泵壁后,又会凝结成液体流回蒸发器,油气中因冷凝析出的气体分子就会在出气口处被前级泵抽出即扩散泵是靠油的蒸发、喷射、凝结重复循环来实现抽气任务的。扩散泵具有无噪声、无震动和成本不高等优点,但其极限真空偏低,且使用过程中易造成系统油气污染,现在很多新型质谱仪器上已不再使用。[b](2)涡轮分子泵(turbo pump)[/b]是通过高速旋转的多级涡轮转子叶片和静止涡轮叶片的组合进行抽气的,在分子流区域内对被抽气体产生很高的压缩比,从而获得所需要的真空性能,对被抽气体无选择性、无记忆效应,操作简单、使用方便。[b](3)钛升华泵[/b]主要依靠电子轰击或通电加热使吸气材料升温,达1200~1500℃时它将不断升华并沉积在水冷泵壁内表面,形成新鲜的活性膜层而不断地吸收和“掩埋”气体分子。对活性气体主要是形成固化化合物,对惰性气体主要是“掩埋”。[b](4)溅射离子泵[/b]溅射离子泵是靠电磁场的作用产生潘宁放电而使气体分子电离,利用电离产生的离子高速轰击阴极钛板引起钛原子溅射,连续制造活性吸气膜使电离了的气体分子收附于其中达到抽气效果的真空泵。[b](5)吸气剂泵[/b]利用能够吸收气体的物质来获得真空的装置(常用来作吸气剂的物质为锆铝、锆石墨、锆钒铁等)。工作过程:首先将锆铝吸气剂加热至激活(900℃)形成活性表面,然后降温至工作温度(400℃)即可吸气。吸气机理:①化学吸收,锆铝吸气剂与其接触的活性气体如O2、CO、CO2、N2、烃类化合物发生化学反应,生成稳定的化学物;②化学吸附,锆铝吸气剂和一些气体如氢在一定温度下生成氢化物,温度稍高时,气体从表面层扩散入内层成为溶解于锆铝吸气剂合金晶格内的固溶体;③物理吸附,锆铝吸气剂的多孔表面依靠范德华力使气体分子附着在表面和孔隙中(注:物理吸附的气体在温度升高时便可很快释放)[b](6)低温泵[/b]利用20K以下的低温表面冷凝容器中的气体和水蒸气而获得真空的设备。利用泵体内温度不同的两级低温板(65K、1K)来冷凝吸附真空系统中的气体分子及水分子达到使系统获得高真空。第一级低温板温度保持在65K(-08℃)左右,主要用于冷凝吸附真空系统中的水分子;第二级低温板温度为15K(-28℃),主要用于冷凝吸附真空系统中的气体分子(H2、N2、Ar)。低温泵主要由制冷循环系统和低温泵泵体两部分组成;制冷系统使用高纯氦气作为制冷剂,对环境无害,工作安全性好。[b](7)机械泵[/b]机械泵是运用机械方法不断地改变泵内吸气空腔的体积,使被抽容器内气体的体积不断膨胀,从而获得真空的装置。它可以直接在大气压下开始工作,极限真空度一般为1.33~1.33×10[sup]-2[/sup]pa,抽气速率与转速及空腔体积的大小有关,一般在每秒几升到每秒几十升之间。[b](8)全量程冷阴极真空规[/b]这是一种全量程的新型冷阴极真空规,它集成了两个独立的真空测量系统(Pirani Cold Cathode冷阴极电离真空计系统),测量范围为5×10[sup]-9 [/sup]1000mbar(1bar=10[sup]5[/sup]Pa),真空技术在20世纪得到迅速发展,并有广泛的应用。20世纪初,旋转式机械泵、皮氏真空计、扩散泵、热阴极电离真空计等真空获得和真空测量设备的相继出现,为质谱技术的发展创造了条件。接着,油扩散泵、涡轮分子泵、离子泵、低温泵等新型真空获得设备的出现,促使真空技术进入超高真空时代,质谱仪器的性能指标也得到了显著提高

  • 【求助】质谱仪要求高真空的理由

    看了一份资料说质谱仪要求高真空的理由的,其中几点不理解,请高人解答。理由:1.离子的平均自由行程必须大于离子源到收集器的飞行路程。2.离子源内高的气压可能引起高达数千伏的加速电压放电。3.电离盒内的高气压导致离子—分子反应,改变质谱图样。

  • 四极杆质谱仪种类

    [font=&][size=18px]四极杆质谱仪种类有多种。[/size][/font][font=&][size=18px]1、按分析目的可分:实验室四极杆质谱仪和工业四极杆质谱仪。[/size][/font][font=&][size=18px]2、按质量分析器的工作状态可分:静态四极杆质谱仪和动态四极杆质谱仪。[/size][/font][font=&][size=18px]3、按进样方式可分:直接探针进样四极杆质谱仪和色谱进样四极杆质谱仪等。[/size][/font][font=&][size=18px]4、按离子化方式可分:电子轰击电离四极杆质谱仪、化学电离四极杆质谱仪、场电离四极杆质谱仪、场解吸电离四极杆质谱仪、快原子轰击电离四极杆质谱仪、基质辅助激光解吸电离四极杆质谱仪、电喷雾电离四极杆质谱仪和大气压化学电离四极杆质谱仪等。[/size][/font][font=&][size=18px]5、按用途可分:生物四极杆质谱仪、制药四极杆质谱仪、化工四极杆质谱仪、食品四极杆质谱仪、抗生素四极杆质谱仪、白酒四极杆质谱仪、乳品四极杆质谱仪、植物油四极杆质谱仪和重金属四极杆质谱仪等[/size][/font]

  • 质谱仪真空系统的故障排查和日常维护

    真空系统提供和维持质谱仪器正常所需要的高真空度,通常在10-3~10-9Pa。由于日常工作中,需要经常更换配件或定期保养仪器,在拆卸安装仪器时,质谱仪容易出现空气泄漏的故障。而空气泄漏故障发生的位置比较多,排查时比较费时费力。本篇文章将对质谱仪真空系统的故障排查和日常维护进行简单介绍。  [b]质谱仪的真空要求[/b]  质谱仪必须在良好的真空条件下才能正常工作,一般要求离子源的真空度应达10-3~10-4Pa,质量分析器和检测器的真空度应达10-4~10-5Pa。  质谱仪器为什么需要高真空?  (1)离子的平均自由程必须大于离子源到收集器的飞行路程;  (2)氧气分压过高影响电子轰击离子源中灯丝的寿命;  (3)离子源内的高气压可能引起高达数千伏的加速电压放电;  (4)高气压产生的高本底会干扰质谱图及分析  (5)离子源内高气压会引起离子—分子反应,改变质谱图样;  (6)电离盒内的高气压会干扰轰击电子束的正常调节。  [b]真空泵的用途[/b]  质谱仪一般采用两级真空系统,由机械泵和高真空泵组合而成。常用的机械泵是旋转式油封泵。那么真空泵的主要用途是什么呢?  一是作为高真空泵-扩散泵或分子泵的前级泵,提供高真空泵正常工作所需要的前级真空;  二是预抽真空,为直接进样系统、间接进样系统以及离子源或整个仪器暴露大气后预抽真空,色质联用时也用于分子分离器抽低真空,高真空泵才能达到和维持质谱仪器正常工作所需要的10-4pa以上的真空水平。  为了保护高真空泵并使其充分发挥效率,必须在前级的机械泵达到一定真空度的条件下,才能开启和关闭高真空泵。常见的高真空泵有油扩散泵、汞扩散泵、溅射离子泵、涡轮分子泵等。  [b]空气泄漏症状[/b]  任何需要真空操作的仪器都存在空气泄漏的故障。出现空气泄漏时,主要症状有哪些?  (1)超过正常真空多级连接管压力或前级压力;(2)超过正常本底;(3)空气特征峰(m/z 18、28、32和44,或m/z 14、16);(4)灵敏度低;(5)m/z 502处相对丰度低(该值随所使用的调谐程序而有所不同)。  [b]确认空气泄漏的存在  如何才能发现空气泄露?[/b]  处于m/z 18、28、32和44的峰是MSD有空气泄漏时的典型峰。这些质量的小峰是正常的,m/z 14和16的大峰是空气明显泄漏的症状。如果MSD近进行过放空,需要经过4h,m/z 28(氮气)才能降至适当低的  水平;需要经过24h,m/z 18(水)才能降至适当低的水平。如果这些峰变大或干扰了分析,需检查调谐报告。  调谐报告比较m/z 18(水)和m/z 28(空气)的丰度与m/z 69(全氟三丁胺)的丰度之比。如果调谐报告中的比例不可接受(m/z 18大于m/z 69的10%),等待几个小时然后重新调谐。如果比例仍然不可接受,且没有降低,检查空气泄漏。如果空气泄漏存在,那么m/z 28与m/z 32的丰度比值约为5∶1。  [b]查找空气泄漏的方法  ①载气管线的检查[/b]  首先需要确定所有接头是否有明显松动。对于严重的漏气,可以采用皂液检漏的方法,在管线和阀的接口处挤上适量的肥皂检漏液,漏气的部位会出现明显的气泡;对于轻微的漏气,关闭[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]进样口的压力,关闭气瓶的总阀,开启分压阀,若有漏气,15min后分压表的压力会有明显的下降。  [b]②GC部分的检查[/b]  通常GC部分的空气泄漏通常会发生在内部的载气管接头、隔垫、隔垫定位螺母、O形圈、柱螺母等位置。此外,色谱柱断裂也会引起空气泄漏。若隔垫漏气,可以看到以下信号:如保留时间的延长或漂移,响应值降低,或柱前压降低等。  用适量的丙酮涂抹上述位置(进样口、进样口柱螺母、色谱柱),每次一个位置,先后顺序依照离MS部分由近及远的原则。在适当的时间后,观察数据系统中的峰图,若m/z 58和m/z 43处出现一个陡峭的、显著的攀升,说明在刚刚涂抹丙酮的位置存在空气泄漏。同样,也可以喷射惰性气体(如氩气)进行检漏,观察峰图中曲线在m/z 40处的攀升情况加以判断。  [b]③MS部分的检查[/b]  空气泄漏还可出现在MSD的更多处,如GC/MSD接口柱螺帽、GC/MSD接口O形圈、侧板O形圈(整个周围)、前端盖和后端帽的O形圈、三级真空规管的连头、校准阀。空气泄漏更容易出现在频繁开关的密封垫处,如色谱柱螺帽、侧板O形圈或放空阀的O形圈。空气泄漏在很少或从不打开的密封垫处出现较少,如前端盖和后端帽的O形圈或GC/MSD接口柱螺帽。  在MSD中查找空气泄漏的方法与GC部分类似,在可能发生空气泄漏的位置涂抹丙酮或喷射氩气,每次一个位置。总是从近被打开过的密封装置开始,这是有可能发生空气泄漏的地方。在涂抹完一个位置后,观察数据系统中的峰图变化加以判断。  [b]④隔离难以发现的泄漏[/b]  如果寻找空气泄漏过程中遇到困难,可以使用下述方法确定泄漏是在GC中还是MSD中:先进行空气和水检查;将[url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用仪[/color][/url]所有加热区冷却后,取下GC色谱柱,用一个隔垫盖住色谱柱端口;等待15~20min,再一次检查空气和水,比较次和第二次检查的结果。  如果结果基本相同,则泄漏存在于MSD中或GC/MSD接口末端的色谱柱螺帽处。如果结果显著不同,泄漏可能存在于GC。  [b]真空系统的维护  ①气源[/b]  载气纯度不够,或剩余的载气量不够时,也会造成m/z 28谱线丰度过大。选购的氦气纯度必须达到99。999%,当气瓶的压力达不到3MPa时,应更换载气,以防止瓶底残余物(N2)对气路的污染。载气管线 周围的温度改变和振动可导致载气供给和GC之间的管路接头泄漏,因此应定期对所有的外加接头进行检漏(大约每隔4~6个月)。  [b]②脱氧管[/b]  根据推荐,每用完3瓶气,应更换脱氧管,以防止气体的污染。脱氧管使用时间过长,吸附的氧气会随着载气进入仪器,导致m/z 32的谱线丰度过大。市售的脱氧管通常会用氮气进行饱和,安装时,必须用氦气将脱氧管内和管线里的氮气吹扫干净,再接至仪器上。  [b]③机械泵[/b]  为了保证机械泵的工作状态,达到要求的真空度,机械泵必须及时维护。由于前级泵油受热,或进入空气、水、溶剂和样品时会逐渐失效(一种症状是油的颜色逐渐变深),前级泵不能有效工作,可能增加前级压力和真空多路连接管压力。  国外公司要求三个月更换一次油,如果油变色或者有泡沫,应该随时更换。换的泵油型号也一定要相同,不同牌号的泵油不能混合使用。  [b]④进样口[/b]  隔垫的使用寿命由进样频率和针头质量决定。针头的毛刺、尖锐边缘,粗糙表面,或针头钝都会降低隔垫的使用寿命。隔垫应该少每100次进样后进行更换。当仪器连续使用时,建议每天更换隔垫。O形圈材料中有使其增加柔韧性的增塑剂,在高温下增塑剂会固化,使O形圈变硬,不能起到密封作用。  [b]⑤GC/MS接口和GC接口[/b]  GC/MS接口和GC接口在色谱柱温箱里,温差变化大,十分容易泄漏。在安装时,必须使用石墨化的Vespel圈,螺帽紧固到一定程度后,随色谱箱温度程序升温一个周期后再紧固1/4~1/2圈为好。  [b]⑥抽真空时间[/b]  每次开机时,等候直到MSD加热区位于其标准设定值至少2h,然后尝试自动调谐。如果MSD近进行过放空,需要经过4h,m/z 28(氮气)才能降至适当低的水平;需要经过24h,m/z 18(水)才能降至适当低的水平。  质谱仪开机时,需要将侧门用力的推一下,使侧门能在负压的作用下吸紧,防止细小纤维或灰尘吸附在侧门周围;放空后,放空阀要及时关紧。  质谱仪操作过程中,做好仪器的日常记录和维护。在质谱仪发生空气泄漏的故障时,根据近期的使用状况,仔细排查可能发生问题的部位,并采取适当的措施,空气泄漏的故障通常能很快排除

  • 质谱仪连接到真空腔必须装阀门吗?

    目前质谱仪连接到真空腔,之间有一阀门,等真空度到一定值后才打开阀门,好像说是保护灯丝.现在我们想改变质谱仪的位置,请问阀门必须要吗?不要阀门等真空度很高了才打开灯丝行吗?谢谢!

  • 质谱仪是怎么分类的

    质谱仪的分类方法很多,下面列举一些不同方法的分类:  1、常用的是按照质量分析器的工作原理可分为:磁偏转(单/双)聚焦质谱、四极杆质谱、离子阱质谱(包括线性离子阱和轨道离子阱)、飞行时间质谱和傅里叶变换离子回旋共振质谱等五大类;  除此之外,还有下面很多种分类方法:  2、按质量分析器的工作模式可分为:静态质谱仪(磁偏转(单/双)聚焦质谱)和动态质谱仪(四极杆质谱、离子阱质谱、飞行时间质谱和傅里叶变换离子回旋共振质谱)两大类;  3、按分析物质的化学成份性质可分为:无机质谱仪(元素分析)和有机质谱仪(有机分子分析及生物大分子分析);也有人把生物质谱单独分出来;  4、按离子源的电离方式可分为:电子轰击电离质谱仪、化学电离质谱仪、场/解析电离质谱仪、快原子轰击电离质谱仪、辉光/电弧/激光电离质谱仪、基质辅助激光解吸电离质谱仪、电喷雾电离质谱仪等。  5、按分析的应用领域可分为:实验室分析质谱仪、质谱仪、工业质谱仪、医疗质谱等;  6、按分辨率高低可分为:低分辨质谱仪、中分辨质谱仪和高分辨质谱仪。  7、按与其它分析仪器联用方式可分为:[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]-质谱联用仪([url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]气质联用仪[/color][/url])、[url=https://insevent.instrument.com.cn/t/5p][color=#3333ff]液相色谱[/color][/url]-质谱联用仪([url=https://insevent.instrument.com.cn/t/Yp][color=#3333ff]液质联用仪[/color][/url])、光谱-质谱联用仪、毛细管电泳质谱联用仪等;  8、按多个质量分析器组合模式可分为:单级质谱仪和多级(串级)质谱仪;串级质谱仪又分时间串级(离子阱)质谱和空间串级质谱(三重四极杆质谱和四极杆-飞行时间质谱仪);  9、按仪器外观可分为:台式质谱仪和落地式质谱仪;小型质谱仪和大型质谱仪

  • 实验室分析仪器--质谱仪器介绍

    汤姆逊的学生阿斯顿(Aston)出色地继承了汤姆逊所开创的质谱学成就,设计、制造了一台分辨率达到130的磁分析器。阿斯顿利用这台及其后来改进型的质谱仪进行了一系列开创性工作。他确认了汤姆逊发现的氖两个稳定同位素20Ne和22Ne的存在。同时,通过测量氯的两种同位素丰度,计算氯的原子量,成功地解释了当时用化学法测量的氯原子量不靠近整数的原因。此后,他又测量了数十种元素同位素的自然丰度。由于用质谱法测量同位素丰度的杰出贡献,阿斯顿率先用质谱分析方法敲开了诺贝尔化学奖大门,荣获了1922年诺贝尔化学奖。几乎在同一时期,加拿大人德姆颇斯特(Dempster)也在进行着类似的研究,与汤姆逊的工作不同的是,他所建立的质谱仪器使用半圆形的均匀磁场,具有方向聚焦性质,分辨率达到100。 Dempster利用他所建立的仪器开展了与汤姆逊类似的开创性研究,发现并测量了一些元素的同位素丰度。这时的质谱仪局限于单聚焦质量分析器,对方向聚焦发散的离子是借助一组或两组狭窄的准直缝隙来抑制;而对能量分散的离子,采用在分析管道末端增加能量过滤器的方法来阻挡损失能量的离子,借以提高分析器的分辨率。然而,实施这些措施提高的分辨率是以灵敏度的损失为代价换取的。为了既能提高分析器的分辨率,又不损失灵敏度,质谱专家们发现:可以借助当时离子光学理论方面的成就,对同一台质谱仪器实现方向和速度双聚焦。从而弥补了方向、能量发散离子的损失,使其重新得到聚焦,增加离子束的强度,既提高了灵敏度,又提高了仪器分辨率。第一台双聚焦仪器由 Dempster在1935年制造;事隔一年后, Bainbridge和 Jordan制造了第二台。几乎在相同时期, Mattauch研制了一台性能更加完善的双聚焦质谱仪,这台仪器具有特殊的离子光学系统,能够为分析管道内的所有离子提供双聚焦,并把全部质谱同时记录在平面型的照相干板上。该分析器与火花放电电离离子源相结合,成为后来无机成分分析的主要工具,即火花源质谱仪的雏形。火花源质谱仪在当时是超纯物质和痕量杂质测量不可替代的工具,在相当长的一段时间,有效地配合新兴材料的研制,对冶金、电子、半导体工业的发展起了催化剂的作用。然而,当时Mattauch等人制造的双聚焦质谱仪的磁分析器采用的是Dempster设计的具有180°偏转方向聚焦的分析器。这种分析器的分辨率依赖于离子运动轨迹的曲率半径,有限的磁铁体积直接制约分辨率的提高。因此,Nier在1940年采用60°契形磁铁,建造了具有60°偏转方向的扇形磁式气体质谱仪(GMS)。该仪器与前者相比,在具有相同聚焦性能的条件下,体积小重量轻,被多家实验室和仪器厂商所采纳。作为一名物理学家,Nier运用质谱技术,不但对自然界稳定同位素研究做出了重要贡献,也是同位素地球化学和同位素宇宙学研究的先驱;他通过对真空系统和电子学的改进,并结合离子能量发散小的Nier型的电子轰击离子源,使得质谱仪的分辨率进一步提高。热电离离子源的设计及其与磁分析器组合建造的热电离质谱仪主要是为了适应液态样品分析,分辨率为300~500,与GM大致相当。这两种仪器是目前同位素分析的主要设备。自20世纪50年代初开始,质谱仪器进一步改进,主要是为了适应有机化学分析任务的需求。由于化学工业和石油工业的发展,众多的课题依赖于有机元素及其化合物、衍生物的精确分析来解决。当时已有的色谱、红外光谱等分析方法不能满足日益增多的分析任务的需要。质谱分析方法在同位素分析中的成功应用,给人们在有机化学中采用质谱技术提供了借鉴。众所周知,有机物质种类多、结构复杂,同类物质的质量数彼此相互接近,电离后产生的谱线难以鉴别。因此,有机物的成分分析完全不同于同位素和无机物分析,它要求仪器的分辨率高,动态范围宽,扫描速度快。显然,单纯具有磁分析器的质谱仪器很难满足当时的分析任务需求。自1953年至1955年间,由Paul和 Steinwedel等人开发的四极质谱仪采用四极杆“滤质器”作为分析器。这种非磁性质谱仪具有一系列显著优点,体积小,重量轻,扫描速度快,响应时间短,不存在聚焦和色散等复杂问题,可进行快速质量扫描和成分分析。事实上,四极杆质谱仪与[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]联合,组成的色质联用仪器([url=https://insevent.instrument.com.cn/t/bp][color=#3333ff]GC-MS[/color][/url])成为后来化工、生化、药物、环境和食品分析的不可替代工具;由两台或三台四极质谱仪组合成的串联质谱仪是分子动力学研究的主要仪器。由于四极质量分析器有上述优点和辉煌业绩,20世纪80年代研制的辉光放电质谱仪(GDMS)和[url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]电感耦合等离子体质谱仪[/color][/url]([url=https://insevent.instrument.com.cn/t/yp][color=#3333ff]ICP-MS[/color][/url])等无机质谱仪器也首选四极杆“滤质器”作为质量分析器。这些仪器的诞生和使用,为无机元素和无机成分分析开辟了新的途径,把无机质谱分析法推向更高水平。随着二次离子质谱仪的诞生、发展和成熟,出现了由不同分析器与二次离子源组成的四极杆二次离子质谱仪(Q-SIMS)、双聚焦二次离子质谱仪(DF-SIMS)和飞行时间二次离子质谱仪(tOF-SMS)。它们以其高质量分辨率、高检测灵敏度、低检测极限,为无机质谱增加了杂质深度分析、三维离子图像处理及微区元素和同位素测量能力。这里提到的飞行时间分析器(TOF)的工作原理,即受同一电脉冲激发的离子,具有相同的能量。当这些离子通过无场真空区时,按照动力学原理,飞行速度与其质量的平方根成反比。不同质量的离子从离子源抵达接收器的时间不同,因此,可以根据抵达接收器的时间对离子进行排序和测量。早期从事飞行时间分析器研究的是W.R.Smythe及其同事,他们制造的飞行时间质谱仪是历史上第一台动态质谱仪器。随着脉冲技术的改进和制作工艺的提高, Cameron和Eggers实现了直线脉冲飞行时间实验,W.C.Wiley等人完成了现代商品飞行时间质谱仪的雏形。如今,飞行时间分析器的分辨本领已从最初的不足100上升到目前的几千乃至上万。飞行时间分析器与二次离子电离源、激光电离源、激光共振电离源相结合构成的二次离子飞行时间质谱仪、激光电离飞行时间质谱仪和激光共振电离飞行时间质谱仪等仪器的灵敏度和分辨本领高,动态范围宽,可进行微区原位分析、表层和深度分析以及成像,能够提供多种信息诞生于1956年的世界第一台静态真空质谱仪(SVMS)是专为稀有气体分析设计、制造的。它的离子源、分析器工作原理与动态真空质谱仪基本相同。所不同的是当仪器进行样品分析时,将动态抽气系统与分析系统阻断,使离子源、分析室和接收器真空度处于基本恒定、静态环境下工作,从而减少了分析用样量。与动态真空质谱仪相比,提高灵敏度大约1~2个数量级,有利于对稀有气体进行测量。早期串联分析器在质谱仪器的发展历史和分析工作中所扮演的角色是不可替代的。20世纪60~70年代,两级、三级或四级串联质谱仪成为高丰度灵敏度测量的主要仪器,在欧美主要同位素质谱实验室广为使用。通常由两个、三个或四个相同的磁、电分析器串联而成,根据串联分析器的离子偏转轨迹不同,可分为C形结构或S形结构。这些类型的分析器能有效阻止强离子束在分析管道传输过程中与管道内残存气体发生弹性或非弹性碰撞生成的散射的中性粒子或带电粒子进入接收器,并因此提高了丰度灵敏度。但由于这种设备大而复杂,造价昂贵,操作技术要求高,逐渐被具有良好聚焦性能、超高真空度的磁电分析器所替代,用于同位素或无机元素质谱分析。加速器质谱仪(accelerator mass spectrometry AMS)始于20世纪70年代末。它是基于离子加速器、探测器与质谱分析相结合产生的一种高能质谱仪。测量的离子能量高达兆电子伏特(MeV),克服了传统质谱分析时的分子本底和同量异位素干扰,丰度灵敏度可达10-16,是长寿命核素测量的最佳设备,成为同位素质谱大家族的特殊成员。现代质谱仪种类增加和性能提高得益于现代离子光学理论、电物理理论的成就和电子学技术、电真空技术、机械加工技术的提高。激光技术,特别是飞秒激光技术与新兴材料在仪器研制中的应用,渴望诞生高性能同位素质谱仪和无机质谱仪

  • 【有奖调查】质谱仪配备的真空泵好用吗?

    如题,质谱仪用的真空泵,不外乎几大品牌,工作中,你对自己仪器配制的真空泵感觉如何,使用方面有何感受和经验呢?欢迎一起交流讨论!http://simg.instrument.com.cn/bbs/images/brow/em09505.gif

  • 质谱仪--有机质谱仪的日常维护、清洗

    1.机械泵和分子泵的维护机械泵的维护主要是更换机械泵油。通过机械泵的油面窗口可以看到泵油的颜色,正常情况下,泵油的颜色应该为无色或者浅黄色如果泵油颜色变暗或呈深褐色,表明泵油的质量下降,需要更换,一般情况下每三个月更换一次。不同公司的泵油不可以混合使用,当需要更换不同公司品牌的泵油时,必须用新泵油润洗至少一次。维持适当的油面高度也是机械泵的日常维护工作之一,当机械泵处于工作状态下时,油面高度应在最小与最大刻度之间。机械泵需要定期进行震气,震气的目的是将捕集在回油装置的机械泵油重新抽回至机械泵内,以确保机械泵内有足够的油,同时震气也能将溶解在机械泵油里面的气体和溶剂尽量排出。震气时只需将震气阀打开保持15min左右,一般情况下每周进行一次震气。此外,机械泵需要定期清理散热片上的灰尘,以免灰尘积累较厚影响散热机械泵的连接管路也需要定期检查是否老化损坏,如果老化损坏必须及时更换,不然将影响仪器抽真空效果。安装真空部件时,用甲醇湿润无尘纸沿一个方向将外露的O形圈擦拭干净,并将与O形圈接触部件的相应位置也擦拭干净,否则这两个地方任何部位有纤维、颗粒之类的物质残留,都会令密封不实而导致漏气,从而影响仪器真空度。分子泵的日常维护内容相对较少,有的分子涡轮泵每隔数年需要更换润滑油芯。平常保持分子泵的良好散热和避免非正常断电能在一定程度上延长分子泵的使用寿命。2.空气过滤网的清洗一般质谱仪都配有空气过滤网,该网能有效地过滤空气中的灰尘颗粒物,需要定期取出用清水清洗干净后晾干再安装回去。如果过脏无法清洗干净或者损坏时,需要更换新的过滤网。空气过滤网若长时间未清洗或更换,积累灰尘导致堵塞,将影响质谱仪电路板及其他部件的散热,严重时将影响数据的采集。有的质谱仪虽然配备了冷却循环水系统,也需要定期清洗或更换空气过滤网及水过滤网。3.离子源的维护离子源的维护主要是离子源的清洗。这里以目前较为常用的ESI离子源为例,简单阐述其清洗要点,ESI离子源的清洗非常重要一般情况下,每隔几天就需对离子源进行一次清洗。各个仪器厂家的ESI离子源虽然存在一定差别,但清洗的方法却大同小异。首先是离子源的拆卸,每个仪器厂商的离子源耦合到质谱上的方式不尽相同,一般参照仪器规程小心将离子源拆下,置于干净不易脱落毛絮的布上,如:无纺布、镜头布等,注意静电防护,操作人员需戴上干净的无粉手套。然后是离子源的清洗,将离子源拆散后,置于干净的烧杯中,加入有机溶剂(如甲醇、丙酮异丙醇等),超声清洗30min左右。注意:选择何种清洗溶剂可以根据实验所做的样品类型组合交替超声清洗。最后将清洗干净的离子源晾干或用氮气吹干,原样装回。需要留意的是每个步骤都需要特别小心,轻取轻放,避免硬物碰伤。如果ESI探针内使用的是石英毛细管而不是金属毛细管时,需特别留意石英毛细管的棕色涂层是否有不齐整现象,必须将石英毛细管末端切割平整,否则将严重影响喷雾效果。而使用金属毛细管时需要留意末端是否有弯折情况,若有需要则更换金属毛细管,否则严重影响喷雾效果。4.质谱透镜系统的清洗清洗质谱传输透镜首先需要将质谱仪彻底关机,整个过程需要穿戴干净的无粉手套,按照仪器的操作规程小心地将质谱透镜取出,用蘸润甲醇(色谱纯)的无尘纸轻轻将透镜擦拭,注意同时需要对透镜孔的内部进行清洗。与清洗ESI离子源类似,将透镜置于干净的烧杯中,根据透镜的污染情况选用相应的溶剂超声清洗30min左右,如甲醇、50%甲醇或其他有机溶剂。应避免透镜与硬物触碰损坏,同时避免接触无机酸碱,否则有腐蚀透镜的可能。超声清洗完毕后,取出晾干或用氮气吹干,按正确的流程安装回质谱仪上。5.质谱仪的校正质谱仪需要定期进行校正,用户可根据测试样品的需求制定仪器校正计划。一般情况下,每次重新开机都需要对仪器或仪器的某些项目进行校正,当然不同公司的质谱仪的质量稳定性存在一定差别,所需要的校正频率也不一样。对于质量精度很高的高分辨质谱仪所需要校正的频率相对较高,校正时需要配制或者购买仪器厂家专用的校正液,按照仪器校正规程对仪器进行校正。质量校正是质谱仪日常维护中非常重要的一环,只有在仪器质量轴准确的情况下,才能收集到可靠有效的实验数据。6.质谱仪工作环境的保证为确保质谱仪在一个良好的环境下运行环境的温度、湿度均需要控制在质谱仪正常工作的范围内。同时,需要保证质谱仪的供电正常,负载达到要求,接地良好。并且,质谱仪应避免安装在多尘,离地铁、铁道较近的有振动的区域内。

  • 【我们不一YOUNG】如何防止空气进入高真空的质谱仪?

    [align=center][font=DengXian]如何防止空气进入高真空的质谱仪?[/font][/align][align=center] [/align][font=DengXian]经常观察检查是否系统是否有泄露。定期检查管路有无漏气。要换载气氦气气瓶时候,气瓶的两个瓶子尽量靠近,气体的出口相对。满瓶的气瓶稍打开一点,快用完的气瓶不要关死。动作要快,从一个换到另一个。另外一个办法是,将两个气瓶通过两个阀用三通连接到仪器。切换来换气。[/font]

  • 离子阱质谱仪(Ion trap mass spectrometer(ITMS))

    利用离子阱作为分析器的质谱仪称为离子阱质谱仪。目前使用最多的是由高频率电场进行离子封闭的保罗阱(Paul trap)。由一个双曲面截面的环形电极和上下一对端电极构成。封闭在真空池内的离子,通过高频电压扫描,将离子按m/z从池中引出进行检测。离子阱质谱仪是一种低分辨时间串联质谱仪。可以进行msn的测定(通常n=2-6)。而且价格比其它类型的串联质谱仪便宜。目前在有机物定性方面得到了很广泛的应用。

  • 【求助】3A分子筛 真空氮气吸附 静态水吸附测试

    [size=4]各位好!有没有3A分子筛方面的专家啊?本人在做3A分子筛的静态水吸附时,平行一直做不好,而且连续几次的检测结果越来越低,能不能帮忙分析原因啊?此外在真空氮气吸附时结果也不好,我使用的方法是08版的3A分子筛国标,装置基本与国标一致。希望行业内专家能帮忙分析原因。谢谢![/size]

  • 质谱仪的开机使用

    质谱仪开机前准备事项:检查真空泵油液面,确保泵内油页面处于标定的上下两线之间; 查看离子源洁净程度,ESI源查看喷口是否有固体析出,毛细管口是否完好;APCI喷口是否有积液; 气体压力,打开高纯氮气钢瓶总阀,调节出口压力调至0.65MPa,打开高纯氦气钢瓶总阀,调节出口压力调至0.25Mpa; 检查壳气及辅助气接口连接紧固,松开液相管路与离子源的接口;开启动力电源,电压稳定,正常;确保室内温度在18~25度。开机顺序: 以质谱联用仪为例:1.打开UPS和氮气发生器开关,待氮气的压力表稳定后,打开机械泵上的电源开关;2.机械泵工作至少15min后,打开质谱仪的电源主开关,等系统抽真空24h以上才可以正常操作仪器扫描;初始真空度为7~9。3.打开液相泵,自动进样器及柱温箱电源开关;4.启动电脑,打开电脑桌面的Analysis software软件;使用注意事项:质谱仪需在高真空条件下工作,其中离子源在 10-3~10-5Pa,质量分析器在 10-6Pa。早更换灯丝,清洗离子源或仪器检修后调整质谱。在做样期间要注重口隔垫密封性的检查。每月要进行He载气系统泄漏的检查。必要时要检修老化的色谱柱。每半年要更换干燥剂。每月要进行机械泵油面的检查。每年要注意分子泵加注润滑油。必要时要清洗分子泵和离子泵。并且要进行进样口隔垫密封性和载气系统泄漏的检查,只有很好的维护才能增加仪器的使用寿命。提醒: 样品在处理时应注意处理系统有过滤的功能, 进入到质谱仪内的样品其颗粒的粒度应不大于 1μm, 并且要减少样品在传输过程中的滞后时间, 因为质谱仪极快的分析速度, 样品传输时间如果过长就会失去质谱分析的意义。

  • 【讨论】质谱仪真空腔侧板螺丝拧紧了会怎样?

    我用的agilent6890/5973 [url=https://insevent.instrument.com.cn/t/Mp]gc[/url]MS,工程师说质谱仪真空腔侧板螺丝不要紧上。这段时间用[url=https://insevent.instrument.com.cn/t/Mp]gc[/url]MS都是把侧板螺丝拧上了,好像也没什么异常,不知道长此以往会有什么不良后果?

  • 质谱仪处于not ready状态

    我用的是安捷伦1260(液相)-6460(质谱仪)联用仪,待机一周后,开机后质谱仪一直处于not ready状态,是什么原因?

  • 【分享】质谱小型化 便携质谱仪的福音

    众所周知,质谱仪在生命科学、环境资源、新型材料、质量监测、食品安全、公共安全以及航天和军事技术等诸多热点领域发挥着越来越重要的作用。针对通用实时分析面对各种复杂的分析环境特别是要求在现场快速检测的情况下,对小型便携式质谱仪的需求也越来越迫切。相对已经较为成熟的大型质谱仪而言,小型质谱仪的发展要晚得多。质谱小型化的难点在于减小真空系统、进样系统、电源等的尺寸。而能够在高真空环境下进行的测量系统则是解决以上问题的关键。这就要求电子倍增器或飞行时间质谱的TOF探测器具有能在高气压下正常工作的能力。有兴趣者可以看看这篇文章《高气压下电子倍增器的研究》。[~78136~]

  • 气相色谱仪和质谱仪联用解决了哪些技术问题

    [url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]一质谱联用仪是将[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]和质谱仪通过一定的接口耦合到一起的化学分离分析仪器。因为同时兼具[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的高分离能力和质谱仪的高灵敏度优势,在复杂的分析工作中发挥着不可替代的作用。[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]和质谱仪联用技术中主要着重要解决两个技术问题:1.仪器接口众所周知,[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的入口端压力高于大气压,在高于大气压力的状态下,样品混合物的气态分子在载气的带动下,因在流动相和固定相上的分配系数不同而产生的各组分在色谱柱内的流速不同,使各组分分离,后和载气一起流谱柱。通常色谱往的出口端为大气压力。质谱仪中样品气态分子在具有一定真空度的离子源中转化为样品气态离子。这些离子包括分子离子和其他各种碎片离子在高真空的条件下进入质量分析器运动。在质量扫描部件的作用下,检测器记录各种按质荷比分离不同的离子其离子流强度及其随时间的变化。因此,接口技术中要解决的问题是[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]的大气压的工作条件和质谱仪的真空工作条件的联接和匹配。接口要把[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]柱流出物中的载气,尽可能多的除去,保留或浓缩待测物,使近似大气压的气流转变成适合离子化装置的粗真空,并协调色谱仪和质谱仪的工作流量。2.扫描速度没和色谱仪联接的质谱仪一般对扫描速度要求不高。和[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱仪[/color][/url]联接的质谱仪,由于[url=https://insevent.instrument.com.cn/t/Mp][color=#3333ff]气相色谱[/color][/url]峰很窄,有的仅几秒钟时间。一个完整的色谱峰通常需要至少6个以上数据点。这样就要求质谱仪有较高的扫描速度,才能在很短的时间内完成多次全质量范围的质量扫描。另一方面,要求质谱仪能很快地在不同的质量数之间来回切换,以满足选择离子检测的需要。

Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制